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ABSTRACT

A simple sparse approximation problem requests an approx-
imation of a given input signal as a linear combination of
T elementary signals drawn from a large, linearly depen-
dent collection. An important generalization is simultane-
ous sparse approximation. Now one must approximate sev-
eral input signals at once using different linear combina-
tions of the sameT elementary signals. This formulation
appears, for example, when analyzing multiple observations
of a sparse signal that have been contaminated with noise.

A new approach to this problem is presented here: a
greedy pursuit algorithm called Simultaneous Orthogonal
Matching Pursuit. The paper proves that the algorithm cal-
culates simultaneous approximations whose error is within
a constant factor of the optimal simultaneous approxima-
tion error. This result requires that the collection of ele-
mentary signals be weakly correlated, a property that is also
known as incoherence. Numerical experiments demonstrate
that the algorithm often succeeds, even when the inputs do
not meet the hypotheses of the proof.

1. INTRODUCTION

We work in the complex inner-product spaceCd, which is
called thesignal space. We write 〈·, ·〉 for the usual inner
product and‖·‖2 for the associated norm. The symbol‖·‖p

indicates thè p vector norm, while‖·‖p,q is the norm on
linear operators mapping̀p to `q. We use∗ for the complex
conjugate transpose of vectors and matrices.

A dictionary is a finite collection of unit-norm elemen-
tary signals, calledatoms, that spans the signal space. Each
atom is denotedϕω, whereω is drawn from an index setΩ.
The number of atomsN is typically much larger than the
dimensiond of the signal space. We also define thed × N
dictionary matrixΦ whose columns are atoms.

Suppose thatS is ad×K matrix whose columns are in-
put signals. We wish to approximate allK input signals us-
ing different linear combinations of the sameT atoms. Typ-
ically, T is much smaller than the dimension of the signal
space, so the approximation issparse. More precisely, the

simultaneous sparse approximation problem(SSA) elicits a
K × N coefficient matrixC that solves the mathematical
program

min
C

‖S − Φ C‖2
F subject to

the matrixC has at mostT nonzero rows. (SSA)

The squared Frobenius matrix norm‖·‖2
F returns the sum of

the squares of the entries in a matrix.
The (SSA) problem arises if we are given multiple ob-

servations of a sparse input signal that are contaminated
with noise. For example, thek-th input signal might have
the form

sk = x + νk

whereνk is a realization of some random process and where
x can be expressed using a linear combination ofT atoms.
The goal is to identify the atoms that comprisex.

To solve (SSA), we propose a greedy pursuit method,
Simultaneous Orthogonal Matching Pursuit(S-OMP). For
general dictionaries, (SSA) cannot be solved without check-
ing every combination ofT nonzero rows. This follows
from results in [1]. Nevertheless, we have been able to
prove that S-OMP correctly solves the simultaneous sparse
approximation problem, provided that the atoms are weakly
correlated. To quantify this property, we define thecoher-
ence parameterof the dictionary,

µ
def= max

λ6=µ
|〈ϕλ,ϕω〉| .

When the coherence parameter is small, each pair of atoms
is nearly orthogonal.

This paper provides the first proof that any algorithm
can obtain provably good solutions to (SSA). A simple ver-
sion of our result follows1. Suppose that the setΛopt in-
dexes theT atoms that appear in some solution to (SSA).
Then we may define thed×K matrixAopt whosek-th col-
umn is the best approximation of thek-th input signal using
theT atoms listed inΛopt.

1Note that the present result does not yield an optimal bound for the
constant, even when the dictionary is orthonormal. A more subtle analysis
is necessary to achieve the improvement.



Theorem 1 Assume thatµT < 1
2 . After T steps, suppose

that Simultaneous Orthogonal Matching Pursuit returns the
approximationAT . Then the output error is bounded by

‖S − AT ‖F ≤
√

1 + C(D ,K, T ) ‖S − Aopt‖F ,

and the constant is no worse than

C(D ,K, T ) ≤ K T (1− µT )
(1− 2 µT )2

.

In particular, if the optimal approximation error is zero, S-
OMP returns an approximation that achieves zero error.

The algorithm S-OMP performs much better in practice
than our theory predicts. Not only can we recover the input
signals whenT is large, the error does not grow as quickly
as our bounds would suggest. We have discovered that mod-
erate noise levels create surprising difficulties for our algo-
rithm. To our knowledge, these are the first numerical ex-
periments performed on (SSA).

The rest of the paper expands on the claims of the in-
troduction. Section 2 provides a rigorous statement of our
greedy pursuit algorithm. In Section 3, we sketch the proof
that the algorithm constructs approximate solutions to (SSA),
and we discusses several other factors that affect its perfor-
mance. The paper concludes with Section 4, which summa-
rizes our numerical experiments.

2. THE ALGORITHM

Let us continue with a formal description of the algorithm.

Algorithm 2 (S-OMP)
INPUT:

• A d×K matrixS of input signals

• The numberT of atoms in the approximation

OUTPUT:

• A setΛT containingT indices

• A d×K approximation matrixAT

• A d×K residual matrixRT

PROCEDURE:

1. Initialize the residual matrixR0 = S , the index set
Λ0 = ∅, and the iteration countert = 1.

2. Find an indexλt that solves the easy optimization
problem

max
ω∈Ω

K∑
k=1

|〈Rt−1 ek,ϕω〉| .

We useek to denote thek-th canonical basis vector.

3. SetΛt = Λt−1 ∪ {λt}.

4. Determine the orthogonal projectorPt onto the span
of the atoms indexed inΛt.

5. Calculate the new approximation and residual:

At = Pt S

Rt = S − At.

6. Incrementt, and return to Step 2 ift ≤ T .

This procedure reduces to standard Orthogonal Matching
Pursuit [1] whenK = 1.

Step 2 of the algorithm is referred to as thegreedy se-
lection. The intuition behind maximizing the sum of abso-
lute correlations is that we wish to find an atom that con-
tributes the most energy to as many of the input signals as
possible. Note that this absolute sum can also be written as
‖Rt

∗ϕω‖1. In contrast, Leviatan and Temlyakov [2] have
studied a greedy algorithm for (SSA) that picks an atom by
maximizing‖Rt

∗ϕω‖∞.
Steps 4 and 5 have been written to emphasize the con-

ceptual structure of the algorithm. It is possible to imple-
ment them much more efficiently using standard techniques
for least-squares problems. See [3, Ch. 5] for extensive de-
tails. It is important to note that each column of the residual
Rt is orthogonal to the atoms indexed inΛt. Therefore, no
atom is ever chosen twice.

3. PROOF OF CORRECTNESS

We will develop a condition which guarantees that S-OMP
selects an optimal atom at iterationt. From this condition,
it is easy to prove that Simultaneous Orthogonal Matching
Pursuit can compute approximate solutions to (SSA).

Theorem 3 Assume thatµT < 1
2 , and fix a signal matrix

S . At iterationt, suppose that S-OMP has chosent optimal
atoms, and letAt be the current approximation of the signal
matrix. At iteration(t + 1), greedy selection will identify
another optimal atom provided that

‖S − At‖2
F > ‖S − Aopt‖2

F +
T (1− µT )
(1− 2 µT )2

‖Φ∗(S − Aopt)‖2
∞,∞ (1)

whereAopt denotes an optimal approximation of the signal
matrix usingT atoms.

In words, the algorithm selects another optimal atom when-
ever the current approximation is somewhat worse than an
optimal approximation. We interpret‖Φ∗(S − Aopt)‖∞,∞
as the maximum total correlation between a fixed atom and
the residuals left over from the optimal approximation.



Proof. Suppose that some solution of (SSA) involves the
T atoms indexed inΛopt. Define thed × T matrix Φopt

whose columns are the atoms listed byΛopt. Let thed ×
(N − T ) matrix Ψopt contain the remaining atoms. Recall
the definitionRt = S − At.

First, observe that each row of the matrix(Φopt
∗Rt) lists

the inner products between a fixed atom inΛopt and the
columns ofRt. The rows of the matrix(Ψopt

∗Rt) have an
analogous interpretation. The(∞,∞) matrix norm returns
the maximum absolute row sum of its argument, and so the
algorithm chooses another optimal atom if and only if the
ratio

ρ
def=

‖Ψopt
∗Rt‖∞,∞

‖Ψopt
∗Rt‖∞,∞

(2)

is strictly less than one. We must ensure thatρ < 1.
RewriteRt = (S − Aopt) + (Aopt − At). Substitute

this expression into (2). The termΦopt
∗(S − Aopt) van-

ishes from the denominator because of orthogonality. Ap-
ply the triangle inequality to the numerator to see thatρ is
no greater than

‖Ψopt
∗(Aopt − At)‖∞,∞

‖Φopt
∗(Aopt − At)‖∞,∞

+
‖Ψopt

∗(S − Aopt)‖∞,∞

‖Φopt
∗(Aopt − At)‖∞,∞

.

(3)
Now we bound the first fraction in (3). LetΦopt

+ de-
note the generalized inverse ofΦopt. Using an argument
analogous to that in [4, Thm. 3.1], we discover that

‖Ψopt
∗(Aopt − At)‖∞,∞

‖Φopt
∗(Aopt − At)‖∞,∞

≤
∥∥Φopt

+Ψopt

∥∥
1,1

. (4)

It can be shown that the second fraction in (3) is no greater
than

‖Ψopt
∗(S − Aopt)‖∞,∞∥∥Φopt

+
∥∥−1

2,1
‖Aopt − At‖F

. (5)

In the numerator, we replaceΨopt with Φ = [Φopt Ψopt],
using the fact that the columns of(S−Aopt) are orthogonal
to the columns ofΦopt.

We substitute the bounds (4) and (5) into (3) and per-
form some algebraic manipulations to find a condition that
ρ < 1. To complete the argument, we introduce the coher-
ence estimates developed in [5, Sec. 3].

�

Corollary 4 Assume thatµT < 1
2 . Given any input matrix

S , Simultaneous Orthogonal Matching Pursuit will always
construct aT -term approximationAT that satisfies the er-
ror bound

‖S − AT ‖2
F ≤ ‖S − Aopt‖2

F +
T (1− µT )
(1− 2 µT )2

‖Φ∗(S − Aopt)‖2
∞,∞

whereAopt is an optimalT -term approximation ofS .

From here, one reaches Theorem 1 by noting that

‖Φ∗(S − Aopt)‖2
∞,∞ ≤ K ‖S − Aopt‖2

F

because the columns ofΦ all have unit norm.

4. NUMERICAL EXPERIMENTS

To evaluate the performance of our algorithm, we have tested
it with three types of input signal. Each type is a variant on
the formsk = xk+νk, whereνk is random noise and where
xk can be expressed using a linear combination ofT atoms
(possibly the same for eachk). In each dimensiond, our
dictionary is the collection ofd complex exponentials andd
impulses. That is,ϕω[t] = e2πi tω/d for ω = 1, . . . , d and
ϕλ[t] = δλ[t] for λ = 1, . . . , d. Note that this dictionary
has coherenceµ = 1/

√
d.

We begin with input signals of the form

sk =
T∑

j=1

αjk ϕωjk
.

For each signalsk, we selectT atoms independently and
uniformly from the dictionary. The coefficientsαjk are cho-
sen from iid normal distributions. Our algorithm is, there-
fore, searching for the bestT atoms with which to repre-
sentK signals, each of which is a linear combination of
T atoms. We have observed that our algorithm always re-
coversT atoms from the collection of approximatelyKT
distinct atoms that participate in theK input signals. All
of the error in the residual is due to the fact that the input
signals involve more atoms that we are allowed to use.

The second type of input signal has the form

sk =
T∑

j=1

αjk ϕωj

For allK signals, we use the same core ofT atoms, but the
coefficientsαjk are chosen from iid normal distributions.
For these experiments, we fixed the dimension of the sig-
nal space atd = 128 and the number of signals atK = 2.
We vary the value ofT to explore how many core atoms we
can successfully recover with our algorithm. For each set
of parameters, we performed 1000 independent trials. We
computed the Hamming distance between the set of recov-
ered atoms and the core set. Hamming distance zero means
that we recover the entire core set, while distance one means
that we fail to recover any of the core atoms. In Figure 1,
we plot the average Hamming distance as a function ofT .
The error bars mark one standard deviation from the mean.
We can see from this figure that our theoretical bounds are
far too pessimistic. Even forT = 90 (out of a possible 128
atoms), we typically recover most of the core set.
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Fig. 1. The average Hamming distance between the core
set of the vectors and the recovered set as a function of the
number of vectorsT in the core set. (Input type two)

The third input type has the form

sk =
T∑

j=1

αj ϕωj + νk.

That is, we chooseT atoms at random and form a linear
combination with random coefficientsαj ∈ {±1}. Then
we constructK input signals by corrupting the original sig-
nal with iid additive white Gaussian noiseνk. For these
experiments, we fix the dimensiond = 256; we vary T
from 2 to 4; we varyK from 2 to 6; and we examine SNR
values of 10, 13, 16, and 20 dB. For each parameter set,
we perform 1000 trials. Figure 2 displays the average Ham-
ming distance as a function of the number of signals. For
each value ofT , we use a distinct line type (e.g., dashed)
so the four dashed lines correspond to the four SNR val-
ues. Naturally, the Hamming distance increases as SNR de-
creases. Observe that, independent of the number of core
atomsT and the SNR, we recover the core signal better
when we have more observations. Furthermore, the pres-
ence of noise has a significant effect on the performance of
the algorithm. The previous example showed that we can
often recover core sets of atoms that are almost as large as
the dimension of the signal space. Yet for moderate SNR
(e.g., 13dB), we cannot reliably recover three atoms in a
256-dimensional signal space. With the parameter settings
we have chosen, our theoretical results predict that

‖S − At‖2
F∑K

k=1 ‖νk‖2
2

≤ 1 + 3KT.

To see if this bound accurately predicts the dependence on
K andT , we plot in Figure 3 the total relative error as a
function of the number of signalsK. For eachT , we use
a different line type. The two groups of lines represent the
extreme SNR values (10 and 20 dB). The plot shows that
the size ofT has a negligible effect on the error. That is, the
theoretical bounds reflect a dependence onT that is absent
in the empirical evidence. Again, our algorithm performs
better than the theoretical results might lead us to believe.
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Fig. 2. The average Hamming distance between the core set
of vectors and the recovered set as a function of the number
of signals and the SNR. (Input type three)
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Fig. 3. The total relative error as a function of the number
of signals and the number of core vectors for two values of
SNR. (Input type three)

5. REFERENCES

[1] G. Davis, S. Mallat, and M. Avellaneda, “Greedy adap-
tive approximation,” J. Constr. Approx., vol. 13, pp.
57–98, 1997.

[2] D. Leviatan and V. N. Temlyakov, “Simultaneous
approximation by greedy algorithms,” IMI Report
2003:02, Univ. of South Carolina at Columbia, 2003.

[3] G. H. Golub and C. F. Van Loan,Matrix Computations,
Johns Hopkins University Press, 3rd edition, 1996.

[4] J. A. Tropp, “Greed is good: Algorithmic results for
sparse approximation,”IEEE Trans. Inform. Theory,
vol. 50, no. 10, October 2004, To appear.

[5] J. A. Tropp, “Just relax: Convex programming methods
for subset selection and sparse approximation,” ICES
Report 04-04, The University of Texas at Austin, 2004.


