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Abstract— Using a number of different algorithms, we can
recover approximately a sparse signal with limited noise, i.e, a
vector of length d with at least d−m zeros or near-zeros, using
little more than m log(d) nonadaptive linear measurements
rather than the d measurements needed to recover an arbitrary
signal of length d. We focus on two important properties of such
algorithms.

• Uniformity. A single measurement matrix should work
simultaneously for all signals.

• Computational Efficiency. The time to recover such an m-
sparse signal should be close to the obvious lower bound,
m log(d/m).

This paper develops a new method for recovering m-
sparse signals that is simultaneously uniform and quick.
We present a reconstruction algorithm whose run time,
O(m log2(m) log2(d)), is sublinear in the length d of the signal.
The reconstruction error is within a logarithmic factor (in
m) of the optimal m-term approximation error in `1. In
particular, the algorithm recovers m-sparse signals perfectly
and noisy signals are recovered with polylogarithmic distortion.
Our algorithm makes O(m log2(d)) measurements, which is
within a logarithmic factor of optimal. We also present a small-
space implementation of the algorithm.

These sketching techniques and the corresponding recon-
struction algorithms provide an algorithmic dimension reduc-
tion in the `1 norm. In particular, vectors of support m
in dimension d can be linearly embedded into O(m log2 d)
dimensions with polylogarithmic distortion. We can recon-
struct a vector from its low-dimensional sketch in time
O(m log2(m) log2(d)). Furthermore, this reconstruction is sta-
ble and robust under small perturbations.

I. INTRODUCTION
We say that a metric space (X, dX) embeds into a metric

space (Y, dY ) with distortion D if there are positive numbers
A,B such that B/A ≤ D and a map Φ : X → Y such that

A dX(x, y) ≤ dY (Φ(x),Φ(y)) ≤ B dX(x, y) (I.1)
for all x, y ∈ X.

A fundamental problem is to understand when a finite metric
space, which is isometrically embedded in some normed
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space X , admits a dimension reduction; i.e., when we
can embed it in an appropriate normed space Y of low
dimension. Dimension reduction techniques enjoy a wide
variety of algorithmic applications, including data stream
computations [1], [2] and approximate searching for nearest
neighbors [3] (to cite just a few). The dimension reduction
result of Johnson and Lindenstrauss [4] is a fundamental one.
It states that any set of N points in `2 can be embedded
in `n

2 with distortion (1 + ε) and where the dimension
n = O(log(N)/ε2).

A similar problem in the `1 space had been a longstanding
open problem; Brinkman and Charikar [5] solved it in the
negative (see another example in [6]). There exists a set of
N points in `1 such that any embedding of it into `n

1 with
distortion D requires n = NΩ(1/D2) dimensions. Thus, a
dimension reduction in `1 norm with constant distortion is
not possible. However, it is well known how to do such a
dimension reduction with a logarithmic distortion. One first
embeds any N -point metric space into `2 with distortion
O(log N) using Bourgain’s theorem [7], then does dimension
reduction in `2 using Johnson-Lindenstrauss result [4], and
finally embeds `n

2 into `2n
1 with constant distortion using

Kashin’s theorem ([8], see Corollary 2.4 in [9]). For linear
embeddings Φ, even distortions of polylogarithmic order are
not achievable. Indeed, Charikar and Sahai [10] give an
example for which any linear embedding into `n

1 incurs a
distortion Ω(

√
N/n).

Two fundamental questions arise from the previous dis-
cussion.

1) What are spaces for which a dimension reduction in
the `1 norm is possible with constant distortion?

2) What are spaces for which a linear dimension reduction
in the `1 norm is possible with constant or polyloga-
rithmic distortion?

One important space which addresses question (2) pos-
itively consists of all vectors of small support. Charikar
and Sahai [10] prove that the space of vectors of support
m in dimension d can be linearly embedded into `n

1 with
distortion 1 + ε with respect to the `1 norm, where n =
O((m/ε)2 log d) (Lemma 1 in [10]). They do not, however,
give a reconstruction algorithm for such signals and their
particular embedding does not lend itself to an efficient
algorithm.

The main result of our paper in an algorithmic linear di-
mension reduction for the space of vectors of small support.
The algorithm runs in sublinear time and is stable.

Theorem 1: Let Y be a set of points in Rd endowed with
the `1 norm. Assume that each point has non-zero coordi-



nates in at most m dimensions. Then these points can be lin-
early embedded into `1 with distortion O(log2(d) log3(m)),
using only O(m log2 d) dimensions. Moreover, we can re-
construct a point from its low-dimensional sketch in time
O(m log2(m) log2(d)).
This dimension reduction reduces the quadratic order of m
in [10] to a linear order. Our embedding does, however,
incur a distortion of polylogarithmic order. In return for
this polylogarithmic distortion, we gain an algorithmic linear
dimension reduction—there exists a sublinear time algorithm
that can reconstruct every vector of small support from its
low-dimensional sketch.

The space of vectors of support m in dimension d is a
natural and important space as it models closely the space of
compressible signals. A compressible signal is a long signal
that can be represented with an amount of information that
is small relative to the length of the signal. Many classes of
d-dimensional signals are compressible, e.g.,

• The m-sparse class B0(m) consists of signals with at
most m nonzero entries.

• For 0 < p < 1, the weak `p class Bweak-p(r) contains
each signal f whose entries, sorted by decaying mag-
nitude, satisfy |f |(i) ≤ r i−1/p.

These types of signals are pervasive in applications. Natural
images are highly compressible, as are audio and speech
signals. Image, music, and speech compression algorithms
and coders are vital pieces of software in many technologies,
from desktop computers to MP3 players. Many types of
automatically-generated signals are also highly redundant.
For example, the distribution of bytes per source IP address
in a network trace is compressible—just a few source IP
addresses send the majority of the traffic.

One important algorithmic application of our dimension
reduction is the reconstruction of compressible signals. This
paper describes a method for constructing a random linear
operator Φ that maps each signal f of length d to a
sketch of size O(m log2 d). We exhibit an algorithm called
Chaining Pursuit that, given this sketch and the matrix
Φ, constructs an m-term approximation of the signal with
an error that is within a logarithmic factor (in m) of the
optimal m-term approximation error. A compressible signal
is well-approximated by an m-sparse signal so the output
of Chaining Pursuit is a good approximation to the original
signal, in addition to being a compressed represention of
the original signal. Moreover, this measurement operator
succeeds simultaneously for all signals with high probability.
In many of the above application settings, we have resource-
poor encoders which can compute a few random dot products
with the signal but cannot store the entire signal nor take
many measurements of the signal. The major innovation
of this result is to combine sublinear reconstruction time
with stable and robust linear dimension reduction of all
compressible signals.

Let fm denote the best m-term representation for f ; i.e.,
fm consists of f restricted to the m positions that have
largest-magnitude coefficients.

Theorem 2: With probability at least (1 − O(d−3)), the
random measurement operator Φ has the following property.
Suppose that f is a d-dimensional signal whose best m-
term approximation with respect to `1 norm is fm. Given the
sketch V = Φf of size O(m log2(d)) and the measurement
matrix Φ, the Chaining Pursuit algorithm produces a signal
f̂ with at most m nonzero entries. The output f̂ satisfies

‖f − f̂‖1 ≤ C(1 + log m)
∥∥f − fm

∥∥
1
. (I.2)

In particular, if fm = f , then also f̂ = f . The time cost of
the algorithm is O(m log2(m) log2(d)).
The factor log m is intrinsic to this approach. However, the
proof gives a stronger statement.

Corollary 3: The approximation in the weak-1 norm does
not include the factor: ‖f − f̂‖weak−1 ≤ C‖f − fm‖1.
This follows directly from the definition of the weak norm
and our proof of the main theorem.

Corollary 4: Our argument shows that the reconstruction
f̂ is not only stable with respect to noise in the signal, as
Equation (I.2) shows, but also with respect to inaccuracy in
the measurements. Indeed, a stronger inequality holds. For
every V (not necessarily the sketch Φf of f ) if f̂ is the
reconstruction from V (not necessarily from Φf ), we have

‖fm − f̂‖1 ≤ C(1 + log m)
(
‖f − fm‖1 + ‖Φf − V ‖1

)
.

A. Related Work

The problem of sketching and reconstructing m-sparse
and compressible signals has several precedents in the The-
oretical Computer Science literature, especially the paper
[1] on detecting heavy hitters in nonnegative data streams
and the works [11], [12] on Fourier sampling. More recent
papers from Theoretical Computer Science include [13],
[14]. Sparked by the papers [15] and [16], the computa-
tional harmonic analysis and geometric functional analysis
communities have produced an enormous amount of work,
including [17], [18], [19], [20], [21], [22], [23].

Most of the previous work has focused on a reconstruction
algorithm that involves linear programming (as first inves-
tigated and promoted by Donoho and his collaborators) or
second-order cone programming [15], [16], [14]. The authors
of these papers do not report computation times, but they are
expected to be cubic in the length d of the signal. This cost
is high, since we are seeking an approximation that involves
O(m) terms. The paper [22] describes another algorithm
with running time of order O(m2d log d), which can be
reduced to O(md log d) in certain circumstances. None of
these approaches is comparable with the sublinear algorithms
described here.

There are a few sublinear algorithms available in the
literature. The Fourier sampling paper [12] can be viewed
as a small space, sublinear algorithm for signal reconstruc-
tion. Its primary shortcoming is that the measurements are
not uniformly good for the entire signal class. The recent
work [13] proposes some other sublinear algorithms for
reconstructing compressible signals. Few of these algorithms
offer a uniform guarantee. The ones that do require more



measurements—O(m2 log d) or worse—which means that
they are not sketching the signal as efficiently as possible.

B. Organization

In Section II, we provide an overview of determining a
sketch of the signal f . In Section III, we give an explicit
construction of a distribution from which the random linear
map Φ is drawn. In Section IV, we detail the reconstruction
algorithm, Chaining Pursuit, and in Section V we give an
overview of the analysis of the algorithm and sketch the proof
of our main result. In Section VI we use our algorithmic
analysis to derive a dimension reduction in the `1 norm
for sparse vectors. The complete detailed analysis of our
algorithm is in a companion journal paper and we encourage
the interested reader to look there.

II. SKETCHING THE SIGNAL

This section describes a linear process for determining a
sketch V of a signal f . Linearity is essential for supporting
additive updates to the signal. Not only is this property
important for applications, but it arises during the iterative
algorithm for reconstructing the signal from the sketch.
Linearity also makes the computation of the sketch straight-
forward, which may be important for modern applications
that involve novel measurement technologies.

A. Overview of sketching process

We will construct our measurement matrix by combining
simple matrices and ensembles of matrices. Specifically, we
will be interested in restricting a signal f to a subset A
of its d positions and then restricting to a smaller subset
B ⊆ A, and it will be convenient to analyze separately
the two stages of restriction. If P and Q are 0-1 matrices,
then each row Pi of P and each row Qj of Q restricts
f to a subset by multiplicative action, Pif and Qjf , and
sequential restrictions are given by PiQjf = QjPif . We
use the following notation, similar to [13].

Definition 5: Let P be a p-by-d matrix and Q a q-by-d
matrix, with rows {Pi : 0 ≤ i < p} and {Qj : 0 ≤ j < q},
respectively. The row tensor product S = P⊗rQ of P and Q
is a pq-by-d matrix whose rows are {PiQj : 0 ≤ i < p, 0 ≤
j < q}, where PiQj denotes the componentwise product of
two vectors of length d.
The order of the rows in P⊗rQ will not be important in this
paper. We will sometimes index the rows by the pair (i, j),
where i indexes P and j indexes Q, so that P⊗rQ applied
to a vector x yields a q × p matrix.

Formally, the measurement operator Φ is a row tensor
product Φ = B⊗rA. Here, A is a O(m log d) × d matrix
called the isolation matrix and B is a O(log d) × d matrix
called the bit test matrix. The measurement operator applied
to a signal f produces a sketch V = Φf , which we can
regard as a matrix with dimensions O(m log d) × O(log d).
Each row of V as a matrix contains the result of the bit tests
applied to a restriction of the signal f by a row of A. We
will refer to each row of the data matrix as a measurement
of the signal.

B. The isolation matrix

The isolation matrix A is a 0-1 matrix with dimen-
sions O(m log d) × d and a hierarchical structure. Let a
be a sufficiently large constant, to be discussed in the
next two sections. The Chaining Pursuit algorithm makes
K = 1 + loga m passes (or “rounds”) over the signal, and
it requires a different set of measurements for each pass.
The measurements for the kth pass are contained in the
O(mk log(d)/2k)× d submatrix A(k). During the kth pass,
the algorithm performs Tk = O(k log d) trials. Each trial
t is associated with a further submatrix A

(k)
t , which has

dimensions O(m/2k)× d.
In summary,

A =


A(1)

A(2)

...

A(K)

 where A(k) =


A

(k)
1

A
(k)
2

...

A
(k)
Tk

 .

Each trial submatrix A
(k)
t encodes a random partition of

the d signal positions into O(m/2k) subsets. That is, each
signal position is assigned uniformly at random to one of
O(m/2k) subsets. So the matrix contains a 1 in the (i, j)
position if the jth component of the signal is assigned to
subset i. Therefore, the submatrix A

(k)
t is a 0-1 matrix in

which each column has exactly one 1, e.g.,

A
(k)
t =

0 1 0 0 1 1 0
1 0 0 1 0 0 0
0 0 1 0 0 0 1

 .

The trial submatrix can also be viewed as a random linear
hash function from a space of d keys onto a set of O(m/2k)
buckets.

C. The bit test matrix

Formally, the matrix B consists of a row e of 1’s and other
rows given by a 0-1 matrix B0, which we now describe. The
matrix B0 has dimensions log2dde×d. The ith column of B0

is the binary expansion of i. Therefore, the componentwise
product of the ith row of B0 with f yields a copy of the
signal f with the components that have bit i equal to one
selected and the others zeroed out.

An example of a bit test matrix with d = 8 is

B =


1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

 .

D. Storage costs

The bit test matrix requires no storage. The total storage
for the isolation matrix is O(d log d). The space required
for the isolation matrix is large, but this space can conceiv-
ably be shared among several instances of the problem. In
Section III, we give an alternate construction in which a
pseudorandom isolation matrix is regenerated as needed from



a seed of size m log2(d); in that construction only the seed
needs to be stored, so the total storage cost is m log2(d).

E. Encoding time

The time cost for measuring a signal is
O(log2(m) log2(d)) per nonzero component. This claim
follows by observing that a single column of A contains
O(log2(m) log(d)) nonzero entries, and we must apply
A to each of O(log d) restrictions of the signal—one for
each row of B. Note that this argument assumes random
access to the columns of the isolation matrix. We will use
this encoding time calculation when we determine the time
costs of the Chaining Pursuit algorithm. In Section III,
we give an alternative construction for A that reduces the
storage requirements at the cost of slightly increased time
requirements. Nevertheless, in that construction, any m
columns of A can be computed in time mo(1) each, where
o(1) denotes a quantity that tends to 0 as both m and d
get large. This gives measurement time mo(1) per nonzero
component.

III. SMALL SPACE CONSTRUCTION

We now discuss a small space construction of the isolation
matrix, A. The goal is to specify a pseudorandom matrix
A from a small random seed, to avoid the Ω(d log d) cost
of storing A explicitly. We then construct entries of A
as needed, from the seed. If we were to use a standard
pseudorandom number generator without further thought,
however, the time to construct an entry of A might be Ω(m),
compared with O(1) for a matrix that is fully random and
explicitly stored. We will give a construction that addresses
both of these concerns.

As discussed in Section II-B, the matrix A consists of
polylog(d) submatrices that are random partitions of the d
signal positions into O(mk) subsets. In this section, we give
a new construction for each submatrix; the submatrices fit
together to form A in the same way as in Section II-B.
We will see from the analysis in Section V, the partition
map of each random submatrix need only be mk-wise
independent; full independence is not needed as we need
only control the allocation of mk spikes into measurements
in each submatrix. It follows that we need only construct a
family of d random variables that are mk-wise independent
and take values in {0, . . . , r − 1} for any given r ≤ d.
Our goal is to reduce the storage cost from O(d log d) to
m polylog(d) without unduly increasing the computation
time. It will require time Ω(m) to compute the value of any
single entry in the matrix, but we will be able to compute
any submatrix of m columns (which is all zeros except for
one 1 per column) in total time m polylog(d). That is, the
values of any m random variables can be computed in time
m polylog(d). Our construction will be allowed to fail with
probability 1/d3, which will be the case. (Note that success
probability 1− e−cm log d is not required.) Our construction
combines several known constructions from [24], [25] and
for the sake of brevity, we omit the details.

A. Requirements

To ease notation, we consider only the case of mk = m.
Our goal is to construct a function fs : {0, . . . , d − 1} →
{0, . . . , r − 1}, where s is a random seed. The construction
should “succeed” with probability at least 1 − 1/d3; the
remaining requirements only need to hold if the construc-
tion succeeds. The function should be uniform and m-wise
independent, meaning, for any m distinct positions 0 ≤
i1, . . . , im < d and any m targets t1, . . . , tm, we have

Ps(∀j fs(ij) = tj) = r−m,

though the distribution on m+1 random variables may oth-
erwise be arbitrary. Finally, given any list A of m positions,
we need to be able to compute {f(j) : j ∈ A} in time
m polylog(d).

B. Construction

Let s = (s0, s1, . . . , sK) be a sequence of K ≤ O(log d)
independent, identically distributed random bits. Let p be a
prime with p ≥ 2r and d ≤ p ≤ poly(d). Define the map
gk

s : Zp → Zp which uses the kth element sk from the seed s
and maps j ∈ Zp uniformly at random to a point gk

s (j) ∈ Zp.
The map gk

s is a random polynomial of degree m − 1 over
the field with p elements. If

0 ≤ go
s(j) < rbp/rc,

where rbp/rc represents the largest multiple of r that is at
most p, then define

fs(j) = bg0
s(j)r/pc = h(g0

s(j)).

The function h : {0, . . . , rbp/rc − 1} → {0, . . . , r − 1} is
a function that is exactly bp/rc-to-1. If g0

s(j) > rbp/rc,
then we map j to Zp by g1

s(j), that is independent of g0
s

and identically distributed. We repeat the process until j gets
mapped to {0, . . . , rbp/rc−1} or we exhaust K ≤ O(log d)
repetitions. For computational reasons, for each k, we will
compute gk

s at once on all values in a list A of m values as
a multipoint polynomial evaluation (MPE) and we will write
gk

s (A) for the list {gk
s (j)|j ∈ A}. Figure 1 gives a formal

algorithm.
Using these known constructions, we conclude:
Theorem 6: There is an implementation of the Chaining

Pursuit algorithm that runs in time m polylog(d) and requires
total storage m log(d) numbers bounded by poly(d) (i.e.,
O(log d) bits).

IV. SIGNAL APPROXIMATION WITH CHAINING PURSUIT

Suppose that the original signal f is well-approximated
by a signal with m nonzero entries (spikes). The goal of
the Chaining Pursuit algorithm is to use a sketch of the
signal to obtain a signal approximation with no more than m
spikes. To do this, the algorithm first finds an intermediate
approximation g with possibly more than m spikes, then
returns gm, the restriction of g to the m positions that
maximize the coefficient magnitudes of g. We call the final
step of the algorithm the pruning step. The algorithm without
the pruning step will be called Chaining Pursuit Proper.



Fig. 1. Top-level description of m-wise independent random variables.

Algorithm: Hashing

Parameters: m, r, d,K
Input: List A of m values in Zd;
pseudorandom seed s.
Output: List B of m values in
{0, . . . , r − 1}, rep’ing 〈fs(j) : j ∈ A〉.

For each k = 0, 1, . . . ,K − 1:
Compute gk

s (A) as MPE
If for some j ∈ A, for all k < K,
we have gk

s (j) ≥ rbp/rc, then FAIL
For j ∈ A

kj = min{k : gk
s (j) < rbp/rc}

fs(j) = g
kj
s (j).

The Chaining Pursuit Proper algorithm proceeds in passes.
In each pass, the algorithm recovers a constant fraction of
the remaining spikes. Then it sketches the recovered spikes
and updates the data matrix to reflect the residual signal—
the difference between the given signal and the superposition
of the recovered spikes. After O(log m) passes, the residual
has no significant entries remaining.

The reason for the name “Chaining Pursuit” is that this
process decomposes the signal into pieces with supports of
geometrically decreasing sizes. It resembles an approach in
analysis and probability, also called chaining, that is used to
control the size of a function by decomposing it into pieces
with geometrically decreasing sizes. A famous example of
chaining in probability is to establish bounds on the expected
supremum of an empirical process [26]. For an example of
chaining in Theoretical Computer Science, see [3].

A. Overview of Algorithm
The structure of the Chaining algorithm is similar to other

sublinear approximation methods described in the literature
[11]. First, the algorithm identifies spike locations and esti-
mates the spike magnitudes. Then it encodes these spikes and
subtracts them from the sketch to obtain an implicit sketch of
the residual signal. These steps are repeated until the number
of spikes is reduced to zero. The number a that appears in
the statement of the algorithm is a sufficiently large constant
that will be discussed further in Section V and the quantity
mk is m/ak. Pseudocode is given in Figure 2.

B. Implementation
Most of the steps in this algorithm are straightforward to

implement using standard abstract data structures. The only
point that requires comment is the application of bit tests to
identify spike positions and values.

Recall that a measurement is a row of the sketch matrix,
which consists of log2dde+ 1 numbers:[

b(0) b(1) . . . b(log2dde − 1) c
]
.

Fig. 2. Chaining Pursuit algorithm

Algorithm: Chaining Pursuit

Inputs: Number m of spikes, the sketch V ,
the isolation matrix A
Output: A list of m spike locations and
values

For each pass k = 0, 1, . . . , loga m:
For each trial t = 1, 2, . . . , O(k log d):
For each measurement n = 1, . . . , O(m/2k)
Use bit tests to id. spike posn.
Use a bit test to est. spike mag.

Keep mk dist. spikes with largest
vals. (in mag.)
Keep spike posns. in more than 9/10

trials
Estimate final spike sizes using medians
Encode spikes using meas. operator
Subtract encoded spikes from sketch

Return sig. of m largest kept spikes.

The number c arises from the top row of the bit test matrix.
We obtain an (estimated) spike location from these numbers
as follows. If |b(i)| ≥ |c− b(i)|, then the ith bit of the
location is zero. Otherwise, the ith bit of the location is one.
To estimate the value of the spike from the measurements,
we use c.

Recall that each measurement arises by applying the bit
test matrix to a copy of the signal restricted to a subset of
its components. It is immediate that the estimated location
and value are accurate if the subset contains a single large
component of the signal and the other components have
smaller `1 norm.

We encode the recovered spikes by accessing the columns
of the isolation matrix corresponding to the locations of
these spikes and then performing a sparse matrix-vector
multiplication. Note that this step requires random access
to the isolation matrix.

C. Storage costs

The primary storage cost derives from the isolation ma-
trix A. Otherwise, the algorithm requires only O(m log d)
working space.

D. Time costs

During pass k, the primary cost of the algorithm occurs
when we encode the recovered spikes. The number of recov-
ered spikes is at most O(m/ak), so the cost of encoding these
spikes is O(ma−k log2(m) log2(d)). The cost of updating
the sketch is the same. Summing over all passes, we obtain
O(m log2(m) log2(d)) total running time.



V. ANALYSIS OF CHAINING PURSUIT

This section contains a detailed analysis of the Chaining
Pursuit Proper algorithm (i.e., Chaining Pursuit without the
final pruning step), which yields the following theorem. Fix
an isolation matrix A which satisfies the conclusions of
Condition 10 in the sequel and let Φ = A⊗rB, where B is
a bit test matrix.

Theorem 7 (Chaining Pursuit Proper): Suppose that f is
a d-dimensional signal whose best m-term approximation
with respect to `1 norm is fm. Given the sketch V = Φf
and the matrix Φ, Chaining Pursuit Proper produces a signal
f̂ with at most O(m) nonzero entries. This signal estimate
satisfies ∥∥f − f̂

∥∥
1
≤ (1 + C log m)

∥∥f − fm

∥∥
1
.

In particular, if fm = f , then also f̂ = f .

A. Overview of the analysis

Chaining Pursuit Proper is an iterative algorithm. Intu-
itively, at some iteration k, we have a signal that consists
of a limited number of spikes (positions whose coefficient
is large) and noise (the remainder of the signal). We regard
the application of the isolation matrix A as repeated trials
of partitioning the d signal positions into Θ(mk) random
subsets, where mk is approximately the number of spikes,
and approximately the ratio of the 1-norm of the noise to the
magnitude of spikes. There are two important phenomena:
• A measurement may have exactly one spike, which we

call isolated.
• A measurement may get approximately its fair share of

the noise—approximately the fraction 1/µ if µ is the
number of measurements.

If both occur in a measurement, then it is easy to see that
the bit tests will allow us to recover the position of the spike
and a reasonable estimate of the coefficient (that turns out to
be accurate enough for our purposes). With high probability,
this happens to many measurements.

Unfortunately, a measurement may get zero spikes, more
than one spike, and/or too much noise. In that case, the bit
tests may return a location that does not correspond to a
spike and our estimate of the coefficient may have error
too large to be useful. In that case, when we subtract the
“recovered” spike from the signal, we actually introduce
additional spikes and internal noise into the signal. We bound
both of these phenomena. If we introduce a false spike, our
algorithm has a chance to recover it in future iterations. If
we introduce a false position with small magnitude, however,
our algorithm may not recover it later. Thus the internal noise
may accumulate and ultimately limit the performance of
our algorithm—this is the ultimate source of the logarithmic
factor in our accuracy guarantee.

In pass k = 0, the algorithm is working with mea-
surements of the original signal f . This signal can be
decomposed as f = fm + w, where fm is the best m-
term approximation of f (spikes) and w is the remainder
of the signal, called external noise. If w = 0, the analysis

becomes quite simple. Indeed, in that case we exactly recover
a constant fraction of spikes in each pass; so we will exactly
recover the signal f in O(log m) passes. In this respect,
Chaining is superficially similar to, e.g., [11]. An important
difference is that, in the analysis of Chaining pursuit, we
exploit the fact that a fraction of spikes is recovered except
with probability exponentially small in the number of spikes;
this lets us unite over all configurations of spike positions
and, ultimately, to get a uniform failure guarantee.

The major difficulty of the analysis here concerns control-
ling the approximation error from blowing up in a geometric
progression from pass to pass. More precisely, while it is
comparatively easier to show that, for each signal, the error
remains under control, providing a uniform guarantee—such
as we need—is more challenging. In presence of the external
noise w 6= 0, we can still recover a constant fraction of
spikes in the first pass, although with error whose `1 norm
is proportional to the `1 norm of the noise w. This error
forms the “internal noise”, which will add to the external
noise in the next round. So, the total noise doubles at every
round. After the loga m rounds (needed to recover all spikes),
the error of recovery will become polynomial in m. This
is clearly unacceptable: Theorem 7 claims the error to be
logarithmic in m.

This calls for a more delicate analysis of the error. Instead
of adding the internal noise as a whole to the original noise,
we will show that the internal noise spreads out over the sub-
sets of the random partitions. So, most of the measurements
will contain a small fraction of the internal noise, which
will yield a small error of recovery in the current round. The
major difficulty is to prove that this spreading phenomenon
is uniform—one isolation matrix spreads the internal noise
for all signals f at once, with high probability. This is a
quite delicate problem. Indeed, in the last passes a constant
number of spikes remain in the signal, and we have to find
them correctly. So, the spreading phenomenon must hold
for all but a constant number of measurements. Allowing
so few exceptional measurements would naturally involve a
very weak probability of such phenomenon to hold. On the
other hand, in the last passes the internal noise is very big
(having accumulated in all previous passes). Yet we need the
spreading phenomenon to be uniform in all possible choices
of the internal noise. It may seem that the weak probability
estimates would not be sufficient to control a big internal
noise in the last passes.

We will resolve this difficulty by doing “surgery” on the
internal noise, decomposing it in pieces corresonding to the
previous passes, proving corresponding uniform probability
estimates for each of these pieces, and uniting them in the
end. This leads to Condition 10, which summarizes the
needed properties of the isolation matrix.

The proof of Theorem 7 is by induction on the pass k.
We will normalize the signal so that ‖w‖1 = 1/(400000a).
We will actually prove a result stronger than Theorem 7. The
following is our central loop invariant:



Invariant 8: In pass k, the signal has the form

f (k) = sk + w +
k−1∑
j=0

νj (V.1)

where sk contains at most mk spikes, w = f − fm is the
external noise, and each vector νj is the internal noise from
pass j, which consists of 3mj or fewer nonzero components
with magnitudes at most 2/mj .
When we have finished with all passes (that is when k = 1+
loga m), we will have no more spikes in the signal (mk = 0
thus sk = 0). This at once implies Theorem 7.

The proof that Invariant 8 is maintained will only use
two properties of an isolation matrix, given in Condition 10.
While we only know how to construct such matrices using
randomness, any matrix satisfying these properties is accept-
able. We must show that Invariant 8 holds for any matrix Φ
having the properties in Condition 10. We also must show
that most matrices (according to the definition implicit in
Section II-B) satisfy these properties1.

Theorem 9: With probability at least (1−O(d−3)), a ma-
trix A drawn from the distribution described in Section II-B
satisfies the Chaining Recovery Conditions (Conditions 10).
Note that the conditions are given in terms of matrix ac-
tions upon certain kinds of signals, but the conditions are
properties only of matrices.

Condition 10 (Recovery Conditions for Isolation Matrices):
A 0-1 matrix with pass/trial hierarchical structure described
in Section II-B (i.e., any matrix from the sample space
described in Section II-B) is said to satisfy the Chaining
Recovery Conditions if for any signal of the form in
Invariant 8 and for any pass k, then at least 99/100 of the
trial submatrices have these two properties:

1) All but 1
100mk+1 spikes appear alone in a measure-

ment, isolated from the other spikes.
2) Except for at most 1

100mk+1 of the measurements, the
internal and external noise assigned to each measure-
ment has `1 norm at most 1

1000m−1
k .

B. Robustness

In this subsection, we prove Corollary 4. As advertised
in the introduction, the Chaining Pursuit algorithm is not
only stable with respect to noise in the signal but also robust
to inaccuracy or errors in the measurements. Suppose that
instead of using the sketch Φf of the signal f , e receive
V = Φf + y and we reconstruct f̂ from V . We assume that
once we carry out the Chaining Pursuit algorithm, there are
no perturbations to the intermediate measurements, only to
the original sketch Φf .

Corollary 11: With probability at least (1−O(d−3)), the
random measurement operater Φ has the following property.
Suppose that f is a d-dimensional signal whose best m-term
approximation with respect to the `1 norm is fm. Given the

1For details of these proofs, please see the extended journal version of
this manuscript.

measurement operator Φ, for every V (not necessarily the
sketch Φf of f ), if f̂ is the reconstruction from V , then

‖f − fm‖1 ≤ C(1 + log(m))
(
‖f − fm‖1 + ‖Φf − V ‖1

)
.

VI. ALGORITHMIC DIMENSION REDUCTION

The following dimension reduction theorem holds for
sparse vectors.

Theorem 12: Let X be the union of all m-sparse signals
in Rd and endow Rd with the `1 norm. The linear map Φ :
Rd → Rn in Theorem 2 satisfies

A‖f − g‖1 ≤ ‖Φ(f)−Φ(g)‖1 ≤ B‖f − g‖1

for all f and g in X , where 1/A = C log(m) and B =
C log2(m) log2(d) and n = O(m log2 d).

Proof: The upper bound is equivalent to saying that the
`1 → `1 operator norm satisfies ‖Φ‖1→1 ≤ B. This norm
is attained at an extreme point of the unit ball of `d

1, which
is thus at a point with support 1. Then the upper bound
follows at once from the definition of Φ. That is, any 0-1
vector of support 1 gets mapped by Φ to a 0-1 vector of
support bounded by the total number of bit-tests in all trials
and passes, which is

∑loga m
k=0 O(k log d) log2 d ≤ B.

The lower bound follows from Theorem 2. Let f and g be
any d-dimensional signals with support m, so that f = fm

and g = gm. Let V = Φg. Then the reconstruction f̂ from
V will be exact: f̂ = g. As proven in Corollary 4,

‖f − g‖1 = ‖f − f̂‖1

≤ C log(m)
(∥∥f − fm

∥∥
1

+
∥∥Φf − V

∥∥
1

)
= C log(m)

∥∥Φf −Φg
∥∥

1
,

which completes the proof.
We are interested not only in the distortion and dimen-

sion reduction properties of our embedding but also in the
stability and robustness properties of the embedding. Our
previous analysis guarantees that Φ−1Φ is the identity on
X and that the inverse can be computed in sublinear time
since Chaining Pursuit Proper perfectly recovers m-sparse
signals. Our previous analysis also shows that our dimension
reduction is stable and robust. In other words, our embedding
and the reconstruction algorithm can tolerate errors η in the
data x ∈ X , as well as errors ν in the measurements:

Theorem 13: The linear map Φ : Rd → Rn in Theorem
2 and the reconstruction map Ψ : Rn → Rd given by the
Chaining Pursuit Proper algorithm satisfy the following for
every η ∈ Rd and every ν ∈ Rn and for all m-sparse signals
x in Rd:

‖x−Ψ(Φ(x + η) + ν)‖1 ≤ (1 + C log m)(‖η‖1 + ‖ν‖1).
Proof: This is just a reformulation of our observations

in Corollary 4 with x = fm, η = f − fm, ν = Φf − V .

VII. CONCLUSIONS

We have presented the first algorithm for recovery of a
noisy sparse vector from a nearly optimal number of non-
adaptive linear measurements that satisfies the following two
desired properties:



• A single uniform measurement matrix works simulta-
neously for all signals.

• The recovery time is, up to log factors, proportional to
the size of the output, not the length of the vector.

The output of our algorithm has error with `1-norm
bounded in terms of the `1-norm of the optimal output.
Elsewhere in the literature, e.g., in [16], [27], [28], the `2-
norm of the output error is bounded in terms of the `1-
norm of the optimal error, a mixed-norm guarantee that is
somewhat stronger than the result we give here.

If the measurement matrix is a random Gaussian matrix,
as in [16], [27], [28], the measurement matrix distribution
is invariant under unitary transformations. It follows that
such algorithms support recovery of signals that are sparse
in a basis unknown at measurement time. That is, one can
measure a signal f∗ as V = Φf∗. Later, one can decide that
f∗ can be written as f∗ = Sf , where S is an arbitrary unitary
matrix independent of Φ and f is a noisy sparse vector of
the form discussed above. Thus V = (ΦS)f , where ΦS is
Gaussian, of the type required by the recovery algorithm.
Thus, given V,Φ, and S, the algorithms of [16], [27], [28]
can recover f .

If the matrix S is known at measurement time, our
algorithm can substitute ΦS for Φ at measurement time
and proceed without further changes. If S is unknown at
measurement time, however, our algorithm breaks down.
But note that an important point of our algorithm is to
provide decoding in time m polylog(d), which is clearly
not possible if the decoding process must first read an
arbitrary unitary d-by-d matrix S. Once a proper problem
has been formulated, it remains interesting and open whether
sublinear-time decoding is compatible with basis of sparsity
unknown at measurement time.
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