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ABSTRACT thresholding at each iteration.E®ERAL IT is a Landweber

Th -k hrinkagetechni is still rel (f iteration with nonlinear shrinkage at each step and is moti-
€ well-knownshrinkageiechnique 1S stilf relevantior con- ;0 g by the analysis of [1]. BCK IT is used when our

temporary signal pracessing problems over redundant diCtiOr'edundant dictionary is a union of orthonormal bases (e.g.,

naries. We present theoretical and empirical analyses for twl%orphological components [3]). ThelBck IT algorithm
iterative algorithms for sparse approximation that use shrink; :

. hresholds in each basis sequentially and, as such, is the more
age. 'The .GNERA.L T algqnthm amounts 'to a 'Landweber ractical algorithm. Each substep of a full iteration involves a
iteration with nqnllnea_r shr_mkage at ea(_:h lteration step. Tr;%ngle unitary transform (possibly with a fast implementation)
B".OCK T a_lg_orlthm ansesin morp_hologmal components an ind we need only work with residual and coefficient vectors,
ysis. A sufficient condition for which General IT exactly re-

anal i ted. in which th lati which are equal in length to the original signal.EKEERAL
COVETS a sparse signa IS presented, in which the cumuiatiye- requires that we manipulate a larger coefficient vector and
coherence function naturally arises. This analysis exten

. . i erform two matrix—vector multiplications much larger than
previous results conceming the Orthogonal Matching Pursu he single unitary transforms. This algorithm does, however
(OMP) and Basis Purstuit (BP) algorithms to IT algorithms. ' !

take into account the interactions among the vectors in the
dictionary.
1. INTRODUCTION We provide a sufficient condition for which guarantees
that GENERAL IT recovers exactly sparse signals. This suf-
Sparse approximation problems have been studied for nearigcient condition matches the sufficient geometric conditions
a century, and they arise in many arenas, from compressidar the Orthogonal Matching Pursuit (OMP) and Basis Pur-
and analysis of audio, image, and video signals, to machinguit (BP) algorithms. We also provide analysis of the fixed
learning, denoising, and regularization. In each of these agpoints of the Bock IT algorithm. In the following section
plications, a target signal is approximated by a linear comwe make rigorous the concepts that arise in sparse approxi-
bination of elementary signals, drawn from a (fixed) largemation problems and define two iterative thresholding algo-
and linearly dependent collection of signals calledietio-  rithms. We then provide the theoretical analysis of these al-
nary. The crucial element in sparse approximation is that wegorithms, followed by a discussion of the main result of the
seek a good approximation using as few elementary signals asticle: a sufficient condition guaranteeing the recovery of ex-
possible—aparseapproximation. Much recent attention has actly sparse signals. The paper concludes with a study of the
been devoted to proving algorithms compute optimal sparsempirical performance of each algorithm.
approximations, despite the fact that the general sparse ap-
proximation problem is NP-hard for an arbitrary redundant 2. PRELIMINARIES
dictionary. The geometry of the overcomplete dictionary un-
der consideration plays an important role in the success of thg/e work in the complex inner-product spa€¢, which is
algorithm. called thesignal space The objective is to find an efficient
In 1994, Donoho and Johnstone introduced a denoisingepresentation of the signal by selecting atoms, or column
technique known ashrinkage which is optimal for estimat- vectors, from a dictionary. Alictionary 2 in C% is a finite
ing signals that are sparse with respect to an orthonormal basisllection of unit-norm (column) vectoksp,, }, called atoms,
and contaminated with Gaussian white noise. Although théhat span the signal space. We write= {¢,|w € Q} and
assumption that the dictionary be unitary is crucial to the opwe form thed x N dictionary matrix® whose columns are
timality of shrinkage, it has been employed quite succesfullthe atoms of2. Usually, the number of atom$/, in the dic-
in practice in the case where the dictionary is redundant [2].tionary is much larger thad. We use the symbdl for the
We define two iterative thresholding algorithmsg@&RAL  complex, conjugate transpose of vectors and matrices.
IT and BLock IT) which incorporate coefficient shrinkage or A fundamental metric associated with a dictionary is the



coherence. of the dictionary. It is an indicator of how corre- If 2 € C, then we use a complex thresholding operator, which
lated two atoms from the dictionary are to each other and it defined ag{, (reiw) = Hgy(r)e'*, and similarly forSy. Let
calculated by us continue with a formal description of the algorithms.

: Iﬂr'l??’fww”%kﬂ rﬂnﬁ’zq (@7 ®); Algorithm 1 (G ENERAL IT)
A less pessimistic measure of the correlation between atoms, 1. |nitialize the coefficient vectaf = 0, the
and a generalization of the coherence isdhmulative coher- approximation vector® = ®c° = 0, and the iteration
ence The cumulative coherence functign (m) is defined countert — 1.
for positive integersn by
2. Update the coefficient vector as

p1(m) = max maxz (¥, ox)1,

[Al=m ¥ ' — Hp( '+ @ (s— @)

A€A
where the vectop ranges over the atoms indexed®y; A. 3. Calculate the new approximation vectoras= ®ct.

A representatiorof a signals in ® is a column vector (or _ -
coefficient vector) such thats = ®¢. SinceN > d, the 4. When the stopping criterion is met, output the vector

atoms of® are linearly dependent, and so the hope is we can ~ ©f coefficients:T, the approximation vectar”, and
find a sparse representation, i.e., a representation with few  the residuat” = s — a”.
nonzero coefficients. We calculate the sparsity of the coeffi-

cient vector via thé, quasi-norm| - [lo as In the case wher® = [®, ®,,...,P;] is a union ofJ or-
0d 0 thonormal dictionaries, a second algorithm, which we will re-
lello = {w € Q| cu # 0} fer to as Bock IT, has been proposed in [2, 3]. This al-

gorithm is similar to GNERAL IT, except that we analyze
the residual of the signal in the first basis, threshold the re-
sult, compute the new residual, and repeat in each of the other
The SPARSEproblem is to construct the best approximationbases. We describe the algorithm for= 2, but the definition

of a signal with a linear combination of. atoms or fewer may easily be extended for > 2.

from the dictionary.

2.1. Spare approximation problems

min |s — @clly  subjectto flcfo <m  (SPaRsH Algorithm 2 (B Lock IT)
ce

1. Initialize the coefficient vecter= [¢;, co] = 0, and
This problem is primarily studied in applications where one the residual-® = s, and the iteration counter = 1.
has a generative model of the input signal or in resource-
constrained settings where one has limited storage. KaeE 2. Update the coefficient vector as

SPARSEproblem is to recover an exact superposition (1) ¢ = Hy(0iri-1)
m t—i . t

s = da = Zakqsk (EXACT-SPARSE) @) r7z=s <I>1c11
=1 (3) b = Hy(®3r'~2)

t o t
of m atoms from a redundant dictionary, wheres C*. (4) 1" =5 = Pacy

Though natural signals rarely happen to be linear com- 3, Calculate the new approximation vector@s= ®c;.
binations of atoms, the &CT-SPARSE problem may lend . o
some insight into some of the more challenging sparse ap- 4. When the stopping criterion is met, output the vector

proximation problems, such a®&RSE of coefficients: = [c1, ca].
2.2. Iterative thresholding (IT) algorithms 3. MAIN RESULTS
Let us first define the (nonlinear) hard and soft thresholdingve will develop a condition which guarantees thanNERAL
operatorsHy andSy. IT recovers then-term representation of exactly sparse signals—
resembling the condition in [4]—when the coefficient vector
) T+ % x < ‘7" « contains only ones and zeros. The results in [4] demon-
_)z [ >3 _ P strate that the critical problem in sparse approximation is to
Hy(z) = Se(x)=4¢ 0 lz| < 5 ! . .
0 |z[<? find the support set of the coefficients—not to find the values
-84 >4 of the coefficients themselves. For this reason, we focus on



this type of coefficient vector. Denote the set of atoms par- The next result gives us necessary and sufficient condi-
ticipating ins asA. From the dictionary synthesis matrix, we tions on a signal and a vector of coefficients for that vector of

form thed x m matrix ®, whose columns are the atoms listed coefficients to be a fixed point of theLBCK IT algorithm.

in A. We also define a second matfx, whose columns are . .
the (N — m) atoms indexed b2 \ A. Theorem 3.2. Let s be an arbitrary signal of lengtll. Let

& = [@, | P, be a union of two orthonormal bases. A neces-

Theorem 3.1. Lets = ®,1, where|A| = m. ThenGEN-  sary and sufficient condition for the vector [c, c2] to be
ERAL IT (hard) recovers then-term representation of up  a fixed point ofBLock IT (hard) is
to any prescribed error tolerance if

0
D*(s — D)oo < = 1
il — 1) 4 a(m) < 1 197 (s = @)l < 5 ()
3 i) s ) =0 2
Proof. Notice that after rearranging terms, supp(e;) N supp(c:) 0 @
Cmin > - (3)

o LN 2

8 - - L * _
Wi, 1 wheree;, = @F (s — ®c).

o o Proof. First, assume = [c1, 2] is a fixed point. Then
The upper entries in the vector of coefficients capture the co-

herence of the vectors in the among themselves and the ¢; = Hy [®}s — (P]P2)ca], co = Hy [Pis — (P5P1)c]
lower entries capture the coherence of these vectors with the .
rest of the dictionary. We can bound the coherence of th¥/e can write
vectors inA among themselves as

Cc1 = (I)TS — ((PT(PQ)CQ — €1 (4)
D (o G| <D N buns b,)| < pua(m — 1) ey = By — (B5Dy)er — e ©)
J#i g where we must havge; || < £ fori = 1,2. Substituting
for w;,w; € A. Similary, we can bound the expression Equation (4) into Equation (5), and vice versa, we arrive at
Pie1 = Poey, ands — P11 = Docy + Prey. Sowe have
Z <¢wk7¢wl> < Z |<¢Wk’¢wl>| < Ml(m)' s —Pec=15—Prc1 — Pacy = e = Doey
wrEA wrEA .
WigA Wi EA Thus we arrive at

These two bounds provide upper and lower estimates for each Pt(s — Pe) = ¢ and  Di(s— Dc) = e
entry in®*s. Each entry; in &} ¢, 1 satisfies
Together these give rise to condition (1).

Now suppose the conditions hold. Sinkg(s — ®c) = €;
and®}(s—®c) = e, we see thabie; = Paer, and|fe;|| < §
fori = 1, 2. Therefore

1—ppim—=1)<v; <1+ p(m—1)
and each entry; in U% ®,1 satisfies
—pr(m) < vp < pa(m).

Because we threshofbl* s to obtain the first coefficient vector o _ )
¢ = Hy(®*s), we would like to retain those coefficients BY multiplying Equation (6) through bg; and thresholding,
indexed byA. This is where our bound om is enforced. and, similarly, multiplying through by} and thresholding,

s —®1c1 = Pocy + Py (6)

Sincey; (m) < 1 — puy(m — 1) by hypothesis, if we choose We obtain the result. .
6 € (p1(m),1 — pa(m — 1)), when we threshold, Observe that it = ®« is an exactly-sparse signal, then
is a fixed point of Bock IT. This result does not, however,
B D Ppl guarantee that the algorithm converges, upon inptiv the
= 0 coefficient vector.
GENERAL IT has thus recovered the index s&t,in one 4. EXPERIMENTAL RESULTS

iteration. In general, we find that at tieh step in the iter-

ation, those coefficients; indexed byA are bounded below To evaluate the performance of these algorithms, we have

and above byt — (ui(m — 1))™ and1 + (u1(m — 1)), re-  tested them with exactly sparse input signals,
spectively, while those coefficients notAnare zero. Because m
pu1(m — 1) < 1, we can recover both the index set and the s — By — Z%%

coefficients up to any prescribed tolerance. [ | P
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Fig. 1. GENERAL IT (hard) vs. Bock IT (hard),a, = 1

Fig. 22 GENERAL IT (hard) vs. GENERAL IT (soft),
where the coefficients,, are chosen from iid normal distri- a; ~ N(0,1)
butions ora;, = 1. We experimented with the Dirac—Fourier
dictionary, which is the collection off complex exponen- T

tials andd impulses. We setl = 128. That is¢,[t] = 09 .- y . o,
(1/Vd)e* /A for w = 1,...,d, andgpy[t] = dx[t] for A\ = 0al °.

1,...,d. Note that this dictionary has coherence= ﬁ, o L R

so the most pessimistic estimate for the maximum number of § o . "t .

terms in an exactly sparse signal we can recover is 6. In g oer ) Tel

our first experiment, we generated sparse signals of the type ¢ °5f : e
in Theorem 3.1 with coefficients identically zero or one and ~ o.4; o, .
ran50 independent trials for each-term representation. We 03l .

checked to see whether th&e@ERAL I T algorithm recovered 0zl o
the signal withinl5 iterations by examining all possible val- ‘ ‘ ‘ ‘ ‘
ues of# (in increments ofl(lm) from 0 to 2. Our empirical *o 5 10 15 20 25

m
evidence suggests thaeGERAL IT performs better than the Fig. 3. GENERAL IT (soft) vs. BLock IT (soft),

theoretical expectations; the algorithm has no problem recovs,” ~ N(0,1)
ering m-term representations up to ~ 30. See Figure 1.

In another experiment, the, were drawn from a nor- dex set alone. Little of this analysis suggests how to set the
mal distributionN' (0, 1), and we found, on average over fifty threshold. Preliminary theoretical results suggest a relation-
trials, that GENERAL I T (soft) recovered the vectors inbet-  ship which involves the coherengeof the dictionary and the
ter than GENERAL IT (hard). When the coefficients are un- minimum and maximum values of the coefficients.
restricted, perhaps soft thresholding is the better choice for

unions of othornormal bases; see Figure 2. Figures 1 and 3 6. REFERENCES
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