•  Joel A. Tropp
  • Algorithms that work
  • User-friendly theory
  • Inspiring courses
  • Community service
Joel A. Tropp


Joel A. Tropp is Steele Family Professor of Applied & Computational Mathematics at the California Institute of Technology. His research centers on applied mathematics, machine learning, data science, numerical algorithms, and random matrix theory. Some of his best-known contributions include matching pursuit algorithms, randomized SVD algorithms, and matrix concentration inequalities.

Prof. Tropp attained the Ph.D. degree in Computational Applied Mathematics at the University of Texas at Austin in 2004, and he joined Caltech in 2007. He won the PECASE in 2008, and he was recognized as a Highly Cited Researcher in Computer Science each year from 2014–2018. He is co-founder and Section Editor of the SIAM Journal on Mathematics of Data Science (SIMODS), and he was co-chair of the inaugural 2020 SIAM Conference on the Mathematics of Data Science. Prof. Tropp was elected SIAM Fellow in 2019 and IEEE Fellow in 2020.

Download high-resolution headshot. Photo credit: Stacey Adams Photo.

Curriculum Vitæ