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A Numerical methodology

This section describes the numerical experiments presented in Sections 4.3 and 5.3. All of the
experiments discussed herein were performed on a workstation with a 12-core processor under
MATLAB 2014a and OS X 10.9.5.

A.1 Sparse vector recovery

The data for the sparse vector recovery experiment in Section 4.3 were generated as fol-
lows. Fix the ambient dimension d = 40 000. For each value of the sample size m =
12 000,14 000,16 000, . . . ,38 000, perform 10 trials of this procedure, and average the results:

• Generate a sparse vector x\ with 2000 nonzero entires placed uniformly at random, each
taking the value either −1 or +1 independently with equal probability.

• Form the random measurement matrix A ∈ Rm×d with independent standard Gaussian
entires.

• Use the Auslender–Teboulle algorithm (Algorithm 3.1) to solve the dual-smoothed sparse
vector recovery problem with both the constant smoothing parameter µ = 0.1 and µ =
µ(m)/4, where µ(m) is the maximal smoothing parameter (6).

• Stop the algorithm when the primal iterate xk satisfies ‖xk − x
\ ‖ /max{‖x\ ‖ ,1} < 10−3.

• Store the number of iterations k and the cost k · md for each choice of the smoothing
parameter.

A.2 Low-rank matrix recovery

The data for the low-rank matrix recovery experiment in Section 5.3 were generated as follows.
Fix the ambient dimension d = d1 × d2 = 200 × 200 = 40 000. For each value of the sample size
m = 11 250,13 750,16 250, . . . ,38 750, perform 10 trials of this procedure, and average the results:

• Generate a low-rank matrix X \ := Q1Q
T
2 , where the Qi are chosen uniformly at random

from the ensemble of 200×10 matrices with orthonormal columns (see [1] for the numerical
details, as some care must be taken to ensure the appropriate distribution).

• Form the random measurement matrix A ∈ Rm×d with independent standard Gaussian
entires.

• Use the Auslender–Teboulle algorithm (Algorithm 3.1) to solve the dual-smoothed low-
rank matrix recovery problem with both the constant smoothing parameter µ = 0.1 and
µ = µ(m)/4, where µ(m) is the maximal smoothing parameter (6).
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• Stop the algorithm when the primal iterate Xk satisfies ‖Xk −X
\ ‖F /max{‖X ‖F ,1} <

10−3.
• Store the number of iterations k and the cost k · md for each choice of the smoothing

parameter.
Remark A.1. We use cost as a proxy for running time for two main reasons. Firstly, the cost gives
a representative idea of the amount of work done by the algorithm that matches nicely with the
analysis. Secondly, the nature of modern CPUs renders it difficult to accurately compare timing
results among many trials. With dynamic frequency scaling, the CPU will run internally at different
speeds throughout the run of the experiment in response to surrounding thermal conditions. Typically
this means that later trials show higher running time as the CPU has heated considerably over the
course of even a moderate-length experiment. This effect is particularly pronounced in laptops.

We did perform separate timing trials, however, that confirm the approximate equivalence between
cost and time. Therefore, we feel confident presenting cost as the sole measure of computational
work while distancing ourselves from the nuances of CPU frequency scaling.

B Statistical dimension calculations

This appendix contains upper bounds on the statistical dimension of the dual-smoothed descent cones
presented in the body of the paper. Appendix B.1 examines the dual-smoothed `1 norm introduced in
Section 4, while Appendix B.2 examines the dual-smoothed Schatten 1-norm introduced in Section 5.

In many practical instances, calculating the statistical dimension of descent cones directly from the
definition is infeasible. A polarity argument, originally due to [2], provides an accurate upper bound
on the statistical dimension of D ( f ;x) depending on the subdifferential ∂ f (x).
Fact B.1 (Statistical dimension of a descent cone [3, Prop. 4.4]). Let f be a proper convex function.
Assume that the subdifferential ∂ f (x) is compact, nonempty, and does not contain the origin. Then

δ (D ( f ;x)) ≤ inf
τ≥0
E

[
dist2 (g, τ · ∂ f (x))

]
.

In addition, the infimum is attained.

This bound is superb and allows for very accurate approximations of the statistical dimension of
descent cones. See [3] for more details. In order to compute the subdifferentials of our dual-smoothed
functions, we rely on the following result from subdifferential calculus.
Fact B.2 (Additivity of subdifferentials [4, Thm. 23.8]). Let f1, . . . , fm be proper convex functions
on Rd , and assume that the sets relint(dom f i ), for i = 1, . . . ,m, share a common point. Then for
f = f1 + · · · + fm , we have that

∂ f (x) = ∂ f1(x) + · · · + ∂ fm (x),

for all x ∈ Rd .

Given that we dual-smooth a regularizer f by adding a strongly convex function, this fact results in
statistical dimension bounds that strongly resemble their unsmoothed counterparts.

B.1 Dual-smoothed `1 norm descent cones

In this section we bound the statistical dimension of the dual-smoothed `1 norm by way of the subdif-
ferential bound. We briefly examine how smoothing affects its behavior and provide a simplification
for “flat” vectors.
Proposition B.3 (Descent cones of the dual-smoothed `1 norm). Let x ∈ Rd have s nonzero entries.
Recall the dual-smoothed `1 norm given by

fµ (x) := ‖x‖`1 +
µ

2
‖x‖2 .

Then we have the following upper bound on the statistical dimension of its descent cones:

δ
(
D ( fµ ;x)

)
≤ ψ(x),
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where

ψ(x) := inf
τ≥0




s
(
1 + τ2

)
+ 2µ fµ (x)τ2 + (d − s)

√
2
π

∫ ∞

τ
(u − τ)2 e−u

2/2 du


.

Proof. Since the dual-smoothed `1 norm fµ is invariant under signed coordinate permutations, we
assume without loss that x = (x1, . . . , xs ,0, . . . ,0)T , where the xi are positive. We will use Fact B.1
to bound the statistical dimension of D ( fµ ;x) in terms of the size of its subdifferentials:

δ
(
D ( fµ ;x)

)
≤ inf
τ≥0
E

[
dist2

(
g, τ · ∂ fµ (x)

)]
,

where g ∼ normal(0,Id ).

The additivity of subdifferentials, Fact B.2, provides that

∂ fµ (x) = ∂ ‖x‖`1 + ∂
µ

2
‖x‖2 .

The function x 7→ µ
2 ‖x‖

2 is differentiable with gradient µx, while the subdiffential of the `1 norm
has form:

u ∈ ∂ ‖x‖`1 ⇐⇒

{
ui = 1, if i = 1, . . . , s
|ui | ≤ 1, if i = s + 1, . . . ,d.

Therefore, we find that

u ∈ ∂ fµ (x) ⇐⇒
{

ui = 1 + µxi , if i = 1, . . . , s
|ui | ≤ 1, if i = s + 1, . . . ,d.

Since the subdifferential is separable with respect to its coordinates, we compute the distance to the
scaled subdifferential coordinatewise as

dist2
(
g, τ · ∂ fµ (x)

)
=

s∑
i=1

[
gi − τ (1 + µxi )

]
+

d∑
i=s+1

max {|gi | − τ,0}2 .

Taking the expectation over the Gaussian vector g gives

E
[
dist2

(
g, τ · fµ (x)

)]
=

s∑
i=1

[
1 + τ2 (1 + µxi )2

]
+ (d − s)

√
2
π

∫ ∞

τ
(u − τ)2 e−u

2/2 du.

We expand and simplify the sum:

E
[
dist2

(
g, τ · fµ (x)

)]
= s(1 + τ2) + 2µ fµ (x)τ2 + (d − s)

√
2
π

∫ ∞

τ
(u − τ)2 e−u

2/2 du.

Taking the infimum over τ ≥ 0 completes the proof. �

We immediately see that the statistical dimension grows monotonically in the smoothing parameter µ
and ‖x‖. This reinforces the notion that the required number of measurements for exact recovery
increases as the problem becomes smoother. In order to calculate the statistical dimension using this
result, we need to know the value of fµ (x), which may not be available. The following corollary
allows us to bound the statistical dimension from above as long as we know the scale of the signal.

Corollary B.4 (Upper bound of the statistical dimension using scale of the signal). Define the
normalized sparsity ρ := s/d. Then

1
d
δ
(
D ( fµ ;x)

)
≤ ψ(ρ),

where

ψ(ρ) := inf
τ≥0



ρ

[
1 + τ2(1 + µ ‖x‖`∞ )2

]
+ (1 − ρ)

√
2
π

∫ ∞

τ
(u − τ)2e−u

2/2 du


.
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Figure B.1: Statistical dimension and maximal smoothing for the dual-smoothed Schatten
1-norm. (a) Upper bounds for the normalized statistical dimension d−2

1 D ( fµ ;X \ ) of the dual-
smoothed low-rank matrix recovery problem for several choices of µ. (b) Lower bounds for the
maximal smoothing parameter µ(m) for several choices of the normalized rank ρ := r/d1.

Proof. Note that

fµ (x) ≤ s ‖x‖`∞ +
sµ
2
‖x‖2`∞ ,

and the result follows by inserting this into the result of Proposition B.3, rearranging terms, and
normalizing by the ambient dimension d. �

Clearly, this bound is most accurate when the nonzero values of x are close to ‖x‖`∞ . As the dynamic
range of the signal increases, this bound will increasingly overestimate the statistical dimension.
Furthermore, we can adjust µ to keep the product µ ‖x‖`∞ constant. This means that the smoothing
parameter µ must change with the scale of the signal, but the fundamental geometry—in terms of the
statistical dimension—remains the same. As a comparison, we provide the descent cone calculation
for the unsmoothed `1 norm.

Fact B.5 (Descent cones of the `1 norm [3, Prop. 4.7]). Let x ∈ Rd have s nonzero entries, and
define the normalized sparsity ρ := s/d. Then

1
d
δ
(
D (‖·‖`1 ;x)

)
≤ ψ(ρ),

where

ψ(ρ) := inf
τ≥0



ρ
(
1 + τ2

)
+ (1 − ρ)

√
2
π

∫ ∞

τ
(u − τ)2e−u

2/2 du


.

Note that the unsmoothed problem only depends on the sparsity; changing the scale of the signal or
its dynamic range has no effect on the statistical dimension.

B.2 Dual-smoothed Schatten 1-norm descent cones

Recall that the dual-smoothed Schatten 1-norm of a matrix X ∈ Rd1×d2 is

fµ (X) = ‖X ‖S1 +
µ

2
‖X ‖2F .

Now we calculate the statistical dimension of fµ’s descent cones at low-rank matrices. We will need
the following variant of the Marčenko-Pastur Law [5].
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Fact B.6 (Spectral functions of a Gaussian matrix [3, Fact C.1]). Let F : R+ → R be a fixed
continuous function, and suppose that p,q → ∞ with the ratio p/q → y ∈ (0,1], a constant. For
Zpq , a p × q matrix with independent normal(q,q−1) entries,

E


1
p

p∑
i=1

F
(
σi (Zpq )

)
→

∫ a+

a−

F (u) · ϕy (u) du.

The limits of integration a± := 1 ±
√
y. The kernel ϕy is a probability density on [a−,a+] given as

ϕy (u) :=
1
πyu

√
(u2 − a2

−)(a2
+ − u2) for u ∈ [a−,a+].

The following argument closely parallels that of Appendix B.1. In this case, however, we provide a
sharp asymptotic result. This creates a clearer connection with the `1 case while maintaining a high
level of accuracy.
Proposition B.7 (Descent cones of the dual-smoothed Schatten 1-norm). Consider a sequence of
matrices [X (r,d1,d2)], where X (r,d1,d2) ∈ Rd1×d2 with d1 ≤ d2 and rank r. Let Σ(r,d1,d2) be
the diagonal matrix consisting of the r positive singular values of x(r,d1,d2).

Since the dual-smoothed Schatten 1-norm fµ is unitarily invariant, we will assume that the first r
singular values of x(r,d1,d2) are nonzero for each matrix in the sequence. We let r,d1,d2 → ∞

while keeping the following ratios constant:

ρ := r/d1 ∈ (0,1)
ν := d1/d2 ∈ (0,1]

α :=
‖X (r,d1,d2)‖S1 +

µ
2 ‖X (r,d1,d2)‖2F

d1

Then
1

d1d2
δ
(
D ( fµ ;X (r,d1,d2))

)
→ ψ(ρ, ν,α),

where

ψ(ρ, ν,α) = inf
τ≥0

{
ρν + (1 − ρν)

[
ρ(1 + τ2) + 2µτ2α + τ2 β

+ (1 − ρ)
∫ a+

a−∨τ (1−µσ)
(u − τ)2 ϕy (u) du

]}
.

The limits a± and kernel ϕy are as given in Fact B.6, with y := ν(1 − ρ)/(1 − ρν).

Proof. First, consider a low-rank matrix X for a fixed (r,d1,d2). The subdifferential of the Schatten
1-norm at this matrix takes the form

∂ ‖X ‖S1 =

{ [
Ir 0
0 W

]
: σ1(W ) ≤ 1

}
,

where σ1(W ) is the largest singular value of W [6, Ex. 2]. By the additivity of subdifferentials,
Fact B.2,

∂ fµ (X) =

{ [
Ir 0
0 W

]
: σ1(W ) ≤ 1

}
+ µX .

Using the definition of Σ, we have that

∂ fµ (X) =

{ [
Ir + µΣ 0

0 W

]
: σ1(W ) ≤ 1

}
To apply the subdifferential bound, Fact B.1, we must calculate

EG
[
dist2

(
G, τ · ∂ fµ (X)

)]
,
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where G is a d1 × d2 Gaussian matrix. Block-partition G to be compatible with ∂ fµ to get

dist2
(
G, τ · ∂ fµ (X)

)
=








[
G11 − τ (Ir + µΣ) G12

G21 0

]






2

F
+ inf
σ1 (W )≤1

‖G22 − τW ‖
2
F .

By the Hoffman-Wielandt Theorem [7, Cor. 7.3.8],

inf
σ1 (W )≤1

‖G22 − τW ‖
2
F = inf

σ1 (W )≤1

d1−r∑
i=1

[σi (G22) − τσi (W )]2

= inf
σ1 (W )≤1

d1−r∑
i=1

Pos2 (σi (G22) − τσi (W ))

≤

d1−r∑
i=1

Pos2 (σi (G22) − τ) .

We take the expectation and find the first term in the sum as

r
[
(d1 − r) + (d2 − r) + r + τ2

]
+ 2τ2µ

[
‖Σ‖S1 +

µ

2
‖Σ‖2F

]

This gives a non-asymptotic bound on the statistical dimension:

δ
(
D ( fµ ;X)

)
≤ inf
τ≥0

{
r

[
d1 + d2 − r + τ2

]

+ 2τ2µ
[
‖Σ‖S1 +

µ

2
‖Σ‖2F

]
+ E



d1−r∑
i=1

Pos2 (σi (G22) − τ)


}
.

We recognize the final term in this bound as the expectation of a spectral function of a Gaussian
matrix. In order to compute it, we will use the asymptotic result in Fact B.6. First, we normalize
our non-asymptotic bound according to the notation given in the statement of the proposition and
perform the change of variables τ → τ

√
d2 − r:

1
d1d2

δ
(
D ( fµ ;X)

)
≤ inf
τ≥0

{
ρν + (1 − ρν)

[
ρ(1 + τ2) + 2µτ2α

+ (1 − ρ) E
[ 1

d1 − r

d1−r∑
i=1

Pos2
(
σi (G̃22) − τ

) ] ]}
,

where G̃22 is a rescaled version of G22 with independent normal(0, (d2 − r)−1) entries.

Now we apply Fact B.6 with

y =
d1 − r
d2 − r

=
ν(1 − ρ)
1 − ρν

,

and obtain
1

d1d2
δ
(
D ( fµ ;X)

)
→ inf

τ≥0

{
ρν + (1 − ρν)

[
ρ(1 + τ2) + 2µτ2α + (1 − ρ)

∫ a+

a−∨τ
(u − τ)2 ϕy (u) du

]}
.

�

In the special case where the matrix X is square, the integral inside the infimum has a closed-form
representation.
Corollary B.8 (Descent cones at square, low-rank matrices). Let [X (r,d1)] be a sequence of
square matrices, where X ∈ Rd1×d1 with rank r. Let r,d1 → ∞ while keeping ρ := r/d1 and
α :=

(
‖X ‖S1 +

µ
2 ‖X ‖

2
F

)
/d1 constant. Then

1
d2

1

δ
(
D ( fµ ;X (r,d1))

)
→ inf

0≤τ≤2

{
ρ + (1 − ρ)

[
ρ(1 + τ2) + 2µτ2α

+
(1 − ρ)

12π

[
24(1 + τ2) cos−1(τ/2) − τ(26 + τ2)

√
4 − τ2

] ]}
.
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Corollary B.9 (Upper bound of the statistical dimension using the scale of the signal). We may
bound the statistical dimension result in Corollary B.8 by using the largest singular value ‖X ‖ of the
signal.

1
d2

1

δ
(
D ( fµ ;X)

)
≤ inf

0≤τ≤2

{
ρ + (1 − ρ)

[
ρ
(
1 + τ2(1 + µ ‖X ‖)2

)
+

(1 − ρ)
12π

[
24(1 + τ2) cos−1(τ/2) − τ(26 + τ2)

√
4 − τ2

] ]}
+ o (1) .

Proof. We bound the quantity α as

α ≤
1
d1

(
r ‖X ‖ +

rµ
2
‖X ‖2

)
= ρ ‖X ‖

(
1 +

µ

2
‖X ‖

)
,

and the result follows from rearranging terms. �

Figure B.1(a) shows the statistical dimension curves for a low-rank matrix with singular values equal
to 1 for different values of the smoothing parameter µ. As in the `1 case, small values of µ have little
effect on the number of measurements required for exact recovery.

We can compare the results of Proposition B.7 with those corresponding to the unsmoothed Schatten
1-norm.
Fact B.10 (Descent cones of the Schatten 1-norm [3, Prop. 4.8]). Let [X (r,d1,d2)] be a sequence of
matrices, where X ∈ Rd1×d2 with d1 ≤ d2 and rank r. Suppose that r,d1,d2 → ∞ with the limiting
ratios r/d1 → ρ and d1/d2 → ν. Then,

1
d1d2

δ
(
D (‖·‖S1 ;X (r,d1,d2))

)
→ ψ(ρ, ν),

where

ψ(ρ, ν) := inf
τ≥0

{
ρν + (1 − ρν)

[
ρ(1 + τ2) + (1 − ρ)

∫ a+

a−∨τ
(u − τ)2ϕy (u) du

]}
.

The quantities y and a± along with the integral kernel ϕy are as in Fact B.6.

As in the `1 case, we see that the dual-smoothing procedure results in an additional penalty inside the
infimum, which scales with the smoothing parameter µ.

C Additional proofs

This section contains additional proofs for results in the main text.

C.1 Proof of Proposition 3.1

This proposition bounds the primal iterates of the Auslender–Teboulle algorithm (Algorithm 3.1).
We restate the Proposition 3.1 here.
Proposition C.1 (Primal convergence of Algorithm 3.1). Assume that the exact recovery condition
holds for the primal problem (3). Algorithm 3.1 applied to the smoothed dual problem (4) converges
to an optimal dual point z?µ . Let x?µ be the corresponding optimal primal point given by (5). Then
the sequence of primal iterates {xk } satisfies

‖x\ − xk ‖ ≤
2 ‖A‖ ‖z?µ ‖

µ · k
.

Proof. This proof uses the same technique that Beck and Teboulle used to prove the equivalent result
for their FDPG algorithm in [8]. Recall that we have the Lagrangian

Lµ (x,z) = fµ (x) − 〈z, Ax − b〉

= fµ (x) −
〈
ATz, x

〉
+ 〈z, b〉 .
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Let zk be the kth iterate of the Auslender–Teboulle algorithm (listed in Algorithm 3.1) for any k ≥ 1,
and let xzk

be the corresponding primal estimate given by

xzk
= arg min

x
fµ (x) −

〈
ATzk , x

〉
.

Since fµ is µ-strongly convex, we have that

Lµ (x?µ ,zk ) − Lµ (xzk
,zk ) ≥

µ

2
‖x?µ − xzk

‖2 .

By the definition of the dual function gµ , we have that Lµ (xzk
,zk ) = gµ (zk ). Since we assumed

that exact recovery holds, we know that x?µ = x\ , and so

Lµ (x?µ ,zk ) = Lµ (x\ ,zk ) = fµ (x\ ) −
〈
ATzk , x

\
〉

+ 〈zk , b〉

= fµ (x\ ) = g(z?µ ),

where we used strong duality to equate the optimal function values. Therefore,
µ

2
‖x\ − xzk

‖2 ≤ g(z?µ ) − g(zk ).

We can bound the function value of the iterates using the following fact.

Fact C.2 (Convergence of the Auslender–Teboulle algorithm [9, Thm. 5.2]). Under the prevailing
notation,

gµ (zk ) − gµ (z?µ ) ≤
2 ‖A‖2 ‖z?µ ‖

2

µ · k2 ,

for any k ≥ 1.

Inserting this bound and taking the square root completes the proof. �

C.2 Proof of Proposition 4.2

This proposition provides an error bound on the primal iterates resulting from the Auslender–Teboulle
algorithm (Algorithm 3.1) applied to the dual-smoothed sparse vector recovery problem. We restate
Proposition 4.2 from the main text.

Proposition C.3 (Error bound for dual-smoothed sparse vector recovery). Let x\ ∈ Rd with s
nonzero entries, m be the sample size, and µ(m) be the maximal smoothing parameter (6). Given a
measurement matrix A ∈ Rm×d , assume the exact recovery condition (2) holds for the dual-smoothed
sparse vector recovery problem. Then the sequence of primal iterates from Algorithm 3.1 satisfies

‖x\ − xk ‖ ≤
2d

1
2 κ(A)

[
ρ · (1 + µ(m) ‖x\ ‖`∞ )2 + (1 − ρ)

] 1
2

µ(m) · k
,

where ρ := s/d is the normalized sparsity of x\ , and κ(A) is the condition number of the matrix A.

Proof. We apply Proposition C.1 to this problem to obtain that

‖x\ − xk ‖ ≤
2 ‖A‖ 


z

?
µ(m)





µ(m) · k

,

where z?
µ(m) is the optimal dual point reached by applying Algorithm 3.1 to the dual-smoothed sparse

vector recovery problem. In order to adapt the result to this specific problem, we must calculate the
size of the optimal dual point ‖z?µ(m) ‖. Since we do not know this point a priori, we will instead find
an upper bound for all optimal dual points.

By the exact recovery assumption and strong duality, the primal estimate in Section 4.1 corresponding
to any optimal dual point z? is

xz? = µ(m)−1 · SoftThreshold(ATz?,1) = x\ .
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Since the problem is invariant under signed coordinate permutations, assume that the s nonzero values
of x\ are positive and occupy the first s coordinates. Then,




��
〈
ai , z

?〉��2 = (1 + µ(m)x\i )2, if i = 1, . . . , s
��
〈
ai , z

?〉��2 ≤ 1, if i = s + 1, . . . ,d,

where ai is the ith column of A. Summing over all columns of A gives

‖ATz?‖2 =

d∑
i=1

|〈ai , z
?〉|2 ≤ ‖e + µ(m)x\ ‖2 ,

where e is the vector of all ones.

We can bound the norm ‖ATz?‖2 from below by

σmin(A)2 ‖z?‖2 ≤ ‖ATz?‖2 ,

where σmin(A) is the minimum singular value of A. (Recall that AT is tall.) Therefore,

‖z?‖2 ≤
‖e + µ(m)x\ ‖2

σmin(A)2 .

In practice, we would not know the true signal x\ , but it is reasonable to know or have an upper
bound on ‖x\ ‖`∞ . Using this quantity, we may bound the numerator from above:

‖e + µ(m)x\ ‖2 ≤ s(1 + µ(m) ‖x\ ‖`∞ )2 + (d − s),

Taking the square root of the bound for ‖z?‖2, inserting this into the result of Proposition C.1, and
rearranging terms completes the proof. �

C.3 Error bound for dual-smoothed low-rank matrix recovery

This proposition provides an error bound on the primal iterates resulting from the Auslender–Teboulle
algorithm (Algorithm 3.1) applied to the dual-smoothed low-rank matrix recovery problem.
Proposition C.4 (Error bound for dual-smoothed low-rank matrix recovery). Let the unknown matrix
X \ ∈ Rd1×d2 have rank r, m be the sample size, and µ(m) be the maximal smoothing parameter.
Without loss, assume that d1 ≤ d2. Given a measurement matrix A ∈ Rm×d1d2 , assume the exact
recovery condition holds for the dual-smoothed low-rank matrix recovery problem. Then the sequence
of primal iterates from Algorithm 3.1 satisfies

‖X \ −Xk ‖F ≤
2d

1
2
1 κ(A)

[
ρ · (1 + µ(m) ‖X \ ‖)2 + (1 − ρ)

] 1
2

µ(m) · k
,

where ρ := r/d1 is the normalized rank of X \ , and κ(A) is the condition number of A.

We see the same qualitative behavior of this bound as in the `1 case.

Proof of Proposition C.4. As in the proof of Proposition 4.2, we must bound the size of all optimal
dual points. Let z? be any dual optimal point. Recall that

SoftThresholdSingVal(mat(ATz?),1) = arg min
X

‖X ‖S1 +
1
2
‖X −mat(ATz?)‖F .

Since both the Frobenius norm and Schatten 1-norm are unitarily invariant, we have that

SoftThresholdSingVal(mat(ATz?),1) = SoftThresholdSingVal(Σ,1) = SoftThreshold(diag(Σ),1),

using the SVD mat(ATz?) = UΣV T .

Following the proof of Proposition 4.2, we have that{
|Σii |

2 = (1 + µ(m) · σi (X \ ))2, if i = 1, . . . ,r
|Σii |

2 ≤ 1, if i = r + 1, . . . ,d1,
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where σi (X \ ) is the ith largest singular value of X \ . Therefore,

‖Σ‖2F =

d1∑
i=1

|Σii |
2 ≤ 

I + µ(m)ΣX \



2
F ,

where ΣX \ is the diagonal matrix containing the singular values of X \ .

Using the unitary invariance of the Frobenius norm along with a norm equivalence relationship, we
have that

σmin(A)2 ‖z?‖2 ≤ ‖ATz?‖2 ≤ ‖ATz?‖2F = ‖mat(ATz?)‖2F = ‖Σ‖2F .

Combining the last two displays and bounding ‖ATz?‖2 from above gives that

‖z?‖2 ≤


I + µ(m) · ΣX \



2
F

σmin(A)2 ,

where σmin(A) is the smallest singular value of the (tall) matrix A.

Provided that we know (or can bound from above) ‖X \ ‖, the maximal singular value of X \ , we can
bound the numerator as



I + µ(m) · ΣX \


2

F ≤ r · (1 + µ(m) ‖X \ ‖)2 + (d1 − r).

Taking the square root of the bound for ‖z?‖2, inserting this into the result of Proposition C.1, and
rearranging terms completes the proof. �
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