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Sparse approximation problems request a good approximation of an input

signal as a linear combination of elementary signals, yet they stipulate that

the approximation may involve only a few of the elementary signals. This class

of problems arises throughout applied mathematics, statistics, and electrical

engineering, but small theoretical progress has been made over the last fifty

years. This dissertation offers four main contributions to the theory of sparse

approximation.

The first two contributions concern the analysis of two types of numerical

algorithms for sparse approximation: greedy methods and convex relaxation

methods. Greedy methods make a sequence of locally optimal choices in an

effort to obtain a globally optimal solution. Convex relaxation methods re-

place the combinatorial sparse approximation problem with a related convex

optimization in hope that their solutions will coincide. This work delineates

conditions under which greedy methods and convex relaxation methods actu-

ally succeed in solving a well-defined sparse approximation problem in part or

in full. The conditions for both classes of algorithms are remarkably similar,

in spite of the fact that the two analyses differ significantly.
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The study of these algorithms yields geometric conditions on the collec-

tion of elementary signals which ensure that sparse approximation problems

are computationally tractable. One may interpret these conditions as a re-

quirement that the elementary signals should form a good packing of points in

projective space. The third contribution of this work is an alternating projec-

tion algorithm that can produce good packings of points in projective space.

The output of this algorithm frequently matches the best recorded solutions

of projective packing problems. It can also address many related packing

problems that have never been studied numerically.

Finally, the dissertation develops a novel connection between sparse ap-

proximation problems and clustering problems. This perspective shows that

many clustering problems from the literature can be viewed as sparse approx-

imation problems where the collection of elementary signals must be learned

along with the optimal sparse approximation. This treatment also yields many

novel clustering problems, and it leads to a numerical method for solving them.
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Chapter 1

Introduction

Sparse approximation problems have two defining characteristics:

1. An input signal is approximated by a linear combination of elementary

signals. In many modern applications, the elementary signals are drawn

from a large, linearly dependent collection.

2. A preference for “sparse” linear combinations is imposed by penalizing

nonzero coefficients. The most common penalty is the number of ele-

mentary signals that participate in the approximation.

The problem domain must justify the linear model, the choice of elementary

signals, and the sparsity criterion.

Sparse approximation has been studied for nearly a century, and it has

numerous applications. Temlyakov [104] locates the first example in a 1907

paper of Schmidt [93]. In the 1950s, statisticians launched an extensive inves-

tigation of another sparse approximation problem called subset selection [75].

Later, approximation theorists began a systematic study of m-term approx-

imation with respect to orthonormal bases and redundant systems [25, 104].

Over the last decade, the signal processing community—spurred by the work

of Coifman et al. [13, 14] and Mallat et al. [72, 23, 22]—has become interested

in sparse representations for compression and analysis of audio [52], images
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[40], and video [77]. Sparsity criteria also arise in deconvolution [103], signal

modeling [87], pre-conditioning [56], machine learning [49], de-noising [10], and

regularization [21].

Most sparse approximation problems employ a linear model in which the

collection of elementary signals is both linearly dependent and large. These

models are often called redundant or overcomplete. Recent research suggests

that overcomplete models offer a genuine increase in approximation power

[85, 39]. Unfortunately, they also raise a serious challenge. How do we find

a good representation of the input signal among the plethora of possibilities?

One method is to select a parsimonious or sparse representation. The exact

rationale for invoking sparsity may range from engineering to economics to

philosophy. Three common justifications:

1. It is sometimes known a priori that the input signal can be expressed as

a short linear combination of elementary signals that has been contami-

nated with noise.

2. The approximation may have an associated cost that must be controlled.

For example, the computational cost of evaluating the approximation

depends on the number of elementary signals that participate. In com-

pression, the goal is to minimize the number of bits required to store the

approximation.

3. Some researchers cite Occam’s Razor, “Pluralitas non est ponenda sine

necessitate.” Causes must not be multiplied beyond necessity.1

1Beware! The antiquity of Occam’s Razor guarantees neither its accuracy nor its appli-
cability [28].
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In short, sparse approximation problems arise in many applications for

many reasons. It is therefore surprising how few theoretical results on these

problems are available. This dissertation attempts to improve the situation.

Let us present a detailed outline of the work, along with a summary of our

contributions.

Chapter 2 offers a rigorous introduction to one important class of sparse

approximation problems. It describes a general class of linear models, called

dictionaries, and it shows how to parameterize approximations in these models.

This leads to a natural method for measuring the sparsity of an approximation.

Then, we discuss four major sparse approximation problems, which request

different compromises between the error in making the approximation and the

sparsity of the approximation.

When the dictionary is simple enough (more precisely, orthonormal),

sparse approximation problems can be solved efficiently with basic algorithms.

But the problems become computationally difficult in general because sparsity

is a discontinuous, nonconvex function. We review a result from the literature

which shows that sparse approximation is NP-hard when the linear model and

the input signal are unrestricted [76, 22]. From this discussion, we gain the

insight that sparse approximation problems may still be tractable if the dic-

tionary is sufficiently close to orthonormal. A large part of the dissertation

can be interpreted as a rigorous justification of this claim.

In Chapter 3, we present some of the basic numerical approaches to sparse

approximation. Let us introduce the two most common types of heuristic.

1. Greedy methods make a sequence of locally optimal choices in an ef-

fort to produce a good global solution to the approximation problem.

3



This category includes forward selection procedures (such as matching

pursuits), backward elimination, and others [75, 104].

2. The convex relaxation approach replaces the nonconvex sparsity measure

with a related convex function to obtain a convex optimization problem.

The convex program can be solved in polynomial time with standard

software, and one hopes that it will yield a good sparse approximation

[105, 10].

In addition, researchers have published a vast array of other heuristic methods.

We do not refer to these approaches as “algorithms” because the literature

contains virtually no proof that any of these numerical methods can solve a

well-defined sparse approximation problem in full or in part.

In Chapter 4, we begin to develop the basic tools that are used to analyze

greedy methods and convex relaxation methods. In particular, we introduce

the coherence parameter, which quantifies how far a dictionary deviates from

orthonormal. The coherence parameter can also be interpreted as a measure

of how well the elements of a dictionary are dispersed in a certain projective

space. We present several common dictionaries that have very low coherence,

i.e., are nearly orthonormal. These examples emphasize the important point

that these incoherent dictionaries may contain far more elements than an

orthonormal basis for the same Euclidean space.

We also discuss some other geometric quantities associated with the dic-

tionary. The most important is the Exact Recovery Coefficient associated with

a sub-collection of elementary signals. This number reflects the difficulty of

computing sparse approximations that involve these elementary signals. The

Exact Recovery Coefficient has a somewhat complicated definition, but it is

4



possible to bound it in terms of the coherence parameter. One of our con-

tributions is to show that the Exact Recovery Coefficient provides a natural

sufficient condition for both greedy methods and convex relaxation methods

to solve certain sparse approximation problems correctly. It is remarkable that

the same quantity arises in the analysis of two very different algorithms.

Chapter 5 uses the tools from Chapter 4 to develop sufficient conditions

for a particular greedy method to solve several different sparse approximation

problems. The proof demonstrates that a locally optimal greedy step can iden-

tify elementary signals from the globally optimal sparse approximation of an

input signal. This argument requires hypotheses on an Exact Recovery Coef-

ficient. This work is fundamental because it isolates for the first time a sharp

condition which ensures that greedy choices are globally optimal. An informal

corollary of the argument is that greedy methods for sparse approximation

succeed whenever the dictionary is incoherent.

Chapter 6 analyzes the convex relaxations of several sparse approximation

problems. Once again, we will see that the Exact Recovery Coefficient plays a

fundamental role in determining when convex relaxation succeeds. An informal

corollary is that convex relaxation methods also work well when the dictionary

is incoherent. Our proofs unify and extend most of the recent results on

a convex relaxation method known as Basis Pursuit. Moreover, we close a

serious gap in the literature by demonstrating that convex relaxation methods

can succeed even when the optimal sparse approximation has a nonzero error.

Chapters 5 and 6 demonstrate that sparse approximation problems are

computationally tractable when the dictionary is incoherent. This observa-

tion raises the question of how to construct incoherent dictionaries. We may

rephrase this question as a geometric feasibility problem: How do we arrange

5



a fixed number of points in a projective space so that the closest pair of points

is at least a specified distance apart?

Chapter 7 develops a numerical approach to this feasibility problem. To

solve the problem, we show that it is both necessary and sufficient to construct

a matrix that satisfies a spectral constraint and a structural constraint. Our

procedure alternately enforces these two constraints in hope of reaching a

matrix that satisfies both. This algorithm frequently yields results that are

comparable with the best recorded solutions to the feasibility problem. A

similar approach can also be used to attack related feasibility problems, many

of which have not been studied numerically.

Finally, Chapter 8 presents a new connection between sparse approxima-

tion problems and data clustering problems. The basic insight is that clus-

tering is a sparse approximation problem in which the linear model must be

learned along with sparse approximations of the input data. We show that

clustering can be recast as a low-rank matrix approximation problem with

sparsity constraints. By varying the constraints, we can recover many of the

clustering problems that have appeared in the literature. Moreover, this per-

spective yields a simple algorithm that can be modified to approach any one

of these clustering problems.

6



Chapter 2

Sparse Approximation Problems

This chapter makes rigorous the notion of a sparse approximation prob-

lem. As discussed in the introduction, these problems request an approxima-

tion of a target signal using a linear combination of elementary signals drawn

from a large collection. The goal is to achieve some compromise between the

error in approximation and the cost in approximation, which is measured as

the number of elementary signals that participate in the approximation.

The first section provides the basic definitions and notation that underlie

our treatment of sparse approximation. It discusses the ambient space in which

the approximation is performed and the means of measuring the approximation

error. It gives a description of the linear model, and it explains precisely how

we measure the cost of an approximation in this model.

The second section introduces four sparse approximation problems, which

manage different tradeoffs between error and cost. It discusses the basic char-

acteristics of these problems and some of the applications in which they arise.

These first two sections are essential background for the rest of the dissertation.

The last section reviews some known results on the computational com-

plexity of sparse approximation. We discover that certain linear models lead

to sparse approximation problems that can be solved with a time cost that is

linear in the size of the input. On the other hand, at least one type of linear

model yields a sparse approximation problem that is NP-hard. The contrast

7



between these two cases leads directly to our major research problem. When

and how can sparse approximation problems be solved efficiently?

2.1 Mathematical Setting

This section contains the basic definitions and notations that we use

throughout the dissertation. We begin by describing the space from which

signals are drawn and how we measure the error in approximating a target

signal. Then we present a linear model for signals in this space, and we dis-

cuss how the model is parameterized. This leads to a natural measure of the

cost of an approximation. With this background, we will be ready to present

formal statements of the problems that we consider throughout the disserta-

tion.

2.1.1 Signal Space

We work in the finite-dimensional, complex inner-product space Cd, which

is called the signal space. Elements of the signal space will generally be referred

to as signals. The usual Hermitian inner product is written as 〈·, ·〉, and we

denote the corresponding Euclidean norm by ‖·‖2. Since we are working in an

inner-product space, the distance between two signals is the Euclidean norm of

their difference. Although we could also study sparse approximation in other

normed spaces, we leave this topic for future research.

Given an input signal (also called a target signal), an approximation prob-

lem elicits the nearest signal that satisfies some additional constraint. In clas-

sical problems, the approximant is often drawn from a subspace or a convex

subset. In constrast, sparse approximation problems involve highly nonlinear

constraints that are related to the cost of the approximation.
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The decision to work in a finite-dimensional space deserves justification.

Although infinite-dimensional spaces model some applications more accurately,

computations always involve finite-dimensional approximations. Therefore,

our theory corresponds with the numerical problems that one actually solves.

Another advantage is that we avoid technical complications that might distract

us from the essence of sparse approximation.

2.1.2 The Dictionary

A dictionary for the signal space is a finite collection D of unit-norm

elementary signals. The elementary signals in D will usually be called atoms,

and each atom is denoted by ϕω, where the parameter ω is drawn from an index

set Ω. The indices may have an interpretation, such as the time–frequency or

time–scale localization of an atom, or they may simply be labels without an

underlying metaphysics. The whole dictionary structure is thus

D = {ϕω : ω ∈ Ω} .

The letter N will denote the number of atoms in the dictionary. We have

N = |D | = |Ω|, where |·| denotes the cardinality of a set.

If the dictionary spans the signal space, then we say that the dictionary

is complete or total. In this case, every signal can be approximated with

zero error using a linear combination of atoms. If the atoms form a linearly

dependent set, then the dictionary is redundant. In this case, every signal has

an infinite number of best approximations. For a dictionary to be complete,

it is necessary that N ≥ d. For a dictionary to be redundant, it is sufficient

that N > d. In many modern applications, the dictionary is both complete

and redundant.
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2.1.3 Coefficient Space

A representation of a signal is a linear combination of atoms that equals

the signal. Every representation is parameterized by a list of coefficients that

we collect into a coefficient vector, which formally belongs to CΩ. In case this

notation is unfamiliar, CΩ is the set of all functions from Ω into C. This

set is made into a linear space with the standard definitions of addition and

multiplication by scalars. The canonical basis for this space is given by the

vectors whose coordinate projections are identically zero, except for a single

unit component.

If c is a coefficient vector, its ω-th component will be denoted with a sub-

script as cω or in functional notation as c(ω). We will alternate freely between

these notations, depending on which is more typographically felicitous.

The support of a coefficient vector is the set of indices at which it is

nonzero:

supp(c)
def
= {ω ∈ Ω : cω 6= 0}. (2.1)

Suppose that Λ ⊂ Ω. Without notice, we may embed “short” coefficient

vectors from CΛ into CΩ by extending them with zeros. Likewise, we may

restrict long coefficient vectors from CΩ to their support. Both transformations

will be natural in context.

2.1.4 Sparsity and Diversity

A sparse approximation problem seeks an approximation that can be rep-

resented with a low cost. In this dissertation, we will measure the cost of a

representation as the number of atoms that participate. To make this idea

rigorous, define the sparsity of a coefficient vector to be the number of places
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where it equals zero. The complementary notion, diversity, counts the num-

ber of places where the coefficient vector does not equal zero. Diversity is

calculated with the `0 quasi-norm ‖·‖0, which is defined as

‖c‖0
def
= |supp(c)| . (2.2)

For any positive number p, define

‖c‖p
def
=

[∑
ω∈Ω
|cω|p

]1/p
(2.3)

with the convention that ‖c‖∞
def
= maxω∈Ω |cω|. As one might expect, there

is an intimate connection between the definitions (2.2) and (2.3). Indeed,

‖c‖0 = limp↓0 ‖c‖pp. It is well known that the function (2.3) is convex if and

only if 1 ≤ p ≤ ∞, in which case it describes the `p norm.

2.1.5 Other Cost Functions

The technical parts of this dissertation will study sparse approximation

problems that compute the cost of a coefficient vector by means of the `0 quasi-

norm. These problems are both difficult and fundamental. Nevertheless, the

`0 quasi-norm is not appropriate for every application, and other cost functions

also lead to sparse approximations. It is worth spending a moment here to

touch on other possibilities.

To promote sparsity, a cost function ought to have two qualities. It should

not charge for zero coefficients, and it should charge proportionately more

for small coefficients than for large coefficients. Gribonval and Nielsen have

studied a class of functions that have exactly these properties [53]. Suppose

that f is a function from [0,∞) to [0,∞) for which

1. f(0) = 0 and f(1) = 1,
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2. f is nondecreasing, and

3. the function c 7→ f(c)/c is nonincreasing on (0,∞).

Requirement 3 implies that f is sub-additive. That is, f(b + c) ≤ f(b) + f(c)

for all nonnegative numbers b and c. To see this, just add the inequalities

b f(b + c)

b + c
≤ f(b) and

c f(b + c)

b + c
≤ f(c).

Given a function f that satisfies Requirements 1–3, we may define a cost

function costf (·), which maps coefficient vectors to nonnegative numbers by

the formula

costf (c)
def
=

∑
ω∈Ω

f(|cω|).

The class of all cost functions is a convex set, and every cost function is sub-

additive. For more details, refer to the report [53]. Note that the normalization

f(1) = 1 was not part of the original definition.

Let us mention a few examples. The `0 quasi-norm and the `1 norm are

both cost functions. Another important cost function is

cost(c) =
∑

ω∈Ω
log2 (|cω|+ 1).

This function is roughly proportional to the number of bits necessary to rep-

resent the coefficient vector at a fixed precision [19, Chapter 7]. As such, it

is the natural cost function to use for data compression. On the other hand,

observe that the squared `2 norm is not a cost function because the function

c 7→ c2 fails Requirement 3.

An important conceptual point is that the `1 norm is the distinguished

example a convex cost function.
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Proposition 2.1. The `1 norm is the only cost function that is also convex.

Proof. Suppose that f is convex and satisfies Requirements 1–3 above. For

every nonnegative c and for every t in the interval (0, 1], the convexity of f

yields the inequality

f(tc) ≤ t f(c) + (1− t) f(0) = t f(c).

On the other hand, Requirement 3 implies that

f(tc)

t c
≥ f(c)

c
.

These inequalities together with Requirement 1 deliver the relation

f(tc) = t f(c) for all c ≥ 0 and t ∈ [0, 1].

Since f(1) = 1, we set c = 1 to see that f(t) = t for all t ∈ [0, 1]. By the same

token, we can also write

1 = f(t/t) = t f(1/t)

to discover that f(1/t) = 1/t for all t ∈ (0, 1].

In conclusion, f(c) = c for all nonnegative c. Therefore, the associated

cost function costf (·) must coincide with the `1 norm.

One interpretation of this result is that the `1 norm is the natural convexifi-

cation of any cost function.
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2.1.6 Synthesis and Analysis Matrices

Fix a dictionary D = {ϕω : ω ∈ Ω}. Although one could use summations

to express linear combinations of atoms from D , that notation muddies the

water. Instead, let us define a matrix Φ, called the dictionary synthesis matrix,

that maps coefficient vectors to signals. Formally,

Φ : CΩ −→ Cd by the rule Φ : c 7−→
∑

ω∈Ω
cω ϕω.

The matrix Φ describes the action of this linear transformation in the canonical

bases of the underlying vector spaces. Therefore, the columns of Φ are the

atoms. We will often treat the dictionary and the dictionary synthesis matrix

interchangeably.

The conjugate transpose of Φ is called the dictionary analysis matrix, and

it maps each signal to a coefficient vector that lists the inner products between

signal and atoms.

Φ∗ : Cd −→ CΩ by the rule (Φ∗ s)(ω) = 〈s,ϕω〉 .

If the matrix Φ∗ is expressed with respect to the canonical bases of the under-

lying vectors spaces, then its rows are atoms, conjugate-transposed.

2.2 Formal Problem Statements

We will consider four basic sparse approximation problems, which manage

different compromises between the error in approximation and the cost of

representing the approximation. The problems, briefly:

1. Find the sparsest representation of the target signal.
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2. Given a target signal, find the sparsest coefficient vector that represents

an approximation with a prescribed error tolerance.

3. From all coefficient vectors with a prescribed level of sparsity, find one

that yields the best approximation of the target signal.

4. Given a target signal, find a coefficient vector that balances the sparsity

and approximation error.

2.2.1 The Sparsest Representation of a Signal

The most basic problem is to find the sparsest representation of a target

signal s. This question may be phrased as

min
c∈CΩ

‖c‖0 subject to Φ c = s. (exact)

Throughout the dissertation, we will always use the label (exact) to refer

to this mathematical program. Note that the solution of the optimization

problem is a coefficient vector, not a signal. If copt is a coefficient vector that

solves (exact), the atoms indexed in supp(copt) must be linearly independent,

or else some could be discarded to improve the sparsity of the representation.

If the dictionary is complete, then every signal has a representation using

d atoms. On the other hand, essentially all signals require fully d atoms on

account of the following result.

Proposition 2.2. If m < d, the collection of signals that have a representation

using m atoms forms a set of Lebesgue measure zero in Cd.

Proof. The signals that lie in the span of m fixed atoms form an m-dimensional

subspace of Cd, which has measure zero. There are
(
N
m

)
ways to choose m
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atoms, so the collection of signals that have a representation over m atoms

is a finite union of m-dimensional subspaces. This union has measure zero in

Cd.

In spite of this obvious fact, the bulk of the recent literature on sparse approx-

imation has focused on the case where the input signal has an exact sparse

representation [31, 35, 54, 43, 29, 53].

Even though the problem (exact) is somewhat academic, it still re-

wards study. The primary justification is that our analysis of algorithms for

other sparse approximation problems ultimately rests on results for (exact).

Second, the analysis of the simpler problem can provide lower bounds on the

computational complexity of more general sparse approximation problems. Fi-

nally, even though Proposition 2.2 shows that natural signals are not perfectly

sparse, one can imagine applications in which a sparse signal is constructed

and transmitted without error. This situation is modeled by (exact).

2.2.2 Error-Constrained Approximation

Let us continue with an immediate generalization of (exact). Instead

of seeking the sparsest exact representation of a signal, we seek the sparsest

representation that achieves a prescribed approximation error. This type of

challenge arises in numerical analysis, where a common problem is to approx-

imate or interpolate a complicated function using a short linear combination

of more elementary functions. The approximation must not commit too great

an error. At the same time, one pays for each additional term in the linear

combination whenever the approximation is evaluated [76].

To state the problem formally, suppose that s is an arbitrary input signal,
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and fix an error tolerance ε. We wish to solve the optimization problem

min
c∈CΩ

‖c‖0 subject to ‖s− Φ c‖2 ≤ ε. (2.4)

The solution of the problem is a coefficient vector, say copt. The corresponding

approximation of the target signal is given by Φ copt. Note that the support of

copt must index a linearly independent collection of atoms, or else some could

be discarded to increase the sparsity of the solution. It should also be clear

that (exact) arises from (2.4) by setting the tolerance ε to zero.

Another important point is that the solutions of (2.4) will generally form

a union of convex sets. Each minimizer will have the same level of sparsity,

but they will yield different approximation errors. One may remove some of

this multiplicity by considering the more convoluted mathematical program

min
c∈CΩ

‖c‖0 + 1
2
‖s− Φ c‖2 ε−1

subject to ‖s− Φ c‖2 ≤ ε. (error)

Any minimizer of (error) also solves (2.4), but it produces the smallest ap-

proximation error possible at that level of sparsity. Observe that, when ε

reaches the norm of the input signal, the unique solution to either (2.4) or

(error) is the zero vector. On the other hand, as ε approaches zero, solu-

tions will involve as many atoms as necessary to represent the signal exactly.

Proposition 2.2 warns that essentially every signal in Cd will require d atoms.

2.2.3 Sparsity-Constrained Approximation

Approximation theorists prefer another flavor of the sparse approximation

problem, called m-term approximation. We refer to this problem as sparsity-

constrained approximation. In this case, one is asked to provide the best
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approximation of a signal using a linear combination of m atoms or fewer

from the dictionary. Formally,

min
c∈CΩ

‖s− Φ c‖2 subject to ‖c‖0 ≤ m. (sparse)

Provided that the input signal has no representation using fewer than m atoms,

the support of a solution must index a linearly independent collection of atoms.

Of course, the optimal approximation error must decline as the number of

atoms m increases.

Typically, approximation theorists study this approximation problem in

the infinite-dimensional setting. They restrict their attention to functions in

some smoothness class, and then they bound the rate at which the optimal

approximation error declines as the number of atoms in the approximation

increases. See [25, 104] for an introduction to this literature.

2.2.4 The Subset Selection Problem

Statisticians often wish to predict the value of one random variable using a

linear combination of other random variables. At the same time, they must ne-

gotiate a compromise between the number of variables involved and the mean

squared prediction error to avoid overfitting. The problem of determining the

correct variables is called subset selection, and it was probably the first type of

sparse approximation to be studied in depth. As Miller laments, statisticians

have made limited theoretical progress due to numerous complications that

arise in the stochastic setting [75].

We will consider a deterministic version of subset selection that manages

a simple tradeoff between the squared approximation error and the number of

atoms that participate. Let s be an arbitrary input signal; we will not assume
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that it has any particular structure nor that is is drawn from a probability

distribution. Suppose that τ is a threshold that quantifies how much improve-

ment in the approximation error is necessary before we admit an additional

term into the approximation. We may state the formal problem

min
c∈CΩ

‖s− Φ c‖22 + τ 2 ‖c‖0 . (subset)

The support of a solution must index a linearly independent collection of

atoms. When τ reaches the norm of the input signal, the zero vector is the

unique solution of (subset). On the other hand, as τ approaches zero, solu-

tions will involve as many atoms as it takes to represent the signal exactly.

2.3 Computational Complexity

The computational complexity of sparse approximation has not been stud-

ied in great detail. It will be valuable, however, to set forth what is known.

We will follow the literature by studying the sparsity-constrained problem

min
c∈CΩ

‖s− Φ c‖2 subject to ‖c‖0 ≤ m. (sparse)

In short, we wish to obtain the best Euclidean approximation of the input

signal using at most m atoms. If the support of the optimal coefficient vector

were known, the problem would fall to the usual least squares methods [51].

Selecting the optimal support, however, is nominally a combinatorial problem.

The näıve strategy would sift through all
(
N
m

)
possibilities.

As we will see, it is true that (sparse) is NP-hard in general. Neverthe-

less, it is quite easy to solve (sparse) when the dictionary is orthonormal.
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2.3.1 Orthonormal Dictionaries

Let D be an orthonormal dictionary for the signal space Cd, and suppose

that |D | = N . Given an input signal s, consider the orthogonal series∑
ω∈Ω
〈s,ϕω〉 ϕω.

If we sort the terms so that the inner products are nonincreasing in magnitude,

then we may truncate the series after m terms to obtain an optimal m-term

approximation of the input signal. The coefficients in the representation of

this approximation are just the inner products that appear in these m terms.

This procedure could be implemented at a total time cost of O(dN),

which is how long it takes to compute all the inner products between the

signal and the dictionary. In certain cases, the procedure can be implemented

even more efficiently. If, for example, the dictionary synthesis matrix is the

discrete Fourier transform, then all d inner products between the signal and

the dictionary can be calculated in time O(d log d).

This discussion suggests a powerful (and accurate) heuristic. Sparse ap-

proximation is easy when the atoms in the dictionary are nearly orthogonal.

Most of this dissertation can be interpreted as a formal justification of this

intuition.

2.3.2 General Dictionaries

On the other hand, (sparse) is NP-hard in general. This important

result was developed independently by Natarajan [76] and Davis et al. [22].

To state their result, let us describe a computational problem called Exact

Cover by 3-Sets, which is usually abbreviated x3c. An instance of x3c consists

of
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• a finite universe U and

• a collection X of subsets X1, . . . , XN such that |Xn| = 3 for each n.

The problem asks whether X contains a disjoint collection subsets whose

union equals U .

Proposition 2.3. Any instance of Exact Cover by 3-Sets is reducible in poly-

nomial time to the sparse approximation problem (sparse).

Proof. The reduction is straightforward. Let the index set Ω = {1, 2, . . . , N}.

Choose the n-th atom to be the indicator vector of the subset Xn. That is, we

set ϕn(u) = 1 when u ∈ Xn and ϕn(u) = 0 otherwise. Select the target signal

s to be e, the vector of ones, and choose m = 1
3
|U |. To determine whether the

instance of Exact Cover by 3-Sets has a solution, we claim that it is sufficient to

check whether a solution of the corresponding sparse approximation problem

achieves a zero error.

Suppose that the instance of x3c has an affirmative solution using subsets

indexed by the set Λ. Choose copt to be the indicator vector of Λ. That

is, copt(n) = 1 for n ∈ Λ and zero otherwise. It follows immediately that

Φ copt = e, so the sparse approximation problem has a solution with zero

error.

Conversely, suppose that copt is an optimal solution of (sparse) and

that the corresponding approximation Φ copt equals e. Since copt contains no

more than 1
3
|U | nonzero entries and each column of the synthesis matrix Φ

contains exactly three unit entries, it follows that {Xn : n ∈ supp(copt)} must

be a disjoint collection of subsets that covers U .
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Exact Cover by 3-Sets is a classic NP-complete problem [45]. We therefore

reach the advertised result.

Corollary 2.4 (Complexity of Sparse Approximation). If the dictio-

nary and target signal are unrestricted, then the sparse approximation problem

(sparse) is NP-hard.

This proof can be adapted to show that the error-constrained sparse approx-

imation problem (error) and the subset selection problem (subset) are

NP-hard in general. Using a corollary of this argument, Davis et al. [22]

demonstrated that it is NP-hard just to approximate the solution of (sparse).

It is useful to give the proof of the complexity result because it highlights

that the difficult case has been manufactured artificially. Therefore, it is not

quixotic to study sparse approximation problems that are more limited in

scope. Indeed, this dissertation provides explicit sufficient conditions under

which certain sparse approximation problems can be solved in polynomial

time with simple algorithms.
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Chapter 3

Numerical Methods for Sparse Approximation

Over the last fifty years, many different methods have been proposed to

solve sparse approximation problems. The two most common approaches are

greedy methods and convex relaxation methods.

A greedy method for sparse approximation constructs a sparse approxi-

mant one step at a time by selecting the atom most strongly correlated with

the residual part of the signal and uses it to update the current approxima-

tion. The first section of this chapter presents two of the most prevalent greedy

techniques, Matching Pursuit and Orthogonal Matching Pursuit. We discuss

some of the basic attributes of these approaches, and we show how they should

be modified to address different sparse approximation problems.

Convex relaxation replaces a combinatorial sparse approximation prob-

lems with a related convex program. The convex problem can be solved in

polynomial time with standard software, and we hope that its solution will

resemble the solution of the original sparse approximation problem. The sec-

ond section presents the convex relaxations of several sparse approximation

problems, and it discusses the basic attributes of these relaxations.

Unfortunately, the literature contains almost no theoretical guarantees

that these numerical methods actually solve sparse approximation problems.

The main contribution of this dissertation is to delineate circumstances in
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which greedy methods and convex relaxation methods provably yield nearly

optimal solutions to various sparse approximation problems.

In Section 3.3, we mention several other numerical approaches to sparse

approximation problems. We will not analyze these other methods.

3.1 Greedy Methods

If the dictionary is orthonormal, we have seen that it is possible to solve

(sparse) by choosing the atoms whose absolute inner products with the target

signal are as large as possible. One way to accomplish this is to choose the

atom most strongly correlated with the signal, subtract its contribution from

the signal, and iterate. Greedy methods for sparse approximation refine this

procedure so that it can be applied to more general dictionaries.

First, we present Matching Pursuit, which is a straightforward extension

of the basic algorithm that succeeds for an orthonormal dictionary. Then,

we develop Orthogonal Matching Pursuit, which adds a least-squares mini-

mization to improve performance. Since these algorithms are iterative, one

must supply a criterion for stopping the iteration. This criterion will depend

on what sparse approximation problem we are trying to solve. The section

concludes with a short discussion about the history of greedy methods.

3.1.1 Matching Pursuit

Let us begin with a formal statement of the Matching Pursuit (MP) pro-

cedure. Let us fix a dictionary D and a stopping criterion.

Algorithm 3.1 (Matching Pursuit).

Input:
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• A d-dimensional target signal s

Output:

• Returns a coefficient vector c in CΩ

Procedure:

1. Initialize the coefficient vector c← 0, the residual r0 ← s, and the loop

index t = 1.

2. Determine an index λt for which

λt ∈ arg max
ω
|〈rt−1,ϕω〉| .

3. Update the coefficient vector:

c(λt) ← c(λt) + 〈rt−1,ϕλt〉 .

4. Compute the new residual:

rt ← rt−1 − 〈rt−1,ϕλt〉 ϕλt .

5. Increment the loop counter: t← t + 1.

6. If the stopping criterion has not been met, return to Step 2.

Let us dissect this algorithm. Step 2 is the greedy selection, which chooses

an atom that is most strongly correlated with the residual part of the signal.

Note that MP may select the same index many times over when the dictionary

is not orthogonal. This repetition occurs because the inner product between
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an atom and the residual does not account for the contributions of other atoms

to the residual. Step 3 updates the current coefficient vector to account for the

effect of the atom λt. Step 4 computes a new residual by subtracting a compo-

nent in the direction of the atom ϕλt . If the dictionary is complete, it can be

shown that the norm of the residual converges to zero as t approaches infinity

[72]. At each step, the algorithm implicitly calculates a new approximant of

the target signal. This approximant at satisfies the relationship

at = s− rt.

The loop repeats until the stopping criterion is satisfied.

Let us estimate the computational cost of this procedure. The greedy

selection in Step 2 nominally involves computing all the inner products between

the residual and the dictionary, which generally requires O(dN) floating-point

operations. For structured dictionaries, it may be possible to perform this

calculation more efficiently. Steps 3 and 4 require only O(d) floating-point

operations. If the loop executes T times, then the cost of the algorithm is at

most O(d T N).

3.1.2 Orthogonal Matching Pursuit

In this dissertation, we will concentrate on an algorithm called Orthog-

onal Matching Pursuit (OMP), which adds a least-squares minimization to

Algorithm 3.1 to obtain the best approximation over the atoms that have al-

ready been chosen. This revision significantly improves the behavior of the

procedure.

We continue with a formal statement of the algorithm. Again, let us fix

a dictionary and a stopping criterion.
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Algorithm 3.2 (Orthogonal Matching Pursuit).

Input:

• A d-dimensional target signal s

Output:

• A coefficient vector c in CΩ

Procedure:

1. Initialize the index set Λ0 = ∅, the residual r0 ← s, and the loop index

t← 1.

2. Determine an index λt for which

λt ∈ arg max
ω
|〈rt−1,ϕω〉| .

3. Update the index set: Λt ← Λt−1 ∪ {λt}.

4. Find the solution c of the least-squares problem

min
c∈CΛt

∥∥∥s−∑t

j=1
c(λj)ϕλj

∥∥∥
2
.

5. Compute the new residual using the least-squares coefficients c:

rt ← s−
∑t

j=1
c(λj)ϕλj

.

6. Increment the loop counter: t← t + 1.

7. If the stopping criterion has not been met, return to Step 2.
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The anatomy of Orthogonal Matching Pursuit is similar to that of Match-

ing Pursuit. Step 2 selects a new atom using the same greedy selection criterion

as MP, and Step 3 adds its index to the list of atoms that have been chosen.

The current coefficients are computed in Step 4 by solving a least squares

problem, which is the essential difference between MP and OMP, and then

Step 5 determines the new residual. The solution of the least-squares problem

implicitly determines an approximant at of the target signal:

at =
∑t

j=1
c(λj)ϕλj

.

The loop continues until the stopping criterion is satisfied.

The behavior of OMP differs significantly from that of MP. Observe that

OMP maintains a loop invariant:

〈
rt,ϕλj

〉
= 0 for j = 1, . . . , t.

It follows that Step 2 always selects an atom that is linearly independent from

the atoms that have already been chosen. In consequence, the residual must

equal zero after d steps. Moreover, the solution to the least-squares problem

in Step 4 is always unique.

Let us estimate the time cost of this algorithm. Step 2 can always be

implemented in O(dN) time by computing all the inner products between the

residual and the dictionary. At iteration t, solving the least-squares problem

in Step 4 requires only O(t d) time because we may build on the solution of

the least-squares problem in iteration (t− 1). If no additional efficiencies are

made, the time cost of the algorithm is O(d T (T + N)), where T is the total

number of iterations. Step 2 will usually dominate the cost of this algorithm

unless one is able to exploit some structure in the dictionary.

28



3.1.3 Stopping Criteria

To complete the statement of the two algorithms, we must provide a

condition for determining when to halt the iteration. By varying the stopping

criterion, we can tailor greedy methods for different sparse approximation

problems. Here are three possibilities.

1. One may wait until the norm of the residual rt equals zero. This crite-

rion is appropriate for the problem of recovering a sparse input signal

(exact).

2. One may halt the procedure when the norm of the residual rt declines

below a specified threshold. This criterion is appropriate for the error-

constrained approximation problem (error).

3. One may halt the procedure after m distinct atoms have been selected.

Then the algorithm will return a coefficient vector that is supported on m

indices. This method is appropriate for solving the sparsity-constrained

approximation problem (sparse).

A natural stopping rule for the subset selection problem (subset) is not im-

mediately apparent.

Suppose that the dictionary is orthonormal. It is not hard to check that

MP and OMP, equipped with these stopping rules, are both correct algorithms

for the respective sparse approximation problems.

3.1.4 A Counterexample for MP

Nevertheless, there is no reason to expect that greedy methods will suc-

ceed in general. Indeed, the literature contains examples where MP and OMP
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fail catastrophically even though the target signal has a very sparse represen-

tation over the dictionary [24, 10].

Suppose that D is an orthonormal dictionary for Cd, where d ≥ 3. We

adjoin the atom

ψ = α

[
ϕ1 +ϕ2 +

d∑
n=3

1

n− 2
ϕn

]

where α is chosen so that ψ has unit norm. If Matching Pursuit is executed

with the input signal s = ϕ1 + ϕ2, then the algorithm will continue forever

with an approximation error

‖s− at‖2 � t−1/2.

Yet the input signal clearly has a two-term representation. One may construct

related examples in which Orthogonal Matching Pursuit requires fully d steps

to reconstruct a signal that has a two-term representation.

3.1.5 History of Greedy Methods

Greedy algorithms for sparse approximation first appeared in the statis-

tics literature sometime during the 1950s, where they were used for solving

subset selection problems. The basic technique, called forward selection, is

a more elaborate version of Matching Pursuit. Many other variations were

subsequently developed including backward elimination and stepwise regres-

sion (also known as Efroymsen’s algorithm). These algorithms are discussed

at length in the monograph [75].

Algorithm 3.1 was invented in 1981 under the cognomen Projection Pur-

suit Regression [38]. This algorithm was introduced to the signal processing
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literature by Mallat and Zhang, who renamed it Matching Pursuit [72]. Ap-

proximation theorists refer to the Pure Greedy Algorithm [104].

Orthogonal Matching Pursuit was developed independently by many re-

searchers. The earliest reference appears to be a 1989 paper of Chen, Billings,

and Luo [9]. The first signal processing papers on OMP arrived around 1993

[83, 23].

Statisticians invoke many elaborate stopping rules when they apply greedy

methods for subset selection. The most famous is probably to examine the Cp

statistic of Mallows [73]. For more details, see the monograph [75].

3.2 Convex Relaxation Methods

A common approach to solving a combinatorial problem is to replace

it with a relaxed version that can be solved more efficiently. The presence

of the `0 quasi-norm makes sparse approximation problems combinatorial in

nature. Proposition 2.1 shows that the `1 norm provides a natural convex

relaxation of the `0 quasi-norm, and it suggests that we may be able solve

sparse approximation problems by introducing an `1 norm in place of the `0

quasi-norm.

This section presents the convex relaxations of several different sparse

approximation problems, and it discusses their basic attributes. We conclude

with a historical perspective on convex relaxation.
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3.2.1 The Sparsest Representation of a Signal

Recall that the problem of determining the sparsest representation of an

input signal is

min
c∈CΩ

‖c‖0 subject to Φ c = s. (exact)

According to our heuristic, the natural convex relaxation is

min
b∈CΩ

‖b‖1 subject to Φ b = s. (r-exact)

Note that the convex relaxation is not an algorithm itself but another compu-

tational problem that must be solved. Since (r-exact) is a convex program,

we may use standard mathematical programming software to compute a min-

imizer in polynomial time [5]. In this work, we will not discuss algorithms

for solving convex optimization problems. Rather, we will concentrate on the

relationship between the solution of the convex relaxation and the original

sparse approximation problem.

Chen, Donoho, and Saunders were the first to propose that (r-exact),

which they call Basis Pursuit, could be used to solve (exact). Their paper [10]

offers copious numerical evidence that the relaxation succeeds, but it provides

no rigorous proof. Subsequently, some theoretical results have been developed.

We postpone this discussion until Section 6.1.

3.2.2 Error-Constrained Approximation

Given a signal s and an error tolerance ε, the error-constrained sparse

approximation problem is

min
c∈CΩ

‖c‖0 + 1
2
‖s− Φ c‖2 ε−1

subject to ‖s− Φ c‖2 ≤ ε. (error)
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Its convex relaxation is

min
b∈CΩ

‖b‖1 subject to ‖s− Φ b‖2 ≤ δ. (r-error)

It might seem that the relaxation ought to include the approximation error

in the objective function. This measure is unnecessary because it leads to

a very similar optimization problem, as one may discover by inspecting the

respective Lagrangian functions. Since (r-error) requests the minimizer of

a convex function over a convex set, we may apply standard mathematical

programming software to solve it [5].

Observe that, as δ approaches zero, the solution of (r-error) approaches

the solution of (r-exact). Indeed, the case δ = 0 reduces to the problem (r-

exact). On the other hand, when δ exceeds the norm of the input signal,

the unique solution of (r-error) is the zero vector. In Chapter 6, we will

develop theory that illuminates the correct relationship between δ and ε.

The relaxation (r-error) was proposed and studied in [107]. Around

the same time, [30] introduced the same relaxation independently. Otherwise,

there are no theoretical results on the performance of this convex relaxation.

3.2.3 Subset Selection

Given a signal s and a threshold τ , the subset selection problem is

min
c∈CΩ

‖s− Φ c‖22 + τ 2 ‖c‖0 . (subset)

For reasons that we will discuss below, the convex relaxation that we study

has a form slightly different from the original problem. Our relaxation is

min
b∈CΩ

1
2
‖s− Φ b‖22 + γ ‖b‖1 . (r-subset)
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Since the objective of (r-subset) is an unconstrained convex function, we

can use standard mathematical programming software to find a minimizer [5].

Let us take a moment to understand why the subset selection problem and

its convex relaxation have slightly different structures. Suppose for a moment

that the dictionary is orthonormal. Then one may solve the subset selection

problem (subset) by applying a hard threshold operator (see Figure 3.1) with

cutoff τ to each coefficient in the orthogonal expansion of the signal [71]. In

effect, one retains every atom whose inner product with the signal is larger

than τ and discards the rest. On the other hand, one may solve the convex

relaxation (r-subset) by applying a soft threshold operator (see Figure 3.1)

with cutoff γ to each coefficient in the orthogonal expansion of the signal [71].

This amounts to retaining every atom whose inner product with the signal

is strictly greater than γ and discarding the rest. We see that the form of

the relaxation has been adapted so that the parameter still determines the

location of the cutoff (when the dictionary is orthonormal). In Chapter 6, we

will unveil the correct relationship between γ and τ in the general case.

The reader should be aware that convex programs of the form (r-subset)

have been proposed for many different applications. Geophysicists have long

used them for deconvolution [103, 92], and the statistics community uses (r-

subset) for linear regression problems [105]. Under mild assumptions, it can

be shown that support vector machines, which are used for machine learn-

ing applications, solve the same optimization problem [49]. Chen, Donoho,

and Saunders have applied (r-subset) to de-noise signals [10], and Fuchs

has put it forth for several other signal processing problems, e.g., in [41, 42].

Daubechies, Defrise, and De Mol have proposed a related convex program for

regularizing linear inverse problems [21]. Most intriguing, perhaps, Olshausen
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Figure 3.1: Hard and soft thresholding. At left, the hard thresholding
operator with cutoff τ . At right, the soft thresholding operator with cutoff γ.

and Field have argued that the mammalian visual cortex may solve similar

minimization problems to produce sparse representations of images [79]. None

of the papers we have just mentioned develops any correspondence between

the solutions of (subset) and (r-subset).

3.2.4 Sparsity-Constrained Approximation

Convex relaxation does not seem to be an appropriate method for solving

(sparse) because it provides no control on the number of terms involved in

the approximation.

3.2.5 History of Convex Relaxation

The ascendance of convex relaxation for sparse approximation was pro-

pelled by two theoretical–technological developments of the last half century.

First, the philosophy and methodology of robust statistics—developed by von

35



Neumann, Tukey and Huber—show that `1 loss criteria can be applied to de-

fend statistical estimators against outlying data points. Robust estimators

qualitatively prefer a few large errors and many tiny errors to the armada of

moderate deviations introduced by mean-squared-error criteria. Second, the

elevation during the 1950s of linear programming to the level of technology

and the interior-point revolution of the 1980s have made it both tractable and

commonplace to solve the large-scale optimization problems that arise from

convex relaxation.

It appears that a 1973 paper of Claerbout and Muir is the crucible in

which these reagents were first combined for the express goal of yielding a

sparse representation [12]. They write,

In deconvolving any observed seismic trace, it is rather disappoint-

ing to discover that there is a nonzero spike at every point in time

regardless of the data sampling rate. One might hope to find spikes

only where real geologic discontinuities take place. Perhaps the L1

norm can be utilized to give a [sparse] output trace. . . .

This idea was subsequently developed in the geophysics literature by [103, 67,

78]. In 1986, Santosa and Symes proposed the convex relaxation (r-subset)

as a method for recovering sparse spike trains, and they proved that the method

succeeds under moderate restrictions [92].

Around 1990, the work on `1 criteria in signal processing recycled to the

statistics community. Donoho and Johnstone wrote a pathbreaking paper [32]

which proved that one could determine a nearly optimal minimax estimate of

a smooth function contaminated with noise by solving the convex relaxation

(r-subset) where Φ is an appropriate wavelet basis and γ is related to the
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variance of the noise. Slightly later, Tibshirani proposed that (r-subset),

which he calls the Lasso, could be used to solve subset selection problems in

the stochastic setting [105]. From here, it is only a short step to Basis Pursuit

and Basis Pursuit de-noising [10].

This history could not be complete without mention of parallel devel-

opments in theoretical computer science. It has long been known that some

combinatorial problems are intimately bound up with continuous convex pro-

gramming problems. In particular, the problem of determining the maximum

value that an affine function attains at some vertex of a polytope can be

solved using a linear program [82]. A major theme in modern computer sci-

ence is that many other combinatorial problems can be solved approximately

by means of a convex relaxation. For example, a celebrated paper of Goemans

and Williamson proves that a certain convex program can be used to produce

a graph cut whose weight exceeds 87% of the maximum cut [50]. The present

work draws deeply on the fundamental idea that a combinatorial problem and

its convex relaxation often have closely related solutions.

3.3 Other Methods

There are at least three other approaches to solving sparse approximation

problems. For reference, we offer a brief mention of these techniques. We will

not discuss them again.

3.3.1 The Brute Force Approach

Brute force methods sift through all potential approximations to find

the global optimum. Exhaustive searches quickly become intractable as the

problem size grows, and more sophisticated techniques, such as branch-and-
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bound, do not accelerate the hunt enough to be practical [75].

3.3.2 The Nonlinear Programming Approach

Some researchers have developed specialized nonlinear programming soft-

ware that attempts to solve sparse approximation problems directly by such

means as interior-point methods [86]. These techniques are only guaranteed

to discover a locally optimal solution.

3.3.3 The Bayesian Approach

The Bayesian approach assumes that coefficients in the linear combina-

tion are random variables with a “sparse” prior distribution. Sometimes, the

elementary signals are also treated as random variables with known prior dis-

tributions. Input signals are then used to estimate posterior probabilities, and

the most likely models are selected for further attention. There do not seem

to be any theoretical results for this paradigm [68, 91, 75].
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Chapter 4

Geometry of Sparse Approximation

The goal of this chapter is to bring together all of the linear algebra,

functional analysis, and discrete geometry that we will need to analyze sparse

approximation algorithms. All the ideas we discuss have natural geometric

interpretations. Some concepts will be familiar from elementary linear alge-

bra, while others have arisen directly from the study of sparse approximation.

Although this chapter may seem like a diversion, the material is important to

develop an intuitive understanding of the subsequent chapters.

Most of the background material in this section may be traced to the

usual suspects [61, 63, 51], which will not generally be cited in the text. Other

references will be given explicitly, and the contributions of the author will be

noted.

4.1 Sub-dictionaries

A linearly independent collection of atoms is called a sub-dictionary. If

the atoms in a sub-dictionary are indexed by the set Λ, then we define a

synthesis matrix ΦΛ : CΛ → Cd and an analysis matrix ΦΛ
∗ : Cd → CΛ.

ΦΛ : c 7−→
∑

λ∈Λ
cλϕλ, and (ΦΛ

∗ s)(λ) = 〈s,ϕλ〉 for λ ∈ Λ.

These matrices are entirely analogous with the dictionary synthesis and anal-

ysis matrices. We will frequently use the fact that the synthesis matrix ΦΛ
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has full column rank.

The Gram matrix of the sub-dictionary is given by ΦΛ
∗ΦΛ. Observe that

the (λ, ω) entry of this matrix is the inner product 〈ϕω,ϕλ〉. Therefore, the

Gram matrix is Hermitian, and it has a unit diagonal (since all atoms have

unit Euclidean norm). One should interpret the Gram matrix as a table of

the correlations between atoms listed by Λ. Note that the Gram matrix of a

sub-dictionary is always invertible.

We will encounter two other matrices frequently enough to single them

out. The Moore–Penrose generalized inverse of the synthesis matrix is denoted

by ΦΛ
†, and it may be calculated using the formula ΦΛ

† = (ΦΛ
∗ΦΛ)−1 ΦΛ

∗. For

any signal s, the coefficient vector ΦΛ
†s synthesizes the best approximation

of s using the atoms in Λ. The orthogonal projector that produces this best

approximation will be denoted as PΛ. This projector may be expressed using

the generalized inverse: PΛ = ΦΛΦΛ
†. Recall that PΛ s is always orthogonal

to the residual (s− PΛ s).

4.2 Summarizing the Dictionary

To develop simple results for general dictionaries, we need a method for

summarizing the behavior of the dictionary. This section describes an attrac-

tive approach based on the inner products between atoms. We also exhibit

several different dictionaries and compute their summary parameters.

4.2.1 Coherence

The most fundamental quantity associated with a dictionary is the co-

herence parameter µ. It equals the maximum absolute inner product between
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two distinct atoms:

µ
def
= max

j 6=k

∣∣〈ϕωj
,ϕωk

〉∣∣ .
Roughly speaking, this number measures how much two atoms can look alike.

Coherence is a blunt instrument since it only reflects the most extreme corre-

lations in the dictionary. Nevertheless, it is easy to calculate, and it captures

well the behavior of some dictionaries. Informally, we say that a dictionary is

incoherent when we judge that µ is small.

It is obvious that every orthonormal basis has coherence zero. A union of

two orthonormal bases has coherence no smaller than d−1/2 [54]. A dictionary

of concatenated orthonormal bases is called a multi-ONB. For some d, it is

possible to build a multi-ONB that contains d or even (d+1) orthonormal bases

yet retains the minimal possible coherence d−1/2 [59]. Gilbert, Muthukrishnan,

and Strauss have exhibited a method for constructing even larger dictionaries

with slightly higher coherence [48]. For general dictionaries, a lower bound on

the coherence is

µ ≥

√
N − d

d (N − 1)
.

If each atomic inner product meets this bound, the dictionary is called an

equiangular tight frame. See [100, 60, 101] for more details. A derivation of

this bound appears in Section 7.5.

The coherence parameter of a dictionary was first mentioned as a quantity

of heuristic interest in [22], but the first formal treatment appears in [31]. It

is also related to an eponymous concept from the geometry of numbers [115].
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4.2.2 Example: The Dirac–Fourier Dictionary

Consider the dictionary for Cd that has synthesis matrix

Φ =
[

Id Fd

]
,

where Id is the d-dimensional identity matrix and Fd is the d-dimensional

discrete Fourier transform (DFT) matrix. For reference, the (j, k) entry of Fd

is the complex number exp{−2πi jk/d}/
√

d.

This dictionary is called the Dirac–Fourier dictionary because it consists

of impulses and discrete complex exponentials. In a d-dimensional signal space,

it contains 2 d atoms, and it forms a two-ONB because the identity matrix and

the DFT matrix are both unitary. It is very easy to check that the coherence

µ of the Dirac–Fourier dictionary is 1/
√

d. Therefore, it has the smallest

coherence possible for a multi-ONB.

4.2.3 Cumulative Coherence

We have introduced the coherence parameter µ because it is easy to cal-

culate, and yet it can be used to bound much more complicated quantities

associated with the dictionary. A refinement of the coherence parameter is

the cumulative coherence function. It measures how much a collection of m

atoms can resemble a fixed, distinct atom. Formally,

µ1(m)
def
= max

|Λ|=m
max
ω /∈Λ

∑
λ∈Λ
|〈ϕω,ϕλ〉| .

We place the convention that µ1(0) = 0. The subscript on µ1 serves as a

mnemonic that the cumulative coherence is an absolute sum, and it distin-

guishes the function µ1 from the number µ. When the cumulative coherence

42



grows slowly, we say informally that the dictionary is incoherent or quasi-

incoherent.

The cumulative coherence function has an important interpretation in

terms of sub-dictionaries. Suppose that Λ indexes m atoms. Then the number

µ1(m−1) gives an upper bound on the sum of the absolute off-diagonal entries

in each row (or column) of the Gram matrix ΦΛ
∗ΦΛ. Several other facts about

µ1 follow immediately from the definition.

Proposition 4.1. The cumulative coherence has the following properties:

1. It generalizes the coherence: µ1(1) = µ and µ1(m) ≤ m µ.

2. Its first differences are nonnegative:

µ1(m + 1)− µ1(m) ≥ 0 for each m ≥ 0.

3. Its second differences are nonpositive:

µ1(m + 2)− 2 µ1(m + 1) + µ1(m) ≤ 0 for each m ≥ 0.

4. For an orthonormal basis, µ1(m) = 0 for each nonnegative m.

The concept of cumulative coherence was developed independently in [29,

106]. In Section 4.10, we will suggest geometric interpretations of both the

coherence parameter and the cumulative coherence function.

4.2.4 Example: Double Pulses

For a realistic dictionary where the atoms have analytic definitions, the

cumulative coherence function is not too difficult to compute. We begin with
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a simple example of a dictionary in the signal space Cd. We will index the

components of a signal vector from zero to (d− 1).

We construct d atoms, indexed from zero to (d− 1). For each index k, we

define an atom

ϕk(t) =


√

35/6, t = k
1/6, t ≡ k + 1 (mod d)
0, otherwise.

Two atoms have a nonzero inner product if and only if their indices are adja-

cent:

〈ϕj,ϕk〉 =


1, j = k√

35/36, j ≡ k − 1 (mod d)√
35/36, j ≡ k + 1 (mod d)

0, otherwise.

It follows that the cumulative coherence function of this dictionary is

µ1(m) =

{ √
35/36, m = 1√
35/18, m ≥ 2.

We see that the cumulative coherence is always less than a third, while the

quantity m µ grows without bound.

4.2.5 Example: Decaying Atoms

To see a more complicated example, we consider a dictionary of exponen-

tially decaying atoms. To streamline the calculations, we work in the infinite-

dimensional Hilbert space `2 of square-summable, complex-valued sequences.

Fix a parameter β < 1. For each index k ≥ 0, define an atom by

ϕk(t) =

{
0, 0 ≤ t < k

βt−k
√

1− β2, k ≤ t.

It can be shown that the atoms span `2, so they form a complete dictionary.

The absolute inner product between two atoms is

|〈ϕk,ϕj〉| = β|k−j|.
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In particular, each atom has unit norm. It also follows that the coherence of

the dictionary equals β.

Here is the calculation of the cumulative coherence function in detail:

µ1(m) = max
|Λ|=m

max
k/∈Λ

∑
j∈Λ

|〈ϕk,ϕj〉|

= max
|Λ|=m

max
k/∈Λ

∑
j∈Λ

β|k−j|.

The maximum occurs, for example, when k = bm
2
c and

Λ = {0, 1, 2, . . . , bm
2
c − 1, bm

2
c+ 1, . . . ,m− 1, m}.

The exact form of the cumulative coherence function depends on the parity of

m. For m even,

µ1(m) =
2β (1− βm/2)

1− β

while for m odd,

µ1(m) =
2β (1− β(m−1)/2)

1− β
+ β(m+1)/2.

Notice that µ1(m) < 2β/(1 − β) for all m. On the other hand, the quantity

m µ grows without bound.

4.3 Operator Norms

One of the most useful tools in our satchel is the operator norm. Let

us treat the matrix A as a map between two finite-dimensional vector spaces

equipped respectively with the `p and `q norms. The (p, q) operator norm of

A measures the factor by which the matrix can increase the length of a vector.

It may be calculated with any of the following expressions:

‖A‖p,q
def
= max

z 6=0

‖A z‖q
‖z‖p

= max
‖z‖p =1

‖A z‖q = max
‖z‖p ≤ 1

‖A z‖q .
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In words, the operator norm equals the maximum `q norm of any point in the

image of the `p unit ball under A.

A quantity related to the operator norm is the restricted minimum

min
z ∈R(A∗)
z 6=0

‖A z‖q
‖z‖p

(4.1)

where R(·) denotes the range (i.e., column span) of its argument. The expres-

sion (4.1) measures the factor by which the nonsingular part of A can decrease

the length of a vector. If the matrix has full row-rank, we can express the

minimum in terms of a generalized inverse.

Proposition 4.2. The following bound holds for every matrix A.

min
z ∈R(A∗)
z 6=0

‖A z‖q
‖z‖p

≥
∥∥A†∥∥−1

q,p
. (4.2)

If A has full row-rank, equality holds in (4.2). When A is invertible, this result

implies

min
z 6=0

‖A z‖q
‖z‖p

=
∥∥A−1

∥∥−1

q,p
.

Proof. First, observe that min
z ∈R(A∗)
z 6=0

‖A z‖q
‖z‖p

−1

= max
z ∈R(A∗)
z 6=0

‖z‖p
‖A z‖q

.

Next, make the substitution w = A z. The matrix A†A is a projector onto the

range of A∗, which implies that A†w = z. As the vector z ranges over R(A∗),

the vector w ranges over all of R(A) because R(A) = R(AA∗). Thus,

max
z ∈R(A∗)
z 6=0

‖z‖p
‖A z‖q

= max
w∈R(A)
w 6=0

∥∥A†w
∥∥
p

‖w‖q

≤ max
w 6=0

∥∥A†w
∥∥
p

‖w‖q
.
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When A has full row-rank, the last two maxima are taken over the same set,

which converts the inequality to an equality. Complete the proof by identifying

the last maximum as
∥∥A†
∥∥
q,p

.

The dual of the finite-dimensional normed linear space (Cm, `p) is the

space (Cm, `p′) where 1/p+1/p′ = 1. In particular, `1 and `∞ are dual to each

other, while `2 is self-dual. If the matrix A maps from `p to `q, its conjugate

transpose A∗ should be viewed as a map between the dual spaces `q′ and `p′ .

Under this regime, the operator norm of a matrix always equals the operator

norm of its conjugate transpose:

‖A‖p,q = ‖A∗‖q′, p′ . (4.3)

Therefore, any procedure for calculating the norm of a matrix can also be used

to calculate the norm of its conjugate transpose.

4.3.1 Calculating Operator Norms

Some basic operator norms can be determined with ease, while others

are quite stubborn. The following table describes how to compute the most

important ones.

Co-domain
`1 `2 `∞

`1 Maximum `1

norm of a
column

Maximum `2

norm of a
column

Maximum abso-
lute entry of ma-
trix

Domain `2 NP-hard Maximum
singular value

Maximum `2

norm of a row
`∞ NP-hard NP-hard Maximum `1

norm of a row
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The computational complexity of the (∞, 1) norm is due to Rohn [89]. Using

his methods, one can prove that it is also NP-hard to calculate the (∞, 2)

norm. The result for the (2, 1) norm follows from equation (4.3).

4.4 Singular Values

Under any linear map A, the image of the Euclidean unit ball is an el-

lipsoid. The Euclidean lengths of the semi-axes of this ellipsoid are called the

singular values of the map. The maximum singular value of A coincides with

the (2, 2) operator norm of the matrix. If A has more rows than columns, its

singular values may also be defined algebraically as the square roots of the

eigenvalues of A∗A.

Suppose that Λ indexes a collection of m atoms. If m is small enough,

then we may develop good bounds on the singular values of ΦΛ using the

cumulative coherence.

Proposition 4.3. Suppose that |Λ| = m. Each singular value σ of the matrix

ΦΛ satisfies

1 − µ1(m− 1) ≤ σ2 ≤ 1 + µ1(m− 1).

A version of this proposition was used implicitly by Gilbert, Muthukrishnan,

and Strauss in [48], and the current version appears in [110]. The present

result first reached print in the article of Donoho and Elad [29].

Proof. Consider the Gram matrix G = ΦΛ
∗ΦΛ. The Geršgorin Disc Theo-

rem [61] states that every eigenvalue of G lies in one of the m discs{
z : |G (λ, λ)− z| ≤

∑
ω 6=λ
|G (λ, ω)|

}
for each index λ in Λ.
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The normalization of the atoms implies that G (λ, λ) ≡ 1. Meanwhile, the sum

is bounded above by µ1(m− 1). The result follows since the eigenvalues of G

equal the squared singular values of ΦΛ.

When N ≤ d, it is possible to develop alternate bounds on the singu-

lar values of ΦΛ using interlacing theorems. The following result specializes

Theorem 7.3.9 of [61].

Proposition 4.4. Suppose that N ≤ d. Then each singular value σ of the

matrix ΦΛ satisfies

σmin(Φ) ≤ σ ≤ σmax(Φ),

where σmin and σmax denote the smallest and largest singular values of a matrix.

4.5 The Inverse Gram Matrix

Suppose that Λ indexes a sub-dictionary, and let G denote the Gram

matrix ΦΛ
∗ΦΛ. The (∞,∞) operator norm of G−1 will arise in our calculations,

so we need to develop a bound on it. Afterward, we will make a connection

between this inverse and the dual system of the sub-dictionary.

Proposition 4.5. Let m = |Λ|, and suppose that µ1(m− 1) < 1. Then∥∥G−1
∥∥
∞,∞ =

∥∥G−1
∥∥

1,1
≤ 1

1− µ1(m− 1)
. (4.4)

This proposition was established independently in [44, 106]. For comparison,

observe that ‖G‖∞,∞ ≤ 1 + µ1(m− 1).

Proof. First, note that the two operator norms in (4.4) are equal because

the inverse Gram matrix is Hermitian. Since the atoms are normalized, the
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Gram matrix has a unit diagonal. Therefore, we may split it as the sum of its

diagonal and off-diagonal parts: G = Im + A. Each row of the matrix A lists

the inner products between a fixed atom and (m− 1) other atoms. Therefore,

‖A‖∞,∞ ≤ µ1(m− 1). Now invert G using a Neumann series:∥∥G−1
∥∥
∞,∞ =

∥∥∥∑∞

k=0
(− A)k

∥∥∥
∞,∞

≤
∑∞

k=0
‖A‖k∞,∞

=
1

1− ‖A‖∞,∞
.

Introduce the estimate for ‖A‖∞,∞ to complete the proof.

The inverse of the Gram matrix has a useful interpretation. The atoms

in Λ form a linearly independent set, so there is a unique collection of dual

vectors {ψλ}λ∈Λ that has the same linear span as {ϕλ}λ∈Λ and that satisfies

the bi-orthogonal property

〈ψλ,ϕλ〉 = 1 and 〈ψλ,ϕω〉 = 0 for λ, ω in Λ and ω 6= λ.

That is, each dual vector ψλ is orthogonal to the atoms with different indices,

and it is scaled in this (unique) direction until its inner product with ϕλ equals

one. The definition of the dual system suggests that it somehow inverts the

sub-dictionary. Indeed, the dual vectors form the columns of (ΦΛ
†)∗. We may

calculate that

G−1 = (ΦΛ
∗ΦΛ)−1

= (ΦΛ
∗ΦΛ)−1(ΦΛ

∗ΦΛ)(ΦΛ
∗ΦΛ)−1 = ΦΛ

†(ΦΛ
†)∗.

Therefore, the inverse Gram matrix tabulates the inner products between the

dual vectors. More information about dual vectors and biorthogonal systems

may be located in any book on functional analysis, e.g., [63].
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4.6 The Exact Recovery Coefficient

Now we will develop a measure of the similarity between a sub-dictionary

and the remaining atoms from the dictionary. Let Λ index a sub-dictionary,

and define the quantity

ERC(Λ; D)
def
= 1 − max

ω /∈Λ

∥∥ΦΛ
†ϕω

∥∥
1
.

The letters “ERC” abbreviate the term Exact Recovery Coefficient, so called

because ERC(Λ; D) > 0 will turn out to be a sufficient condition for several

different algorithms to recover exact superpositions of atoms from Λ. Nota

bene that every atom in the dictionary makes a critical difference in the value

of ERC(Λ; D). Nevertheless, we will almost always omit the dictionary from

the notation.

Proposition 4.6. Suppose that |Λ| ≤ m. A lower bound on the Exact Recov-

ery Coefficient is

ERC(Λ) ≥ 1 − µ1(m− 1) − µ1(m)

1 − µ1(m− 1)
.

It follows that ERC(Λ) > 0 whenever

µ1(m− 1) + µ1(m) < 1.

This argument independently appeared in [44, 106]. For every sub-dictionary

of an orthonormal basis, the Exact Recovery Coefficient equals one.

Proof. Begin the calculation by expanding the generalized inverse and applying

a norm estimate.

max
ω /∈Λ

∥∥ΦΛ
†ϕω

∥∥
1

= max
ω /∈Λ

∥∥(ΦΛ
∗ ΦΛ)−1 ΦΛ

∗ϕω
∥∥

1

≤
∥∥(ΦΛ

∗ ΦΛ)−1
∥∥

1,1
max
ω /∈Λ

‖ΦΛ
∗ϕω‖1 .
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For the first term, Proposition 4.5 provides an upper bound of [1−µ1(m−1)]−1.

An estimate of the second term is

max
ω /∈Λ

‖ΦΛ
∗ϕω‖1 = max

ω /∈Λ

∑
λ∈Λ
|〈ϕω,ϕλ〉| ≤ µ1(m).

Combine the inequalities to prove the result.

Now let us turn to the geometric interpretation of the Exact Recovery

Coefficient. Form the collection of signals

A1(Λ; D)
def
=

{
ΦΛ b : b ∈ CΛ and ‖b‖1 ≤ 1

}
.

This definition is adapted from the approximation theory literature [25, 104].

The set A1(Λ) might be called the antipodal convex hull of the sub-dictionary

because it is the smallest convex set that contains zϕω for every unimodular

complex number z and every index ω. See Figure 4.1 for an illustration.

Recall that PΛϕω = ΦΛΦΛ
†ϕω gives the orthogonal projection of the

atom ϕω onto the span of the atoms indexed by Λ. Therefore, the coefficient

vector ΦΛ
†ϕω can be used to synthesize this projection. We conclude that the

quantity 1−
∥∥ΦΛ

†ϕω
∥∥

1
measures how far the projected atom PΛϕω lies from

the boundary of A1(Λ). If every projected atom lies well within the antipodal

convex hull, then it is possible to recover superpositions of atoms from Λ. The

intuition is that the coefficient associated with an atom outside Λ must be

quite large to represent anything in the span of the sub-dictionary. Figure 4.1

exhibits the geometry.

4.6.1 Structured Dictionaries

When the dictionary has additional structure, it is possible to refine our

sufficient conditions for ERC(Λ) > 0. In particular, we can develop a sharper
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Figure 4.1: The Exact Recovery Coefficient. At left, we have shaded
the antipodal convex hull of the two atoms ϕ1 and ϕ2. At right, the asterisk
(∗) indicates the distance that the projection of the atom ψ lies from the edge
of the antipodal convex hull (in signal space). The Exact Recovery Coefficient
bounds the corresponding distance in coefficient space.
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result for multi-ONBs. The proof involves a difficult calculation, which the

casual reader may wish to avoid.

Theorem 4.7. Suppose that the dictionary consists of J concatenated or-

thonormal bases with overall coherence µ, and assume that Λ indexes pj atoms

from the j-th basis, j = 1, . . . , J . Without loss of generality, assume that

0 < p1 ≤ p2 ≤ · · · ≤ pJ . Then ERC(Λ) > 0 holds whenever

J∑
j=2

µpj
1 + µpj

<
1

2 (1 + µp1)
.

Proof. Permute the columns of the synthesis matrix ΦΛ so that

ΦΛ =
[
Φ1 Φ2 . . . ΦJ

]
,

where the pj columns of submatrix Φj are the atoms from the j-th basis.

Suppose that there are a total of m atoms. We seek a good upper bound

for
∥∥ΦΛ

†ψ
∥∥

1
, where ψ is an atom not indexed in Λ. We will develop this

matrix–vector product explicitly under a worst-case assumption on the size of

the matrix and vector entries.

The generalized inverse can be expanded as ΦΛ
† = (ΦΛ

∗ΦΛ)−1 ΦΛ
∗. Our

first goal is to develop a bound on the entries of the inverse Gram matrix. The

Gram matrix ΦΛ
∗ΦΛ has the block form

G
def
=


Ip1 −A12 . . . −A1J

−A21 Ip2 . . . −A2J
...

...
. . .

...
−AJ1 −AJ2 . . . IpJ

 def
= Im − A,

where the entries of A are bounded in magnitude by µ. Using |·| to denote the

entrywise absolute value of a matrix, we have the entrywise inequality∣∣G−1
∣∣ =

∣∣∣Im +
∑∞

k=1
Ak
∣∣∣ ≤ Im +

∑∞

k=1
|A|k .
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Therefore, we are at liberty in our estimates to assume that every nonzero

entry of A equals µ. To proceed, creatively rewrite the Gram matrix as

G = (Im + µB)− (A + µB),

where B is the block matrix

B
def
=


1p1 0 . . . 0
0 1p2 . . . 0
...

...
. . .

...
0 0 . . . 1pJ

 .

We use 1p to indicate the p× p matrix of ones. By the foregoing, we have the

entrywise bound ∣∣G−1
∣∣ ≤ ((Im + µB)− µ1m)−1 ,

which yields∣∣G−1
∣∣ ≤

(
Im − µ (Im + µB)−1 1m

)−1
(Im + µB)−1. (4.5)

Now, we work out the inverses from the right-hand side of (4.5). Using Neu-

mann series, compute that

(Im + µB)−1 =
Ip1 − µ

1+µp1
1p1 0 . . . 0

0 Ip2 − µ
1+µp2

1p2 . . . 0

...
...

. . .
...

0 0 . . . IpJ
− µ

1+µpJ
1pJ

 . (4.6)

Meanwhile, the series development of the other inverse in (4.5) is

(
Im − µ (Im + µB)−1 1m

)−1
= Im +

∞∑
k=1

(
µ (Im + µB)−1 1m

)k
. (4.7)
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In this proof, we will use ep to denote the p-dimensional column vector whose

entries all equal one. Then (4.6) allows us to calculate the product

µ (Im + µB)−11m =


µ

1+µp1
ep1

µ
1+µp2

ep2
...

µ
1+µpJ

epJ

 eTm
def
= v eTm.

It is easy to see that

eTm v =
J∑
j=1

µpj
1 + µpj

.

On account of the last two equations, the series in (4.7) collapses.

∞∑
k=1

(
v eTm

)k
=

(
v eTm

) ∞∑
k=1

(
eTm v

)k−1
=

1

1−
∑J

j=1
µpj

1+µpj

v eTm.

We reach the bound(
Im − µ (Im + µB)−1 1m

)−1 ≤ Im +
1

1−
∑J

j=1
µpj

1+µpj

v eTm. (4.8)

At last, we are prepared to develop a bound on the product that ultimately

concerns us. Inequality (4.5) shows that∣∣ΦΛ
†ψ
∣∣ =

∣∣(ΦΛ
∗ΦΛ)−1 ΦΛ

∗ψ
∣∣

≤
(
Im − µ (Im + µB)−1 1m

)−1
(Im + µB)−1 |ΦΛ

∗ψ| .
(4.9)

We will work through the terms from right to left. Assume that the vector ψ

is drawn from basis number Z. So

|ΦΛ
∗ψ| ≤

[
µ eTp1 . . . 0TpZ

. . . µ eTpJ

]T
. (4.10)

Equations (4.6) and (4.10) imply

(Im + µB)−1 |ΦΛ
∗ψ| ≤

[ µ
1+µp1

eTp1 . . . 0TpZ
. . . µ

1+µpJ
eTpJ

]T
. (4.11)
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Introducing (4.8) and (4.11) into (4.9) yields

∣∣ΦΛ
†ψ
∣∣ ≤



µ
1+µp1

ep1
...

0pZ

...
µ

1+µpJ
epJ

+

∑
j 6=Z

µpj

1+µpj

1−
∑J

j=1
µpj

1+µpj



µ
1+µp1

ep1
...

µ
1+µpZ

epZ

...
µ

1+µpJ
epJ


. (4.12)

Finally, apply the `1 norm to inequality (4.12) to reach

∥∥ΦΛ
†ψ
∥∥

1
≤

∑
j 6=Z

µpj

1+µpj

1−
∑J

j=1
µpj

1+µpj

. (4.13)

Since the function r 7→ r
1+r

is increasing, the bound (4.13) is weakest when

Z = 1. We conclude that the inequality maxψ
∥∥Φopt

†ψ
∥∥

1
< 1 holds whenever

J∑
j=2

µpj
1 + µpj

<
1

2 (1 + µp1)
.

We may specialize this theorem to provide a result for two-ONBs.

Corollary 4.8. Suppose that the dictionary consists of two orthonormal bases

with overall coherence µ, and suppose that Λ indexes p atoms from the first

basis and q atoms from the second basis, where p ≤ q. Then ERC(Λ) > 0

whenever

2 µ2 pq + µ q < 1.

It is worth mentioning that this corollary can be established directly using a

much prettier argument. In this special case, the matrix G−1 can be calculated

elegantly by expanding it in a Neumann series and inspecting the even and
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odd powers separately. This approach does not seem to extend to the general

case.

We can also provide a result that depends only on the number of atoms

in Λ, rather than their disbursement among the bases.

Corollary 4.9. Suppose that the dictionary consists of J concatenated or-

thonormal bases with overall coherence µ. The condition ERC(Λ) > 0 holds

for every index set Λ with cardinality m provided that

m <

(√
2− 1 +

1

2 (J − 1)

)
µ−1.

Proof sketch. Minimize
∑

pj subject to the constraints that pj ≥ 0 for each j

and that
J∑
j=2

µpj
1 + µpj

≥ 1

2 (1 + µp1)
.

For the details of the calculation, see [54]. Strictly speaking, [54] proves a

qualitatively different result, because its authors have not identified the Exact

Recovery Coefficient as a quantity of fundamental interest. Rather, they prove

that the condition in Corollary 4.9 is sufficient to invoke the condition in

Theorem 4.7.

4.7 Uniqueness of Sparse Representations

A representation of a signal is said to be unique if every other represen-

tation of the signal requires strictly more atoms. The terminology is due to

the fact that a representation of a signal s is unique if and only if that rep-

resentation is the unique solution of (exact) with input s. In an incoherent

dictionary, every sufficiently sparse representation is unique.
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Proposition 4.10 (Donoho–Elad [29], Gribonval–Nielsen [54]). Sup-

pose that µ1(m − 1) < 1. Then every representation that involves 1
2
m atoms

or fewer is unique. In particular, m < 1
2
(µ−1 + 1) is a sufficient condition for

all m-term representations to be unique.

Proof. Suppose that the sparsest representation of a signal involves k atoms,

where k ≤ 1
2
m. Suppose that the signal has a different representation using

k atoms. Then the two representations together use no more than m atoms.

Subtracting one representation from the other, we obtain a representation of

the zero vector that uses no more than m atoms. But every collection of m

atoms is linearly independent on account of Proposition 4.3.

The second claim of the proposition follows when we introduce the bound

µ1(m− 1) ≤ (m− 1) µ into the inequality µ1(m− 1) < 1.

When the dictionary has more structure, it is possible to develop better

conditions that guarantee uniqueness.

Proposition 4.11 (Gribonval–Nielsen [54]). Suppose that the dictionary

consists of J concatenated orthonormal bases with total coherence µ. A suffi-

cient condition for every m-term representation to be unique is that

m <
1

2

(
1 +

1

J − 1

)
µ−1.

4.8 Projective Spaces

Projective spaces provide the correct setting for understanding many ge-

ometric properties of a dictionary. To develop this concept, we begin with an

equivalence relation on the collection of d-dimensional complex vectors:

w ≡ z ⇐⇒ w = ζ z for ζ in C×.
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(We denote by C× the set of nonzero complex numbers.) Under this equiv-

alence relation, every nonzero vector is identified with the one-dimensional

subspace spanned by that vector. The zero vector lies in a class by itself.

For our purposes, the (d− 1)-dimensional complex projective space will be de-

fined as the collection of nonzero, d-dimensional complex vectors, modulo this

equivalence relation:

Pd−1(C)
def
=

Cd \ {0}
C× .

In words, Pd−1(C) is the set of one-dimensional subspaces of Cd. The real

projective space Pd−1(R) is defined in much the same way, and it may be

viewed as the collection of all lines through the origin of Rd. On analogy, we

will refer to the elements of a complex projective space as lines.

The natural metric for Pd−1(C) is the acute angle between two lines—

or what is equivalent—the sine of the acute angle. Therefore, the projective

distance between two d-dimensional vectors z and w will be calculated as

dist(z,w)
def
=

[
1 −

(
|〈z,w〉|
‖z‖2 ‖w‖2

)2
]1/2

. (4.14)

In particular, if both vectors have unit norm,

dist(z,w) =

√
1 − |〈z,w〉|2.

The distance between two lines ranges between zero and one. Equipped with

this distance, Pd−1(C) forms a compact metric space [15].

4.9 Minimum Distance, Maximum Correlation

We view a dictionary as a finite set of lines in the projective space Pd−1(C).

Given an arbitary nonzero signal s, we will calculate the minimum distance
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from the signal to the dictionary as

min
ω ∈Ω

dist(s,ϕω).

A complementary notion is the maximum correlation of the signal with the

dictionary.

maxcor(s)
def
= max

ω ∈Ω

|〈s,ϕω〉|
‖s‖2

=
‖Φ∗s‖∞
‖s‖2

.

Since the atoms are normalized, 0 ≤ maxcor(s) ≤ 1. The relationship between

the minimum distance and the maximum correlation is the following.

min
ω ∈Ω

dist(s,ϕω) =
√

1−maxcor(s)2. (4.15)

4.10 Packing Radii

We will be interested in several extremal properties of the dictionary that

are easiest to understand in a general setting. Let X be a compact metric

space with metric distX, and choose Y = {yk} to be a discrete set of points in

X. The packing radius of the set Y is defined as

packX(Y )
def
= min

j 6= k
distX(yj, yk).

In words, the packing radius is the size of the largest open ball that can be

centered at any point of Y without encompassing any other point of Y . An

optimal packing of N points in X is a set Yopt of cardinality N that has maximal

packing radius, i.e., Yopt solves the mathematical program

max
|Y |=N

packX(Y ).

It is generally quite difficult to produce an optimal packing or even to check

whether a collection of points gives an optimal packing. Figure 4.2 illustrates
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packing in the unit square, and Figure 4.3 examines the situation in a projec-

tive space. The standard reference on packing is the magnum opus of Conway

and Sloane [16].

The packing radius of the dictionary in the projective space Pd−1(C) is

given by

pack(D)
def
= min

λ 6=ω
dist(ϕλ,ϕω).

That is, the packing radius measures the minimum distance between any pair

of distinct atoms. The coherence parameter is intimately related to this pack-

ing radius. Indeed,

µ =
√

1− pack(D)2.

Therefore, the dictionary provides a good packing if and only if the coherence

is small. It is easily seen that the orthonormal bases for Cd give the only

optimal packings of d points in Pd−1(C). For general d and N , it is quite

difficult to construct minimally coherent dictionaries. See Chapter 7 for a

numerical approach to this problem.

The geometric interpretation of the cumulative coherence µ1 is not as

straightforward. One may imagine centering a collection of m open balls of

nondecreasing radii at a fixed atom. The k-th ball is chosen so that it contains

no more than (k−1) other atoms. Roughly, the cumulative coherence µ1(m) is

complementary to the maximum total radius of a nested collection of m balls

that can be centered at any atom and still retain this property.

62



Figure 4.2: Packing example, Euclidean unit square. At left, the
arrow indicates the packing radius of four points in the Euclidean unit square.
At right, an optimal packing of four points in the unit square.

Figure 4.3: Packing example, real projective space. At left, the arrow
indicates the packing radius of a collection of numbered lines, considered as
elements of P1(R). Note that, in this projective space, a “ball” becomes a
doubly-infinite cone. At right, an optimal packing of four lines in P1(R).
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4.11 Covering Radii

Let us return to our compact metric space X, from which we select a finite

set of points Y = {yk}. The covering radius of the set Y is defined as

coverX(Y )
def
= max

x∈X
min
k

distX(x, yk).

In words, the covering radius is the size of the largest open ball that can be

centered at some point of X without encompassing a point of Y . An optimal

covering with N points is a set Yopt of cardinality N that has minimal covering

radius. That is, Yopt solves the mathematical program

min
|Y |=N

coverX(Y ).

N. J. A. Sloane has advanced the “meta-theorem” that optimal coverings are

more regular than optimal packings [94]. It is often extremely difficult to

compute the covering radius of an ensemble of points, let alone to produce an

optimal covering. See Figure 4.4 for an example of covering in the Euclidean

unit square; Figure 4.5 demonstrates covering of a projective space. Conway

and Sloane’s book is also an important reference on covering [16].

In our projective space Pd−1(C), the covering radius of the dictionary is

given by the formula

cover(D)
def
= max

s 6=0
min
ω ∈Ω

dist(s,ϕω).

It follows from the relation (4.15) that the covering radius is attained at a

signal (called a deep hole) whose maximum correlation with the dictionary is

smallest:

cover(D) = max
s 6=0

√
1−maxcor(s)2.
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We will be most interested in how well a sub-dictionary covers its span. To

that end, define

cover(Λ; D)
def
= max

s∈R(ΦΛ)
s 6=0

min
λ∈Λ

dist(s,ϕλ). (4.16)

Without the range restriction on s, the covering radius of the sub-dictionary

would be one unless the atoms in Λ spanned the entire signal space.

Proposition 4.12. The covering radius of a sub-dictionary satisfies the iden-

tity

cover(Λ)2 = 1 −
∥∥ΦΛ

†∥∥−2

2,1
.

Proof. Begin with (4.16), and apply the definition (4.14) of projective distance

to see that

cover(Λ)2 = 1 − min
s∈R(ΦΛ)
s 6=0

max
λ∈Λ

|〈s,ϕλ〉|2

‖s‖22

= 1 − min
s∈R(ΦΛ)
s 6=0

‖ΦΛ
∗s‖2∞
‖s‖22

.

Since the atoms indexed by Λ form a linearly independent set, ΦΛ
∗ has full row-

rank. It follows from Proposition 4.2 that the minimum equals
∥∥(ΦΛ

†)∗
∥∥−2

∞,2
.

Apply the identity (4.3) to switch from the (∞, 2) norm to the (2, 1) norm.

One interpretation of this proposition is that
∥∥ΦΛ

†∥∥
2,1

gives the secant of the

largest acute angle between a vector in the span of the sub-dictionary and the

closest atom from the sub-dictionary. We also learn that calculating cover(Λ)

is likely to be NP-hard.

Using the cumulative coherence function, we can develop reasonable es-

timates for cover(Λ). This result will show that sub-dictionaries of incoherent

dictionaries form good coverings.
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Proposition 4.13. Suppose that Λ lists m linearly independent atoms and

that µ1(m− 1) < 1. Then

∥∥ΦΛ
†∥∥

2,1
≤

[
m

1 − µ1(m− 1)

]1/2

, and therefore

cover(Λ) ≤
[
1 − 1 − µ1(m− 1)

m

]1/2

.

Proof. Write the definition of the operator norm, and estimate the `1 norm

with the `2 norm:∥∥ΦΛ
†∥∥

2,1
= max

‖s‖2 =1

∥∥ΦΛ
† s
∥∥

1

≤
√

m max
‖s‖2 =1

∥∥ΦΛ
† s
∥∥

2
=

√
m
∥∥ΦΛ

†∥∥
2,2

.

The (2, 2) operator norm of ΦΛ
† is the reciprocal of the minimum singular

value of ΦΛ. To complete the proof, apply the lower bound on this singular

value given by Proposition 4.3.

We can develop a second version of Proposition 4.13 by estimating the

minimum singular value with Proposition 4.4.

Proposition 4.14. Assume that N ≤ d, and suppose that Λ lists m atoms.

Then ∥∥ΦΛ
†∥∥

2,1
≤

√
m / σmin(Φ).

A separate argument (which we omit) establishes that the covering radius

of m vectors strictly exceeds
√

1− 1/m unless the vectors are orthonormal.

It follows that orthonormal bases give the only optimal coverings of Pd−1(C)

using d points. This result also provides an intuition why balls in infinite-

dimensional Hilbert spaces cannot be compact: a collection of m vectors must

cover its span worse and worse as m increases.

66



Figure 4.4: Covering example, Euclidean unit square. At left, the
arrow indicates the covering radius of four points in the Euclidean unit square,
and the open circle marks a deep hole, a point at which the covering radius is
attained. At right, an optimal covering of the unit square with four points.

Figure 4.5: Covering example, real projective space. At left, the
covering radius of four lines in the real projective space P1(R). Dashes mark a
deep hole, a line at which the covering radius is attained. At right, an optimal
covering of P1(R) with four lines.
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4.12 Quantization

Now let us consider a probability space (X, Σ, dx) in which metric balls

are Σ-measurable, and choose another finite set of points Y = {yk}. In this

setting, mink dist(x, yk) is called the quantization error for the point x. The

expected quantization error is the usual measure of how well Y represents the

distribution dx. It is computed with the integral

quant(Y )
def
=

∫
min
k

distX(x, yk) dx.

The relationship quant(Y ) ≤ cover(Y ) is always in force. An N -point optimal

codebook for quantizing dx is a set that solves the mathematical program

min
|Y |=N

quant(Y ).

Optimal quantization is a difficult problem, and it has been studied extensively

[47]. Heuristic methods are available for constructing good codebooks [69, 20,

90].

Suppose that we define a probability measure dν on the projective space

Pd−1(C). The expected error in quantizing dν with the dictionary is defined

as

quant(D)
def
=

∫
min
ω

dist(ν,ϕω) dν =

∫ √
1−maxcor(ν)2 dν.

Now imagine that we are trying to recover a short linear combination of atoms

that has been contaminated with additive noise whose direction is distributed

according to dν. In this situation, the best dictionaries for sparse approxima-

tion do a horrible job quantizing the direction of the noise. As a result, it is

highly likely that the signal can be recovered, even if the noise has significant

magnitude.
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Chapter 5

Analysis of Greedy Methods

Conventional wisdom has been ambivalent about the application of greedy

algorithms for sparse approximation. On the one hand, it is well known that

greedy methods generally produce a sequence of approximations that converge

to the input signal (provided that the dictionary is complete) [104]. On the

other hand, the literature contains several dramatic examples where a greedy

method catastrophically fails to recover the optimal sparse representation of a

signal. Indeed, there is a dictionary and a signal with a two-term representa-

tion over that dictionary for which Matching Pursuit chooses every incorrect

atom before it ever selects an optimal atom [24, 10].

Nevertheless, a recent result of Gilbert, Muthukrishnan, and Strauss for

Orthogonal Matching Pursuit suggests that greedy methods deserve reconsid-

eration. These authors proved that OMP can identify an m-term representa-

tion of an arbitrary signal that achieves an error within a constant factor of

the optimal m-term error, provided that the dictionary is incoherent and m

is sufficiently small. In particular, OMP solves (exact) correctly for every

signal with a sufficiently sparse representation. Another way of phrasing their

result is that OMP is an approximation algorithm for (sparse) over an in-

coherent dictionary [48]. Their paper gives a significant new insight into the

qualitative behavior of OMP.

This chapter contains a new analysis of Orthogonal Matching Pursuit
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that delivers a more precise insight into its qualitative and quantitative perfor-

mance. We will see that OMP offers provably good performance for (exact),

(error), and (sparse) in a wide class of dictionaries, which includes incoher-

ent dictionaries. The results depend significantly on the geometric properties

of the dictionary. The Exact Recovery Coefficient plays a starring role.

The first section considers the performance of Orthogonal Matching Pur-

suit for (exact), the problem of determining the sparsest representation of

an input signal. We develop a condition which ensures that a greedy selection

identifies all the atoms from the optimal sparse representation of the signal and

no others. Then we show how to use the cumulative coherence function of the

dictionary to check when this condition is in force. Finally, we demonstrate

that the condition cannot be improved.

The second section extends the analysis of the first section to cover signals

that do not have a sparse representation. In the third and fourth sections, we

apply this result to (error) and (sparse). In particular, we prove that OMP

can produce a representation that uses only atoms from an optimal solution to

(error) and achieves an approximation error within a constant factor of the

desired error. We also prove that OMP can produce an m-term representation

that achieves an error within a constant factor of the optimal m-term error.

Using the cumulative coherence function, we provide several explicit bounds

on these constants.

Most of the material in this chapter is slated to appear in IEEE Trans-

actions on Information Theory. It is drawn from the work [106], which is

copyright 2004 by the IEEE, and it is reused with permission.
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5.1 The Sparsest Representation of a Signal

We begin with the problem of recovering the sparsest representation of a

target signal. For an input signal s, the formal statement of the problem is

min
c∈CΩ

‖c‖0 subject to Φ c = s. (exact)

Suppose that the input signal s can be written as a linear combination of

m atoms and no fewer. Therefore,

s =
∑

λ∈Λopt

cλϕλ

where Λopt is a subset of Ω with cardinality m. Note that the atoms in Λopt

are linearly independent and that the coefficients cλ are nonzero. Otherwise,

the signal has a representation using fewer than m atoms.

Let Φopt denote the synthesis matrix associated with the sub-dictionary

Λopt. Then the signal can also be expressed as

s = Φopt copt

where copt ∈ CΛopt . Since the optimal atoms are linearly independent, Φopt

has full column-rank. Define a second matrix Ψopt whose columns are the

(N −m) atoms indexed by Ω\Λopt. Thus Ψopt contains the atoms that do not

participate in the optimal representation.

5.1.1 Greedy Selection of Atoms

The fundamental step in a greedy algorithm is the greedy selection of an

atom. Our goal is to develop a condition which ensures that this greedy choice

identifies an atom from the optimal index set Λopt.
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Suppose that r is a signal. Recall that greedy selection determines an

index λ that satisfies

λ ∈ arg max
ω∈Ω

|〈r,ϕω〉| .

Now observe that the vector Φopt
∗ r lists the inner products between the vector

r and the optimal atoms. So the expression ‖Φopt
∗ r‖∞ gives the largest mag-

nitude attained among these inner products. Similarly, ‖Ψopt
∗ r‖∞ expresses

the largest absolute inner product between r and any nonoptimal atom. In

consequence, to see whether the largest absolute inner product occurs at an

optimal atom, we just need to examine the greedy selection ratio

ρ(r)
def
=

‖Ψopt
∗ r‖∞

‖Φopt
∗ r‖∞

. (5.1)

We see that a greedy choice1 will recover an optimal atom if and only if ρ(r) <

1. The following lemma provides a sufficient condition for the recovery of an

optimal atom.

Lemma 5.1 (Greedy Selection). Suppose that r lies in the column span of

Φopt. A sufficient condition for ρ(r) < 1 is that

ERC(Λopt) > 0.

Recall that the Exact Recovery Coefficient of Λopt is defined as

ERC(Λopt)
def
= 1 − max

ψ

∥∥Φopt
†ψ
∥∥

1
,

where the maximum occurs over the columns of Ψopt, the nonoptimal atoms.

1In case that ρ(r) = 1, an optimal atom and a nonoptimal atom both attain the maximal
inner product. The algorithm has no provision for determining which one to select. In
the sequel, we make the pessimistic assumption that a greedy procedure never chooses an
optimal atom when a nonoptimal atom also satisfies the selection criterion. This convention
forces greedy techniques to fail for borderline cases, which is appropriate for analyzing
algorithmic correctness.
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Proof. Notice that the greedy selection ratio (5.1) bears a suspicious resem-

blance to an induced matrix norm. Before we can apply the usual norm bound,

the term Φopt
∗ r must appear in the numerator. To that end, remember that

Φopt Φopt
† is an orthogonal projector onto the column span of Φopt. This pro-

jector is conjugate symmetric, so we have

(Φopt
†)∗ Φopt

∗ r = Φopt Φopt
† r = r.

Therefore, we may calculate that

ρ(r) =
‖Ψopt

∗ r‖∞
‖Φopt

∗ r‖∞

=

∥∥Ψopt
∗(Φopt

†)∗Φopt
∗ r
∥∥
∞

‖Φopt
∗ r‖∞

≤
∥∥Ψopt

∗(Φopt
†)∗
∥∥
∞,∞ .

Since ‖·‖∞,∞ equals the maximum absolute row sum of its argument and ‖·‖1,1
equals the maximum absolute column sum of its argument, we take a conjugate

transpose and switch norms. Continuing the calculation,

ρ(r) ≤
∥∥Φopt

†Ψopt

∥∥
1,1

= max
ψ

∥∥Φopt
†ψ
∥∥

1

where the maximization occurs over the columns of Ψopt, the nonoptimal

atoms.

This theorem is simple enough to state and prove, but it represents a fun-

damental advance in the study of greedy algorithms for sparse approximation.

The important idea that OMP can recover optimal atoms in special cases first

appeared in the paper of Gilbert et al. [48].
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5.1.2 The Exact Recovery Theorem

Using the Greedy Selection Lemma, it is easy to provide sufficient condi-

tions for greedy algorithms to recover the sparsest representation of an input

signal.

Theorem 5.2 (Exact Recovery for OMP). Suppose that copt is the spars-

est representation of the input signal, and set Λopt = supp(copt). A sufficient

condition for Orthogonal Matching Pursuit to recover copt after |Λopt| steps is

that

ERC(Λopt) > 0.

Proof. Suppose that, after t iterations, Orthogonal Matching Pursuit has se-

lected t optimal atoms. At the beginning of the first iteration, this hypothesis

is satisfied trivially. We will develop a condition to guarantee that the atom

selected in the (t + 1)-st iteration is also optimal.

Denote by rt the residual signal at the beginning of the (t+1)-st iteration.

Orthogonal Matching Pursuit selects another optimal atom if and only if the

greedy selection ratio ρ(rt) is less than one. The statement of the algorithm

shows that the residual rt equals the target signal sminus a linear combination

of the t atoms that have already been chosen. Since the signal itself is a linear

combination of the atoms indexed by Λopt, the induction hypothesis shows

that the residual rt lies in column span of Φopt. The Greedy Selection Lemma

proves that ρ(rt) < 1 whenever ERC(Λopt) > 0. Therefore, the condition

ERC(Λopt) > 0 ensures that Orthogonal Matching Pursuit selects an optimal

atom in the (t + 1)-st step.

Since Orthogonal Matching Pursuit always chooses a new atom, it follows

that m steps of OMP will identify all m atoms that make up the sparsest
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representation of s. Thus, the coefficient vector returned by OMP synthesizes

the target signal perfectly.

Theorem 5.7 of the sequel shows that Theorem 5.2 is essentially the best

possible for OMP. Incredibly, the same condition also implies that the convex

relaxation (r-exact) will recover the sparsest representation of the input

signal, which we prove in Section 6.1.

Gribonval and Nielsen recently observed [55] that the proof here also

applies to Matching Pursuit, Algorithm 3.1. Since Matching Pursuit need not

select a new atom at each step, the results are somewhat weaker.

Corollary 5.3 (Gribonval–Nielsen [55]). Suppose that the target signal

can be represented using the atoms listed in Λopt. If ERC(Λopt) > 0, then

Matching Pursuit selects an index from Λopt during every iteration.

5.1.3 Coherence Estimates

Since we are unlikely to know the optimal atoms a priori, Theorem 5.2

may initially seem useless. But for many dictionaries, the condition ERC(Λ) >

0 holds for every index set Λ whose cardinality is sufficiently small. Combining

Theorem 5.2 with Proposition 4.6, we reach a more applicable corollary.

Corollary 5.4. Suppose that

µ1(m− 1) + µ1(m) < 1.

Then Orthogonal Matching Pursuit solves (exact) for every input signal that

has an m-term representation over the dictionary. Moreover, all m-term rep-

resentations are unique.
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Proof. According to Proposition 4.6, the condition µ1(m − 1) + µ1(m) < 1

guarantees that ERC(Λ) > 0 for every index set Λ of cardinality m. If the

sparsest representation of an input signal has a representation over such an

index set Λ, then Theorem 5.2 guarantees that OMP will solve (exact) for

this input signal.

Suppose that some m-term representation were not unique. Then the

foregoing paragraph proves that OMP would simultaneously recover two dis-

tinct m-term representations of the signal. This is absurd.

One interpretation of this result is that OMP can recover signals that have

sparse representations over incoherent dictionaries. Since µ1(m) ≤ m µ, we

can provide a result phrased in terms of the coherence parameter.

Corollary 5.5. Suppose that

m < 1
2
(µ−1 + 1).

Then Orthogonal Matching Pursuit solves (exact) for every input signal that

has an m-term representation over the dictionary. Moreover, all m-term rep-

resentations are unique.

In case that the dictionary has more structure, we can prove better suffi-

cient conditions. For example, Corollary 4.9 yields the following result when

one uses OMP with a multi-ONB dictionary.

Corollary 5.6. Suppose that the dictionary consists of J concatenated or-

thonormal bases with overall coherence µ, and assume that

m <

(√
2− 1 +

1

2 (J − 1)

)
µ−1.
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Then Orthogonal Matching Pursuit solves (exact) for every input signal that

has an m-term representation over the dictionary. Moreover, all m-term rep-

resentations are unique.

Compare these results with the results for the convex relaxation (r-

exact) that appear in Section 6.1.

5.1.4 Is the ERC Necessary?

One may ask whether Theorem 5.2 also provides a necessary condition for

Orthogonal Matching Pursuit to succeed. The answer is a qualified affirmative,

as this partial converse proves.

Theorem 5.7 (Exact Recovery Converse). Let Λopt index a sub-dictionary

for which ERC(Λopt) ≤ 0, and assume that representations over Λopt are

unique. Then there is an input signal that has a representation over Λopt

for which Orthogonal Matching Pursuit fails to solve (exact).

Proof. The argument basically reverses the proof of Theorem 5.2, but we must

check that the inequalities in that argument can all hold with equality.

By the uniqueness of sparse representations over Λopt, every signal that

has a representation over Λopt induces the same two matrices Φopt and Ψopt.

Since ERC(Λopt) ≤ 0, it follows that
∥∥Φopt

† Ψopt

∥∥
1,1
≥ 1. Choose bbad from

CΛopt so that ∥∥Ψopt
∗(Φopt

†)∗ bbad

∥∥
∞

‖bbad‖∞
=

∥∥Ψ∗
opt(Φopt

†)∗
∥∥
∞,∞ .

Therefore, ∥∥Ψopt
∗(Φopt

†)∗ bbad

∥∥
∞

‖bbad‖∞
≥ 1.
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The matrix Φopt has full column rank, so the column span of Φopt contains a

signal sbad for which Φopt
∗ sbad = bbad. We conclude that

ρ(sbad) =
‖Ψopt

∗ sbad‖∞
‖Φopt

∗ sbad‖∞
≥ 1.

Therefore, if we run Orthogonal Matching Pursuit with sbad as input, the

procedure chooses a nonoptimal atom in the first step. Since the representation

of sbad over Λopt is unique, this initial incorrect selection damns OMP from

obtaining the sparsest representation of sbad.

5.2 Identifying Atoms from an Approximation

The analysis in the last section can be adapted to show that greedy algo-

rithms may still be effective even when the input signal does not have a sparse

representation. The argument in the proof of the Greedy Selection Lemma

requires that the vector r lie in the column span of the optimal atoms. Un-

fortunately, this premise does not hold unless the signal can be represented

completely with the optimal atoms. We need to develop a condition that per-

tains to arbitrary input signals. Therefore, we will study the performance of

greedy selection when applied to a general signal minus a linear combination

of atoms from a sub-dictionary Λ.

Fix an arbitrary signal s. Let Λ index a sub-dictionary, and assume that

ERC(Λ) > 0. Define ΦΛ to be the matrix whose columns are the atoms indexed

by Λ, and let ΨΛ denote the matrix whose columns are the atoms indexed by

Ω \Λ. The best approximation of the input signal over the atoms in Λ can be

written as aΛ = PΛ s, where PΛ is the orthogonal projector onto the column

span of ΦΛ.
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Lemma 5.8 (General Recovery). Suppose that a is a vector from the col-

umn span of ΦΛ. A sufficient condition for ρ(s− a) < 1 is that

‖s− a‖2 >

1 +

(
maxcor(s− aΛ)

∥∥ΦΛ
†∥∥

2,1

ERC(Λ)

)2
1/2

‖s− aΛ‖2 . (5.2)

In words, the lemma says that greedy selection will choose an atom from Λ

provided that the vector a compares unfavorably with the best approximation

of the signal over Λ. For reference, the maximum correlation between a signal

r and the dictionary is defined as

maxcor(r)
def
=

‖Φ∗ r‖∞
‖r‖2

.

Proof. We may divide the ratio into two pieces, which we bound separately.

ρ(s− a) =
‖ΨΛ

∗ (s− a)‖∞
‖ΦΛ

∗ (s− a)‖∞

=
‖ΨΛ

∗ (s− aΛ) + ΨΛ
∗ (aΛ − a)‖∞

‖ΦΛ
∗ (s− aΛ) + ΦΛ

∗ (aΛ − a)‖∞

≤ ‖ΨΛ
∗ (s− aΛ)‖∞

‖ΦΛ
∗ (aΛ − a)‖∞

+
‖ΨΛ

∗ (aΛ − a)‖∞
‖ΦΛ

∗ (aΛ − a)‖∞
def
= ρerr + ρopt.

(5.3)

The term ΦΛ
∗ (s − aΛ) has vanished from the denominator since (s − aΛ) is

orthogonal to the column span of ΦΛ.

Since (aΛ−a) lies in the column span of ΦΛ, the Greedy Selection Lemma

shows that

ρopt ≤ 1− ERC(Λ). (5.4)

Meanwhile, Proposition 4.2 yields the bound

ρerr ≤ ‖ΨΛ
∗ (aΛ − a)‖∞∥∥ΦΛ
†∥∥−1

2,1
‖aΛ − a‖2

.
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Since (s−aΛ) is orthogonal to the columns of ΦΛ, we may rewrite the numer-

ator of this fraction to obtain

ρerr ≤
‖Φ∗ (s− aΛ)‖∞

∥∥ΦΛ
†∥∥

2,1

‖aΛ − a‖2
. (5.5)

Combining equations (5.3), (5.4), and (5.5), we discover that ρ(s − a) < 1

whenever
‖Φ∗ (s− aΛ)‖∞

∥∥ΦΛ
†∥∥

2,1

‖aΛ − a‖2
< ERC(Λ).

Rearranging this relation yields

‖Φ∗ (s− aΛ)‖∞

∥∥ΦΛ
†∥∥

2,1

ERC(Λ)
< ‖aΛ − a‖2 .

Square the inequality; add ‖s− aΛ‖22 to both sides; and apply the Pythagorean

Theorem to the right-hand side to obtain

‖s− aΛ‖22 +

(
‖Φ∗ (s− aΛ)‖∞

∥∥ΦΛ
†∥∥

2,1

ERC(Λ)

)2

< ‖s− a‖22 .

Factor the term ‖s− aΛ‖22 out from the left-hand side, and identify the max-

imum correlation of (s− aΛ) with the dictionary. We reach1 +

(
maxcor(s− aΛ)

∥∥ΦΛ
†∥∥

2,1

ERC(Λ)

)2
 ‖s− aΛ‖22 < ‖s− a‖22 .

Take square roots to complete the argument.

5.3 Error-Constrained Sparse Approximation

The General Recovery Lemma has an immediate application to the error-

constrained sparse approximation problem. For an input signal s and an error
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tolerance ε, the goal is to solve

min
c∈CΩ

‖c‖0 + 1
2
‖s− Φ c‖2 ε−1

subject to ‖s− Φ c‖2 ≤ ε. (error)

Suppose that the vector copt solves this mathematical program, and let aopt =

Φ copt be the corresponding approximation of the target signal. Set Λopt =

supp(copt), and assume that ERC(Λopt) > 0.

Theorem 5.9. Suppose that we halt Orthogonal Matching Pursuit as soon as

the norm of the residual rt satisfies the inequality

‖rt‖2 ≤

1 +

(
maxcor(s− aopt)

∥∥Φopt
†∥∥

2,1

ERC(Λopt)

)2
1/2

ε.

Then every atom that OMP has chosen must be listed in Λopt.

In words, OMP can always compute a representation of the signal that uses

only atoms from an optimal solution of (error) and achieves an error only

a constant factor worse. We will discuss this constant in more detail after we

prove the theorem.

Proof. Suppose that, after the t-th iteration, Orthogonal Matching Pursuit

has selected t atoms from Λopt. At the beginning of the first iteration, this

hypothesis is satisfied trivially. We will develop a condition to guarantee that

the atom selected in the (t + 1)-st iteration is also optimal.

Denote by rt the residual signal at the beginning of the (t + 1)-st itera-

tion. Orthogonal Matching Pursuit selects another optimal atom if and only

if ρ(rt) < 1. The statement of the algorithm shows that the residual rt equals
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the target signal s minus a linear combination of the t atoms that have al-

ready been chosen. This linear combination lies in the column span of Φopt on

account of the induction hypothesis. Therefore, the General Recovery Lemma

proves that OMP will select another atom from Λopt so long as the norm of

the residual satisfies

‖rt‖2 >

1 +

(
maxcor(s− aopt)

∥∥Φopt
†∥∥

2,1

ERC(Λopt)

)2
1/2

‖s− aopt‖2 .

If we halt the algorithm as soon as this condition fails, then every atom we

have chosen must be listed in Λopt, and we simultaneously obtain an upper

bound on the norm of the residual or—what is the same—the approximation

error. Since the approximation aopt falls from a solution of (error) with

parameter ε, if follows that ‖s− aopt‖2 ≤ ε.

The bracketed constant in Theorem 5.9 depends on a number of factors.

In particular, the Exact Recovery Coefficient of Λopt must be positive, and the

error bound improves significantly when ERC(Λopt) is close to one. On account

of the (2, 1) matrix norm, the error bound increases when the covering radius

of the sub-dictionary increases. The error also improves when the optimal

residual is badly correlated with the dictionary. Return to Chapter 4 for a

more detailed discussion of these quantities.

A practical question is to estimate the size of the bracketed constant. Sup-

pose that the signal has a good approximation from a small sub-dictionary Λopt

with a moderate Exact Recovery Coefficient. If the dictionary is incoherent,

one expects that the maximum correlation of the residual with the dictionary

is on the order of d−1/2 and that the (2, 1) matrix norm is on the order of√
|Λopt|. Under these assumptions, the constant may well be less than

√
2.
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An interesting way to appreciate this theorem is to apply it to an or-

thonormal dictionary. In this case, the Exact Recovery Coefficient and the

(2, 1) norm are both equal to one. The maximum correlation of the residual

with the dictionary is never greater than one. Therefore, Theorem 5.9 implies

that we should halt the algorithm as soon as the approximation error satisfies

‖rt‖2 ≤ ε
√

2.

It turns out that this bound cannot be improved.

Consider the signal

s = εϕλ + εϕξ,

which has norm ε
√

2 because the dictionary is orthonormal. The theorem

recommends that we stop the algorithm before it starts and return a zero

approximation. Can this advice be correct? In fact, it is. Note that the

representation εϕλ gives an optimal ε-approximant of s that is supported on

the sub-dictionary Λopt = {λ}. But if we apply OMP to the signal s, the first

greedy selection could choose either λ or ξ. To prevent the algorithm from

choosing the atom ξ, which does not belong to Λopt, we cannot even take one

greedy step.

5.3.1 Coherence Estimates

To make Theorem 5.9 practical, we need some method for determining

the stopping criterion a priori. Propositions 4.6 and 4.13 allow us to provide

a result in terms of the cumulative coherence function.

Corollary 5.10. Suppose that Λopt contains no more than m indices, and

let us halt Orthogonal Matching Pursuit as soon as the norm of the residual
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satisfies

‖rt‖2 ≤
[
1 +

m [1− µ1(m− 1)]

[1− µ1(m− 1)− µ1(m)]2
maxcor(s− aopt)

2

]1/2

ε.

Then every atom that the algorithm has chosen must be listed in Λopt.

If no estimate is available for the maximum correlation of the residual with

the dictionary, we may simply bound it above by one.

Using the properties of the cumulative coherence function, we can develop

a simpler version of the last corollary.

Corollary 5.11. Assume that Λopt contains no more than m indices, and

suppose that µ1(m) < 1
3
. If we halt Orthogonal Matching Pursuit as soon as

the norm of the residual satisfies

‖rt‖2 ≤ ε
√

1 + 6 m maxcor(s− aopt)2,

then every atom that the algorithm has chosen must be listed in Λopt.

We will develop comparable results for the convex relaxation (r-error)

in Section 6.4.

5.4 Sparsity-Constrained Approximation

The General Recovery Lemma applies equally to the sparsity-constrained

approximation problem. For an input signal s and a number m, the goal is to

solve

min
c∈CΩ

‖s− Φ c‖2 subject to ‖c‖0 ≤ m. (sparse)

Suppose that the vector copt solves the mathematical program, and let aopt =

Φ copt be the corresponding approximation of the input signal. Set Λopt =

supp(copt), and assume that ERC(Λopt) > 0. Note that |Λopt| ≤ m.
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Theorem 5.12. After m iterations, Orthogonal Matching Pursuit constructs

an approximation am that satisfies the error bound

‖s− am‖2 ≤

1 +

(
maxcor(s− aopt)

∥∥Φopt
†∥∥

2,1

ERC(Λopt)

)2
1/2

‖s− aopt‖2 .

Proof. Imagine that the condition (5.2) fails at iteration (T + 1). Then, we

have an upper bound on the T -term approximation error as a function of the

optimal m-term approximation error. If we continue to apply OMP even after

t exceeds T , the approximation error will only continue to decrease. If (5.2)

holds in every iteration, then OMP identifies all m atoms in Λopt. Therefore,

am = aopt, so the theorem holds.

Although OMP may not recover an optimal approximant aopt, it always

constructs an approximant whose error lies within a constant factor of optimal.

One might argue that the algorithm has the potential to inflate a moderate

error into a large error. But a moderate error indicates that the signal does

not have a good sparse representation over the dictionary, and so sparse ap-

proximation may not be an appropriate tool. In practice, if it is easy to find a

nearly optimal solution, there is no reason to waste a lot of time and resources

to reach the ne plus ultra. As it is said, “The best is the enemy of the good.”

Suppose that the dictionary is orthonormal. It is not hard to show that

OMP always produces m-term approximations that achieve the optimal m-

term error. This theorem provides a somewhat weaker bound on the perfor-

mance of the algorithm. At present, we do not know how to address this

shortcoming.
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5.4.1 Coherence Estimates

Placing a restriction on the cumulative coherence function leads to a much

simpler statement of the result.

Corollary 5.13. Orthogonal Matching Pursuit generates m-term approxi-

mants that satisfy the error bound

‖s− am‖2 ≤[
1 +

m [1− µ1(m− 1)]

[1− µ1(m− 1)− µ1(m)]2
maxcor(s− aopt)

2

]1/2

‖s− aopt‖2 .

If the maximum correlation of the residual with the dictionary is unknown, we

may bound it above by one.

We may develop a simpler version of this last corollary by positing a

specific bound on the cumulative coherence function.

Corollary 5.14. Assume that µ1(m) ≤ 1
3
. Then OMP generates m-term

approximants that satisfy

‖s− am‖2 ≤
√

1 + 6 m maxcor(s− aopt)2 ‖s− aopt‖2 . (5.6)

The hypothesis is in force whenever m ≤ 1
3
µ−1.

5.5 Comparison with Previous Work

The literature contains a few results which prove that greedy methods

can provide nearly optimal solutions to sparse approximation problems. Let

us spend a moment to discuss how this work compares with the results in this

chapter.
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The most relevant work is due to Gilbert, Muthukrishnan, and Strauss

[48]. They proved a theorem on the performance of OMP for (sparse) that

is qualitatively similar to Corollary 5.14.

Theorem 5.15 (Gilbert–Muthukrishnan–Strauss). Suppose that µ is the

coherence parameter of the dictionary, and assume that m < 1
8
√

2
µ−1− 1. For

an arbitrary input signal s, Orthogonal Matching Pursuit generates an m-term

approximant am that satisfies

‖s− am‖2 ≤ 8
√

m ‖s− aopt‖2 ,

where aopt is the optimal m-term approximation of the signal.

There are a few differences between their result and Corollary 5.14. First, the

present work takes advantage of the cumulative coherence function to provide

sharper bounds for general dictionaries. Even when we phrase our results in

terms of the coherence parameter, our bounds on m and the error constant

are much better. Second, the techniques used to prove the theorems differ

significantly.

The rest of the literature is not directly comparable to our work, but

we will attempt to describe its flavor. For many years, the only positive

theoretical results on greedy algorithms were convergence theorems. A typical

convergence theorem states that that the norm of the residual rt declines to

zero as the number of iterations t approaches infinity. More sophisticated

arguments provide bounds on the rate of convergence [104]. This theory is

not really relevant to the sparse approximation problems that we stated in

Chapter 2.

Natarajan provided the first proof that a greedy algorithm can approx-

imately solve a well-defined computational problem. He studied a method
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called forward selection. This algorithm is similar to OMP, but after choosing

a new atom, it orthogonalizes the entire dictionary against that atom.

Theorem 5.16 (Natarajan). Assume that N ≤ d and that the entire dictio-

nary is linearly independent. Given an input signal s, suppose that one uses

the forward selection method to compute an approximation with error tolerance

δ. The number of atoms chosen is no greater than⌈
18 m

∥∥Φ†∥∥2

2,2
ln
‖s‖2

δ

⌉
,

where m is the number of atoms that participate in a solution of (error)

with tolerance ε = 1
2
δ.

Note that Natarajan’s paper is missing the crucial hypotheses that N ≤ d

and that the dictionary is linearly independent. With a little effort, one may

adapt his analysis to Orthogonal Matching Pursuit, and reduce the factor of

18 down to 8.

Couvreur and Bresler later obtained a qualitative result for another greedy

algorithm, the backward elimination procedure [18]. Backward elimination

begins by approximating the signal with all the atoms from the dictionary.

Then it removes whatever atom contributes the least to the approximation

and iterates until the number of atoms is sufficiently small.

Theorem 5.17 (Couvreur–Bresler). Assume that N ≤ d and that the

entire dictionary is linearly independent. The backward elimination procedure

can solve (sparse) for every input signal that is sufficiently close to an exact

superposition of atoms.

The definition of “sufficiently close” depends on which superposition of atoms

we are trying to recover, and no quantitative estimates are presently available.
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Chapter 6

Analysis of Convex Relaxation Methods

Convex relaxation has been applied for over three decades to recover

sparse representations of signals, and there is extensive empirical evidence that

it often succeeds [103, 67, 78, 92, 8, 10, 98]. Although early theoretical results

are beautiful, most lack practical value because they assume that the input sig-

nal admits a sparse approximation with zero error [31, 35, 54, 43, 29, 106, 53].

Other results are valid only in very proscribed settings [92, 33]. Unhappily, the

theory of sparse approximation has been marred by the lack of a proof that

convex relaxation can determine an optimal sparse approximation of a general

input signal with respect to a general dictionary. This chapter proves that

convex relaxation yields provably good solutions to the sparse approximation

problems (exact), (subset), and (error).

In the first section, we study the convex relaxation (r-exact), which is

also known as Basis Pursuit. We prove that the Exact Recovery Coefficient

gives a sufficient condition for (r-exact) to determine the optimal sparse

representation of a sparse signal. This result unifies and extends most of the

recent literature on (r-exact) [31, 35, 54, 29]. This analysis will play a minor

role in the analysis of the other convex relaxations.

In the second section, we develop the basic tools that we need for the

study of the relaxations (r-subset) and (r-error). Both relaxations lead

to similar Lagrangian functions. The major result is a condition which ensures

89



that any coefficient vector minimizing the Lagrangian function must be sup-

ported on a prescribed index set. This condition also depends on the Exact

Recovery Coefficient, and we offer a plausible argument that the condition

cannot be improved.

The third section applies the fundamental lemmata to the subset selection

problem. Let us give the tenor of our major result. If the dictionary is inco-

herent and the threshold parameters are correctly chosen, then the solution

to (r-subset) identifies every significant atom from the solution to (subset)

and no others. To our knowledge, this type of result is unprecedented in the

literature.

The fourth section applies the basic tools to the erro-constrained sparse

approximation problem. Our major theorem proves that, under appropriate

conditions, the solution to the relaxation (r-error) for a given δ is at least

as sparse as a solution to the sparse approximation problem (error) for a

smaller value of ε. We compare our theory against some result results of

Donoho, Elad, and Temlyakov [30].

Most of the material in Section 6.1 is slated to appear in IEEE Trans-

actions on Information Theory. It is drawn from the work [106], which is

copyright 2004 by the IEEE, and it is reused with permission.

6.1 The Sparsest Representation of a Signal

We begin with the problem of recovering the sparsest representation of

an input signal s. For reference, the problem statement is

min
c∈CΩ

‖c‖0 subject to s = Φ c. (exact)
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Its convex relaxation is

min
b∈CΩ

‖b‖1 subject to s = Φ b. (r-exact)

(r-exact) is sometimes known as Basis Pursuit [10].

Suppose that the coefficient vector copt is a solution of (exact). Assume

that copt is supported on the index set Λopt, and denote the associated synthesis

matrix by Φopt.

Theorem 6.1 (Relaxed Sparse Representation). The coefficient vector

copt is the unique solution of relaxation (r-exact) whenever

ERC(Λopt) > 0.

For reference, the Exact Recovery Coefficient of Λopt is defined as

ERC(Λopt)
def
= 1 − max

ψ

∥∥Φopt
†ψ
∥∥

1
,

where the maximization occurs over all nonoptimal atoms. Our proof requires

a simple lemma about `1 norms.

Lemma 6.2. Suppose that v is a vector with nonzero components and that

A is a matrix whose columns do not have identical `1 norms. Then ‖Av‖1 <

‖A‖1,1 ‖v‖1.

Proof. Calculate that

‖Av‖1 ≤
∑
j,k

|Ajk| |vk| =
∑
k

‖Ak‖1 |vk|

< max
k
‖Ak‖1

∑
k

|vk| = ‖A‖1,1 ‖v‖1 .
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We move on to the demonstration of the theorem.

Proof of Theorem 6.1. Assume that ERC(Λopt) > 0. Suppose that the target

signal s has a representation over a sub-dictionary Λalt that is different from

Λopt. Therefore, we may write s = Φalt balt for some coefficient vector balt in

CΛalt . Without loss of generality, assume that balt contains no zero component.

We will prove that ‖copt‖1 < ‖balt‖1.

Since Λopt provides a maximally sparse representation of s, it follows that

Λalt must contain at least one index ξ that does not appear in Λopt. Using the

fact that 1− ERC(Λopt) < 1, we have∥∥Φopt
†ϕξ

∥∥
1

< 1.

Since
∥∥Φopt

†ϕλ
∥∥

1
= 1 for each λ in Λopt, we have∥∥Φopt

†ϕω
∥∥

1
≤ 1

for every index ω belonging to Ω.

The matrix Φopt
†Φopt equals the identity, so we may rewrite the `1 norm

of copt as follows.

‖copt‖1 =
∥∥Φopt

†Φopt copt

∥∥
1

=
∥∥Φopt

† s
∥∥

1

=
∥∥Φopt

†Φalt balt

∥∥
1
.

Next, assume that the columns of Φopt
†Φalt do not have identical `1 norms.

Then the lemma furnishes the following bound:

‖copt‖1 <
∥∥Φopt

†Φalt

∥∥
1,1
‖balt‖1

= max
ω∈Λalt

∥∥Φopt
†ϕω

∥∥
1
‖balt‖1

≤ ‖balt‖1 .
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On the other hand, suppose that the columns of Φopt
†Φalt do have identical

`1 norms. Then every one of these norms equals
∥∥Φopt

†ϕξ
∥∥

1
, which is strictly

less than one. Therefore, we may calculate that

‖copt‖1 ≤
∥∥Φopt

†Φalt

∥∥
1,1
‖balt‖1

=
∥∥Φopt

†ϕξ
∥∥

1
‖balt‖1

< ‖balt‖1 .

In words, any set of nonoptimal coefficients for representing the signal has

strictly larger `1 norm than the optimal coefficients. Therefore, the solution

of (r-exact) is unique, and it coincides with copt.

Theorem 5.2 shows that an identical condition is sufficient for Orthogonal

Matching Pursuit to recover the optimal solution of (exact).

6.1.1 Coherence Estimates

Theorem 6.1 would not be very useful without a method for checking

when the sufficient condition holds. Using Proposition 4.6 to bound the Exact

Recovery Coefficient, we obtain the following corollary.

Corollary 6.3. Suppose that

µ1(m− 1) + µ1(m) < 1.

Then the convex relaxation (r-exact) solves the sparse approximation prob-

lem (exact) for every input signal that has an m-term representation over

the dictionary.

This result implies a weaker corollary that contains most of the results for

(r-exact) from the recent literature.
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Corollary 6.4 (Donoho–Elad [29], Gribonval–Nielsen [54]). Suppose

that

m < 1
2
(µ−1 + 1) or (6.1)

µ1(m) < 1
2
. (6.2)

Then the solution of the relaxation (r-exact) is identical with the solution

of the sparse approximation problem (exact) for every input signal that has

an m-term representation over the dictionary.

The bound (6.1) appears in both [29, 54] as a sufficient condition for Basis

Pursuit to recover sparse signals. The bound (6.2) also appears in [29].

In case that the dictionary has more structure, we can prove better suffi-

cient conditions. For example, Corollary 4.9 yields the following result when

the dictionary is a multi-ONB dictionary.

Corollary 6.5 (Gribonval–Nielsen [54]). Suppose that the dictionary con-

sists of J concatenated orthonormal bases with overall coherence µ, and assume

that

m <

(√
2− 1 +

1

2 (J − 1)

)
µ−1.

Then (r-exact) solves (exact) for every input signal that has an m-term

representation over the dictionary. Moreover, all m-term representations are

unique.

Specializing this corollary to the case J = 2 yields the major theorem of [35].

Compare these results with the results for OMP that appear in Section

5.1.
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6.2 Fundamental Lemmata

This section forges the basic tools we need to study the other convex

relaxation methods. These convex relaxations all give rise to the Lagrangian

function

L(b; γ, s)
def
= 1

2
‖s− Φ b‖22 + γ ‖b‖1 . (6.3)

Therefore, we must develop a detailed understanding of the minimizers of this

function.

Throughout this section, we will use the following notations. Fix the

input signal s and the parameter γ so that the function L depends only on

the coefficient vector b. Let Λ index a sub-dictionary, which will be used to

approximate the input signal. The best approximation of the input signal over

the atoms in Λ can be written as aΛ = PΛ s. The coefficient vector cΛ = ΦΛ
† s

may be used to synthesize aΛ. Although cΛ lies in CΛ, we often extend it to

CΩ by padding it with zeros.

6.2.1 The Correlation Condition Lemma

Suppose that the atoms outside Λ have small inner products (i.e., are

weakly correlated) with the residual signal (s− aΛ). (The atoms inside Λ are

orthogonal to the residual.) The following lemma shows that any coefficient

vector which minimizes the objective function (6.3) must be supported inside

Λ. This result is the soul of the analysis.

Lemma 6.6 (Correlation Condition). Suppose that the maximum inner

product between the residual signal and any atom fulfills the condition

‖Φ∗(s− aΛ)‖∞ ≤ γ ERC(Λ). (6.4)
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Then any coefficient vector b? that minimizes the function (6.3) must satisfy

supp(b?) ⊂ Λ.

Some remarks and corollaries are in order. First, observe that the lemma

is worthless unless ERC(Λ) is positive. Return to Section 4.6 for a geometric

description of this condition. Next, if the index set does satisfy ERC(Λ) > 0,

the sufficient condition (6.4) will always hold if γ is large enough. But if γ

is too large, then b? = 0. Third, the lemma is indifferent to the choice of Λ,

so long as the inequality (6.4) holds for the residual (s− aΛ). Therefore, the

support of b? is actually contained in the intersection of all such index sets.

Fourth, we write the left-hand side of (6.4) as

‖Φ∗(s− aΛ)‖∞ = maxcor(s− aΛ) ‖s− aΛ‖2 .

It follows that the result is strongest when the magnitude of the residual and its

maximum correlation with the dictionary are both small. Since the maximum

correlation never exceeds one, we obtain a (much weaker) result that depends

only on the magnitude of the residual.

Corollary 6.7. Suppose that the approximation error satisfies

‖s− aΛ‖2 ≤ γ ERC(Λ).

Then any coefficient vector b? that minimizes the function (6.3) must be sup-

ported inside Λ.

By normalizing the input signal, we may also obtain a result that depends

only on the maximum correlation.
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Corollary 6.8. Suppose that the maximum correlation between the residual

signal and the dictionary satisfies the bound

maxcor(s− aΛ) ≤ γ ERC(Λ).

If we scale the input signal to have unit norm and then compute a minimizer

b? of the function (6.3), it follows that b? must be supported inside Λ.

If the input signal can be expressed as an exact superposition of the atoms in

the sub-dictionary, we reach another interesting corollary.

Corollary 6.9. Suppose that the input signal has a representation using the

atoms in Λ and that ERC(Λ) > 0. For every positive γ, every coefficient vector

that minimizes (6.3) must be supported inside Λ.

One might wonder whether the condition ERC(Λ) > 0 is really necessary to

prove these results. The answer is a qualified affirmative. Section 6.2.4 offers

a partial converse of Corollary 6.9.

6.2.2 Proof of Correlation Condition Lemma

A simple but powerful geometric idea underlies the proof of the lemma.

The expense of using indices outside Λ is not compensated by the improvement

in the approximation error. Therefore, any approximation involving other

atoms can be projected onto the atoms in Λ to reduce the value of the objective

function.

Proof of Lemma 6.6. We will be studying minimizers of the objective function

L(b)
def
= 1

2
‖s− Φ b‖22 + γ ‖b‖1 . (6.5)
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Assume that there is a coefficient vector b? which minimizes (6.5) even though

b? uses an index outside of Λ. That is, supp(b?) \ Λ is non-empty. We

will compare b? against the projected coefficient vector ΦΛ
†Φ b?, which is

supported on Λ. Since b? minimizes the objective function, the inequality

L(b?) ≤ L(ΦΛ
†Φ b?) must hold. Rearranging the terms of this relation gives

2 γ
[
‖b?‖1 −

∥∥ΦΛ
†Φ b?

∥∥
1

]
≤ ‖s− PΛΦ b?‖22 − ‖s− Φ b?‖22 . (6.6)

We will provide a lower bound on the left-hand side of (6.6) and an upper

bound on the right-hand side. The correlation condition (6.4) will reverse the

consequent inequality.

First, we claim that Φ b? does not lie in the range of ΦΛ. Suppose that

it did. Then b? and ΦΛ
†Φ b? synthesize the same signal, and so the right-

hand side of (6.6) equals zero. At the same time, Theorem 6.1 shows that the

coefficient vector ΦΛ
†Φ b? is the unique solution of the convex program

min
b

‖b‖1 subject to Φ b = Φ b?.

In consequence, the left-hand side of (6.6) is positive. This combination of

events is impossible.

Now we will develop a lower bound on the left-hand side of (6.6). To

accomplish this, let us split the coefficient vector into two parts: b? = bΛ+bbad.

The first vector bΛ contains the components with indices in Λ. The second

vector contains the (undesirable) remaining components—those from Ω \ Λ.

This splitting yields the identity

‖b?‖1 −
∥∥ΦΛ

†Φ b?
∥∥

1
= ‖bΛ‖1 + ‖bbad‖1 −

∥∥bΛ + ΦΛ
†Φ bbad

∥∥
1
.

The upper triangle inequality allows us to cancel the terms involving bΛ:

‖b?‖1 −
∥∥ΦΛ

†Φ b?
∥∥

1
≥ ‖bbad‖1 −

∥∥ΦΛ
†Φ bbad

∥∥
1
. (6.7)
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Let us focus on the second term from the right-hand side of (6.7). To be rigor-

ous, we temporarily define a diagonal matrix Rbad that zeros the components

of a coefficient vector indexed by Λ and acts as the identity on the rest. Then∥∥ΦΛ
†Φ bbad

∥∥
1

=
∥∥ΦΛ

†ΦRbad bbad

∥∥
1

≤
∥∥ΦΛ

†ΦRbad

∥∥
1,1
‖bbad‖1

= max
ω /∈Λ

∥∥ΦΛ
†ϕω

∥∥
1
‖bbad‖1 .

Re-introducing this expression into (6.7) gives

‖b?‖1 −
∥∥ΦΛ

†Φ b?
∥∥

1
≥

[
1 − max

ω /∈Λ

∥∥ΦΛ
†ϕω

∥∥
1

]
‖bbad‖1 .

We identify the bracketed quantity as the Exact Recovery Coefficient of Λ to

reach the lower bound

‖b?‖1 −
∥∥ΦΛ

†Φ b?
∥∥

1
≥ ERC(Λ) ‖bbad‖1 . (6.8)

Next, we need to provide an upper bound on the right-hand side of (6.6).

Apply the Law of Cosines to the triangle formed by the signals s and Φ b? and

PΛΦ b? to obtain the identity

‖s− PΛΦ b?‖22 − ‖s− Φ b?‖22 =

2 Re 〈(Id − PΛ)Φ b?, s− PΛΦ b?〉 − ‖(Id − PΛ)Φ b?‖22 . (6.9)

Alternately, one might expand the squared norms on the right-hand side of

(6.6) and simplify the consequent monstrosity. Since the matrix (Id − PΛ)

annihilates the atoms listed by Λ, it follows that

(Id − PΛ)Φ b? = (Id − PΛ)Φ bbad. (6.10)
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Using (6.10) and the fact that (Id − PΛ) is an orthogonal projector, we may

manipulate the inner product in (6.9):

〈(Id − PΛ)Φ b?, s− PΛΦ b?〉 = 〈(Id − PΛ)Φ bbad, s− PΛΦ b?〉

= 〈bbad, Φ
∗(Id − PΛ)(s− PΛΦ b?)〉

= 〈bbad, Φ
∗(s− aΛ)〉 .

Substitute (6.10) and the expression for the inner product into equation (6.9)

to obtain the identity

‖s− PΛΦ b?‖22 − ‖s− Φ b?‖22 =

2 Re 〈bbad, Φ
∗(s− aΛ)〉 − ‖(Id − PΛ)Φ bbad‖22 .

Since Φ b? does not lie in the range of ΦΛ, neither does Φ bbad. So the second

term on the right-hand side is strictly positive. Nevertheless, this term is

negligible in comparison with the first term whenever bbad is small. Therefore,

we simply discard the second term, and we apply Hölder’s Inequality to reach

the upper bound

‖s− PΛΦ b?‖22 − ‖s− Φ b?‖22 < 2 ‖bbad‖1 ‖Φ
∗(s− aΛ)‖∞ . (6.11)

To proceed, we combine the bounds (6.8) and (6.11) into the inequality

(6.6) to discover that

γ ERC(Λ) ‖bbad‖1 < ‖bbad‖1 ‖Φ
∗(s− aΛ)‖∞ .

We have assumed that the support of the coefficient vector b? contains at

least one index outside Λ, so the vector bbad cannot be null. Therefore, we

may divide the most recent inequality by ‖bbad‖1 to conclude that

γ ERC(Λ) < ‖Φ∗(s− aΛ)‖∞ .
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If this inequality fails, then we must discard our hypothesis that the minimizer

b? involves an index outside Λ.

6.2.3 Restricted Minimizers

The sufficient condition of Lemma 6.6 guarantees that the minimizer of

(6.3) is supported on the index set Λ. Unfortunately, this does not even rule

out the zero vector as a possible minimizer. Therefore, we must develop bounds

on how much the minimizing coefficient vector can vary from the desired co-

efficient vector cΛ.

The argument involves standard techniques from convex analysis, but

the complex setting demands an artifice. In this subsection only, we will

decompose complex vectors into independent real and imaginary parts, i.e.

z = x+iy. Then we may define the complex gradient of a real-valued function

f : Cm → R as the vector

∇f
def
= ∇x f + i∇y f.

Here, ∇x indicates the (real) derivative of f taken with respect to the real

variables while fixing the imaginary variables; the definition of ∇y is similar.

If f does not depend on the imaginary variables, then ∇f reduces to the

usual real gradient. One may wish to read the article [113] for a more elegant

treatment of complex gradients.

In the same spirit, the complex subdifferential of a convex function f :

Cm → R at a complex vector z may be defined as

∂f(z)
def
= { g ∈ Cm : f(w) ≥ f(z) + Re 〈g,w − z〉 for all w ∈ Cm }.

The vectors contained in the subdifferential are called subgradients, and they

provide affine lower bounds on the function. If the function has a complex
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gradient at a point, the complex gradient gives the unique subgradient there.

In addition, the complex subdifferential is additive, viz., ∂(f1 + f2)(z) =

∂f1(z) + ∂f2(z). It is straightforward to verify that the complex subdiffer-

ential satisfies all the properties of real subdifferentials [88].

Lemma 6.10. Suppose that the vector b? minimizes the objective function

(6.3) over all coefficient vectors supported on Λ. A necessary and sufficient

condition on such a minimizer is that

cΛ − b? = γ (ΦΛ
∗ΦΛ)−1 g (6.12)

where the vector g is drawn from ∂ ‖b?‖1. Moreover, the minimizer is unique.

Fuchs developed this necessary and sufficient condition in the real setting using

essentially the same method [44].

Proof. Apply the Pythagorean Theorem to (6.3) to see that minimizing L over

coefficient vectors supported on Λ is equivalent to minimizing the function

F (b)
def
= 1

2
‖aΛ − ΦΛ b‖22 + γ ‖b‖1 (6.13)

over coefficient vectors from CΛ. Recall that the atoms indexed by Λ form a

linearly independent collection, so ΦΛ has full column rank. It follows that the

quadratic term in (6.13) is strictly convex, and so the whole function F must

also be strictly convex. Therefore, its minimizer is unique.

The function F is convex and unconstrained, so 0 ∈ ∂F (b?) is a neces-

sary and sufficient condition for the coefficient vector b? to minimize F . The

complex gradient of the first term of F equals (ΦΛ
∗ΦΛ) b?−ΦΛ

∗ aΛ. From the

additivity of subdifferentials, it follows that

(ΦΛ
∗ΦΛ) b? − ΦΛ

∗ aΛ + γ g = 0
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for some vector g drawn from the subdifferential ∂ ‖b?‖1. Since the atoms

indexed by Λ are linearly independent, we may pre-multiply this relation by

(ΦΛ
∗ΦΛ)−1 to reach

ΦΛ
†aΛ − b? = γ (ΦΛ

∗ΦΛ )−1 g.

Apply the fact that cΛ = ΦΛ
†aΛ to reach the conclusion.

Now we identify the subdifferential of the `1 norm. To that end, define

the signum function as

sgn (r ei θ)
def
=

{
ei θ for r > 0
0 for r = 0.

One may extend the signum function to vectors by applying it to each com-

ponent.

Proposition 6.11. Let z be a complex vector. The complex vector g lies in

the complex subdifferential ∂ ‖z‖1 if and only if

• |gk| ≤ 1 whenever zk = 0, and

• gk = sgn zk whenever zk 6= 0.

In particular, ‖g‖∞ = 1 unless z = 0, in which case ‖g‖∞ ≤ 1.

Proof. The complex subdifferential of the absolute value function is given by

∂ |z| =

{
{sgn z} for z 6= 0
{z : |z| ≤ 1} for z = 0.

This fact is manifest from the geometry: the absolute value function defines

a cone that emanates from the origin of the complex plane and that has sides

with unit slope in the radial direction.
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Suppose that g is a subgradient of the `1 norm at the complex vector z.

Choose a component k of z, and select a complex vector w that equals z in

every other component. For the distinguished index, we have

|wk| ≥ |zk| + Re [ gk (wk − zk)
∗ ] for all wk ∈ C. (6.14)

In words, each component of g must be a subgradient of the absolute value

function at the corresponding component of z. On the other hand, assume

that each component of g is a subgradient of the absolute value function at

the corresponding component of z. Then the inequality (6.14) holds for each

index k. Sum these inequalities over k to see that

‖w‖1 ≥ ‖z‖1 + Re 〈g,w − z〉 for all complex w.

In words, g is a subgradient of the `1 norm at z.

At last, we may develop bounds on how much a solution to the restricted

problem varies from the desired solution cΛ.

Corollary 6.12 (Upper Bounds). Suppose that the vector b? minimizes the

function (6.3) over all coefficient vectors supported on Λ. The following bounds

are in force:

‖cΛ − b?‖∞ ≤ γ
∥∥(ΦΛ

∗ΦΛ )−1
∥∥
∞,∞ (6.15)

‖ΦΛ (cΛ − b?)‖2 ≤ γ
∥∥ΦΛ

†∥∥
2,1

. (6.16)

Proof. We begin with the necessary and sufficient condition

cΛ − b? = γ (ΦΛ
∗ΦΛ)−1 g (6.17)
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where g ∈ ∂ ‖b?‖1. To obtain (6.15), we take the `∞ norm of (6.17) and apply

the usual estimate:

‖b? − cΛ‖∞ = γ
∥∥(ΦΛ

∗ΦΛ)−1 g
∥∥
∞ ≤ γ

∥∥(ΦΛ
∗ΦΛ)−1

∥∥
∞,∞ ‖g‖∞ .

Proposition 6.11 shows that ‖g‖∞ ≤ 1, which proves the result.

To develop the second bound (6.16), we pre-multiply (6.17) by the matrix

ΦΛ and compute the Euclidean norm:

‖ΦΛ(b? − cΛ)‖2 = γ
∥∥(ΦΛ

†)∗g
∥∥

2
≤ γ

∥∥(ΦΛ
†)∗
∥∥
∞,2
‖g‖∞ .

As before, ‖g‖∞ ≤ 1. Finally, we apply the identity (4.3) to switch from the

(∞, 2) operator norm to the (2, 1) operator norm.

For the record, we present a lower bound.

Corollary 6.13 (Lower Bounds). Suppose that the vector b? minimizes the

function (6.3) over all coefficient vectors supported on Λ. For every index λ

in supp(b?),

|copt(λ) − b?(λ)| ≥ γ
[
2 −

∥∥(ΦΛ
∗ΦΛ)−1

∥∥
∞,∞

]
.

We will not use this result, so we leave its proof as an exercise for the reader.

6.2.4 Is the ERC Necessary?

Let Λ index a sub-dictionary for which ERC(Λ) > 0, and suppose that

the input signal can be written as a superposition of atoms from Λ. It follows

from the Correlation Condition Lemma and from Corollary 6.12 that, for all

sufficiently small γ, the minimizer of the function (6.3) has support equal to

Λ. The following theorem shows that this type of result cannot generally hold

if ERC(Λ) < 0.
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Theorem 6.14. Suppose that ERC(Λ) < 0. Then we may construct an in-

put signal that has an exact representation using the atoms in Λ and yet the

minimizer of the function (6.3) is not supported on Λ when γ is small.

Proof. Since ERC(Λ) < 0, there must exist an atom ϕω for which
∥∥ΦΛ

†ϕω
∥∥

1
>

1 even though ω /∈ Λ. Perversely, we select the input signal to be s = PΛϕω.

To synthesize s using the atoms in Λ, we use the coefficient vector cΛ = ΦΛ
†ϕω.

According to Corollary 6.12, the minimizer b? of the function

L(b) = 1
2
‖s− Φ b‖22 + γ ‖b‖1

over all coefficient vectors supported on Λ must satisfy

‖cΛ − b?‖∞ ≤ γ
∥∥(ΦΛ

∗ΦΛ)−1
∥∥
∞,∞ .

Since ‖cΛ‖1 > 1 by construction, we may choose γ small enough that the

bound ‖b?‖1 > 1 is also in force. Define the corresponding approximation

a? = Φ b?.

Now we construct a parameterized coefficient vector

b(t)
def
= (1− t) b? + t eω for t in [0, 1].

We have used eω to denote the ω-th canonical basis vector in CΩ. For positive

t, it is clear that the support of b(t) is not contained in Λ. We will prove that

L(b(t)) < L(b?) for small, positive t. Since b? minimizes L over all coefficient

vectors supported on Λ, no global minimizer of L can be supported on Λ.

To proceed, calculate that

L(b(t)) = 1
2
‖(s− a?) + t (a? −ϕω)‖22 + γ ‖(1− t) b? + t eω‖1

= 1
2
‖s− a?‖22 + t Re 〈s− a?,a? −ϕω〉

+ 1
2
t2 ‖a? −ϕω‖22 + γ (1− t) ‖b?‖1 − tγ.
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Differentiate this expression with respect to t and evaluate the derivative at

t = 0:

dL(b(t))

dt

∣∣∣∣
t=0

= Re 〈s− a?,a? −ϕω〉 + γ (1− ‖b?‖1).

By construction of b?, the second term is negative. The first term is non-

positive because

〈s− a?,a? −ϕω〉 = 〈PΛ(s− a?),a? −ϕω〉

= 〈s− a?, PΛ(a? −ϕω)〉

= 〈s− a?,a? − s〉

= − ‖s− a?‖22 .

Therefore, the derivative is negative, and L(b(t)) < L(b(0)) for small, positive

t. Since b(0) = b?, the proof is complete.

6.3 Subset Selection

We are now prepared to tackle the convex relaxation of the subset selection

problem. For a fixed signal s and a threshold τ , we must solve

min
c∈CΩ

‖s− Φ c‖22 + τ 2 ‖c‖0 . (subset)

Let us state a proposition that describes the solutions of the subset selection

problem. This result will help us compare the behavior of convex relaxation

against the behavior of the original problem.

Proposition 6.15. Fix an input signal s, and choose a threshold τ . Suppose

that the coefficient vector copt solves (subset), and set aopt = Φ copt.

• For each λ ∈ supp(copt), we have |copt(λ)| ≥ τ .
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• For each ω /∈ supp(copt), we have |〈s− aopt,ϕω〉| ≤ τ .

For continuity, we postpone the proof until Section 6.3.3.

The natural convex relaxation of (subset) is

min
b∈CΩ

1
2
‖s− Φ b‖22 + γ ‖b‖1 . (r-subset)

Our theory will supply the correct relationship between γ and τ . One should

not expect to solve the subset selection problem directly by means of convex

relaxation because the `1 penalty has the effect of shrinking the optimal coef-

ficients. Statisticians have exploited this property to improve the variance of

their estimators [32, 105]. In the present setting, it is a nuisance. Our hope

is that the coefficient vector which solves the convex relaxation has the same

support as the optimal coefficient vector. Then we may solve the original sub-

set selection problem by projecting the signal onto the atoms indexed by the

support.

6.3.1 Main Theorem

If the dictionary is sufficiently incoherent and the threshold parameters

are correctly chosen, then we can prove that convex relaxation identifies every

significant atom from the solution to the subset selection problem and no

others. This type of result is unprecedented in the literature.

To simplify the statement of the results, we will extract some of the hy-

potheses. Fix an input signal s, and choose a threshold parameter τ . Suppose

that the coefficient vector copt is a solution to the subset selection problem

(subset) with threshold τ and that aopt = Φ copt is the corresponding ap-

proximation of the signal. Let Λopt = supp(copt), and define the corresponding

synthesis matrix Φopt. Assume, moreover, that ERC(Λopt) > 0.
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Theorem 6.16 (Relaxed Subset Selection). Suppose that the coefficient

vector b? solves the convex relaxation (r-subset) with threshold

γ = τ / ERC(Λopt).

Then it follows that

• the relaxation never selects a nonoptimal atom because

supp(b?) ⊂ supp(copt);

• the solution of the relaxation is nearly optimal since

‖b? − copt‖∞ ≤
‖(Φopt

∗Φopt )−1‖∞,∞

ERC(Λopt)
τ ;

• in particular, supp(b?) contains every index λ for which

|copt(λ)| >
‖(Φopt

∗Φopt )−1‖∞,∞

ERC(Λopt)
τ ;

• the solution of the convex relaxation is unique.

We postpone the proof to Section 6.3.3 so that we may discuss the consequences

of the theorem. On account of Proposition 6.15, every nonzero coefficient in

copt has a magnitude of at least τ . Therefore, convex relaxation will not miss

a coefficient unless it barely reaches the threshold τ . Observe that the result

depends on the Exact Recovery Coefficient of the optimal sub-dictionary Λopt,

so the non-optimal atoms must not resemble the optimal atoms too strongly.

The theorem also prefers that the dual system of the sub-dictionary exhibit

small pairwise inner products. From the discussion in Chapter 4, we see that
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convex relaxation performs best when the dictionary is a good packing of lines

in projective space.

As a reality check, let us apply Theorem 6.16 to the case where dictionary

is orthonormal. Every sub-dictionary has an Exact Recovery Coefficient of one.

In addition, the inverse Gram matrix equals the identity, so its (∞,∞) norm

is one. Therefore, the theorem advises that we solve the convex relaxation

with γ = τ , and it states that the solution will involve just those atoms whose

optimal coefficients are strictly larger than τ . In other words, the theorem

describes the behavior of the soft-thresholding operator with cutoff τ . See

Section 3.2.3 for some related comments.

6.3.2 Coherence Estimates

Using the cumulative coherence function, we may develop versions of the

theorem that depend only on the size of the optimal index set.

Corollary 6.17. Suppose the coefficient vector b? solves the convex relaxation

(r-subset) with threshold

γ =
1 − µ1(m− 1)

1 − µ1(m− 1) − µ1(m)
τ.

Then supp(b?) is contained in supp(copt), and

‖b? − copt‖∞ ≤ τ

1 − µ1(m− 1) − µ1(m)
.

This result follows immediately from the estimates in Propositions 4.5 and 4.6.

By positing a specific bound for µ1(m), we may develop a more quantitative

result.

Corollary 6.18. Assume that that the support of copt indexes m atoms or

fewer, where µ1(m) ≤ 1
3
, and suppose that the coefficient vector b? solves
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the convex relaxation (r-subset) with threshold γ = 2 τ . It follows that

supp(b?) ⊂ supp(copt) and that ‖b? − copt‖∞ ≤ 3 τ .

Of course, smaller bounds will give better conclusions. Finally, note that, for

signals with a sparse representation, the theorem reduces to the known result

that convex relaxation can recover all the atoms in the signal.

Corollary 6.19 (Fuchs [44]). Suppose that ERC(Λopt) > 0, and assume that

the input signal can be expressed exactly with the atoms in Λopt. For sufficiently

small γ, the solution to the convex relaxation (r-subset) has support equal

to Λopt.

6.3.3 Proof of Main Theorem

We begin with a proof of Proposition 6.15. This result also plays a role

in the proof of the main theorem.

Proof of Proposition 6.15. For a given threshold τ and input signal s, suppose

that the coefficient vector copt is a solution of the subset selection problem

(subset). Let aopt = Φ copt.

Take an index ω outside supp(copt), and let Popt denote the orthogonal

projector onto the atoms listed in supp(copt). Adding the atom ϕω to the

approximation would diminish the squared error by exactly

|〈s− aopt,ϕω〉|2

‖Poptϕω‖22
. (6.18)

This quantity must be less than or equal to τ 2, or else we could immediately

construct a solution to the subset selection problem that is strictly better than

copt. Every atom has unit Euclidean norm, and projections can only attenuate

the Euclidean norm. It follows that ‖Poptϕω‖22 ≤ 1, and |〈s− aopt,ϕω〉| ≤ τ .
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Choose an index λ inside supp(copt), and let P denote the orthogonal

projector onto the span of the atoms listed by supp(copt) \ {λ}. Removing the

atom ϕλ from the approximation would increase the squared error by exactly

|copt(λ)|2 ‖(I− P)ϕλ‖22 .

This quantity must be at least τ 2. Since (I − P) is an orthogonal projector,

‖(I− P)ϕλ‖22 ≤ 1. We conclude that |copt(λ)| ≥ τ .

Now we turn our attention to the proof of Theorem 6.16. This result

involves a straightforward application of the fundamental lemmata.

Proof of Theorem 6.16. Suppose that the coefficient vector copt is a solution to

the subset selection problem (subset) with threshold parameter τ . The asso-

ciated approximation of the signal is aopt = Φ copt. Define Λopt = supp(copt),

and denote the corresponding synthesis matrix by Φopt.

Let us develop an upper bound on the inner product between any atom

and the residual vector (s−aopt). First, note that every atom indexed by Λopt

has a zero inner product with the residual since aopt is the best approximation

of s using the atoms in Λopt. Choose ω /∈ Λopt. Then Proposition 6.15 shows

that |〈s− aopt,ϕω〉| ≤ τ . This relation holds for all ω ∈ Ω, and so

‖Φ∗(s− aopt)‖∞ ≤ τ. (6.19)

The Correlation Condition Lemma states that, for any threshold γ satis-

fying

‖Φ∗(s− aopt)‖∞ ≤ γ ERC(Λopt),
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the solution b? to the convex relaxation (r-subset)is supported on Λopt. Us-

ing the inequality (6.19), we determine that the choice

γ =
τ

ERC(Λopt)

is sufficient to ensure that supp(b?) ⊂ Λopt. The uniqueness of the minimizer

b? follows from Lemma 6.10 since Λopt indexes a linearly independent collection

of atoms. From Corollary 6.12, we obtain the upper bound

‖copt − b?‖∞ ≤ γ
∥∥(Φopt

∗Φopt )−1
∥∥
∞,∞ .

For any index λ at which |copt(λ)| > γ ‖(Φopt
∗Φopt )−1‖∞,∞, it follows that the

corresponding coefficient b?(λ) must be nonzero.

6.4 Error-Constrained Sparse Approximation

Let s be an input signal, and choose an error tolerance ε. In this section,

we consider the error-constrained sparse approximation problem

min
c∈CΩ

‖c‖0 + 1
2
‖s− Φ c‖2 ε−1 subject to ‖s− Φ c‖2 ≤ ε. (error)

We attempt to produce an error-constrained sparse approximation by using

the convex relaxation

min
b∈CΩ

‖b‖1 subject to ‖s− Φ b‖2 ≤ δ. (r-error)

Our theory will supply the correct relationship between δ and ε. Note that if

δ ≥ ‖s‖2 then the optimal solution to the convex program is the zero vector.

When δ is smaller, the approximation error is always equal to δ. Therefore, the

minimizer of the convex program will rarely solve the sparse approximation

problem (error). To improve the approximation obtained by relaxation, one

should project the signal onto the atoms indexed by the support of the minimal

coefficient vector.
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6.4.1 Main Theorem

Our major theorem proves that, under appropriate conditions, the solu-

tion to the relaxation (r-error) for a given δ is at least as sparse as a solution

to the sparse approximation problem (error) for a smaller value of ε.

To make the statement of the result more transparent, let us extract some

of the hypotheses. Fix an input signal s, and choose an error tolerance ε. Sup-

pose that the coefficient vector copt solves the sparse approximation problem

(error) with tolerance ε, and let the corresponding approximation of the

signal be aopt = Φ copt. Define the optimal index set Λopt = supp(copt),

and let Φopt be the associated synthesis matrix. Assume, moreover, that

ERC(Λopt) > 0.

Theorem 6.20 (Relaxed Sparse Approximation). Suppose that the coeffi-

cient vector b? solves the convex relaxation (r-error) with an error tolerance

δ ≥

 1 +

(
maxcor(s− aopt)

∥∥Φopt
†∥∥

2,1

ERC(Λopt)

)2
1/2

ε. (6.20)

Then it follows that

• this solution is at least as sparse as copt since supp(b?) ⊂ supp(copt);

• yet b? is no sparser than a solution of the sparse approximation problem

with tolerance δ;

• the coefficient vector b? is nearly optimal since

‖b? − copt‖2 ≤ δ
∥∥Φopt

†∥∥
2,2

;

• the relaxation has no other solution.
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As usual, we postpone the proof until we have completed the commentary.

Notice that the result depends strongly on several geometric properties of the

dictionary. First, the dependence on the Exact Recovery Coefficient shows that

non-optimal atoms must not resemble the optimal atoms too strongly. Second,

the presence of the (2, 1) operator norm shows that the optimal atoms should

cover their span well. Third, the optimal solution is easiest to recover when the

residual left over after approximation is badly correlated with the dictionary.

Chapter 4 treats these factors in more detail.

If the dictionary is an orthonormal basis, Theorem 6.20 is the best possible

result of its type. To see this, observe that the bound on the error tolerance

is the same as the bound in Theorem 5.9. Therefore, the signal that we

constructed in Section 5.3 to confuse Orthogonal Matching Pursuit will also

confuse (r-error).

6.4.2 Coherence Estimates

Using the cumulative coherence function, we can develop results that do

not depend on the specific index set Λopt at all.

Corollary 6.21. Fix an input signal, and choose an error tolerance ε. Suppose

that copt solves the sparse approximation problem (error) with tolerance ε

and that supp(copt) contains m indices. Assume that the incoherence condition

µ1(m− 1) + µ1(m) < 1 holds, and pick the parameter δ so that

δ ≥
[
1 +

m [1− µ1(m− 1)]

[1− µ1(m− 1)− µ1(m)]2
maxcor(s− aopt)

2

]1/2

ε.

It follows that

• the unique solution b? to the convex relaxation (r-error)with error

tolerance δ is supported inside supp(copt);
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• the coefficient vector b? is nearly optimal since

‖b? − copt‖2 ≤ δ /
√

1− µ1(m− 1);

• yet b? is no sparser than a solution of the sparse approximation problem

with tolerance δ.

If we do not have any prior knowledge about the maximum correlation between

the optimal residual and the dictionary, then we may bound it above by one.

If we posit a bound on the cumulative coherence, we may reach a more

quantitative result.

Corollary 6.22. Fix an input signal, and choose an error tolerance ε. Sup-

pose that an optimal solution to (error) with tolerance ε requires m atoms

or fewer, where m satisfies the incoherence condition µ1(m) ≤ 1
3
. Select

δ ≥ ε
√

1 + 6 m maxcor(s− aopt)2. It follows that the unique solution to the

convex relaxation (r-error) with tolerance δ involves a subset of the optimal

atoms. This solution diverges in Euclidean norm from the optimal coefficient

vector by no more than δ
√

3/2. Moreover, it is no sparser than a solution of

the sparse approximation problem with tolerance δ.

6.4.3 Comparison with Other Work

Related results have very recently been provided in [30]. Their first result

bounds how far the solution of (r-error) may lie from the solution of (er-

ror). Assume that the dictionary has coherence µ, and fix an input signal

s.

Theorem 6.23 (Donoho–Elad–Temlyakov). Suppose that copt is an opti-

mal solution of (error) with tolerance ε, and suppose that b? is the optimal
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solution of (r-error) with tolerance δ. Assume that

m
def
= |supp(copt)| ≤ 1

4
(µ−1 + 1).

Then the solution of (error) is unique, and we have the bound

‖copt − b?‖22 ≤ (ε + δ)2

1 − (4 m− 1) µ
.

Their result holds for all values of ε and δ, which gives a stability bound for

the solution of the relaxation that depends only on the solution of (error)

being sufficiently sparse. Meanwhile, our results require that δ be somewhat

larger than ε.

It is a little difficult to compare their result with Corollary 6.22 because

the hypotheses are somewhat different. Nevertheless, if we choose m = 1
4
(µ−1+

1), their theorem gives the useless upper bound of infinity on the deviation

between the coefficient vectors. Provided that µ ≤ 1
3

and that δ is sufficiently

large in comparison with ε, Corollary 6.22 yields a finite upper bound on the

deviation.

The second relevant result from [30] is a theorem that identifies the sup-

port of a solution to (r-error).

Theorem 6.24 (Donoho–Elad–Temlyakov). Suppose that an optimal solu-

tion of (error) with tolerance ε requires m atoms or fewer, where m < 1
2
µ−1,

and define β = m µ. Then the solution of the relaxation (r-error) with tol-

erance

δ =
ε
√

m
√

1− β

1− 2 β

involves a subset of the optimal atoms.
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This theorem is directly comparable with Corollary 6.21 once we bound the

cumulative coherence function in terms of the coherence parameter. Our result

advises that we select

δ = ε

√
1 + m

1− β

(1− 2 β)2

when performing the relaxation. The theorem of Donoho et al., therefore, is

slightly better than the corollary we have matched it against.

Unfortunately, their work mixes up all the different factors that play a role

in the sparse approximation problem. Meanwhile, we have identified several

different geometric quantities that determine when the relaxation succeeds.

Another shortcoming of their approach is that all their results are stated in

terms of the coherence parameter. Our results are much more general. We

only use the coherence parameter to check when our conditions are actually

in force.

6.4.4 Proof of the Main Theorem

Now we prove the result. The argument is rather more difficult than that

of Theorem 6.16 because it involves Karush–Kuhn–Tucker conditions.

Proof of Theorem 6.20. Let s be an input signal, and suppose that copt solves

the sparse approximation problem (error) with error tolerance ε. Denote

the optimal approximation as aopt = Φ copt. Let Λopt = supp(copt), and define

Φopt to be the associated synthesis matrix. Assume also that ‖s‖2 > δ, or else

the zero vector is the unique solution of the relaxation (r-error). It is self-

evident that the solution of the relaxation can be no sparser than a solution

of the sparse approximation problem with tolerance δ.
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To prove the theorem, we will find a coefficient vector supported on Λopt

and a corresponding Lagrange multiplier that give a potential solution of the

relaxation. We will argue that the condition (6.20) guarantees that this coeffi-

cient vector actually minimizes the relaxation. Then we will demonstrate that

this coefficient vector gives the unique minimizer. As a coda, we will estimate

how much the solution of the relaxation varies from the optimal coefficient

vector.

A coefficient vector b? solves the convex relaxation

min
b∈CΩ

‖b‖1 subject to ‖s− Φ b‖2 ≤ δ (r-error)

if and only if the Karush–Kuhn–Tucker conditions are satisfied [88]. That is,

there exists a Lagrange multiplier γ? for which

b? ∈ arg min
b

1
2
‖s− Φ b‖22 + γ? ‖b‖1 (6.21)

‖s− Φ b?‖2 = δ (6.22)

γ? > 0. (6.23)

The KKT conditions are both necessary and sufficient because the objective

function and constraint set are convex. Note that (6.22) and (6.23) hold be-

cause ‖s‖2 > δ implies that the error constraint is strictly binding. Since the

Lagrange multiplier γ? is positive, we have transferred it to the `1 term in

(6.21) to simplify the application of the formulae we have developed.

Let (b?, γ?) be a solution to the restricted problem

min
supp(b)⊂Λopt

‖b‖1 subject to ‖s− Φ b‖2 ≤ δ. (6.24)

The hypothesis ‖s‖2 > δ implies that the error constraint in (6.24) is strictly

binding, so (6.22) and (6.23) are both in force. Applying the Pythagorean
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Theorem to (6.22), we obtain the identity

‖aopt − Φopt b?‖2 =
(
δ2 − ‖s− aopt‖22

)1/2
. (6.25)

Corollary 6.12 furnishes the estimate

‖aopt − Φopt b?‖2 ≤ γ?
∥∥Φopt

†∥∥
2,1

.

Introducing (6.25) into this relation, we obtain a lower bound on the multiplier:

γ? ≥
(
δ2 − ‖s− aopt‖22

)1/2 ∥∥Φopt
†∥∥−1

2,1
. (6.26)

Meanwhile, the Correlation Condition Lemma gives a sufficient condition,

γ? ≥
‖Φ∗(s− aopt)‖∞

ERC(Λopt)
, (6.27)

which ensures that any coefficient vector satisfying (6.21) is supported on Λopt.

Combine (6.26) into (6.27), and rearrange to obtain

‖s− aopt‖22 +
‖Φ∗(s− aopt)‖2∞

∥∥Φopt
†∥∥2

2,1

ERC(Λopt)2
≤ δ2.

Factor ‖s− aopt‖22 out from the left-hand side, identify the maximum correla-

tion of (s− aopt) with the dictionary, and take square roots to reach 1 +

(
maxcor(s− aopt)

∥∥Φopt
†∥∥

2,1

ERC(Λopt)

)2
1/2

‖s− aopt‖2 ≤ δ.

Since aopt is an approximation of s with error less than or equal to ε, the

hypothesis (6.20) is a sufficient condition for the pair (b?, γ?) to satisfy all

three KKT conditions (6.21), (6.22), and (6.23). It follows that our coefficient

vector b? gives a solution to the convex relaxation (r-error).
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Now we will demonstrate that the coefficient vector b? provides the unique

minimizer of the convex relaxation. This requires some work because we have

not proven that every solution of the convex program is necessarily supported

on Λopt.

Suppose that balt is another coefficient vector that solves (r-error).

First, we argue that Φ balt = Φ b? by assuming the contrary. The condition

(6.22) must hold at every solution, so the signals Φ balt and Φ b? both lie on a

Euclidean sphere of radius δ centered at the input signal s. Since Euclidean

balls are strictly convex, the signal 1
2
Φ (balt+b?) is strictly closer than δ to the

input signal. Thus 1
2
(balt + b?) cannot be a solution of the convex relaxation.

But the solutions to a convex program always form a convex set, which is a

contradiction. In consequence, any alternate solution balt synthesizes the same

signal as b?. Moreover, balt and b? share the same `1 norm because they both

solve (r-error). Under our hypothesis that ERC(Λopt) > 0, Theorem 6.1

shows that b? is the unique solution to the problem

min
b∈CΩ

‖b‖1 subject to Φ b = Φ b?.

Thus balt = b?. We conclude that b? is the unique minimizer of the convex

relaxation.

Finally, let us estimate how far b? varies from copt. We begin with the

equation (6.25), which can be written

‖Φopt (copt − b?)‖2 =
(
δ2 − ‖s− aopt‖22

)1/2
.

The right-hand side clearly does not exceed δ, while the left-hand side may be

bounded below as follows.∥∥Φopt
†∥∥−1

2,2
‖copt − b?‖2 ≤ ‖Φopt (copt − b?)‖2 .
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Combine the two bounds and rearrange to complete the argument.
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Chapter 7

Numerical Construction of Packings

Our analysis of sparse approximation algorithms demonstrates that sparse

approximation problems can be solved efficiently whenever the dictionary has

low coherence. As we saw in Chapter 4, the coherence parameter has an im-

mediate interpretation as the packing radius of the dictionary in a projective

space. In light of these observations, it is natural to ask how we may construct

good packings in projective space. This optimization problem is highly non-

convex, so we expect that it is difficult to solve. In this chapter, we develop

an elegant numerical method that can be used to approach projective packing

and related problems.

7.1 Overview

We will study packing problems set in a compact metric space M with

distance function distM. Recall that the packing radius of a finite set X is the

minimum distance between some pair of distinct points drawn from X . That

is,

packM(X )
def
= min

m6=n
distM(xm, xn).

In other words, the packing radius of a set is the largest open ball that can

be centered at one point of the set without encompassing any other point. An

optimal packing of N points is an ensemble X that solves the mathematical
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program

max
|X |=N

packM(X )

where |·| returns the cardinality of a finite set. The optimal packing problem

is guaranteed to have a solution because the metric space is compact and the

objective is a continuous function of the ensemble X .

In this chapter, we will consider a feasibility problem closely connected

with optimal packing. Given a number ρ, the goal is to produce a set of N

points for which

packM(X ) ≥ ρ. (7.1)

This problem is notoriously difficult to solve because it is highly nonconvex,

and it is even more difficult to determine the maximum value of ρ for which

the feasibility problem is soluble. This maximum value of ρ corresponds with

the radius of an optimal packing.

7.1.1 Our Approach

We will consider the feasibility problem (7.1) in several different compact

metric spaces, but the same basic algorithm applies in each. Here is a high-

level description of our approach.

First, we show that each configuration of points is associated with a matrix

whose entries are related to the inter-point distances. Then we prove that

a configuration solves the feasibility problem (7.1) if and only if its matrix

possesses both a structural property and a spectral property. The overall

algorithm consists of the following steps.

1. Randomly choose an initial configuration, and construct its matrix.
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2. Alternately enforce the structural condition and the spectral condition

in hope of reaching a matrix that satisfies both.

3. Extract a configuration of points from the output matrix.

To our knowledge, the numerical approach to packing via alternating

projection is completely new. Although we are aware of several other numerical

methods for packing [57, 111, 1], these techniques all seem to rely on ideas from

nonlinear programming.

Flexibility is the major advantage of alternating projection. In this chap-

ter, we demonstrate that we can solve many different types of feasibility prob-

lems by appropriate modification of the basic technique. Some of these prob-

lems have never before been studied numerically. Moreover, we believe that

the possibilities of the method have not been exhausted, and that it will see

other fruitful applications in the future. The major disadvantage of alternating

projection is that it converges slowly.

7.1.2 Outline

As a first illustration of our method, we apply it to construct packings of

points on the surface of the Euclidean sphere. This problem has been studied

for about 75 years, and hundreds of putatively optimal packings have been

recorded by N. J. A. Sloane and his colleagues [96]. We return to this problem

for two reasons. First, it provides the simplest way to explain our basic ideas.

Second, it allows us to compare the output of our algorithm against the best

packings that have been discovered over the last 75 years. We will see that

the alternating projection approach is extremely competitive, but it sometimes

fails to reproduce the best results known.
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Afterward, we adapt the method to construct good packings of points in

projective spaces. This is the dictionary design problem for sparse approx-

imation. Sloane and his colleagues have also tabulated putatively optimal

packings in the real projective space [95]. Our experiments indicate that al-

ternating projection can match many of their best packings. We have also

constructed many new packings of points in the complex projective space.

The natural generalization of line packing is subspace packing. This prob-

lem is set in a Grassmannian space, which is the collection of all subspaces of

fixed dimension in a Euclidean space. The distance between two subspaces is a

function of the principal angles between them. Our algorithm can match many

of the best packings of real subspaces with respect to the chordal distance that

Sloane has recorded [95]. We have also constructed many packings of complex

subspaces with respect to the chordal distance. Then, we show how to con-

struct Grassmannian packings with respect to two other metrics, the spectral

distance and the Fubini–Study distance. These experiments underscore the

versatility of the algorithm.

Afterward, we review some results from the literature that provide bounds

on the packing radius in the metric spaces that we have considered. These

bounds allow us to conclude that some of our packings are essentially optimal.

In a concluding section, we present a synopsis of our experimental results,

and we discuss some directions for future research. At the end of the chapter,

we provide a collection of tables and figures that give details about the best

packings that we obtained.
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7.2 Packing on Spheres

Imagine that twelve mutually inimical nations build their capital cities

on the surface of a featureless globe. Being concerned about missile strikes,

they wish to locate the closest pair of cities as far apart as possible. In other

words, the problem requests an optimal packing of points on the surface of

a two-dimensional sphere. This is often referred to as Tammes’ Problem in

honor of a Dutch botanist who raised the question in 1930 [102]. We address

Tammes’ Problem first because it provides the most transparent illustration

of our modus operandi.

7.2.1 The Sphere

Let Rd denote the d-dimensional real inner-product space. The usual

symmetric inner product will be written as 〈x,y〉 = y∗ x, where ∗ denotes the

(conjugate) transpose operator. Although we are working with real vectors

at present, the remaining sections of the chapter will involve complex vectors,

so we prefer to use the conjugate transpose to unify the presentation. The

squared Euclidean norm falls from the inner product: ‖x‖22 = 〈x,x〉.

The (d−1)-dimensional sphere Sd−1 is defined as the set of all unit vectors

in Rd.

Sd−1 def
= {x ∈ Rd : ‖x‖2 = 1}.

We measure the distance between two points on the sphere as the Euclidean

distance of the chord joining them, which is also known as the chordal distance.

distS(x,y)
def
= ‖x− y‖2 .

Equipped with this distance, the sphere becomes a compact metric space.
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7.2.2 Packings and Matrices

Suppose that we wish to produce a configuration of N points in Sd−1

with packing radius ρ. We may represent each configuration of points with a

collection X of unit vectors drawn from Rd.

X = {xn}Nn=1.

The packing radius of X is defined as

packS(X )
def
= min

m6=n
distS(xn,xm) = min

m6=n
‖xn − xm‖2 ,

and the feasibility problem requests a configuration X for which

min
m6=n

‖xn − xm‖2 ≥ ρ.

It is better to reorganize this condition so that it depends only on the inner

products between pairs of vectors. Therefore, we seek a collection X for which

max
m6=n

〈xn,xm〉 ≤ µ (7.2)

where the parameter µ satisfies the relationship µ = 1− 1
2
ρ2.

Form the column vectors from X into a d×N matrix:

X
def
=

[
x1 x2 . . . xN

]
.

In the sequel, we will not distinguish between the matrix X and the collection

of its columns. To detect whether X solves the feasibility problem (7.2), one

must compute the inner products between its columns. It is better to work with

a matrix that registers these inner products explicitly. The obvious candidate

is the Gram matrix of X ,

G
def
= X ∗ X .
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The (m, n) entry of the Gram matrix is precisely the inner product 〈xn,xm〉.

In fact, we may reformulate the feasibility problem purely in terms of the

Gram matrix. Suppose that the configuration X satisfies (7.2) with parameter

µ. Then its Gram matrix G must have the following six properties:

1. G is (real) symmetric.

2. G has a unit diagonal.

3. −1 ≤ gmn ≤ µ whenever m 6= n.

4. G is positive semi-definite.

5. G has rank d or less.

6. G has trace N .

Some of these properties are redundant, but we have listed them separately

for reasons soon to become apparent.

Conversely, suppose that a matrix G satisfies Properties 1–6. Then it is

always possible to extract a configuration of N points that solves (7.2). More

precisely, there exists a real d×N matrix X with unit-norm columns so that

G = X ∗ X . The off-diagonal entries of G do not exceed µ, so the inner products

between distinct columns of X do not exceed µ. We conclude that Properties

1–6 characterize solutions of the feasibility problem with parameter µ.

For reference, a positive semi-definite (PSD) matrix is defined to have

nonnegative (real) eigenvalues. It can be shown that every PSD matrix is

conjugate symmetric. Thus, a real PSD matrix is always real symmetric. To

indicate that a matrix A is PSD, we write A < 0.
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7.2.3 Alternating Projection

Observe that Properties 1–3 are structural properties. By this, we mean

that they constrain the entries of the matrix directly. Properties 4–6, on the

other hand, are spectral properties. That is, they control the eigenvalues of

the matrix. It is not easy to enforce structural and spectral properties simul-

taneously, so we must resort to half measures. Starting from an initial matrix,

our algorithm will alternately enforce Properties 1–3 and then Properties 4–6

in hope of reaching a matrix that satisfies all six properties at once.

To be more rigorous, let us define the structural constraint set

H (µ)
def
= {H ∈ RN×N : H = H∗, diag H = e, and

− 1 ≤ hmn ≤ µ for m 6= n}. (7.3)

The symbol e represents a conformal vector of ones. Although the structural

constraint set depends on the value of the feasibility parameter µ, we will

usually eliminate µ from the notation for simplicity. We also define the spectral

constraint set

G
def
= {G ∈ RN×N : G < 0, rank G ≤ d, and trace G = N}. (7.4)

Both constraint sets are compact. The structural constraint set H is convex,

but the spectral constraint set is not.

To solve the feasibility problem (7.2), we must find a matrix that lies in the

intersection of G and H (µ). This section will present a high-level statement

of our approach. The next two sections will provide implementation details.

We remind the reader that the Frobenius norm of a matrix is defined as

‖A‖F
def
=

[∑
m,n
|amn|2

]1/2
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Algorithm 7.1 (Alternating Projection).

Input:

• An N ×N (conjugate) symmetric matrix G (0).

• The maximum number of iterations T .

Output:

• Gout is an N ×N matrix that belongs to G and that has a unit diagonal.

Procedure:

1. Initialize t = 0.

2. Determine a matrix H (t) that solves

min
H∈H

∥∥H − G (t)
∥∥

F
.

3. Determine a matrix G (t+1) that solves

min
G∈G

∥∥G − H (t)
∥∥

F
.

4. Increment t.

5. If t < T , return to Step 2.

6. Define the diagonal matrix D = diag G (t).

7. Return the matrix

Gout = D−1/2 G (t) D−1/2.
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The iterates generated by this algorithm need not converge. Therefore,

we have chosen to halt the algorithm after a fixed number of steps instead of

checking the behavior of the sequence of iterates. We will say more about the

convergence properties of the algorithm in Section 7.2.6.

The scaling in the the last step normalizes the diagonal of the matrix but

preserves its inertia (i.e., numbers of negative, zero, and positive eigenvalues).

Since G (t) is a positive semi-definite matrix with rank d or less, the output

matrix Gout shares these traits. It follows that the output matrix always admits

a factorization Gout = X ∗ X where X is a d × N real matrix with unit-norm

columns. Property 3 is the only one of the six properties that may be violated.

The idea of applying alternating projection to feasibility problems first

appeared in the work of von Neumann [114]. He proved that an alternating

projection between two closed subspaces of a Hilbert space converges to the

orthogonal projection of the initial iterate onto the intersection of the two sub-

spaces. Cheney and Goldstein subsequently showed that an alternating pro-

jection between two closed, convex subsets of a Hilbert space always converges

to a point in their intersection (provided that the intersection is nonempty)

[11]. Unfortunately, these results do not apply to our problem because the

spectral constraint set G is not convex.

7.2.4 The Matrix Nearness Problems

To implement Algorithm 7.1, we must solve the matrix nearness problems

in Steps 2 and 3. The first one is straightforward.

Proposition 7.2. Let G be a real, symmetric matrix. With respect to Frobe-

nius norm, the unique matrix in H (µ) closest to G has a unit diagonal and
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off-diagonal entries that satisfy

hmn =


−1, gmn < −1,
gmn, −1 ≤ gmn ≤ µ, and
µ, µ < gmn.

It is rather more difficult to find a nearest matrix in the spectral constraint

set. To state the result, we define the plus operator (·)+ : R → R by the rule

(·)+ : x 7→ max{0, x}.

Proposition 7.3. Let H be a conjugate symmetric matrix whose eigenvalue

decomposition is
∑N

n=1 λn un u
∗
n with the eigenvalues arranged in nonincreasing

order: λ1 ≥ λ2 ≥ · · · ≥ λN . With respect to Frobenius norm, a matrix in G

closest to H is given by ∑d

n=1
(λn − γ)+ un u

∗
n

where the scalar γ is chosen so that the matrix has trace N . This best approx-

imation is unique provided that λd > λd+1.

The nearest matrix described by this theorem can be computed efficiently with

standard tools of numerical linear algebra [51]. The value of γ is uniquely

determined, but one must solve a small optimization problem to find it. We

omit the details, which are routine.

Proof. Given an Hermitian matrix A, denote by λ(A) the vector of eigenvalues

arranged in nonincreasing order. Then we may decompose A = U diagλ(A) U∗

for some unitary matrix U .
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We must solve the optimization problem

minA
1
2
‖A− H‖2F subject to λn(A) ≥ 0 for n = 1, . . . , d,

λn(A) = 0 for n = d + 1, . . . , N , and

e∗ λ(A) = N.

First, we fix the eigenvalues of A and minimize with respect to the unitary

part of its decomposition. In consequence of the Wielandt–Hoffman Theorem

[61], the objective function is bounded below:

1
2
‖A− H‖2F ≥ 1

2
‖λ(A)− λ(H)‖22 .

Equality holds if and only A and H are simultaneously diagonalizable by a

unitary matrix. Therefore, if we decompose H = U diagλ(H) U∗, the objective

function attains its minimal value whenever A = U diagλ(A) U∗. Note that

the matrix U may not be uniquely determined.

We find the optimal set of eigenvalues ξ = λ(A) by solving the (strictly)

convex program

minξ
1
2
‖ξ − λ(H)‖22 subject to ξn ≥ 0, for n = 1, . . . , d,

ξn = 0, for n = d + 1, . . . , N , and

e∗ ξ = N.

This minimization is accomplished by an application of Karush–Kuhn–Tucker

theory [88]. In short, the top d eigenvalues of H are translated an equal

amount, and those that become negative are set to zero. The size of the

translation is chosen to fulfill the trace condition. The entries of the optimal

ξ are nonincreasing on account of the ordering of λ(H).
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Finally, the uniqueness claim follows from the fact that the eigenspace

associated with the top d eigenvectors of H is uniquely determined if and only

if λd(H) > λd+1(H).

7.2.5 The Initial Matrix

The success of the algorithm depends on an adequate selection of the

input matrix G0. We have found the following strategy is reasonably efficient

and effective.

Algorithm 7.4 (Initial Matrix).

Input:

• The dimension d.

• The number of vectors N .

• An upper bound τ on the inner product between vectors.

• The maximum number T of random choices.

Output:

• An N × N matrix G with rank d, with a unit diagonal, and with off-

diagonal entries that do not exceed τ .

Procedure:

1. Initialize t← 0 and n← 1.

2. Increment t. If t > T , then print a failure notice and quit.
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3. Choose a vector xn uniformly at random from Sd−1.

4. If 〈xm,xn〉 ≤ τ for each m = 0, . . . , n− 1, then increment n.

5. If n ≤ N , return to Step 2.

6. Form the matrix X = [x1 x2 . . . xN ].

7. Return the Gram matrix G = X ∗X .

To implement Step 3, we choose a d-dimensional vector whose entries are iid

standard normal. This vector is then scaled to have unit norm [99].

The purpose of the parameter τ is to prevent the starting matrix from

containing columns that are nearly identical. The extreme case τ = 1 places

no restriction on the inner products between columns. For Tammes’ Problem,

typical values for τ range between 0.9 and 1.0. It is essential to be aware

that this procedure will fail if τ is chosen too small (or if we are unlucky in

our random choices). For this reason, we add an iteration counter so that the

procedure will not enter an infinite loop.

7.2.6 Theoretical Behavior of the Algorithm

It is important to be aware that packing problems are typically difficult to

solve. Therefore, we cannot expect that our algorithm will necessarily produce

a point in the intersection of the constraint sets. One may ask whether we can

make any guarantees about the behavior of Algorithm 7.1. This turns out to

be difficult. Indeed, it is possible that an alternating projection algorithm will

fail to generate a convergent sequence of iterates [74]. Nevertheless, it can be

shown that the sequence of iterates has accumulation points, and that these

accumulation points satisfy a certain weak structural property.
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In practice, the algorithm always appears to converge in norm, so the lack

of a rigorous convergence proof is only a theoretical annoyance. A more serious

problem is that the algorithm typically requires as many as 5000 iterations to

approach a limit. This is probably the greatest weakness of our approach.

For reference, we quote the best theoretical convergence result that we

know. The distance between a matrix and a collection of matrices is defined

as

dist(M , C )
def
= inf

C∈C
‖M − C‖F .

Theorem 7.5 (Global Convergence). Suppose that Algorithm 7.1 generates

an (infinite) sequence of iterates {(G (t), H (t))}. This sequence has at least one

accumulation point.

• Every accumulation point lies in G ×H .

• Every accumulation point (G , H) satisfies∥∥G − H
∥∥

F
= lim

t→∞

∥∥G (t) − H (t)
∥∥

F
.

• Every accumulation point (G , H) satisfies∥∥G − H
∥∥

F
= dist(G , H ) = dist(H , G ).

Proof sketch. The existence of an accumulation point falls from the compact-

ness of the constraint sets. The algorithm always decreases the distance be-

tween successive iterates, which is bounded below by zero. Therefore, this

distance must converge as well. Since each iterate is chosen as the closest

matrix from the opposite constraint set and the Frobenius norm is continuous,

we can take limits to obtain the remaining assertions.
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A more detailed treatment requires the machinery of point-to-set maps, and

it would not enhance our main discussion. Please see the report [109] for

additional information.

7.2.7 Numerical Experiments

Our approach to packing is experimental rather than theoretical, so the

real question is how Algorithm 7.1 performs in practice. In principle, this

question is difficult to resolve because the optimal packing radius is unknown

for almost all combinations of d and N . Nevertheless, Tammes’ Problem has

been studied for 75 years, and many putatively optimal configurations are

available. Therefore, we attempted to produce packings whose maximum inner

product µ fell within 10−5 of the best value tabulated by N. J. A. Sloane and his

colleagues [96]. This resource draws from all the experimental and theoretical

work on Tammes’ Problem, and it should be considered the gold standard.

We implemented the algorithms in Matlab, and we performed the follow-

ing experiment for pairs (d,N) with d = 3, 4, 5 and N = 4, . . . , 25. First, we

computed the putatively optimal maximum inner product µ using the data

from [96]. In each of 10 trials, we constructed a starting matrix using Algo-

rithm 7.4 with parameters τ = 0.9 and T = 10, 000. Then, we executed the

alternating projection, Algorithm 7.1, with the calculated value of µ and the

maximum number of iterations set to T = 5000. (Our numerical experience

indicates that increasing the maximum number of iterations beyond 5000 does

not confer a significant benefit.) We stopped the alternating projection in Step

4 if the iterate G (t) contained no off-diagonal entry greater than (µ + 10−5)

and proceeded with Step 6. After 10 trials, we recorded the largest packing

radius attained, as well as the average value of the packing radius. We also
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recorded the average number of iterations the alternating projection required

during each trial.

Table 7.1 provides the results of this experiment. Following Sloane, we

have reported the degrees of arc subtended by the closest pair of points in

lieu of the Euclidean distance between them or cosine of the angle between

them. We believe that the results are much easier to interpret geometrically

when delivered in this fashion. All the tables and figures related to packing

are collated at the back of this chapter for easy comparison.

The most striking feature of Table 7.1 is that the best configurations re-

turned by alternating projection consistently attain packing radii that fall hun-

dredths or thousandths of a degree away from the best packing radii recorded

by Sloane. If we examine the maximum inner product in the configuration

instead, the difference is usually on the order of 10−4 or 10−5, which we ex-

pect based on our stopping criterion. The average-case results are somewhat

worse. Nevertheless, the average configuration returned by alternating projec-

tion typically attains a packing radius several tenths of a degree away from

optimal.

A second observation is that the alternating projection algorithm typically

performs better when the number of points N is small. The largest errors are

all clustered at larger values of N . A corollary observation is that the average

number of iterations per trial tends to increase with the number of points. We

believe that the explanation for these phenomena is that Tammes’ Problem has

a combinatorial regime, where solutions have a lot of symmetry and structure,

and a random regime, where the solutions have very little order. The algorithm

typically seems to perform better in the combinatorial regime.

This claim is supported somewhat by theoretical results for d = 3. Opti-
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mal configurations have only been established for N = 1, . . . , 12 and N = 24.

Of these, the cases N = 1, 2, 3 are trivial. The cases N = 4, 6, 8, 12, 24 fall

from the vertices of various well-known polyhedra. The cases N = 5, 11 are

degenerate, obtained by leaving a point out of the solutions for N = 6, 12.

The remaining cases involve complicated constructions based on graphs [36].

The algorithm was able to calculate the known optimal configurations to a

high order of accuracy, but it generally performed slightly better for the non-

degenerate cases.

On the other hand, there is at least one case where the algorithm failed

to match the optimal packing radius, even though the optimal configuration

is highly symmetric. The best arrangement of 24 points on S3 locates them at

vertices of a polytope called the 24-cell [96]. The best configuration produced

by the algorithm has a packing radius 1.79◦ worse. It seems that this optimal

configuration is very difficult for the algorithm to find. Less dramatic failures

occurred at pairs (d,N) = (3, 25), (4, 14), (4, 25), (5, 22), and (5, 23). But in

each of these cases, our best packing declined more than a tenth of a degree

from the best recorded.

7.3 Packing in Projective Spaces

This section addresses the feasibility problem most closely related to

sparse approximation, the construction of a dictionary with specified coher-

ence. As we learned in Chapter 4, a dictionary can be viewed a configuration

of lines in projective space, and the coherence parameter is complementary to

the packing radius of the dictionary in projective space. Therefore, we may in-

terpret the dictionary construction problem as a packing problem in projective

space.
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A more physical motivation for this problem has been suggested in [15].

Imagine that we wish to destroy a tumor by firing laser beams at it from

several directions. The beams should coincide at the tumor, but the acute

angle between each pair should remain as large as possible to avoid damaging

the surrounding tissue.

7.3.1 Projective Spaces

For continuity, we review the definition of projective spaces from Section

4.8. Denote by Cd the d-dimensional, complex inner-product space. The usual

Hermitian inner product will be written as 〈x,y〉 = y∗ x, and the squared

Euclidean norm derives from the inner product: ‖x‖22 = 〈x,x〉.

The (d − 1)-dimensional complex projective space may be viewed as the

collection of all one-dimensional subspaces of Cd. Formally, it is defined as

Pd−1(C)
def
=

Cd \ {0}
C× .

(The symbol C× refers to the set of nonzero complex numbers.) The real

projective space Pd−1(R) is defined in much the same way:

Pd−1(R)
def
=

Rd \ {0}
R× .

It may be viewed as the collection of all lines through the origin of Rd. On

analogy, we will refer to the elements of a complex projective space as lines.

We concentrate on the complex case because the real case follows from a

transparent adaptation.

The natural metric for Pd−1(C) is the acute angle between two lines or—

what is equivalent—the sine of the acute angle. We will model the (d −
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1) projective space as the collection of unit vectors in Cd. Therefore, the

projective distance between two unit vectors x and y will be calculated as

distP(x,y)
def
=

√
1 − |〈x,y〉|2.

Evidently, the distance between two lines ranges between zero and one. When

equipped with this distance, Pd−1(C) forms a compact metric space [15].

7.3.2 Packings and Matrices

Suppose that we wish to construct a configuration of N lines in Pd−1(C)

with a packing radius no less than ρ. We will represent each configuration of

lines in Pd−1(C) by a collection X of unit vectors in Cd.

X = {xn}Nn=1.

The packing radius of the configuration X in projective space is defined as

packP(X )
def
= min

m6=n
distP(xm,xn) = min

m6=n

√
1− |〈xm,xn〉|2,

and the feasibility problem requests a configuration X for which

min
m6=n

√
1− |〈xn,xm〉|2 ≥ ρ.

As before, we clear the debris from this inequality to obtain an equivalent

condition:

max
m6=n

|〈xm,xn〉| ≤ µ (7.5)

where µ =
√

1− ρ2.

Form the elements of X into a complex d×N matrix:

X
def
=

[
x1 x2 . . . xN

]
.
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As usual, the Gram matrix is G = X ∗X . It follows that the configuration

X solves the feasibility problem (7.5) if and only if its Gram matrix has the

following properties:

1. G is Hermitian.

2. G has a unit diagonal.

3. |gmn| ≤ µ whenever m 6= n.

4. G is positive semi-definite.

5. G has rank d or less.

6. G has trace N .

Properties 1 and 3 are the only ones that differ from the conditions we de-

veloped for Tammes’ Problem. The change to Property 3 is what leads to a

packing in projective space instead of a packing on the sphere.

7.3.3 Implementation Details

We define the convex structural constraint set

H (µ)
def
= {H ∈ CN×N : H = H∗, diag H = e, and

|hmn| ≤ µ for m 6= n }. (7.6)

The only essential difference between (7.3) and (7.6) is the absolute value in

the bound on the off-diagonal entries. As before, the spectral constraint set is

G
def
= {G ∈ CN×N : G < 0, rank G ≤ d, and trace G = N}.
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It is clear that we may solve the feasibility problem (7.5) by producing a matrix

in the intersection of G and H (µ).

A variation on Algorithm 7.4 can be used to construct a starting matrix.

Some minor changes are necessary. In Step 3, we wish to construct a uniformly

random line in Pd−1(C). To do so, one selects a complex vector whose real and

imaginary parts are chosen from independent standard normal distributions

and re-scales the vector to have unit Euclidean norm [99]. In Step 4, one must

test whether |〈xm,xn〉| ≤ τ for each m < n.

The alternating projection between G and H is a variant of Algorithm

7.1. We apply Proposition 7.3 to determine a nearest matrix from the spectral

constraint set G . To compute the nearest matrix from the structural constraint

set H , we use the following result.

Proposition 7.6. Let G be an Hermitian matrix. With respect to Frobenius

norm, the unique matrix in H (µ) closest to G has a unit diagonal and off-

diagonal entries that satisfy

hmn =

{
gmn if |gmn| ≤ µ, and
µ gmn/ |gmn| otherwise.

The proof is immediate.

7.3.4 Numerical Experiments

For most pairs (d,N), the optimal packing radius of N lines in Pd−1(R)

and Pd−1(C) is unknown. In the real setting, we can use the tables of N. J. A.

Sloane and his colleagues for guidance [95]. There is no comparable resource

for the complex setting, which makes it challenging to understand how well

the algorithm performs.
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Let us begin with packing in real projective spaces. We attempted to

construct configurations of real lines whose maximum absolute inner prod-

uct µ fell within 10−5 of the best value tabulated in [95]. The experimental

method parallels the method used for Tammes’ Problem. For pairs (d,N)

with d = 3, 4, 5 and N = 4, . . . , 25, we computed the putatively optimal value

of the feasibility parameter µ from the data in [95]. In each of 10 trials, we

constructed a starting matrix using Algorithm 7.4 with parameters τ = 0.9

and T = 10, 000. We applied the alternating projection, Algorithm 7.1 with

the computed value of µ and the maximum number of iterations T = 5000.

We halted the iteration in Step 4 if the iterate G (t) exhibited no off-diagonal

entry with absolute value greater than (µ+10−5). After 10 trials, we recorded

the largest packing radius attained, as well as the average value of the pack-

ing radius. We also recorded the average number of iterations the alternating

projection required per trial.

Table 7.2 delivers the results of this experiment. We have reported the

acute angle between the closest pair of lines for ease of interpretation. Accord-

ing to the table, the best configurations produced by alternating projection

consistently attain packing radii tenths or hundredths of a degree away from

the best configurations known. The average configurations returned by alter-

nating projection are slightly worse, but they usually fall within a degree of

the putative optimal. As in the experiments for Tammes’ Problem, alternating

projection performs better when the number of points N is not too large. This

is reflected both in the packing radii and in the number of iterations that the

algorithm requires.

There are several anomalies that we would like to point out. The most

interesting pathology occurs at the pair (d,N) = (5, 19). The best packing

145



radius calculated by alternating projection is about 1.76◦ worse than the op-

timal configuration, and it is also 1.76◦ worse than the best packing radius

computed for the pair (5, 20). From Sloane’s tables, we can see that the (pu-

tative) optimal packing of 19 lines in P4(R) is actually a subset of the best

packing of 20 lines. Perhaps the fact that this packing is degenerate makes it

difficult to construct. A similar event occurs rather less dramatically at the

pair (5, 13). The table also shows that the algorithm often performs badly

when the number of lines exceeds 20.

Sloane does not provide a table of packings in complex projective space.

In fact, we only know of one paper that contains numerical work on packing in

complex projective spaces [1], but it gives very few examples of good complex

packings. The only method we know for gauging the quality of a complex line

packing is to compare it against an upper bound. Rankin’s Bound for projec-

tive packings, which we derive in Section 7.5, states that every configuration

X of N lines in either Pd−1(R) or Pd−1(C) satisfies the inequality

packP(X )2 ≤ (d− 1) N

d (N − 1)
.

This bound is attainable only for rare combinations of d and N . In particular,

the bound can be met in Pd−1(R) only if N ≤ 1
2
d (d+1). In the space Pd−1(C),

attainment requires that N ≤ d2. Any arrrangement of lines that meets the

Rankin Bound must be equiangular. These optimal configurations are called

equiangular tight frames. See [100, 60, 109, 101] for more details.

We performed some ad hoc experiments to produce configurations of com-

plex lines with large packing radii. For each pair (d,N), we used the Rankin

Bound to determine a lower limit on the feasibility parameter µ. Starting ma-

trices were constructed with Algorithm 7.4 using values of τ ranging between
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0.9 and 1.0. For various values of the feasibility parameter, we executed be-

tween 1000 and 5000 iterations of Algorithm 7.1, and we recorded the largest

packing radius attained during these trials.

Table 7.3 compares our results against the Rankin Bound. We see that

many of the complex line configurations have packing radii much smaller than

the Rankin Bound, which is not surprising because the bound is usually not

attainable. Some of our configurations fall within a thousandth of a degree of

the bound, which is essentially optimal.

Table 7.3 contains a few oddities. In P4(C), the best packing radius

computed for N = 18, . . . , 24 is worse than the packing radius for N = 25.

This configuration of 25 lines is an equiangular tight frame, which means that

it is an optimal packing. It seems likely that the optimal configurations for the

preceding values of N are just subsets of the optimal arrangement of 25 lines.

As before, it may be difficult to calculate this type of degenerate packing. A

similar event occurs less dramatically at the pair (d,N) = (4, 13) and at the

pairs (4, 17) and (4, 18).

Figure 7.1 compares the quality of the best real projective packings from

[95] with the best complex projective packings that we obtained. It is natural

that the complex packings are better than the real packings because the real

projective space can be embedded isometrically into the complex projective

space. But it is remarkable how badly the real packings compare with the

complex packings. The only cases where the real and complex ensembles have

the same packing radius occur when the real configuration meets the Rankin

Bound.
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7.4 Packing in Grassmannian Spaces

A line is just a one-dimensional subspace. The obvious generalization of

line packing, therefore, is subspace packing. The alternating algorithm also

applies in this setting, but we must address some new challenges. The problem

of subspace packing was initially raised in the inspiring paper [15].

7.4.1 Grassmannian Spaces

The complex Grassmannian space G(K, Cd) is the collection of all K-

dimensional subspaces of Cd. This space is isomorphic to a quotient of unitary

groups:

G(K, Cd) ∼=
U(d)

U(K)× U(d−K)
.

The unitary group U(d) can be represented as the collection of all d×d unitary

matrices with ordinary matrix multiplication. To understand the equivalence,

note that each orthonormal basis for Cd can be split into K vectors, which

span a K-dimensional subspace, and (d−K) vectors, which span the orthog-

onal complement of the subspace. To obtain a unique representation of the

subspace, one must modulate by rotations that fix the subspace and rotations

that fix its complement. Similarly, the real Grassmannian space G(K, Rd) is

the collection all K-dimensional subspaces of Rd. It is isomorphic to a quotient

of orthogonal groups:

G(K, Rd) ∼=
O(d)

O(K)×O(d−K)
.

The orthogonal group O(d) can be represented as the collection of all d × d

real orthogonal matrices with the usual matrix multiplication. We will concen-

trate on complex Grassmannians since the real case follows from a transparent
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adaptation. If we need to refer to both the real and complex case at once, we

will write G(K, Fd).

7.4.2 Metrics on Grassmannian Spaces

Grassmannian manifolds admit many interesting metrics, each of which

yields a different packing problem. In this section, we will describe a few of

these metrics.

Suppose that S and T are two subspaces in G(K, Cd). These subspaces

are inclined against each other by K different principal angles. The smallest

principal angle θ1 is the minimum angle formed by any pair of vectors drawn

from the two subspaces. The second principal angle θ2 is defined as the smallest

angle attained between a pair of vectors orthogonal to the first set of vectors.

The remaining principal angles are defined recursively. The principal angles

are increasing, and each one lies in the range [0, π/2]. We will only consider

metrics that are functions of the principal angles between two subspaces.

Let us present a more computational definition of the principal angles

[51]. Suppose that the columns of S and T form orthonormal bases for the

subspaces S and T . Formally, S is a d × K matrix that satisfies S∗S = I

and colspan S = S . Analogously, the matrix T . Next, we compute a singular

value decomposition of the product S∗T :

S∗T = UCV ∗,

where U and V are K ×K unitary matrices and C is a nonnegative, diagonal

matrix with nonincreasing entries. The matrix C is uniquely determined, and

its entries list the cosines of the principal angles between S and T :

ckk = cos θk.
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This definition of the principal angles is most convenient numerically because

singular value decompositions can be computed quickly with standard soft-

ware.

We are now in a position to detail some metrics on the Grassmannian

space.

1. The chordal distance between S and T is given by

distchord(S , T )
def
=

√
sin2 θ1 + · · ·+ sin2 θK

=

√
K − ‖S∗T‖2F.

(7.7)

The values of this metric range between zero and
√

K. The chordal

distance is the easiest to work with, and it is also yields the most sym-

metrical packings [15].

2. The spectral distance is

distspec(S , T )
def
= sin θ1 = max

k
sin θk

=
√

1− ‖S∗T‖22,2.
(7.8)

We use ‖·‖2,2 to denote the spectral norm, which returns the largest

singular value of a matrix. The spectral distance takes values between

zero and one.

3. The Fubini–Study distance is defined by

distFS(S , T )
def
= arccos

(∏
k
cos θk

)
= arccos |det S∗T | .

(7.9)

This metric takes values between zero and π/2. From a group-theoretic

point of view, the Fubini–Study distance is the most natural because it

is the unique Riemannian metric that is invariant under actions of the

unitary group on the Grassmannian space.
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If the subspaces are one-dimensional, observe that each of these metrics reduces

to (the sine of) the acute angle between the two subspaces, which is just the

distance we defined on the projective space. The Grassmannian space admits

other interesting metrics, some of which are listed in [3].

7.4.3 Configurations and Matrices

Next, we must discuss how to represent a configuration of N subspaces

in the Grassmannian space G(K, Cd). Let X = {Xn} be a collection of N

complex matrices with dimensions d×K. Each of these matrices will provide

a basis for one of the N subspaces, so we require that the columns of Xn form

an orthonormal set for each n. We collate these matrices into a d×KN matrix

X
def
=

[
X1 X2 . . . XN

]
.

As always, the Gram matrix of X is defined as G = X ∗X . It is best to regard

the Gram matrix as an N ×N block matrix comprised of K ×K blocks, and

we will index it as such. Observe that each block satisfies

Gmn = X ∗
m Xn

In particular, each diagonal block Gnn is an identity matrix. Meanwhile, the

singular values of the off-diagonal block Gmn equal the cosines of the principal

angles between the two subspaces colspan Xm and colspan Xn.

As we will see, each metric on the Grassmannian space leads to a measure

of “magnitude” for the off-diagonal blocks of the Gram matrix. The Gram

matrix solves the feasibility problem if and only if each off-diagonal block has

sufficiently small “magnitude.”
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7.4.4 Packings with Chordal Distance

Suppose that we seek a packing of N subspaces in G(K, Cd) equipped

with the chordal distance. If X is a configuration of N subspaces, its packing

radius is

packchord(X )
def
= min

m6=n
distchord(Xm, Xn) = min

m6=n

√
K − ‖X ∗

m Xn‖2F.

Given a parameter ρ, the feasibility problem requests a configuration X that

satisfies

min
m6=n

√
K − ‖X ∗

mXn‖2F ≥ ρ.

As usual, we rearrange to obtain a simpler condition:

max
m6=n

‖X ∗
mXn‖F ≤ µ (7.10)

where µ =
√

K − ρ2. It is immediately clear that the configuration X solves

the feasibility problem (7.10) if and only if its Gram matrix G has the following

properties:

1. G is Hermitian.

2. Each diagonal block of G is an identity matrix.

3. ‖Gmn‖F ≤ µ whenever m 6= n.

4. G is positive semi-definite.

5. G has rank d or less.

6. G has trace KN .
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This enumeration leads directly to an algorithm.

The structural constraint is the convex set

H (µ)
def
= {H ∈ CKN×KN : H = H∗, Hnn = I for all n,

and ‖Hmn‖F ≤ µ for all m 6= n}.

The spectral constraint set remains

G
def
= {G ∈ CKN×KN : G < 0, rank G ≤ d, and trace G = KN}.

Solving the feasibility problem (7.10) with parameter µ is equivalent to ex-

hibiting a matrix in the intersection of G and H (µ).

Algorithm 7.4 allows us to build a starting matrix. To construct a sub-

space uniformly at random with respect to the left-invariant Haar measure

on G(K, Cd), we use the striking method developed in [99]. Choose a d ×K

matrix whose (complex) entries are iid standard normal, and perform a QR

decomposition. The first K columns of the unitary part of the decomposition

form an orthonormal basis for a random subspace. Step 4 of Algorithm 7.4

needs to be replaced by the test ‖X ∗
mXn‖F ≤ τ for each m < n.

We may adapt Algorithm 7.1 to alternate between the constraint sets G

and H . To determine the nearest matrix from the structural constaint set,

we use the following result.

Proposition 7.7. Let G be an Hermitian matrix. With respect to the Frobe-

nius norm, the unique matrix in H (µ) nearest to G has a block-identity diag-

onal and off-diagonal blocks that satisfy

Hmn =

{
Gmn if ‖Gmn‖F ≤ µ, and
µ Gmn/ ‖Gmn‖F otherwise.
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It is nice to see how this result generalizes Proposition 7.6. We leave the easy

proof for the reader.

In Step 6 of Algorithm 7.1, we extract the diagonal blocks of the final

iterate. It follows that Step 7 scales each diagonal block to equal the identity

matrix without changing the inertia of the matrix. Therefore, we may factor

the output matrix to obtain a d×KN configuration matrix X . The N blocks

of this matrix represent K-dimensional subspaces of Cd.

7.4.4.1 Numerical Experiments

For real Grassmannian spaces equipped with chordal distance, we have

been able to study the performance of the alternating projection algorithm by

comparison with the tables of Sloane and his colleagues [95]. For each triple

(d,K, N), we determined a value for the feasibility parameter µ from the best

packing radius Sloane recorded for N subspaces in G(K, Rd). We constructed

starting points using the modified version of Algorithm 7.4 with τ =
√

K.

Then we executed Algorithm 7.1 with the calculated value of µ for 1000 to

5000 iterations.

Table 7.4 demonstrates how the best packings we obtained compare with

Sloane’s best packings. Many of our real configurations attained a squared

packing radius within 10−3 of the best value Sloane recorded. Our algorithm

was especially successful for smaller numbers of subspaces, but its performance

began to flag as the number of subspaces approached 20.

Table 7.4 contains several anomalies. For example, our configurations of

11 to 16 subspaces in R4 yield worse packing radii than the configuration of

17 subspaces. It turns out that this configuration of 17 subspaces is optimal,

and Sloane’s data shows that the (putative) optimal arrangements of 11 to 16
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subspaces are all subsets of this configuration. This is the same problem that

occurred in some of our earlier experiments, and it suggests that our algorithm

has difficulty locating these degenerate configurations precisely.

The literature contains very few experimental results on packing in com-

plex Grassmannian manifolds equipped with chordal distance. To our knowl-

edge, the only numerical work appears in two short tables from [1]. Therefore,

we found it valuable to compare our results against the Rankin Bound for

subspace packings, which we derive in Section 7.5. For reference, this bound

requires that every configuration X of N subspaces in G(K, Fd) satisfy the

inequality

packchord(X )2 ≤ K (d−K)

d

N

N − 1
.

This bound is not always attainable. In particular, the bound is attainable in

the complex setting only if N ≤ d2. In the real setting, the bound requires

that N ≤ 1
2
d (d + 1). When the bound is attained, each pair of subspaces in

X is equidistant.

We performed some ad hoc experiments to construct a table of packings

in G(K, Cd) equipped with the chordal distance. For each triple (d,K, N), we

constructed random starting points using Algorithm 7.4 with τ =
√

K (which

represents no constraint). Then we used the Rankin Bound to calculate a

lower limit on the feasibility parameter µ. For this value of µ, we executed the

alternating projection, Algorithm 7.1, for 5000 iterations.

The best packing radii we obtained are listed in Table 7.4. We see that

there is a remarkable correspondence between the squared packing radii of

our configurations and the Rankin Bound. Indeed, many of our packings are

within 10−4 of the bound, which means that these configurations are essentially

optimal. The algorithm was less successful as N approached d2, which is an
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upper bound on the number N of subspaces for which the Rankin Bound is

attainable.

Figure 7.2 compares the packing radii of the best configurations in real

and complex Grassmannian spaces equipped with chordal distance. It is re-

markable that both real and complex packings meet the Rankin Bound for all

N where it is attainable. Notice how the real packing radii fall off as soon

as N exceeds 1
2
d (d + 1). In theory, a complex configuration should always

attain a better packing radius than the corresponding real configuration be-

cause the real Grassmannian space can be embedded isometrically into the

complex Grassmannian space. The figure shows that our best arrangements

of 17 and 18 subspaces in G(2, C4) are actually slightly worse than the real

arrangements calculated by Sloane. This indicates a failure of the alternating

projection algorithm.

7.4.5 Packings with Spectral Distance

To construct packings with respect to the spectral distance, we tread a

familiar path. Suppose that we wish to produce a configuration of N subspaces

in G(K, Cd) with a packing radius ρ. The feasibility problem requires that

max
m6=n

‖X ∗
m Xn‖2,2 ≤ µ (7.11)

where µ =
√

1− ρ2. This leads to the convex structural constraint set

H (µ)
def
= {H ∈ CKN×KN : H = H∗, Hnn = I for all n, and

‖Hmn‖2,2 ≤ µ for all m 6= n}.

The spectral constraint set is the same as usual. The next proposition shows

how to find the matrix in H closest to an initial matrix. In preparation,
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define the truncation operator [x]µ = min{x, µ} for nonnegative numbers, and

extend it to nonnegative matrices by applying it to each component.

Proposition 7.8. Let G be an Hermitian matrix. With respect to the Frobe-

nius norm, the unique matrix in H (µ) nearest to G has a block identity

diagonal. If the off-diagonal block Gmn has a singular value decomposition

UmnCmnV
∗
mn, then

Hmn =

{
Gmn if ‖Gmn‖2,2 ≤ µ, and

Umn [Cmn]µ V ∗
mn otherwise.

Proof. To determine the (m, n) off-diagonal block of the solution matrix H ,

we must solve the optimization problem

minA
1
2
‖A− Gmn‖2F subject to ‖A‖2,2 ≤ µ.

The Frobenius norm is strictly convex and the spectral norm is convex, so this

problem has a unique solution.

Let σ(·) return the vector of decreasingly ordered singular values of a

matrix. Suppose that Gmn has the singular value decomposition Gmn =

U diagσ(Gmn) V ∗. The constraint in the optimization problem depends only

on the singular values of A, and so the Wielandt–Hoffman Theorem for sin-

gular values [61] allows us to check that the solution has the form A =

U diagσ(A) V ∗.

To determine the singular values ξ = σ(A) of the solution, we must solve

the (strictly) convex program

minξ
1
2
‖ξ − σ(Gmn)‖22 subject to ξk ≤ µ.

An easy application of Karush–Kuhn–Tucker theory [88] proves that the solu-

tion is obtained by truncating the singular values of Gmn that exceed µ.
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7.4.5.1 Numerical Experiments

To our knowledge, there are no numerical studies of packing in Grass-

mannian spaces equipped with spectral distance. To gauge the quality of our

results, we compare them against a new upper bound that we derive in Sec-

tion 7.5. In the real or complex setting, a configuration X of N subspaces in

G(K, Fd) with respect to the spectral distance must satisfy the bound

packspec(X )2 ≤ d−K

d

N

N − 1
.

In the real case, the bound is attainable only if N ≤ 1
2
d (d+1)− 1

2
K (K+1)+1,

while attainment in the complex case requires that N ≤ d2−K2+1 [66]. When

a configuration meets the bound, the subspaces are not only equidistant but

also equi-isoclinic. That is, all principal angles between all pairs of subspaces

are identical.

We performed some limited experiments in an effort to produce good con-

figurations of subspaces with respect to the spectral distance. We constructed

random starting points using the modified version of Algorithm 7.4 with τ = 1

(which represents no constraint). From the Rankin Bound, we calculated the

smallest possible value of the feasibility parameter µ. For various values of µ,

we ran the alternating projection, Algorithm 7.1, for 1000 to 5000 iterations,

and we recorded the best packing radii that we obtained.

Table 7.6 displays the results of our calculations. We see that some of our

configurations essentially meet the Rankin Bound, which means that they are

equi-isoclinic. It is clear that alternating projection also succeeds reasonably

well for this packing problem.

The most notable pathology in the table occurs for configurations of 8

and 9 subspaces in G(3, R6). In these cases, the algorithm always yielded
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arrangements of subspaces with a zero packing radius, which implies that two

of the subspaces coincide. Nevertheless, we were able to construct random

starting points with a nonzero packing radius, which means that the algorithm

is making the initial configuration worse. We do not understand the reason

for this failure.

Figure 7.3 makes a graphical comparison between the real and complex

subspace packings. On the whole, the complex packings are much better than

the real packings. For example, every configuration of subspaces in G(2, C6)

nearly meets the Rankin Bound, while just two of the real configurations

achieve the same distinction. In comparison, it is curious how few arrange-

ments in G(2, C5) come anywhere near the Rankin Bound.

7.4.6 Packings with Fubini–Study Distance

Packing with respect to the Fubini–Study distance is much harder. Sup-

pose that we wish to construct a configuration of N subspaces whose Fubini–

Study packing radius exceeds ρ. The feasibility condition is

max
m6=n

|det X ∗
m Xn| ≤ µ (7.12)

where µ = cos ρ. This leads to the structural constraint set

H (µ)
def
= {H ∈ CKN×KN : H = H∗, Hnn = I for all n, and

|det Hmn| ≤ µ for all m 6= n}.

Unhappily, this set is no longer convex. To produce a nearest matrix in H ,

we must solve a nonlinear programming problem. The following proposition

describes a numerically favorable formulation.
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Proposition 7.9. Let G be an Hermitian matrix. Suppose that the off-

diagonal block Gmn has singular value decomposition UmnCmnV
∗
mn. Let cmn =

diag Cmn, and find a (real) vector xmn that solves the optimization problem

min
x

1
2
‖exp(x)− cmn‖22 subject to e∗ x ≤ log µ.

In Frobenius norm, a matrix H(µ) from H that is closest to G has a block-

identity diagonal and off-diagonal blocks

Hmn =

{
Gmn if |det Gmn| ≤ µ, and
Umn diag(expxmn) V ∗

mn otherwise.

We use exp(·) to denote the componentwise exponential of a vector. One

may establish that the optimization problem is not convex by calculating the

second derivative of the objective function.

Proof. To determine the (m, n) off-diagonal block of the solution matrix H ,

we must solve the optimization problem

minA
1
2
‖A− Gmn‖2F subject to |det A| ≤ µ.

We may reformulate this problem as

minA
1
2
‖A− Gmn‖2F subject to

∑K

k=1
log σk(A) ≤ log µ.

A familiar argument proves that the solution matrix has the same left and

right singular vectors as Gmn. To obtain the singular values ξ = σ(A) of the

solution, we consider the mathematical program

minξ
1
2
‖ξ − σ(Gmn)‖22 subject to

∑K

k=1
log ξk ≤ log µ.

Change variables to complete the proof.
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7.4.6.1 Numerical Experiments

When we approach the problem of packing in Grassmannian manifolds

equipped with the Fubini–Study distance, we are truly out in the wilderness.

To our knowledge, the literature contains neither experimental nor theoretical

treatments of this question. Moreover, we are not presently aware of general

upper bounds on the Fubini–Study packing radius that we might use to assay

the quality of a configuration of subspaces. Nevertheless, we attempted a few

basic experiments.

We implemented the modified version of Algorithm 7.1 in Matlab, using

the built-in nonlinear programming software to solve the optimization prob-

lem required by the proposition. For a few triples (d,K, N), we ran 100 to

500 iterations of the algorithm for various values of the feasibility parameter

µ. (Given the exploratory nature of these experiments, we found that the

implementation was too slow to increase the number of iterations.)

The results appear in Table 7.7. For small values of N , we find that the

packings exhibit the maximum possible packing radius π/2, which shows that

the algorithm is succeeding in these cases. For larger values of N , we are

unable to judge how close the packings might decline from optimal.

Figure 7.4 compares the quality of our real packings against our complex

packings. In each case, the complex packing is at least as good as the real

packing, as we would expect. The smooth decline in the quality of the complex

packings suggests that there is some underlying order to the packing radii, but

it remains to be discovered.

To perform large-scale experiments, it will probably be necessary to tai-

lor an algorithm that can solve the nonlinear programming problems more
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quickly. It may also be essential to implement the alternating projection in a

programming environment more efficient than Matlab. Therefore, a detailed

study of packing with respect to the Fubini–Study distance must remain a

topic for future research.

7.5 Bounds on Packing Radii

To assay the quality of our packings, it helps to have some upper bounds

on the packing radius. These results suffice to establish that many of our

packings are essentially optimal. Most of the material in this section has

appeared in the literature, except for the final corollary on packing with respect

to the Grassmannian spectral metric.

We begin with the Rankin Bound on the minimum distance among a set

of points on the sphere.

Theorem 7.10 (Rankin [84]). Suppose that {xn} is a collection of N points

on a sphere of radius r centered at the origin of a real Euclidean space. Then

max
m6=n

〈xm,xn〉 ≥ r2

1−N
.

It follows that

min
m6=n

‖xm − xn‖22 ≤ 2 r2 N

N − 1
.

Equality holds if only if the points are equidistant. This event requires that

N ≤ d + 1.

Proof. Let G be the Gram matrix of the ensemble. Since the Gram matrix is

positive semi-definite,∑
m,n
〈xm,xn〉 = e∗ G e ≥ 0.
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On the other hand, if we define µ = maxm6=n 〈xm,xn〉, then

0 ≤
∑

m,n
〈xm,xn〉 ≤ r2 N + N (N − 1) µ.

Rearrange to develop the bound on the maximum inner product. The distance

bound follows after a little more algebra.

Equality requires that each inner product equal µ, which implies that

each pair of points is equidistant. It follows that the points lie at vertices of a

regular simplex. In d dimensions, a simplex contains exactly (d + 1) vertices.

Conversely, a calculation shows the vertices of a regular simplex yield equality

in the bounds.

We require upper bounds on the radii of subspace packings. Conway,

Hardin, and Sloane have developed a wonderful approach to this problem.

They first embed the chordal Grassmannian space isometrically into a Eu-

clidean sphere, and then they apply Rankin’s Bound.

Theorem 7.11 (Conway–Hardin–Sloane [15]). The chordal Grassman-

nian space G(K, Fd) may be embedded isometrically into a real Euclidean

sphere whose squared radius is 1
2
K (d − K)/d. When F = R, the dimension

of the embedding space is
(
d+1
2

)
− 1. When F = C, the dimension is d2 − 1.

Proof. Suppose that the columns of S and T form orthonormal bases for two

K-dimensional subspaces of Fd. Then we may calculate that

2 distchord(S , T )2 = 2 (K − ‖S∗ T‖2F)

= ‖SS∗‖2F + ‖TT ∗‖2F − 2 Re trace SS∗TT ∗

= ‖SS∗ − TT ∗‖2F .
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That is, the squared chordal distance between two subspaces is equal to half

the squared Frobenius distance between the orthogonal projectors onto the

two subspaces.

Suppose that S is a K-dimensional subspace of Fd, and let P be the

unique orthogonal projector onto S . The projector has trace K, so we may

subtract a multiple of the identity to zero the trace: P̂ = P − (K/d) I. The

new matrix satisfies
∥∥P̂∥∥2

F
= K (d −K)/d, so the de-traced projectors all lie

on a sphere. Moreover, since we translate each rank-K projector by the same

amount, this operation does not change the Frobenius distance between them.

Therefore, the map S 7→ 1√
2
P̂ is an isometric embedding of the chordal

Grassmannian space into a Euclidean sphere with squared radius 1
2
K (d −

K)/d.

To determine the dimension of the embedding space, we count the degrees

of freedom in the de-traced projectors. In the real case, a d-dimensional sym-

metric matrix contains 1
2
d (d + 1) free real-valued entries, from which we sub-

tract one to account for the fixed trace. In the complex case, a d-dimensional

Hermitian matrix contains d real entries on the diagonal and 1
2
d (d− 1) com-

plex entries in the strict lower triangle. Accounting for the trace, we conclude

that the embedding dimension is d2 − 1.

Combining Theorem 7.10 with Theorem 7.11, we obtain an upper bound

on the packing radius.

Corollary 7.12 (Conway–Hardin–Sloane [15]). An upper bound on the

packing radius of N subspaces in the chordal Grassmannian space G(K, Fd) is

packchord(X )2 ≤ K (d−K)

d

N

N − 1
. (7.13)
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If the bound is met, all pairs of subspaces are equidistant. When F = R,

the bound is attainable only if N ≤ 1
2
d (d + 1). When F = C, the bound is

attainable only if N ≤ d2.

We will refer to the inequality (7.13) as the Rankin Bound for packings with

respect to the chordal distance. When K = 1, the corollary applies to packings

in projective space. Finally, we draw a new corollary that gives a bound for

the spectral distance.

Corollary 7.13. We have the following bound on the packing radius of N

subspaces in the Grassmannian space G(K, Fd) equipped with the spectral dis-

tance.

packspec(X )2 ≤ d−K

d

N

N − 1
. (7.14)

If the bound is met, all pairs of subspaces are equi-isoclinic. When F = R,

the bound is attainable only if N ≤ 1
2
d (d + 1). When F = C, the bound is

attainable only if N ≤ d2.

Proof. The monotonicity of power means [58] yields the inequality

min
k

sin θk ≤
[
K−1

∑K

k=1
sin2 θk

]1/2
.

For angles between zero and π/2, equality holds if and only if θ1 = · · · = θK .

It follows that

packspec(X )2 ≤ K−1 packchord(X )2 ≤ d−K

d

N

N − 1
.

If the second inequality is met, then all pairs of subspaces are equidistant with

respect to the chordal metric. Moreover, if the first inequality is met, then

the principal angles between each pair of subspaces are constant. That is, the

subspaces are equi-isoclinic.
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In fact, the previous corollary overestimates the maximum possible num-

ber of equi-isoclinic subspaces. The following result is better, although its

authors still do not believe it is sharp.

Theorem 7.14 (Lemmens–Seidel [66]). The maximum number of equi-

isoclinic K-dimensional subspaces of Rd is no greater than

1
2
d (d + 1)− 1

2
K (K + 1) + 1.

Similarly, the maximum number of equi-isoclinic K-dimensional subspaces of

Cd does not exceed

d2 −K2 + 1.

We do not know any bounds for packings with respect to the Fubini–Study

metric.

7.6 Conclusions

We have shown that the alternating projection approach can be used to

solve many different packing problems. The method is easy to understand

and to implement, even while it is versatile and powerful. In cases where

experiments have been performed, we have often been able to match the best

packings known. Moreover, we have extended the method to solve problems

that have not been studied numerically. Using the Rankin Bounds, we have

been able to show that many of our packings are essentially optimal.

Alternating projection does have some shortcomings. It converges slowly,

and it sometimes fails to match the best packings in the literature. In par-

ticular, the algorithm seems to falter when the number of points becomes too

large. Nevertheless, the flexibility of the algorithm probably compensates for

its deficiencies.
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7.6.1 Future Work

There are many possibilities for future experimental and theoretical work

on packing in projective spaces and Grassmannian spaces. Let us mention a

few ideas.

It is possible to enforce stricter spectral constraints on the Gram matrix.

For example, a tight frame is a projective packing whose Gram matrix has

identical (nonzero) eigenvalues. Tight frames have many striking properties,

and they have received a lot of recent attention from the signal processing

community. Our methods can be used to construct tight frames that are also

good projective packings. These configurations have applications in coding

and communications [100].

The sphere and the complex projective space are both examples of two-

point homogeneous spaces. Another member of this class is the quaternionic

projective space [16]. To our knowledge, no one has developed numerical

algorithms that can approach the problem of packing lines in quaternionic

projective spaces, although this problem may have applications in coding the-

ory. The alternating projection method requires no conceptual adjustment.

Of course, it may take a serious effort to implement quaternionic arithmetic

and linear algebra.

Our experiments provided many essentially optimal configurations of sub-

spaces in the Grassmannian manifold equipped with chordal distance. These

configurations have not received very much theoretical attention, and it would

be interesting to develop algebraic constructions. Our experiments also point

toward many equi-isoclinic arrangements of subspaces. We would also like to

develop algebraic constructions of these.
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To our knowledge, no one has studied packing with respect to the Fubini–

Study distance, even though it is one of the most natural metrics for the

Grassmannian space. It would be highly desirable to prove upper bounds on

the Fubini–Study packing radius. We would also like to perform additional

experiments to develop a more comprehensive view of packing with respect to

this distance.

These problems are very attractive geometrically, and they are becoming

increasingly important in electrical engineering. We hope to be able to study

them more extensively.
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7.7 Tables and Figures

Table 7.1: Packing on spheres: For collections of N points on the (d− 1)-
dimensional sphere, this table lists the best packing radius and the average
packing radius obtained during ten random trials of the alternating projection
algorithm. The error columns record how far our results decline from the
putative optimal packings (NJAS) reported in [96]. The last column gives the
average number of iterations of alternating projection per trial.

Packing Radii (Degrees) Iterations

d N NJAS Best of 10 Error Avg. of 10 Error Avg. of 10
3 4 109.471 109.471 0.001 109.471 0.001 45
3 5 90.000 90.000 0.000 89.999 0.001 130
3 6 90.000 90.000 0.000 90.000 0.000 41
3 7 77.870 77.869 0.001 77.869 0.001 613
3 8 74.858 74.858 0.001 74.858 0.001 328
3 9 70.529 70.528 0.001 70.528 0.001 814
3 10 66.147 66.140 0.007 66.010 0.137 5000
3 11 63.435 63.434 0.001 63.434 0.001 537
3 12 63.435 63.434 0.001 63.434 0.001 209
3 13 57.137 57.136 0.001 56.571 0.565 4876
3 14 55.671 55.670 0.001 55.439 0.232 3443
3 15 53.658 53.620 0.038 53.479 0.178 5000
3 16 52.244 52.243 0.001 51.665 0.579 4597
3 17 51.090 51.084 0.007 51.071 0.019 5000
3 18 49.557 49.548 0.008 49.506 0.050 5000
3 19 47.692 47.643 0.049 47.434 0.258 5000
3 20 47.431 47.429 0.002 47.254 0.177 5000
3 21 45.613 45.576 0.037 45.397 0.217 5000
3 22 44.740 44.677 0.063 44.123 0.617 5000
3 23 43.710 43.700 0.009 43.579 0.131 5000
3 24 43.691 43.690 0.001 43.689 0.002 3634
3 25 41.634 41.458 0.177 41.163 0.471 5000

continued. . .
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. . . continued

Packing Radii (Degrees) Iterations

d N NJAS Best of 10 Error Avg. of 10 Error Avg. of 10

4 5 104.478 104.478 0.000 104.267 0.211 2765
4 6 90.000 90.000 0.000 89.999 0.001 110
4 7 90.000 89.999 0.001 89.999 0.001 483
4 8 90.000 90.000 0.000 89.999 0.001 43
4 9 80.676 80.596 0.081 80.565 0.111 5000
4 10 80.406 80.405 0.001 77.974 2.432 2107
4 11 76.679 76.678 0.001 75.881 0.798 2386
4 12 75.522 75.522 0.001 74.775 0.748 3286
4 13 72.104 72.103 0.001 71.965 0.139 4832
4 14 71.366 71.240 0.126 71.184 0.182 5000
4 15 69.452 69.450 0.002 69.374 0.078 5000
4 16 67.193 67.095 0.098 66.265 0.928 5000
4 17 65.653 65.652 0.001 64.821 0.832 4769
4 18 64.987 64.987 0.001 64.400 0.587 4713
4 19 64.262 64.261 0.001 64.226 0.036 4444
4 20 64.262 64.261 0.001 64.254 0.008 3738
4 21 61.876 61.864 0.012 61.570 0.306 5000
4 22 60.140 60.084 0.055 59.655 0.485 5000
4 23 60.000 59.999 0.001 58.582 1.418 4679
4 24 60.000 58.209 1.791 57.253 2.747 5000
4 25 57.499 57.075 0.424 56.871 0.628 5000
5 6 101.537 101.536 0.001 95.585 5.952 4056
5 7 90.000 89.999 0.001 89.999 0.001 1540
5 8 90.000 89.999 0.001 89.999 0.001 846
5 9 90.000 89.999 0.001 89.999 0.001 388
5 10 90.000 90.000 0.000 89.999 0.001 44
5 11 82.365 82.300 0.065 81.937 0.429 5000
5 12 81.145 81.145 0.001 80.993 0.152 4695
5 13 79.207 79.129 0.078 78.858 0.349 5000
5 14 78.463 78.462 0.001 78.280 0.183 1541
5 15 78.463 78.462 0.001 77.477 0.986 1763
5 16 78.463 78.462 0.001 78.462 0.001 182
5 17 74.307 74.307 0.001 73.862 0.446 4147
5 18 74.008 74.007 0.001 73.363 0.645 3200

continued. . .
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. . . continued

Packing Radii (Degrees) Iterations

d N NJAS Best of 10 Error Avg. of 10 Error Avg. of 10
5 19 73.033 73.016 0.017 72.444 0.589 5000
5 20 72.579 72.579 0.001 72.476 0.104 4689
5 21 71.644 71.639 0.005 71.606 0.039 5000
5 22 69.207 68.683 0.524 68.026 1.181 5000
5 23 68.298 68.148 0.150 67.568 0.731 5000
5 24 68.023 68.018 0.006 67.127 0.896 5000
5 25 67.690 67.607 0.083 66.434 1.256 5000

171



Table 7.2: Packing in real projective spaces: For collections of N
points in the (d− 1)-dimensional real projective space, this table lists the best
packing radius and the average packing radius obtained during ten random
trials of the alternating projection algorithm. The error columns record how
far our results decline from the putative optimal packings (NJAS) reported
in [95]. The last column gives the average number of iterations of alternating
projection per trial.

Packing Radii (Degrees) Iterations

d N NJAS Best of 10 Error Avg. of 10 Error Avg. of 10
3 4 70.529 70.528 0.001 70.528 0.001 54
3 5 63.435 63.434 0.001 63.434 0.001 171
3 6 63.435 63.435 0.000 59.834 3.601 545
3 7 54.736 54.735 0.001 54.735 0.001 341
3 8 49.640 49.639 0.001 49.094 0.546 4333
3 9 47.982 47.981 0.001 47.981 0.001 2265
3 10 46.675 46.674 0.001 46.674 0.001 2657
3 11 44.403 44.402 0.001 44.402 0.001 2173
3 12 41.882 41.881 0.001 41.425 0.457 2941
3 13 39.813 39.812 0.001 39.522 0.291 4870
3 14 38.682 38.462 0.221 38.378 0.305 5000
3 15 38.135 37.934 0.201 37.881 0.254 5000
3 16 37.377 37.211 0.166 37.073 0.304 5000
3 17 35.235 35.078 0.157 34.821 0.414 5000
3 18 34.409 34.403 0.005 34.200 0.209 5000
3 19 33.211 33.107 0.104 32.909 0.303 5000
3 20 32.707 32.580 0.127 32.273 0.434 5000
3 21 32.216 32.036 0.180 31.865 0.351 5000
3 22 31.896 31.853 0.044 31.777 0.119 5000
3 23 30.506 30.390 0.116 30.188 0.319 5000
3 24 30.163 30.089 0.074 29.694 0.469 5000
3 25 29.249 29.024 0.224 28.541 0.707 5000
4 5 75.522 75.522 0.001 73.410 2.113 4071
4 6 70.529 70.528 0.001 70.528 0.001 91
4 7 67.021 67.021 0.001 67.021 0.001 325

continued. . .
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. . . continued

Packing Radii (Degrees) Iterations

d N NJAS Best of 10 Error Avg. of 10 Error Avg. of 10
4 8 65.530 65.530 0.001 64.688 0.842 3134
4 9 64.262 64.261 0.001 64.261 0.001 1843
4 10 64.262 64.261 0.001 64.261 0.001 803
4 11 60.000 59.999 0.001 59.999 0.001 577
4 12 60.000 59.999 0.001 59.999 0.001 146
4 13 55.465 55.464 0.001 54.390 1.074 4629
4 14 53.838 53.833 0.005 53.405 0.433 5000
4 15 52.502 52.493 0.009 51.916 0.585 5000
4 16 51.827 51.714 0.113 50.931 0.896 5000
4 17 50.887 50.834 0.053 50.286 0.601 5000
4 18 50.458 50.364 0.094 49.915 0.542 5000
4 19 49.711 49.669 0.041 49.304 0.406 5000
4 20 49.233 49.191 0.042 48.903 0.330 5000
4 21 48.548 48.464 0.084 48.374 0.174 5000
4 22 47.760 47.708 0.052 47.508 0.251 5000
4 23 46.510 46.202 0.308 45.789 0.722 5000
4 24 46.048 45.938 0.110 45.725 0.322 5000
4 25 44.947 44.739 0.208 44.409 0.538 5000
5 6 78.463 78.463 0.001 77.359 1.104 3246
5 7 73.369 73.368 0.001 73.368 0.001 1013
5 8 70.804 70.803 0.001 70.604 0.200 5000
5 9 70.529 70.528 0.001 69.576 0.953 2116
5 10 70.529 70.528 0.001 67.033 3.496 3029
5 11 67.254 67.254 0.001 66.015 1.239 4615
5 12 67.021 66.486 0.535 65.661 1.361 5000
5 13 65.732 65.720 0.012 65.435 0.297 5000
5 14 65.724 65.723 0.001 65.637 0.087 3559
5 15 65.530 65.492 0.038 65.443 0.088 5000
5 16 63.435 63.434 0.001 63.434 0.001 940
5 17 61.255 61.238 0.017 60.969 0.287 5000
5 18 61.053 61.048 0.005 60.946 0.107 5000
5 19 60.000 58.238 1.762 57.526 2.474 5000
5 20 60.000 59.999 0.001 56.183 3.817 3290
5 21 57.202 57.134 0.068 56.159 1.043 5000

continued. . .
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. . . continued

Packing Radii (Degrees) Iterations

d N NJAS Best of 10 Error Avg. of 10 Error Avg. of 10
5 22 56.356 55.819 0.536 55.173 1.183 5000
5 23 55.588 55.113 0.475 54.535 1.053 5000
5 24 55.228 54.488 0.740 53.926 1.302 5000
5 25 54.889 54.165 0.724 52.990 1.899 5000
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Table 7.3: Packing in complex projective spaces: We compare our
best configurations (JAT) of N points in Pd−1(C) against the Rankin Bound,
equation (7.13). The packing radius of an ensemble is measured as the acute
angle between the closest pair of lines. The final column shows how far our
configurations fall short of the bound.

Packing Radii (Degrees)

d N JAT Rankin Difference
2 3 60.00 60.00 0.00
2 4 54.74 54.74 0.00
2 5 45.00 52.24 7.24
2 6 45.00 50.77 5.77
2 7 38.93 49.80 10.86
2 8 37.41 49.11 11.69
3 4 70.53 70.53 0.00
3 5 64.00 65.91 1.90
3 6 63.44 63.43 0.00
3 7 61.87 61.87 0.00
3 8 60.00 60.79 0.79
3 9 60.00 60.00 0.00
3 10 54.73 59.39 4.66
3 11 54.73 58.91 4.18
3 12 54.73 58.52 3.79
3 13 51.32 58.19 6.88
3 14 50.13 57.92 7.79
3 15 49.53 57.69 8.15
3 16 49.53 57.49 7.95
3 17 49.10 57.31 8.21
3 18 48.07 57.16 9.09
3 19 47.02 57.02 10.00
3 20 46.58 56.90 10.32
4 5 75.52 75.52 0.00
4 6 70.88 71.57 0.68
4 7 69.29 69.30 0.01
4 8 67.78 67.79 0.01

continued. . .
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. . . continued

Packing Radii (Degrees)

d N JAT Rankin Difference
4 9 66.21 66.72 0.51
4 10 65.71 65.91 0.19
4 11 64.64 65.27 0.63
4 12 64.24 64.76 0.52
4 13 64.34 64.34 0.00
4 14 63.43 63.99 0.56
4 15 63.43 63.69 0.26
4 16 63.43 63.43 0.00
4 17 59.84 63.21 3.37
4 18 59.89 63.02 3.12
4 19 60.00 62.84 2.84
4 20 57.76 62.69 4.93
5 6 78.46 78.46 0.00
5 7 74.52 75.04 0.51
5 8 72.81 72.98 0.16
5 9 71.24 71.57 0.33
5 10 70.51 70.53 0.02
5 11 69.71 69.73 0.02
5 12 68.89 69.10 0.21
5 13 68.19 68.58 0.39
5 14 67.66 68.15 0.50
5 15 67.37 67.79 0.43
5 16 66.68 67.48 0.80
5 17 66.53 67.21 0.68
5 18 65.87 66.98 1.11
5 19 65.75 66.77 1.02
5 20 65.77 66.59 0.82
5 21 65.83 66.42 0.60
5 22 65.87 66.27 0.40
5 23 65.90 66.14 0.23
5 24 65.91 66.02 0.11
5 25 65.91 65.91 0.00

176



Figure 7.1: Real and Complex Projective Packings: These three
graphs compare the packing radii attained by configurations in real and com-
plex projective spaces. The red line indicates the best real packings obtained
by Sloane and his colleagues [95]. The blue line indicates the best complex
packings produced by the author. Rankin’s upper bound (7.13) is depicted in
gray. The vertical red line marks the largest number of real lines for which the
Rankin Bound is attainable, while the blue line marks the maximum number
of complex lines for which the Rankin Bound is attainable.
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. . . continued

Packing in P^3(F)
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Table 7.4: Packing in real Grassmannians with chordal distance:
We compare our best configurations (JAT) of N points in G(K, Rd) against
the best packings (NJAS) reported in [95]. The squared packing radius is the
squared chordal distance (7.7) between the closest pair of subspaces. The last
column lists the difference between the columns (NJAS) and (JAT).

Squared Packing Radii

d K N JAT NJAS Difference
2 4 3 1.5000 1.5000 0.0000
2 4 4 1.3333 1.3333 0.0000
2 4 5 1.2500 1.2500 0.0000
2 4 6 1.2000 1.2000 0.0000
2 4 7 1.1656 1.1667 0.0011
2 4 8 1.1423 1.1429 0.0005
2 4 9 1.1226 1.1231 0.0004
2 4 10 1.1111 1.1111 0.0000
2 4 11 0.9981 1.0000 0.0019
2 4 12 0.9990 1.0000 0.0010
2 4 13 0.9996 1.0000 0.0004
2 4 14 1.0000 1.0000 0.0000
2 4 15 1.0000 1.0000 0.0000
2 4 16 0.9999 1.0000 0.0001
2 4 17 1.0000 1.0000 0.0000
2 4 18 0.9992 1.0000 0.0008
2 4 19 0.8873 0.9091 0.0218
2 4 20 0.8225 0.9091 0.0866
2 5 3 1.7500 1.7500 0.0000
2 5 4 1.6000 1.6000 0.0000
2 5 5 1.5000 1.5000 0.0000
2 5 6 1.4400 1.4400 0.0000
2 5 7 1.4000 1.4000 0.0000
2 5 8 1.3712 1.3714 0.0002
2 5 9 1.3464 1.3500 0.0036
2 5 10 1.3307 1.3333 0.0026
2 5 11 1.3069 1.3200 0.0131

continued. . .
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. . . continued

Squared Packing Radii

d K N JAT NJAS Difference
2 5 12 1.2973 1.3064 0.0091
2 5 13 1.2850 1.2942 0.0092
2 5 14 1.2734 1.2790 0.0056
2 5 15 1.2632 1.2707 0.0075
2 5 16 1.1838 1.2000 0.0162
2 5 17 1.1620 1.2000 0.0380
2 5 18 1.1589 1.1909 0.0319
2 5 19 1.1290 1.1761 0.0472
2 5 20 1.0845 1.1619 0.0775
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Table 7.5: Packing in complex Grassmannians with chordal dis-
tance: We compare our best configurations (JAT) of N points in G(K, Cd)
against the Rankin Bound, equation (7.13). The squared packing radius is
calculated as the squared chordal distance (7.7) between the closest pair of
subspaces. The final column shows how much the computed ensemble declines
from the Rankin Bound. When the bound is met, all pairs of subspaces are
equidistant.

Squared Packing Radii

d K N JAT NJAS Difference
2 4 3 1.5000 1.5000 0.0000
2 4 4 1.3333 1.3333 0.0000
2 4 5 1.2500 1.2500 0.0000
2 4 6 1.2000 1.2000 0.0000
2 4 7 1.1667 1.1667 0.0000
2 4 8 1.1429 1.1429 0.0000
2 4 9 1.1250 1.1250 0.0000
2 4 10 1.1111 1.1111 0.0000
2 4 11 1.0999 1.1000 0.0001
2 4 12 1.0906 1.0909 0.0003
2 4 13 1.0758 1.0833 0.0076
2 4 14 1.0741 1.0769 0.0029
2 4 15 1.0698 1.0714 0.0016
2 4 16 1.0658 1.0667 0.0009
2 4 17 0.9975 1.0625 0.0650
2 4 18 0.9934 1.0588 0.0654
2 4 19 0.9868 1.0556 0.0688
2 4 20 0.9956 1.0526 0.0571
2 5 3 1.7500 1.8000 0.0500
2 5 4 1.6000 1.6000 0.0000
2 5 5 1.5000 1.5000 0.0000
2 5 6 1.4400 1.4400 0.0000
2 5 7 1.4000 1.4000 0.0000
2 5 8 1.3714 1.3714 0.0000
2 5 9 1.3500 1.3500 0.0000

continued. . .
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. . . continued

Squared Packing Radii

d K N JAT NJAS Difference
2 5 10 1.3333 1.3333 0.0000
2 5 11 1.3200 1.3200 0.0000
2 5 12 1.3090 1.3091 0.0001
2 5 13 1.3000 1.3000 0.0000
2 5 14 1.2923 1.2923 0.0000
2 5 15 1.2857 1.2857 0.0000
2 5 16 1.2799 1.2800 0.0001
2 5 17 1.2744 1.2750 0.0006
2 5 18 1.2686 1.2706 0.0020
2 5 19 1.2630 1.2667 0.0037
2 5 20 1.2576 1.2632 0.0056
2 6 4 1.7778 1.7778 0.0000
2 6 5 1.6667 1.6667 0.0000
2 6 6 1.6000 1.6000 0.0000
2 6 7 1.5556 1.5556 0.0000
2 6 8 1.5238 1.5238 0.0000
2 6 9 1.5000 1.5000 0.0000
2 6 10 1.4815 1.4815 0.0000
2 6 11 1.4667 1.4667 0.0000
2 6 12 1.4545 1.4545 0.0000
2 6 13 1.4444 1.4444 0.0000
2 6 14 1.4359 1.4359 0.0000
2 6 15 1.4286 1.4286 0.0000
2 6 16 1.4221 1.4222 0.0001
2 6 17 1.4166 1.4167 0.0000
2 6 18 1.4118 1.4118 0.0000
2 6 19 1.4074 1.4074 0.0000
2 6 20 1.4034 1.4035 0.0001
2 6 21 1.3999 1.4000 0.0001
2 6 22 1.3968 1.3968 0.0001
2 6 23 1.3923 1.3939 0.0017
2 6 24 1.3886 1.3913 0.0028
2 6 25 1.3862 1.3889 0.0027
3 6 3 2.2500 2.2500 0.0000

continued. . .
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. . . continued

Squared Packing Radii

d K N JAT NJAS Difference
3 6 4 2.0000 2.0000 0.0000
3 6 5 1.8750 1.8750 0.0000
3 6 6 1.8000 1.8000 0.0000
3 6 7 1.7500 1.7500 0.0000
3 6 8 1.7143 1.7143 0.0000
3 6 9 1.6875 1.6875 0.0000
3 6 10 1.6667 1.6667 0.0000
3 6 11 1.6500 1.6500 0.0000
3 6 12 1.6363 1.6364 0.0001
3 6 13 1.6249 1.6250 0.0001
3 6 14 1.6153 1.6154 0.0000
3 6 15 1.6071 1.6071 0.0000
3 6 16 1.5999 1.6000 0.0001
3 6 17 1.5936 1.5938 0.0001
3 6 18 1.5879 1.5882 0.0003
3 6 19 1.5829 1.5833 0.0004
3 6 20 1.5786 1.5789 0.0004
3 6 21 1.5738 1.5750 0.0012
3 6 22 1.5687 1.5714 0.0028
3 6 23 1.5611 1.5682 0.0070
3 6 24 1.5599 1.5652 0.0053
3 6 25 1.5558 1.5625 0.0067
3 6 26 1.5542 1.5600 0.0058
3 6 27 1.5507 1.5577 0.0070
3 6 28 1.5502 1.5556 0.0054
3 6 29 1.5443 1.5536 0.0092
3 6 30 1.5316 1.5517 0.0201
3 6 31 1.5283 1.5500 0.0217
3 6 32 1.5247 1.5484 0.0237
3 6 33 1.5162 1.5469 0.0307
3 6 34 1.5180 1.5455 0.0274
3 6 35 1.5141 1.5441 0.0300
3 6 36 1.5091 1.5429 0.0338
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Figure 7.2: Packing in Grassmannians with chordal distance: The
red line indicates the best real packings obtained by Sloane and his colleagues
[95]. The blue line indicates the best complex packings produced by the author.
Rankin’s upper bound (7.13) appears in gray. The vertical red line marks the
largest number of real subspaces for which the Rankin Bound is attainable,
while the blue line marks the maximum number of complex subspaces for
which the Rankin Bound is attainable.
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. . . continued

Packing in G(2, F^5) with Chordal Distance
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Table 7.6: Packing in Grassmannians with spectral distance: We
compare our best real (F = R) and complex (F = C) packings in G(K, Fd)
against the Rankin Bound, equation (7.14). The squared packing radius of a
configuration is the squared spectral distance (7.8) between the closest pair of
subspaces. When the Rankin Bound is met, all pairs of subspaces are equi-
isoclinic. The algorithm failed to produce configurations of 8 and 9 subspaces
in G(3, R6) with reasonable packing radii.

Squared Packing Radii

d K N Rankin R Difference C Difference
4 2 3 0.7500 0.7500 0.0000 0.7500 0.0000
4 2 4 0.6667 0.6667 0.0000 0.6667 0.0000
4 2 5 0.6250 0.5000 0.1250 0.6250 0.0000
4 2 6 0.6000 0.4286 0.1714 0.6000 0.0000
4 2 7 0.5833 0.3122 0.2712 0.5000 0.0833
4 2 8 0.5714 0.2851 0.2863 0.4374 0.1340
4 2 9 0.5625 0.2544 0.3081 0.4363 0.1262
4 2 10 0.5556 0.2606 0.2950 0.4375 0.1181
5 2 3 0.9000 0.7500 0.1500 0.7500 0.1500
5 2 4 0.8000 0.7500 0.0500 0.7500 0.0500
5 2 5 0.7500 0.6700 0.0800 0.7497 0.0003
5 2 6 0.7200 0.6014 0.1186 0.6637 0.0563
5 2 7 0.7000 0.5596 0.1404 0.6667 0.0333
5 2 8 0.6857 0.4991 0.1867 0.6060 0.0798
5 2 9 0.6750 0.4590 0.2160 0.5821 0.0929
5 2 10 0.6667 0.4615 0.2052 0.5196 0.1470
6 2 4 0.8889 0.8889 0.0000 0.8889 0.0000
6 2 5 0.8333 0.7999 0.0335 0.8333 0.0000
6 2 6 0.8000 0.8000 0.0000 0.8000 0.0000
6 2 7 0.7778 0.7500 0.0278 0.7778 0.0000
6 2 8 0.7619 0.7191 0.0428 0.7597 0.0022
6 2 9 0.7500 0.6399 0.1101 0.7500 0.0000
6 2 10 0.7407 0.6344 0.1064 0.7407 0.0000
6 2 11 0.7333 0.6376 0.0958 0.7333 0.0000
6 2 12 0.7273 0.6214 0.1059 0.7273 0.0000

continued. . .
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. . . continued

Squared Packing Radii

d K N Rankin R Difference C Difference
6 3 3 0.7500 0.7500 0.0000 0.7500 0.0000
6 3 4 0.6667 0.5000 0.1667 0.6667 0.0000
6 3 5 0.6250 0.4618 0.1632 0.4999 0.1251
6 3 6 0.6000 0.4238 0.1762 0.5000 0.1000
6 3 7 0.5833 0.3590 0.2244 0.4408 0.1426
6 3 8 0.5714 — — 0.4413 0.1301
6 3 9 0.5625 — — 0.3258 0.2367
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Figure 7.3: Packing in Grassmannians with spectral distance: The
red line indicates the best real packings obtained by the author, while the blue
line indicates the best complex packings obtained. The Rankin Bound (7.14)
is depicted in gray. The vertical red line marks the largest number of real
subspaces for which the Rankin Bound is attainable.
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. . . continued

Packing in G(2, F^5) with Spectral Distance
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Table 7.7: Packing in Grassmannians with Fubini–Study distance:
Our best real packings (F = R) compared with our best complex packings
(F = C) in the space G(K, Fd). The packing radius of a configuration is the
Fubini–Study distance (7.9) between the closest pair of subspaces. Note that
we have scaled the distance by 2/π so that it ranges between zero and one.

Squared Packing Radii

d K N R C
2 4 3 1.0000 1.0000
2 4 4 1.0000 1.0000
2 4 5 1.0000 1.0000
2 4 6 1.0000 1.0000
2 4 7 0.8933 0.8933
2 4 8 0.8447 0.8559
2 4 9 0.8196 0.8325
2 4 10 0.8176 0.8216
2 4 11 0.7818 0.8105
2 4 12 0.7770 0.8033
2 5 3 1.0000 1.0000
2 5 4 1.0000 1.0000
2 5 5 1.0000 1.0000
2 5 6 0.9999 1.0000
2 5 7 1.0000 0.9999
2 5 8 1.0000 0.9999
2 5 9 1.0000 1.0000
2 5 10 0.9998 1.0000
2 5 11 0.9359 0.9349
2 5 12 0.9027 0.9022
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Figure 7.4: Packing in Grassmannians with Fubini–Study distance:
The red line indicates the best real packings obtained by the author, while the
blue line indicates the best complex packings obtained.
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Chapter 8

Clustering and Sparse Matrix Approximation

Given a collection of data, hard clustering is the problem of partitioning

the data into a relatively small number of disjoint subsets (called clusters) so

that the data within each cluster are as similar as possible and the data in

different clusters are as distinct as possible. The definitions of “similar” and

“dissimilar” depend on the problem domain [34].

Clustering problems arise in applications throughout electrical engineer-

ing and the computer sciences. A typical example is to take a large collection

of documents (such as web pages) and classify them by subject. It may be

prohibitively expensive or impossible to sort the documents manually, which

makes an automatic procedure essential [27]. Automatic clustering can also

be applied when the structure of the data is not known in advance, and we

seek insight into its geometry. This challenge occurs in computational biology

when one searches for groups of genes that have related functions by examin-

ing gene expression patterns [26]. Clustering has dozens of other current and

potential applications that are beyond the scope of this treatment.

There are striking conceptual and formal parallels between clustering

problems and sparse approximation problems. Let us explain the connec-

tion intuitively. One way to view a clustering problem is to imagine that each

cluster of data vectors is represented by a geometric structure—a point in the

simplest case but potentially a much more complicated object such as a linear
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subspace or a convex cone. These cluster structures correspond to atoms. Each

data vector is assigned to the closest cluster, where closeness is measured using

some kind of dissimilarity measure that depends on the application. In other

words, each data vector is approximated from a single cluster structure (i.e.,

atom). This is a sparse approximation. The major conceptual difference be-

tween clustering and sparse approximation is that sparse approximation fixes

the collection of atoms in advance, while a clustering problem tries to locate

the clusters at the same time it is performing the approximation.

In this chapter, we will develop the perspective that clustering problems

can be viewed as low-rank matrix approximation with sparsity constraints.

Specifically, we argue that the goal of a clustering problem is to approximate a

data matrix by the product of a (small) representative matrix and a coefficient

matrix. Sparsity constraints on the coefficient matrix control the geometry

of the clusters, while constraints on the representative matrix reflect a priori

information about the data (such as nonnegativity). We choose the measure of

approximation error based on how we measure the dissimilarity between data

points. It turns out that this formulation encompasses many of the clustering

problems that have appeared in the literature, and it suggests many interesting

new problems. Moreover, it leads to a general algorithmic framework that can

be used to approach all of these clustering problems.

Here is a brief outline of the chapter. The first section begins with the

most classical clustering problem, which we recast as a matrix approximation

problem. Then, we demonstrate that a fundamental algorithm for the classical

problem admits a striking interpretation in the matrix formulation. Then,

we demonstrate that slight variations on the matrix version of the classical

problem lead immediately to two clustering problems that have appeared in
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the recent literature. The algorithms that have been proposed for these two

problems share the same interpretation.

In the next section, we present the canonical form of the matrix approx-

imation problem. Then, we list some of the many possible constraints and

show how they lead to different types of clustering. Afterward, we give some

details about methods for measuring the approximation error, and we discuss

how they affect some qualitative aspects of the clustering. The section con-

cludes with a general algorithm that can be modified to approach all of the

clustering problems.

Finally, we discuss how clustering problems from the literature fit into our

framework. This exercise underscores the similarities among a large number

of apparently distinct clustering formulations, and it emphasizes the strength

of our viewpoint.

8.1 Motivating Examples

The idea that we might be able to unify apparently unrelated clustering

problems grows out of some basic examples. First, we examine the classical

clustering problem, which asks us to minimize the total squared Euclidean

distance from each data vector to the nearest cluster. This problem can be

recast as approximation of the data by a low-rank matrix with certain sparsity

constraints. We show that the standard numerical method for approaching the

clustering problem has a striking interpretation in this framework. Then we

demonstrate that some less familiar clustering problems can also be viewed

as low-rank matrix approximation with slightly different sparsity constraints.

Moreover, the numerical approaches that have been proposed for these other

clustering problems admit the same interpretation as the classical algorithm.
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This observation strongly suggests that many more clustering problems fit

within our framework and that the classical algorithm can be extended to

address these cases.

8.1.1 The Classical Clustering Problem

Suppose that s1, . . . , sK are data vectors in Rd that we wish to partition

into N clusters. Formally, the goal is to determine N representative vectors

ϕ1, . . . ,ϕN from Rd that solve

min
{ϕn}

∑K

k=1
min
n
‖sk −ϕn‖22 . (8.1)

In this problem, the n-th cluster is viewed as a point in space, namely ϕn.

We say that the vector ϕn represents the cluster and that the structure of

each cluster is a point. It is not hard to check that the representative vector

for each cluster must be the centroid of the data vectors that are assigned to

that cluster. Standard references for the classical clustering problem include

[37, 70, 47, 34].

In words, the problem (8.1) asks us to minimize the total squared Eu-

clidean distance from each data vector to a nearest cluster representative. In

the language of sparse approximation, the representatives are atoms, and we

wish to approximate each data vector with a single atom—a very sparse repre-

sentation. But now we must learn the atoms at the same time we are comput-

ing a sparse approximation of the data. The idea is that the approximation

can succeed only if it identifies latent structure in the data.

The classical clustering problem (8.1) can be recast in matrix form. Sup-

pose that S is a real d × K matrix whose columns are data vectors that we

seek to partition into N clusters. We write sk for the k-th column of the data
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matrix. Our goal will be to produce a d×N representative matrix Φ and an

N ×K coefficient matrix C whose product approximates the data matrix.

Observe that the k-th column of the product Φ C is the vector Φ ck.

Since the classical clustering problem requires that each data vector be ap-

proximated by a single representative vector, each coefficient vector ck must

contain a unique nonzero entry equal to one. In other words, each column ck

of the coefficient matrix must be a canonical basis vector. In this chapter, we

denote the n-th canonical basis vector by en. Therefore, each column k of the

coefficient matrix must satisfy the constraint ck = en for some n in the range

1, . . . , N . This is clearly a sparsity constraint on the coefficient matrix.

Since the squared Frobenius norm ‖·‖2F of a matrix is the sum of the

squared Euclidean norms of columns, we may rewrite the classical clustering

problem as

min
Φ,C

‖S − Φ C‖2F subject to ck = en for some n. (8.2)

At a solution of (8.2), the k-th column of the coefficient matrix equals en(k),

where the k-th data vector is nearer to the n(k)-th representative vector than

to any other. Meanwhile, each representative must equal the centroid of the

data vectors that are nearest to it.

8.1.2 The k-means Algorithm

The classical algorithm for solving the clustering problem (8.2) is called

k-means. Using our notation, however, the name N -means would be more

appropriate.

Algorithm 8.1 (k-means).

Input:
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• A d×K matrix S , whose columns are real data vectors

• A number N of clusters

Output:

• Returns a d×N representative matrix Φ whose columns are the repre-

sentative vectors

• Returns an N × K coefficient matrix C whose columns each contain a

single unit entry

Procedure:

1. Initialize Φ. One method selects the columns of Φ at random from the

columns of S without repetition.

2. For each k, determine n(k) so that the k-th data vector is closer to the

n(k)-th representative than to any other. Ties are broken in an arbitrary

manner. Set the k-th column of the coefficient matrix to en(k). In other

words, the k-th data vector is assigned to the n(k)-th cluster.

3. For each n, set the n-th representative equal to the centroid of the data

vectors that have been assigned to the n-th cluster.

4. Repeat Steps 2–4 until the objective function (8.1) does not decrease

from one iteration to the next. This termination condition is guaranteed

to be met in a finite number of steps because the algorithm monotonically

decreases the objective function, which is bounded below by zero
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Algorithm 8.1 is actually a heuristic method, and it will not generally produce

an optimal solution to (8.2). Indeed, the classical clustering problem is known

to be NP-hard [46]. Nevertheless, the procedure decreases the objective func-

tion in (8.1) monotonically, so it converges to a local minimum of the objective

function.

In our matrix formulation, the k-means algorithm has an especially strik-

ing interpretation as an alternating projection method. Step 2 determines C

by solving (8.2) with Φ held fixed. Likewise, Step 3 determines Φ by solving

(8.2) with C held fixed.

8.1.3 Spherical Clustering

By adding constraints on the representative vectors in the matrix formu-

lation (8.2), we obtain another clustering problem that has appeared in the

literature. Suppose that the columns of the data matrix S all have unit norm.

Then it may be desirable to require that the representative vectors also have

unit norm. This restriction leads to the problem

min
Φ,C

‖S − Φ C‖22 subject to ck = en for some n

‖ϕn‖2 = 1.
(8.3)

Each cluster has the structure of a point on the surface of the sphere, and so

we refer to the problem as spherical clustering.

For illustrative purposes, let us reduce (8.3) to a more traditional form.

Together, the objective function and the coefficient constraint yield the objec-

tive function ∑K

k=1
min
n
‖sk −ϕn‖2F .

Expand the norms, and then apply the hypothesis that ‖sk‖2 = 1 and the
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constraint that ‖ϕn‖2 = 1. It follows that (8.3) is equivalent to

min
{ϕn}

∑K

k=1
max
n
〈sk,ϕn〉 subject to ‖ϕn‖2 = 1.

Therefore, the clustering problem (8.3) measures the similarity of two vectors

as the cosine of the angle between them.

Dhillon and Modha have proposed a heuristic procedure called spherical

k-means for solving (8.3). This method first assigns data vectors to the cluster

representative nearest with respect to cosine similarity. Second, it replaces

each cluster representative with the mean of the data vectors that have been

assigned to that cluster, and it re-scales each representative to have unit norm.

It repeats these two steps until the cluster assignments stabilize [27].

It turns out that spherical k-means is an alternating projection technique

for solving (8.3). The first step minimizes (8.3) with respect to coefficient

matrices that satisfy the coefficient constraint. The second step minimizes

(8.3) with respect to representative matrices that have unit-norm columns.

8.1.4 Diametrical Clustering

By altering the coefficient constraints in (8.3), we reach another problem

from the literature. Assume that the data vectors have unit Euclidean norm,

and we wish to partition the data vectors into clusters that contain both

correlated and anti-correlated data. This problem arises in bio-informatics,

when genes are sorted into functional groups based on gene expression data.

A strong positive correlation between two genes indicates that they are ex-

pressed together, while strong negative correlation indicates that one gene

may be inhibiting the other. Therefore, a collection of genes whose pairwise
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correlations are strongly positive or strongly negative may form a functional

group [26].

The diametrical clustering problem introduces a new constraint on the

coefficient matrix:

min
Φ,C

‖S − Φ C‖2F subject to ck = ±en for some n

‖ϕn‖2 = 1.
(8.4)

It follows that we may interpret the n-th cluster is structured as a pair of

antipodal points on the sphere, namely ±ϕn. Using the same procedure as

before, we see that the similarity between two (unit) vectors is the cosine of

the acute angle between the two vectors. This similarity measure may be

computed as the absolute value of the inner product between the two unit

vectors.

The alternating projection algorithm for (8.4) is a little more involved

than before. As usual, each data vector is assigned to the representative

nearest with respect to the acute cosine similarity measure. It can be shown

that the representative vector of each cluster must be a dominant left singular

vector of the matrix formed from the data vectors that have been assigned to

that cluster. This is precisely the algorithm that was proposed in [26].

8.2 Constrained Low-Rank Matrix Approximation

The last section demonstrates that several apparently unrelated clustering

problems share an enormous amount of structure. But these examples only

hint at the possibilities. We argue that many of the clustering problems that

have appeared in the recent literature find their most natural expression in

the language of constrained low-rank matrix approximation.
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Let S be a d × K matrix whose columns are data vectors that we wish

to partition into N clusters. Therefore, we seek a d × N matrix Φ whose

columns are cluster representatives and an N × K matrix C whose entries

describe the assignment of data vectors into clusters. The product Φ C should

be interpreted as a low-rank approximation of the data matrix S . We will

measure the divergence between the approximation and the data with a general

dissimilarity measure dist( · ; · ). Our goal will be to solve

min
Φ,C

dist(Φ C ; S) subject to C satisfies constraint (C), and

Φ satisfies constraint (R).
(8.5)

The constraint (R) on the representative matrix reflects a priori knowledge

about the data, while the constraint (C) on the coefficient matrix determines

the gross geometry of the clusters.

In the next two subsections, we detail some basic constraints on the rep-

resentative matrix and the coefficient matrix. Afterward, we explain the mod-

ifications that are necessary to obtain more general cluster geometries. Then,

we describe some of the dissimilarity measures that have appeared in the lit-

erature. The final section of the chapter describes how specific problems that

have appeared in the literature fit into our framework.

8.2.1 Representative Constraints

In many problems, we possess some information about the provenance

of the data vectors. For example, the data may be normalized, or it may

consist of nonnegative numbers. This type of a priori knowledge should be

encoded as constraints on the representative matrix so that the qualities of the

representative vectors match the qualities of the data. There are also technical

reasons that one may wish to constrain the representatives. If the coefficients
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are not normalized, it may be necessary to normalize the representatives to

prevent scaling problems.

We list a few constraints on the representative matrix. Although it is

not necessary, each column of Φ will typically satisfy the same constraint.

Therefore, we only indicate how a single column is constrained.

R1. ϕn unrestricted. When the data vectors are arbitrary points in space,

we may want the representative vectors to roam freely. This situation

occurs, for example, in the classical clustering problem.

R2. ‖ϕn‖2 = 1. Here, we force each representative vector to lie on the Eu-

clidean unit sphere. This constraint commonly arises when the data

vectors are normalized, and the representatives must duplicate this nor-

malization. Note that representative may be normalized even when the

data vectors are not.

R3. ϕn ≥ 0. If the data are nonnegative, one may require that the rep-

resentative vectors share this quality. In many applications, negative

numbers lack a valid interpretation. For example, there is no such thing

as a negative amount of rainfall.

R4. ϕn ≥ 0 and eTϕn = 1. This is referred to as a stochastic constraint,

and it permits us to interpret the representative vectors as probability

distributions. This condition can be useful when the data vectors are

viewed as mixtures of probability distributions.

R5. ϕn drawn from a closed, convex set. This constraint generalizes (R3)

and (R4).

Of course, many other representative constraints are possible.
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8.2.2 Coefficient Constraints

The gross geometry of the clusters depends essentially on how we control

the coefficient matrix. (The precise shape that the clusters prefer to take

depends strongly on the dissimilarity measure.)

Let us begin with the case of hard clustering, where each data vector is

assigned to a single cluster. In the matrix formulation, the k-th column sk

of the data matrix is approximated by Φ ck. The hard clustering constraint

allows only one column of the representative matrix to participate in the ap-

proximation of sk, which implies that each column ck of the coefficient matrix

may contain only a single nonzero entry.

C1. ck = en for some n. The basic hard clustering problem requires that

each column of the coefficient matrix contain exactly one unit entry. In

this case, the n-th cluster is structure as a single point in space, namely

ϕn.

C2. ck = ±en. If each column of the coefficient matrix contains a single

nonzero entry that equals ±1, then the n-th cluster is structured as a

pair of antipodal points, ±ϕn. This type of clustering collates data with

strong positive or strong negative correlation, but it remains sensitive to

scale.

C3. ck = αk en for αk > 0. Here, each column of the coefficient matrix

contains exactly one nonzero entry, which is positive. The n-th cluster

has the structure of a ray emanating from the origin, namely the cone

generated by the representative vector ϕn. This might be called a direc-

tional clustering constraint. In this case, one may wish to normalize the

columns of the representative matrix to prevent scaling problems.
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C4. ck = αk en for αk 6= 0. Each coefficient vector contains a single nonzero

entry. So the n-th cluster is structured as a line through the origin,

namely the subspace spanned by ϕn. This might be called a projective

clustering constraint. Once again, the representative vectors may require

normalization.

Note that each data point is assigned to the cluster structure closest to it.

For example, if we impose the condition (C4), then each representative vector

determines a line through the origin. Each data point is assigned to a cluster

by determining which line contains the point closest to that data point. To

give a basic idea of how the first four coefficient constraints affect the final

clustering, we offer an illustration of how the same data points can be grouped

quite differently. See Figure 8.1

Traditionally, a soft clustering problem determines a set of cluster repre-

sentatives and the probability that each data vector belongs to each cluster. In

our framework, we may frame a soft clustering problem by constraining each

coefficient vector to have nonnegative entries that sum to one. That is, each

coefficient vector is stochastic. More generally, we might relax the requirement

that the coefficient vectors contain exactly one nonzero entry. In this setting,

it is a little more complicated to talk about the structure of a cluster, since

the clusters are blended together.

C5. ck unrestricted. Then the data vectors are approximated from the lin-

ear span of all the representatives. This situation occurs in principal

component analysis [62].

C6. ck ≥ 0. If each coefficient vector is nonnegative, then each data vector
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Figure 8.1: Effects of Coefficient Constraints. Four plausible clus-
terings of the same data points using different coefficient constraints. Upper
left: (C1) yields five different clusters. Upper right: (C2) gives three clusters.
Lower left: (C3) leads to four clusters. Lower right: (C4) yields only two
clusters.
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is approximated by a point from the convex cone generated by all the

representative vectors.

C7. ck ≥ 0 and eTck = 1. Then each coefficient vector is stochastic, and

each data vector is approximated by a point in the convex hull of all the

representative vectors. If the representatives are stochastic, then this

constraint approximates the data vectors with mixtures of probability

distributions.

Finally, we note that it is also possible to place other types of sparsity

constraints on the coefficient matrix.

C8. ‖ck‖0 = m. Then each data vector is approximated as a linear combina-

tion of m representative vectors, a true sparsity condition. As we have

seen, this constraint is computationally difficult to enforce in general. It

can also be combined with (C5), (C6), or (C7).

8.2.3 Higher-Dimensional Clusters

To obtain more complicated cluster geometries, we may need to use several

vectors to represent a cluster. Although this step increases the conceptual

complexity slightly, more general clusters may model the data more accurately.

For example, in an application to breast cancer data, Bradley and Mangasarian

found that it was possible to identify survival outcomes more accurately by

structuring each clusters as a hyperplane instead of a point [6]. For simplicity,

we only consider hard clustering problems, so each data vector is assigned to

a single cluster.

First, let us explain how to modify the setup. Now, each cluster represen-

tative will have M vector parameters, so each of the N cluster representatives
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is a d×M matrix Φn, whose columns we denote by ϕmn. We may collect the

representative matrices into a block matrix with dimensions d×MN .

Φ
def
=

[
Φ1 . . . ΦN

]
.

The coefficient matrix C has dimension MN × K with entries cmnk, and so

the product Φ C is a d×K matrix whose k-th column is∑N

n=1

∑M

m=1
cmnk ϕmn.

The hard clustering constraint requires that for each index k, the coefficients

{cmnk} be nonzero for a single value n = n(k). Therefore, the double sum

collapses to ∑M

m=1
cm,n(k),k ϕm,n(k).

As advertised, each data vector is approximated by a linear combination of

the columns of one representative matrix.

The following constraints on the coefficients lead us to some fundamental

new cluster geometries.

M1. cm,n(k),k unconstrained. Then the n-th cluster has the structure of a

subspace, namely the column span of the matrix Φn. This might be

called Grassmannian clustering.

M2. c1,n(k),k = 1 and cm,n(k),k unconstrained for m ≥ 2. Now each cluster

representative has the structure of an (M − 1)-dimensional affine space.

The first column of each representative matrix defines a point in the

affine space, and its remaining columns are vectors that span a translate

of the affine space.
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M3. cm,n(k),k ≥ 0. In this case, each cluster has the structure of a convex cone,

namely the conical hull of the columns of its representative matrix.

M4. cm,n(k),k ≥ 0 and
∑

m cm,n(k),k = 1. It follows that the n-th cluster has

the structure of a convex set, namely the convex hull of the columns of

Φn.

M5. cm,n(k),k an integer. In this case, the n-th cluster has the structure of a

lattice, namely the lattice (i.e., Z-module) generated by the columns of

Φn.

As before, we may impose additional requirements on the representative

matrices to put them in sympathy with the data or to prevent scaling problems.

It may also be necessary to ensure that the columns of each representative

matrix do not spread out too much. For example, if the clusters are supposed

to be represented by a convex set, it may be valuable to prevent the convex

set from growing to encompass an entire subspace.

8.2.4 Dissimilarity Measures

The other ingredient in a clustering problem is the measure of dissimilarity

between the data matrix and its approximant. This measure affects the finer

geometry of the cluster by determining which data vectors are close to the

cluster structure and which are not. The distortion or dissimilarity measure

depends entirely on the problem domain, and what works for one application

may be useless for another. Moreover, the variety of dissimilarity measures is

dizzying. Any method for computing the distance between two matrices will,

in principle, suffice. For simplicity, we only discuss a subclass of dissimilarity

measures that treat each column of the matrix independently.
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First, let us consider some measures that derive from matrix norms. These

measures are based on the vector norms that are used to measure the distance

between a data vector and its approximant. Of course, any vector norm is

possible, but we only mention the most common.

1. Far and away, the most familiar way to measure the error between each

data vector and its approximation is the Euclidean norm:

‖sk − Φ ck‖2 .

The Euclidean norm is small when most components of the approxima-

tion have a reasonably small error.

2. Another common choice is the `1 norm:

‖sk − Φ ck‖1 .

The `1 norm strongly prefers an approximating vector whose components

commit a few large error and many tiny errors. It is frequently used in

statistical applications because it is robust to outliers in the individual

measurements. If the data vectors are viewed as probability distribu-

tions, then the `1 norm returns the variational distance between each

datum and its approximant.

3. A third choice is the `∞ norm:

‖sk − Φ ck‖∞ .

The `∞ norm seeks an approximating vector that contains tiny errors of

similar magnitude in every single component. It is extremely sensitive

to outliers because it prefers a uniform approximation.
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There are many different ways to combine the column errors to obtain a figure

of merit for the entire clustering.

1. One may sum up all the column errors:∑K

k=1
‖sk − Φ ck‖ .

This type merit function is the most robust because it allows a few data

vectors to commit large errors. If some data vectors are entirely suspect,

then this measure may be the most sensible.

2. One might also try to minimize the maximum column error:

max
k
‖sk − Φ ck‖ .

In this case, the merit function will seek an approximation where every

data vector is approximated with an identical, small error.

3. For p ranging between one and infinity, the merit function[∑K

k=1
‖sk − Φ ck‖p

]1/p
.

will interpolate between the behavior of the first two merit functions.

The special case p = 2 is most common, and it balances the two extremes

evenly.

Each combination from the last two lists corresponds to some matrix norm,

although some of these norms are not sub-multiplicative.

There are also important distance measures that do not derive from

norms. It is well known that the squared Euclidean norm is closely connected
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with the multivariate normal probability distribution. For other exponential

families of probability distributions, Bregman divergences play an analogous

role [2].

Here is a brief introduction to Bregman divergences. Suppose that f

is a strictly convex, differentiable function defined on the signal space. The

Bregman divergence of the vector x from the vector s is calculated as

Df (x; s)
def
= f(x)− f(s)− 〈∇f(s),x− s〉 .

The semicolon in the notation warns us that Bregman divergences are almost

never symmetric. Nevertheless, Bregman divergences are positive definite;

they are strictly convex in their first argument; and they are continuous in

both arguments. The squared Euclidean distance is the primary example of a

Bregman divergence. The generalized Kullback–Leibler divergence (also known

as relative entropy) is another important case:

Df (x; s) =
∑d

j=1

[
xj log

xj
sj
− xj + sj

]
.

The KL divergence is only defined for vectors with nonnegative components.

It derives from the negative Shannon entropy, f(s) =
∑d

j=1(sj log sj − sj).

A third example falls from the Burg entropy f(s) = −
∑d

j=1 log sj, which is

defined only for strictly positive vectors. It yields the Itakura–Saito divergence:

Df (x; s) =
∑d

j=1

[
xj
sj
− log

xj
sj
− 1

]
.

The sum of Bregman divergences between corresponding columns of two ma-

trices always yields a Bregman divergence on matrices.

Although Bregman divergences may seem exotic, they are better suited

for approximation problems than many norms. Suppose that C is a closed,
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convex subset of the signal space. Given a signal s, the solution p of the

minimization problem

min
x∈Cd

Df (x; s) subject to x ∈ C

is called the Bregman projection of s onto C. Bregman projections have a

striking variational characterization,

Df (x; s) ≥ Df (x;p) + Df (p; s) for all x ∈ C. (8.6)

This formula is analogous with Kolmogorov’s characterization of the orthogo-

nal projection onto a convex set. Moreover, if C is affine, then the inequality

in (8.6) becomes an equality, and we obtain an analog of the Pythagorean The-

orem. We have glossed over some important technicalities in this paragraph.

For details, refer to [4, 108].

8.2.5 Generalized k-means

Finally, we sketch a numerical approach to constrained low-rank matrix

approximation problems that generalizes the k-means algorithm. Note that

this computational problem will typically be NP-hard on account of the in-

teraction between the representative matrix and the coefficient matrix, and so

we cannot expect to develop an efficient algorithm that produces a globally

optimal solution to (8.5).

Algorithm 8.2 (Generalized k-means).

Input:

• A d×K matrix S , whose columns are real data vectors

• A number N of clusters
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Output:

• Returns a d×N representative matrix Φ whose columns satisfy (R)

• Returns an N ×K coefficient matrix C whose columns satisfy (C)

Procedure:

1. Initialize Φ. One method selects the columns of Φ at random from the

columns of S without repetition.

2. Solve the optimization problem

min
C

dist(Φ C ; S) subject to C satisfies constraint (C)

holding the representative matrix Φ fixed.

3. Solve the optimization problem

min
Φ

dist(Φ C ; S) subject to Φ satisfies constraint (R)

holding the coefficient matrix C fixed.

4. Repeat Steps 2–4 until the objective function dist(Φ C ; S) fails to de-

crease significantly from one iteration to the next. This termination

condition is guaranteed to be met in a finite number of steps because the

objective function is nonincreasing and it is bounded below by zero.

This is an example of an alternating projection algorithm, and it has a lot in

common with the algorithms of Chapter 7.

In some cases, the optimization problems in Steps 2 and 3 admit explicit

closed form solutions. Consider, for example, the minimizations that arise in
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the matrix version of the classical clustering problem (8.1), which Algorithm

8.1 solves explicitly. As we saw, spherical clustering and diametrical clustering

also yield straightforward solutions. Other cases may require the application

of mathematical programming software. When the squared Euclidean norm

in (8.1) is replaced by the (unsquared) Euclidean norm, Step 3 of the algo-

rithm involves a challenging minimization known as Weber’s problem [17, 80].

Nevertheless, if the dissimilarity measure is convex in its first variable—as are

those we have discussed—the minimization problems in Steps 2 and 3 can the-

oretically be dispatched in polynomial time by standard convex programming

software [5].

The major advantage of the Generalized k-means Algorithm is its simplic-

ity and wide applicability. It offers an immediate method for approaching all

the clustering problems that fall in our framework. Therefore, one may imag-

ine clustering a novel data set using many different geometries to determine

which ones provide the best separation.

8.3 Relation with Previous Work

It turns out that most of the partitional clustering problems in the liter-

ature fall within our framework. That is, they can be expressed in the form

of (8.5). Let us take a quick tour of the primary examples.

First, observe that if Φ and C are unrestricted, then we are seeking the

best rank-N approximation of S in Frobenius norm. It is well-known that

the solution of this optimization problem is given by the truncated singular

value decomposition (TSVD) of S , which can be computed efficiently with

standard algorithms [51]. It is interesting to note that Algorithm 8.2 need not

converge to the TSVD. Indeed, it can be shown that the fixed points of the
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alternating projection include every pair (Φ, C ) for which the columns of Φ

span an invariant subspace of SS∗ and the rows of C span an invariant subspace

of S∗S . (Of course, this failure is highly unlikely if the initial representatives

are chosen at random.)

As we have stated before, the standard hard clustering problem places

constraints (R1) and (C1). The soft clustering problem involves the constraints

(R1) and (C7). Note, however, that soft clustering is usually treated as a

statistical estimation problem, which requires assumptions about probability

distributions.

Passing quickly over familiar territory, we note that the spherical cluster-

ing problem studied by Dhillon and Modha [27] falls from the constraints (R2)

and (C3). The diametrical clustering problem [26] uses (R2) and (C4).

Lee and Seung have proposed two types of clustering, conic coding and

convex coding, that also fall into our framework [64]. Conic coding approxi-

mates the data vectors using a conic combination of representative vectors; it

imposes constraints (R1) and (C6). Convex coding approximates the data as a

convex combination of representative vectors; it imposes constraints (R1) and

(C7). In their formulation, Lee and Seung placed the nonnegativity constraint

(R3) on the representatives because they were working with nonnegative data.

Convex and conic coding are intermediate between simple hard clustering and

unconstrained low-rank matrix approximation (i.e., TSVD).

The constraints (R3) and (C6) lead to an important problem called non-

negative matrix approximation (NNMA). This problem requests an approx-

imation of a nonnegative matrix as a low-rank product of two nonnegative

matrices. NNMA has also been called positive matrix factorization and non-

negative matrix factorization, which are both misnomers. NNMA originally
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arose in chemometrics as a method for producing a nonnegative factor model

of nonnegative data [81]. Later, the neural information processing community

began to study NNMA as a method for learning efficient representations of

nonnegative data [64, 65, 68].

In an unpublished abstract, Srebro and Jaakkola pose the problem of

sparse matrix approximation, which involves the constraints (R1) and (C8).

They suggest it as a method for mining gene expression data [97], although

they do not appear to have pursued this project.

We note that (R4) and (C7) require that the representatives and the coeffi-

cient vectors be stochastic. If the representatives are interpreted as probability

distributions, then the corresponding problem requests a mixture model that

can approximate all the data vectors. When working with probability distri-

butions, it is rather more appropriate to measure approximation error with

the variational distance or the Kullback–Leibler divergence than to use the

squared Euclidean distance.

The idea of using higher-dimensional clustering prototypes first appears in

Bradley and Mangasarian [6]. Each cluster has the structure of a hyperplane,

which amounts to constraint (M2) with each representative matrix containing

M = d columns, where d is the dimension of the ambient space. (Their work

takes advantage of the duality between vectors and hyperplanes to reduce the

complexity of the problem.) Subsequently, Tseng showed how to generalize

their work to lower-dimensional affine clusters, i.e., (M2) where each represen-

tative matrix contains M < d columns [112].

Most research on clustering uses the squared Euclidean distance to mea-

sure the dissimilarity between vectors, but there are some exceptions. For

example, Bradley, Mangasarian, and Street consider hard clustering—(R1)
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and (C1)—with an `1 dissimilarity measure [7]. Lee and Seung have studied

nonnegative matrix approximation—(R3) and (C6)—with respect to the gen-

eralized Kullback–Leibler divergence [68]. A recent paper by Banerjee et al.

addresses clustering with respect to general Bregman divergences [2], which

imposes constraints (R5) and (C1). More work on non-Euclidean dissimilarity

measures would be valuable.

Our treatment of clustering as a constrained matrix approximation prob-

lem seems to be novel, and yet our perspective unifies a tremendous amount

of previous literature. Table 8.3 summarizes how our framework encompasses

the previous research on clustering with respect to the squared Euclidean dis-

tance. The unfilled entries in the table represent problems that have not to

our knowledge been studied; some of these problems may present interesting

avenues for research, while others do not admit an immediate interpretation.

We also believe that this viewpoint will lead to interesting new clustering prob-

lems and to new algorithms for solving them. In the future, we hope to test

these ideas on data from real applications.
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(R1) (R2) (R3) (R4)
(C1) Classical hard

clustering [47]
(C3) Spherical

clustering [27]
(C4) Diametrical

clustering [26]
(C5) Truncated

SVD [51]
(C6) Conic coding

[64]
Nonnegative
matrix ap-
proximation
[81, 65]

(C7) Convex cod-
ing [64]

Probability
mixtures

(C8) Sparse matrix
approxima-
tion [97]

(M2) k-flat cluster-
ing [6, 112]

Table 8.1: Clustering Research
Previous research on clustering with respect to the squared Euclidean norm,
as it fits into the framework of constrained low-rank matrix approximation.
The unfilled entries represent problems that have not been studied.
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