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ABSTRACT > .
s Convolution > Down;ajriflphng —> Yy
We propose and study a new technique for efficiently acquir- d/N]
ing and reconstructing signals based on convolution with a
fixed FIR filter having random taps. The method is designe%
for sparse and compressible signals, i.e., ones that ate wel Downsampling
approximated by a short linear combination of vectors from |d/N|

an orthonormal basis. Signal reconstruction involves & no
linear Orthogonal Matching Pursuit algorithm that we imple (b)

ment efficiently by exploiting the nonadaptive, time-irieat  Fig. 1. Block diagrams for signal acquisition through random filter-
structure of the measurement process. While simpler anitig: () using convolution; (b) using FFT/IFFT. The FIR filtethas
more efficient than other random acquisition techniques lik random taps, which must be known in order to recover the signal
Compressed Sensing, random filtering is sufficiently generifom the compressed daga

to summarize many types of compressible signals and gen-

eralizes to streaming and continuous-time signals. EXens from an orthonormal basis. Signals are reconstructed by sol
numerical eXperimentS demonstrate its eﬁicacy for acﬂmliri |ng a Cosﬂy linear program [1, 2] or using a more efficient
and reconstructing signals sparse in the time, frequemcl, a greedy pursuit [3]. At present, CS is not suited to real-time
wavelet domains, as well as piecewise smooth signals anghplications or large data sets because the measurement pro

Poisson processes. cess requires access to the entire signal at once; the mea-
surements are not time-invariant; and the reconstruction a
1. INTRODUCTION gorithms are very expensive.

In this work, we proposeandom filtersas a new paradigm

Natural signals often contain some type of structure thafor compressive signal acquisition. Our approach captares
makes thentompressible That is, a compressible signal of Signals by convolving it with a random-tap FIR filtét and
length d can be well approximated using real numbers, then downsampling the filtered signal to obtain a compressed
with m < d. Natural images, for example, are compressedepresentatiory. Figure 1 illustrates the measurement pro-
by a factor of 10 or more when expressed in terms of theif€Ss. Reconstruction efinvolves a nonlinear algorithm.
largest wavelet coefficients. The usual approach to acquir- At first glance, one might think this method would con-
ing a compressible (digital) signal is to take measuremients Vvert a signal into garbage. In fact, the random filtegesieric

the Dirac basis and then use a nonlinear algorithm, such &hough to summarize many types of compressible signals.
a JPEG coder, to obtain a more efficient approximation. Buf\t the same time, the random filter has enowsguctureto

this approach is not practicable if the signal is presented a accelerate measurement and reconstruction algorithms. Ou
high rate or if the measurement device has limited computanethod has several benefits:

tional resources (as in a sensor network). measurements are time-invariant and nonadaptive;

As aresult, Cangls, Romberg and Tao [1] and Donoho [2] measurement operator is stored and applied efficiently;
have proposed an approach, knownCmsnpressed Sensing we can trade longer filters for fewer measurements;
(CS), in which arandomlinear projection is used to acquire it is easily implementable in software or hardware; and
efficient representations of compressible signals diye€tiis it generalizes to streaming or continuous-time signals.
method is effective fosparsesignals, i.e., signals that are  This paper describes how random filters can be used to
well approximated by a short linear combination of vectorscapture finite-length, discrete-time signals. In Sectiow8

discuss two different methods for signal acquisition théet
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the random filter to accelerate computations. Section 5 res of lengthd, we must calculate
ports on extensive numerical experiments, which confirrh tha
random filters are effective tools for signal acquisitiod ae- y=Di(hxs),

covery, and Section 6 describes conclusions and future.worl§vhereDl downsamples by a factor ¢fl/N |. Note that, be-

cause this process is linear, the map from the sigrtalthe
2. BACKGROUND summaryy can be viewed ag = ®s, where® isanN x d
matrix. This matrix isbandedandquasi-Toeplitz each row

This work concentrates on signals that can be expressed effiasB nonzero entries, and each rowdfis a copy of the row
ciently in an orthonormal basi¥, called thesparsity basis  above, shifted right byd/N | places.

We say that a signal of lengthd is m-sparsewith respect to Method 1: The first method for calculating the measure-
the basis if there is a vectérwith m < d nonzero entries for ments, illustrated in Figure 1(a), performs linear contiotu
which s ~ ¥6. This model covers many signal classes, in-and downsampling simultaneously. Foe= 0,1,..., N — 1,

cluding () Poisson processes and spike traiii$,fiecewise then-th measurement is calculated as
polynomials and splines, aniii § signals in weak/,, balls. B-1

Results from the CS literature provide a benchmark for y(n) = ijo s(n|d/N] +j) (B - j).
studying the performance of random filters. TakiNdinear ‘
measurements of the signalcan be viewed as multiplica-
tiony = ®s by a N x d measurement matri. Several
distributions for® have been proposed. @ is fully i.i.d.
Gaussian, then several different algorithms can recaver
sparse signals fromV = O(mlog d) measurements. b is
a Rademacher (i.e4-1) matrix or a random row submatrix
of the DFT matrix, then a similar number of measurementgUte — -1

’ y=D,F {H(w)Sw)},

suffice in practice. C . . . .
. . . which is equivalent to using a circuladt matrix. The cost
The costs for CS encoding and decoding depend SI%t computing the measurementgi$d log d), independent of

mﬂ:j:aFr;tIé/ on t?]e type:[ .Of measqremfnt matrlx(.j Gaus?'at‘.'?he filter length or the number of measurements. Compared to
and rademacher matrices require storage and computalign,, 1, this calculation may be faster if the filter has many

O(dN) for encoding. Fourier measurement matrices improvqaps_ Note, however, that the entire signal must be predente
storage ta0(d) and encoding times t®(dlog d). Two dif- at once ’ ’

ferent algorithms/, minimization [1, 2] and OMP [3], are It appears that these two encoding methods are at least

gommonly uied for I§|gnal reconstruc_:ﬂor;. Thfm'mm'za'bl as efficient as anything described in the CS literature. We
lon approach uses finear programming to Solve the probleryq, \yqie that filtering can be performed with other standard

6 = argming ||6]|; subject to®W6 = y. Reconstruction ehods, such as overlap—add, but we omit this discussion.
costs viagZ; minimization have not been reported, but one ex-

pects them to b&(d*?) in general. Greedy pursuit meth- 3 5 Number of measurements
ods such as OMP attempt to build up an approximatio@ to
based on correlations betwegrand the columns of the ma-
trix ®®¥. OMP requiresO(mNd) arithmetic operations in

ComputingN measurements requir€§ BN) arithmetic op-
erations. This method can be applied in systems where the
input s is streaming, since the measurements are localized in
time and also time-invariant.

Method 2: The second method, illustrated in Figure 1(b),
uses FFTs to calculate the convolution. In this case, we com-

The number of measurements required to capture a class of
signals depends on several different factors:

general, but it can be improved &@(md log d) with Fourier e The sparsity leveln and lengthi of the signals.
measurements. e The lengthB of the random filter.
e The coherencebetween the measurement matrix and
3. COMPRESSIVE SAMPLING the sparsity basis. Whe¥ has small entries, signal

acquisition requires fewer measurements.

This ;ect|on defmes more preusgly what we mean by a rarExplaining these tradeoffs theoretically is a major projec

d°_”_‘ filter, and it compares two different m_ethods for deter- One expects that signals sparse in the time domain, i.e.,
mining the cqmpressed signal. m_n_dom filter of 'e'_“gth W = I, are the most difficult to acquire with random filters be-
Bis an FIR filter whqseB taps are l.i.d. random variables. cause of high coherence. Yet we present empirical evidence i
In partlculgr, we are mterested. |n.the. cases.where the taFésection 5 that random filters are effective for recoveringeti

are draVY” i) from theN(O’ .1) d.'smbuuof‘ or {) from the sparse signals: a random filter of lengttperforms as well
Bernoulli/Rademacher distribution §f=1}'s. as a fully Gaussian matrix. When the filter length decreases,
the number of measurements increases somewhat. For signals
sparse in the frequency domain, the number of measurements
Draw a random filteta of length B. Note that the filter re- depends weakly on the filter length; a four-tap filter already
quires jusD(B) storage. To také' measurements of a signal yields good reconstruction probability.

3.1. Encoding methods



ALGORITHM 1: RANDOM FILTER RECONSTRUCTION 5. NUMERICAL RESULTS

Initialize residualrg =y.Fort=1,2,..., N do
) We present results from extensive numerical work, which of-
A. Find the column; of ¥ such that fer compelling evidence that random filters are a powerful ap
i = argmax; [(r—1, (2®);)]. proach to compressive signal acquisition and reconstmicti
B. Compute the new residual Three related experiments establish that random filters
rn=y— Py can capture sparse signals in three different sparsitysbase
whereP, is the orthogonal projector onto the span of the Let us describe the experimental setup. Each data point in-
t columns chosen fror . volves () a signal lengthl, (ii) a sparsity leveln and a spar-
. . ~ sity basis®, (iii) a numberN of measurements, and/f a
Output: Columns{i, } ant?vcogfflments{é)it} such that filter length B. For each data point, we fix a random filter
Pyy=3_,0i (2¥);. with \V(0,1) taps. For each of 1000 trials, we generate a sig-

nal s whosem nonzero coefficients at®(0,1). We takeN
measurements and use Algorithm 1 to reconstruct the signal.
If they match perfectly, then we recordsaccessThe recon-
struction probability is the fraction of the 1000 trials the-

. . . sultin success. As a control, we perform the same experiment
Reconstructing a signal from the compressed data requwesuging a fully random i.i.d. matrid with A’(0, 1) entries; Al-

nor!Iinear algorithm. The CS Iiteratu.re advocgtes greedy aborithm 1 (without enhancements) is used for reconstractio
gorithms, sugh as Orth_ogonal MaFch_lng_Purswt [3] and _Tree- We begin with signals that agparse in the time domain
based Matching Pursuit [4], or optimization-based algons i.e., ¥ = I. Recall that this case is challenging due to high

involving ¢, minimization [1, 2] for this purpose. Both of ; .
these approaches can be accelerated using the propertiescgperence' We choose the signal length 128 and sparsity

random filters, and we believe that random filters will also’ 10. Figure 2(a) displays the probability of success for

: . several filter lengths, in comparison with fully random mea-
lead to novel reconstruction algorithms that take full adva .
o S ; surements. Observe that the two longest filté?s= 64 and
tage of the localization and time-invariance of the measure

ments. In this paper, we adapt OMP to reconstruct signals. 128) succeed almost as well as the fully Gaussian matrix, de-

. . ) o spite having far fewer degrees of freedom.
Algorithm 1 is a high-level description of our OMP re- \ye oy consider signals that asparse in the Fourier

construction procedure. The inputs to the algorithm are thaomain ie., ¥ — F. As above, the signal length= 128
random filterh (which determines the matri), the sparsity and sparsityn = 10. Figure 2(b) displays the probability of

basis¥, and the compressed daja= ®s. The algorithmre- g, -coqs for several filter lengths. Note that all four filjéetd

turnsN locations and estimated values for the nonzero entrieSimilar probabilities of success, which are slightly wotisen

of 6. the Gaussian matrix. The filter length has a limited impact
Using the structure of the measurement process, we cafince the Fourier basis is incoherent with the random filter.

implement Algorithm 1 very efficiently. For simplicity, sup We performed the same experiment for sigrsglarse in

pose that the sparsity basls = I, so the input signal is well  the Haar wavelet domain The results were slightly superior

approximated by a small number of spikes. The primary cosf the first experiment and somewhat worse than the second

in Algorithm 1 is the computation of the inner products in experiment because the Haar basis is localized in time—but

Step A, which nominally require®(d.N) operations. This ot as much as the Dirac basis. We omit the figure.

cost can be reduced substantially by taking into account the Two additional experiments examine the performance of

fact that® performs filtering and downsampling. First, up- ran40m filters for signals with few degrees of freedom per
sampler; so it has lengthi and then convolve it with the i time  cf. [5]. First, we attempt to acquire and recomstr
time-reversed filteRh. Using direct convolution, this Step hieceyise constant signalsin each trial, the signal has two
costsO(dB) arlthmetlc operations. Using the FFT to imple- uniformly random breakpoints antl (0, 1) coefficients. Re-
ment the convolution, the cost((d log d). construction is performed with respect to the Haar wavelet
We can also apply the orthogonal projecfrefficiently.  basis. Otherwise, the experimental setup is identical.- Fig
Precompute the inner products between column® afsing  ure 2(c) displays the results for four filter lengths. Sirtoe t
the fact that the the Gram matix” ® is Toeplitz and banded. wavelet coefficients of piecewise polynomials are localire
Then the marginal cost of calculatidg y drops fromO(tN)  time, the longer filters convey a significant advantage.
to O(NV), which is a significant reduction unless the sparsity  Finally, we attempt to acquire and reconstruct (discrete)
levelm is very small. Poisson processeasing random filters. These signals con-
We believe that similar gains can be achieved in algotain spike trains with geometrically distributed intereeat
rithms for /; minimization by exploiting the structure of the times. The symbol denotes the expected interarrival time,
random filter. This is an interesting area for future researc so the expected number of spikesijs\. In this experiment,

4. SIGNAL RECONSTRUCTION
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Fig. 2. Probability of exact reconstruction versus the number of measutsiNefor four filter lengthsB. Signal lengthl = 128. (a) Time-
sparse signals. (b) Fourier-sparse signals. (c) Piecewise polyrgigmals. Typical signals appear at top.
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Fig. 3. Number of measurements to achieve 90% probability
of exact reconstruction of a discrete Poisson process as a functi
of interarrival rate\ for different filter lengthsB. The dashed lines
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mark the trend described ly). Signal lengthl = 1024.

the signal lengthl = 1024, and we examine five interarrival

6. CONCLUSIONS AND FUTURE WORK

This paper has proposed a new methatgidom filtering for
compressive sampling of sparse signals. We show that convo-
lution with a random filter followed by downsampling yields
an efficient summary of a compressible signal. This approach
has some features in common with proposed methods for
Compressed Sensing. In particular, random filtersuareer-
sal, because they can capture a wide variety of sparse signals
using a small number of random linear measurements. In con-
trast with CS, random filters require mutdss storage and
computatiorfor measurement and for reconstruction. More-
over, random filters aréme-invariant and time-localizedo
they can be used to acquire streaming signals, and they have
potential for real-time applications.

Since this paper is exploratory, it offers a cornucopia of
?ﬂ)ssibilities for future work. First, the theory of randoteii-
ing requires further development. Second, it would be valu-
able to understand the tradeoffs between measurement and
computation costs. Third, we hope to extend this work to set-

times. For each filter length, we determine the least numbdfn9s such as compressive sampling of images and video.
N of measurements required to achieve 90% recovery prob-

ability. The results appear in Figure 3. The following trend 7. REFERENCES — Available at dsp.rice.edu/cs
matches the data well:

N==2
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