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Abstract

This paper concerns a fundamental class of
convex matrix optimization problems. It
presents the first algorithm that uses opti-
mal storage and provably computes a low-
rank approximation of a solution. In partic-
ular, when all solutions have low rank, the
algorithm converges to a solution. This al-
gorithm, SketchyCGM, modifies a standard
convex optimization scheme, the conditional
gradient method, to store only a small ran-
domized sketch of the matrix variable. After
the optimization terminates, the algorithm
extracts a low-rank approximation of the so-
lution from the sketch. In contrast to non-
convex heuristics, the guarantees for Sketchy-
CGM do not rely on statistical models for the
problem data. Numerical work demonstrates
the benefits of SketchyCGM over heuristics.

1 MOTIVATION

This paper discusses a fundamental class of convex
matrix optimization problems with low-rank solutions.
We argue that the main obstacle that prevents us from
solving these problems at scale is not arithmetic, but
storage. We exhibit the first provably correct algo-
rithm for these problems with optimal storage.

1.1 Vignette: Matrix Completion

To explain the challenge, we consider the problem of
low-rank matrix completion.

Let X\ ∈ Rm×n be an unknown matrix, but assume
that a bound r on the rank of X\ is available, where
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r � min{m,n}. Suppose that we record noisy obser-
vations of a subset E of entries from the matrix:

bij = (X\)ij + ξij for (i, j) ∈ E.

The variables ξij ∈ R model (unknown) noise. The
goal is to approximate the full matrix X\.

Matrix completion arises in machine learning applica-
tions, such as recommendation systems [32].

We can frame the matrix completion problem as a
rank-constrained optimization:

minimize
X∈Rm×n

∑
(i,j)∈E

(xij − bij)2 s.t. rankX ≤ r. (1)

In general, the formulation (1) is intractable. Instead,
we retrench to a tractable convex problem [7, 32]:

minimize
X∈Rm×n

∑
(i,j)∈E

(xij − bij)2 s.t. ‖X‖S1
≤ α. (2)

The Schatten 1-norm ‖·‖S1
returns the sum of the sin-

gular values of its argument; it is an effective proxy for
the rank [13]. Adjusting the value of the parameter α
modulates the rank of a solution X? of (2). If we have
enough data and choose α well, we expect that each
solution X? approximates the target matrix X\.

The convex problem (2) is often a good model for
matrix completion when the number of observations
|E| = Õ (r(m + n)), where Õ suppresses log-like fac-
tors; see [7, 32]. We can write a rank-r approximation
to a solution X? using Θ(r(m+n)) parameters. Thus,
we can express the problem and an approximate solu-
tion with Õ (r(m+ n)) storage.

Nevertheless, we need fully mn numbers to express the
decision variable X for the optimization problem (2).
The cost of storing the decision variable prevents us
from solving large-scale instances of (2), even without
worrying about arithmetic.

This discrepancy raises a question: Is there an algo-
rithm that computes an approximate solution
to (2) using the optimal storage Õ (r(m+ n))?
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1.2 Vignette: Phase Retrieval

Here is another instance of the same predicament.

Fix a vector x\ ∈ Cn. Suppose that we acquire d noisy
quadratic measurements of x\ with the form

bi = |〈ai, x\〉|2 + ξi for i = 1, 2, . . . , d. (3)

The ai ∈ Cn are known measurement vectors, and the
ξi ∈ R model measurement noise. Given the data b
and the vectors ai, the phase retrieval problem asks
us to reconstruct x\ up to a global phase shift.

Phase retrieval problems are prevalent in imaging sci-
ence because it is easier to measure the intensity of
light than its phase. In practice, the vectors ai are
structured because they reflect the physics of the imag-
ing system. See the supplement and [3, 8, 10, 21].

Let us outline a convex approach [3, 8, 10, 21] to the
phase retrieval problem. The data (3) satisfies

bi = a∗iX\ai + ξi where X\ = x\x
∗
\ .

Thus, we can formulate phase retrieval as

minimize
X∈Cn×n

∑d

i=1
(a∗iXai − bi)2

s.t. rankX = 1, X < 0.

(4)

Now, pass to the convex problem

minimize
X∈Cn×n

∑d

i=1
(a∗iXai − bi)2

s.t. trX ≤ α, X < 0.

(5)

We can estimate the parameter α ∈ R+ from ai and
b; see [37, Sec. II]. To approximate the true vector x\,
we compute a top eigenvector x? of a solution to (5).

This procedure is often an effective approach for phase
retrieval when the number of measurements d = Θ(n);
see [34, Sec. 2.8]. Once again, we recognize a discrep-
ancy. The problem data b ∈ Rd and the approximate
solution x? ∈ Cn use storage Θ(n), but the matrix
variable in (5) requires Θ(n2) storage.

We may ask: Is there an algorithm that com-
putes an approximate solution to (5) using the
optimal storage Θ(n)?

1.3 Low-Rank Matrix Optimization Methods

Matrix completion and phase retrieval are examples
of convex low-rank matrix optimization (CLRO) prob-
lems. Informally, this class contains convex opti-
mization problems whose decision variable is a matrix
and whose solutions are (close to) low rank. These

problems often arise as convex relaxations of rank-
constrained problems; however, the convex formula-
tions are important in their own right.

There has been extensive empirical and theoretical
work to validate the use of CLROs in a spectrum of
applications. For example, see [7, 8, 13, 16, 21].

Over the last 20 years, optimization researchers have
developed a diverse collection of algorithms for CLRO
problems. Surprisingly, every extant method lacks
guarantees on storage or convergence (or both).

Convex optimization algorithms dominated the early
literature on algorithms for CLRO. The initial efforts,
such as [20], focused on interior-point methods, whose
storage and arithmetic costs are forbidding. To resolve
this issue, researchers turned to first-order convex al-
gorithms, including bundle methods [19], (accelerated)
proximal gradient methods [2, 30, 33], and the condi-
tional gradient method (CGM) [11, 15, 18, 22, 24].

Convex algorithms are guaranteed to solve a CLRO.
They come with a complete theory, including rigor-
ous stopping criteria and bounds on convergence rates.
They enjoy robust performance in practice. On the
other hand, convex algorithms from the literature do
not scale well enough to solve large CLRO problems
because they operate on and store full-size matrices.

The CGM iteration is sometimes touted as a low-
storage method for CLRO [22]. Indeed, CGM is guar-
anteed to increase the rank of an iterate by at most
one per iteration. Nevertheless, the algorithm con-
verges slowly, so intermediate iterates can have very
high rank. CGM variants, such as [29, 37], that con-
trol the rank of iterates lack storage guarantees or may
not converge to a global optimum.

Recently, many investigators have sought recourse in
nonconvex heuristics for solving CLROs. This line of
work depends on the factorization idea of Burer &
Monteiro [6], which rewrites the matrix variable as
a product of two low-rank factors. There are many
heuristic procedures, e.g., [4–6, 23], that use clever
initialization and nonlinear programming schemes in
an attempt to optimize the factors directly. The re-
sulting algorithms can have optimal storage costs, and
they may achieve a fast rate of local convergence.

There has been an intensive effort to justify the ap-
plication of nonconvex heuristics for CLRO. To do so,
researchers often frame unverifiable statistical assump-
tions on the problem data. For example, in the ma-
trix completion problem (2), it is common to assume
that the entries of the matrix are revealed according to
some ideal probability distribution [7, 23]. When these
assumptions fail, nonconvex heuristics can converge to
the wrong point, or they may even diverge.
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Contributions. This paper explains how to extend
the convex optimization algorithm CGM to obtain an
approximate solution to a class of CLRO problems us-
ing optimal storage. Our algorithm operates much like
CGM, but it never forms the matrix variable explic-
itly. Instead, we maintain a small randomized sketch of
the matrix variable over the course of the iteration by
means of a bespoke sketching method [35]. After the
optimization method converges, we extract an approxi-
mate solution from the sketch. This technique achieves
optimal storage, yet it converges under the same con-
ditions and with the same guarantees as CGM.

In summary, this paper presents a solution to the prob-
lems posed above: the first algorithm for convex low-
rank matrix optimization problems that provably uses
optimal storage to compute an approximate solution.

1.4 Notation

We write ‖·‖ for the Euclidean norm, ‖·‖F for the
Frobenius norm, and ‖·‖S1

for the Schatten 1-norm
(aka the trace norm or the nuclear norm). Depending
on context, 〈·, ·〉 refers to the Euclidean or Frobenius
inner product. The symbol ∗ denotes the conjugate
transpose of a vector or matrix, as well as the ad-
joint of a linear map. The dagger † refers to the pseu-
doinverse. The symbol [M ]r stands for a best rank-r
Frobenius-norm approximation of the matrix M . The
function distF(M ;S) returns the minimum Frobenius-
norm distance from M to a set S. The symbol <
denotes the semidefinite order. We use the computer
science interpretation of the order notation O ,Õ ,Ω,Θ.

2 A LOW-RANK MATRIX
OPTIMIZATION PROBLEM

Let us begin with a generalization of the convex matrix
completion formulation (2). In §5.5, we return to the
psd setting of the phase retrieval problem (5).

We consider a convex program with a matrix variable:

minimize
X∈Rm×n

f(AX) s.t. ‖X‖S1
≤ α. (6)

The linear operator A : Rm×n → Rd and its adjoint
A ∗ : Rd → Rm×n take the form

AX =
[
〈A1, X〉 . . . 〈Ad, X〉

]
;

A ∗z =
∑d

i=1
ziAi.

(7)

Each coefficient matrix Ai ∈ Rm×n.

We interpret AX as a set of linear measurements of
the matrix X. For example, in the matrix comple-
tion problem (2), the image AX lists the entries of X
indexed by the set E.

The function f : Rd → R is convex and continu-
ously differentiable. In many situations, it is natural
to regard the objective function as a loss: f(AX) =
loss(AX; b) for a vector b ∈ Rd of measured data.

By choosing the parameter α ∈ R+ to be sufficiently
small, we can often ensure that each minimizer of (6)
is low-rank or close to low-rank.

Our goal is to develop a practical algorithm that prov-
ably computes a low-rank approximation of a solution
to the problem (6).

To validate (6) as a model for a given application,
one must undertake a separate empirical or theoretical
study. We do not engage this question in our work.

2.1 Storage Issues

Suppose that we want to produce a low-rank approxi-
mation to a solution of a generic instance of the prob-
lem (6). What kind of storage can we hope to achieve?

It is clear that we need Θ(r(m + n)) numbers to ex-
press a rank-r approximate solution to (6). We must
also understand how much extra storage is incurred
because of the specific problem instance (A , f).

It is natural to instate a black-box model for the linear
map A , its adjoint A ∗, and the objective function f .
For arbitrary vectors u ∈ Rm and v ∈ Rn and z ∈ Rd,
assume we have routines that can compute

A (uv∗) and u∗(A ∗z) and (A ∗z)v. (8)

We also assume routines for evaluating the function f
and its gradient∇f for any argument z ∈ Rd. We may
neglect the storage used to compute these primitives.
Every algorithm based on these primitives must use
storage Ω(m+ n+ d) just to represent their outputs.

Thus, under the black-box model, any algorithm that
produces a rank-r solution to a generic instance of (6)
must use storage Ω(d + r(m + n)). We say that an
algorithm is storage optimal if it achieves this bound.

The parameter d often reflects the amount of data that
we have acquired, and it is usually far smaller than the
dimension mn of the matrix variable in (6).

The problems that concern us are data-limited; that
is, d� mn. This is the situation where a strong struc-
tural prior (e.g., low rank or small Schatten 1-norm) is
essential for fitting the data. This challenge is common
in machine learning problems (e.g., matrix completion
for recommendation systems), as well as in scientific
applications (e.g., phase retrieval).

To the best of our knowledge, no extant algorithm
for (6) is guaranteed to produce an approximation of
an optimal point and also enjoys optimal storage cost.
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3 CONDITIONAL GRADIENT

To develop our algorithm for the model problem (6),
we must first describe a standard algorithm called
the conditional gradient method (CGM). Classic and
contemporary references include [11, 15, 18, 22, 24].

3.1 The CGM Iteration

Here is the CGM algorithm for (6). Start with a fea-
sible point, such as

X0 = 0 ∈ Rm×n. (9)

At each iteration t = 0, 1, 2, . . . , compute an update
direction Ht using the formulas

(ut,vt) = MaxSingVec(A ∗(∇f(AXt)));

Ht = −αutv∗t .
(10)

MaxSingVec returns a left/right pair of maximum sin-
gular vectors. Update the decision variable:

Xt+1 = (1− ηt)Xt + ηtHt (11)

where ηt = 2/(t+2). The convex combination (11) re-
mains feasible for (6) because Xt and Ht are feasible.

CGM is a valuable algorithm for (6) because we can
efficiently find the rank-one update direction Ht by
means of the singular vector computation (10). The
weak point of CGM is that the rank of Xt typically
increases with t, and the peak rank of an iterate Xt is
often much larger than the rank of the solution of (6).

3.2 The CGM Stopping Rule

The CGM algorithm admits a simple stopping crite-
rion. Given a suboptimality parameter ε > 0, we halt
the CGM iteration when the duality gap δt ≤ ε:

δt = 〈AXt −AHt, ∇f(AXt)〉 ≤ ε. (12)

Let X? be an optimal point for (6). It is not hard to
show [22, Sec. 2] that

f(AXt)− f(AX?) ≤ δt. (13)

Thus, the condition (12) ensures that the objective
value f(AXt) is ε-suboptimal. The CGM iterates sat-
isfy (12) within O (ε−1) iterations [22, Thm. 1].

3.3 The Opportunity

The CGM iteration (9)–(11) requires Θ(mn) storage
because it maintains the m × n matrix decision vari-
able Xt. We develop a remarkable extension of CGM
that provably computes a rank-r approximate solution
to (6) with working storage Θ(d+ r(m+ n)). Our ap-
proach depends on two efficiencies:

• We use the low-dimensional “dual” variable zt =
AXt ∈ Rd to drive the iteration.

• Instead of storing Xt, we maintain a small ran-
domized sketch with size Θ(r(m+ n)).

It is easy to express the CGM iteration in terms of the
“dual” variable zt = AXt. We can obviously rewrite
the formula (10) for computing the rank-one update
direction Ht in terms of zt. We obtain an update rule
for zt by applying the linear map A to (11). Likewise,
the stopping criterion (12) can be evaluated using zt
and Ht. Under the black-box model (8), the dual for-
mulation of CGM has storage cost Θ(m+ n+ d).

Yet the dual formulation has a flaw: it “solves” the
problem (6), but we do not know the solution!

Indeed, we must also track the evolution (11) of the
primal decision variable Xt. In the next subsection, we
summarize a randomized sketching method [35] that
allows us to compute an accurate rank-r approxima-
tion of Xt but operates with storage Θ(r(m+ n)).

4 MATRIX SKETCHING

Suppose that X ∈ Rm×n is a matrix that is presented
to us as a stream of linear updates, as in (11). For
a parameter r � min{m,n}, we wish to maintain a
small sketch that allows us to compute a rank-r ap-
proximation of the final matrix X. Let us summarize
an approach developed in our paper [35].

4.1 The Randomized Sketch

Draw and fix two independent standard normal matri-
ces Ω and Ψ where

Ω ∈ Rn×k with k = 2r + 1;
Ψ ∈ R`×m with ` = 4r + 3.

(14)

The sketch consists of two matrices Y and W that
capture the range and co-range of X:

Y = XΩ ∈ Rm×k and W = ΨX ∈ R`×n. (15)

We can efficiently update the sketch (Y ,W ) to reflect
a rank-one linear update to X of the form

X ← β1X + β2uv
∗. (16)

Both the storage cost for the sketch and the arithmetic
cost of an update are Θ(r(m+ n)).

4.2 The Reconstruction Algorithm

The following procedure yields a rank-r approximation
X̂ of the matrix X stored in the sketch (15).

Q = orth(Y ); B = (ΨQ)†W ; X̂ = Q[B]r. (17)
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The matrix Q has orthonormal columns that span the
range of Y . The extra storage costs of the reconstruc-
tion are negligible; its arithmetic cost is Θ(r2(m+n)).
See [35, §4.2] for the intuition behind this method. It
achieves the following error bound.

Theorem 1 (Reconstruction error [35, Thm. 5.1]).
Fix a target rank r. Let X be a matrix, and let (Y ,W )
be a sketch of X of the form (14)–(15). The proce-

dure (17) yields a rank-r matrix X̂ with

E ‖X − X̂‖F ≤ 3
√

2 ‖X − [X]r‖F .

Similar bounds hold with high probability.

Remarks. The sketch size parameters (k, `) appear-
ing in (14) are recommended to balance storage against
reconstruction quality. See [35] and our follow-up work
for more details and for other sketching methods.

5 SKETCHING + CGM

We are now prepared to present SketchyCGM, a
storage-optimal extension of the CGM algorithm for
the convex problem (6). This method delivers a prov-
ably accurate low-rank approximation to a solution
of (6). See Algorithm 1 for complete pseudocode.

5.1 The SketchyCGM Iteration

Fix the suboptimality ε and the rank r. Draw and fix
standard normal matrices Ω ∈ Rn×k and Ψ ∈ R`×m
as in (14). Initialize the iterate and the sketches:

z0 = 0d; Y0 = 0m×k; and W0 = 0`×n. (18)

At each iteration t = 0, 1, 2, . . . , compute an update
direction via Lanczos or via randomized SVD [17]:

(ut,vt) = MaxSingVec(A ∗(∇f(zt)));

ht = A (−αutv∗t ).
(19)

Set the learning rate ηt = 2/(t+2). Update the iterate
and the two sketches:

zt+1 = (1− ηt)zt + ηtht;

Yt+1 = (1− ηt)Yt + ηt(−αutv∗t )Ω;

Wt+1 = (1− ηt)Wt + ηtΨ(−αutv∗t ).

(20)

The iteration continues until it triggers the stopping
criterion:

〈zt − ht, ∇f(zt)〉 ≤ ε. (21)

At any iteration t, we can form a rank-r approximate
solution X̂t of the model problem (6) by invoking the
procedure (17) with Y = Yt and W = Wt.

5.2 Guarantees

Suppose that the CGM iteration (9)–(11) generates
the sequence (Xt : t = 0, 1, 2, . . . ) of decision vari-
ables and the sequence (Ht : t = 0, 1, 2, . . . ) of update
directions. It is easy to verify that the SketchyCGM
iteration (18)–(20) maintains the loop invariants

zt = AXt and ht = AHt;
Yt = XtΩ and Wt = ΨXt.

(22)

In view of the inequality (13) and the invariant (22),
the stopping rule (21) ensures that Xt is an ε-
suboptimal solution to (6) when the iteration halts.
Furthermore, Theorem 1 ensures that the computed
solution X̂t is a near-optimal rank-r approximation of
Xt at each time t.

5.3 Storage Costs

The total storage cost is Θ(d + r(m + n)) for the
dual variable zt, the random matrices (Ω,Ψ), and
the sketch (Y ,W ). Owing to the black-box assump-
tion (8), the algorithm completes the singular vector
computations in (19) with Θ(d+m+n) working stor-
age. At no point during the iteration do we instantiate
an m × n matrix! Arithmetic costs are on the same
order as the standard version of CGM.

5.4 Convergence Results for SketchyCGM

SketchyCGM is a provably correct method for com-
puting a low-rank approximation of a solution to (6).

Theorem 2. Suppose that the iterates Xt from the
CGM iteration (9)–(11) converge to a matrix Xcgm.

Let X̂t be the rank-r reconstruction of Xt produced by
SketchyCGM. Then

lim
t→∞

E ‖X̂t −Xcgm‖F ≤ 3
√

2 ‖Xcgm − [Xcgm]r‖F .

In particular, if rank(Xcgm) ≤ r, then

E ‖X̂t −Xcgm‖F → 0.

SketchyCGM always works in the fundamental case
where each solution of (6) has low rank.

Theorem 3. Suppose that the solution set S? of the
problem (6) contains only matrices with rank r or less.

Then SketchyCGM attains EdistF(X̂t, S?)→ 0.

Suppose that the optimal point of (6) is stable in the
sense that the value of the objective function increases
as we depart from optimality. Then the SketchyCGM
estimates converge at a controlled rate.

Theorem 4. Fix κ > 0 and ν > 0. Suppose the
(unique) solution X? of (6) has rank(X?) ≤ r and

f(AX)− f(AX?) ≥ κ ‖X −X?‖νF (23)
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Algorithm 1 SketchyCGM for model problem (6)

Input: Data for (6); suboptimality ε; target rank r

Output: Rank-r approximate solution X̂ = UΣV ∗

of (6) in factored form

1 function SketchyCGM
2 Sketch.Init(m,n, r)
3 z ← 0
4 for t← 0, 1, 2, 3, . . . do
5 (u,v)← MaxSingVec(A ∗(∇f(z)))
6 h← A (−αuv∗)
7 if 〈z − h, ∇f(z)〉 ≤ ε then break for

8 η ← 2/(t+ 2)
9 z ← (1− η)z + ηh
10 Sketch.CGMUpdate(−αu,v, η)

11 (U ,Σ,V )← Sketch.Reconstruct( )
12 return (U ,Σ,V )

——– Methods for Sketch object ——–

13 function Sketch.Init(m, n, r)
14 k ← 2r + 1 and `← 4r + 3
15 Ω← randn(n, k) and Ψ← randn(`,m)
16 Y ← zeros(m, k) and W ← zeros(`, n)

17 function Sketch.CGMUpdate(u, v, η)
18 Y ← (1− η)Y + ηu(v∗Ω)
19 W ← (1− η)W + η(Ψu)v∗

20 function Sketch.Reconstruct( )
21 Q← orth(Y )
22 B ← (ΨQ)\W
23 (U ,Σ,V )← svds(B, r)
24 return (QU ,Σ,V )

for all feasible X. Then we have the error bound

E ‖X̂t −X?‖F ≤ 6

(
2Cκ−1

t+ 2

)1/ν

for t = 0, 1, 2, . . .

where C is the curvature constant [22, Eqn. (3)] of the
problem (6).

See the supplement for the proofs of these results.

5.5 SketchyCGM for PSD Optimization

Next, we present a generalization of the convex phase
retrieval problem (5). Consider the convex template

minimize
X∈Cn×n

f(AX) s.t. trX ≤ α, X < 0. (24)

As before, A : Cn×n → Cd is a linear map, and f :
Cd → R is a differentiable convex function.

It is easy to adapt SketchyCGM to handle (24) instead
of (6). To sketch the complex psd matrix variable,

we follow the approach described in [35, Sec. 7.3]. We
also make small changes to the SketchyCGM iteration.
Replace the computation (19) with

(λt,ut) = MinEig(A ∗(∇f(zt)));

ht =

{
A (αutu

∗
t ), λt ≤ 0

0, otherwise.

MinEig returns the minimum eigenvalue λt and an as-
sociated eigenvector ut of a conjugate symmetric ma-
trix. This variant behaves the same as SketchyCGM.

6 COMPUTATIONAL EVIDENCE

In this section, we demonstrate that SketchyCGM is
a practical algorithm for convex low-rank matrix op-
timization. We focus on phase retrieval problems be-
cause they provide a dramatic illustration of the power
of storage-optimal convex optimization. The supple-
mentary material adduces additional examples, includ-
ing some matrix completion problems.

6.1 Synthetic Phase Retrieval Problems

To begin, we show that our approach to solving the
convex phase retrieval problem (5) has better memory
scaling than other convex optimization methods.

We compare five convex optimization algorithms: the
classic proximal gradient method (PGM) [30]; the
Auslender–Teboulle (AT) accelerated method [2]; the
classic CGM algorithm [22]; a storage-efficient CGM
variant (ThinCGM) [37] based on low-rank SVD up-
dating; and the psd variant of SketchyCGM from §5.5
with rank parameter r = 1.

All five methods solve (24) reliably. The proximal
methods (PGM and AT) perform a full eigenvalue de-
composition of the iterate at each step, but they can
be accelerated by adaptively choosing the number of
eigenvectors to compute. The methods based on CGM
only need the top eigenvector, so they perform less
arithmetic per iteration.

To compare the storage costs of the five algorithms,
let us consider a synthetic phase retrieval problem.
We draw a vector x\ ∈ Cn from the complex stan-
dard normal distribution. Then we acquire d = 10n
phaseless measurements (3), corrupted with indepen-
dent Gaussian noise so that the SNR is 20 dB. The
measurement vectors ai derive from a coded diffrac-
tion pattern; see the supplement for details. We solve
the convex problem (5) with α equal to the average of
the measurements bi; see [37, Sec. II]. Then we com-
pute a top eigenvector x? of the solution.

Figure 1(a) displays storage costs for each algorithm as
the signal length n increases. We approximate memory
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usage by reporting the total workspace allocated by
MATLAB for the algorithm. PGM, AT, and CGM
have static allocations, but they use a matrix variable
of size n2. ThinCGM attempts to maintain a low-
rank approximation of the decision variable, but the
rank increases steadily, so the algorithm fails after n =
105. In contrast, SketchyCGM has a static memory
allocation of Θ(n). It already offers the best memory
footprint for n = 102, and it still works when n = 106.

In fact, SketchyCGM can tackle even larger problems.
We were able to reconstruct an image with n = 3,264×
2,448 ≈ 7.99 · 106 pixels, treated as a vector x\ ∈ Cn,
given d = 20n noiseless coded diffraction measure-
ments, as above. Figure 1(b) plots the convergence of
the relative error: minφ∈R ‖eiφx̂t − x\‖ / ‖x\‖, where

x̂t is a top eigenvector of the SketchyCGM iterate X̂t.
After 150 iterations, the algorithm produced an image
with relative error 0.0290 and with PSNR 36.19 dB.
Thus, we can solve (24) when the psd matrix variable
X has 6.38 · 1013 complex entries!

As compared to other convex optimization algorithms,
the main weakness of SketchyCGM is the O (ε−1) it-
eration count. Some algorithms, such as AT, can
achieve O (ε−1/2) iteration count, but they are limited
to smaller problems. Closing this gap is an important
question for future work.

6.2 Fourier Ptychography

Up to now, it has not been possible to attack phase
retrieval problems of a realistic size by solving the con-
vex formulation (5). As we have shown, current convex
optimization algorithms cannot achieve scale. Instead,
many researchers apply nonconvex heuristics to solve
phase retrieval problems [9, 14, 21, 26]. These heuris-
tics can produce reasonable solutions, but they require
extensive tuning and have limited effectiveness. In this
section, we demonstrate that, without any modifica-
tion, SketchyCGM can solve a phase retrieval problem
from an application in microscopy. Furthermore, it
produces an image that is superior to the results ob-
tained using major nonconvex heuristics.

We study a phase retrieval problem that arises from
an imaging modality called Fourier ptychography
(FP) [21]. The authors of [21] provided measurements
of a slide containing human blood cells from a work-
ing FP system. We treat the sample as an image
with n = 25,600 pixels, which we represent as a vector
x\ ∈ Cn. The goal is to reconstruct the phase of the
image, which roughly corresponds with the thickness
of the sample at a given location.

The data consists of 29 illuminations, each contain-
ing 6,400 pixels. The number of measurements d =

185,600. The measurement vectors ai are obtained
from windowed discrete Fourier transforms. We can
formulate the problem of reconstructing the sample x\
using the convex phase retrieval template (5) with the
parameter α = 1,400. In this instance, the psd matrix
variable X ∈ Cn×n has 6.55 · 108 complex entries.

To solve (5), we run the SketchyCGM variant from §5.5
with the rank parameter r = 1 for 10,000 iterations.
We factor the rank-one matrix output to obtain an
approximation x? of the sample. Figure 2(a) displays
the phase of the reconstruction x?.

Figure 2 also includes comparisons with two nonconvex
heuristics. The authors of [21] provided a reconstruc-
tion obtained via the Burer–Monteiro method [6]. We
also applied Wirtinger Flow [9] with the recommended
parameters. SketchyCGM yields a smooth and de-
tailed phase reconstruction. Burer–Monteiro produces
severe artifacts, which suggest an unphysical oscilla-
tion in the thickness of the sample. Wirtinger Flow
fails completely. These results are consistent with [21,
Fig. 4], which indicates 5–10 dB improvement of con-
vex optimization over heuristics.

The quality of phase reconstruction can be essential for
scientific purposes. In this particular example, some
of the blood cells are infected with malaria parasites
(Figure 2(a), red boxes). Diagnosis is easier when the
visual acuity of the reconstruction is high.

The supplement contains further details and results on
Fourier ptychographic imaging.

7 DISCUSSION

We have shown that it is possible to construct a low-
rank approximate solution to a large-scale matrix op-
timization problem by sketching the decision variable.
Let us contrast our approach against other low-storage
techniques for large-scale optimization.

Sketchy Decisions. To the best of our knowledge,
there are no direct precedents for the idea and real-
ization of an optimization algorithm that sketches the
decision variable. This work does partake in a broader
vision that randomization can be used to design nu-
merical algorithms [17, 25, 36].

Researchers have considered sketching the problem
data as a way to reduce the size of a problem specifica-
tion in exchange for additional error. This idea dates
to the paper of Sarlós [31]; see also [25, 28, 36]. There
are also several papers [1, 12, 27] in which researchers
try to improve the computational or storage footprint
of convex optimization methods by sketching inter-
nal variables, such as Hessians.

None of these approaches address the core issue that
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Figure 1: Memory Usage and Convergence. (a) Memory scaling for five convex optimization algorithms applied
to a synthetic instance of the convex phase retrieval problem (5). (b) Relative `2 error achieved by SketchyCGM
for convex phase retrieval of a synthetic signal of length n = 8 · 106. See §6.2 for further details.

(a) SketchyCGM (b) Burer–Monteiro [6, 21] (c) Wirtinger Flow [9]

Figure 2: Imaging by Fourier Ptychography. Three algorithms for Fourier ptychographic imaging via phase
retrieval. Brightness indicates the complex phase of a pixel, which roughly corresponds with the thickness of the
sample. Only relative differences in brightness are meaningful. Red boxes mark malaria parasites in blood cells.

concerns us: the decision variable may require much
more storage than the solution.

Dropping Nonconvexity. We have already dis-
cussed a major trend in which researchers develop al-
gorithms that attack nonconvex reformulations of
a problem. For example, see [4–6, 23]. The main
advantage is to reduce the size of the decision vari-
able; some methods also have the ancillary benefit of
rapid local convergence. On the other hand, these al-
gorithms are provably correct only under strong sta-
tistical assumptions on the problem data.

Prospects. Our work shows that convex optimization
need not have high storage complexity for problems
with a compact specification and a simple solution. In
particular, for low-rank matrix optimization, storage
is no reason to drop convexity.

It has not escaped our notice that the specific pairing

of sketching and CGM that we have postulated imme-
diately suggests a possible mechanism for solving other
structured convex programs using optimal storage.
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