ALGORITHMIC LINEAR DIMENSION REDUCTION
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ABSTRACT. We can recover approximately a sparse signal with limited noise, i.e, a vector of length
d with at least d — m zeros or near-zeros, using little more than mlog(d) nonadaptive linear mea-
surements rather than the d measurements needed to recover an arbitrary signal of length d. Several
research communities are interested in techniques for measuring and recovering such signals and a
variety of approaches have been proposed. We focus on two important properties of such algorithms.

e Uniformity. A single measurement matrix should work simultaneously for all signals.

e Computational Efficiency. The time to recover such an m-sparse signal should be close to

the obvious lower bound, mlog(d/m).
To date, algorithms for signal recovery that provide a uniform measurement matrix with approxi-
mately the optimal number of measurements, such as first proposed by Donoho and his collabora-
tors, and, separately, by Candes and Tao, are based on linear programming and require time poly(d)
instead of m polylog(d). On the other hand, fast decoding algorithms to date from the Theoretical
Computer Science and Database communities fail with probability at least 1/ poly(d), whereas we
need failure probability no more than around 1/d™ to achieve a uniform failure guarantee.

This paper develops a new method for recovering m-sparse signals that is simultaneously uniform
and quick. We present a reconstruction algorithm whose run time, O(mlog?(m)log?(d)), is sublinear
in the length d of the signal. The reconstruction error is within a logarithmic factor (in m) of the
optimal m-term approximation error in ;. In particular, the algorithm recovers m-sparse signals
perfectly and noisy signals are recovered with polylogarithmic distortion. Our algorithm makes
O(mlog?(d)) measurements, which is within a logarithmic factor of optimal. We also present a
small-space implementation of the algorithm.

These sketching techniques and the corresponding reconstruction algorithms provide an algo-
rithmic dimension reduction in the ¢; norm. In particular, vectors of support m in dimension d
can be linearly embedded into O(mlog?d) dimensions with polylogarithmic distortion. We can
reconstruct a vector from its low-dimensional sketch in time O(mlog®(m)log?(d)). Furthermore,
this reconstruction is stable and robust under small perturbations.

1. INTRODUCTION

We say that a metric space (X, dx) embeds into a metric space (Y, dy) with distortion D if there
are positive numbers A, B such that B/A < D and a map ® : X — Y such that

Adx(z,y) < dy(®(z), ®(y)) < Bdx(z,y) forall z,y € X. (1.1)
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A fundamental problem is to understand when a finite metric space, which is isometrically em-
bedded in some normed space X, admits a dimension reduction; i.e., when we can embed it in
an appropriate normed space Y of low dimension. Dimension reduction techniques enjoy a wide
variety of algorithmic applications, including data stream computations [CM03, GGIT02a] and ap-
proximate searching for nearest neighbors [IN05] (to cite just a few). The dimension reduction
result of Johnson and Lindenstrauss [JL84] is a fundamental one. It states that any set of N points
in /5 can be embedded in ¢§ with distortion (1 + €) and where the dimension n = O(log(N)/€?).
A similar problem in the ¢; space had been a longstanding open problem; Brinkman and
Charikar [BCO03] solved it in the negative (see another example in [NLO4]). There exists a set
of N points in ¢; such that any embedding of it into ¢} with distortion D requires n = N Q(/D?%)
dimensions. Thus, a dimension reduction in ¢; norm with constant distortion is not possible. How-
ever, it is well known how to do such a dimension reduction with a logarithmic distortion. One
first embeds any N-point metric space into ¢, with distortion O(log V) using Bourgain’s theorem
[Bou85], then does dimension reduction in ¢» using Johnson-Lindenstrauss result [JL84], and finally
embeds ¢3 into /2" with constant distortion using Kashin’s theorem ([Kas77], see Corollary 2.4 in
[Pis89]). For linear embeddings ®, even distortions of polylogarithmic order are not achievable.
Indeed, Charikar and Sahai [CS02] give an example for which any linear embedding into ¢} incurs
a distortion Q(1/N/n).
Two fundamental questions arise from the previous discussion.
(1) What are spaces for which a dimension reduction in the ¢; norm is possible with constant
distortion?
(2) What are spaces for which a linear dimension reduction in the ¢; norm is possible with
constant or polylogarithmic distortion?

One important space which addresses question (2) positively consists of all vectors of small
support. Charikar and Sahai [CS02] prove that the space of vectors of support m in dimension
d can be linearly embedded into ¢} with distortion 1 + e with respect to the ¢; norm, where
n = O((m/e)?logd) (Lemma 1 in [CS02]). They do not, however, give a reconstruction algorithm
for such signals and their particular embedding does not lend itself to an efficient algorithm.

The main result of our paper in an algorithmic linear dimension reduction for the space of vectors
of small support. The algorithm runs in sublinear time and is stable.

Theorem 1. Let Y be a set of points in R% endowed with the {1 norm. Assume that each point
has non-zero coordinates in at most m dimensions. Then these points can be linearly embedded
into L1 with distortion O(log?(d)log3(m)), using only O(mlog®d) dimensions. Moreover, we can
reconstruct a point from its low-dimensional sketch in time O(mlog?(m)log?(d)).

This dimension reduction reduces the quadratic order of m in [CS02] to a linear order. Our
embedding does, however, incur a distortion of polylogarithmic order. In return for this polyloga-
rithmic distortion, we gain an algorithmic linear dimension reduction—there exists a sublinear time
algorithm that can reconstruct every vector of small support from its low-dimensional sketch.

The space of vectors of support m in dimension d is a natural and important space as it models
closely the space of compressible signals. A compressible signal is a long signal that can be rep-
resented with an amount of information that is small relative to the length of the signal. Many
classes of d-dimensional signals are compressible, e.g.,

e The m-sparse class By(m) consists of signals with at most m nonzero entries.
e For 0 < p < 1, the weak /), class Byeak-p(r) contains each signal f whose entries, sorted by
decaying magnitude, satisfy |f](i) < i p.
These types of signals are pervasive in applications. Natural images are highly compressible, as are

audio and speech signals. Image, music, and speech compression algorithms and coders are vital
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pieces of software in many technologies, from desktop computers to MP3 players. Many types of
automatically-generated signals are also highly redundant. For example, the distribution of bytes
per source IP address in a network trace is compressible—just a few source IP addresses send the
majority of the traffic.

One important algorithmic application of our dimension reduction is the reconstruction of com-
pressible signals. This paper describes a method for constructing a random linear operator ® that
maps each signal f of length d to a sketch of size O(mlog®d). We exhibit an algorithm called
Chaining Pursuit that, given this sketch and the matrix ®, constructs an m-term approximation
of the signal with an error that is within a logarithmic factor (in m) of the optimal m-term approx-
imation error. A compressible signal is well-approximated by an m-sparse signal so the output of
Chaining Pursuit is a good approximation to the original signal, in addition to being a compressed
represention of the original signal. Moreover, this measurement operator succeeds simultaneously
for all signals with high probability. In manyof the above application settings, we have resource-
poor encoders which can compute a few random dot products with the signal but cannot store
the entire signal nor take many measurements of the signal. The major innovation of this result is
to combine sublinear reconstruction time with stable and robust linear dimension reduction of all
compressible signals.

Let f,, denote the best m-term representation for f; i.e., f,, consists of f restricted to the m
positions that have largest-magnitude coeflicients.

Theorem 2. With probability at least (1 — O(d~3)), the random measurement operator ® has the
following property. Suppose that f is a d-dimensional signal whose best m-term approximation with
respect to €1 norm is fn. Given the sketch V.= ®f of size O(mlog?(d)) and the measurement
matrixz ®, the Chaining Pursuit algorithm produces a signal f with at most m nonzero entries. The
output f satisfies

If = fllh <C(1+logm)||f = fm),- (1.2)
In particular, if f, = f, then also f: f. The time cost of the algorithm is O(mlog®(m)log?(d)).

Corollary 3. The factor logm is intrinsic to this approach. However, the proof gives a stronger
statement—the approzimation in the weak-1 norm without that factor: || f— f|lweak—1 < C||f— fmll1-
This follows directly from the definition of the weak norm and our proof, below.

Corollary 4. Our argument shows that the reconstruction fis not only stable with respect to noise
in the signal, as Equation (1.2) shows, but also with respect to inaccuracy in the measurements.
Indeed, a stronger inequality holds. For every V (not necessarily the sketch ®f of f) if ]? is the
reconstruction from V' (not necessarily from ®f), we have

1 = Flls < €O +logm)(I1f = fulls + 19 = V1)

1.1. Related Work. The problem of sketching and reconstructing m-sparse and compressible
signals has several precedents in the Theoretical Computer Science literature, especially the paper
[CMO3] on detecting heavy hitters in nonnegative data streams and the works [GGIT02b, GMS05]
on Fourier sampling. More recent papers from Theoretical Computer Science include [CMO05,
CRTVO05]. Sparked by the papers [Don04] and [CT04], the computational harmonic analysis and
geometric functional analysis communities have produced an enormous amount of work, including
[CRT04, Don05, DT05, CT05, RV05, TG05, MPTJ05].

Most of the previous work has focused on a reconstruction algorithm that involves linear pro-
gramming (as first investigated and promoted by Donoho and his collaborators) or second-order
cone programming [Don04, CT04, CRTV05]. The authors of these papers do not report computa-
tion times, but they are expected to be cubic in the length d of the signal. This cost is high, since
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we are seeking an approximation that involves O(m) terms. The paper [TG05] describes another
algorithm with running time of order O(m?dlogd), which can be reduced to O(mdlogd) in certain
circumstances. None of these approaches is comparable with the sublinear algorithms described
here.

There are a few sublinear algorithms available in the literature. The Fourier sampling paper
[GMS05] can be viewed as a small space, sublinear algorithm for signal reconstruction. Its primary
shortcoming is that the measurements are not uniformly good for the entire signal class. The recent
work [CMO05] proposes some other sublinear algorithms for reconstructing compressible signals. Few
of these algorithms offer a uniform guarantee. The ones that do require more measurements—
O(m?log d) or worse—which means that they are not sketching the signal as efficiently as possible.

Table 1 compares the major algorithmic contributions. Some additional comments on this table
may help clarify the situation. If the signal is f and the output is f, let E = E(f) = f — f denote
the error vector of the output and let Eqn = Eopt(f) = f — fm denote the error vector for the
optimal output. Also, let Copy = Copt(f) denote maxy Eqpi(g), where g is the worst possible signal
in the class where f lives.

1.2. Organization. In Section 2, we provide an overview of determining a sketch of the signal f.
In Section 3, we give an explicit construction of a distribution from which the random linear map ®
is drawn. In Section 4, we detail the reconstruction algorithm, Chaining Pursuit, and in Section 5
we give an analysis of the algorithm, proving our main result. In Section 6 we use our algorithmic
analysis to derive a dimension reduction in the ¢; norm for sparse vectors.

2. SKETCHING THE SIGNAL

This section describes a linear process for determining a sketch V of a signal f. Linearity
is essential for supporting additive updates to the signal. Not only is this property important
for applications, but it arises during the iterative algorithm for reconstructing the signal from
the sketch. Linearity also makes the computation of the sketch straightforward, which may be
important for modern applications that involve novel measurement technologies.

2.1. Overview of sketching process. We will construct our measurement matrix by combining
simple matrices and ensembles of matrices. Specifically, we will be interested in restricting a signal
f to a subset A of its d positions and then restricting to a smaller subset B C A, and it will be
convenient to analyze separately the two stages of restriction. If P and @) are 0-1 matrices, then
each row P; of P and each row @Q); of @ restricts f to a subset by multiplicative action, F; f and Q; f,
and sequential restrictions are given by F;Q,f = Q;F;f. We use the following notation, similar
to [CMO5].

Definition 5. Let P be a p-by-d matriz and Q a q-by-d matriz, with rows {P; : 0 < i < p} and
{Q; : 0 <j < q}, respectively. The row tensor product S = P®,Q of P and Q is a pg-by-d matriz
whose rows are {P;Q; : 0 < i <p, 0 <j < q}, where P;Q; denotes the componentwise product of
two wvectors of length d.

The order of the rows in P®,() will not be important in this paper. We will sometimes index
the rows by the pair (i,7), where 7 indexes P and j indexes @, so that P®,Q applied to a vector
x yields a ¢ X p matrix.

Formally, the measurement operator ® is a row tensor product ® = BR,A. Here, A is a
O(mlogd) x d matrix called the isolation matriz and B is a O(log d) x d matrix called the bit test
matriz. The measurement operator applied to a signal f produces a sketch V' = ® f which we can
regard as a matrix with dimensions O(mlogd) x O(logd). Each row of V' as a matrix contains the
result of the bit tests applied to a restriction of the signal f by a row of A. We will refer to each
row of the data matrix as a measurement of the signal.

4



0-31q ssaxddns ap\ "peetIeso Jourtw snyd ‘sejqerres (pui)@ Yim urerold IeaUI] B SAJOS O} POPAIT SOOINOSAI S9IOULD (Put)d] ‘OA0(Y :S9I0N

BUISULS poassoIduoo 10J SPMNSaI OTWILIOZ e Jo uostredwo)) "1 d14V ],

"AN[IqI39] 10J UOIIRIOU

P 5 eSo1w p 801 P o801 °|| || = || ON Lrexyqry | [90ND)] Burgsey dnoax)
[S0SID “420+1DD)

p SojA1od w p SojA1od w p SojA1od w ¢ (o = ¢ |l ON Arerynqay Surpdures 1o1MO,]
Hrea || (w)Bor S Y|z [90ALSD]

p Sow p So1p p 8o w Hpdog || = ||| | osex Areryiqry ymsm g Sururey)
[90add ‘90AY ‘FOLD)

(reotnduo) pBorp | p Sopw p ,Sopw HPpdom || g S Clla | sk Areryqry 101MO,] + U 1y
[90add 7oLD)]

(pu)dT (w/p)Sorp | (w/p)Sorw | '|Mog|yw S E||g]l | sex Arenyqry ssnen + ‘um 1y

P 801 a1 w p 3o 4=y P 801 a1 w QN__EoO:D S °|a| SOk 4y speom | [90ND)] Sursey dnor)
P ,80] gt (w/p)Bor w P ,80] Jut I0LId ON SOx osreds-w | [9o]ND] Sursey dnoir)
[90La ‘coLa ‘9oue]

(pw)d1 (pw)5 ULIOJ POsO[d ON IOI119 ON SOx osreds-w ssnen) + -urw Ty

p 801w p 301 p 801w IOLId ON ON esreds-w | [9o]ND] Surysey dnoixr)

p Sorp p 8o pws p Sopw JOLIO ON ON esreds-w | [g0DHI] ssnen + JINO
QUII) 9POII(T 28e109G SJUOUISINSRIN F# ‘Pq 1011 ULIOJTU() | Sse[)) [euSlg | sooueIofay ‘yoeorddy




2.2. The isolation matrix. The isolation matrix A is a 0-1 matrix with dimensions O(mlogd) xd
and a hierarchical structure. Let a be a sufficiently large constant, to be discussed in the next two
sections. The Chaining Pursuit algorithm makes K = 1 + log, m passes (or “rounds”) over the
signal, and it requires a different set of measurements for each pass. The measurements for the kth
pass are contained in the O(mklog(d)/2¥) x d submatrix A*). During the kth pass, the algorithm
performs T, = O(klogd) trials. Each trial ¢ is associated with a further submatrix Agk), which has
dimensions O(m/2¥) x d.
In summary,

AW R
A® AW
A= where Ak — 2
k
| A0 | | 4y

Each trial submatrix Agk) encodes a random partition of the d signal positions into O(m/2¥)
subsets. That is, each signal position is assigned uniformly at random to one of O(m/2F) subsets.
So the matrix contains a 1 in the (7, j) position if the jth component of the signal is assigned to
subset ¢. Therefore, the submatrix A%k) is a 0-1 matrix in which each column has exactly one 1,
e.g.,

01 00110
AP =11 001000
001 0001
The trial submatrix can also be viewed as a random linear hash function from a space of d keys

onto a set of O(m/2¥) buckets.

2.3. The bit test matrix. Formally, the matrix B consists of a row e of 1’s and other rows given
by a 0-1 matrix By, which we now describe. The matrix By has dimensions log,[d]| x d. The ith
column of By is the binary expansion of 7. Therefore, the componentwise product of the ¢th row of
By with f yields a copy of the signal f with the components that have bit ¢ equal to one selected
and the others zeroed out.

An example of a bit test matrix with d = 8 is

—_ = =

B:

o O Ol
= O Ol
O = O
— = O
O O =
=
o

==

2.4. Storage costs. The bit test matrix requires no storage. The total storage for the isolation
matrix is O(dlogd). The space required for the isolation matrix is large, but this space can
conceivably be shared among several instances of the problem. In Section 3, we give an alternate
construction in which a pseudorandom isolation matrix is regenerated as needed from a seed of
size mlogz(d); in that construction only the seed needs to be stored, so the total storage cost is
mlog?(d).

2.5. Encoding time. The time cost for measuring a signal is O(log?(m)log?(d)) per nonzero

component. This claim follows by observing that a single column of A contains O(log?(m)log(d))

nonzero entries, and we must apply A to each of O(logd) restrictions of the signal—one for each

row of B. Note that this argument assumes random access to the columns of the isolation matrix.

We will use this encoding time calculation when we determine the time costs of the Chaining

Pursuit algorithm. In Section 3, we give an alternative construction for A that reduces the storage
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requirements at the cost of slightly increased time requirements. Nevertheless, in that construction,
any m columns of A can be computed in time m°®) each, where o(1) denotes a quantity that tends
to 0 as both m and d get large. This gives measurement time m°®) per nonzero component.

3. SMALL SPACE CONSTRUCTION

We now discuss a small space construction of the isolation matrix, A. The goal is to specify
a pseudorandom matrix A from a small random seed, to avoid the Q(dlogd) cost of storing A
explicitly. We then construct entries of A as needed, from the seed. If we were to use a standard
pseudorandom number generator without further thought, however, the time to construct an entry
of A might be (m), compared with O(1) for a matrix that is fully random and explicitly stored.
We will give a construction that addresses both of these concerns.

As discussed in Section 2.2, the matrix A consists of polylog(d) submatrices that are random
partitions of the d signal positions into O(my) subsets. In this section, we give a new construction
for each submatrix; the submatrices fit together to form A in the same way as in Section 2.2. We
will see from the analysis in Section 5, the partition map of each random submatrix need only be
my-wise independent; full independence is not needed as we need only control the allocation of my
spikes into measurements in each submatrix. It follows that we need only construct a family of d
random variables that are m-wise independent and take values in {0, ...,r—1} for any given r < d.
Our goal is to reduce the storage cost from O(dlogd) to m polylog(d) without unduly increasing
the computation time. It will require time Q(m) to compute the value of any single entry in the
matrix, but we will be able to compute any submatrix of m columns (which is all zeros except for
one 1 per column) in total time m polylog(d). That is, the values of any m random variables can be
computed in time m polylog(d). As in Theorem 22 below, our construction will be allowed to fail
with probability 1/d3, which will be the case. (Note that success probability 1 — e~¢m1°84 ig not
required.) Our construction combines several known constructions from [AHU83, CLRS01]. For
completeness, we sketch details.

3.1. Requirements. To ease notation, we consider only the case of m; = m. Our goal is to
construct a function fg : {0,...,d—1} — {0,...,r—1}, where s is a random seed. The construction
should “succeed” with probability at least 1 — 1/d3; the remaining requirements only need to hold
if the construction succeeds. The function should be uniform and m-wise independent, meaning,
for any m distinct positions 0 <iy,...,%4, < d and any m targets t1,..., ¢, we have

Ps(Vj falij) = tj) =™,
though the distribution on m + 1 random variables may otherwise be arbitrary. Finally, given any
list A of m positions, we need to be able to compute {f(j) : 7 € A} in time m polylog(d).

3.2. Construction. Let s = (s, s1,...,Sk) be a sequence of K < O(logd) independent, identi-
cally distributed random bits. Let p be a prime with p > 2r and d < p < poly(d). Define the map
gk Zy, — Zy, which uses the kth element s; from the seed s and maps j € Z,, uniformly at random
to a point g¥(j) € Zy,. The map g¥ is a random polynomial of degree m — 1 over the field with p
elements. If

0<92(5) <rlp/r],
where 7|p/r]| represents the largest multiple of r that is at most p, then define

fs(3) = LasG)r/p) = h(gJ(5))-
The function h : {0,...,r|p/r| —1} — {0,...,r — 1} is a function that is exactly |[p/r|-to-1. If
g%(j) > r|p/r], then we map j to Z, by gl(j), that is independent of ¢° and identically distributed.
We repeat the process until j gets mapped to {0,...,r|p/r| — 1} or we exhaust K < O(logd)

repetitions. For computational reasons, for each k, we will compute g¥ at once on all values in a list
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A of m values and we will write g¥(A) for the list {g¥(j)|j € A}. Figure 1 gives a formal algorithm.

FiGURE 1. Top-level description of m-wise independent random variables.
Algorithm: Hashing

Parameters: m,7,d, K
Input: List A of m values in Z,; pseudorandom seed s.
Output: List B of m values in {0,...,r — 1}, representing (fs(j):j € A).
Compute g¥(A) for k=0,1,2,...,K —1.
If for some j € A, for all k< K, we have g*(j) > r|p/r|, then FAIL
For je A
kj = min{k : g3(j) < r|p/r]}
fod) = 6¥" ).

3.3. Correctness.

Lemma 6. Our construction of fs : {0,...,d —1} — {0,...,7 — 1} produces a uniform m-wise
independent partition with probability at least 1 — d 3.

Proof. The proof of the correctness of our construction is a standard argument, which we sketch for
completeness. First, there is a prime p with d < p < poly(d). Next, let us consider the construction
of g¥. Because the definition of g* is independent of k, we drop the s and k and write g for
simplicity. Because g is a random polynomial of degree m — 1 over the field of p elements, we can
view the construction of g as the multiplication of a vector ¢ of length m (the coefficients of g) by
the Vandermonde matrix

111 1 - 1
01 2 3 «—+ p—1
V=10 1 22 32 ... (p—1)?

Thus we obtain ¢V = (¢(0),g(1),...,9(p — 1)). If A is a list of m positions, then g(A) is cVa,
where Vy is the submatrix of V' gotten by selecting columns according to A. Since V is a square
vandermonde matrix over a field, it is invertible. It follows that, as ¢ varies, cV4 varies over all of
Z,', hitting each element exactly once.

Next, g(j) > r|p/r] with probability at most r/p < 1/2. It follows that, for some k < K, we
have, with probability at least 1 — 275 that g(j) < r|p/r]. For sufficiently large K < O(logd),
the probability is at least 1 — 1/d*. Taking a union bound over all d possible j’s, the construction
succeeds with probability at least 1 — 1/d5.

It is easy to check that, by construction, fs(A) is uniform on {0,...,7 — 1} conditioned on the
construction succeeding. ([l

3.4. Efficiency.

Lemma 7. Given an arbitrary set A of m positions in Z, and a degree m — 1 polynomial g, we
can evaluate g on A in time O(m poly log(d)).



Proof. Evaluating g on the set A is known as the multipoint polynomial evaluation (MPE) problem.
We recall that the MPE problem can be reduced to polylog(m) polynomial multiplications [AHU83]
and that we can multiply polynomials efficiently using the FFT algorithm. We observe that the
time to multiply polynomials in m polylog(d) as we may multiply polynomials by convolving their
coefficients (via the FFT algorithm) over C and then quantizing and reducing modulo p the result.
We note that arithmetic modulo p take time at most polylog(d).

Let us now review the MPE problem. Recall that we wish to evaluate g on the set A, g(A).
The evaluation of g(z) at some point x = ¢ is equivalent to finding ¢ mod (z — t), since we can
write g(z) = gq(z)(x — t) + r by the division theorem. To compute the quotients ¢ mod (z — a
for each a € A, let us assume that |A| is a power of 2 (padding if necessary), then we order
A = {a;} arbitrarily and form a binary tree in which the k’th node at depth j corresponds to
the subset A, = {a; : km/2? < i < (k+ 1)m/2/} C A. Once we have formed the binary tree,
we compute the polynomials p; ;(x) = HieAi k(:z: — a;) at each node. We also define g;; at each
node by g;r = g mod pji. Our goal is to cdmpute Ggm,k = g mod pigpm i for all k, i.e., reduce
g modulo each polynomial in a leaf of the tree. To do this, we start with g = goo = g mod po,
i.e., g mod the root polynomial. From g;; we form the two children, g;i1ox = g;r mod p; 12k
and gj41,2k+1 = g5k mod pji12x+1. Note that, at depth j, we have 2J polynomials g of degree
m/27 — 1 and pj;, of degree m/27.

We form the tree of p;.’s in a straightforward fashion, using the FFT algorithm to multiply
polynomials. Multiplying a pair of polynomials at depth j takes time m/27 polylog(d) and there
are O(27) such problems, for total time m polylog(d) at depth j, and total time m polylog(d) in
aggregrate over all O(logm) levels.

It remains to show how to reduce a polynomial g of degree 2n — 1 by a polynomial ¢ of degree n
in time n polylog(d). First, we reduce 212" for all k = 0,1,2,...,lg(n). Suppose we have done
the reduction for for 2™,z +1, g +3 2 +7 . 2n=142"7' We claim that we can then reduce any
polynomial h of degree n — 1 + 2¥ by ¢ in time n polylog(d). To see this, write

h(z) = x”_1+2k71h'(x) +h'(x),

where h' has degree 281 and h” has degree n — 1 + 28=1. Then, multiply z"+2°"'~1 mod ¢ by A’
and obtain a polynomial & of degree n — 1 + 28! which we add to h”. This reduces the problem
for a polynomial of degree n — 14 2* to a polynomial of degree n — 1 + 2¥~1 in time n polylog(d).
Let us perform this reduction k£ < lg(n) times so that we have a polynomial h of degree n. Once
we obtain h, we can reduce this polynomial directly, by writing h(x) = 2™k’ + h”(x), where I’ is
constant and h” has degree n — 1, and then adding A’ times 2™ mod ¢ to h”.

The above discussion for a polynomial h of degree n — 1 + 2¥ holds in particular if h(z) =
x”_1+2k; it follows by induction that we can reduce 22 =1 for all k = 0,1,2,...,lg(n) — 1 in time
npolylog(d). Finally, we apply the above again to reduce our arbitrary polynomial g. O

We note that we can find a suitable prime p in time poly(d) by testing all numbers from d to
poly(d). This is a preprocessing step and the time does not count against the claimed measure-
ment time of dpolylog(d) or claimed decoding time of m polylog(d) our algorithm. (In fact, time
polylog(d) suffices to find a prime.) We omit details.

From the preceding lemmas, we conclude:

Theorem 8. There is an implementation of the Chaining Pursuit algorithm that runs in time
mpolylog(d) and requires total storage mlog(d) numbers bounded by poly(d) (i.e., O(logd) bits).
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FicURE 2. Chaining Pursuit algorithm

Algorithm: Chaining Pursuit

Inputs: Number m of spikes, the sketch V', the isolation matrix A
Output: A list of m spike locations and values

For each pass k=0,1,...,log, m:
For each trial t=1,2,...,0(klogd):
For each measurement n = 1,...,0(m/2¥)
Use bit tests to identify the spike position
Use a bit test to estimate the spike magnitude
Retain my distinct spikes with values largest in magnitude
Retain spike positions that appear in more than 9/10 of trials
Estimate final spike sizes using medians
Encode the spikes using the measurement operator
Subtract the encoded spikes from the sketch
Return the signal consisting of the m largest retained spikes.

4. SIGNAL APPROXIMATION WITH CHAINING PURSUIT

Suppose that the original signal f is well-approximated by a signal with m nonzero entries
(spikes). The goal of the Chaining Pursuit algorithm is to use a sketch of the signal to obtain
a signal approximation with no more than m spikes. To do this, the algorithm first finds an
intermediate approximation g with possibly more than m spikes, then returns g,,, the restriction
of g to the m positions that maximize the coefficient magnitudes of g. We call the final step of
the algorithm the pruning step. The algorithm without the pruning step will be called Chaining
Pursuit Proper; we focus on that until Section 5.4.

The Chaining Pursuit Proper algorithm proceeds in passes. In each pass, the algorithm recovers
a constant fraction of the remaining spikes. Then it sketches the recovered spikes and updates
the data matrix to reflect the residual signal—the difference between the given signal and the
superposition of the recovered spikes. After O(logm) passes, the residual has no significant entries
remaining.

The reason for the name “Chaining Pursuit” is that this process decomposes the signal into
pieces with supports of geometrically decreasing sizes. It resembles an approach in analysis and
probability, also called chaining, that is used to control the size of a function by decomposing it
into pieces with geometrically decreasing sizes. A famous example of chaining in probability is to
establish bounds on the expected supremum of an empirical process [Tal05]. For an example of
chaining in Theoretical Computer Science, see [INO5].

4.1. Overview of Algorithm. The structure of the Chaining algorithm is similar to other sub-
linear approximation methods described in the literature [GGIT02b]. First, the algorithm identifies
spike locations and estimates the spike magnitudes. Then it encodes these spikes and subtracts
them from the sketch to obtain an implicit sketch of the residual signal. These steps are repeated
until the number of spikes is reduced to zero. The number a that appears in the statement of the
algorithm is a sufficiently large constant that will be discussed further in Section 5 and the quantity
my, is m/a®. Pseudocode is given in Figure 2.
10



4.2. Implementation. Most of the steps in this algorithm are straightforward to implement using
standard abstract data structures. The only point that requires comment is the application of bit
tests to identify spike positions and values.

Recall that a measurement is a row of the sketch matrix, which consists of logy[d] + 1 numbers:

[5(0) b(1) ... bllogy[d] —1)|c].

The number c¢ arises from the top row of the bit test matrix. We obtain an (estimated) spike
location from these numbers as follows. If |b(i)] > |c — b(i)|, then the ith bit of the location is
zero. Otherwise, the ith bit of the location is one. To estimate the value of the spike from the
measurements, we use c.

Recall that each measurement arises by applying the bit test matrix to a copy of the signal
restricted to a subset of its components. It is immediate that the estimated location and value are
accurate if the subset contains a single large component of the signal and the other components
have smaller /1 norm.

We encode the recovered spikes by accessing the columns of the isolation matrix corresponding
to the locations of these spikes and then performing a sparse matrix-vector multiplication. Note
that this step requires random access to the isolation matrix.

4.3. Storage costs. The primary storage cost derives from the isolation matrix A. Otherwise,
the algorithm requires only O(mlogd) working space.

4.4. Time costs. During pass k, the primary cost of the algorithm occurs when we encode the
recovered spikes. The number of recovered spikes is at most O(m/a¥), so the cost of encoding these
spikes is O(ma~*log?(m)log?(d)). The cost of updating the sketch is the same. Summing over all
passes, we obtain O(mlog®(m)log?(d)) total running time.

5. ANALYSIS OF CHAINING PURSUIT

This section contains a detailed analysis of the Chaining Pursuit Proper algorithm (i.e., Chaining
Pursuit without the final pruning step), which yields the following theorem. Fix an isolation matrix
A which satisfies the conclusions of Condition 30 in the sequel and let ® = A®, B, where B is a
bit test matrix.

Theorem 9 (Chaining Pursuit Proper). Suppose that f is a d-dimensional signal whose best m-
term approzimation with respect to €1 norm is fp,. Given the sketch V. = ®f and the matric
®, Chaining Pursuit Proper produces a signal f with at most O(m) nonzero entries. This signal
estimate satisfies

17 =71l =+ Clogm)||f = ful-
In particular, if f., = f, then also f: f.

5.1. Overview of the analysis. Chaining Pursuit Proper is an iterative algorithm. Intuitively,
at some iteration k, we have a signal that consists of a limited number of spikes (positions whose
coefficient is large) and noise (the remainder of the signal). We regard the application of the isolation
matrix A as repeated trials of partitioning the d signal positions into ©(my,) random subsets, where
my, is approximately the number of spikes, and approximately the ratio of the 1-norm of the noise
to the magnitude of spikes. There are two important phenomena:

e A measurement may have exactly one spike, which we call isolated.
e A measurement may get approximately its fair share of the noise—approximately the frac-
tion 1/p if p is the number of measurements.
11



If both occur in a measurement, then it is easy to see that the bit tests will allow us to recover
the position of the spike and a reasonable estimate of the coefficient (that turns out to be accurate
enough for our purposes). With high probability, this happens to many measurements.

Unfortunately, a measurement may get zero spikes, more than one spike, and/or too much noise.
In that case, the bit tests may return a location that does not correspond to a spike and our
estimate of the coefficient may have error too large to be useful. In that case, when we subtract the
“recovered” spike from the signal, we actually introduce additional spikes and internal noise into
the signal. We bound both of these phenomena. If we introduce a false spike, our algorithm has
a chance to recover it in future iterations. If we introduce a false position with small magnitude,
however, our algorithm may not recover it later. Thus the internal noise may accumulate and
ultimately limit the performance of our algorithm—this is the ultimate source of the logarithmic
factor in our accuracy guarantee.

In pass k = 0, the algorithm is working with measurements of the original signal f. This signal
can be decomposed as f = f,, + w, where f,, is the best m-term approximation of f (spikes)
and w is the remainder of the signal, called external noise. If w = 0, the analysis becomes quite
simple. Indeed, in that case we exactly recover a constant fraction of spikes in each pass; so we will
exactly recover the signal f in O(logm) passes. In this respect, Chaining is superficially similar to,
e.g., [GGIT02b]. An important difference is that, in the analysis of Chaining pursuit, we exploit
the fact that a fraction of spikes is recovered except with probability exponentially small in the
number of spikes; this lets us unite over all configurations of spike positions and, ultimately, to get
a uniform failure guarantee.

The major difficulty of the analysis here concerns controlling the approximation error from
blowing up in a geometric progression from pass to pass. More precisely, while it is comparatively
easier to show that, for each signal, the error remains under control, providing a uniform guarantee—
such as we need—is more challenging. In presence of the external noise w # 0, we can still recover a
constant fraction of spikes in the first pass, although with error whose £; norm is proportional to the
£1 norm of the noise w. This error forms the “internal noise”, which will add to the external noise
in the next round. So, the total noise doubles at every round. After the log, m rounds (needed to
recover all spikes), the error of recovery will become polynomial in m. This is clearly unacceptable:
Theorem 9 claims the error to be logarithmic in m.

This calls for a more delicate analysis of the error. Instead of adding the internal noise as a
whole to the original noise, we will show that the internal noise spreads out over the subsets of
the random partitions. So, most of the measurements will contain a small fraction of the internal
noise, which will yield a small error of recovery in the current round. The major difficulty is to
prove that this spreading phenomenon is uniform—one isolation matrix spreads the internal noise
for all signals f at once, with high probability. This is a quite delicate problem. Indeed, in the last
passes a constant number of spikes remain in the signal, and we have to find them correctly. So, the
spreading phenomenon must hold for all but a constant number of measurements. Allowing so few
exceptional measurements would naturally involve a very weak probability of such phenomenon to
hold. On the other hand, in the last passes the internal noise is very big (having accumulated in
all previous passes). Yet we need the spreading phenomenon to be uniform in all possible choices
of the internal noise. It may seem that the weak probability estimates would not be sufficient to
control a big internal noise in the last passes.

We will resolve this difficulty by doing “surgery” on the internal noise, decomposing it in pieces
corresonding to the previous passes, proving corresponding uniform probability estimates for each
of these pieces, and uniting them in the end. This leads to Condition 30, which summarizes the
needed properties of the isolation matrix.

12



The proof of Theorem 9 is by induction on the pass k. We will normalize the signal so that
|lw|l; = 1/(400000a). We will actually prove a result stronger than Theorem 9. The following is
our central loop invariant:

Invariant 10. In pass k, the signal has the form
k—1
A :sk—i-w—i-ZVj (5.1)
j=0
where sj, contains at most my, spikes, w = f — fn, is the external noise, and each vector v; is the
internal noise from pass j, which consists of 3m; or fewer nonzero components with magnitudes at
most 2/m;.

When we have finished with all passes (that is when k = 1+log, m), we will have no more spikes
in the signal (my = 0 thus s; = 0). This at once implies Theorem 9.

The proof that Invariant 10 is maintained will only use two properties of an isolation matrix,
given in Condition 30. While we only know how to construct such matrices using randomness, any
matrix satisfying these properties is acceptable. Section 5.2 will prove that Invariant 10 holds for any
matrix ® having the properties in Condition 30; Section 5.3 proves that most matrices (according
to the definition implicit in Section 2.2) satisfy these properties. Note that the conditions are given
in terms of matrix actions upon certain kinds of signals, but the conditions are properties only of
matrices.

Condition 11 (Chaining Recovery Conditions for Isolation Matrices). A 0-1 matriz with pass/trial
hierarchical structure described in Section 2.2 (i.e., any matriz from the sample space described in
Section 2.2) is said to satisfy the Chaining Recovery Conditions if for any signal of the form
in Invariant 10 and for any pass k, then at least 99/100 of the trial submatrices have these two
properties:

(1) All but ﬁmk+1 spikes appear alone in a measurement, isolated from the other spikes.

(2) Except for at most ﬁmkﬂ of the measurements, the internal and external noise assigned

to each measurement has £1 morm at most ﬁmlzl.

5.2. Deterministic Part.

In this section, we consider only matrices satisfying Condition 30. Proposition 12 considers
the performance of the algorithm in one of the 99/100 non-exceptional trials under an artificial
assumption that will be removed in Proposition 17. Following that, we consider the performance
of the combination of trials, prove that Invariant 10 is maintained, and conclude about the overall
performance of Chaining Pursuit Proper.

Proposition 12 (One Trial, No Inaccuracies). Suppose that a trial is not exceptional. Assume
that each measurement contains at most one spike and that the external noise in each measurement

is no greater than € = ﬁm;l. Then the trial constructs a list of at most my, spikes.

(1) If |f(k)(z)| > 2¢ then the list contains a spike with position i and estimated value f*)(i)+e.

(2) If the list contains a spike with position i and ’f(k) (z)’ < e, then the estimated value of the
spike is no more than 5¢ in magnitude.

We call list items that satisfy these estimates accurate.

Proof. To prove this proposition, we outline a series of lemmas. We begin with a simple observation
about the performance of the bit-tests.

Lemma 13. Assume that a measurement contains a position i of value p and that the {1 norm of
the other positions in the measurement is at most €. Then

(1) The estimated value pegt, is bounded by the total measurement; that is, |pest| < |p| + €.
13



(2) If |p| > 2¢, then the estimated position is i (i.e., the bit-test locates the position correctly)
and the estimated value is within € from p, |pest — p| < €.

Proof. Follows immediately from the definitions of the bit-tests and the estimation procedures. [

Let us set € = Wloom,;l and observe that # < W = €. Definition 31 establishes two
k—1 mg
criteria that most measurements satisfy. We refer to these two types as good measurements and
define them precisely.

Definition 14. A good measurement satisfies one of the following two criteria:

(1) The measurement is empty; that is, it contains positions with values ‘f(k) (i)| < € and the
total £1 norm of the positions in the measurement is less than 1.5¢.

(2) The measurement contains one spike at position i with {f(k) (z)’ > ¢ and the {1 norm of all
other positions in this measurement s less than 0.5¢.

The next lemma states that for good measurements, the bit-tests return reasonably accurate
estimates.

Lemma 15. Assume that a measurement is a good one. If the measurement is empty, then the
estimated value of f*) in that measurement is no more than 1.5¢. If the measurement contains one
spike, then the estimated position is the position of the spike and its estimated value is within 0.5¢
of the true value of the spike.

Proof. Follows from the definitions of good measurements and Lemma 13. 0

The next lemma follows from the previous argument and demonstrates that if the bit-tests
identify a spike position, they do so reasonably accurately and precisely.

Lemma 16. Assume that in a single measurement the bit-tests identify and estimate a spike at
position i and that the estimated value pegy is greater than 1.5¢, |pest| > 1.5€. Then the measurement
contains a spike at position i and the true value of p is within 0.5¢ of Pegt -

Strictly speaking, we perform multiple trials at each round k. We obtain, in a single trial, an
estimate position and its estimated value, which we call the preliminary estimated value for that
position. If, after performing all the trials, we have more than one preliminary estimated value
for an estimated position, we simply use the preliminary value with the largest absolute value as
the estimate assigned to this position. We then identify the my, positions with the largest assigned
estimates. A simple argument (which we omit here for brevity) demonstrates that the true value
p of a spike at position ¢ with [p| > 2¢ is assigned an estimate pest within 0.5¢ of p. Furthermore,
if the assigned estimate pes; of a spike at position ¢ satisfies |pest| > 1.5¢, then the true value p is
within 0.5€ of pest. To simplify our arguments in what follows, we simply refer to the estimated
values in one trial as the assigned estimate values, f*)(3).

With the above lemmas, we are able to complete the proof of the proposition. Our previous
discussion shows that those positions ¢ with ‘ ) (7,)‘ > ¢ include the positions with estimated
values larger than 1.5¢; i.e.,

{i ‘ 10 ()] > 1.56} c {z‘ 10 ()] > e}.
Our inductive hypothesis assumes that there are at most my positions in the right set above, so
there are at most my, positions in the left set as well. Our algorithm (for one trial) identifies all
of these positions and reports estimated values that are within 0.5¢ of the true values. Hence, our
list of identified positions includes those ¢ with ! f) (z)’ > 2¢. If a position 7 is identified and if

| f) (z)‘ < 4e, the its estimated value is at most 5e¢ in magnitude by the previous lemmas. This

proves the proposition. N
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The next proposition removes the artificial assumption on the spikes and noise.

Proposition 17 (One Trial). Suppose that the trial is not an exceptional trial. In this trial, suppose
each measurement is a good one, except for at most %mk+1. Then the trial constructs a list of at

most my, spikes. All items in the list are accurate, except at most 5—30mk+1.

Proof. We begin the proof with a lemma that shows the list produced by the algorithm is stable
with respect to changes in a few measurements.

Lemma 18. Assume that we perform one trial of the algorithm with two different signals and that
their measurements (in this one trial) are identical except for b measurements. Then the estimated
stgnals are identical except in 2b positions.

Proof sketch. Prove this for b = 2 and then proceed by induction. O

Let us now consider the set of fewer than 2 £gMk+1 bad measurements and set to zero the signal
positions that fall into these measurements. ThlS procedure creates two signals: the original signal
and the restricted signal (with zeroed out positions). The restricted signal satisfies the conditions
in Proposition 12 so all its measurements are good ones and agree with those of the original signal
except for 5—10mk+1 measurements. The previous lemma guarantees that the estimated signals for
the original and restricted signals are identical in all but %mk_i'_l positions. By our inductive
hypothesis, there are at most %mkﬂ positions of the original signal with value greater than 2e
in the exceptional measurements. Let us gather these 2—15mk+1 and %mkﬂ exceptional positions
into one set of %mk+1 exceptions. It is straightforward to show that the positions not in this
exceptional set are good positions and, if they are identified, they are identified accurately. ]

We combine results from all trials. The algorithm considers positions identified in at least 1% of
the total trials T'. It then takes the median (over all trials) to estimate the values of these positions.

Lemma 19 (Combining Trials). The number of list items that are inaccurate in more than 1/10
of the trials is at most myy1. The total number of positions that appear in 9/10 of the trials is at
most 10 M.

Proof. We prove the first part of the lemma with a simple counting argument. Let T denote the
total number of trials. We have to bound b where

b = #{positions bad in > {5 trlals} < #{positions bad in 2 7 good trials}.

Let
Y= Z #{positions bad in trial j}.
J€ good trials
We have ¥ > bT Let 7" be the number of good trials. Then Proposition 17 tells us that > <
530mk+1T’ § mk-+1 Therefore, l{{ < 30 my11 and, hence, b < 50mk+1
To prove the second part, recall that the algorithm updates a position if and only if the position
is identified in at least 9/10 of the trials. Let ¢ denote the number of such positions. In every trial,
my, positions are identified. Hence,
T
o . : S 9
mi T = Z #{positions identified in trial ¢} > ETZ
t=1

and thus ¢ < %mk. ]
Now we are ready to prove the induction step. Recall that after round k, the new signal is the

difference between the current signal and its estimate: f*) = f(E=1 _ F(k=1) with the convention
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that if a signal position is not considered and not changed by the algorithm, its estimated value is
Zero.

Lemma 20 (Induction Hypothesis). After pass k, there are at most my1 spikes remaining. The
contribution vy, to the internal noise contains at most 3my components with values at most 2/my.

Proof. Recall that 4.5¢ < m,:l. It suffices to prove that for the non-exceptional positions i that
satisfy the conclusions of Lemma 19, the value ‘f(k) (z)‘ < 4.5e <
which is good in at least 9/107T trials and show that

FE=D ) — f(k_l)(i)’ < 4.5c.

mik. Let us fix such a position i

If }f(k_l)(i)| > 2¢, then the goodness of 7 in 9/10 trials implies that ¢ is identified in these trials
and hence i is considered by the Algorithm. In each of these 9/10 trials, the goodness of i also
means that the assigned estimated value of i is within 0.5¢ from its true value =1 (i). Since
f(k_l)(i) is the median of the assigned estimated values of ¢ in each trial, it follows that it is also
within 0.5¢ from the true value f#=1(3).

Suppose that }f““‘”(z’)! < 2e. If i is not considered by the algorithm, then the value of the signal
at this position is not changed, so |f*)(i)| = |f*~1(i)| < 2e. We can assume that i is considered
by the algorithm. There are (9/10)7 trials in which ¢ is identified and there are (9/10)T trials
in which 7 is good. Hence, there are at least 8/107 trials in which 7 is both good and identified.
By the definition of goodness, this means that in each of these trials, the assigned estimated value
| f (k=1)(4)| is at most 2.5¢. Since the estimated value is the median of the assigned estimated values
of 7 in each trial, it follows that |f(*~1)(i)| < 2.5¢. Then

6706 = FED@)] < D)+ 76D < 2+ 25¢ = .5

This completes the proof of the first part of the lemma.

The first part of this lemma shows formally that the difference between the spikes in the signal
f®) and the large entries in the update signal (i.e., those with absolute values greater than m,;l)
contains at most myy1 terms. By the inductive step, the same holds for the previous rounds. In
addition, Lemma 19 tells us that the algorithm updates at most %mk positions in the signal. By
the triangle inequality it follows that the difference contains at most mg1 + mg + %mk < 3my
terms. The maximal absolute value of the difference signal is

1 1 2

— + <.
mE  Mg—1 mg

O

The previous lemma proves the induction hypothesis. The next and final lemma of this section
controls the recovery error and completes the proof of Theorem 22.

Lemma 21 (Total Spikes and Recovery Error). Chaining Pursuit Proper recovers at most O(m)
spikes. The total recovery error is at most (1 + C'logm) |w||,.

Proof Sketch. After pass K = log, m, there are no more spikes remaining since my = m/a* < 1.
At most %mk spikes are recovered in pass k. Since myj decays geometrically, the total number
of spikes is O(m). The error after the last pass is the ¢; norm of the signal f (K+1) | This signal
consists of the external noise, which has norm |lw||,, and the internal noise, which satisfies

<y

1 J=

K

U
Zj:() J

Since a is a constant and ||wl||; was normalized to be constant, the overall error is at most (1 +
C'logm) ||w||; for some constant C. O
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5.3. Probabilistic Part. Here we prove that a random isolation matrix A indeed satisfies the
CRC with high probability.

Theorem 22. With probability at least (1 — O(d=3)), a matrizx A drawn from the distribution
described in Section 2.2 satisfies the Chaining Recovery Conditions (Conditions 30).

The main lemmas of this section are as follows. First, Lemma 23 is an abstract technical Lemma
about putting balls into buckets and the number of isolated balls that likely result. Lemma 24 is a
corollary for our context. We then show, in Lemma 26, that Condition 30 holds for most matrices.

Lemma 23 (Balls and Bins). Put n balls randomly and independently into N > C'(M)n buckets.
Then, with probability 1 — 2e="", all except n/M balls are isolated in their buckets.

Proof. One complication in the proof comes from the absence of independence among buckets. We
would rather let buckets choose balls. However, the contents of different buckets is dependent
because the total number of balls is limited. So we will replace the original n-ball model with an
independent model. The independent model will be easier to handle by the standard large deviation
technique; the independent model reduces the original model from it by conditioning on the number
of balls.

The independent model is the following assignment. We divide each bucket into n sub-buckets,
and let dx; be independent 0, 1 valued random variables with expectation E §x; = 1/N, for all buckets
k=1,...,N and sub-buckets i = 1,...,n. The independent random variables X; = > "' | d5; will
be called the number of balls in bucket k in the independent model. If we condition on the total
number of such “balls”, we obtain the distribution of the numbers of true balls X} in bucket k in
the original model:

N
(X!,...,XW) = (Xl,...,XN’ ZXk:")-
k=1

To prove the Lemma, we have to show that the number of non-isolated balls is small. The
number of non-isolated balls in bucket k is Y] = X} - 1¢ x;>1} so the conclusion of the Lemma is
that

N
P { S v > n/M} < 2e7m, (5.2)
k=1
We will now transfer this problem to the independent model. First, without loss of generality
we can change the n balls in the lemma and in the original model to 0.9n balls. We do not
change the independent model, so the number of non-isolated balls in the independent model is
Y = Xk - 1{x,>1)- We have to bound

N N N
P{ZY,,; > n/M} =p{Y v > n/M‘ > X = o.9n}
k=1 k=1 k=1
N N
<P{Y v > n/M‘ S X > ogn}
k=1 k=1

By Prokhorov-Bennett inequality,
N n

P{iXk 20.971} :P{ZZ&” 20.9n} >1/2.

= k=11i=1
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Therefore, proving Equation (5.2) in the original model reduces to proving that

P { éyk > n/M} < eom (5.3)

in the independent model.
A standard way to prove deviation inequalities such as Equation (5.3) is through the moment
generating function. By Markov’s inequality and independence of the variables Yy, we have

N
P{ZYk > n/M} _ P{eIOMZszlYk > elOn} <eln R [emMsz:lYk}
k=1

— 10 (IE [eloMmDN

To complete the proof of Equation (5.3) it remains to show that for Y = (371, &) - 1iyor 5,513,
its moment generating function satisfies

(E [elOMY])N <e" (5.4)

where 0; are 0,1 valued independent random variables with E¢é; = 1/N. To estimate the moment
generating function E[eMY] in Equation (5.4), it suffices to know the tail probability P{Y > ¢} for
large t. For large t, we estimate this tail probability by removing the restriction onto non-isolated
bucket in the definition of Y and applying Chernoff’s inequality for independent random variables.
The tail probability is, however, much smaller if we do restrict onto non-isolated buckets. We take
this into account for small ¢ by computing the expectation of Y (which is straightforward).

Let us start with the first moment of Y. We claim that

E[Y] < c(%)Q. (5.5)

Compare this with the average number of balls without conditioning on being non-isolated, E[X}] =
% Indeed, by the linearity of expectation,

E[Y]=n-E |8 - 1z 5o
:n-IP’{(Sl =1 and there exists ¢ € {2,...,n}: §; = 1}
:IP’{(Sl :1}- (1-1@{\11‘@ {2,...,n}:(5i:0})
() R 0 ey
Next, by the Chernoff inequality, for s > 2, we have

P{Y > s} < P{zn: 9 > s} < (s%)_s. (5.6)
=1

Now we are ready to bound the moment generating function. Let K = 10M and change variables

t = e, so that
o0 o0
E[eKY] :/ IP’{eKY>t} dt:1+/ ]P’{eKY>t}dt
1

0
(o@)
:1+K/ IP’{Y>5} e ds.
0

18



We split the integral in two parts. We use Equation (5.5) to estimate the integral near zero as

/OgIP’{Y > s} s ds < e?’K/OOOIP’{Y> s} ds
= SEEY] < Ce3K (%)2,

and we use Equation (5.6) to estimate the integral near infinity as

/3001P’{Y>s} s ds</3 (%s>_seKs d$</3OO (%e_K)_s ds

1 N —3 2
= mem e ) < (F)
ln(ge_K) n N

[e.9]

Combining these, we conclude that

2
E [eKY} < 1+CK€3K<%> < 1+L

Hence we obtain Equation (5.4)
N N n
(E[eKYD < (1—|—L) <esnV < en,

This proves the lemma. H

Lemma 24 (Isolations). Fiz a round k. With probability at least 1 —exp{—4my logd}, the following
is true. In pass k, at least 99/100 of the trial submatrices isolate all but 1—(1)0 of the my, spikes.

Proof sketch. In the hypothesis of Invariant 10, the signal has at most n := my positions of value
larger than 1/my_;. We put these in N := my = C’(a)m/2" buckets. We can choose the function
C’(a) so that, for C' of Lemma 21, we have C’'(a) = C(ﬁ). Apply Lemma 23 which states that
all except Tgmmk+1 positions are isolated with probability 1 — §, where § = 2e~9™*,

Let I be the event that all but ﬁmk of the spikes are isolated. Let us repeat the random
assignment above independently T times (for T trials) and let §; be independent Bernoulli random

variables, E §; = §. We see by Chernoff’s inequality that

T
o 1 . 1 1
P{I fails in more than ﬁT trials} < IP’{ t; o > WT} < (100ed) 100 *

1
= exp ( —my - WT) < exp(—4my log d).

0

This concludes the proof of Lemma 24.

We now proceed to prove that Invariant 10 is maintained by most isolation matrices A. That
is, we need to show that, for most A, when the Chaining Pursuit algorithm uses A on a signal
satisfying Invariant 10 for round k, the algorithm produces a signal satisfying Invariant 10 for round
k 4+ 1. So, in the remainder of this section, we may fix a signal satisfying Invariant 10 for round k.
Lemma 25 controls the external noise and Lemma 26 controls the internal noise.

Lemma 25 (External noise). In pass k, in every trial, the number of measurements where the £
norm of the external noise exceeds ﬁm;l is at most ﬁmkﬂ.

Proof sketch. This is an easy part of the argument. The (1,1) operator norm of each matrix Agk)
equals one, so it does not inflate the norm of the external noise. We use Markov’s inequality to
bound the number of measurements with too much noise. [l
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Lemma 26 (Internal noise). Fiz a round k. With probability at least 1 — exp{—4mylogd}, the
following is true. In pass k, in at least 99/100 of the trials, the number of measurements where the
£1 norm of the internal noise exceeds Wloom,;l 18 at most ﬁmk+1.

Proof. Let us recall the Invariant 10. This lemma is a statement is about the signal f*~1) in the
positions with values smaller than 1/mj_;. Lemma 25 gives us a proof for k = 0.

Let £ > 1. We may assume that the external noise w is 0 and we may absorb the spikes in
Equation 5.1 into the first term; i.e. we can assume that our signal has the form

k—1
O =3 "y (5.7)
§=0
where v; consists of 4m; or fewer nonzero components with magnitudes at most mi]
To prove this result, we introduce positive parameters A;, €;, j = 0,...,k — 1, which satisfy
k—1 1
N < = (5.8)
§=0
and
k—1 1
€j < o (5.9)
§=0

where C’ is a positive absolute constant to be chosen later. Next, we will prove the following
separate claim about the internal noise v;.

Claim 27. Assume that a signal satisfies Equation (5.7). Let j € {0,...,k —1}. Then

T
s
Z#(measurements in trial t s.t. |jv;|l1 > m—jk) < emiT (5.10)
t=1
with probability
1—e il (5.11)
where 7y is some positive number such that

~T > 10logd. (5.12)

Proof. Claim implies Lemma 26. We will first show that this Claim implies Lemma 26. Assume
the claim holds. By the definition of T', the exceptional probability is

d _4
e—'yij < e—lOmj logd <
. . .. . d . . d \—3
while the number of choices of round j signal is ( 4mj). Hence, with probability 1 — ( 4mj) , the

inequality in Equation (5.10) holds uniformly for all choices of internal noise v;. Summing up these
exceptional probabilities for all rounds 5 =0,...,k — 1, we conclude that:

-2
with probability 1 — ( 4511_) , the system of measurements is such that the inequality
in Equation (5.10) holds uniformly for all choices of the signal satisfying Equa-
tion (5.7).
Fix a system of measurements which meets these requirements so that we can dismiss the probability

issues. Let us also fix a measurement v and a trial t. We refer to V;; , as the signal in measurement v
b
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and trial ¢. By Equation (5.8), for a fixed trial and a fixed measurement v, we have the containment

of events:
k—1
1 A
t t J
- } < U { il = }

Counting the measurements that satisfy each side of this containment, then summing over the
trials, we obtain:

T
1 A

Z t _ <Z t 73}
#{Hyk’” 1= 2000mk} - #{HV]’””I - mp

By Markov’s inequality, this implies (provided C’ is chosen large enough) that in at most ﬁT
trials ¢, the number of measurements where the ¢; norm of the internal noise exceeds m is

greater than ﬁmk+1. This implies the conclusion of Lemma 26.
Proof of the claim. Now we prove the claim itself. This is a purely probabilistic problem. We
call the nonzero positions of v; “balls” and we informally refer to the measurements as “buckets”.

By the definition of v;, the 1-norm of v; in a measurement (or bucket) v is large, ||vj,[1 > % if

and only if the measurement contains at least %)\j% balls. Then Equation (5.10) is equivalent to
k

T

1 .
Z #(measurement in trial ¢ which contain > g)\j% balls) < e;my,T. (5.13)
t=1

To prove this with required probability (5.11), we will transfer the problem to an independent
model—similar to the proof of Lemma 23.

Recall that the original model with n balls and T trials, in which we want to prove Equa-
tion (5.13), is to put n = 4m; balls into N = T, buckets (or measurements) independently, and
repeat this 7" times (trials) independently.

We want to replace this by the following independent model, where the contents of buckets are
independent. There are N buckets in each of T trials. Divide each bucket into S = nT" sub-buckets.
Let d;; be independent 0, 1 valued random variables with expectation E dy; = 1/NT, for all trials
t=1,...,T,bucketsl =1,..., N and sub-buckets ¢ = 1, ..., 5. The independent random variables

S
Xy = Z St1i (5.14)
i=1
will be called the number of balls in bucket [, trial ¢, in the independent model. Note that
S n
EXy=—=—.
"TNT TN

Thus the average total number of balls in buckets in one trial is n. Let FEi, be the event that

in each of at least T/2 trials, the total number of balls in buckets is at least n/2. It is then

easy to deduce by Chernoff and Prokhorov-Bennett’s inequalities that with probability at least 1/2
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(actually 1 —e™"T), Eio holds; that is, P{E} > 1/2. We have to bound above the probability of
the event

E := { Equation (5.13) does not hold}

in the original model. We reduce it to the independent model as follows:

P{E in independent model} > P{E in independent model ‘ Eiot} - P{FEiot}
1
> 5 P{E in independent model | Eiot }

The probability can only decrease when we consecutively do the following changes:

(1) remove both occurences of “at least” in Eiqt, resulting in exactly T'/2 trials and exactly n/2
balls;

(2) restrict the sum in Equation (5.13) to the 7'/2 trials included in the new (exact) version of
Eiot; and

(3) fix the set of T'/2 trials in Eyot—say, require that these be the first 7'/2 trials.

After doing this, the law becomes the original model with n/2 balls and T trials. Hence,

1
P{E in independent model} > 5 P{E in original model with n/2 balls and T'/2 trials}.

Therefore, it suffices to prove that Equation (5.13) holds in the independent model, with probability
as in (5.11), i.e. with probability 1 — %e’VmJT, where v is as in Equation (5.12).

In order to prove Equation (5.13) with the requisite probability, we first estimate the number of
balls Xy in one bucket, see Equation (5.14). It is a sum of S = nT independent Bernoulli random
variables with expectations ﬁ Then by the Chernoff inequality,

J

1. m; 1 mp\—3Nns
IP{X 4-—]} < <—)\—) 3 5.15
tl>3jmk = \12¢" 7 my, ( )

Let us call this probability 7. We have to estimate the sum in Equation (5.13) which equals

Zthl Zf\il 0y where

oy=1 L
t {th>%>‘j%

are independent Bernoulli random variables whose expectations are E dy; < n by Equation (5.15).
Then by the Chernoff inequality, the probability that Equation (5.13) fails to hold is

T N
P { ZZ(S” > Ejka} < (5/6)79’”1«717

t=1 =1
where
€M mg 1 mi ( 1 mk)éAj:i
== — =€ — - =€+ — | —A— 5.16
b niN € mEr N € m,  \12e” 7 my, ( )
To complete the proof, we need to show that
1
(5/e)™omT < e
which would follow from
Mk
(B/e)” ™ = e, (5.17)

where v must satisfy Equation (5.12).
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Now we specify our choice of A\; and ¢;. Set
L\ 1/2 mg 1
)\] = max{l?e(mk) s 24m7j, @},

i (2 )

Then Equations (5.8) and (5.9) are clearly satlsﬁed (recall that j < k). Next, the base in Equa-
tion (5.16) is estimated as
m e\ 1/2
Ly () /
12e my my

and the exponent can be estimated using

A—>24
T my,

Also, the first factor of Equation (5.16) is estimated as
Ej mk Z <mk> .
my my

Combining these three estimates, we obtain

= () ()P ()
T \my mg ToAmy

Now we can check Equation (5.17).

(8/e)” 5 = ()P

Eemy,

A€
(a/2)"5 % by the definition of my,, My

>
1 2) k
> exp ((HC(’C’Z)/Qa) . ﬁ) by the definition of \; and ¢;
_ ec(a)/k‘
Therefore Equation (5.17) holds for v = ¢(a)/k, and this choice of v satisfies the required condition
in Equation (5.12), since T' = C(a)(k + 1) log(d). O
This completes the proof of Lemma 26. U

5.4. Pruning. To this point, we have shown that the Chaining Pursuit Proper algorithm produces
an approximation f of at most O(m) terms with

I£ =7l = @+ Clogm)|f = full,-
We now show that pruning produces fm with

Hf - mel < 3(1 —i—Clogm)Hf - mel

That is, we reduce the number of terms to exactly m while increasing the error by a small constant
factor. This result applies to any approximation, not just an approximation produced by Chaining
Pursuit Proper. This is our top-level result.

Theorem 28. Let f be an approximation to f with Hf — ﬂ‘l < BHf — fm Then

If = Fully < @B+ DS = fnll,-
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Proof. We have, using the triangle inequality and optimality of fm for f,

17 = Flly = 5 =Tl + 17 = Fl
< =P+ 17 = fally
< =Tl A+ 1T = £+ 1 = Fl,
< @B+ D|f = full;.

O

5.5. Robustness. In this subsection, we prove Corollary 4. As advertised in the introduction, the
Chaining Pursuit algorithm is not only stable with respect to noise in the signal but also robust
to inaccuracy or errors in the measurements. Suppose that instead of using the sketch ® f of the
signal f, e receive V = ® f +y and we reconstruct ffrom V. We assume that once we carry out the
Chaining Pursuit algorithm, there are no perturbations to the intermediate measurements, only to
the original sketch ® f.

Corollary 29. With probability at least (1 — O(d™3)), the random measurement operater ® has
the following property. Suppose that f is a d-dimensional signal whose best m-term approximation
with respect to the €1 norm is fpn,. Given the measurement operator ®, for every V' (not necessarily

the sketch ®f of f), sz s the reconstruction from V', then
1f = fmll < C(1+og(m) (If = Funlls + I1@f = V).

Proof. We need only make a few adjustments to the proof of the main theorem to obtain this result.
For brevity, we note these changes. Let V = ® f +y and let us refer to y as the measurement error.

First, we normalize the signal so that the measurement error has ¢; norm ||y|j; = (8001% and

m. Next, we modify the Chaining Recovery
conditions for Isolation Matrices in Condition 30 to include a third property.

the noise w = f — f, has {; norm ||wl|j; =

Condition 30 (Chaining Recovery Conditions for Robust Isolation Matrices). A 0-1 matriz with
pass/trial hierarchical structure described in Section 2.2 (i.e., any matriz from the sample space
described in Section 2.2) is said to satisfy the Chaining Recovery Conditions if for any signal of
the form in Invariant 10 and for any pass k, then at least 99/100 of the trial submatrices have
these two properties:

(1) All but ﬁmkﬂ spikes appear alone in a measurement, isolated from the other spikes.
(2) Except for at most ﬁmk+1 of the measurements, the internal and external noise assigned
to each measurement has ¢1 norm at most ﬁmlzl.

(3) Except for at most ﬁmkﬂ of the measurements, the measurement error assigned to each

measurement has £1 norm at most ﬁm;l.

To prove that a random isolation matrix satisfies this additional property with high probability,
we use Markov’s inequality to bound the number of measurements that are large. This is the same
argument as in the second half of the proof of Lemma 25.

Next, we adjust Lemma 13 to include in the bound € not just the £; norm of the other positions but
also the measurement error. We also modify the definition of a good measurement in Definition 31
to include the measurement error.

Definition 31. A good measurement satisfies one of the following two criteria:

(1) The measurement is empty; that is, it contains positions with values ‘f(k) (2)‘ < e and the
total £1 norm of the positions in the measurement plus the measurement error is less than
1.5¢.
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(2) The measurement contains one spike at position i with !f(k) (z)‘ > € and the {1 norm of all
other positions in this measurement plus the measurement error is less than 0.5¢.

We conclude by noting that with the above changes, we change Lemma 21 to include the £; norm
of the measurement error |ly||;, as well as the noise ||w|;. That is, after the last pass, the error
LFEH D]y with

WK“m<mm+HZ%H<W%+Zﬁmm,4mmﬂm&
7j=1
Since a is a constant and ||wl[; and ||y||1 were normalized to be constant, we have that the overall
error is at most

(14 Clog(m) (IIf = fmll + 1@ = VIl ).

6. ALGORITHMIC DIMENSION REDUCTION
The following dimension reduction theorem holds for sparse vectors.

Theorem 32. Let X be the union of all m-sparse signals in R% and endow R® with the ¢1 norm.
The linear map ® : R* — R™ in Theorem 2 satisfies

Allf =gl < [|@(f) = @(9)llh < BIlf — gl
for all f and g in X, where 1/A = C'log(m) and B = Clog®(m)log?(d) and n = O(mlog?d).

Proof. The upper bound is equivalent to saying that the ¢; — ¢; operator norm satisfies ||®||;—1 <
B. This norm is attained at an extreme point of the unit ball of £¢, which is thus at a point with
support 1. Then the upper bound follows at once from the definition of ®. That is, any 0-1 vector
of support 1 gets mapped by ® to a 0-1 vector of support bounded by the total number of bit-tests
in all trials and passes, which is Zlog“ O(klogd)logy d < B.

The lower bound follows from Theorem 2. Let f and g be any d-dimensional signals with support
m, so that f = f,, and g = ¢g,,. Let V = ®g. Then the reconstruction J/"\from V will be exact:
f: g. As proven in Corollary 4,

If =gl = ||f—f!|1
< Clog(m) (||f = full, + [|®F = V],)
= Clog(m) ||®f — ®g]|,.
which completes the proof. [l

We are interested not only in the distortion and dimension reduction properties of our embed-
ding but also in the stability and robustness properties of the embedding. Our previous analysis
guarantees that ®~'® is the identity on X and that the inverse can be computed in sublinear
time since Chaining Pursuit Proper perfectly recovers m-sparse signals. Our previous analysis also
shows that our dimension reduction is stable and robust. In other words, our embedding and
the reconstruction algorithm can tolerate errors n in the data = € X, as well as errors v in the
measurements:

Theorem 33. The linear map ® : RY — R™ in Theorem 2 and the reconstruction map ¥ : R" — R¢
given by the Chaining Pursuit Proper algorithm satisfy the following for every n € R® and every
v € R™ and for all m-sparse signals x in R%:

[z = ®(@(x +n) +v)llh < (1+ Clogm)([Inlx + [lv]1)-
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Proof. This is just a reformulation of our observations in Corollary 4 with z = f,,, n = f — fm,
v=®f-V. O

7. CONCLUSIONS

We have presented the first algorithm for recovery of a noisy sparse vector from a nearly optimal
number of non-adaptive linear measurements that satisfies the following two desired properties:

e A single uniform measurement matrix works simultaneously for all signals.
e The recovery time is, up to log factors, proportional to the size of the output, not the length
of the vector.

The output of our algorithm has error with ¢1-norm bounded in terms of the ¢;-norm of the
optimal output. Elsewhere in the literature, e.g., in [CT04, RV06, CDDO06], the ¢3-norm of the
output error is bounded in terms of the £;-norm of the optimal error, a mixed-norm guarantee that
is somewhat stronger than the result we give here. A companion paper, in progress, addresses this
as well as the logarithmic factor in the approximation error that we give here.

If the measurement matrix is a random Gaussian matrix, as in [CT04, RV06, CDDO06], the
measurement matrix distribution is invariant under unitary transformations. It follows that such
algorithms support recovery of signals that are sparse in a basis unknown at measurement time.
That is, one can measure a signal f* as V = ® f*. Later, one can decide that f* can be written as
f*=Sf, where S is an arbitrary unitary matrix independent of ® and f is a noisy sparse vector
of the form discussed above. Thus V = (®5)f, where ®S is Gaussian, of the type required by the
recovery algorithm. Thus, given V, ®, and S, the algorithms of [CT04, RV06, CDD06] can recover
f.

If the matrix S is known at measurement time, our algorithm can substitute ®S for ® at
measurement time and proceed without further changes. If S is unknown at measurement time,
however, our algorithm breaks down. But note that an important point of our algorithm is to
provide decoding in time m polylog(d), which is clearly not possible if the decoding process must
first read an arbitrary unitary d-by-d matrix S. Once a proper problem has been formulated, it
remains interesting and open whether sublinear-time decoding is compatible with basis of sparsity
unknown at measurement time.
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