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In this accompanying text we provide extended derivations, analysis and results that were excluded from the main text.
Note that supplementary sections, equations, and figures are all marked with an ”S” prefix.

S1. Astrophysical Accretion Disks as GRFs
In Sec. 2.2 of the main text we describe an approach to efficiently model Gaussian Random Fields (GRF) as a solution to

a stocastic partial differential equation (SPDE) [10, 6, 3]. In particular, Sec. 2.2.1 describes the anisotropic spatio-temporal
diffusion equation. This SPDE is able to capture the (in homogeneous and non-isotropic) variability of astrophysical accretion
disks [5] through a spatially variable diffusion tensor Λ (x) (Sec. 2.2.2). In the following we describe the accretion model
parameters which dictate the diffusion tensor through the following fields (Eqs. 5–8):

vx (x) ,vy (x) , φ (x) , λ0 (x) , λ1 (x) , λ2 (x) . (S1)

Consider a polar coordinate system on the image plane parameterized by radius, r, azimuth angle, ϕ, and their corresponding
direction vectors, r̂ and ϕ̂:

r = |x|, ϕ = arctan (x2/x1) , (S2)
r̂ = (cosϕ, sinϕ) , ϕ̂ = (− sinϕ, cosϕ) (S3)

Keplerian orbital frequency, ΩK, scales with radius as ΩK ∝ r−3/2. We parameterize the velocity field as (Fig. 2)

vx(r, ϕ;ϕ0) = −ΩK(r) sin(ϕ+ ϕ0) (S4)
vy(r, ϕ;ϕ0) = ΩK(r) cos(ϕ+ ϕ0), (S5)

where ΩK and ϕ + ϕ0 are respectively the magnitude and angle of the velocity vector field. The parameter ϕ0 defines the
opening angle of the velocity field with respect to ϕ̂. For example, ϕ0 = {0◦, 90◦, 180◦, 270◦} describe counter-clockwise
(CCW) flow, radial outflow, clockwise (CW) flow, and radial inflow, respectively. Similarly, the direction of the major and
minor spatial correlation axis (Eqs. 7–8) are defined by

φ(ϕ;ϕ1) = ϕ+ ϕ1, (S6)

where ϕ1 defines the opening angle of ξ1 with respect to r̂. Finally, the remaining correlation lengths required to fully
parameterize the diffusion tensor are defined by

λ0 ∝ Ω−1
K , λ1(r) ∝ r, λ2(r) = ελ1(r). (S7)

Here ε ∈ [0, 1] is a fixed ratio which dictates the directionality of spatial correlations (ε=1.0 yields isotropic correlations).

S2. RSI and PCA Comparison
In Sec 4.1 we describe the random subspace iteration (RSI) algorithm (Alg. 1) utilized to estimate the top modes of

the SPDE system. Another approach to recover the top modes, which capture most of the variability in the GRFs, is to
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Figure S1: A comparison between RSI (blue) and PCA (orange). RSI modes are computed with q=5 for varying degrees
K = 10, 30, 60 with the equivalent 50, 150, 300 PCA samples. The data-fit is plotted for a fixed CW rotation ϕtrue

0 and under-
lying true correlation direction ϕtrue

1 =− 70◦ (green). The top row demonstrates the noisy PCA loss of a single measurement
instance. Bottom row shows statistics over measurement samples. Much of the variability is not captured by the PCA modes
resulting in a higher standard deviation (semi-transparent).

sample many GRFs and use principle component analysis (PCA) on the sampled data. For a large number of GRF samples
these two approaches converge to the same answer. RSI requires qK forward operations (solving Eq. 1), where q is the
number of iterations and K is the degree or block size. For comparison we computed RSI modes with q = 5 for varying
degrees K = 10, 30, 60 with the equivalent 50, 150, 300 PCA samples, respectively. Figure S1 compares the 1D data-
fit D(ϕtrue

0 , ϕ1) (Sec. 4.2.1) for a fixed CW rotation ϕtrue
0 and an unknown spatial correlation direction ϕ1. To generate

statistics the data-fit was computed for 10 GRF measurements, sampled with the underlying true parameters ϕtrue
0 , ϕtrue

1 .
The top row demonstrates the noisy loss resulting from PCA for a single measurement instance. Optimizing over the PCA-
based loss using gradients would be very challenging due to its rough discontinuous behavior, whereas for the same number
of operations RSI results in a much smoother loss. The bottom row shows statistics over 10 measurement samples.

S3. Fitting Accretion Disk Parameters
In the main text we analyze two-dimensional (2D) data-fit manifolds (defined by Eq. 18) for four different dynamic

evolutions (Fig. 4) . In Fig. S2 we extend this analysis to a 5× 5 grid of measurements; each measurement was synthesized
from a different set of accretion parameters Θtrue = (ϕtrue

0 , ϕtrue
1 ). The inferred global minima track the ground-truth. From

Fig. S2 we see that some regions of the parameter space have a wider local minima as visualized by a wider navy colored
region. This implies that estimation of these parameters is associated with higher uncertainty. Note that due to periodicity
the manifolds wrap around in both the horizontal and vertical axes.

S4. Comparison of Stochastic Model Fitting and Imaging
In the main text we compare our recovery results to a state-of-the-art VLBI imaging approach, StarWarps (SW) [1],

which was developed to handle time-varying interferometric datasets. The output of SW is an estimated full length video,
V SW, from which we extract the mean OpticalFlow (OF) field [2] to approximate the underlying velocity field. Figure S3
shows further comparisons for two underlying true dynamic evolutions generated with Θtrue

1 ,Θtrue
2 . Here Θtrue

1 denotes
CW rotation and Θtrue

2 denotes radial outflow. Figure S3 demonstrate results for both EHT++ and EHT2017 measurements.
The SW motion field, extracted from EHT++ measurements, is able to capture the general direction of the flow (i.e. CW
rotation or radial outflow). This suggests that in regimes of dense measurements, imaging as an initial step could be useful
for extracting some evolution dynamics. In contrast, Fig. S3 highlights the advantage of having a dynamic model, especially
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Figure S2: A 2D data-fit manifold over possible Θ = (ϕ0, ϕ1) for a 5 × 5 grid of measurements y = ρ that correspond to
different Θtrue. The global minima track the ground-truth. Note that due to periodicity the manifolds wrap around in both
the horizontal and vertical axes.

in a setting of extremely sparse measurements as is illustrated by the recoveries from synthetic EHT2017 measurements.

S5. Interferometric Measurements
In order to solve the estimation problem posed by Eq. (26) we rely on block coordinate descent and derive a joint estimation

approach for the static envelope I and dynamic parameters Θ (Eqs. 27–28). In this section we extend the derivations provided
in Sec. 4.2.3.

S5.1. Dynamic Parameter Estimation & Linearization

To efficiently solve the dynamic parameter estimation (Eq. 28) we linearize the measurement model (Eq. 25):

M [V (x)] = S◦F
[
I (x) eρ̂(x)

]
' S◦F [I (x)] + S◦F [I (x) ρ̂ (x)] . (S8)



Figure S3: Comparison of the proposed (stochastic model-based) approach with StarWarps (SW) [1] for EHT++ and
EHT2017 measurements and two underlying dynamic evolutions generated with Θtrue

1 ,Θtrue
2 . The top two rows corre-

spond to CW rotation and the bottom two rows correspond to radial outflow. The left most column shows the true underlying
dynamics where blue arrows describe the velocity field v and green ticks (overlaying the image frames) describe ξ1. The
output of SW is an estimated full length video, from which we extract the mean OpticalFlow (OF) field [2] as a proxy of
the underlying velocity field. Our proposed model fitting approach is better able to recover the stochastic evolution of the
underlying flow field even from very sparse data of EHT2017.

The low dimensional random field ρ̂ is given by a series expansion of the SPDE modes (Eq. 14)

ρ̂ (x) =

K−1∑
k=0

ckσkuk (x) . (S9)

Using the series representation, Eq. (S8) can be written as

M [V (x)] ' S◦F [I (x)] +

K∑
k=1

ckσkS◦F
[
I (x)uk (x)

]
. (S10)



(a) Linearization comparison (b) MEM Regularization

Figure S4: (a) Loss comparison, using EHT2025, of the linearized and exponential models. While the loss degradation is
minimal, the computational gain is significant. Computing the loss with the exponential model (left) took ∼6 hours whereas
the linearized loss (right) took only ∼5 minutes. (b) Prior image g (x) of a Gaussian with standard deviation of 50µas used
for MEM regularization (Eq. S15) of static image reconstruction (Eq. S14).

The sum in Eq. (S11) can be written using matrix multiplication

K∑
k=1

ckσkS◦F
[
I (x)uk (x)

]
= ZΘ,IΣΘc, (S11)

where we define ZΘ,I as a matrix whose kth column is the sampled Fourier transform of mode uk: S◦F
[
I (x)uk (x)

]
.

Note that ZΘ,I depends on both the static envelope and dynamic parameters. By using the linearization (Eqs. S10–S11) to
approximate the measurement model (Eq. 25) we derive a linear convex minimization problem for inference from visibility
measurements

D̂ν(y, I∗,Θ) = min
c

∥∥ỹ − ZΘ,I∗ΣΘc
∥∥2

Σy
+ ‖c‖2. (S12)

Here
ỹ = y − S◦F [I∗ (x)] (S13)

can be intuitively interpreted as the current estimate of the dynamic portion of the visibility measurements (current estimate
since it depends on I∗). The motivation for linearizing the image formation model is efficiency. The validity of the approx-
imation depends on the scaling factor γ (Eq. 1). For the values used in our simulations, γ ≈ 2.0, this yields a significant
run-time improvement with minimal degradation. In Fig. S4a) we compare two losses resulting from the linearized and
exponential model. While the linearized loss appears less smooth and with a wider minimum around the true value, the
computational gain is ∼ 2 orders of magnitude

S5.2. Static Image Reconstruction

In Secs. 4.2.1–4.2.2 we formulated inverse problems for direct estimation of model parameters from video pixels. In
this case static image effects on the video can be easily subtracted. In contrast, when recovering dynamic parameters from
visibility measurements, we jointly estimate the underlying static image I. To estimate the static image, we keep the dynamic
parameters fixed and solve the following minimization

I∗ = min
I

∥∥y−S◦F[I (x) eρ̂
∗(x)

]∥∥2
Σy

+ αR(I). (S14)

Here α is a weight parameter. In our numerical simulations we used α = 1.0 and Maximum Entropy Method (MEM)
regularization [4]:

R(I) =

∫
x

I (x) log

(
I (x)

g (x)

)
dx. (S15)

Here g (x) is a prior image. In our reconstructions we used a Gaussian [9] with standard deviation of 50µas (Fig. S4b).



Telescopes Sites
Arrays Site Lat. (◦) Lon. (◦) Alt. (m)
EHT2017 ALMA -23.03 -67.75 5070
EHT++ APEX -23.01 -67.76 5100
ngEHT PV 37.07 -3.39 2920

JCMT 19.82 -155.48 4120
LMT 18.98 -97.31 4600
SMA 19.82 -155.48 4110
SMT 32.70 -109.89 3160
SPT -90.00 45.00 2820

EHT++ BAJA 31 -115 2500
ngEHT HAY 43 -71 0

PIKES 39 -105 4000
KP 31.57 -111.36 1900
GAM 23.23 16.1 2300
GLT 72.3 -38.3 3200

EHT++ PDB 44.38 5.54 2620
CARMA 37.16 -118 2170
KAUAI 21.55 -159.3 3000
KEN -0.1 37.18 5000
BOL -16.21 -68.07 5270
VLT -24.37 -70.24 2630
DRAK -29.28 29.16 3480

ngEHT BAR 38 -118 2250
CAT -41 -71 2000
CNI 29 -18 2000
GARS -63 -58 0
NZ -44 171 2000
OVRO 37 -118 1000
SGO -33 -70 3500
CAS -55 -68 500
LLA -24 -66 4500

Table 1: Existing and candidate sites for an expanded EHT array. The Array column indicates which array configurations
contain the sites, for example, all three array configurations (EHT2017, EHT++, ngEHT) contain the existing 8 telescopes.

S5.3. Effect of Sparse Measurements

We analyze the recovery results of the static envelope image and dynamic parameters for increasingly sparse measure-
ments. The top row in Fig. S5 shows the underlying ground truth parameters, a single video frame, and the extracted mean
OpticalFlow (OF). The second row shows a reconstruction directly form video pixels. This reconstruction is an upper bound
of what we can expect to get from VLBI measurements. We synthesize observation for the next generation EHT [8] (ngEHT)
which includes candidate sites for an expanded EHT array - (in total ngEHT has 23 telescopes). EHT++ contains an ex-
panded telescope configuration with 21 telescopes and EHT2017 has the existing 8 telescopes used in the 2017 campaign
(see Table 1 for telescope configurations and locations). From top to bottom, Fig. S5 demonstrates the effects of increasingly
sparse measurements on the reconstruction quality. Despite errors in recovered envelopes, the dynamic parameter estimation
is close to the true underlying parameters. On the right most column Fig. S5 shows the mean OpticalFlow (OF) extracted
from movies synthesized with the recovered envelope and dynamic parameters. The general direction of the mean OF field
is clockwise (CW) rotation, however, since it is extracted from video pixels it is sensitive to errors in the recovered envelope.
A single frame from the synthesized movies is displayed on the second right column.

S6. GRMHD Recovery
In Sec. 5.2 we demonstrate our approach in a more realistic setting, using physics-based video simulations of black hole

accretion. We showcase a recovery based on a forward model of General Relativistic Magneto Hydrodynamics (GRMHD) [7]
which generated with a spin parameter of +0.5. In Fig. S6 we show additional GRMHD recovery where the video was
generated with an underlying spin parameter of 0.0. In this case, as shown by the video frame (left column of Fig. S6), the
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Figure S5: This figure illustrates the effects of sparse measurements on the reconstruction. The top row shows the underlying
ground truth parameters and video frame. From top to bottom the measurements used for reconstruction are increasingly
sparse. Despite errors in recovered envelopes, the dynamic parameter estimation is close to the true underlying parameters.
As measurements become very sparse (EHT2017) the navy-blue region surrounding the global minimum become wider. This
is indicative of higher uncertainty in the recovered parameters. The right column shows the mean OpticalFlow (OF) extracted
from movies synthesized with the recovered envelope and dynamic parameters. The general direction of the mean OF field
is clockwise (CW) rotation, however, since it is extracted from video pixels it is sensitive to errors in the recovered envelope.
A single frame from the synthesized movies is displayed on the second right column.

spatial correlation pattern is oriented more radially compared to the +0.5 case (shown in the main text Fig. 8).
While we do not have access to ground-truth parameters for GRMHD movies, we can compare the recovery obtained

from VLBI measurements to the recovery obtained directly from the GRMHD video, as formulated in Sec. 4.2.2. Recall that
we expect the pre-processing step of Eq. (24) to yield a video with similar statistics to the sampled GRFs. Moreover, the
2D loss manifold recovered directly from the pre-processed video is an upper bound of what we can expect to achieve from
sparse EHT measurements. Figure S6 shows the recovered envelope and loss manifolds for video data, as well as EHT++
and EHT2017 measurements. In all three cases we estimate a clockwise (CW) rotational field. The loss manifolds for the
EHT based recoveries resemble the loss from the video data, with global minima (red dot) around ϕ1 = −40◦
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Figure S6: Recovery of the envelope and dynamic parameters of a realistic black hole simulation. The bottom half of the
figure shows the result given in the main text (Fig. 8) for comparison. The top half shows an example of a different GRMHD
movie with correlations that extend more radially compared to the bottom movie. Reconstruction results are ordered video
reconstruction [top] to EHT++ measurements [center], and EHT2017 measurements [bottom]. The left column shows a
frame from the GRMHD video and its preprocessed dynamic component (Eq. 24). The right column shows a frame from a
GRF sampled with the identified parameters Θ∗.
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