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ABSTRACT

We propose and study a new technique for efficiently acquir-
ing and reconstructing signals based on convolution with a
fixed FIR filter having random taps. The method is designed
for sparse and compressible signals, i.e., ones that are well
approximated by a short linear combination of vectors from
an orthonormal basis. Signal reconstruction involves a non-
linear Orthogonal Matching Pursuit algorithm that we imple-
ment efficiently by exploiting the nonadaptive, time-invariant
structure of the measurement process. While simpler and
more efficient than other random acquisition techniques like
Compressed Sensing, random filtering is sufficiently generic
to summarize many types of compressible signals and gen-
eralizes to streaming and continuous-time signals. Extensive
numerical experiments demonstrate its efficacy for acquiring
and reconstructing signals sparse in the time, frequency, and
wavelet domains, as well as piecewise smooth signals and
Poisson processes.

1. INTRODUCTION

Natural signals often contain some type of structure that
makes themcompressible. That is, a compressible signal of
length d can be well approximated usingm real numbers,
with m � d. Natural images, for example, are compressed
by a factor of 10 or more when expressed in terms of their
largest wavelet coefficients. The usual approach to acquir-
ing a compressible (digital) signal is to take measurementsin
the Dirac basis and then use a nonlinear algorithm, such as
a JPEG coder, to obtain a more efficient approximation. But
this approach is not practicable if the signal is presented at a
high rate or if the measurement device has limited computa-
tional resources (as in a sensor network).

As a result, Cand̀es, Romberg and Tao [1] and Donoho [2]
have proposed an approach, known asCompressed Sensing
(CS), in which arandomlinear projection is used to acquire
efficient representations of compressible signals directly. This
method is effective forsparsesignals, i.e., signals that are
well approximated by a short linear combination of vectors
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Fig. 1. Block diagrams for signal acquisition through random filter-
ing: (a) using convolution; (b) using FFT/IFFT. The FIR filterh has
random taps, which must be known in order to recover the signals

from the compressed datay.

from an orthonormal basis. Signals are reconstructed by solv-
ing a costly linear program [1, 2] or using a more efficient
greedy pursuit [3]. At present, CS is not suited to real-time
applications or large data sets because the measurement pro-
cess requires access to the entire signal at once; the mea-
surements are not time-invariant; and the reconstruction al-
gorithms are very expensive.

In this work, we proposerandom filtersas a new paradigm
for compressive signal acquisition. Our approach capturesa
signals by convolving it with a random-tap FIR filterh and
then downsampling the filtered signal to obtain a compressed
representationy. Figure 1 illustrates the measurement pro-
cess. Reconstruction ofs involves a nonlinear algorithm.

At first glance, one might think this method would con-
vert a signal into garbage. In fact, the random filter isgeneric
enough to summarize many types of compressible signals.
At the same time, the random filter has enoughstructureto
accelerate measurement and reconstruction algorithms. Our
method has several benefits:

• measurements are time-invariant and nonadaptive;
• measurement operator is stored and applied efficiently;
• we can trade longer filters for fewer measurements;
• it is easily implementable in software or hardware; and
• it generalizes to streaming or continuous-time signals.

This paper describes how random filters can be used to
capture finite-length, discrete-time signals. In Section 3, we
discuss two different methods for signal acquisition that take
full advantage of the structure of the random filter. In Sec-
tion 4, we present a reconstruction algorithm, based on Or-
thogonal Matching Pursuit (OMP), that uses the structure of



the random filter to accelerate computations. Section 5 re-
ports on extensive numerical experiments, which confirm that
random filters are effective tools for signal acquisition and re-
covery, and Section 6 describes conclusions and future work.

2. BACKGROUND

This work concentrates on signals that can be expressed effi-
ciently in an orthonormal basisΨ, called thesparsity basis.
We say that a signals of lengthd is m-sparsewith respect to
the basis if there is a vectorθ with m � d nonzero entries for
which s ≈ Ψθ. This model covers many signal classes, in-
cluding (i) Poisson processes and spike trains, (ii ) piecewise
polynomials and splines, and (iii ) signals in weak̀p balls.

Results from the CS literature provide a benchmark for
studying the performance of random filters. TakingN linear
measurements of the signals can be viewed as multiplica-
tion y = Φs by a N × d measurement matrixΦ. Several
distributions forΦ have been proposed. IfΦ is fully i.i.d.
Gaussian, then several different algorithms can recoverm-
sparse signals fromN = O(m log d) measurements. IfΦ is
a Rademacher (i.e.,±1) matrix or a random row submatrix
of the DFT matrix, then a similar number of measurements
suffice in practice.

The costs for CS encoding and decoding depend sig-
nificantly on the type of measurement matrix. Gaussian
and Rademacher matrices require storage and computation
O(dN) for encoding. Fourier measurement matrices improve
storage toO(d) and encoding times toO(d log d). Two dif-
ferent algorithms,̀ 1 minimization [1, 2] and OMP [3], are
commonly used for signal reconstruction. The`1 minimiza-
tion approach uses linear programming to solve the problem
θ̂ = arg minθ ‖θ‖1 subject toΦΨθ = y. Reconstruction
costs vià 1 minimization have not been reported, but one ex-
pects them to beO(d3.5) in general. Greedy pursuit meth-
ods such as OMP attempt to build up an approximation toθ

based on correlations betweeny and the columns of the ma-
trix ΦΨ. OMP requiresO(mNd) arithmetic operations in
general, but it can be improved toO(md log d) with Fourier
measurements.

3. COMPRESSIVE SAMPLING

This section defines more precisely what we mean by a ran-
dom filter, and it compares two different methods for deter-
mining the compressed signal. Arandom filter of length
B is an FIR filter whoseB taps are i.i.d. random variables.
In particular, we are interested in the cases where the taps
are drawn (i) from theN (0, 1) distribution or (ii ) from the
Bernoulli/Rademacher distribution of{±1}′s.

3.1. Encoding methods

Draw a random filterh of lengthB. Note that the filter re-
quires justO(B) storage. To takeN measurements of a signal

s of lengthd, we must calculate

y = D↓(h ∗ s),

whereD↓ downsamples by a factor ofbd/Nc. Note that, be-
cause this process is linear, the map from the signals to the
summaryy can be viewed asy = Φs, whereΦ is anN × d
matrix. This matrix isbandedandquasi-Toeplitz: each row
hasB nonzero entries, and each row ofΦ is a copy of the row
above, shifted right bybd/Nc places.

Method 1: The first method for calculating the measure-
ments, illustrated in Figure 1(a), performs linear convolution
and downsampling simultaneously. Forn = 0, 1, . . . , N − 1,
then-th measurement is calculated as

y(n) =
∑B−1

j=0

s(nbd/Nc + j)h(B − j).

ComputingN measurements requiresO(BN) arithmetic op-
erations. This method can be applied in systems where the
input s is streaming, since the measurements are localized in
time and also time-invariant.

Method 2: The second method, illustrated in Figure 1(b),
uses FFTs to calculate the convolution. In this case, we com-
pute

y = D↓ F
−1{H(ω)S(ω)},

which is equivalent to using a circulantΦ matrix. The cost
of computing the measurements isO(d log d), independent of
the filter length or the number of measurements. Compared to
Method 1, this calculation may be faster if the filter has many
taps. Note, however, that the entire signal must be presented
at once.

It appears that these two encoding methods are at least
as efficient as anything described in the CS literature. We
also note that filtering can be performed with other standard
methods, such as overlap–add, but we omit this discussion.

3.2. Number of measurements

The number of measurements required to capture a class of
signals depends on several different factors:

• The sparsity levelm and lengthd of the signals.
• The lengthB of the random filter.
• The coherencebetween the measurement matrix and

the sparsity basis. WhenΦΨ has small entries, signal
acquisition requires fewer measurements.

Explaining these tradeoffs theoretically is a major project.
One expects that signals sparse in the time domain, i.e.,

Ψ = I, are the most difficult to acquire with random filters be-
cause of high coherence. Yet we present empirical evidence in
Section 5 that random filters are effective for recovering time-
sparse signals: a random filter of lengthd performs as well
as a fully Gaussian matrix. When the filter length decreases,
the number of measurements increases somewhat. For signals
sparse in the frequency domain, the number of measurements
depends weakly on the filter length; a four-tap filter already
yields good reconstruction probability.



ALGORITHM 1: RANDOM FILTER RECONSTRUCTION

Initialize residualr0 = y. For t = 1, 2, . . . , N do

A. Find the columnit of ΦΨ such that
it = arg maxi |〈rt−1, (ΦΨ)i〉|.

B. Compute the new residual
rt = y − Pt y

wherePt is the orthogonal projector onto the span of the
t columns chosen fromΦΨ.

Output: Columns{it} and coefficients{θ̂it
} such that

PN y =
∑N

t=1
θ̂it

(ΦΨ)it
.

4. SIGNAL RECONSTRUCTION

Reconstructing a signal from the compressed data requires a
nonlinear algorithm. The CS literature advocates greedy al-
gorithms, such as Orthogonal Matching Pursuit [3] and Tree-
based Matching Pursuit [4], or optimization-based algorithms
involving `1 minimization [1, 2] for this purpose. Both of
these approaches can be accelerated using the properties of
random filters, and we believe that random filters will also
lead to novel reconstruction algorithms that take full advan-
tage of the localization and time-invariance of the measure-
ments. In this paper, we adapt OMP to reconstruct signals.

Algorithm 1 is a high-level description of our OMP re-
construction procedure. The inputs to the algorithm are the
random filterh (which determines the matrixΦ), the sparsity
basisΨ, and the compressed datay = Φs. The algorithm re-
turnsN locations and estimated values for the nonzero entries
of θ.

Using the structure of the measurement process, we can
implement Algorithm 1 very efficiently. For simplicity, sup-
pose that the sparsity basisΨ = I, so the input signal is well
approximated by a small number of spikes. The primary cost
in Algorithm 1 is the computation of the inner products in
Step A, which nominally requiresO(dN) operations. This
cost can be reduced substantially by taking into account the
fact thatΦ performs filtering and downsampling. First, up-
samplert so it has lengthd and then convolve it with the
time-reversed filterRh. Using direct convolution, this step
costsO(dB) arithmetic operations. Using the FFT to imple-
ment the convolution, the cost isO(d log d).

We can also apply the orthogonal projectorPt efficiently.
Precompute the inner products between columns ofΦ using
the fact that the the Gram matrixΦT

Φ is Toeplitz and banded.
Then the marginal cost of calculatingPt y drops fromO(tN)
to O(N), which is a significant reduction unless the sparsity
levelm is very small.

We believe that similar gains can be achieved in algo-
rithms for `1 minimization by exploiting the structure of the
random filter. This is an interesting area for future research.

5. NUMERICAL RESULTS

We present results from extensive numerical work, which of-
fer compelling evidence that random filters are a powerful ap-
proach to compressive signal acquisition and reconstruction.

Three related experiments establish that random filters
can capture sparse signals in three different sparsity bases.
Let us describe the experimental setup. Each data point in-
volves (i) a signal lengthd, (ii ) a sparsity levelm and a spar-
sity basisΨ, (iii ) a numberN of measurements, and (iv) a
filter lengthB. For each data point, we fix a random filter
with N (0, 1) taps. For each of 1000 trials, we generate a sig-
nal s whosem nonzero coefficients areN (0, 1). We takeN
measurements and use Algorithm 1 to reconstruct the signal.
If they match perfectly, then we record asuccess. The recon-
struction probability is the fraction of the 1000 trials that re-
sult in success. As a control, we perform the same experiment
using a fully random i.i.d. matrixΦ with N (0, 1) entries; Al-
gorithm 1 (without enhancements) is used for reconstruction.

We begin with signals that aresparse in the time domain,
i.e., Ψ = I. Recall that this case is challenging due to high
coherence. We choose the signal lengthd = 128 and sparsity
m = 10. Figure 2(a) displays the probability of success for
several filter lengths, in comparison with fully random mea-
surements. Observe that the two longest filters (B = 64 and
128) succeed almost as well as the fully Gaussian matrix, de-
spite having far fewer degrees of freedom.

We now consider signals that aresparse in the Fourier
domain, i.e.,Ψ = F . As above, the signal lengthd = 128
and sparsitym = 10. Figure 2(b) displays the probability of
success for several filter lengths. Note that all four filtersyield
similar probabilities of success, which are slightly worsethan
the Gaussian matrix. The filter length has a limited impact
since the Fourier basis is incoherent with the random filter.

We performed the same experiment for signalssparse in
the Haar wavelet domain. The results were slightly superior
to the first experiment and somewhat worse than the second
experiment because the Haar basis is localized in time—but
not as much as the Dirac basis. We omit the figure.

Two additional experiments examine the performance of
random filters for signals with few degrees of freedom per
unit time, cf. [5]. First, we attempt to acquire and reconstruct
piecewise constant signals. In each trial, the signal has two
uniformly random breakpoints andN (0, 1) coefficients. Re-
construction is performed with respect to the Haar wavelet
basis. Otherwise, the experimental setup is identical. Fig-
ure 2(c) displays the results for four filter lengths. Since the
wavelet coefficients of piecewise polynomials are localized in
time, the longer filters convey a significant advantage.

Finally, we attempt to acquire and reconstruct (discrete)
Poisson processesusing random filters. These signals con-
tain spike trains with geometrically distributed interarrival
times. The symbolλ denotes the expected interarrival time,
so the expected number of spikes isd/λ. In this experiment,
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Fig. 2. Probability of exact reconstruction versus the number of measurementsN for four filter lengthsB. Signal lengthd = 128. (a) Time-
sparse signals. (b) Fourier-sparse signals. (c) Piecewise polynomial signals. Typical signals appear at top.
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Fig. 3. Number of measurementsN to achieve 90% probability
of exact reconstruction of a discrete Poisson process as a function
of interarrival rateλ for different filter lengthsB. The dashed lines
mark the trend described by(?). Signal lengthd = 1024.

the signal lengthd = 1024, and we examine five interarrival
times. For each filter length, we determine the least number
N of measurements required to achieve 90% recovery prob-
ability. The results appear in Figure 3. The following trend
matches the data well:

N =
d

λ

(
61.4

B
+ 2.72

)
+ 198 · 0.9935B . (?)

In words, the number of measurements is a linear function
of the sparsity levelm = d/λ. The intercept can be inter-
preted as a “startup cost” for using a filter of lengthB, which
decreases for longer filters. The slope can be viewed as the
number of measurements required to increase the number of
spikes by one; there is a minimal cost of 2.72 plus another
term inversely proportional to the filter length. More research
is necessary to understand this phenomenon.

6. CONCLUSIONS AND FUTURE WORK

This paper has proposed a new method,random filtering, for
compressive sampling of sparse signals. We show that convo-
lution with a random filter followed by downsampling yields
an efficient summary of a compressible signal. This approach
has some features in common with proposed methods for
Compressed Sensing. In particular, random filters areuniver-
sal, because they can capture a wide variety of sparse signals
using a small number of random linear measurements. In con-
trast with CS, random filters require muchless storage and
computationfor measurement and for reconstruction. More-
over, random filters aretime-invariant and time-localized, so
they can be used to acquire streaming signals, and they have
potential for real-time applications.

Since this paper is exploratory, it offers a cornucopia of
possibilities for future work. First, the theory of random filter-
ing requires further development. Second, it would be valu-
able to understand the tradeoffs between measurement and
computation costs. Third, we hope to extend this work to set-
tings such as compressive sampling of images and video.

7. REFERENCES — Available at dsp.rice.edu/cs

[1] E. J. Cand̀es and T. Tao, “Near optimal signal recovery from random
projections: Universal encoding strategies?,” Preprint,Oct. 2004.

[2] D. L. Donoho, “Compressed sensing,” Preprint, Sep. 2004.

[3] J. A. Tropp and A. C. Gilbert, “Signal recovery from partial information
via Orthogonal Matching Pursuit,” Submitted toIEEE Trans. Inform.
Theory, April 2005.

[4] M. F. Duarte, M. B. Wakin, and R. G. Baraniuk, “Fast reconstruction
of piecewise smooth signals from random projections,” inOnline Proc.
SPARS05, Rennes, France, Nov. 2005.

[5] M. Vetterli, P. Marziliano, and T. Blu, “Sampling signalswith finite rate
of innovation,” IEEE Trans. Signal Proc., vol. 50, no. 6, June 2002.


