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Abstract— Welch bound equality (WBE) signature sequences
maximize the sum capacity of the uplink in direct-spread syn-
chronous code division multiple access (CDMA) systems. WBE
sequences have a nice interference invariance property that
typically holds only when the system is fully loaded and the
signature set must be redesigned and reassigned as the number
of active users changes to maintain this property. An additional
equiangular constraint on the signature set, however, maintains
interference invariance. Finding such signatures requires im-
posing equiangular side constraints on an inverse eigenvalue
problem. This paper presents an alternating projection algorithm
that can design WBE sequences that satisfy equiangular side
constraints. The proposed algorithm can be used to find Grass-
mannian frames as well as equiangular tight frames. Though one
projection is onto a closed but non convex set, it is shown that
this algorithm converges to a fixed point, and these fixed points
are partially characterized.

I. I NTRODUCTION

Signature sequences that maximize the sum capacity in the
uplink of direct-spread synchronous code division multiple
access (CDMA) systems in Gaussian noise are known to
satisfy Welch’s bound on the total squared correlation with
equality [1]. These sequences, known as Welch bound equality
(WBE) signature sequences, are determined by the number
of users and the dimensionality of the signature space. They
have the interesting interference invariance property in that
each signature sees exactly the same interference power. Thus
the interference experienced by a user is independent of
the signature assigned to that user. Unfortunately, when the
number of active users changes, the signatures must generally
be recomputed and reassigned to maintain the interference
invariance [2].

Recently a class of signatures, known as Grassmannian
signatures, were introduced that satisfy interference invariance
even when subsets of the available users are active [3]. This
signature construction is intimately related to the problem of
sphere packing in the Grassmann manifold, in this case one-
dimensional subspaces (lines), and more specifically to the
construction of Grassmannian tight frames [4]. The interfer-
ence invariance properties comes from the fact that because
Grassmannian signatures satisfy Welch’s lower bound on the
maximum correlation with equality, they are equiangular (the
correlation is the same for all distinct signature pairs) and
maximally spaced with the smallest possible inner product.
The equiangular property provides interference invariance.

Unfortunately, signatures that are both equiangular and max-
imally spaced are quite rare. Some explicit constructions are
available in the articles [5], [4], [3]. Signatures derived from
good packings in the Grassman manifold, even the best line
packings tabulated by Sloane [6], do not generally satisfy the
WBE property when they are not equiangular. In cases where
such signatures do not exist, we would be satisfied with a
WBE whose constituent signatures are close to equiangular.
Recently proposed numerical algorithms for finding WBEs
(e.g., [7], [8], [9], [10]), however, do not easily incorporate
equiangular side constraints.

In this paper, we present an algorithm for finding Welch
bound equality signature sequences that are exactly (or nearly)
equiangular. Our approach builds on our recently proposed
iterative algorithm for constructing CDMA signature se-
quences [11], which has also been used to find signatures
satisfying peak-to-average ratio constraints [12]. The idea is
to alternately solve two matrix nearness problems, one thats
finds the closest signature set satisfying Welch’s bound with
equality and the other that finds the nearest set of equiangular
signatures. This algorithm is related to a method used by
Chu for solving an inverse eigenvalue problem [13]. Our
algorithm can be also used to find Grassmannian frames as
well as equiangular tight frames. We argue that our algorithm
converges to a fixed point, and we claim that the class of fixed
points contains the desired sequences. Detailed proofs of these
results are deferred due to space constraints [14].

II. SIGNATURE DESIGN PRELIMINARIES

Consider the uplink of a single cell, short code, synchronous
CDMA system withN total signatures and a processing gain
d. Let xk denote thed×1 signature, code, or sequence, of user
k, normalized as‖xk‖ = 1 for k = 1, . . . , N . We assume that
the maximum number of active users allowed in the system is
N ≥ d > 1.

If the signaturesxk form an orthogonal set, the lengthd
determines the allowable number of users. It has been shown
that nonorthogonal signature sets whereN > m users may be
necessary to achieve the full sum-capacity of the synchronous
single-cell CDMA channel [1]. These sequences are called
Welch bound equality sequences [15] since they satisfy the
Welch bound on the total squared correlation with equality.



WBE signature sequences have a number of nice properties
as summarized in [16], [15]. Perhaps the most interesting
property is that, using WBE sequences, the interference is
uniform across all users [16]. The sum total interference in
the system is given by

∑
k

∑
l 6=k〈xk,xl〉|2 − N2 which for

WBE sequences is simplyN
2

d − N . Using WBE sequences,
the total interference power experienced by userk is

I(k) =
N∑

l=1

|〈xk,xl〉|2−1 =
N − d

d
for k = 1, 2, . . . , N

(1)
and is the same for every user. Thus the SINR performance
for any userk is simply
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σ2
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σ2
v

)−1
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d

N − d

)−1
]−1

(2)

and the performance only depends onN andd. Unfortunately,
interference invariance only occurs when the system is fully
loaded [15], [2] (N users are active). The reason is that a WBE
set for N > d users almost always ceases to be a WBE set
if any M < d sequences are removed from or added to the
set [3]. Thus ifN̄ < N users are active, the whole signature
set will need to be recomputed for(d, N̄) and the signatures
reassigned or additional power control will have to compensate
for interference inequality.

III. E QUIANGULAR SIGNATURES FORCDMA SYSTEMS

An interesting subclass of WBE signature sequences, known
as Grassmannian signatures, retains the interference invari-
ance property even when a subset of signatures are active
[3]. Grassmannian signatures are constructed from optimal
packings of lines on the Grassmann manifold. These signature
sequences satisfy two important properties:

1) They areequiangular, i.e.,

|〈xk,xl〉| = c for all k, l with k 6= l (3)

for some constantc ≥ 0.
2) They aremaximally spaced, i.e. c in (3) is as small as

possible.

The equiangular property means that every signature is equally
“far” from every other signature. This is the origin of the
interference invariance property. For example, ifN is the set
that indexes the active signatures, then the total interference
experienced by any userk = 1, 2, . . . , N is

I(k) =
∑

l∈N/k

|〈xk,xl〉|2 − 1 = c (|N | − 1) (4)

which only depends on the cardinality ofN .
The maximally spaced property implies that the signature

sequence minimizes the maximum angle between the lines
generated byxk andxl. Let

ρ(N,m) := max
k,l,k 6=l

|〈xk,xl〉|

denote the maximum correlation. Grassmannian signatures
achieve the lower bound on the maximum correlation for a
line packing, as summarized in the following theorem.

Theorem 1:Let S = {x1, . . . ,xN} be a set of unit vectors
in Ed with N ≥ d. Then

ρ(N, d) ≥

√
N − d

d(N − 1)
. (5)

If E = R then equality in (5) can only hold ifN ≤ m(m +
1)/2 and if E = C then equality in (5) can only hold if
N ≤ m2. Furthermore if equality holds in (5) then the vectors
in S are equiangular.
Proof: See [17] for example. �

In general, it is torturous to find signatures that satisfy
(5) with equality. Not only is the optimization difficult, but
there is no general procedure for deciding when a frame
solves the optimization problem unless it meets a known
lower bound. Most of the current research has approached
the design problem with algebraic tools. A notable triumph of
this type is the construction of Kerdock codes overZ2 andZ4

due to Calderbanket al. [5]. Other explicit constructions are
discussed in the articles [4], [3]. In the numerical realm, Sloane
has used his Gosset software to produce and study sphere
packings in real Grassmannian spaces [6]. Sloane’s algorithms
have been extended to complex Grassmannian spaces in [18].
We are not aware of any other numerical methods.

Some examples of signatures that achieve the bound in (5)
are available in [4] but generally they are hard to find. The
reason is that while good line packings have been tabulated for
variousd andN , these packings do not necessarily maintain
the equiangular property. On the other hand, some equiangular
signature sets do not achieve the maximally spaced property,
e.g., it is possible to find five equiangular vectors inR3 but
they are not maximally spaced. In both cases, the resulting
packings may not satisfy the WBE property enjoyed when
equality is satisfied.

Since the equiangular property provides interference invari-
ance, it may be of practical interest to sacrifice the maximally
spaced requirement but yet maintain the constraint that the
signature sequence forms a WBE sequence.The objective of
this paper is to present an algorithm for finding WBEs that
are nearly equiangular.

Let X = [x1,x2, . . . ,xN ] be the signature matrix con-
structed from the signature set. It can be shown that a neces-
sary and sufficient condition for a signature sequence to satisfy
the Welch bound with equality is that thed positive singular
values ofS are identical. A matrix with this property is called
a tight frame. Our goal, then, is to construct a signature matrix
X with the following properties.

i. The matrix is a tight frame:XX ∗ = α Id.
ii. Each column has the correct norm:‖xn‖ = 1.

iii. The columns are equiangular:|〈xk,xm〉| = c for all
k 6= m and somec.

In this paper we present an algorithm that calculates such
sequences that we call equiangular tight frames. In the sequel,
we summarize the method and its theoretical behavior.



IV. A LTERNATING PROJECTIONPRELIMINARIES

Our technique is based on an alternating projection between
Property (i) and Properties (ii)–(iii). The algorithm attempts to
compute a nearby matrix (in terms of the Frobenius norm) that
satisfies Properties (i)–(iii).

Since the Gram matrixX ∗X displays all of the inner
products, it is more natural to construct the Gram matrix of an
equiangular tight frame than to construct the signature matrix
directly. Therefore, our algorithm will alternate between the
collection of Hermitian matrices that have the correct spectrum
and the collection of Hermitian matrices that have sufficiently
small off-diagonal entries.

Define a collection that contains the Gram matrices of all
d×N α-tight frames:

Gα
def= {G ∈ CN×N : G = G∗ and

G has eigenvalues(α, . . . , α︸ ︷︷ ︸
d

, 0, . . . , 0)}. (6)

The set Gα is essentially the Grassmannian manifold that
consists ofd-dimensional subspaces ofCN [17]. One may also
identify the matrices inGα as rank-d orthogonal projectors,
scaled byα.

Theorem 2 shows how to find a matrix inGα nearest to an
arbitrary Hermitian matrix.

Theorem 2:Suppose thatZ is anN ×N Hermitian matrix
with a unitary factorizationUΛU∗, where the entries ofΛ are
arranged in algebraically non-increasing order. LetUd be the
N × d matrix formed from the firstd columns ofU. Then
α UdUd

∗ is a matrix inGα that is closest toZ with respect to
the Frobenius norm. This closest matrix is unique if and only
if λd strictly exceedsλd+1.

Proof: See [14] for details.
Let H be a closed collection ofN×N Hermitian matrices

that satisfy the structural constraint set motivated by the
equiangular property:

Hµ
def= {H ∈ CN×N : H = H∗,

diag H = m1 and max
m6=n

|hmn| ≤ µ}.

It may seem more natural to require that the off-diagonal
entries have modulus exactly equal toµ, but our experience
indicates that the present formulation works better, perhaps
becauseHµ is convex.

The following proposition shows how to produce the nearest
matrix in Hµ.

Proposition 3: Let Z be an arbitrary matrix. With respect
to Frobenius norm, the unique matrix inHµ closest toZ has
a unit diagonal and off-diagonal entries that satisfy

hmn =
{

zmn if |zmn| ≤ µ and
µ ei arg zmn otherwise.

We usei to denote the imaginary unit.
Proof: The argument is straightforward.

The objective of alternating minimization is to find a
solution to the following question.

Problem 1: Find a matrix inGα that is minimally distant
from H with respect to a given norm.

If the two sets intersect, any solution to this problem will lie in
the intersection. Otherwise, the problem requests a tight frame
with unit norm columns whose Gram matrix is “most nearly
structured.” We do not mention the problem of producing a
matrix in H that is nearest toGα because it is not generally
possible to factor a matrix inH to obtain a frame with
dimensionsd×N .

V. STATEMENT OF THE ALGORITHM

Practically, implementing to proposed alternating minimiz-
ing involves alternately enforcing the two aforementioned
constraint sets until reaching a suitable stopping criterion.
Convergence is an issues since the tight frame constraint set
is non-convex.

Algorithm 1 (Alternating Projection):
INPUT:

• An arbitrary matrixS0

• The number of iterationsJ

OUTPUT:

• A signature matrixXJ

PROCEDURE:

1) Let j = 1 andH = S∗0 S0 .
2) Find Gj , the Gram matrix nearest toHj−1 in Frobenius

norm that has Property (i).
3) Find Hj , the nearest Gram matrix toGj in Frobenius

norm that has Properties (ii) and (iii).
4) Incrementj. Repeat Steps 2–4 untilj > J .
5) Solve forXJ by factoringGJ using a finite-step method

such as [19] for example.

VI. SUMMARY OF CONVERGENCERESULTS

The machinery of point-to-set maps is required to under-
stand the convergence of this algorithm, so we must refer the
reader to [14] for details. For reference, in this section we
shall state the convergence results.

A. Basic Convergence Results

It should be clear that alternating projection never increases
the distance between successive iterates. This does not mean
that it will locate a point of minimal distance between the
constraint sets. It can be shown, however, that it is globally
convergent in a weak sense.

Define the distance between a pointM and a setY via

dist(M,Y ) = inf
Y∈Y

‖Y −M‖F .

Theorem 4 (Global Convergence of Algorithm):Let Y
and Z be closed sets, one of which is bounded. Suppose
that alternating projection generates a sequence of iterates
{(Yj ,Zj)}. This sequence has at least one accumulation
point.

• Every accumulation point lies inY ×Z .



• Every accumulation point(Y ,Z ) satisfies∥∥Y − Z
∥∥

F
= lim

j→∞
‖Yj − Zj‖F .

• Every accumulation point(Y ,Z ) satisfies∥∥Y − Z
∥∥

F
= dist(Y ,Z ) = dist(Z ,Y ).

For a proof of Theorem 4, see the Appendix in [14].
The convergence of the proposed algorithm is geometric at
best [20], [21], [22], [23]. This is the major shortfall of
alternating projection methods.

Note that the sequence of iterates may have many accu-
mulation points. Moreover, the last condition does not imply
that the accumulation point(Y ,Z ) is a fixed point of the
alternating projection. So what are the potential accumulation
points of a sequence of iterates? Since the algorithm never
increases the distance between successive iterates, the set of
accumulation points includes every pair of matrices inY ×Z
that lie at minimal distance from each other.

B. Convergence Results

Besides the general convergence result, Theorem 4, we also
obtain a local convergence result.

Theorem 5:Assume that the alternating projection between
Gα and Hµ generates a sequence of iterates{(Gj ,Hj)},
and suppose that there is an iterationJ during which
‖GJ − HJ‖F < N/(d

√
2). The sequence of iterates possesses

at least one accumulation point, say(G ,H).
• The accumulation point lies inGα ×Hµ.
• The pair (G ,H) is a fixed point of the alternating pro-

jection. In other words, if we applied the algorithm toG
or to H, every iterate would equal(G ,H).

• The accumulation point satisfies∥∥G − H
∥∥

F
= lim

j→∞
‖Gj − Hj‖F .

• The component sequences are asymptotically regular, i.e.

‖Gj+1 − Gj‖F → 0 and ‖Hj+1 − Hj‖F → 0.

• Either the component sequences both converge in norm,∥∥Gj − G
∥∥

F
→ 0 and

∥∥Hj − H
∥∥

F
→ 0,

or the set of accumulation points forms a continuum.
Proof: See the Appendix in [14].

VII. N UMERICAL EXPERIMENTS

A. Example Construction

First, let us illustrate just how significant a difference there
is between vanilla signature matrices and equiangular signature
matrices. Here is the Gram matrix of a six-vector, unit-norm
tight frame forR3:


1.0000 0.2414 −0.6303 0.5402 −0.3564 −0.3543
0.2414 1.0000 −0.5575 −0.4578 0.5807 −0.2902

−0.6303 −0.5575 1.0000 0.2947 0.3521 −0.2847
0.5402 −0.4578 0.2947 1.0000 −0.2392 −0.5954

−0.3564 0.5807 0.3521 −0.2392 1.0000 −0.5955
−0.3543 −0.2902 −0.2847 −0.5954 −0.5955 1.0000

.

d
N 2 3 4 5 6

3 R R .. .. ..
4 C R R .. ..
5 .. . R R ..
6 .. R . R R
7 .. C C . R
8 .. . C . .
9 .. C . . C
10 .. .. . R .
11 .. .. . C C
12 .. .. . . C
13 .. .. C . .
14 .. .. . . .
15 .. .. . . .
16 .. .. C . R
17 .. .. .. . .
18 .. .. .. . .
19 .. .. .. . .

d
N 2 3 4 5 6

20 .. .. .. . .
21 .. .. .. C .
22 .. .. .. . .
23 .. .. .. . .
24 .. .. .. . .
25 .. .. .. C .
26 .. .. .. .. .
27 .. .. .. .. .
28 .. .. .. .. .
29 .. .. .. .. .
30 .. .. .. .. .
31 .. .. .. .. C
32 .. .. .. .. .
33 .. .. .. .. .
34 .. .. .. .. .
35 .. .. .. .. .
36 .. .. .. .. C

TABLE I

EQUIANGULAR WBE SIGNATURE SETS

The notationsR and C respectively indicate that alternating projection was
able to compute a real, or complex, equiangular tight frame. Note that every
real, equiangular tight frame is automatically a complex, equiangular tight
frame. One period (.) means that no real, equiangular tight frame exists, and
two periods (..) mean that no equiangular tight frame exists at all.

Notice that the inner-products between vectors are quite dis-
parate, ranging in magnitude between 0.2392 and 0.6303.
These inner products correspond to acute angles of76.2◦ and
50.9◦. In fact, this tight frame is pretty tame; the largest inner
products in a unit-norm tight frame can be arbitrarily close
to one1. The Gram matrix of a six-vector, equiangular tight
frame forR3 looks quite different:


1.0000 0.4472 −0.4472 0.4472 −0.4472 −0.4472
0.4472 1.0000 −0.4472 −0.4472 0.4472 −0.4472

−0.4472 −0.4472 1.0000 0.4472 0.4472 −0.4472
0.4472 −0.4472 0.4472 1.0000 −0.4472 −0.4472

−0.4472 0.4472 0.4472 −0.4472 1.0000 −0.4472
−0.4472 −0.4472 −0.4472 −0.4472 −0.4472 1.0000

.

Every pair of vectors meets at an acute angle of63.4◦. The
vectors in this frame can be interpreted as the diagonals of an
icosahedron [17].

B. Summary of Basic Constructions

We have used alternating projection to compute equiangu-
lar tight frames, both real and complex, in dimensions two
through six. The algorithm performed poorly when initial-
ized with random vectors, which led us to adopt a more
sophisticated approach. We begin with many random vectors
and winnow this collection down by repeatedly removing
whatever vector has the largest inner product against another
vector. It is fast and easy to design starting points in this
manner, yet the results are impressive. These calculations are
summarized in Table I. Alternating projection can locate every
real, equiangular tight frame signature matrix in dimensions
two through six; algebraic considerations eliminate all the

1To see this, consider a tight frame that contains two copies of an
orthonormal basis, where one copy is rotated away from the other by an
arbitrarily small angle.



d 4 8 16 32 64
N 5 9 18 36 70

Minimum Cor. 0.2500 0.1250 0.0021 0.0006 0.0000
Average Cor. 0.2500 0.1250 0.0765 0.0516 0.0326
Std. Dev. Cor. 0.0000 0.0000 0.0429 0.0301 0.0212

Max Cor. 0.2500 0.1250 0.1250 0.0966 0.0607
Max Cor. Packing 0.2500 0.1250 0.0911 0.0674 0.0427
Max Cor. Bound 0.2500 0.1250 0.0857 0.0598 0.0369

TABLE II

NEAR-EQUIANGULAR WBE SIGNATURE SETS

Summary of the correlation behavior of specific WBE sequences resulting
from the proposed algorithm. The last three lines compare the maximum cor-
relation of the candidate near-equiangular WBE with the maximum correlation
of the best line packing found for(d, N) without the tight frame constraint
and the lower bound on the maximum correlation (5).

remaining values ofN [4], [?]. In the complex case, the
algorithm was able to compute every equiangular tight frame
that we know of. Unfortunately, no one has yet developed
necessary conditions on the existence of complex, equiangular
tight frames aside from the upper bound,N ≤ d2, and so we
have been unable to rule out the existence of other ensembles.

C. Overloaded System Example

We have also constructed some WBEs in dimensions of
d = 2k for k = 2, 3, . . . , 6 an overload factor of ten percent.
The results of this construction are illustrated in Table II.
Constructions(4, 5) and (8, 9) are exact equiangular tight
frames (corresponding to the simplex). In the other cases, the
WBEs are only nearly equiangular. Because of the tight frame
constraint, the maximum correlation is somewhat higher than
that of the best line packing for those combinations (without
the tight frame constraint), and is larger than the lower
bound. The standard deviation of the correlation between
two signatures provides a measure of “equiangularity.” Lower
values indicate the signatures are more equiangular. In the
proposed examples, there is some variability especially for
larger dimensions. This is becauseN is not much bigger
than d thus there are fewer degrees of freedom to enforce
the equiangular property. Ford = 64 andN = 128, though, a
construction exists that is equiangular and maximally spaced
[3]

VIII. C ONCLUSION

We have proposed an alternating minimization that is capa-
ble of finding optimal CDMA signature sequences that satisfy
equiangular side constraints and discussed convergence of
the algorithm. This algorithm can also be used to solve for
unconstrained optimal CDMA signature sequences, sequences
with peak-to-average power ratio side constraints [12], and
spectrum constraints. Extensions to colored noise and multi-
path channels are under investigation.
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