
Make the Most of What You Have:
Resource-Efficient Randomized Algorithms for

Matrix Computations

Thesis by
Ethan N. Epperly

In Partial Fulfillment of the Requirements for the
Degree of

Doctor of Philosophy

CALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, California

2025
Defended May 1, 2025

ii

© 2025

Ethan N. Epperly
ORCID: 0000-0003-0712-8296

All rights reserved

iii

ACKNOWLEDGEMENTS

This PhD thesis is the product of the kindness and mentorship provided to me by
many people over many years. There are many to thank (and, I’m sure, some who I
have regretfully forgotten to acknowledge).

First, I must thank my advisor Joel A. Tropp, from whom I have learned so much—
about mathematics, about research, and about writing. I thank Joel for always
pushing me to dream bigger, setting my sights on more challenging problems.
Thanks also for your detailed feedback on this thesis.

My thanks extends to my other mentors throughout my journey into academic re-
search: Franceso Paesani and Jordi Cirera at UCSD; Don Ward, Bernice Mills, Ryan
Sills, and Jonathan Hu at Sandia National Laboratories; Shivkumar Chandrasekaran
at UCSB; Andrew Barker at Lawrence Livermore National Laboratory; and Lin Lin
at Lawrence Berkeley National Laboratory. I also give thanks to Alf Morales and
Tim Shepodd for giving a 15 year-old kid an early shot at pursuing his dream to be
a scientist.

I thank the remaining members of my committee, Profs. Venkat Chandrasekaran,
Lin Lin, and Franca Hoffmann, for you time in sitting on my dissertation committee
and for all I have gotten to learn from you during my PhD.

I feel truly blessed to belong to research community filled with such kind, humble,
and thoughtful people. Getting to collaborate with others is truly my favorite part
of research. I extend my thanks to the many friends, collaborators, and mentors
I have done research with, including Alex Barnett, Chris Camaño, Shivkumar
Chandrasekaran, Yifan Chen, Lieven De Lathauwer, Mateo Díaz, Zhiyan Ding,
Gil Goldshlager, Zachary Frangella, Nithin Govindarajan, Anne Greenbaum, Alex
Hsu, Daniel Kressner, Lin Lin, Maike Meier, Eliza O’Reilly, Kevin Miller, Raphael
Meyer, Elvira Moreno, Chris Musco, Yuji Nakatsukasa, Taejun Park, Akash Rao,
Heather Wilber, and Ruizhe Zhang. I also thank Deeksha Adil, Haoxuan Chen, Tyler
Chen, Alice Cortinovis, Jorge Garza-Vargas, Eitan Levin, and Aleksandros Sobczyk
for many insightful conversations. The research process is inherently collaborative,
and this thesis is suffused with the creativity of these people.

Special thanks are merited to Rob Webber, in particular, who joined Caltech as a
postdoctoral scholar during the second year of my PhD. I truly cannot imagine what

iv

my PhD would have been without your collaboration, your mentorship, and your
friendship.

I am extremely grateful to Chris Musco for his invitation to visit NYU in the spring
of 2024. It was a very enjoyable and productive visit, and I learned a lot from
collaborating with you.

My warmest thanks go to administrative staff at Caltech, most especially Jolene
Brink and Maria Lopez. Thanks to all the help you have provided to me and other
students in our department.

My PhD experience truly would not have been what it’s been without the Department
of Energy Computational Science Graduate Fellowship and the community of people
I have gotten to meet and interact with through it. I send my thanks to Lindsey Eilts
and all the folks at the Krell Institute who manage the fellowship and provide so
much support to us fellows.

I give my deepest gratitude to my family. To my parents Meg and Tom, who have
always loved and supported me throughout my life and nurtured my love of learning.
All of that time playing board games, those long conversations about what I was
learning in school, and those Science on Saturday talks left a big impression on
me. To my brother Aidan, it is truly a gift to have a close friend who loves talking
math just as much as I do (possibly even more). To my grandparents Kathie, Bill,
Christine, John, Bob, and Sarah, for all the wisdom and life experience you have
shared.

Doing a PhD is a long journey, and I truly believe I could not have made it without
the love and support of my fiancée, Sierra Williams, DVM. The level of dedication
and intensity you bring to everything you do is an inspiration to me, and you have
always been there for me when I needed it. This love and thanks extends to our
pets: dogs Hulk and Finn and three-legged turtle Shelly. Nothing brought me joy
throughout my PhD quite like going on a walk with the dogs or sitting down all five
of us to watch an episode of Survivor.

Thanks to the many groups who have funded my PhD research: namely, the U.S.
Department of Energy, Office of Science, Office of Advanced Scientific Comput-
ing Research, Department of Energy Computational Science Graduate Fellowship
under Award Number DE-SC0021110, and under aegis of Joel Tropp, Office of
Naval Research BRC awards N00014-18-1-2363 and N00014-24-1-2223, NSF FRG
1952777, and the Caltech Carver Mead New Adventures Fund.

v

ABSTRACT

In recent years, randomized algorithms have established themselves as fundamental
tools in computational linear algebra, with applications in scientific computing,
machine learning, and quantum information science. Many randomized matrix
algorithms proceed by first collecting information about a matrix and then processing
that data to perform some computational task. This thesis addresses the following
question: How can one design algorithms that use this information as efficiently as
possible, reliably achieving the greatest possible speed and accuracy for a limited
data budget? This question is timely, as randomized algorithms are increasingly
being deployed in production software and in applications where accuracy and
reliability is critical.

The first part of this thesis focuses on the problem of low-rank approximation for
positive-semidefinite matrices, motivated by applications to accelerating kernel and
Gaussian process machine learning methods. Here, the goal is to compute an accu-
rate approximation to a matrix after accessing as few entries of the matrix as possible.
This part of the thesis explores the randomly pivoted Cholesky (RPCholesky) al-
gorithm for this task, which achieves a level of speed and reliability greater than
other methods for the same problem.

The second part of this thesis considers the task of estimating attributes of an implicit
matrix accessible only by matrix–vector products, motivated by applications in
quantum physics, network science, and machine learning. This thesis describes the
leave-one-out approach to developing matrix attribute estimation algorithms, and
develops optimized trace, diagonal, and row-norm estimation algorithms for this
computational model.

The third part of this thesis considers randomized algorithms for overdetermined
linear least squares problems, which arise in statistics and machine learning. Ran-
domized algorithms for linear-least squares problems are asymptotically faster than
any known deterministic algorithm, but recent work of [Meier et al., SIMAX ‘24]
raised questions about the accuracy of these methods when implemented in floating
point arithmetic. This thesis shows these issues are resolvable by developing fast
randomized least-squares problem achieving backward stability, the gold-standard
accuracy and stability guarantee for a numerical algorithm.

vi

PUBLISHED CONTENT AND CONTRIBUTIONS

[CETW25] Yifan Chen, Ethan N. Epperly, Joel A. Tropp, and Robert J. Web-
ber. “Randomly Pivoted Cholesky: Practical Approximation of a
Kernel Matrix with Few Entry Evaluations”. In: Communications
on Pure and Applied Mathematics 78.5 (2025). ENE participated
in the conception of this project, proposed the block RPCholesky
algorithm variant, wrote most of the code, designed and ran most
of the experiments, and was significantly involved in writing. doi:
10.1002/cpa.22234.

[EMN25] Ethan N. Epperly, Maike Meier, and Yuji Nakatsukasa. Fast Ran-
domized Least-Squares Solvers Can Be Just as Accurate and Stable
as Classical Direct Solvers. ENE participated in the conception of
this project, designed several algorithms, proved the main theoreti-
cal results, wrote the code, designed and ran most of the numerical
experiments, and was significantly involved in writing. 2025. url:
https://arxiv.org/abs/2406.03468v2.

[ETW25] Ethan N. Epperly, Joel A. Tropp, and Robert J. Webber. Embrace
Rejection: Kernel Matrix Approximation by Accelerated Randomly
Pivoted Cholesky. ENE participated in the conception of this
project, co-designed the main algorithms, wrote the code, designed
and ran many of the numerical experiments, and was significantly
involved in writing. Apr. 2025. arXiv: 2410.03969v3.

[DEFT+24] Mateo Díaz, Ethan N. Epperly, Zachary Frangella, Joel A. Tropp,
and Robert J. Webber. Robust, Randomized Preconditioning for
Kernel Ridge Regression. ENE participated in the conception of
this project, was involved in writing the code and designing and
running numerical experiments, proved some of the theoretical
results, and was significantly involved in writing. July 2024. arXiv:
2304.12465v5.

[Epp24] Ethan N. Epperly. “Fast and Forward Stable Randomized Algo-
rithms for Linear Least-Squares Problems”. In: SIAM Journal on
Matrix Analysis and Applications (Dec. 2024). This paper was
solely written by ENE. doi: 10.1137/23M1616790.

[ET24] Ethan N. Epperly and Joel A. Tropp. “Efficient Error and Variance
Estimation for Randomized Matrix Computations”. In: SIAM Jour-
nal on Scientific Computing 46.1 (Feb. 2024). ENE participated in
the conception of this project, co-designed the main algorithms,
wrote the code, co-designed and ran the numerical experiments,
and was significantly involved in writing. doi: 10.1137/23M155
8537.

https://doi.org/10.1002/cpa.22234
https://arxiv.org/abs/2406.03468v2
https://arxiv.org/abs/2410.03969v3
https://arxiv.org/abs/2304.12465v5
https://doi.org/10.1137/23M1616790
https://doi.org/10.1137/23M1558537
https://doi.org/10.1137/23M1558537

vii

[ETW24] Ethan N. Epperly, Joel A. Tropp, and Robert J. Webber. “XTrace:
Making the Most of Every Sample in Stochastic Trace Estimation”.
In: SIAM Journal on Matrix Analysis and Applications (Mar. 2024).
ENE participated in the conception of this project, designed several
of the algorithms, wrote the code, designed and ran the numerical
experiments, and was significantly involved in writing. doi: 10.1
137/23M1548323.

[EM23] Ethan N. Epperly and Elvira Moreno. “Kernel Quadrature with
Randomly Pivoted Cholesky”. In: Advances in Neural Information
Processing Systems 36 (2023). ENE participated in the conception
of this project, designed the main algorithms, wrote the code,
proved the main theoretical results, designed and ran many of the
numerical experiments, and was significantly involved in writing.
url: https://dl.acm.org/doi/10.5555/3666122.3668997
.

https://doi.org/10.1137/23M1548323
https://doi.org/10.1137/23M1548323
https://dl.acm.org/doi/10.5555/3666122.3668997
https://dl.acm.org/doi/10.5555/3666122.3668997

viii

TABLE OF CONTENTS

Acknowledgements . iii
Abstract . v
Published Content and Contributions . vi
Table of Contents . vii
List of Illustrations . xiii
List of Tables . xvi
List of Programs . xx
Chapter I: Introduction . 1

1.1 Part I: Random pivoting . 2
1.2 Part II: Leave-one-out randomized matrix algorithms 3
1.3 Part III: Sketching, solvers, and stability 4
1.4 About this thesis . 5
1.5 Notation . 7

Chapter II: Low-rank approximation foundations 11
2.1 Low-rank approximation basics 11
2.2 Projection approximation . 14
2.3 The randomized SVD . 16
2.4 Randomized subspace iteration 18
2.5 Nyström approximation . 21
2.6 The Gram correspondence . 27

I Random pivoting 30
Chapter III: Low-rank approximation of psd matrices 31

3.1 The entry access model . 32
3.2 The psd low-rank approximation problem 35
3.3 Pivoted partial Cholesky decompositions 37
3.4 Column Nyström approximation 42
3.5 Subset selection problems . 43
3.6 Column Nyström approximation and Gaussian random variables 45
3.7 Non-adaptive random sampling methods 47

Chapter IV: Randomly pivoted Cholesky 57
4.1 Algorithm and implementation 57
4.2 Experiments . 60
4.3 Error analysis . 60
4.4 Extension: Gibbs RPCholesky 68
4.5 Connection to determinantal point processes 70

Chapter V: Kernels and Gaussian processes 73
5.1 Reproducing kernel Hilbert spaces 74

ix

5.2 Kernel interpolation . 78
5.3 Gaussian processes . 85
5.4 Kernel ridge regression and Gaussian process regression 87

Chapter VI: Accelerating kernel and Gaussian process methods by subset
selection and column Nyström approximation 92

6.1 Column Nyström preconditioning 93
6.2 Restricted kernel ridge regression 98
6.3 Active learning for kernel interpolation and ridge regression . . 102

Chapter VII: To infinite dimensions . 105
7.1 Mathematical setting . 106
7.2 Infinite-dimensional psd low-rank approximation and RP-

Cholesky . 109
7.3 Implementing RPCholesky using rejection sampling 112
7.4 Application: Active kernel interpolation 116
7.5 Application: Kernel quadrature 119

Chapter VIII: Blocked algorithms . 125
8.1 Why blocking? . 126
8.2 Algorithm 1: Block RPCholesky 128
8.3 Algorithm 2: RBRP Cholesky 131
8.4 Algorithm 3: Accelerated RPCholesky 132
8.5 Experiments . 139
8.6 Comparison of three algorithms 140

Chapter IX: Randomly pivoted QR: Low-rank approximation of general ma-
trices . 142

9.1 Low-rank approximation via column selection 143
9.2 Randomly pivoted QR . 147
9.3 Accelerated randomly pivoted QR 150
9.4 Related work: Sketchy pivoting 152
9.5 Experiments . 155
9.6 RPCholesky and RPQR: History 157

Chapter X: CUR decompositions . 162
10.1 Two-sided and CUR projection approximation 163
10.2 Generalized Nyström approximation and CUR cross approxima-

tion . 165
10.3 Numerically stable representations 168
10.4 Algorithms . 172
10.5 Related work: Mahoney and Drineas’ algorithm 176
10.6 Experiments . 177

Chapter XI: Random pivoting: Open problems 181
11.1 Open problem: RPCholesky error bounds 181
11.2 Open problem: Frobenius-norm psd low-rank approximation . . 182

II Leave-one-out randomized matrix algorithms 186
Chapter XII: Matrix attribute estimation problems 187

x

12.1 Matrix attribute estimation and the matvec model 188
12.2 Examples of matrix attribute estimation problems: Trace, diagonal,

and row-norm estimation . 190
Chapter XIII: Fundamental tools: Low-rank and Monte Carlo approxima-

tions . 194
13.1 Monte Carlo approximation 195
13.2 Low-rank approximation . 203
13.3 Combining Monte Carlo and low-rank approximation 204

Chapter XIV: The leave-one-out approach and application to trace estimation 212
14.1 XTrace: The leave-one-out approach 213
14.2 Leave-one-out formula for the randomized SVD 216
14.3 Implementing XTrace efficiently 218
14.4 XNysTrace: Trace estimation for psd matrices 221
14.5 Leave-one-out formula for randomized Nyström approximation . 224
14.6 Implementing XNysTrace efficiently 226
14.7 Synthetic Experiments . 227
14.8 Resphering XTrace and XNysTrace 231
14.9 Application: Estrada index . 234
14.10 The leave-one-out approach: Summary 236

Chapter XV: More on trace estimation 237
15.1 A priori error bounds . 238
15.2 How to interpret the Hutch++ and XTrace error bounds 242
15.3 Posterior error estimation . 245
15.4 Adaptivity . 247
15.5 Alternatives to XTrace and XNysTrace 248

Chapter XVI: Diagonal estimation . 253
16.1 The BKS and Diag++ diagonal estimators 254
16.2 XDiag: A leave-one-out diagonal estimator for general matrices 255
16.3 XNysDiag: A leave-one-out diagonal estimator for psd matrices 258
16.4 Synthetic Experiments . 259
16.5 Application: Subgraph centralities 262
16.6 Another view: Unbiased low-rank approximation 263

Chapter XVII: Row-norm estimation . 266
17.1 Is row-norm estimation just diagonal estimation? 266
17.2 The square-root trick: Diagonal estimation via row-norm estima-

tion . 270
17.3 Variance-reduced row-norm estimators 271
17.4 XRowNorm: A leave-one-out row-norm estimator 273
17.5 XSymRowNorm: Improved Hermitian row-norm estimation . . 275
17.6 Synthetic Experiments . 278
17.7 Application: Subgraph centralities, again 278

Chapter XVIII: Posterior error estimates for low-rank approximation . . . 280
18.1 Leave-one-out error estimation: General approach 281
18.2 Randomized SVD error estimation 283
18.3 Experiments . 284

xi

Chapter XIX: Matrix jackknife variance estimation 287
19.1 Bias–variance decomposition 288
19.2 Matrix jackknife variance estimation 289
19.3 Using matrix jackknife variance estimation 292
19.4 Example: Spectral transformations of Nyström approximations . 294

Chapter XX: Leave-one-out randomized matrix algorithms: Open problems 299
20.1 Open problem: Error analysis 299
20.2 Open problem: Hermitian indefinite matrices 299
20.3 Open problem: Numerically stable downdating for subspace itera-

tion . 301

III Sketching, solvers, and stability 304
Chapter XXI: Algorithms for least squares, a brief history 305

21.1 The overdetermined linear least-squares problem 306
21.2 Numerical instabilities of the normal equations 307
21.3 Numerically stable algorithms by QR factorization 309
21.4 Perturbation theory for least-squares 310
21.5 Forward and backward stability 312
21.6 Krylov iterative methods: CGNE, CGLS, and LSQR 314
21.7 Randomization enters: The sketch-and-solve method 316
21.8 Which sketch should I use? The subspace embedding property . 317
21.9 Making randomized least-squares accurate: Sketch-and-

precondition . 319
21.10 Implementation and analysis of sketch-and-precondition 322
21.11 Is sketch-and-precondition numerically unstable? 324

Chapter XXII: Fast, stable randomized least-squares solvers 327
22.1 Notation . 328
22.2 Sketch-and-descend: A strongly forward stable least-squares

solver . 329
22.3 Intermezzo: Lanczos, conjugate gradient, and LSQR 333
22.4 Sketch-and-precondition with sketch-and-solve initialization . . 335
22.5 Sketch-and-precondition with iterative refinement 336
22.6 Experiments . 340
22.7 The backward error and its estimation 341

Chapter XXIII: Proofs of stability . 344
23.1 Standing assumptions and more notation 345
23.2 Sketching and QR factorizing 345
23.3 The sketch-and-solve solution 347
23.4 Stability of multiplication and triangular solves 347
23.5 Stability of interleaved multiplications 348
23.6 Accuracy of Lanczos linear solves 349
23.7 The error formula . 350
23.8 Forward stability of sketch-and-precondition 351
23.9 Backward stability of SPIR . 352

xii

Chapter XXIV: Sketching, solvers, and stability: Open problems 354
24.1 From Lanczos to conjugate gradient to LSQR 354
24.2 Numerical stability of Krylov methods 354
24.3 From least squares to linear systems 355

Appendix A: Incremental QR decomposition 357
Appendix B: Which sketch should I use? 365

B.1 What properties do we want sketching matrices to have? 365
B.2 Gaussian embeddings . 369
B.3 IID embeddings . 373
B.4 Subsampled trigonometric transforms 373
B.5 IID sparse embeddings . 378
B.6 Sparse sign embeddings . 383
B.7 Conclusions . 390
B.8 Postscript: Recent developments 391

Appendix C: Analysis of Sketch-and-Solve 392
Appendix D: Deferred proofs . 395

D.1 Proof of Theorem 3.12 . 395
D.2 Proof of Theorem 10.8 . 395

Appendix E: Implementation of sparse random embeddings 397
Appendix F: Helpful MATLAB subroutines 400
Bibliography . 403

xiii

LIST OF ILLUSTRATIONS

Number Page
1.1 List of chapters in this thesis and dependencies between them . . 6
5.1 Visualizations of Sobolev kernel 77
5.2 Comparison of RKHS function and draw from a Gaussian process

with the same positive-definite kernel 86
5.3 Fit of Nobel laureate ages by prize year using Gaussian process

regression with three levels of regularization 89
6.1 Comparison of relative residual and test error for several column

Nyström preconditioners . 97
6.2 Test errors for restricted KRR with landmarks selected by RP-

Cholesky and uniformly selected points 102
6.3 Comparison of active and restricted KRR with landmarks selected

by RPCholesky and uniformly at random 104
7.1 Illustration of random points in the unit square selected by continuous

RPCholesky and uniformly at random 110
7.2 Active kernel interpolation using continuous RPCholesky, iid ran-

dom selection, and a tensor-product grid 117
7.3 Kernel quadrature using nodes selected by continuous RPCholesky

and iid random selection . 124
8.1 Comparison of speed and accuracy of blocked RPCholesky algo-

rithms . 139
9.1 Comparison of randomly pivoted QR, greedy pivoted QR, and

sketchy pivoting . 156
9.2 Runtime for standard randomly pivoted QR, accelerated randomly

pivoted QR, and MATLAB’s greedy pivoted QR for full pivoted QR
decomposition . 157

10.1 Diagram of cross approximation, showing how the entries selected
to form the approximation form a cross. 167

10.2 Relative error and chosen landmarks for different CUR algorithms. 178
10.3 Diagram illustrating cross approximation 180
13.1 Comparison of Girard–Hutchinson and Hutch++ estimators with and

without resphering on a matrix with a “step” spectrum. 210

xiv

14.1 Comparison of Girard–Hutchinson, Hutch++, XTrace, and XNys-
Trace for estimating the trace of matrices with different spectra . 228

14.2 Comparison of XNysTrace implemented on two different computer
architectures. Errors are observed to be significantly higher on an
Apple silicon Mac than on a Linux system 230

14.3 Comparison of Hutch++, XTrace, and XNysTrace trace estimators
and their resphered versions on matrices with different spectra . . 235

14.4 Comparison of Girard–Hutchinson, Hutch++, XTrace, and XNys-
Trace for estimating the Estrada index 235

15.1 Errors for Hutch++ and XTrace for matrices with different spectral
profiles, compared to the predicted 1/𝑠 “convergence rate” 243

15.2 Errors and error estimates for XTrace applied to matrices with dif-
ferent spectra . 247

16.1 Comparison of BKS, unbiased Diag++, XDiag, and XNysDiag for
estimating the diagonal of matrices with different spectra 260

16.2 Comparison of BKS, unbiased Diag++, XDiag, and XNysDiag for
matrices with different diagonal distributions 261

16.3 Comparison of BKS, unbiased Diag++, XDiag, and XNysDiag for
estimating subgraph centralities 262

17.1 Comparison of Johnson–Lindenstrauss row-norm estimator to BKS
and XNysDiag diagonal estimators for leverage-score estimation 270

17.2 Comparison of JL, SL4, SL3, XRowNorm, and XSymRowNorm
estimators for row-norm estimation of matrices with different spectra 277

17.3 Comparison of BKS and XNysDiag diagonal estimators to JL and
XSymRowNorm row-norm estimators for estimating subgraph cen-
tralities . 279

18.1 Comparison of leave-one-out and Girard–Hutchinson randomized
SVD error estimates for matrices with different singular value pro-
files . 285

19.1 Jackknife variance estimate for spectral transformations of Nyström
approximations . 298

20.1 Comparison of XTrace and bad XSymTrace algorithm for estimat-
ing the trace of matrices with different spectra 301

20.2 Error and leave-one-out error estimate for randomized subspace iter-
ation with and without intermediate reorthogonalization 303

21.1 Illustration of sparse sign embedding 318

xv

21.2 Forward, residual, and backward error for sketch-and-precondition
with the zero initialization . 324

22.1 Forward, residual, and backward error for different randomized least-
squares solvers . 340

A.1 Data layout for incremental QR decomposition 358
B.1 Singular values 𝝈(𝑺∗𝑸) and distortions for Gaussian embeddings 371
B.2 Singular values 𝝈(𝑺∗𝑸) and distortions for iid scaled sign embed-

dings . 374
B.3 Singular values 𝝈(𝑺∗𝑸) and distortions for standard SRTT embed-

dings applied to a tough matrix 𝑸 376
B.4 Singular values 𝝈(𝑺∗𝑸) and distortions for rerandomized SRTT em-

beddings applied to a tough matrix 𝑸 378
B.5 Singular values 𝝈(𝑺∗𝑸) and distortions for iid sparse embeddings

applied to a tough matrix 𝑸 . 382
B.6 Singular values 𝝈(𝑺∗𝑸) and distortions for sparse sign embeddings

applied to a tough matrix 𝑸 . 384
B.7 Runtimes for different sketching matrices 386

xvi

LIST OF TABLES

Number Page
4.1 Comparison of uniform sampling, ridge leverage score sampling,

greedy selection, and RPCholesky for Nyström approximation of
kernel matrices . 61

6.1 Storage and runtime costs for low-memory and high-memory column
Nyström preconditioned kernel ridge regression 95

8.1 Runtime and relative error of three blocked RPCholesky algorithms
on a difficult synthetic test matrix 140

xvii

LIST OF PROGRAMS

2.1 rsvd.m. Implementation of the randomized SVD with a (standard)
Gaussian test matrix. 17

2.2 rsi.m. Implementation of the randomized SVD with subspace
iteration. 19

2.3 nystrom.m. Stable implementation of the single-pass Nyström
approximation. Low-rank approximation is outputted in the form
𝑭𝑭∗ and computed using shifting. 25

2.4 nystrom_shiftcor.m. Stable implementation of the single-pass
Nyström approximation 𝑼𝑫𝑼∗ using shift correction. 25

3.1 pivpartchol.m. Pivoted partial Cholesky for computing a low-
rank approximation to a psd matrix. 39

3.2 greedy_chol.m. Pivoted partial Cholesky decomposition with
greedy pivoting to compute a low-rank approximation to a psd ma-
trix. 40

3.3 diag_sample_nys.m. Diagonal-power sampling with power 𝑝 = 1
for computing a Nyström approximation to a psd matrix. 49

4.1 rpcholesky.m. Randomly pivoted Cholesky for psd low-rank ap-
proximation and column subset selection. 59

5.1 kernel_interp.m. Code to compute the kernel interpolant
through data 𝒚. 80

5.2 krr.m. Kernel ridge regression for data fitting. 91
6.1 rpcholesky_precon.m. RPCholesky-preconditioned conjugate

gradient for solving KRR problems. 94
6.2 rpcholesky_active_krr.m. Active kernel ridge regression with

data points selected by RPCholesky. 103
7.1 rejection_sample.m. General implementation of rejection sam-

pling from a target distribution 𝜏(𝑥) d𝜇(𝑥) using a proposal distri-
bution 𝜋(𝑥) d𝜇(𝑥). 112

7.2 rejection_rpcholesky.m. Rejection sampling-based imple-
mentation of RPCholesky on general spaces. 114

7.3 kernel_quad_wts.m. Program to compute the ideal kernel
quadrature weights for computing integrals

∫
X 𝑓 (𝑥)𝑢(𝑥) d𝜇(𝑥) of

functions 𝑓 drawn from an RKHS. 123

xviii

8.1 block_rpcholesky.m. Block RPCholesky algorithm for psd
low-rank approximation and column subset selection. 129

8.2 robust_block_filter.m. Implementation of robust blockwise
filtering, a subroutine for the RBRP Cholesky algorithm (Pro-
gram 8.3). 132

8.3 rbrp_chol.m. RBRP Cholesky algorithm for psd low-rank ap-
proximation and column subset selection. 133

8.4 acc_rpcholesky.m. Accelerated RPCholesky method for psd
low-rank approximation and column subset selection. 134

8.5 rejection_sample_submatrix.m. Sample a set of RP-
Cholesky pivots using rejection sampling. 136

9.1 pivpartqr.m. Pivoted partial QR decomposition based on modi-
fied Gram–Schmidt orthogonalization. 145

9.2 rpqr.m. A modified Gram–Schmidt-based implementation of the
randomly pivoted QR algorithm for computing a column projection
approximation. 148

9.3 acc_rpqr_bgs.m. Block Gram–Schmidt-based implementation of
accelerated RPQR algorithm for computing a column projection
approximation to a general matrix. 151

9.4 acc_rpqr.m. Householder reflector-based implementation of ac-
celerated RPQR algorithm for computing a column projection ap-
proximation to a general matrix. 153

10.1 rpcur2.m. Implementation of RPCUR2 for computing a CUR
projection approximation. 172

10.2 rpcur_lev.m. Implementation of RPCURLev for computing a
weighted CUR cross approximation to a matrix. 174

10.3 md_cur.m. Implementation of MDCUR for computing a CUR
projection approximation. 177

13.1 girard_hutchinson.m. Unoptimized MATLAB implementation
of the Girard–Hutchinson estimator (13.1). 196

13.2 bks.m. Bekas–Kokiopoulou–Saad estimator for the diagonal of a
matrix. 197

13.3 jl_rownorm.m. Johnson–Lindenstrauss estimator for the (squared)
row norms of a matrix. 198

13.4 hutchpp.m. Hutch++ algorithm for trace estimation. 205

xix

13.5 hutchpp_resphere.m. Hutch++ algorithm with resphering for
trace estimation. 209

14.1 diagprod.m. Efficient implementation of the diagprod operation
(14.16). 220

14.2 xtrace.m. Efficient implementation of the XTrace estimator. . 221
14.3 xnystrace.m. Efficient and stable implementation of XNysTrace

estimator. 227
14.4 xtrace_resphere.m. Efficient implementation of XTrace algo-

rithm with resphering. 232
14.5 xnystrace_resphere.m. Efficient implementation of XNys-

Trace algorithm with resphering. 234
16.1 udiagpp.m. Unbiased Diag++ estimator for the diagonal of a ma-

trix. 255
16.2 xdiag.m. Efficient implementation of XDiag. 257
16.3 xnysdiag.m. Efficient and stable implementation of XNysDiag

estimator. 259
16.4 usvd.m. Unbiased randomized SVD algorithm for unbiased low-

rank approximation and matrix attribute estimation. 265
17.1 sl4.m. Sobczyk–Luisier 4 algorithm for row-norm estimation. . 272
17.2 sl3.m. Sobczyk–Luisier 3 algorithm for row-norm estimation. . 273
17.3 xrownorm.m. Efficient implementation of the XRowNorm estima-

tor. 275
17.4 xsymrownorm.m. Efficient implementation of the XSymRowNorm

estimator. 276
18.1 rsvd_errest.m. Randomized SVD for matrix low-rank approxi-

mation together with leave-one-out error estimate. 284
19.1 nystrom_jack.m. Single-pass Nyström approximation with jack-

knife variance estimation for spectral transformation. 297
20.1 xsymtrace.m. Implementation of the XNysTrace algorithm de-

signed to work with Hermitian indefinite matrices. 300
20.2 rsi_errest.m. Randomized subspace iteration for producing a

low-rank approximation to a general matrix with leave-one-out error
estimation. 302

21.1 mylsqr.m. Implementation of LSQR for solving least-squares prob-
lems, iteratively. 315

xx

21.2 sketch_solve.m. Sketch-and-solve method for solving overdeter-
mined linear least-squares problems. 317

21.3 sketch_precondition.m. Sketch-and-precondition method for
solving overdetermined linear least-squares problems. 323

21.4 random_ls_problem.m. Generate a random least-squares problem
with prescribed dimensions, condition number, and residual norm. 325

22.1 sketch_descend.m. Sketch-and-descend method for solving
overdetermined linear least-squares problems. 332

22.2 lanczos.m. Lanczos algorithm for partially tridiagonalizing a ma-
trix. 334

22.3 spir.m. Sketch-and-precondition with iterative refinement for solv-
ing overdetermined linear least-squares problems. 337

22.4 backerr_est.m. Karlson–Waldén estimate of the backward error
for an least-squares solution. 342

A.1 hhqr.m. Compute a Householder QR decomposition of input ma-
trix, represented in compact format. 361

A.2 apply_Qt.m. Apply the adjoint of (full) Q matrix for a compactly
represented Householder QR decomposition. 361

A.3 get_Q.m. Get the (thin) Q matrix for a compactly represented
Householder QR decomposition. 361

B.1 srtt.m. Class implementing subsampled randomized trigonmetric
transforms. 379

F.1 cnormc.m. Code to normalize the columns of a matrix. 400
F.2 random_signs.m. Generate matrix of random signs. 400
F.3 sqrownorms.m. Compute squared row norms of a matrix. . . . 400
F.4 sqcolnorms.m. Compute squared column norms of a matrix. . 400
F.5 mypcg.m. Preconditioned conjugate gradient for solving positive

definite linear systems. 401
F.6 rand_with_evals.m. Generate a Hermitian matrix with Haar-

random eigenvectors and the specified eigenvalues. 401
F.7 haarorth.m. Generate a Haar-random matrix with orthonormal

columns. 402

1

C h a p t e r 1

INTRODUCTION

Our experience suggests that many practitioners of scientific computing
view randomized algorithms as a desperate and final resort. Let us
address this concern immediately. Classical Monte Carlo methods are
highly sensitive to the random number generator and typically produce
output with low and uncertain accuracy. In contrast, the algorithms
discussed herein are relatively insensitive to the quality of randomness
and produce highly accurate results.

Nathan Halko, Per-Gunnar Martinsson, and Joel Tropp, Finding
structure with randomness: Probabilistic algorithms for constructing

matrix decompositions [HMT11]

Randomness has played a fundamental role in digital computation throughout its
history, dating back to von Neumann and Ulam’s groundbreaking work in the 1940s
using Monte Carlo to study neutron diffusion problem. (See [Eck87] for discussion
of this history.) Despite this, randomized methods have also been traditionally
viewed with great skepticism by many practitioners of scientific computing. The
belief was that randomized methods could only yield low-accuracy solutions to
computational problems; as such, they were only useful as a “desperate and final
resort”, typically for problems of such high dimensions that traditional methods
were doomed to failure.

In modern scientific computing, this conventional wisdom has been completely up-
ended. Some of the most exciting progress has been for problems in computational
linear algebra, the subject of this thesis. Randomized algorithms have established
them as the most effective methods for linear algebra problems such as matrix low-
rank approximation [HMT11; MM15; Nak20; TW23] and highly overdetermined
linear least-squares problems [RT08; AMT10]. Randomized algorithms can pro-
duce solutions of high-accuracy (as accurate as the numerical precision, in some
case) and with negligible probability of failure.

The modern field of randomized matrix computations has its origins around the
turn of the millennium [FKV98; PTRV98], and its historical roots stretch into the

2

twentieth century [Lan50; Gir87; KW92]. As such, this is not a new subject, and
many surveys exist to document the field’s successes [HMT11; Woo14; DM16;
KV17; MT20; TW23; MDME+23; KT24]. Despite this multi-decade history,
this thesis and its aims remain timely. We are in the midst of a migration of
the randomized matrix algorithm from its natural habitat in the SIAM journal or
computer science theory conference to the realm of production software. Now,
more than ever, we need randomized algorithms that are ready for deployment in
practice, making maximally efficient use of computational resources and achieving
the same level of accuracy and reliability as classical deterministic methods, while
maintaining speed. The goal of this thesis is to describe algorithms developed over
the course of my PhD research that meet these criteria.

Many randomized algorithms work by first collecting information about a matrix,
then using this information to produce an (approximate) solution to a linear algebra
problem. A unifying theme of this thesis is the design of algorithms that make
the most of what you have—that is, algorithms that attempt to collect as little
information as possible about the matrix and use the collected information in a
maximally efficient way to achieve the greatest possible accuracy subject to a limited
computational budget. This thesis is divided into three parts, each of which uses the
“make the most of what you have” principle in a different way.

1.1 Part I: Random pivoting

Information collected: Entries of a positive-semidefinite matrix 𝑨.

Computational goal: Produce a low-rank approximation 𝑨 ≈ 𝑨.

Kernel and Gaussian process methods in machine learning [SS02; RW05] re-
main some of the most effective tools for scientific machine learning [MCRR20;
BDHO24]. However, these methods face a fundamental limitation called the curse
of kernelization:

Curse of kernelization. Direct implementations of kernel and Gaussian
process methods on 𝑛 data points requires forming and manipulating an 𝑛×𝑛
positive-semidefinite kernel matrix 𝑨. Doing so requires O(𝑛2) storage and
O(𝑛3) operations.

The curse of kernelization makes direct implementation of kernel and Gaussian

3

process methods infeasible for large data sets.

Randomization offers a path forward: Using randomized algorithms, we can com-
pute a low-rank approximation 𝑨 ≈ 𝑨 to the kernel matrix. By using the low-rank
approximation in place of the kernel matrix, the computational cost of kernel and
Gaussian process methods can be substantially reduced.

In order to maintain computational efficiency, kernel matrix low-rank approximation
algorithms must produce an approximation to the matrix 𝑨 after only accessing a
small number of entries of the matrix; after all, reading the full matrix even a single
time incurs an expensive cost of O(𝑛2) operations. Is it possible to produce an
accurate approximation to a matrix after looking at a fraction of its entries? And if
so, what is most economical algorithm?

This thesis advocates for the randomly pivoted Cholesky algorithm as an answer
to these questions. The randomly pivoted Cholesky algorithm produces a near-
optimal rank-𝑘 approximation to any positive-semidefinite matrix using just (𝑘 +
1)𝑛 entry accesses. Compared to other algorithms for kernel matrix low-rank
approximation, randomly pivoted Cholesky is either faster or more accurate when
applied to challenging instances.

Part I of this thesis introduces the randomly pivoted Cholesky algorithm, describes
its properties, explains how it can be used to accelerate kernel and Gaussian process
machine learning algorithms, and compares it to alternative methods. After a thor-
ough investigation of randomly pivoted Cholesky and positive-semidefinite matrix
low-rank approximation, this part also discuss extensions of the random pivoting
approach to approximating general, rectangular matrices.

1.2 Part II: Leave-one-out randomized matrix algorithms

Information collected: Matrix–vector products 𝑩𝝎1, . . . , 𝑩𝝎𝑠.

Computational goal: Estimate attributes associated to the matrix 𝑩 such as its
trace, diagonal, or row norms.

In fields ranging from quantum physics to network science to machine learning, we
work with matrices 𝑩 that are accessible only indirectly. In such settings, we cannot
read the entries 𝑏𝑖 𝑗 directly. Rather, we can access the matrix through matrix–vector
products: Given a vector 𝝎, we may access 𝑩𝝎.

Under this implicit access model, linear algebra problems that would ordinarily be

4

trivial become interesting. For instance, given access to an implicit matrix 𝑩, how
can we compute its trace? Its diagonal? Its row norms? For all of these questions,
we seek algorithms that are maximally efficient, in the sense of requiring as few
matrix–vector products to compute these matrix attributes to a desired accuracy
level.

Part II describes the leave-one-out approach to estimating attributes of an implicit
matrix. We will then use the leave-one-out approach to derive optimized estimators
for the trace, diagonal, and row norms of both general and positive-semidefinite
matrices. As additional applications of the leave-one-out approach, we will de-
velop error estimates for randomized low-rank approximations like the randomized
SVD and variance estimation techniques for assessing the quality of more general
quantities computed by randomized matrix algorithms.

1.3 Part III: Sketching, solvers, and stability

Information collected: A “sketch” of a tall matrix 𝑩 ∈ R𝑚×𝑛 with 𝑚 ≫ 𝑛,
defined to be the product 𝑺∗𝑩 of 𝑩 with a wide matrix 𝑺∗ ∈ R𝑑×𝑚.

Computational goal: Solve the overdetermined linear least-squares problem
𝒙 = argmin𝒛∈R𝑛 ∥𝒄 − 𝑩𝒛∥ to high numerical accuracy.

One of the major success stories of randomized algorithms in linear algebra is
sketch-and-precondition algorithm [RT08; AMT10] for solving over-determined
linear least-squares problems

𝒙 = argmin
𝒛∈R𝑛

∥𝒄 − 𝑩𝒛∥ where 𝑩 ∈ R𝑚×𝑛, 𝒄 ∈ R𝑚 . (1.1)

Here, ∥·∥ denotes the vector ℓ2 norm, and we consider the highly overdetermined
setting where 𝑚 ≫ 𝑛. The idea of sketch-and-precondition is to preprocess the
matrix 𝑩 by applying a randomized dimensionality reduction map or “sketching
matrix” 𝑺∗ ∈ R𝑑×𝑚, where the embedding dimension 𝑑 is a small multiple of the
number of columns 𝑛 in 𝑩, e.g., 𝑑 = 2𝑛. We then compute a QR decomposition
of the sketched matrix 𝑺∗𝑩 = 𝑸𝑹 and solve the least-squares problem (1.1) using
a Krylov iterative method with 𝑹 as preconditioner. With an appropriate choice of
sketching matrix, this procedure reliably reduces the condition number of 𝑩 below
an absolute constant, leading to convergence to high accuracy in a small number of
Krylov iterations. As a result, sketch-and-precondition runs in roughly O(𝑚𝑛 + 𝑛3)
operations, a dramatic improvement to the O(𝑚𝑛2) cost of classical algorithms for

5

least squares.

The recent paper [MNTW24] cast doubts on the numerical stability of this algorithm.
This paper’s experiments show that, when implemented using ordinary double-
precision floating point arithmetic, some versions of sketch-and-precondition pro-
duce errors that exceed classical methods by orders of magnitude. Does this mean
the sketch-and-precondition algorithm is too unreliable for practical use?

Part III critically investigates this question. We will see that, by using careful
initialization and just a single step of iterative refinement, sketch-and-precondition-
type algorithms can be made just as accurate as classical direct methods, achieving
backward stability, the gold-standard notion of accuracy in numerical analysis.

1.4 About this thesis
I have taken non-traditional approach to writing this thesis. As with many theses,
this thesis is primarily based on research papers written during my PhD. However,
rather then collecting these papers and editing them, this thesis contains a new
treatment of this material. As such, this thesis is composed of original writing and
constitutes a deeper dive and re-examination of my PhD research.

Rather than trying to include all of my PhD research, I have elected to focus on the
three topics described above: random pivoting, leave-one-out randomized matrix
algorithms, and numerically stable randomized least-squares algorithms. I have
endeavored to provide a an approachable introduction to these three areas of my
research that I hope will be accessible to younger researchers. As such, I have
included a significant amount of discussion of background material and related
work; I have also included open problems at the end of each part of the thesis. This
thesis also contains several new results and algorithms that have not previously been
published.

The contents of this thesis are diagrammed in Fig. 1.1, including dependencies
between chapters. For readers interested primarily in seeing my original research, I
have used symbols to distinguish between chapters based on whether they contain
primarily exposition, research, or open problems. I have endeavored to have all
of the chapters, including the expository ones, present a unique perspective on the
material. Chapters containing research that is newly presented in this thesis are
marked using a star.

Given my focus on a subset of topics, much of my PhD research is not discussed
in this thesis, including my work on quantum eigenvalue algorithms [ELN22;

6

Figure 1.1: List of chapters in this thesis and dependencies between them. Blue
circles indicate chapters whose content is primarily introductory or expository,
orange squares indicate sections primarily containing research from my PhD, and
green squircles indicate open questions. Starred sections contain new research that
has not previously been published.

7

DELZ24], row action methods for large least-squares problems [EGW25], super-
fast non-uniform Fourier transform inversion [WEB25], tensor network methods
[CET25], and uniqueness of tensor decompositions [GEL22]. All of these topics
are near and dear to my heart, and it is will sadness that I do not include them in the
present document.

Taking inspiration from Nick Trefethen’s essay Ten Digit Algorithms [Tre05, §4], I
have elected to present algorithms using code segments rather than pseudocode. As
a numerical linear algebraist at heart, the programming language will be MATLAB;
translation to Python or Julia for those so-inclined will hopefully not be difficult.

1.5 Notation
This thesis will work over the field K of either real or complex numbers, K = R or
K = C. The imaginary unit is denoted i, and the complex conjugate is 𝑥 + i𝑦 = 𝑥−i𝑦.
The nonnegative reals are denoted R+.

Matrices and vectors. The symbol ∗ denotes the adjoint, which reduces to the
transpose when K = R. We identify the set of vectors K𝑛 with the set of 𝑛 × 1
matrices K𝑛×1; row vectors 𝒃∗ ∈ K1×𝑛 will be denoted as adjoints of column vectors
𝒃 ∈ K𝑛.

Matrices will be denoted by bold capital letters (e.g., 𝑩,𝛀), and vectors will be
denoted by bold lowercase letters (e.g., 𝒃, 𝝎). Entries of matrices and vectors are
denoted using the corresponding italic letter, e.g., 𝑏𝑖 is the 𝑖th entry of 𝒃 and 𝜔𝑖 𝑗 is
the 𝑖 𝑗 th entry of 𝛀. Columns of matrices are denoted using the corresponding bold
lowercase vector, e.g., 𝝎𝑖 is the 𝑖th column of 𝛀. A matrix 𝛀 with its 𝑖th column
deleted is denoted 𝛀−𝑖 (similarly, 𝛀−𝑖 𝑗 for two deletions).

The identity matrix is I ∈ R𝑛×𝑛; its columns are the standard basis vectors e𝑖 ∈ R𝑛.
The vector of all ones is 1 =

∑𝑛
𝑖=1 e𝑖, and the matrix of zeros is 0 ∈ R𝑚×𝑛. We will

use subscripts I𝑛, 1𝑛, 0𝑚×𝑛 when necessary to indicate the dimensions.

For our purposes, a matrix 𝑨 ∈ K𝑛×𝑛 is positive semidefinite (psd) if it is Hermitian
(𝑨 = 𝑨∗) and satisfies the condition 𝒙∗𝑨𝒙 ≥ 0 for all vectors 𝒙 ∈ K𝑛. The concept of
a “real nonsymmetric psd matrix”, valuable in other contexts, will not be considered
in this thesis. The psd order ⪰ is defined so that 𝑨 ⪰ 𝑯 whenever 𝑨 − 𝑯 is psd.

Throughout this thesis, 𝑩 ∈ K𝑚×𝑛 will denote a general matrix, which may be square
or rectangular depending on the context. The matrix 𝑨 ∈ K𝑛×𝑛 will always denote
a Hermitian matrix, often psd.

8

Sets of integer indices, general arbitrary sets, and vector spaces will be denoted
using sans serif font (e.g., S, V). General inner products, when they arise, will be
conjugate linear in the first coordinate.

We permit matrices 𝑩 ∈ KS×T and vectors 𝒙 ∈ KS to be indexed by arbitrary
finite sets S and T. Given bivariate and univariate functions 𝜉 : X × Y → K and
𝑓 : X→ K and subsets S ⊆ X and T ⊆ Y, 𝜉 (S,T) ∈ KS×T and 𝑓 (S) ∈ KS denote
a matrix and vector with elements 𝜉 (𝑠, 𝑡) and 𝑓 (𝑠) for each 𝑠 ∈ S and 𝑡 ∈ T.

We use MATLAB notation to index matrices. So 𝑩(𝑖, 𝑗) = 𝑏𝑖 𝑗 is the 𝑖 𝑗 th entry of
𝑩, 𝑩(:, 𝑖) = 𝒃𝑖 is the 𝑖th column, 𝑩(:,S) = (𝒃𝑖 : 𝑖 ∈ S) denotes the submatrix of
𝑩 indexed by elements of the set S, etc. We adopt the convention that submatrices
𝑩(S,T) ∈ KS×T are indexed by the sets S and T rather than by the sets {1, . . . , |S|}
and {1, . . . , |T|}. So 𝑏22 is still the (2, 2) entry of the matrix 𝑩({2, 3}, {2, 5}).

For a square matrix 𝑩 ∈ K𝑛×𝑛, the trace is tr(𝑩) = ∑𝑛
𝑖=1 𝑏𝑖𝑖 ∈ K and the diagonal is

diag(𝑩) = (𝑏𝑖𝑖 : 1 ≤ 𝑖 ≤ 𝑛) ∈ K𝑛. The diagonal elements of a matrix product 𝑮∗𝑭
are denoted

diagprod(𝑭,𝑮) := diag(𝑭∗𝑮).

Given a vector 𝒃 ∈ K𝑛, the diagonal matrix with elements 𝑏𝑖 is denoted Diag(𝒃).
The squared row norms and squared column norms of a matrix 𝑩 ∈ K𝑚×𝑛 are

srn(𝑩) :=
(
∥𝑩(𝑖, :)∥2 : 1 ≤ 𝑖 ≤ 𝑚

)
= diag(𝑩𝑩∗) ∈ K𝑚,

scn(𝑩) :=
(
∥𝑩(:, 𝑖)∥2 : 1 ≤ 𝑖 ≤ 𝑛

)
= diag(𝑩∗𝑩) ∈ K𝑛.

The entrywise product of vectors 𝒂, 𝒃 ∈ K𝑛 is 𝒂⊙𝒃 = (𝑎𝑖 ·𝑏𝑖 : 1 ≤ 𝑖 ≤ 𝑛). Nonlinear
operations are applied to vectors entrywise. For instance, 𝒂 = (𝑎𝑖 : 1 ≤ 𝑖 ≤ 𝑛) is
the entrywise complex conjugate, and |𝒂 |2 = (|𝑎𝑖 |2 : 1 ≤ 𝑖 ≤ 𝑛) is the entrywise
squared modulus.

The ℓ2 norm of a vector or spectral norm of a matrix will be denoted ∥·∥. We will
also make use of the Frobenius and trace norms, denoted ∥·∥F and ∥·∥∗. Schatten
𝑝-norms are denoted ∥·∥S𝑝

.

We will make frequent use of matrix decompositions. Given a tall matrix 𝑩 ∈
K𝑚×𝑛, an economy-size QR decomposition is a factorization 𝑩 = 𝑸𝑹 into a matrix
𝑸 ∈ K𝑚×𝑛 with orthonormal columns and an upper triangular matrix 𝑹 ∈ K𝑛×𝑛.
An economy-size SVD is a factorization 𝑩 = 𝑼𝚺𝑽∗ into a matrix 𝑼 ∈ K𝑚×𝑛 with
orthonormal columns, a nonnegative diagonal matrix𝚺 ∈ R𝑛×𝑛+ , and a unitary matrix

9

𝑽 ∈ K𝑛×𝑛. When not otherwise stated, all QR decompositions and SVDs will be
assumed to be economy-size. Given a positive definite matrix 𝑨, its (full) Cholesky
decomposition refers to one of two matrix decompositions, the lower triangular
Cholesky decomposition 𝑨 = 𝑳𝑳∗ or the upper triangular Cholesky decomposition
𝑨 = 𝑹∗𝑹. Both conventions will be convenient for use in different places of this
thesis.

We will use Orth(𝑩) to denote a matrix whose columns form an orthonormal
basis range(𝑩). When necessary to yield an unambiguous interpretation, Orth of
a full column-rank matrix 𝑩 will be taken to be the output of an economy-size QR
decomposition where the triangular factor has positive diagonal entries.

As usual, rank(𝑩) denotes the dimension of the range of 𝑩. We say a matrix is
rank-𝑘 if rank(𝑩) ≤ 𝑘 . A rank-𝑘 matrix 𝑩 ∈ K𝑚×𝑛 is described by its compact SVD

𝑩 = 𝑼𝚺𝑽∗

where 𝑼 ∈ K𝑚×rank(𝑩) and 𝑽 ∈ K𝑛×rank(𝑩) have orthonormal columns and 𝚺 ∈
Rrank(𝑩)×rank(𝑩)
+ is a diagonal matrix listing the nonzero singular values. Similarly, a

rank-𝑘 Hermitian matrix 𝑨 ∈ K𝑛×𝑛 has a compact eigendecomposition

𝑨 = 𝑼𝑫𝑼∗

where 𝑼 ∈ K𝑛×rank(𝑨) has orthonormal columns and 𝑫 ∈ Rrank(𝑨)×rank(𝑨) is a
diagonal matrix listing the nonzero eigenvalues.

Probability theory. Probabilities and expectations are denoted P and E. Nonlinear
operations bind before expectations, so that E 𝑥2 := E(𝑥2), not E 𝑥2 = (E 𝑥)2. The
covariance is

Cov(𝑎, 𝑏) := E[(𝑎 − E 𝑎) (𝑏 − E 𝑏)],

and the variance is Var(𝑎) := Var(𝑎, 𝑎). Note that, unlike other sesquilinear forms
in this thesis, the covariance is conjugate-linear in its second argument.

We write 𝑥1, 𝑥2, . . . ∼ 𝑥 and variations thereof to indicate that 𝑥1, 𝑥2, . . . are random
variables with the same distribution as 𝑥. The phrase “independent and identically
distributed” carries its usual abbreviation iid, and we write 𝑥1, 𝑥2, . . .

iid∼ 𝑥 when
𝑥1, 𝑥2, . . . are iid copies of 𝑥.

Given a nonnegative weight vector 𝒘 ∈ R𝑛+, 𝑖 ∼ 𝒘 denotes a random integer
𝑖 ∈ {1, . . . , 𝑛} selected with probability P{𝑖 = 𝑗} = 𝑤 𝑗/

∑𝑛
𝑘=1 𝑤𝑘 . We do not assume

the normalization
∑𝑛
𝑖=1 𝑤𝑖 = 1 when writing 𝑖 ∼ 𝒘.

10

The uniform distributions on a set S are denoted Unif S. The unit sphere of a vector
(sub)space U is S(U), and UnifS(U) denotes the (Haar) uniform distribution on
the sphere. A Gaussian distribution over the field K with mean 𝒎 and covariance
matrix 𝚺 is denoted NormalK(𝒎,𝚺). If 𝚺 is nonsingular, its probability density is

𝑝(𝒛) = 1
(2𝜋)𝛼/2 det(𝚺)1/2

exp
(
− 𝒛
∗𝚺−1𝒛

2

)
.

A random vector 𝝎 ∼ NormalK(𝒎,𝚺) has jointly Gaussian entries with mean
E[𝜔𝑖] = 𝑚𝑖 and Cov(𝜔𝑖, 𝜔 𝑗) = 𝜎𝑖 𝑗 .

Rounding error analysis. In Part III of this thesis, we will investigate the numerical
stability of randomized least-squares solvers, which will require special notation.
This notation will be introduced in Section 22.1.

11

C h a p t e r 2

LOW-RANK APPROXIMATION FOUNDATIONS

Despite decades of research on Lanczos methods, the theory for the
randomized algorithms is more complete and provides strong guarantees
of excellent accuracy, whether or not there exist any gaps between the
singular values.

Huamin Li, George C. Linderman, Arthur Szlam, Kelly P. Stanton,
Yuval Kluger, and Mark Tygert, Algorithm 971: An Implementation of a

Randomized Algorithm for Principal Component Analysis [LLSS+17]

This thesis is not only about randomized algorithms for low-rank approximation,
but low-rank approximation will play an important role throughout our discussion.
This introductory chapter reviews two types of low-rank approximation, projection
approximation and Nyström approximation.

Sources. This chapter is introductory and is not based on any particular research
article. The last section is adapted from the blog post [Epp24c].

Outline. Section 2.1 begins by describing (approximately) low-rank matrices and
how they can be represented. We then go on to discuss two types of low-rank
approximations: projection approximations (Section 2.2) and Nyström approxima-
tions (Section 2.5). Examples of the former type of approximation is given by the
randomized SVD (Section 2.3), which can be improved using subspace iteration
(Section 2.4). Section 2.6 concludes by describing a connection between projection
approximations and Nyström approximations I have termed the Gram correspon-
dence. The Gram correspondence will be an important tool throughout the first part
of this thesis.

2.1 Low-rank approximation basics
The term “low-rank matrix” is an informal one. Colloquially, we say a matrix
𝑩 ∈ K𝑚×𝑛 is low-rank if rank 𝑩 is much smaller than its dimensions 𝑚 and 𝑛.
Low-rank matrices are convenient to work with in computations because a rank-𝑘
may be decomposed as an outer product

𝑩 = 𝑭𝑮∗ (2.1)

12

of thin matrices 𝑭 ∈ K𝑚×𝑘 and 𝑮 ∈ K𝑛×𝑘 . As such, a low-rank matrix 𝑩 can
be represented by storing the factor matrices 𝑭 and 𝑮, resulting in a significant
reduction in storage cost (𝑚 + 𝑛)𝑘 ≪ 𝑚𝑛.

The starting point of this part of the thesis is a beautiful and practically useful
observation: Among the numerous matrices appearing in applications, many of
them possess the property of being well-approximated by a low-rank matrix. For
such matrices 𝑩 ∈ K𝑚×𝑛, they can be efficiently represented and computed with
by storing a low-rank approximation 𝑩 ≈ 𝑩 in factored form 𝑩 = 𝑭𝑮∗. Provided
this approximation is accurate (i.e., |||𝑩 − 𝑩 ||| ≪ |||𝑩 ||| in an appropriate norm),
an approximately low-rank matrix can be accurately represented by storing a small
number of parameters. Some explanations for the ubiquity of approximately low-
rank matrices in applications are provided in [BT19; UT19].

Given a factored low-rank approximation 𝑩 = 𝑭𝑮∗ to a matrix 𝑩, many computa-
tional problems involving 𝑩 become easy:

• Matrix–vector products: Matrix–vector products 𝒛 ↦→ 𝑩𝒛 can be computed
in O((𝑚 + 𝑛)𝑘) operations by evaluating the product as 𝑩𝒛 = 𝑭(𝑮∗𝒛).

• Singular values and vectors: The low-rank factorization 𝑩 = 𝑭𝑮∗ can be
upgraded to a compact SVD 𝑩 = 𝑼𝚺𝑽∗ in O((𝑚 + 𝑛)𝑘2) operations. From
this decomposition, one can obtain the singular values and singular vectors
of 𝑩. From the SVD, one can also compute other quantities such as unitarily
invariant norms and projectors onto singular subspaces.

• Linear systems and least-squares: Shifted linear systems of the form

(𝑩 + 𝜇I)𝒙 = 𝒄 for 𝜇 ∈ C \ {0}

and regularized least-squares problems

𝒙 = argmin
𝒛∈K𝑛

∥𝑩𝒛 − 𝒄∥2 + 𝜇 ∥𝒛∥2 for 𝜇 > 0

can both be solved in O((𝑚 + 𝑛)𝑘2) operations (by the Sherman–Morrison–
Woodbury identity in the former case and a compact SVD in the latter case).

Thus, given both the great prevalence of approximately low-rank matrices in appli-
cations and the great computational benefits of exploiting low-rank structure, the

13

matric low-rank approximation problem is of fundamental interest in computational
mathematics.

The central theoretical result in low-rank approximation is the Schmidt–Mirsky–
Eckart–Young theorem, which characterizes the optimal low-rank approximation
[SS90, Thm. IV.4.18].

Fact 2.1 (Optimal low-rank approximations). Let 𝑩 = 𝑼𝚺𝑽∗ ∈ K𝑚×𝑛 be a matrix
and its SVD, and let 0 ≤ 𝑘 ≤ min(𝑚, 𝑛) be an integer. Measured with respect to
any unitarily invariant norm |||·|||, an optimal low-rank approximation

|||𝑩 − 𝑩 ||| = min
rank(𝑪)≤𝑘

|||𝑩 − 𝑪 |||

is given by truncating the SVD to level 𝑘:

⟦𝑩⟧𝑘 := 𝑼(:, 1 : 𝑘)𝚺(1 : 𝑘, 1 : 𝑘)𝑽 (:, 1 : 𝑘)∗.

In particular, the matrix ⟦𝑩⟧𝑘 is an optimal low-rank approximation with respect
to the trace, Frobenius, and spectral norms. With respect to any of these norms, the
best approximation is unique if and only if 𝜎𝑘 (𝑩) > 𝜎𝑘+1(𝑩).

Throughout this thesis, ⟦𝑩⟧𝑘 will denote any optimal low-rank approximation in
the sense of this theorem. As this result highlights, the best approximation may not
be unique.

As Fact 2.1 demonstrates, an optimal rank-𝑘 approximation to matrix 𝑩 can be
computed by forming the SVD and truncating to level 𝑘 . However, this approach
is computationally expensive, since computing even an economy-size SVD of a
matrix 𝑩 requires O(𝑚𝑛min{𝑚, 𝑛}) operations. Therefore, it is natural to seek
faster methods for obtaining a near-optimal low-rank approximation.

Before moving on, we should say a few words about low-rank approximation of a
psd matrix 𝑨. When approximating a psd matrix, it is natural to use a low-rank
approximation 𝑨 ≈ 𝑨 that is also psd. The factors 𝑭 and 𝑮 for a psd low-rank
matrix 𝑨 can always be taken to be the same, yielding the symmetric decomposition

𝑨 = 𝑭𝑭∗. (2.2)

The eigendecomposition of a psd matrix induces an SVD, so an optimal rank-𝑘
approximation to a psd matrix can be obtained by truncating its eigendecomposition.

14

2.2 Projection approximation
How might we construct high-quality low-rank approximations without relying
on the SVD? A natural strategy emerges from a re-examining the optimal rank-𝑘
approximation ⟦𝑩⟧𝑘 . In Fact 2.1, we computed the optimal rank-𝑘 approximation
by truncating the SVD 𝑩 = 𝑼𝚺𝑽∗. Alternately, we can compute the optimal rank-𝑘
approximation using the projection formula:

⟦𝑩⟧𝑘 = 𝑸𝑸∗𝑩 for 𝑸 = 𝑼(:, 1 : 𝑘) (2.3)

Here, we have projected 𝑩 onto the span of its 𝑘 dominant left singular vectors
𝑼(:, 1 : 𝑘). We remind the reader that 𝑸𝑸∗ acts as an orthoprojector onto the range
of a matrix 𝑸 with orthonormal columns.

The projection formula (2.3) motivates the use of projections as general strategy for
constructing low-rank approximations.

Definition 2.2 (Projection approximation). Let𝛀 ∈ K𝑛×𝑘 be a test matrix, and probe
the matrix 𝑩 by computing the product 𝑩𝛀. The projection approximation to 𝑩

with test matrix 𝛀 is

𝑩 := 𝚷𝑩𝛀𝑩 = 𝑸(𝑸∗𝑩) with 𝑸 = Orth(𝑩𝛀).

As we will see, the class of projection approximations contains many good rank-
𝑘 approximations to a matrix 𝑩. Indeed, it is simple to verify that the optimal
approximation is, itself, a projection approximation with test matrix𝛀 = 𝑽 (:, 1 : 𝑘).

The motivation behind projection approximation is that the range of 𝑩𝛀 serves as a
good, but cheap to compute, proxy for the span of the dominant left singular vectors
of 𝑩. To see this, first expand 𝑩 via its SVD

𝑩 =

min(𝑚,𝑛)∑︁
𝑖=1

𝜎𝑖 (𝑩)𝒖𝑖𝒗∗𝑖

and consider the product

𝑩𝛀 =

min(𝑚,𝑛)∑︁
𝑖=1

𝜎𝑖 (𝑩)𝒖𝑖 (𝒗∗𝑖𝛀). (2.4)

The influence of each left singular vector 𝒖𝑖 is controlled by the size of the singular
value 𝜎𝑖 (𝑩) and the product 𝒗∗

𝑖
𝛀. In particular, provided that 𝒗∗

𝑖
𝛀 is not small

for each 1 ≤ 𝑖 ≤ 𝑘 , the product 𝑩𝛀 will have large components in the directions

15

of all of the dominant left singular vectors {𝒖𝑖 : 1 ≤ 𝑖 ≤ 𝑘}. Conversely, the
subdominant left singular vectors {𝒖𝑖 : 𝑖 > 𝑘} are scaled by smaller singular values
𝜎𝑖 (𝑩) ≤ 𝜎𝑘 (𝑩), so 𝑩𝛀 will have smaller components in these directions. Thus,
projecting onto the range of 𝑩𝛀 provides a computationally cheap alternative to
projecting onto the span of the dominant singular vectors.

To assess the cost of projection approximation, we can count the number of matrix–
vector products (matvecs) needed to compute one. Forming the product 𝑩𝛀 requires
𝑘 matvecs with 𝑩, one with each column of 𝛀:

𝑩𝛀 =

[
𝑩𝝎1 · · · 𝑩𝝎𝑘

]
.

Building the second product 𝑸∗𝑩 expends 𝑘 matvecs with 𝑩∗:

𝑸∗𝑩 = (𝑩∗𝑸)∗ =
[
𝑩∗𝒒1 · · · 𝑩∗𝒒𝑘

]∗
.

Therefore, computing a projection approximation consists of 𝑘 matvecs with 𝑩, 𝑘
matvecs with 𝑩∗, and O(𝑚𝑘2) additional arithmetic operations to evaluate 𝑸 =

Orth(𝑩𝛀) (via economy-size QR decomposition).

Projection approximations satisfy a number of enjoyable properties:

Proposition 2.3 (Properties of projection approximations). Let 𝑩 ∈ K𝑚×𝑛 and
𝛀 ∈ K𝑛×𝑘 be matrices, and consider the projection approximation 𝚷𝑩𝛀𝑩. Then

(a) Columnwise orthogonality. The approximation 𝚷𝑩𝛀𝑩 and its residual 𝑩 −
𝚷𝑩𝛀𝑩 are columnwise orthogonal,

(𝚷𝑩𝛀𝑩)∗(𝑩 −𝚷𝑩𝛀𝑩) = (𝑩 −𝚷𝑩𝛀𝑩)∗(𝚷𝑩𝛀𝑩) = 0.

Consequently,

(𝑩 −𝚷𝑩𝛀𝑩)∗(𝑩 −𝚷𝑩𝛀𝑩) = 𝑩∗𝑩 − (𝚷𝑩𝛀𝑩)∗(𝚷𝑩𝛀𝑩)
= 𝑩∗(I −𝚷𝑩𝛀𝑩)𝑩.

(b) Invariance. The projection approximation is invariant under right multipli-
cation of the test matrix 𝛀 by a nonsingular matrix 𝑻, 𝚷𝑩𝛀𝑻𝑩 = 𝚷𝑩𝛀𝑩. In
particular, 𝚷𝑩𝛀𝑩 is invariant under reordering of the columns of 𝛀.

(c) Monotonicity. The singular values of the approximation 𝚷𝑩𝛀𝑩 are mono-
tone increasing under extension of the test matrix:

𝝈(𝚷𝑩𝛀′𝑩) ≥ 𝝈(𝚷𝑩𝛀𝑩) for 𝛀′ = [𝛀 𝚪] .

16

Similarly, the singular values of the residual 𝑩 − 𝚷𝑩𝛀𝑩 are monotone de-
creasing:

𝝈(𝑩 −𝚷𝑩𝛀′𝑩) ≤ 𝝈(𝑩 −𝚷𝑩𝛀𝑩) for 𝛀′ = [𝛀 𝚪] .

Consequently, |||𝑩 −𝚷𝑩𝛀′𝑩 ||| ≤ |||𝑩 −𝚷𝑩𝛀𝑩 ||| for any unitarily invariant
matrix norm |||·|||, such as the trace, Frobenius, and spectral norms.

(d) Optimality. The projection approximation achieves the lowest Frobenius norm
error among all approximations 𝑪 ≈ 𝑩 satisfying range(𝑪) ⊆ range(𝑩𝛀):

∥𝑩 −𝚷𝑩𝛀𝑩∥F = min
range(𝑪)⊆range(𝑩𝛀)

∥𝑩 − 𝑪∥F.

These properties are all more-or-less standard. We omit the proof.

Remark 2.4 (Left versus right). Projection approximations approximate a matrix 𝑩

by multiplying by an orthoprojector 𝚷𝑩𝛀 on the left. One can also define right
projection approximations which apply a projector on the right

𝑩𝚷𝑩∗𝚿 for 𝚿 ∈ K𝑚×𝑘 .

Left and right projection approximations are formally equivalent, as a right pro-
jection approximation of 𝑩 is the adjoint of a left projection approximation to 𝑩∗.
We will use right projection approximations in Chapter 17, and we will discuss
two-sided projection approximations in Chapter 10. ⋄

2.3 The randomized SVD
The randomized SVD is a simple and popular method for low-rank approximation,
and its output is a projection approximation. At its simplest level, the randomized
SVD approximation can be computed in four steps:

1. Generate a random matrix 𝛀 ∈ K𝑛×𝑘 , constructed without looking at the
matrix 𝑩. (E.g., 𝛀 could be a standard Gaussian matrix.)

2. Compute the matrix product 𝒀 = 𝑩𝛀.

3. Form an orthogonal basis 𝑸 = Orth(𝒀) for the column span of 𝒀 , say by QR
factorization 𝒀 = 𝑸𝑹.

4. Evaluate the projection 𝑪 = 𝑩∗𝑸, defining the low-rank approximation 𝑩 =

𝑸𝑸∗𝑩 = 𝑸𝑪∗ represented by factors 𝑸 and 𝑪.

17

Program 2.1 rsvd.m. Implementation of the randomized SVD with a (standard)
Gaussian test matrix.
function [U,S,V] = rsvd(B,Bt,n,k)
% Input: Functions B() and Bt() computing matrix products B(X) =
% B*X and Bt(X) = B’*X, number of columns n, and rank k
% Output: Low-rank approximation Bhat to B, presented as an
% economy-size SVD Bhat = U*S*V’

Om = randn(n,k); % Gaussian random test matrix
Y = B(Om); % Matvecs with B
[Q,~] = qr(Y,"econ"); % Orthogonalize
C = Bt(Q); % Matvecs with B’
[UU,S,V] = svd(C’,"econ"); % SVD of factor matrix
U = Q*UU; % Get left singular vectors

end

Written as so, the name “randomized SVD” is a misnomer for this algorithm, as
it does not output a low-rank approximation in SVD form. If desired, one can
“upgrade” the approximation 𝑩 = 𝑸𝑪∗ to compact SVD form:

5. Compute an economy-size SVD 𝑪∗ = 𝑾𝚺𝑽∗ and set𝑼 := 𝑸𝑾. The low-rank
approximation 𝑩 = 𝑼𝚺𝑽∗ is now expressed in compact SVD form, described
by factors 𝑼, 𝚺, and 𝑽.

We recognize the output 𝑩 = 𝑸𝑪∗ = 𝑼𝚺𝑽∗ of the randomized SVD as the projection
approximation of 𝑩 generated by test matrix 𝛀. The cost of steps 1–5 is 𝑘 matvecs
with 𝑩 and 𝑘 matvecs with 𝑩∗, plus an additional O(𝑘2(𝑚 + 𝑛)) operations to
compute a QR decomposition of 𝒀 and compute an SVD of 𝑪∗. Code for the
randomized SVD is provided in Program 2.1. In this thesis, we will use the name
“randomized SVD” to refer to the low-rank approximation 𝑩, regardless of whether
it is represented as 𝑩 = 𝑸𝑪∗ or 𝑩 = 𝑼𝚺𝑽∗.

The randomized SVD algorithm in its modern form was introduced in the famous
paper of Halko, Martinsson, and Tropp [HMT11]. See [HMT11, §2] and [TW23,
§3] for a discussion of the history of this algorithm, including earlier references
featuring algorithms similar to the modern randomized SVD.

The randomized SVD produces an approximation comparable with the best rank-𝑟
approximation, where 𝑟 is smaller than the parameter 𝑘 used in the randomized SVD
algorithm. Here is an example result [TW23, Thm. 8.7] (see also [HMT11, §10]):

18

Fact 2.5 (Randomized SVD error analysis). Let 𝛀 ∈ R𝑛×𝑘 be populated with inde-
pendent real standard Gaussian entries, and let 𝑩 denote the output of the random-
ized SVD algorithm. Then

E∥𝑩 − 𝑩∥2F ≤ min
𝑟≤𝑘−2

𝑘 − 1
𝑘 − 𝑟 − 1

𝑩 − ⟦𝑩⟧𝑟

2
F, (2.5)

E∥𝑩 − 𝑩∥2 ≤ min
𝑟≤𝑘−2

𝑘 + 𝑟 − 1
𝑘 − 𝑟 − 1

(

𝑩 − ⟦𝑩⟧𝑟

2 + e2

𝑘 − 𝑟

𝑩 − ⟦𝑩⟧𝑟

2

F

)
. (2.6)

The first bound (2.5) shows that the expected Frobenius error of the randomized
SVD is no worse with that of the best rank-𝑟 approximation for every 𝑟 ≤ 𝑘 − 2, up
to a prefactor 𝑓 (𝑘, 𝑟) depending on 𝑘 and 𝑟 . The second bound (2.6) demonstrates
that the spectral-norm error of the randomized SVD still depends on the Frobenius
norm of the best rank-𝑟 approximation

𝑩 − ⟦𝑩⟧𝑟

2
F =

min(𝑚,𝑛)∑︁
𝑖=𝑟+1

𝜎2
𝑖 (𝑩). (2.7)

Thus, we see that spectral-norm accuracy of the randomized SVD depends on the
entire tail of singular values. Compare with the optimal approximation, whose error
is just the (𝑟 + 1)st singular value:

𝑩 − ⟦𝑩⟧𝑟

 = 𝜎𝑟+1(𝑩).
The spectral-norm bound (2.6) demonstrate that the randomized SVD produces a
fairly coarse approximation to a matrix 𝑩 when its singular values decay at a slow
rate. This coarse approximation is nonetheless useful for many purposes.

2.4 Randomized subspace iteration
The randomized SVD can be improved by using powering to build a better test
matrix 𝛀. Fix a number 𝑞 ≥ 0 of powering steps, and assume at first that 𝑞 is even.
To build 𝛀, generate a random matrix 𝚪 ∈ K𝑛×𝑘 and apply powering

𝛀 = (𝑩∗𝑩)𝑞/2𝚪.

Now, form the projection approximation 𝑩 := 𝚷𝑩𝛀𝑩 = 𝚷𝑩(𝑩∗𝑩)𝑞/2𝚪𝑩, represented
as either 𝑩 = 𝑸𝑪∗ or 𝑩 = 𝑼𝚺𝑽∗. We emphasize that the matrix 𝛀 should be
formed by successive matrix multiplications

𝛀 = 𝑩∗(𝑩(𝑩∗(𝑩 · · · (𝑩𝚪) · · ·))), (2.8)

19

Program 2.2 rsi.m. Implementation of the randomized SVD with subspace it-
eration. Warning: This code can be numerically unstable when the matrix 𝑩 has
rapidly decaying singular values of the number of subspace iteration steps 𝑞 is large.
function [U,S,V] = rsi(B,Bt,m,n,k,q)
% Input: Functions B() and Bt() computing matrix products B(X) =
% B*X and Bt(X) = B’*X, dimensions m and n, rank k, and
% number of subspace iteration steps q
% Output: Low-rank approximation Bhat to B, presented as an
% economy-size SVD Bhat = U*S*V’

if mod(q,2) == 1 % Odd case
Om = randn(m,k); % Gaussian random test matrix with m rows
Om = Bt(Om); % First subspace iteration step

else % Even case
Om = randn(n,k); % Gaussian random test matrix with n rows

end

for i = 1:floor(q/2)
Om = Bt(B(Om)); % Two subspace iteration steps

end

Y = B(Om); % Matvecs with B
[Q,~] = qr(Y,"econ"); % Orthogonalize
C = Bt(Q); % Matvecs with B’
[UU,S,V] = svd(C’,"econ"); % SVD of factor matrix
U = Q*UU; % Get left singular vectors

end

not by explicitly forming and powering the matrix 𝑩∗𝑩. When 𝑞 is odd, the test
matrix is instead defined as

𝛀 = (𝑩∗𝑩) (𝑞−1)/2𝑩∗𝚪 for random 𝚪 ∈ K𝑚×𝑘 .

This algorithm for computing low-rank approximations by powered test matrices
is called randomized subspace iteration or the randomized SVD with subspace
iteration [RST10; HMT11; Gu15; TW23]. Code is given in Program 2.2. The cost
of randomized subspace iteration is (𝑞 + 2)𝑘 matvecs, split roughly evenly between
matvecs with 𝑩 and 𝑩∗, plusO(𝑘2(𝑚+𝑛)) additional operations for QRs and SVDs.

Remark 2.6 (Counting subspace iteration steps). We have chosen to count the number
of steps of subspace iteration 𝑞 by the total numbers of matrix products with 𝑩 or 𝑩∗

required to form 𝛀. Be warned! Some authors use a different convention, counting
number of multiplications with 𝑩∗𝑩. ⋄

20

To gain intuition for why subspace iteration helps, consider an expansion 𝑩𝛀

analogous to (2.4):

𝑩𝛀 =

min(𝑚,𝑛)∑︁
𝑖=1

𝜎𝑖 (𝑩)𝑞+1𝒖𝑖 (𝒗∗𝑖 𝚪) for 𝑞 even.

We see that subspace iteration has the effect of powering the singular values, boosting
the gap between the “large” singular values𝜎1(𝑩), . . . , 𝜎𝑘 (𝑩) and the small singular
values 𝜎𝑖 (𝑩) for 𝑖 > 𝑘 . The name “subspace iteration” is derived from the power
iteration method, which computes the dominant eigenvector or singular vector of a
matrix by repeatedly multiplying by a matrix 𝑩 (and possibly its adjoint 𝑩∗). The
process (2.8) is referred to as subspace iteration because powering is performed on
a matrix rather than a single vector. In subspace iteration, the object of interest is
not really the powered matrix 𝛀 itself but the subspace range(𝛀).

Subspace iteration, even with a random initialization, is a classical approach in ma-
trix computations [Par98, Ch. 14]. The modern randomized algorithms literature
has sharpened our understanding of subspace iteration by providing sharp proba-
bilistic analysis and emphasizing the computational benefits of using a large block
size 𝑘 with a small number 𝑞 of subspace iteration steps.

The basic implementation of subspace iteration we’ve described can be numerically
unstable, as the powered matrix 𝛀 given by (2.8) can become singular up to numer-
ical precision. This issue can be addressed by using intermediate orthogonalization
during the powering process. That is, instead of using the plain iteration

𝛀← 𝑩∗(𝑩𝛀) repeated 𝑞/2 times,

as in Program 2.2, orthonormalize after each step:

𝛀← Orth(𝑩∗(𝑩𝛀)) repeated 𝑞/2 times.

(Being even more aggressive, one could even use the update rule 𝛀 ←
Orth(𝑩∗Orth(𝑩𝛀)).) In exact arithmetic, subspace iteration with and without
intermediate orthogonalization produce the same projection approximation as out-
put, in view of the invariance property Proposition 2.3(b). In floating-point arith-
metic, intermediate orthogonalization can significantly improve the quality of the
computed projection approximation.

Error bounds for randomized subspace iteration, analogous to Fact 2.5, are well-
established. See [HMT11; Gu15; TW23].

21

Remark 2.7 (Block Krylov iteration). An even more powerful type of projection
approximation is given by block Krylov iteration, where one uses the entire family
of powered approximations to define the test matrix 𝛀, i.e.,

𝛀 =

[
𝚪 (𝑩∗𝑩)𝚪 · · · (𝑩∗𝑩)𝑞/2𝚪

]
for 𝑞 even.

References on randomized block Krylov iteration include [RST10; MM15; TW23].
The weaker approximations produced by the randomized SVD, possibly with a few
steps of subspace iteration, will suffice for the purpose of this thesis. ⋄

2.5 Nyström approximation
To approximate a psd matrix 𝑨 ∈ K𝑛×𝑛, we have access to a more efficient class of
low-rank approximations known as Nyström approximations.

Definition 2.8 (Nyström approximation). Let 𝑨 ∈ K𝑛×𝑛 be a psd matrix, and let
𝛀 ∈ K𝑛×𝑘 be a test matrix. The Nyström approximation to 𝑨 is

𝑨 = 𝑨⟨𝛀⟩ = 𝑨𝛀(𝛀∗𝑨𝛀)†(𝑨𝛀)∗. (2.9)

Here, † is the Moore–Penrose pseudoinverse, which agrees with the ordinary inverse
for nonsingular matrices.

Observe that the only access to the matrix 𝑨 needed to compute the Nyström
approximation 𝑨⟨𝛀⟩ is the ability to form the single matrix product

𝒀 := 𝑨𝛀. (2.10)

From 𝒀 , the approximation 𝑨 may be assembled using the formula

𝑨 = 𝒀 (𝛀∗𝒀)†𝒀∗.

This “single-pass” property of the Nyström approximation is an advantage over
projection approximations, which require two passes over the matrix 𝑩 (one to
compute 𝑩𝛀, a second to compute 𝑸∗𝑩).

To motivate the form of the Nyström approximation (2.9), observe that any approx-
imation 𝑨 satisfying range(𝑨) = range(𝑨𝛀) must take the form

𝑨 = (𝑨𝛀)𝑴 (𝑨𝛀)∗.

The choice 𝑴 = (𝛀∗𝑨𝛀)† enforces that the matrix 𝑨 and the approximation 𝑨

agree when multiplied by 𝛀, 𝑨𝛀 = 𝑨𝛀. Indeed, provided 𝛀∗𝑨𝛀 is nonsingular,
𝑴 = (𝛀∗𝑨𝛀)† = (𝛀∗𝑨𝛀)−1 is the unique choice of 𝑴 satisfying this condition.

The randomized Nyström approximation enjoys many nice properties:

22

Proposition 2.9 (Properties of the Nyström approximtion). Let 𝑨 ∈ K𝑛×𝑛 be psd,
let 𝛀 ∈ K𝑛×𝑘 be a matrix, and consider the projection approximation 𝑨⟨𝛀⟩. Then

(a) Psd. The Nyström approximation 𝑨⟨𝛀⟩ and its residual 𝑨 − 𝑨⟨𝛀⟩ are psd.

(b) Invariance. The Nyström approximation is invariant under right multiplica-
tion of the test matrix 𝛀 by a nonsingular matrix 𝑻, 𝑨⟨𝛀𝑻⟩ = 𝑨⟨𝛀⟩. In
particular, 𝑨⟨𝛀⟩ is invariant to reordering of the columns of 𝛀.

(c) Monotonicity. The Nyström approximation is monotone increasing with re-
spect to the psd order under enlargement of the matrix 𝛀

𝑨 ⟨[𝛀 𝚪]⟩ ⪰ 𝑨⟨𝛀⟩.

Recall ⪰ denotes the psd order on Hermitian matrices. Consequently,

|||𝑨 − 𝑨 ⟨[𝛀 𝚪]⟩||| ≤ |||𝑨 − 𝑨⟨𝛀⟩|||

for any unitarily invariant norm |||·|||, such as the trace, Frobenius, or spectral
norms.

(d) Interpolatory. The matrix 𝑨 and its Nyström approximation 𝑨⟨𝛀⟩ have the
same action on 𝛀. That is, 𝑨 ·𝛀 = 𝑨⟨𝛀⟩ ·𝛀.

(e) Optimality. Among all Hermitian approximations 𝑴 satisfying range(𝑴) ⊆
range(𝑨𝛀) with a psd residual 𝑨−𝑴, the residual 𝑨− 𝑨⟨𝛀⟩ is the smallest
in the psd order:

𝑨 − 𝑨 ⪯ 𝑨 − 𝑴 .

Consequently, |||𝑨 − 𝑨⟨𝛀⟩||| ≤ |||𝑨 − 𝑴 ||| for all such 𝑴 and for any unitarily
invariant norm |||·|||.

These properties have all been used, implicitly or explicitly, throughout the literature.
The first four properties all have relatively straightforward proofs, and the last
property relies on variational properties of Schur complements [And05, Thm. 5.3];
see [Epp22a] for an exposition.

Remark 2.10 (Hermitian indefinite matrices). While it is most naturally justified
for psd matrices, the Nyström approximation can also be used to approximate any
Hermitian matrix 𝑨. A potential issue is that, for an indefinite matrix 𝑨 (i.e., a
matrix for which neither 𝑨 or −𝑨 is psd), the core matrix 𝛀∗𝑨𝛀 can be singular (or

23

nearly singular) even if the input matrix 𝑨 and test matrix 𝛀 are both full-rank. This
near-singularity issue can cause degradations in the accuracy of the approximation
𝑨⟨𝛀⟩ ≈ 𝑨. This issue is addressed by Nakatsukasa and Park [NP23], who suggest
oversampling by using a larger test matrix of size 𝛀 ∈ K𝑛×𝑐𝑘 , then regularizing the
Nyström approximation by truncating the small eigenvalues of the core matrix

𝑨 := 𝑨𝛀⟦𝛀∗𝑨𝛀⟧†
𝑘
(𝑨𝛀∗).

They suggest possible values 𝑐 = 1.5 and 𝑐 = 2. This strategy appears to resolve the
numerical issues of applying the ordinary, un-regularized Nyström approximation
to Hermitian indefinite matrices, though only partial theoretical explanation for the
success of this strategy is available [NP23, Thm. 3.1]. A disadvantage of this strategy
it increases the cost of computing a rank-𝑘 Nyström approximation to 𝑐𝑘 matvecs,
comparable to the cost of a randomized SVD (2𝑘 matvecs) or generalized Nyström
approximation (≈ 2.5𝑘 matvecs); both of these approximations 𝑩 ≈ 𝑨 are not
Hermitian by default, but can be made Hermitian by symmetrizing 𝑨 := (𝑩+𝑩∗)/2.
I believe there is more left to be understood about what the “right” algorithm is for
approximation of Hermitian indefinite matrices. ⋄

Choice of test matrix. Analogous to the randomized SVD, a simple way of invoking
the Nyström approximation is to choose 𝛀 to be a random matrix independent
from 𝑨 such as a standard Gaussian matrix. We will call this version of Nyström
approximation a single-pass Nyström approximation, since it requires only one pass
over the matrix to compute. Alternatively, one can use subspace iteration [RST10;
HMT11; Gu15]

𝛀 = 𝑨𝑞𝚪

or block Krylov iteration [RST10; MM15; TW23]

𝛀 =

[
𝚪 𝑨𝚪 · · · 𝑨𝑞𝚪

]
,

both of which require additional passes over the matrix. All of the warnings
about numerical stability and reorthogonalization from Section 2.4 remain in force
when randomized subspace iteration (or block Krylov iteration) is combined with
Nyström approximation. Part I of this thesis will explore a special class of Nyström
approximations where the matrix 𝛀 is a column submatrix of the identity matrix.

Stable implementation. Computing the Nyström approximation must be done with
care to ensure accurate results in floating-point arithmetic. Here, we present a

24

variant of the stable Nyström implementation developed in [TYUC17a] (based on
ideas introduced in [LLSS+17]). The idea is to compute a Nyström approximation

𝑨𝜇 := (𝑨 + 𝜇I)⟨𝛀⟩

of a shifted matrix 𝑨 + 𝜇I, where 𝜇 is a small shift parameter. Begin by computing
the matrix 𝒀 in (2.10), and define the shift

𝜇 := 𝑛−1/2∥𝒀 ∥F𝑢. (2.11a)

Here, 𝑢 denotes the unit roundoff, of size 𝑢 ≈ 10−16 in double-precision arithmetic.
The shift (2.11a) differs from the one proposed in [TYUC17a] and was introduced
in [ETW24] to obtain a stable shift of the minimum possible size while avoiding
computing the spectral norm of 𝒀 . Now, apply the shift to 𝒀 , obtaining

𝒀𝜇 := 𝒀 + 𝜈𝛀, (2.11b)

and form the matrix
𝑯 := 𝛀∗𝒀𝜇 . (2.11c)

Next, compute a Cholesky decomposition

𝑯 = 𝑹∗𝑹 (2.11d)

and use triangular substitution to form

𝑭 := 𝒀𝑹−1. (2.11e)

The factor matrix 𝑭 gives rise to the shifted Nyström approximation 𝑨𝜇 = 𝑭𝑭∗.
Code is provided in Program 2.3. In order to reuse this code later in the thesis, we
have written it to use a matrix 𝛀 ∼ Unif{±1}𝑛×𝑘 of random ±1 values and to return
the shift 𝜇, test matrix 𝛀, and Cholesky factor 𝑹 as optional outputs.

For many purposes, the shifted Nyström approximation 𝑨𝜇 = 𝑭𝑭∗ is a perfectly
good substitute for the unshifted approximation 𝑨, as the shift parameter 𝜇 is
tiny—on the order of the unit roundoff. To achieve the most accurate results,
however, we can attempt to correct for the shift. For some problems, we will have
means to correct the shift “exactly”; see Section 14.6 for an example of such a
scenario. Alternately, we can upgrade the outer product representation 𝑨𝜇 = 𝑭𝑭∗

to an eigendecomposition representation 𝑨𝜇 = 𝑼𝑫𝜇𝑼
∗ via economy-size SVD

𝑭 = 𝑼𝚺𝑽∗ with 𝑫𝜇 := 𝚺2. Then, define the shift-corrected Nyström approximation

𝑨SC = 𝑼𝑫𝑼∗ for 𝑫 = max{𝑫𝜇 − 𝜇I, 0}.

25

Program 2.3 nystrom.m. Stable implementation of the single-pass Nyström ap-
proximation. Low-rank approximation is outputted in the form 𝑭𝑭∗ and computed
using shifting. The random_signs subroutine is defined in Program F.2.
function [F,mu,Om,R] = nystrom(A,n,k)
% Input: Function A() computing matrix products A(X) = A*X, number
% of rows n, rank k
% Output: Shifted Nystrom approximation Ahat = F*F’ represented by
% factor F, shift mu, test matrix Om, triangular factor R

Om = random_signs(n,k); % Test matrix of random signs
Y = A(Om); % Matrix product Y = A*Om
mu = eps*norm(Y,"fro")/sqrt(n); % Compute shift
Y = Y + mu * Om; % Apply shift to Y
H = Om’*Y;
R = chol(H);
F = Y/R; % Triangular substitution

end

Program 2.4 nystrom_shiftcor.m. Stable implementation of the single-pass
Nyström approximation 𝑼𝑫𝑼∗ using shift correction. The nystrom subroutine is
defined in Program 2.3.
function [U,D] = nystrom_shiftcor(A,n,k)
% Input: Function A() computing matrix products A(X) = A*X, number
% of rows n, rank k
% Output: Shift-corrected Nystrom approximation Ahat = U*D*U’,
% represented by orthonormal factor U and nonnegative
% diagonal factor D

[F,mu] = nystrom(A,n,k); % Compute (shifted) Nystrom approximation
[U,S,~] = svd(F,"econ"); % Economy-size SVD
D = max(S.^2 - mu, 0); % Apply shift correction

end

The maximum is taken entrywise. The shift-corrected Nyström approximation 𝑨SC

is not exactly equal to the original Nyström approximation 𝑨, but it is typically
more accurate then the uncorrected approximation 𝑨𝜇. Code for the shift-corrected
Nyström approximation (with a standard Gaussian test matrix 𝛀) is provided in
Program 2.4.

Nyström versus projection approximation. Measured using the Frobenius norm, the
projection approximation 𝚷𝑨𝛀𝑨 is more accurate than the Nyström approximation

26

𝑨⟨𝛀⟩,
∥𝑨 −𝚷𝑨𝛀𝑨∥F ≤ ∥𝑨 − 𝑨⟨𝛀⟩∥F. (2.12)

This conclusion follows from the optimality property Proposition 2.3(d) of the pro-
jection approximations. However, this comparison is not really a fair one since the
Nyström approximation 𝑨⟨𝛀⟩ can be computed using 𝑘 matvecs and a single pass
over the matrix, whereas the projection approximation 𝚷𝑨𝛀𝑨 requires 2𝑘 matvecs
and two passes. Therefore, the fair comparison is between the projection approx-
imation 𝚷𝑨𝛀𝑨 and Nyström approximation computed with one step of subspace
iteration 𝑨⟨𝑨𝛀⟩. In this case, a result of Tropp and Webber [TW23, Lem. 5.2]
ensures the Nyström approximation is always more accurate:

|||𝑨 − 𝑨⟨𝑨𝛀⟩||| ≤ |||𝑨 −𝚷𝑨𝛀𝑨||| (2.13)

for any unitarily invariant norm.

Error analysis. Analogous to Fact 2.5, we have error bounds for the single-pass
Nyström approximation [TW23, Cor. 8.8]:

Fact 2.11 (Single-pass Nyström error analysis). Let 𝛀 ∈ R𝑛×𝑘 be populated with
independent (real) standard Gaussian entries, and let 𝑨 denote the single-pass
Nyström approximation with test matrix 𝛀. Then

E∥𝑨 − 𝑨∥∗ ≤ min
𝑟≤𝑘−2

𝑘 − 1
𝑘 − 𝑟 − 1

𝑨 − ⟦𝑨⟧𝑟

∗, (2.14)(
E∥𝑨 − 𝑨∥2F

)1/2
≤ min
𝑟≤𝑘−4

𝑘 − 2
𝑘 − 𝑟 − 1

(

𝑨 − ⟦𝑨⟧𝑟

F +

𝑨 − ⟦𝑨⟧𝑟

∗√

𝑘 − 𝑟

)
, (2.15)

(
E∥𝑨 − 𝑨∥2

)1/2
≤ min
𝑟≤𝑘−4

𝑘 + 𝑟 − 1
𝑘 − 𝑟 − 3

(

𝑨 − ⟦𝑨⟧𝑟

 + √3e2

𝑘 − 𝑟

𝑨 − ⟦𝑨⟧𝑟

∗) . (2.16)

With these error bounds, we can again consider the question: Which is more
accurate, the randomized SVD (a projection approximation) or the single-pass ran-
domized Nyström approximation? Recall that the error of the randomized SVD,
measured in both the Frobenius and spectral norms, depends on the Frobenius
norm of the best rank-𝑟 approximation (2.7). By contrast, the error of the single-
pass Nyström approximation—measured in either the trace, Frobenius, or spectral
norm—depends on the trace norm of the best rank-𝑟 approximation

𝑨 − ⟦𝑨⟧𝑟

∗ = 𝑛∑︁

𝑖=𝑟+1
𝜆𝑖 (𝑨).

27

The trace norm is always larger than the Frobenius norm. Therefore, when single-
pass Nyström approximation and the randomized SVD are both used to produce
a rank-𝑘 approximation to a psd matrix 𝑨, the randomized SVD is usually more
accurate. However, measured in matvecs, randomized Nyström approximation (𝑘
matvecs) is cheaper than the randomized SVD (2𝑘 matvecs). Thus, for a fixed budget
of 𝑠 matvecs, one can either compute a rank-𝑠 randomized Nyström approximation
or a rank-(𝑠/2) randomized SVD; because of the higher approximation rank, the
former is often preferable to the latter. The consequences of this comparison will
be explored in Part II of this thesis.

2.6 The Gram correspondence
The Gram correspondence is a powerful fact that links projection approximations
and Nyström approximations.

Theorem 2.12 (Gram correspondence). Let 𝑨 ∈ K𝑛×𝑛 be a psd matrix, and let
𝑩 ∈ K𝑚×𝑛 be any matrix for which 𝑨 = 𝑩∗𝑩. For a given test matrix 𝛀 ∈ K𝑛×𝑘 ,
instantiate the projection approximation 𝑩 := 𝚷𝑩𝛀𝑩 and Nyström approximation
𝑨 := 𝑨⟨𝛀⟩. These approximations are related 𝑨 = 𝑩∗𝑩.

Proof. Since 𝑨 = 𝑩∗𝑩, the Nyström approximation is

𝑨𝛀 = 𝑩∗ [(𝑩𝛀) ((𝑩𝛀)∗(𝑩𝛀))†(𝑩𝛀)∗]𝑩

Observe that the bracketed matrix is a formula for the projector 𝚷𝑩𝛀, which equals
its square. Therefore,

𝑨𝛀 = 𝑩∗𝚷2
𝑩𝛀𝑩 = (𝚷𝑩𝛀𝑩)∗(𝚷𝑩𝛀𝑩) = 𝑩∗𝑩.

We have obtained the advertised conclusion.

The Gram correspondence has an interesting history, which we will describe later
in this section. Early references in the randomized matrix computations literature
include [BW09a; Git11].

The Gram correspondence can be stated more concisely by using the following
definitions.

Definition 2.13 (Gram matrix and Gram square root). Let 𝑨 ∈ K𝑛×𝑛 be a psd
matrix. Any matrix 𝑩 ∈ K𝑚×𝑛 for which 𝑩∗𝑩 = 𝑨 is called a Gram square root of
𝑨. Similarly, the matrix 𝑨 = 𝑩∗𝑩 is called the Gram matrix of 𝑩.

28

The Gram matrix, 𝑨 = 𝑩∗𝑩 = (𝒃∗𝑖 𝒃 𝑗)1≤𝑖, 𝑗≤𝑛, named after Jørgen Pedersen Gram
of Gram–Schmidt fame, tabulates the pairwise inner products of a matrix 𝑩. Every
psd matrix 𝑨 has many Gram square roots, including the output 𝑹 of a (pivoted)
Cholesky factorization and the positive-semidefinite matrix square root 𝑨1/2.

Using Definition 2.13, the Gram correspondence may be rewritten:

Gram correspondence (rephrased). If 𝑩 is a Gram square root of 𝑨, the
projection approximation 𝑩 := 𝚷𝑩𝛀𝑩 is a Gram square root of the Nyström
approximation 𝑨 := 𝑨⟨𝛀⟩. (Just as well, the Nyström approximation 𝑨 is
the Gram matrix of the projection approximation 𝑩.)

Several important observations are special cases of the Gram correspondence, in-
cluding the equivalence of single-pass Nyström approximation and the randomized
SVD and the equivalence of column-pivoted QR and Cholesky decompositions.
The latter equivalence will play an important role in Part I of this thesis.

The Gram correspondence has important implications for algorithm design. At a
high-level, the principle is as follows:

Gram correspondence: Transference of algorithms. Every algorithm
producing a projection approximation to a general matrix should have an
analogous algorithm that produces a Nyström approximation to a psd matrix.

An elementary example of a pair of algorithms are the randomized SVD for approx-
imating a general matrix and the single-pass Nyström approximation for approxi-
mating a psd matrix. More sophisticated examples of this principle will be explored
in Part I of thesis, most particularly in Chapter 9.

The Gram correspondence also has a consequence for error analysis of algorithms:

Corollary 2.14 (Gram correspondence: Transference of error bounds). Let 𝑩 ∈
K𝑚×𝑛 be a Gram square root of a psd matrix 𝑨 ∈ K𝑛×𝑛, and fix a test matrix
𝛀 ∈ K𝑛×𝑘 . Then the errors for the Nyström approximation 𝑨 = 𝑨⟨𝛀⟩ and projection
approximation 𝑩 = 𝚷𝑩𝛀𝑩 are related: For any 𝑝 ≥ 1, we have

∥𝑨 − 𝑨∥S𝑝
= ∥𝑩 − 𝑩∥2S2𝑝

. (2.17)

Here, ∥·∥S𝑝
denotes the Schatten 𝑝-norm, of which the trace, Frobenius, and spectral

norms are the special cases 𝑝 = 1, 𝑝 = 2, and 𝑝 = ∞. The special cases 𝑝 = 1 and

29

𝑝 = ∞ in (2.17) yield the useful relations

∥𝑨 − 𝑨∥∗ = tr(𝑨 − 𝑨) = ∥𝑩 − 𝑩∥2F,
∥𝑨 − 𝑨∥ = ∥𝑩 − 𝑩∥2.

Proof. By the columnwise orthogonality property Proposition 2.3(a),

(𝑩 − 𝑩)∗(𝑩 − 𝑩) = 𝑩∗𝑩 − 𝑩∗𝑩 = 𝑨 − 𝑨.

Take Schatten 𝑝-norms of both sides, and invoke the identity ∥𝑪∗𝑪∥S𝑝
= ∥𝑪∥2S2𝑝

to obtain (2.17).

This for any given (random) test matrix 𝛀, one only has to analyze the error
∥𝑩 −𝚷𝑩𝛀∥S2𝑝 or ∥𝑨 − 𝑨⟨𝛀⟩∥S𝑝

once, with a bound on the other quantity coming
for free. We will use fact several times in this thesis. As an example we have already
seen, the pair of bounds (2.5) and (2.14) can be derived from each other in this way.

Remark 2.15 (History). The Gram correspondence is implicit in much of the lit-
erature on low-rank approximation and pivoted matrix decompositions [Hig90;
BW09a; Git11; GS12; GM13; MW17; TW23; PBK25]. The equivalence between
Cholesky and QR decompositions, a consequence of the Gram correspondence, is
classical [Hig90]. Transferring algorithms and analysis between a matrix 𝑩 and
its Gram matrix 𝑨 = 𝑩∗𝑩 has been a standard technique for column-based ma-
trix decompositions and approximations over many years [Hig90; BW09a; GS12;
CK24]; see Chapter 9 for examples and discussion. A version of the Gram cor-
respondence for the particular Gram square root 𝑩 := 𝑨1/2 appears in works of
Gittens [Git11; GM13] starting in 2011, and this analytical approach is used to ob-
tain sharp bounds for single-pass Nyström approximations in [TYUC17a]. Musco
and Woodruff [MW17] provide a clear statement of the transference of algorithms
principle. Some aspects of the Gram correspondence are highlighted by Dereziński,
Khanna, and Mahoney in [DKM20, Rem. 2], who draw attention to algorithmic
implications in the work of Belabbas and Wolfe [BW09a]. The connection between
the randomized SVD and randomized Nyström approximation has been used in a
very explicit and direct way in recent papers [TW23; PBK25]. In an effort to make
Theorem 2.12 and its consequences known beyond the community of experts famil-
iar with it, I described the principle in a general way and suggested the name Gram
correspondence in the blog post [Epp24c]. ⋄

Part I

Random pivoting

Dedicated to my fiancée Sierra, our dogs Hulk and Finn, and our turtle Shelly.

30

31

C h a p t e r 3

LOW-RANK APPROXIMATION OF PSD MATRICES

Symmetric positive definiteness is one of the highest accolades to which
a matrix can aspire.

Nicholas J. Higham, Accuracy and Stability of Numerical Algorithms
[Hig02, §10.1]

The first part of this thesis will largely be concerned with the low-rank approximation
of psd matrices, though we will return to general matrices in Chapters 9 and 10. We
will focus on a very limited model of computation where we only have access to a
small number of entries of the input matrix 𝑨 ∈ K𝑛×𝑛. The main algorithm of this
part of the thesis will be randomly pivoted Cholesky, which produces near-optimal
rank-𝑘 approximations to a psd matrix after reading only (𝑘 + 1)𝑛 entries. Our main
application for psd low-rank approximation will involve efficient computations with
kernel matrices and covariance matrices of Gaussian processes. These matrices are
the core objects in a wide class of machine learning algorithms; see Chapter 5 for
an introduction to kernel and Gaussian methods in machine learning.

Sources. This chapter largely serves to introduce the psd low-rank approximation
problem and summarize the existing literature. It is a significantly extended version
of the literature survey from the following paper:

Yifan Chen, Ethan N. Epperly, Joel A. Tropp, and Robert J. Webber. “Randomly
Pivoted Cholesky: Practical Approximation of a Kernel Matrix with Few Entry
Evaluations”. In: Communications on Pure and Applied Mathematics 78.5 (2025),
pp. 995–1041. doi: 10.1002/cpa.22234.

Outline. Sections 3.1 and 3.2 discuss the entry access model for matrix computa-
tions and the positive-semidefinite low-rank approximation problem. Section 3.3
introduces pivoted partial Cholesky decompositions and shows how they can be
used to compute low-rank approximations to psd matrices; the outputs of pivoted
partial Cholesky decompositions are called column Nyström approximations, which
are discussed in Section 3.4. Section 3.5 describes subset selection problems in ma-
chine learning and computational mathematics and relates them to the psd low-rank

https://doi.org/10.1002/cpa.22234

32

approximation task. Section 3.6 describes a connection between Cholesky decom-
position, Nyström approximation, and Gaussian random variables. Section 3.7
concludes with a discussion of sampling methods for psd low-rank approximation,
which are some of the main alternatives to the randomly pivoted Cholesky method.

3.1 The entry access model
In computational linear algebra, we usually work with matrices stored directly in
memory, with all of the matrix entries immediately available to us to perform
whatever operations we so choose. There are also computational settings where we
have much more limited access to the matrix, introducing constraints on algorithm
design that must be accommodated. The first part of this thesis will work in one
such limited framework, the entry access model.

Entry access model. We are given a matrix 𝑩 ∈ K𝑚×𝑛 that may be accessed
by requesting individual entries 𝑏𝑖 𝑗 . The (dominant) cost of an algorithm is
the total number of entries accessed.

The Part II of this thesis works in a different computational model, the matvec model,
which is a natural model for other types of computational linear algebra problems.

The following definition provides a natural example of a matrix for which the entry
access model is appropriate:

Definition 3.1 (Function matrix). Let D ⊆ X and E ⊆ Y be finite subsets of base
sets X and Y, and let 𝜉 : X × Y → K be a bivariate function. The function matrix
associated with this data is 𝑩 = 𝜉 (D,E) := (𝜉 (𝑥, 𝑦) : 𝑥 ∈ D, 𝑦 ∈ E) ∈ KD×E.

A function matrix 𝑩 is described implicitly by the elements 𝑥 ∈ D, 𝑦 ∈ E and the
function 𝜉. Accessing each entry of 𝑩 requires computing the function 𝜉 (𝑥, 𝑦). In
particular, reading all entries of 𝑩 requires |D|·|E| function evaluations, much greater
than the number |D| + |E| of input elements D ∪ E. Function matrices, and slight
variations thereof, occur in discretizations of integral operators in computational
physics [SS11] and in the design of fast algorithms for classical structured matrices
[CGSX+08; Wil21].

The main motivating example for this part of the thesis will be kernel matrices, a
subclass of function matrices.

33

Definition 3.2 (Kernel function and matrix). Let X be a set. A function 𝜅 : X×X→
K is said to be a (positive definite) kernel function if the kernel matrix 𝑨 := 𝜅(D,D)
is psd for every finite subset D ⊆ X.

Kernel functions and kernel matrices are flexible tools that can be used to design
algorithms for learning from data, and they also appear in the theory of Gaussian
processes. See Chapter 5 for examples of kernel functions and an introduction to
kernel and Gaussian process methods in machine learning.

Like other function matrices, an 𝑛×𝑛 kernel matrix 𝑨 is defined by a dataset D, say,
of size |D| = 𝑛, but generating all of the entries of 𝑨 requires 𝑛 × 𝑛 = 𝑛2 function
evaluations. Particularly when the base space X = K𝑑 is a Euclidean space of large
dimension 𝑑 ≫ 1, each entry evaluation of 𝑨 is expensive, which motivates the
search for algorithms for psd low-rank approximation that require a small number
of entry evaluations.

Even for the examples we have seen so far, function matrices and kernel matrices,
the entry access model might not be the most appropriate abstraction for algorithm
design; see Section 8.1 for a discussion of an alternative model for these use cases.

Low-rank approximation in the entry access model
On its face, it may seem impossible to accurately approximate a matrix from a
limited number of entry accesses, at least without prior information. In general, this
intuition is correct:

Proposition 3.3 (Impossibility of general matrix approximation from entry ac-
cesses). Let |||·||| denote either the spectral, Frobenius or trace norms (or, indeed,
any unitarily invariant matrix norm). Consider an algorithm that queries an input
matrix 𝑩 in 𝑡 positions and outputs an approximation 𝑩 to 𝑩. Any such algorithm
applied to a matrix 𝑩 with a single nonzero entry in a random position must produce
an approximation of high relative error

|||𝑩 − 𝑩 |||
|||𝑩 ||| ≥ 1

2
(3.1)

with probability at least 1 − 𝑡/𝑚𝑛 − 1/(𝑚𝑛 − 𝑡). In particular, even querying half
of the matrix entries (𝑡 = 𝑚𝑛/2) still produces a poor approximation (3.1) with
probability at least 1/2 − 2/𝑚𝑛.

This result establishes that even an algorithm that reads a large fraction of a general
matrix 𝑩’s entries (say, half), still is prone to producing an approximation of high

34

error for some inputs. The failure mode is intuitive; if a single large entry is
placed in 𝑩 at a random position, no algorithm can be guaranteed to find it without
exhuming a large number of entries. This observation dates back to the earliest days
of randomized matrix approximation [FKV98].

Proof of Proposition 3.3. Let 𝑩 ∈ {0, 1}𝑚×𝑛 be a random matrix constructed by
placing a single nonzero entry in a uniformly random position,

𝑩 = e𝑖★e∗𝑗★ for 𝑖★ ∼ Unif{1, . . . , 𝑚}, 𝑗★ ∼ Unif{1, . . . , 𝑛}.

Without loss of generality, we take this nonzero entry to have value 1. Consider any
deterministic algorithm which queries this matrix 𝑩 at 𝑡 adaptively chosen positions
(𝑖1, 𝑗1), . . . , (𝑖𝑡 , 𝑗𝑡). Except with probability 𝑡/𝑚𝑛, the algorithm only queries entries
with value 0. Conditional on the locations, 𝑩 is equally likely to be any matrix in the
collection C := {e

𝑖
e∗
𝑗

: (𝑖, 𝑗) ∉ P}. For the output 𝑩 of the algorithm, at most one
point in C is within distance (1/2) |||𝑩 ||| of 𝑩. Therefore, except with probability
1/(𝑚𝑛 − 𝑡), |||𝑩 − 𝑩 |||/|||𝑩 ||| ≥ 1/2.

Remarkably, the psd low-rank approximation problem is much better behaved in the
entry access model than the general low-rank approximation problem, and we will
see several examples in this thesis of algorithms that produce near-optimal low-rank
approximations to a psd matrix while reading a fraction its entries.

The main structural property that makes psd low-rank approximation feasible in the
entry access model is the off-diagonal inequality [HJ12, 7.1.P1]:

Fact 3.4 (Off-diagonal inequality). Let 𝑨 ∈ K𝑛×𝑛 be a psd matrix, and let 1 ≤ 𝑖, 𝑗 ≤
𝑛 be indices. Then the magnitude |𝑎𝑖 𝑗 | of the off-diagonal entry is bounded by the
geometric mean of the diagonal entries:

|𝑎𝑖 𝑗 | ≤ 𝑎1/2
𝑖𝑖
· 𝑎1/2

𝑗 𝑗
≤ max(𝑎𝑖𝑖, 𝑎 𝑗 𝑗).

In particular, the largest entry of a psd matrix must occur on its diagonal.

Proof. The proof is standard and beautiful. Since 𝑨 is psd, the principal submatrix

𝑨({𝑖, 𝑗}, {𝑖, 𝑗}) =
[
𝑎𝑖𝑖 𝑎𝑖 𝑗

𝑎𝑖 𝑗 𝑎 𝑗 𝑗

]
is psd as well.

Therefore, the determinant det 𝑨({𝑖, 𝑗}, {𝑖, 𝑗}) = 𝑎𝑖𝑖𝑎 𝑗 𝑗 − |𝑎𝑖 𝑗 |2 ≥ 0 is nonnegative.
Rearrange to obtain the stated conclusion.

35

The off-diagonal inequality shows that large entries cannot “hide” in a psd matrix.
By generating the 𝑛 entries of the diagonal, one obtains a “heat map” of all possible
places a large entry of 𝑨 can lie. In particular, large entries of 𝑨 can only exist in
columns of 𝒂𝑖 containing a large diagonal entry 𝑎𝑖𝑖 ≫ 0. This observation suggests a
strategy for psd low-rank approximation: Extract columns of 𝑨 with large diagonal
entries. This strategy forms the basis for the most effective methods for psd low-rank
approximation in the entry access model.

Remark 3.5 (Algorithms for general low-rank approximation from entry accesses).
The impossibility result Proposition 3.3 has not stopped research into algorithms
for low-rank approximation of non-psd matrices that use a small number of entry
accesses. In order to approximate a general matrix from a small number of entry
accesses, one needs either additional information (such as the location of large
entries, the norms of columns, etc.) or additional assumptions (such as incoher-
ence, the property that the information in the matrix is “evenly spread across the
rows/columns”). Discussion of such methods is beyond the scope of this thesis; see
[CD13; CY25] for more information. ⋄

3.2 The psd low-rank approximation problem
This thesis will consider the following version of the psd low-rank approximation:

Psd low-rank approximation problem (entry access model): Given a psd
matrix 𝑨 ∈ K𝑛×𝑛 and a target rank 𝑘 ≥ 1, compute the description of a
nearly optimal rank-𝑘 psd approximation 𝑨 to 𝑨.

This problem statement contains embedded in it two phrases that require elaboration:
“the description” and “nearly optimal”. Let us begin with the former. For most of
this thesis, “the description” of a psd rank-𝑘 approximation 𝑨 = 𝑭𝑭∗ will be
provided by a factor matrix 𝑭 ∈ K𝑛×𝑘 . Our approximations will be randomized, so
𝑨 will be a random matrix.

To substantiate the phrase “nearly optimal”, we employ the following definition:

Definition 3.6 ((𝑟, 𝜀, 𝑝)-approximation). Let 𝑩 ∈ K𝑚×𝑛 be a matrix, let 1 ≤ 𝑟 ≤
min(𝑚, 𝑛) be an integer, and 𝑝 ≥ 1 and 𝜀 ≥ 0 be real numbers. An (𝑟, 𝜀, 𝑝)-
approximation is a random matrix 𝑩 for which

E∥𝑩 − 𝑩∥S𝑝
≤ (1 + 𝜀)

𝑩 − ⟦𝑩⟧𝑟

S𝑝
. (3.2)

36

Here, ∥𝑪∥S𝑝
:= (∑𝑖 𝜎𝑖 (𝑪)𝑝)1/𝑝 denotes the Schatten 𝑝-norm. If 𝑝 = 1, we suppress

the dependence on 𝑝 and refer to simply an (𝑟, 𝜀)-approximation.

This definition motivates the question “for a particular algorithm, for what value
of 𝑘 can we guarantee it produces an (𝑟, 𝜀)-approximation?” As we will see, the
algorithms we consider will achieve a nearly optimal dependence of 𝑘 on 𝑟 and 𝜀
in a precise sense outlined below in Fact 3.11. This will be the sense in which the
algorithms considered by this thesis will be “near-optimal”.

Let us now speak to the choice of 𝑝 = 1 in the definition of an (𝑟, 𝜀)-approximation.
First let us note that the problem of computing an (𝑟, 𝜀, 𝑝) becomes more difficult as
𝑝 becomes larger. As a simple example, consider an 𝑛 × 𝑛 matrix with eigenvalues
10 and 1, the latter with multiplicity 𝑛− 1. For this matrix, even the zero matrix is a
near-optimal rank-1 approximation for 𝑝 = 1 in the sense that it is a (1,O(1/𝑛), 1)-
approximation; even the most trivial approximation, the zero matrix, obtains an
accuracy parameter 𝜀 vanishing in the limit 𝑛 → ∞. However, for 𝑝 = ∞, the zero
matrix is merely a (1, 9,∞) approximation, and we must work harder to obtain a
small accuracy parameter 𝜀.

The example above demonstrates that the psd low-rank approximation problem gets
harder as 𝑝 gets larger, but why 𝑝 = 1 specifically? Why not 𝑝 = 2 or 𝑝 = 4? These
questions will be explored later in the thesis, most particularly in Section 11.2. For
now, let us just mention one reason why working with 𝑝 = 1 is convenient. Recall
that many of the most effective algorithms for psd low-rank approximation output a
Nyström low-rank approximation 𝑨; see Definition 2.8. For such an approximation,
Proposition 2.9(a) ensures that 0 ⪯ 𝑨 ⪯ 𝑨, so the Schatten 1-norm and trace of the
residual matrix 𝑨 − 𝑨 coincide:

∥𝑨 − 𝑨∥S1 = ∥𝑨 − 𝑨∥∗ = tr(𝑨 − 𝑨).

Thus, for a Nyström approximation 𝑨, the (𝑟, 𝜀)-approximation condition (3.2) can
be written as

E tr(𝑨 − 𝑨) ≤ (1 + 𝜀) tr(𝑨 − ⟦𝑨⟧𝑟).

The trace is a linear functional, which will be very useful during algorithm analysis.

Remark 3.7 (High probability bounds). Another standard way of analyzing psd low-
rank approximations is to define an (𝑟, 𝜀, 𝑝) approximation with failure probability

37

𝛿 as a random matrix 𝑩 ≈ 𝑩 for which

∥𝑩 − 𝑩∥S𝑝
≤ (1 + 𝜀)

𝑩 − ⟦𝑩⟧𝑟

S𝑝
with probability at least 1 − 𝛿. (3.3)

In a sense, the high probability guarantee (3.3) is stronger than the expectation
guarantee (3.2), though the guarantees are formally incomparable. For the purposes
of this thesis, we will consider an algorithm to be theoretically supported if it admits
either type of guarantee. ⋄

3.3 Pivoted partial Cholesky decompositions
A classical approach in computational linear algebra for computing low-rank approx-
imations of a matrix is partial matrix decomposition. A partial matrix decomposition
refers to any standard matrix decomposition (QR, Cholesky, SVD) where rows or
columns of the factor matrices have been deleted or simply not computed at all. The
most famous example of low-rank approximation by partial matrix decomposition is
furnished by the Schmidt–Mirsky–Eckart–Young theorem (Fact 2.1), which states
that partial singular value decompositions yield optimal low-rank approximations.

For efficient psd low-rank matrix approximation, we use a partial version of a dif-
ferent matrix decomposition, the Cholesky decomposition. The Cholesky decom-
position of a psd matrix 𝑨 represents the matrix as a product 𝑨 = 𝑳𝑳∗ of a lower
triangular matrix 𝑳 and its adjoint. The Cholesky decomposition is sometimes writ-
ten 𝑨 = 𝑹∗𝑹 using an upper triangular matrix 𝑹. The two conventions are easily
inter-converted, 𝑹 = 𝑳∗. By truncating the Cholesky decomposition to just the first
𝑘 columns, we obtain a rank-𝑘 approximation 𝑨(𝑘) := 𝑳(:, 1 : 𝑘)𝑳(:, 1 : 𝑘)∗ ≈ 𝑨.
The factored approximation 𝑨(𝑘) = 𝑳(:, 1 : 𝑘)𝑳(:, 1 : 𝑘)∗ is known as a partial
Cholesky decomposition of 𝑨.

We compute the Cholesky decomposition by Gaussian elimination. To describe
the algorithm, let 𝑨(𝑖) denote the approximation produced at step 𝑖, and let 𝑨(𝑖) :=
𝑨 − 𝑨(𝑖) denote the residual. The entries of 𝑨(𝑖) are 𝑨(𝑖) (𝑗 , 𝑘) = 𝑎 (𝑖)

𝑗 𝑘
. Under this

convention, 𝑨(0) := 𝑨 denotes the initial matrix. The procedure goes as follows:
For 𝑖 = 1, . . . , 𝑛,

1. Rescale. Extract the 𝑖th column 𝒂 (𝑖−1)
𝑖

of 𝑨(𝑖−1) and rescale

ℓ𝑖 := 𝒂 (𝑖−1)
𝑖
/(𝑎 (𝑖−1)

𝑖𝑖
)1/2.

The vectors ℓ𝑖 comprise the columns of the lower triangular matrix 𝑳.

38

2. Eliminate. Update the residual 𝑨(𝑖) := 𝑨(𝑖−1) − ℓ𝑖ℓ∗𝑖 . This step has the effect
of zeroing out the matrix in the 𝑖th row and column.

The procedure succeeds provided all of the diagonal entries 𝑎 (𝑖−1)
𝑖𝑖

encountered
during factorization are nonzero. Since the procedure zeros out the 𝑖th row and
column of the matrix at every iteration, and the update rule does not introduce
nonzero entries into previously nonzero rows. The procedure terminates with a
decomposition 𝑨 = 𝑳𝑳∗.

Pivoting, in general
As a method of low-rank approximation, the standard partial Cholesky decompo-
sition can be ineffective, as it always forms an approximation based on the first 𝑘
columns. The procedure can be modified to eliminate the columns in a general
order. The resulting procedure is called a pivoted Cholesky decomposition, and the
positions 𝑠𝑖 ∈ {1, . . . , 𝑛} that are eliminated at each step 𝑖 are called pivot indices.
Concretely, beginning from 𝑨(0) = 0, do the following for 𝑖 = 1, . . . , 𝑛:

1. Select a pivot. Choose a pivot index 𝑠𝑖 ∈ {1, . . . , 𝑛} associated with a nonzero
pivot entry 𝑎 (𝑖−1)

𝑠𝑖𝑠𝑖 ≠ 0.

2. Rescale. Extract and rescale the pivot column

ℓ𝑖 := 𝒂 (𝑖−1)
𝑠𝑖 /(𝑎 (𝑖−1)

𝑠𝑖𝑠𝑖)
1/2.

3. Eliminate. Update the residual 𝑨(𝑖) := 𝑨(𝑖−1) − ℓ𝑖ℓ∗𝑖 . This step has the effect
of zeroing out the matrix in the 𝑠𝑖th row and column.

The ordered list of pivots S = {𝑠1, . . . , 𝑠𝑛} gives rise to a reordering of the rows
and columns of the matrix 𝑨. The matrix 𝑳 produced by this procedure is typically
not triangular, but it becomes lower triangular after rearranging its rows 𝑳(S, :)
according to S. The reordered factor matrix 𝑳(S, :) is the traditional Cholesky
factor of the symmetrically reordered psd matrix 𝑨(S,S). As with the standard
Cholesky decomposition, pivoted partial Cholesky decompositions yield low-rank
approximations of the matrix, i.e., 𝑨 = 𝑭𝑭∗ for 𝑭 = 𝑳(:, 1 : 𝑘).

To make pivoted partial Cholesky decomposition an effective method for low-rank
approximation in the entry access model, we make a final optimization. The standard
Cholesky procedure overwrites the entire residual matrix at every step, at a cost of

39

Program 3.1 pivpartchol.m. Pivoted partial Cholesky for computing a low-rank
approximation to a psd matrix.
function F = pivpartchol(Acol,n,s)
% Input: Function Acol for producing columns Acol(i) = A(:,i) of A,
% size n of A, list s = [s(1) ... s(k)] of k pivots to
% eliminate
% Output: Factor F defining a rank-k approximation Ahat = F*F’

F = zeros(n,length(s)); % To store output
for i = 1:length(s)

ai = Acol(s(i)) - F(:,1:i-1)*F(i,1:i-1)’; % ith col of A - F*F’
F(:,i) = ai / sqrt(ai(s(i))); % Rescale

end

end

O(𝑛2) operations. But this is wasteful, as we only ever need to evaluate the residual
in the selected pivot columns. As a more efficient procedure, we avoid updating the
residual explicitly, instead generating columns of 𝑨(𝑖) as-needed using the formula
𝑨(𝑖) = 𝑨 − 𝑨(𝑖) , where 𝑨(𝑖) denotes the low-rank approximation produced at step 𝑖.

Code for this optimized version of the pivoted partial Cholesky decomposition
appears as Program 3.1. As with other programs in this part of the thesis, this
code interacts with the matriz 𝑨 through a function Acol, defined so that Acol(i)
outputs the 𝑖th column 𝒂𝑖.

Greedy pivoting
The pivoted partial Cholesky decomposition gives us a general procedure for solving
psd low-rank approximation problems in the entry access model. But how should
we pick the pivots? The main algorithm of this part of the thesis, randomly pivoted
Cholesky, uses a randomized rule for pivot selection. Before getting to this method
in Chapter 4, we review a more classical approach: greedy pivoting (also known as
diagonal or complete pivoting) [Hig90; FS01].

The idea of greedy pivoting follows from our discussion in Section 3.1; large entries
of the matrix can only lie in columns of the matrix with large diagonal entries. This
observation suggests a greedy approach: Always choose a maximal diagonal entry
of the residual matrix 𝑨(𝑖) as pivot:

𝑠𝑖+1 ∈ argmin
𝑗

𝑎
(𝑖)
𝑗 𝑗
.

40

Program 3.2 greedy_chol.m. Pivoted partial Cholesky decomposition with
greedy pivoting to compute a low-rank approximation to a psd matrix.
function [F,S] = greedy_chol(Acol,d,k)
% Input: Function Acol for producing columns Acol(i) = A(:,i) of A,
% diagonal d of A, rank k
% Output: Factor F defining a rank-k approximation Ahat = F*F’, pivot
% set S

F = zeros(length(d),k); % To store output
S = zeros(k,1); % To store pivots
for i = 1:k

[~,S(i)] = max(d); % Largest diag entry
as = Acol(S(i)) - F(:,1:i-1)*F(S(i),1:i-1)’; % sth col of A-F*F’
F(:,i) = as / sqrt(as(S(i))); % Rescale
d = d - abs(F(:,i)).^2; % Update diagonal
d = max(d,0); % Ensure nonnegative diagonal in floating point

end

end

We emphasize that the greedy method always picks the largest diagonal entry of
the current residual matrix 𝑨(𝑖) , which evolves as the iteration counter 𝑖 increases.
The residual matrix is zero in the columns of previously selected pivot indices, so
greedy selection ensures the same pivot is never selected twice.

An implementation of greedy pivoted (partial) Cholesky is given in Program 3.2.
The main difference with the generic pivoted partial Cholesky decomposition im-
plementation in Program 3.1 is that we track the diagonal diag(𝑨(𝑖)) of the residual
matrix. The diagonal of 𝑨 is provided to the program as an input d, and it is updated
every iteration using the identity

diag
(
𝑨(𝑖)

)
= diag

(
𝑨(𝑖−1) − 𝒇 𝑖 𝒇

∗
𝑖

)
= diag

(
𝑨(𝑖−1)) − | 𝒇 𝑖 |2.

The greedy pivoted Cholesky algorithm reads (𝑘 + 1)𝑛 entries of the matrix and
expends O(𝑘2𝑛) operations. The procedure outputs the factor 𝑭 and the set of pivots
S = {𝑠1, . . . , 𝑠𝑘 }.

Remark 3.8 (History). Low-rank approximation by pivoted partial Cholesky decom-
positions is classical. The use of greedy pivoting for Cholesky decomposition can
be traced at least as far back as the work of Lawson and Hanson in 1974 [LH74].
The greedy pivoting strategy is also classical, and it goes under the traditional names
of diagonal pivoting and complete pivoting. The procedure was incorporated into

41

both LINPACK software package in 1979 [DMBS79] and its replacement LAPACK
[ABBB+99]. Stability analysis and analysis of the approximation quality was done
by Higham [Hig90]. The greedy method received new attention in the kernel ma-
chine learning community following the work of Fine and Scheinberg [FS01]. ⋄

Failure of greedy pivoting
The greedy method seems very natural, but it can have significant deficiencies on
some examples. Consider, for instance, the matrix

𝑨 =

[
(1 + 𝜀)I𝑛/10 0

0 19𝑛/101∗9𝑛/10

]
for 𝜀 > 0 small.

Selecting any pivot entry from the (2,2) block produces the rank-one approximation

𝑨good :=

[
0 0
0 19𝑛/101∗9𝑛/10

]
which achieves a relative trace error of roughly 10%:

tr(𝑨 − 𝑨good)
tr(𝑨) = (1 + O(𝜀)) · 1

10
.

However, when the greedy pivoted Cholesky algorithm is run on 𝑨, the diagonal
entries in the (1,1) block are slightly larger than the entries in the (2,2) block, so
it proceeds by eliminating entries in the (1,1) block one at a time. In particular,
the relative trace error of the output 𝑨greedy of the greedy method remains above
roughly 90% until over one tenth of the matrix entries have been read:

tr(𝑨 − 𝑨greedy)
tr(𝑨) ≥ (1 − O(𝜀)) · 9

10
as long as 𝑘 ≤ 𝑛

10
.

This is a dismal performance for an algorithm; a good choice of pivot will approxi-
mate the matrix to ≈ 10% relative error in one step, but the greedy pivoted Cholesky
method fails to obtain error better than ≈ 90% even after reading a tenth of the
matrix! The greedy method can fail in ways that are perhaps even more striking.
The examples are somewhat sophisticated and rely on variations of Kahan’s famous
matrix; we refer the interested reader to [Hig90] for details.

The greedy pivoting strategy is natural and often works well, but it has a fatal flaw.
The greedy approach focuses entirely on exploiting large diagonal entries, but fails to
explore potentially valuable pivot choices outside of the numerically largest diagonal
entry. This issue is rectified by the randomly pivoted Cholesky algorithm, which
uses randomization to preferentially select large diagonal entries while investigating
a broader range of pivot choices.

42

3.4 Column Nyström approximation
We now have a procedure, the pivoted partial Cholesky decomposition, for com-
puting a low-rank approximation to a psd matrix. But what is the output of this
procedure? Is there a formula for it? What are its properties?

To answer these questions, we begin by asking a more abstract question: How should
we approximate a matrix 𝑨 from a subset of columns 𝒂𝑠1 , . . . , 𝒂𝑠𝑘? For notational
convenience, these columns can be packaged into a submatrix 𝑨(:,S), indexed by
the set S = {𝑠1, . . . , 𝑠𝑘 }. Once we know the columns of a psd matrix, we also know
its rows 𝑨(S, :) = 𝑨(:,S)∗. We can build an approximation 𝑨 ≈ 𝑨 by interpolating
the known rows and columns, resulting in an approximation of the form

𝑨 = 𝑨(:,S)𝑾𝑨(S, :) for some 𝑾 ∈ K𝑘×𝑘 .

It is natural to expect that 𝑨 agrees with 𝑨 in the selected columns,

𝑨(:,S) = 𝑨(:,S). (3.4)

The condition (3.4) may be ensured by setting 𝑾 := 𝑨(S,S)†. If 𝑨(S,S) is
invertible, 𝑾 is the unique matrix producing an approximation 𝑨 satisfying (3.4).
This reasoning motivates the following definition:

Definition 3.9 (Column Nyström approximation). Let 𝑨 ∈ K𝑛×𝑛 be a psd matrix
and let S ⊆ {1, . . . , 𝑛} be a set of indices. The column Nyström approximation with
pivot set S is:

𝑨⟨S⟩ := 𝑨(:,S)𝑨(S,S)†𝑨(S, :). (3.5)

As the name suggests, a column Nyström approximation 𝑨 = 𝑨⟨S⟩ is a Nyström
approximation 𝑨⟨𝛀⟩ in the sense of Definition 2.8. The associated test matrix
is 𝛀 = I(:,S). Consequently, column Nyström approximations enjoy all of the
properties of Nyström approximations presented in Proposition 2.9.

As one might hope, the output of a pivoted partial Cholesky decomposition is a
column Nyström approximation.

Fact 3.10 (Nyström and Cholesky). Let 𝑨 be the approximation to 𝑨 produced by
the pivoted partial Cholesky algorithm (Program 3.1) with pivots S = {𝑠1, . . . , 𝑠𝑘 }.
Then 𝑨 = 𝑨⟨S⟩ is the column Nyström approximation with pivot set S.

Having identified the class of column Nyström approximations, it is natural to ask:
How accurate can these approximations be? This question admits a precise answer
using the concept of an (𝑟, 𝜀)-approximation.

43

Fact 3.11 (Column Nyström approximation: Approximation quality). Fix param-
eters 𝑟 ≥ 1 and 0 < 𝜀 ≤ 𝑟. For any psd matrix 𝑨 ∈ K𝑛×𝑛, there exists a set
S ⊆ {1, . . . , 𝑛} of size

𝑘 = min
{⌈ 𝑟
𝜀
+ 𝑟 − 1

⌉
, 𝑛

}
(3.6)

for which 𝑨⟨S⟩ is an (𝑟, 𝜀)-approximation to 𝑨. Conversely, there exists a psd
matrix 𝑨 for which 𝑘 ≥ 𝑟/𝜀 columns are necessary to produce a column Nyström
approximation that is an (𝑟, 𝜀)-approximation.

A version of this result for projection approximation of general matrices was proven
by Guruswami and Sinop [GS12]. Their result extends to (𝑟, 𝜀)-approximation
approximations by the Gram correspondence; see [CETW25] for a self-contained
proof in the psd setting. The upper bound (3.6) is proven by using DPP sampling;
see Fact 3.22 below.

Fact 3.11 shows that 𝑘 ≈ 𝑟/𝜀 columns are necessary for a column Nyström approxi-
mation to be an (𝑟, 𝜀)-approximation, at least for a worst-case matrix 𝑨. Therefore,
for most of this thesis, a “near-optimal” algorithm for the psd low-rank approxima-
tion problem will be one which produces a rank-𝑘 column Nyström approximation
satisfying the (𝑟, 𝜀)-approximation guarantee where 𝑘 is nearly equal to 𝑟/𝜀.

Incidentally, we note that there is an even sharper approximation guarantee for the
case 𝑟 = 𝑘:

Theorem 3.12 (Column Nyström approximation: Approximation quality, 𝑟 = 𝑘).
For any psd matrix 𝑨 ∈ K𝑛×𝑛, there exists a column subset S of size 𝑘 such that
𝑨⟨S⟩ is a (𝑘, 𝑘)-approximation, i.e.,

tr(𝑨 − 𝑨⟨S⟩) ≤ (𝑘 + 1) tr(𝑨 − ⟦𝑨⟧𝑘).

Moreover, for every 𝛾 > 0, there exists a psd matrix 𝑨 ∈ R(𝑘+1)×(𝑘+1) such that

tr(𝑨 − 𝑨⟨S⟩) ≥ (𝑘 + 1 − 𝛾) tr(𝑨 − ⟦𝑨⟧𝑘) for every 𝑘-element subset S.

Observe that the existence result is the 𝜀 = 𝑟 case of Fact 3.11. The lower bound
requires a separate argument, which follows from [DRVW06, Prop. 3.3] and the
Gram correspondence. I provide a proof in Appendix D.1.

3.5 Subset selection problems
Before moving on, we draw a connection between the low-rank approximation
techniques we have been studying and a different type of computational problem:

44

subset selection. Subset selection is more of a qualitative problem than a quantitative
one: Given a (multi)set X of 𝑛 items, we wish to identify a subset S ⊆ X of 𝑘 ≪ 𝑛

representative items. Typically, we want a set this set of representatives to be diverse;
if one element 𝑥 is repeated many times in X, only one copy of 𝑥 is needed in the
subset S as a representative.

There are several applications for subset selection:

1. Information retrieval. For designing user interfaces to large databases, it can
be important to surface a small number of “recommended” items. Examples
include product recommendation [WMG19] and document retrieval [CK06].

2. Optimal sensor placement, optimal experimental design, and active learn-
ing. Given multiple information sources—possible locations to place sensors,
possible scientific experiments to run, or possible unlabeled data points to
collect labels for—which (small number) should I use to learn the maximum
possible amount of information? These are the subjects of the related, but dis-
tinct, problems of optimal sensor placement [RCV14], optimal experimental
design [Puk06], and active learning [AKGH+14]. All of these problems are
examples of subset selection problems.

3. Genetics. A basic question in biology is to determine a small set of genetic
markers that predict an observed trait or that characterize variation in a popu-
lation. This application has served as a main motivation for the development
of randomized algorithms for subset selection [PZBC+07; MD09].

4. Computational mathematics. There are many applications of subset selec-
tion to computational mathematics itself. Often, these applications require
the selection of a small number of columns from a matrix. Examples in-
clude rank-structured matrix computations [Mar11; Wil21] tensor network
algorithms [OT10; TSL24], and recovery of rational functions from measure-
ments [WDT22].

In order to design and analyze algorithms for the subset selection problem, several
different ways of mathematizing the problem have been proposed. One approach is
based on linear algebra. We represent the items in X by columns of a matrix 𝑩 and
seek a subset S of columns that span a good low-rank approximation to 𝑩. We call
this problem the column subset selection problem.

45

There are variants of the column subset selection problem both for general, rectan-
gular matrices and for psd matrices. We focus on the latter problem; the former is
discussed in Chapter 9. The psd column subset selection problem is as follows:

Psd column subset selection problem. Given a psd matrix 𝑨 and a subset
size 𝑘 , find a subset S of 𝑘 pivots such that the trace-error of the Nyström
approximation tr(𝑨 − 𝑨⟨S⟩) is as small as possible.

Phrased in this way, the column subset selection problem seems like a reformulation
of the psd low-rank approximation problem. However, there are reasons to consider
these problems as distinct. For psd low-rank approximation, the output of interest
is the low-rank approximation 𝑨, possibly generated as a column Nyström approx-
imation 𝑨 = 𝑨⟨S⟩. For psd column subset selection, the relevant output is the
subset S itself; the trace-error tr(𝑨 − 𝑨⟨S⟩) is useful only instrumentally as a way
of measuring subset quality. Another distinction is that, in many subset selection
applications like genetics or product recommendation, one wants every element of
the subset S to be “good”. (It would be considered a large failure to incorrectly
suggest a genetic marker is linked to cancer, for instance.) By contrast, bad pivots
in low-rank approximation are more of a missed opportunity than a negative: Bad
pivots are not helpful in improving the approximation quality, but they do not hurt
it either. Throughout this part of the thesis, we will use pivoted partial Cholesky
decompositions both for low-rank approximation and subset selection.

3.6 Column Nyström approximation and Gaussian random variables
Partial Cholesky decomposition and column Nyström approximation are closely
related to conditional distributions of (jointly) Gaussian random variables. Consider
a vector 𝒛 ∼ NormalK(0, 𝑨), and let S ⊆ {1, . . . , 𝑛} be a subset of indices. What is
the distribution of 𝒛 conditional on observing the coordinates 𝒛(S)? This question
is answered by the following classical result:

Theorem 3.13 (Conditional expectations of Gaussian random vectors). Let 𝒛 ∼
NormalK(0, 𝑨) be a Gaussian random vector with psd covariance matrix 𝑨, and
let S ⊆ {1, . . . , 𝑛} be a subset of indices. Assume 𝑨(S,S) is nonsingular. Then

E[𝒛 | 𝒛(S)] = 𝑨(:,S)𝑨(S,S)−1𝒛(S) ∼ NormalK(0, 𝑨⟨S⟩),
𝒛 | 𝒛(S) ∼ NormalK(𝑨(:,S)𝑨(S,S)−1𝒛(S), 𝑨 − 𝑨⟨S⟩).

46

This result is carefully developed for real Gaussians in [Tro23, Ch. 21], and the
extension to the complex case is straightforward. We recognize the Nyström approx-
imation 𝑨⟨S⟩ as the covariance matrix of the conditional expectation E[𝒛 | 𝒛(S)],
and its residual 𝑨 − 𝑨⟨S⟩ as the covariance of 𝒛 conditional on 𝒛(S).

A simple model of experimental design
To put this connection between Cholesky factorization, Nyström approximation,
and Gaussian random variables into action, consider the following very basic ex-
perimental design problem. A scientist has 𝑛 experiments she could run, but only
the budget to run 𝑘 of them. Which experiments should she run to maximize the
knowledge she learns? Equivalently, which experiments should she run to minimize
her uncertainty about the outcome of the remaining experiments she did not run?

Suppose that we can model the outcomes of the experiments as Gaussian random
variables 𝒛 ∼ Normal(𝒎, 𝑨)with known mean 𝒎 and covariance matrix 𝑨. Choos-
ing the optimal set of 𝑘 experiments amounts to choosing 𝑘 entries of 𝒛 to observe
with the goal of minimizing the sum of the variances of the remaining experimental
outcomes, conditional on these measurements:

minimize
S⊆{1,...,𝑛}

𝑛∑︁
𝑗=1

Var(𝑧 𝑗 | 𝒛(S)) such that |S| = 𝑘. (3.7)

By Theorem 3.13, the sum of posterior variances is precisely the trace error of the
Nyström approximation

𝑛∑︁
𝑗=1

Var(𝑧 𝑗 | 𝒛(S)) = tr(𝑨 − 𝑨⟨S⟩).

Therefore, this experimental design problem is fully equivalent to selecting a column
subset generating a good Nyström approximation, measured using the trace error.

Connection to Cholesky decomposition
Let us now apply a pivoted partial Cholesky decomposition to solve the experimental
design problem (3.7). At each step, we have a subset S𝑖 ⊆ {1, . . . , 𝑛} of experiments
we have already decided to run, and we must choose the next experiment. The
diagonal entries of the residual 𝑨(𝑖) = 𝑨 − 𝑨⟨S𝑖⟩ store the conditional variances

𝑎
(𝑖)
𝑗 𝑗

= Var(𝑧 𝑗 | S𝑖).

47

The greedy method, introduced in Section 3.3, chooses the largest diagonal entry as
pivot at each step. Equivalently, it chooses to run the experiment with the highest
variance, conditional on the already-run experiments.

This strategy—always run the experiment over which there is the most uncertainty—
is very natural. However, it has a flaw in that it doesn’t take into account the
correlations between experiments. Consider the following matrix

𝑨 =


1 + 2𝜀 0 0 0

0 1 + 𝜀 1 1
0 1 1 + 𝜀 1
0 1 1 1 + 𝜀


for 𝜀 > 0 small. (3.8)

The first experiment has slightly higher variance than the other experiments, so
the greedy method will choose to run experiment 1. However, the outcomes of
experiments 2, 3, and 4 are highly correlated; running any one of these experiments
will leave the scientist with tiny uncertainty about the outcome of the other exper-
iments. This example provides another demonstration of why greed isn’t always
good for column subset selection, and demonstrates how injecting randomness can
help improve column subset selection algorithms. For this example, just picking an
experiment to run at random would give better results than the greedy method 75%
of the time. As we’ll see in the next section and in Chapter 4, there are much better
algorithms for column subset selection than uniform random selection.

A peek forward. The connection between Cholesky factorization, Nyström approx-
imation, and Gaussian random variables is a powerful tool. It forms the basis of
Chapters 5 and 6, where we will use Nyström approximation to accelerate algorithms
for learning from data based on Gaussian processes.

3.7 Non-adaptive random sampling methods
Interest in psd low-rank approximation and column subset selection was renewed
in the early twenty-first century, driven by efforts to accelerate kernel methods
in machine learning [WS00; FS01; DM05]. In addition to continued focus on
deterministic methods like greedy selection (and variations thereof), this wave of
interest also spurred the development of randomized methods.

This section will summarize non-adaptive random sampling methods for psd low-
rank approximation methods that were developed prior to our work on randomly
pivoted Cholesky [CETW25]. As we will detail, randomly pivoted Cholesky is
related to but distinct from the methods presented in this section.

48

Uniform sampling and diagonal-power sampling
The most basic randomized method for computing a column Nyström approximation
is to select the pivot set S uniformly at random, without replacement. (Sampling
with replacement is fine as well, as duplicated columns have no effect on a column
Nyström approximation.) For many practical problems, uniform sampling produces
approximations of high-enough quality, though it can product significantly worse
approximations on other problems.

One class of problems for which uniform sampling is poorly suited are problems
with diagonal entries that span a wide range of magnitudes. To obtain better results
in this setting, we should adapt the sampling distribution to the size of the diagonal
entries. Choosing a power 𝑝 > 0, we may draw pivots 𝑠1, . . . , 𝑠𝑘 iid from the
diagonal-power sampling distribution

𝑠1, . . . , 𝑠𝑘
iid∼ diag(𝑨)𝑝 . (3.9)

The diagonal diag(𝑨) ≥ 0 is entrywise nonnegative since 𝑨 is psd, and the power
𝑝 is applied to the vector diag(𝑨) entrywise. Recall that we write 𝑠 ∼ 𝒘 to denote
a sample P{𝑠 = 𝑗} = 𝑤 𝑗/

∑𝑛
𝑘=1 𝑤𝑘 from any unnormalized weight vector 𝒘 ∈ R𝑛+.

The power 𝑝 in diagonal-power sampling controls the amount of “greediness” of
the procedure; large values of 𝑝 lead to sampling the large elements with high
probability, and smaller values of 𝑝 lead to a more uniform distribution.

In 2005, Drineas and Mahoney [DM05] proposed the diagonal-power sampling
distribution with 𝑝 = 2. The choice 𝑝 = 2 was motivated by a line of work initiated
by Frieze, Kannan, and Vempala [FKV98], who proved results for approximating a
general matrix 𝑩 ∈ K𝑚×𝑛 by projecting onto selected columns 𝑩(:, 𝑠𝑖) sampled iid
from the squared column-norm distribution

𝒔1, . . . , 𝒔𝑘 ∼ scn(𝑩).

Recall that scn(𝑩) ∈ R𝑛+ denotes the squared column norms of 𝑩. Computing the
full column norms in the entry access model is expensive, so Drineas and Mahoney
suggested sampling from the squared diagonal entries as an alternative.

The Gram correspondence (Section 2.6) suggests a different value for 𝑝. If we
treat 𝑨 = 𝑩∗𝑩 as the Gram matrix for a general matrix 𝑩, computing a low-rank
approximation by projecting onto a subset of 𝑩’s columns is equivalent to computing
a Nyström approximation of 𝑨, and sampling the squared column norms of 𝑩 is
equivalent to the diagonal-power sampling rule (3.9) with 𝑝 = 1, in view of the

49

Program 3.3 diag_sample_nys.m. Diagonal-power sampling with power 𝑝 = 1
for computing a Nyström approximation to a psd matrix.
function [F,S] = diag_sample_nys(Acol,d,k)
% Input: Function Acol for producing columns Acol(i) = A(:,i) of A,
% diagonal d of A, rank k
% Output: Factor F defining a rank-k approximation Ahat = F*F’, pivot
% set S

S = datasample(1:length(d),k,"Replace",false,"Weights",d);
AS = Acol(S); % Columns of A
F = AS / chol(AS(S,:)); % Factor matrix

end

identity diag(𝑨) = scn(𝑩). As such, the power 𝑝 = 1 could be regarded as the
more “natural” power for psd low-rank approximation (insofar as squared column
norm sampling is the “natural” approach for general matrix approximation). Code
for 𝑝 = 1 diagonal-power sampling is provided in Program 3.3.

The choice of power 𝑝 is often moot for the basic diagonal-power sampling scheme
because kernel matrices and covariance matrices in machine learning are often
normalized to have a constant diagonal. However, the choice of 𝑝 will have more
influence when we consider adaptive procedures like RPCholesky.

Fact 3.14 (Diagonal power sampling, 𝑝 = 1). Let 𝑨 ∈ K𝑛×𝑛 be a psd matrix, fix
𝑟 ≥ 1, 𝜀 > 0, and introduce the relative error of the best rank-𝑟 approximation:

𝜂 :=
tr(𝑨 − ⟦𝑨⟧𝑟)

tr(𝑨) .

Diagonal-power sampling Nyström approximation with 𝑝 = 1 produces a (𝑟, 𝜀)-
approximation provided that the pivot set has size

𝑘 ≥ 𝑟 − 1
𝜀𝜂
+ 1
𝜀
.

Moreover, the 𝑘 = O(𝑟/𝜀𝜂) complexity is necessary for a worst-case 𝑨 matrix.

This result is [CETW25, Thm. C.3], which adapts [FKV98, eq. (4)] using the Gram
correspondence. The statement in [CETW25] focuses on the real case, but the proof
transfers without issue to complex numbers.

This result demonstrates fundamental limitations of the uniform and diagonal-power
sampling approaches, which require O(1/𝜂) pivots to produce a column Nyström

50

approximations of relative error 𝜂. We will substantially improve on this result with
randomly pivoted Cholesky, which has a much lower cost of O(log(1/𝜂)). Table 4.1
below presents experiments demonstrating this failure mode for the uniform and
diagonal-power sampling methods.

Ridge leverage score sampling
To motivate the ridge leverage score sampling approach, let us take a brief digression
to the subject of ridge-regularized linear regression. Consider the task of fitting
a conjugate linear mapping 𝝌 ↦→ 𝝌∗𝜷 from K𝑛 to K from input–output pairs
(𝝌(1) , 𝑦1), . . . , (𝝌(𝑚) , 𝑦𝑚) ∈ K𝑛 × K. Assemble the inputs 𝝌(𝑖) as rows of a matrix
𝑿, 𝑿 (𝑖, :) = (𝝌(𝑖))∗, and collect the outputs into a vector 𝒚 ∈ K𝑚. One natural
approach to fitting a linear model is ridge-regularized linear regression, which
chooses the coefficients 𝜷 ∈ K𝑛 as the solution to an optimization problem

𝜷 = argmin
𝜷∈K𝑛

∥𝑿𝜷 − 𝒚∥2 + 𝜆 ∥𝜷∥2. (3.10)

The ridge parameter 𝜆 ≥ 0 sets the amount of regularization. For 𝜆 = 0, the
coefficients 𝜷 are taken to be the limiting value of (3.10) as 𝜆 ↓ 0. The solution 𝜷

to (3.10) is given by the formulas

𝜷 = (𝑿∗𝑿 + 𝜆I)†𝑿∗𝒚 (3.11)

= 𝑿∗(𝑿𝑿∗ + 𝜆I)†𝒚. (3.12)

The solution formulas (3.11) and (3.12) are known as the normal equations and
adjoint normal equations for the ridge regression problem (3.10).

The coefficients 𝜷 give rise to the predicted values

𝒚̂ = 𝑿𝜷. (3.13)

for the input data elements 𝝌(1) , . . . , 𝝌(𝑚) . The ridge leverage scores measure the
sensitivity of the predictions 𝒚̂ to the data 𝒚:

Definition 3.15 ((Ridge) leverage scores of a general matrix). Let 𝜆 ≥ 0. The
𝜆-ridge leverage scores ℓ𝜆 of a matrix 𝑿 ∈ K𝑚×𝑛 are

ℓ𝜆 :=
(
𝜕𝑦̂𝑖

𝜕𝑦𝑖
: 1 ≤ 𝑖 ≤ 𝑚

)
= diag(𝑿𝑿∗(𝑿𝑿∗ + 𝜆I)†). (3.14)

The leverage scores ℓ are defined as the 0-ridge leverage scores.

51

The characterization of the ridge leverage scores as a matrix diagonal follows from
the definition (3.13) of the predicted values and the adjoint normal equations (3.12).

While they are not our main focus for now, the leverage scores are an important
object in randomized matrix computations. The leverage scores can be computed as
the squared row norms of an orthonormal basis matrix for 𝑿, ℓ = srn(Orth(𝑿))..
The 𝑖th leverage score is a measure of how “important” row 𝑖 is to the matrix
𝑿. These scores have a decades-long history in statistics, where they are used to
quantify sensitivity of a regression model to changes in output values 𝒚 [JWHT21,
§3.3.3].

The equation (3.14) shows that the ridge leverage scores of a matrix 𝑿 depend only
on the matrix 𝑨 := 𝑿𝑿∗, which is the Gram matrix of 𝑿∗. This motivates the
following definition.

Definition 3.16 (Ridge leverage scores of a psd matrix). Let 𝜆 ≥ 0 be a number
and 𝑨 ∈ K𝑛×𝑛 be a psd matrix. The 𝜆-ridge leverage scores of 𝑨 are ℓ𝜆 :=
diag(𝑨(𝑨 + 𝜆I)†), and the 𝜆-effective dimension of 𝑨 is deff (𝜆) :=

∑𝑛
𝑖=1 ℓ

𝜆
𝑖
.

In principle, this definition could be ambiguous since a psd matrix 𝑨 has two sets of
ridge leverage scores: its leverage scores as a general matrix under Definition 3.15
and its leverage scores as a psd matrix using Definition 3.16. For our purposes,
however, the intended meaning should always be clear, and the ridge leverage scores
of a matrix that is stated to be psd will always be given by Definition 3.16. The
ridge leverage scores were originally proposed by Alaoui and Mahoney [AM15].

The effective dimension 𝑑eff (𝜆) a continuous proxy for the rank of a psd matrix 𝑨,
where eigenvalues of 𝑨 that are much smaller than level 𝜆 are treated as negligible.
The 0-effective dimension is the algebraic rank, 𝑑eff (0) = rank 𝑨, and the effective
dimension decreases to zero as 𝜆 ↑ +∞.

The ridge leverage scores give natural sampling probabilities for selecting columns
for Nyström approximation. We have the following result, slightly simplified from
[MM17, Thm. 3]:

Fact 3.17 (Ridge leverage score sampling: Spectral norm). Let 𝑨 ∈ K𝑛×𝑛 be a psd
matrix, 𝜆 > 0 be a ridge parameter, ℓ𝜆 be the ridge leverage scores, and 𝛿 ∈ (0, 1) be
a specified failure probability. Let ℓ̂𝜆 be over-approximations to the ridge leverage
scores

ℓ𝜆 ≤ ℓ̂𝜆 ≤ 𝑐ℓ𝜆 with 𝑐 ≥ 1, (3.15)

52

and define sampling probabilities

𝑝𝑖 := max
1, 16ℓ̂𝜆𝑖 log ©­«𝛿−1

𝑛∑︁
𝑗=1
ℓ̂𝜆𝑗

ª®¬
 . (3.16)

Define pivots S by including each 1 ≤ 𝑖 ≤ 𝑛 in S independently with prob-
ability 𝑝𝑖. With probability at least 1 − 𝛿, the pivot set is not too large
|S| ≤ 32𝑐 deff (𝜆) log(𝑐 deff (𝜆)/𝛿) and

𝑨⟨S⟩ ⪯ 𝑨 ⪯ 𝑨⟨S⟩ + 𝜆I. (3.17)

Observe that the lower bound 𝑨⟨S⟩ ⪯ 𝑨 in (3.17) is true for any Nyström ap-
proximation, in view of Proposition 2.9(a). This result shows that, if we sample
O(deff (𝜆) log deff (𝜆)) pivots S using the ridge leverage score (RLS) distribution,
then we get a matching upper bound up to additive error 𝜆I. The bound (3.17) is
very strong; in particular, it applies the spectral norm error bound ∥𝑨 − 𝑨⟨S⟩∥ ≤ 𝜆.

Fact 3.18 (Ridge leverage score sampling: Trace norm). Let 𝑨 ∈ K𝑛×𝑛 be a psd
matrix, 𝜀 > 0 be a real number, and 1 ≤ 𝑟 ≤ 𝑛 be an integer. Set 𝜆 := (2𝜀/𝑟) tr(𝑨−
⟦𝑨⟧𝑟), and suppose we have approximate ridge leverage scores ℓ̂𝜆 satisfying (3.15)
and defining sampling probabilities 𝒑 by (3.16). Define pivots S by including
each 1 ≤ 𝑖 ≤ 𝑛 in S independently with probability 𝑝𝑖. With probability at least
1 − 𝛿, the pivot set is not too large |S| = O(𝑟

𝜀
log(𝑟

𝜀𝛿
)) and 𝑨⟨S⟩ and 𝑨⟨S⟩ is an

(𝑟, 𝜀)-approximation with failure probability 𝛿 (as in Remark 3.7).

Musco and Musco proposed the recursive RLS (RRLS) algorithm for performing
approximate ridge leverage score sampling [MM17]. They also develop versions of
their algorithm that produce a set of pivots S of a prescribed size 𝑘 and provide an
automatic mechanism for selecting the hyperparameter 𝜆. The cost of the algorithm
is O(𝑛𝑘) entry evaluations and O(𝑛𝑘2) additional arithmetic operations. MATLAB
and Python implementations of RRLS are available [Van19]. Alternative algorithms
for approximate RLS sampling are SQUEAK [CLV17] and BLESS [RCCR18].

RLS sampling is a mathematically elegant strategy for psd column subset selection,
and it is amazing that is even possible to perform approximate RLS sampling using
a small number of entry evaluations. Still, there are reasons to continue searching
for a more performant algorithm. First, in our empirical testing, the available RLS
sampling implementations require roughly 2𝑘𝑛 to 3𝑘𝑛 entry evaluations to produce

53

a rank-𝑘 approximation [CETW25, §2.4]; pivoted Cholesky-based approaches typ-
ically take just (𝑘 + 1)𝑛 evaluations. Second, empirical and theoretical analysis
suggests the constants in the O-notation for RLS sampling are moderately large,
even when RLS sampling is performed exactly; for some examples, RLS sampling
can be many orders of magnitude less accurate than alternative approaches for pro-
ducing approximations of a given rank 𝑘; see Table 4.1. Finally, RLS sampling
requires O(𝑟 log 𝑟) columns to produce a low-rank approximation comparable with
the best rank-𝑟 approximation. As the following example shows, this logarithmic
overhead is a real property of the algorithm, not an artifact of the analysis.

Example 3.19 (Collecting coupons). Fix parameter 𝑟 and consider the psd matrix

𝑨 =



1
𝑛/𝑟1

∗
𝑛/𝑟 0 0 · · · 0

0 1
𝑛/𝑟1

∗
𝑛/𝑟 0 · · · 0

0 0 1
𝑛/𝑟1

∗
𝑛/𝑟 · · · 0

...
...

...
. . .

...

0 0 0 · · · 1
𝑛/𝑟1

∗
𝑛/𝑟


∈ K𝑛×𝑛. (3.18)

This matrix is block diagonal, with 𝑟 equally sized diagonal blocks of all ones. This
matrix has rank 𝑟, and achieving a column Nyström approximation comparable to
the best rank-𝑟 approximation requires selecting a pivot in each block. Regardless of
the ridge parameter 𝜆 ≥ 0, the ridge leverage scores are constant ℓ𝜆 = 𝑐(𝜆)1, so ridge
leverage score sampling coincides with iid uniform sampling. This is an example
of the well-known coupon collector problem, so it takes Θ(𝑟 log 𝑟) pivots to attain
a pivot in each block with high probability; see [MR95, §3.6] for an introduction to
the coupon collector problem. ⋄

Determinantal point process sampling
The example (3.18) presents a challenging example for any column subset selection
methods based on drawing pivots iid from any distribution. For this reason, we
generically expect iid sampling methods to require 𝑘 = O(𝑟 log 𝑟) columns to
produce an approximation comparable with the best rank-𝑟 approximation. To
obtain better results, we can move beyond iid sampling. Pivoted partial Choleksy
methods are one type of non-iid selection strategy, as these methods select columns
one of a time in an adaptive way. Determinantal point process (DPP) sampling is
an alternate approach that draws a random sample from a joint distribution on all
possible subsets of 𝑘 pivots.

54

To motivate DPP sampling, let us first motivate why the determinant is a useful metric
in measuring the quality of a set S of pivots. The following result is informative:

Proposition 3.20 (Determinants and pivot entries). Let 𝑨 ∈ K𝑛×𝑛 be a psd matrix
and let S = {𝑠1, . . . , 𝑠𝑘 } be a set of pivots. Consider the partial Cholesky decom-
position with this pivot set, and introduce the residuals 𝑨(𝑖) := 𝑨− 𝑨⟨{𝑠1, . . . , 𝑠𝑖}⟩.
We have the identity

det[𝑨(S,S)] = 𝑎 (0)𝑠1𝑠1𝑎
(1)
𝑠2𝑠2𝑎

(2)
𝑠3𝑠3 · · · 𝑎

(𝑘−1)
𝑠𝑘 𝑠𝑘 .

Proof. The matrix 𝑨(S,S) has Cholesky decomposition

𝑨(S,S) = 𝑹∗𝑹,

where the diagonal entries of 𝑹 are |𝑟𝑖𝑖 |2 = 𝑎
(𝑖−1)
𝑠𝑖𝑠𝑖 . Ergo,

det[𝑨(S,S)] = | det(𝑹) |2 =

𝑘∏
𝑖=1
|𝑟𝑖𝑖 |2 = 𝑎

(0)
𝑠1𝑠1𝑎

(1)
𝑠2𝑠2𝑎

(2)
𝑠3𝑠3 · · · 𝑎

(𝑘−1)
𝑠𝑘 𝑠𝑘 .

The desired result is proven.

We recognize the determinant of the submatrix det[𝑨(S,S)] as the product of all
the pivot diagonal entries of the matrix 𝑨 during pivoted Cholesky decomposition.
As such, choosing a pivot set S yielding a submatrix 𝑨(S,S) of large determinant
corresponds to selecting an order for pivoted partial Cholesky decomposition in
which all of the pivot diagonal entries are simultaneously large.

This result suggests a computational strategy of selecting the pivot set S by max-
imizing the determinant det[𝑨(S,S)]. Unfortunately, the problem of finding the
largest-determinant submatrix of a matrix is NP-hard [ÇM09]. To circumvent
this impossibility result, we can instead use the determinants to define a sampling
distribution, motivating the following definition.

Definition 3.21 (Fixed-size DPP). Let 𝑨 ∈ K𝑛×𝑛 be a psd matrix, and fix a number
1 ≤ 𝑘 ≤ 𝑛. A determinantal point process of fixed size 𝑘 or 𝑘-DPP is a random
subset S ⊆ {1, . . . , 𝑛} of size 𝑘 with distribution

P{S = T} = det[𝑨(T,T)]∑
|R|=𝑘 det[𝑨(R,R)] for each subset T ⊆ {1, . . . , 𝑛} of 𝑘 elements.

We write a 𝑘-DPP S as S ∼ DPP𝑘 (𝑨).

55

Determinantal point processes have a long history. DPPs were originally introduced
in 1975 by Macchi [Mac75] in the context of quantum statistical physics, and they
have been studied by mathematicians for decades. There are many subvarietals
of DPPs. In particular, the fixed-size DPPs in Definition 3.21 were introduced
in 2011 by Kulesza and Taskar as a more useful construction for use in machine
learning [KT11]. Further, Kulesza and Taskar’s definition is equivalent to the volume
sampling distribution introduced five years earlier by Deshpande, Rademacher,
Vempala, and Wang [DRVW06] applied to a Gram square root of 𝑨. Motivated by
subset selection problems in machine learning, interest in DPPs has exploded over
the past two decades [KT12]. More recently, DPPs have been deployed as a tool in
matrix computations [DM21]. See the surveys [KT12; DM21] for more on DPPs.

Pivot sets selected from a 𝑘-DPP produce excellent Nyström approximations. We
have the following result:

Fact 3.22 (𝑘-DPPs for Nyström approximation). Let 𝑨 ∈ K𝑛×𝑛 be a psd matrix, and
let 1 ≤ 𝑘 ≤ 𝑛. Draw a pivot set S ∼ DPP𝑘 (𝑨). The trace error of the Nyström
approximation admits the exact formula

E tr(𝑨 − 𝑨⟨S⟩) = (𝑘 + 1) e𝑘+1(𝜆1(𝑨), . . . , 𝜆𝑛 (𝑨))
e𝑘 (𝜆1(𝑨), . . . , 𝜆𝑛 (𝑨))

.

Here, e 𝑗 is the 𝑗 th elementary symmetric polynomial. For any 0 ≤ 𝑟 ≤ 𝑘 , this error
may be bounded as

E tr(𝑨 − 𝑨⟨S⟩) ≤ 𝑘 + 1
𝑘 − 𝑟 + 1

tr(𝑨 − ⟦𝑨⟧𝑟).

Consequently, 𝑘-DPP sampling produces an (𝑟, 𝜀)-approximation for any 𝑘 satis-
fying 𝑘 ≥ 𝑟/𝜀 + 𝑟 − 1 for any 𝜀 ∈ (0, 𝑟].

An analog of this general bound was first established for column projection approxi-
mations computed by volume sampling distribution of Deshpande et al. [DRVW06]
by Guruswami and Sinop [GS12]. Using the Gram correspondence, it was trans-
planted to Nyström approximation by 𝑘-DPP sampling in [DM21]. The case 𝑟 = 𝑘
was proven first by [DRVW06] (for column projection approximations and volume
sampling) and [BW09b] (for Nyström approximation by 𝑘-DPPs).

Fact 3.22 achieves the strongest theoretical bounds (and indeed, the strongest ex-
istence results) for any column Nyström method. But turning DPP sampling into
a computational strategy is a challenging enterprise. Standard algorithms for sam-
pling a general 𝑘-DPP expend O(𝑛3) operations and require a full decomposition of

56

the matrix (see, e.g., [KT11, §3]). Responding to this computational bottleneck, re-
searchers investigated Markov chain Monte Carlo algorithms for approximate 𝑘-DPP
sampling [AOR16; RO19]; even with efficient implementations, these algorithms
are significantly more expensive than pivoted Cholesky methods. (The most recent
algorithms [ALV22] do achieve the same asymptotic runtime as pivoted Cholesky
algorithms, but they are complicated, and I am not aware of any evaluations of this
approach for use in practice.) An alternate line of work has investigated exact 𝑘-
DPP sampling algorithms that do not require reading the entire input matrix [Der19;
DCV19; CDV20]. These algorithms are impressive, but they are more expensive in
both runtime and number of entry evaluations than pivoted Cholesky methods. In
my experience with the 𝑘-DPP software package [GPBV19], 𝑘-DPP sampling has
been significantly slower and more resource intensive than other methods for Nys-
tröm approximation. In addition, I have found this software tends to fail by throwing
exceptions on challenging problems. Therefore, while 𝑘-DPPs are mathematically
beautiful and set the mathematical standard to which other methods are compared,
I have not found 𝑘-DPP sampling to be a competitive approach to large-scale psd
matrix approximation with the available algorithms and software implementations.

57

C h a p t e r 4

RANDOMLY PIVOTED CHOLESKY

So first she tasted the porridge of the Great, Huge Bear, and that was too
hot for her. And then she tasted the porridge of the Middle Bear, and that
was too cold for her. And then she went to the porridge of the Little,
Small, Wee Bear, and tasted that; and that was neither too nor too cold,
but just right, and she liked it so well that she ate it all up.

The Story of the Three Bears (1905)

Last chapter, we introduced the pivoted partial Cholesky decomposition as a way
of computing a low-rank approximation to a psd matrix, and we saw two extreme
strategies, uniform sampling and greedy selection, for selecting the pivots. The
greedy strategy always selects the largest diagonal entry of the residual as pivot,
and the uniform strategy selects pivots at random without using any information
about the diagonal entries sizes. This chapter will strike a balance between these
approaches, selecting a random pivot at each iteration using sampling probabilities
weighted by the diagonal entries. The resulting algorithm is called randomly pivoted
Cholesky (RPCholesky).

Sources. This paper is based on the randomly pivoted Cholesky paper:

Yifan Chen, Ethan N. Epperly, Joel A. Tropp, and Robert J. Webber. “Randomly
Pivoted Cholesky: Practical Approximation of a Kernel Matrix with Few Entry
Evaluations”. In: Communications on Pure and Applied Mathematics 78.5 (2025),
pp. 995–1041. doi: 10.1002/cpa.22234.

Outline. Section 4.1 introduces the randomly pivoted Cholesky algorithm and
discusses its implementation. Section 4.2 provides numerical experiments and
Section 4.3 discusses analysis. We conclude by discussing an extension to Gibbs
RPCholesky (Section 4.4) and connections between RPCholesky and DPPs (Sec-
tion 4.5).

4.1 Algorithm and implementation
Randomly pivoted Cholesky (RPCholesky) is an algorithm for low-rank approxi-
mation of psd matrices. It employs a pivoted partial Cholesky decomposition, but

https://doi.org/10.1002/cpa.22234

58

is distinguished from other pivoted Cholesky methods by using the diagonal of the
residual matrix each iteration as a sampling distribution to select the next pivot.
Conceptually, RPCholesky executes the following iteration. With initial residual
𝑨(0) := 𝑨, do the following for 𝑖 = 1, 2, . . . , 𝑘:

1. Draw a random pivot. Draw a random pivot index

𝑠𝑖 ∼ diag(𝑨(𝑖−1)).

This random pivoting strategy preferentially selects larger diagonal entries as
pivots, but has a nonzero probability of selecting any nonzero diagonal entry
as pivot. (Recall that we have defined 𝑠 ∼ 𝒘 as a random index sampled from
the unnormalized weight vector 𝒘. That is, P{𝑠 = 𝑗} = 𝑤 𝑗/

∑𝑛
𝑖=1 𝑤𝑖.)

2. Rescale. Extract and rescale the pivot column

𝒇 𝑖 := 𝒂 (𝑖−1)
𝑠𝑖 /(𝑎 (𝑖−1)

𝑠𝑖𝑠𝑖)
1/2.

3. Eliminate. Update the residual 𝑨(𝑖) := 𝑨(𝑖−1) − 𝒇 𝑖 𝒇
∗
𝑖 , zeroing out the matrix

in the 𝑠𝑖th row and column.

The outputs of RPCholesky are a factor matrix 𝑭 ∈ K𝑛×𝑘 defining a low-rank
approximation 𝑭𝑭∗ ≈ 𝑨 and a set S = {𝑠1, . . . , 𝑠𝑘 } of pivot entries.

In practice, we do not update the entire residual matrix at every iteration, instead
tracking the diagonal diag(𝑨(𝑖)) and generating entries from 𝑨(𝑖) as needed using
the formula 𝑨(𝑖) = 𝑨 − 𝑭(:, 1 : 𝑖)𝑭(:, 1 : 𝑖)∗, as in Program 3.2. With these
optimizations, RPCholesky reads (𝑘+1)𝑛 entries of the matrix and expendsO(𝑘2𝑛)
arithmetic operations. See Program 4.1 for RPCholesky code. More efficient block
versions of RPCholesky will be developed in Chapter 8.

The RPCholesky algorithm can be seen as a midpoint between greedy selection and
uniform sampling. The greedy method is based on entirely exploiting large diagonal
entries, without exploring smaller diagonal entries as possible pivots. Conversely,
uniform sampling randomly explores the set of all pivots but does not exploit
information about the size of the diagonal entries. RPCholesky combines both
exploration and exploitation, making it more robust than either strategy individually.

Another way of interpreting the RPCholesky method comes from the Gaussian
framing developed in Section 3.6. Introduce a Gaussian vector 𝒛 ∼ NormalK(0, 𝑨)

59

Program 4.1 rpcholesky.m. Randomly pivoted Cholesky for psd low-rank ap-
proximation and column subset selection.
function [F,S] = rpcholesky(Acol,d,k)
% Input: Function Acol for producing columns Acol(i) = A(:,i) of A,
% diagonal d of A, rank k
% Output: Factor F defining a rank-k approximation Ahat = F*F’

F = zeros(length(d),k); % To store output
S = zeros(k,1); % To store pivots
for i = 1:k

% Random sample using current diagonal as sampling weights
S(i) = datasample(1:length(d),1,"Weights",d);
as = Acol(S(i)) - F(:,1:i-1)*F(S(i),1:i-1)’; % sth col of A-F*F’
F(:,i) = as / sqrt(as(S(i))); % Rescale
d = d - abs(F(:,i)).^2; % Update diagonal
d = max(d,0); % Ensure nonnegative diagonal in floating point

end

end

with covariance matrix 𝑨. As in Section 3.6, we adopt an experimental design
perspective where we wish to identify a set of coordinates S that minimizes the sum
of conditional variances

tr(𝑨 − 𝑨⟨S⟩) =
𝑛∑︁
𝑗=1

Var(𝑧 𝑗 | 𝒛(S))

for the unseen coordinates. The greedy method builds the subset S one pivot at a
time, always choosing the maximum-variance coordinate as pivot

𝑠𝑖+1 ∈ argmax
1≤ 𝑗≤𝑛

Var(𝑧 𝑗 | 𝒛({𝑠1, . . . , 𝑠𝑖})).

The RPCholesky method instead uses the variances as a sampling distribution:

P{𝑠𝑖+1 = 𝑗} =
Var(𝑧 𝑗 | 𝒛({𝑠1, . . . , 𝑠𝑖}))∑𝑛

ℓ=1 Var(𝑧ℓ | 𝒛(S))
.

Randomizing the procedure in this way balances the need to explore and exploit,
and makes the method robust to bad instances like (3.8) where the greedy method
can be fooled by tiny differences in variances between coordinates.

Software. A high-performance implementation of a version of RPCholesky is
under development in the RandLAPACK software project [MDME+23]. At present
it may be found at

60

https://github.com/BallisticLA/RandLAPACK/blob/main/Rand

LAPACK/comps/rl_rpchol.hh

4.2 Experiments
We will see several comparisons of RPCholesky with alternative methods through-
out this part of the thesis. Here, we provide one initial set of data on RPCholesky’s
performance, reproduced from [CETW25, Tab. 1]. Here, we evaluate the relative
trace error of RPCholesky against other column selection methods for approx-
imation of psd kernel matrices associated with 20 datasets. (See Chapter 5 for
an introduction to kernel matrices.) In addition to RPCholesky, we test greedy
selection and uniform and ridge leverage score (RLS) sampling. We omit DPP
sampling because of its high computational cost. The Schmidt–Mirsky–Eckart–
Young-optimal approximation error is shown for reference. As the optimal approx-
imation is typically not a column Nyström approximation, it provides a lower limit
on the best-possible approximation error for a column Nyström approximation that
typically cannot be attained.

Results are shown in Table 4.1. The performance of RPCholesky is uniformly
good, achieving the lowest trace error on all twenty examples. We also see that RP-
Cholesky consistently achieves error close to the Schmidt–Mirsky–Eckart–Young
optimal low-rank approximation. These experiments confirm that RPCholesky is
among the best available approaches for constructing a column Nyström approxi-
mation to a psd matrix. We will see further examples of RPCholesky’s success
throughout this part of the thesis.

4.3 Error analysis
As we have seen and will continue to see, the RPCholesky method consistently
produces near-optimal low-rank approximations, often more accurate than compet-
ing methods by orders of magnitude. This excellent performance can be supported
by theoretical analysis. This section will present analysis of the approximation of
RPCholesky in the trace norm and a weak (but still useful!) result for the spectral
norm. It will then provide proofs of these results.

Trace-norm bounds
Our first bounds characterize the number of iterations needed to produce a good
low-rank approximation to a psd matrix when measured using the trace norm.

https://github.com/BallisticLA/RandLAPACK/blob/main/RandLAPACK/comps/rl_rpchol.hh
https://github.com/BallisticLA/RandLAPACK/blob/main/RandLAPACK/comps/rl_rpchol.hh

61

Table 4.1: Relative trace error of rank-1000 Nyström approximation of psd kernel
matrices by four alternative column selection methods: uniform and ridge leverage
score (RLS) sampling, greedy selection, and RPCholesky. Each trace error is
computed as a median of ten trials. Error for the optimal rank-1000 approximation
is shown for reference. Data is taken from [CETW25, Tab. 1].

Uniform RLS Greedy RPChol Optimal

sensit_vehicle 1.57e-1 1.40e-1 2.07e-1 1.37e-1 8.77e-2
yolanda 1.46e-1 1.39e-1 2.08e-1 1.36e-1 8.41e-2

YearPredictionMSD 1.30e-1 1.20e-1 1.73e-1 1.16e-1 6.79e-2
w8a 1.42e-1 1.17e-1 1.91e-1 1.05e-1 6.09e-2

MNIST 1.21e-1 1.10e-1 1.67e-1 1.06e-1 5.83e-2
jannis 1.11e-1 1.10e-1 1.28e-1 1.09e-1 5.45e-2
HIGGS 6.73e-2 6.31e-2 8.51e-2 6.07e-2 2.96e-2

connect_4 5.81e-2 5.07e-2 6.48e-2 4.81e-2 2.25e-2
volkert 5.35e-2 4.42e-2 5.92e-2 4.17e-2 1.99e-2

creditcard 4.83e-2 3.71e-2 5.77e-2 3.01e-2 1.31e-2
Medical_Appointment 1.74e-2 1.43e-2 1.92e-2 1.29e-2 4.59e-3

sensorless 1.20e-2 7.78e-3 8.70e-3 5.80e-3 2.11e-3
ACSIncome 9.93e-3 5.55e-3 8.35e-3 4.02e-3 1.27e-3

Airlines_DepDelay_1M 4.19e-3 2.37e-3 2.64e-3 1.78e-3 5.08e-4
covtype_binary 9.10e-3 2.12e-3 1.41e-3 1.04e-3 2.97e-4

diamonds 1.31e-3 2.40e-4 1.12e-4 5.85e-5 1.30e-5
hls4ml_lhc_jets_hlf 3.78e-4 7.30e-5 6.68e-5 4.38e-5 1.04e-5

ijcnn1 3.91e-5 3.09e-5 2.86e-5 2.13e-5 4.67e-6
cod_rna 6.00e-4 1.36e-5 9.19e-6 5.05e-6 9.86e-7

COMET_MC_SAMPLE 3.65e-3 2.44e-7 1.2e-10 4.3e-11 3.5e-12

Theorem 4.1 (Randomly pivoted Cholesky: Trace norm). Let 𝑟 ≥ 1, 𝜀 > 0,
and 𝑨 ∈ K𝑛×𝑛 be a psd matrix. Introduce the relative error of the best rank-𝑟
approximation

𝜂 := tr(𝑨 − ⟦𝑨⟧𝑟)/tr(𝑨).

Randomly pivoted Cholesky produces an (𝑟, 𝜀)-approximation (Definition 3.6) to 𝑨

as long as the number of steps satisfies

𝑘 ≥ 𝑟
𝜀
+ 𝑟 log

(
1
𝜀𝜂

)
. (4.1)

We observe that RPCholesky achieves theoretical guarantees that are nearly optimal
within the class of Nyström approximations. (Recall from Fact 3.11 that at least
𝑘 ≥ 𝑟/𝜀 columns are needed to produce an (𝑟, 𝜀)-approximation to a worst-case psd
matrix.)

62

The dependence of the number of columns 𝑘 on the relative error 𝜂 is significantly
improved for RPCholesky over diagonal sampling (Section 3.7), which requires
Θ(𝑟/𝜂) column accesses to produce an approximation comparable with the best
rank-𝑟 approximation for some input matrices. RPCholesky yields an exponential
improvement in the dependence on 1/𝜂.

The logarithmic factor log(1/𝜂) is, for the purposes of practical computation, a
modest constant. Due to numerical errors, the relative error 𝜂 is effectively bounded
from below by the unit roundoff 𝑢, which captures the size of rounding errors
(𝑢 ≈ 10−16 in double precision). Thus, in double precision, log(1/𝜂) ⪅ 37.

Remark 4.2 (What if the relative error is small?). One somewhat unappealing feature
of this result is that when 𝑨 is rank-𝑟, the relative error is 𝜂 = 0 and the right-hand
side of (4.1) becomes infinite. Here, the bound (4.1) badly mischaracterizes the
actual behavior of the RPCholesky algorithm, which recovers a rank-𝑟 matrix 𝑨

with zero error after precisely 𝑘 = rank 𝑨 steps. Developing improved bounds for
small 𝜂 is an open problem; see Section 11.1 for discussion. ⋄

Weak spectral norm-type bounds
It is natural to desire error bounds for RPCholesky that hold in the spectral norm.
Perhaps, similar to Fact 3.17, we could show that RPCholesky achieves spectral-
norm error 𝜆 in roughly 𝑑eff (𝜆) steps, where 𝑑eff (𝜆) denotes the 𝜆-effective dimen-
sion (Definition 3.16). While such bounds are not yet known (see Section 11.1), we
can establish bounds on the spectral norm of the expected error:

Theorem 4.3 (Randomly pivoted Cholesky: Spectral norm). Fix parameters 𝑏 > 0
and 𝜀 > 0. For any psd matrix 𝑨, the 𝑘-step residual 𝑨(𝑘) of RPCholesky satisfies

E 𝑨(𝑘)

 ≤ 𝑏 + 𝜀 tr(𝑨 − ⟦𝑨⟧𝑟)

provided the number of steps 𝑘 satisfies

𝑘 ≥ 1
𝜀
+ 𝑟 log

(
∥𝑨∥
𝑏

)
.

This result has a significant limitation in that the expectation occurs inside the norm.
Pulling the expectation inside the norm can be done at a great cost. Indeed, for any
random psd matrix 𝑿, we have the bound

∥E 𝑿∥ ≤ E∥𝑿∥ ≤ E tr(𝑿) = tr(E 𝑿) ≤ 𝑛 · ∥E 𝑿∥. (4.2)

63

The first inequality is Jensen’s. The factor 𝑛 in the upper bound E∥𝑿∥ ≤ 𝑛 · ∥E 𝑿∥
is sharp, as demonstrated by the matrix 𝑿 = e

𝑖
e∗
𝑖

for 𝑖 ∼ Unif{1, . . . , 𝑛}.

The main use of Theorem 4.3 is to bound quadratic forms 𝒙∗𝑨(𝑘)𝒙 in the residual
matrix:

E[𝒙∗𝑨(𝑘)𝒙] = 𝒙∗ [E 𝑨(𝑘)]𝒙 ≤ ∥𝒙∥2 ·

E 𝑨(𝑘)

.
We will use this type of bound to analyze quadrature methods in Section 7.5.

Ignoring the (significant) norm of expectation vs. expectation of norm issue, how
good is Theorem 4.3? To get some insight into this question, consider a matrix
with rapidly polynomially decaying eigenvalues 𝜆 𝑗 (𝑨) = 𝑗−𝑞 for a fixed parameter
𝑞 > 1. The sum of tail eigenvalues is

𝑛∑︁
𝑗=𝑟+1

𝜆 𝑗 (𝑨) ≤
∞∑︁

𝑗=𝑟+1
𝑗−𝑞 = O(𝑟1−𝑞).

Setting 𝜀 = O(1/𝑟) and 𝑏 = (𝑟 + 1)−𝑞/2, we obtain

E 𝑨(𝑘)

 ≤ 𝜆𝑟+1(𝑨) = (𝑟 + 1)−𝑞 after 𝑘 = O(𝑟 log 𝑟) steps.

RPCholesky requires at most O(𝑟 log 𝑟) steps for the spectral norm of the expected
residual to drop below the spectral norm error of the best rank-𝑟 approximation—not
bad!

Proofs
Let us begin with the proof of Theorems 4.1 and 4.3. As a first step, we introduce
the expected residual function

𝚽(𝑨) := E[𝑨(1)]

which measures the expected value of the residual matrix 𝑨(1) after one step of
RPCholesky applied to input matrix 𝑨. By direct computation, we observe

𝚽(𝑨) =
𝑛∑︁
𝑗=1

(
𝑨 −

𝒂
𝑗
𝒂∗
𝑗

𝑎 𝑗 𝑗

)
· P{𝑠1 = 𝑗} = 𝑨 −

𝑛∑︁
𝑗=1

𝒂
𝑗
𝒂∗
𝑗

𝑎 𝑗 𝑗

𝑎 𝑗 𝑗

tr(𝑨) = 𝑨 − 𝑨2

tr(𝑨) .

The map 𝚽 enjoys a number of properties.

Proposition 4.4 (Expected residual function). The expected residual function 𝚽

satisfies the following properties:

64

(a) Unitarily covariant: For a unitary matrix 𝑼 ∈ K𝑛×𝑛 and a psd matrix 𝑨,
𝚽(𝑼𝑨𝑼∗) = 𝑼𝚽(𝑨)𝑼∗.

(b) Positive: For any psd matrix 𝑨, 𝚽(𝑨) is psd.

(c) Concave: The map 𝚽 is concave with respect to the psd order. For psd
matrices 𝑨,𝑯,

𝚽(𝜃𝑨 + (1 − 𝜃)𝑯) ⪰ 𝜃𝚽(𝑨) + (1 − 𝜃)𝚽(𝑯) for each 𝜃 ∈ [0, 1] . (4.3)

(d) Monotone: The map 𝚽 is monotone with respect to the psd order. For psd
matrices 𝑨,𝑯,

𝚽(𝑨 + 𝑯) ⪰ 𝚽(𝑨). (4.4)

Proof. Throughout this proof, let 𝑨 and 𝑯 denote psd matrices.

The unitary covariance property (a) is immediate from the formula 𝚽(𝑨) = 𝑨 −
𝑨2/tr(𝑨).

The positivity property (b) follows by observing 𝚽(𝑨) has nonnegative eigenvalues

𝜆𝑖 (𝚽(𝑨)) = 𝜆𝑖 (𝑨) −
𝜆𝑖 (𝑨)2
tr(𝑨) = 𝜆𝑖 (𝑨)

(
1 − 𝜆𝑖 (𝑨)∑𝑛

𝑗=1 𝜆 𝑗 (𝑨)

)
≥ 0

for each 𝑖 = 1, 2, . . . , 𝑛.

The concavity claim (c) follows from direct computation: For 𝜃 ∈ [0, 1] and
𝜃 = 1 − 𝜃, we have

𝚽(𝜃𝑨 + 𝜃𝑯) − 𝜃𝚽(𝑨) − 𝜃𝚽(𝑯) = 𝜃𝜃

𝜃 tr(𝑨) + 𝜃 tr(𝑯)

(√︄
tr(𝑯)
tr(𝑨) 𝑨 −

√︄
tr(𝑨)
tr(𝑯)𝑯

)2

,

which is manifestly psd.

To show the monotonicity property (d), first observe that𝚽 is positive homogeneous
𝚽(𝛼 · 𝑨) = 𝛼 ·𝚽(𝑨) for 𝛼 ≥ 0. Consequently, by (4.3),

𝚽(𝑨 + 𝑯) = 2𝚽(0.5𝑨 + 0.5𝑯) ⪰ 𝚽(𝑨) +𝚽(𝑯) ⪰ 𝚽(𝑨).

The last inequality holds since 𝚽(𝑯) is psd. We have established (4.4).

Because of the monotonicity and concavity of the expected residual function, we can
bound the 𝑖-step residual 𝑨(𝑖) by iterating the expected one-step residual function:

65

Proposition 4.5 (Multistep residual). Let 𝑨(𝑖) denote the residual of the matrix 𝑨

after running 𝑖 steps of RPCholesky. Then

E[𝑨(𝑖)] ⪯ 𝚽𝑖 (𝑨).

Here, 𝚽𝑖 denotes the 𝑖-fold composition of 𝚽.

Proof. First, apply an appropriate matrix version of Jensen’s inequality [Car10,
Thm. 4.16] conditionally on the (𝑖 − 1)-step residual 𝑨(𝑖−1) to obtain

E[𝑨(𝑖)] = E[E[𝑨(𝑖) | 𝑨(𝑖−1)]] = E[𝚽(𝑨(𝑖−1))] ⪯ 𝚽(E[𝑨(𝑖−1)]).

Here, we used concavity (4.3) of 𝚽. Next, we iterate this inequality using the
monotonicity property (4.4):

E[𝑨(𝑖)] ⪯ 𝚽(E[𝑨(𝑖−1)]) ⪯ 𝚽2(E[𝑨(𝑖−2)]) ⪯ · · · ⪯ 𝚽𝑖−1(E[𝑨(1)]) ⪯ 𝚽𝑖 (𝑨).

The desired claim is established.

Proposition 4.5 shows that the eigenvalues of E[𝑨(𝑘)] are bounded above by the
eigenvalues of the 𝑘-fold composition of the 𝚽 transformation to the matrix 𝑨.
Introduce the vector function 𝝓 : R𝑛+ → R+𝑛

𝝓(𝜶) = 𝜶 − 𝜶2∑𝑛
𝑗=1 𝛼 𝑗

.

Here, 𝜶2 denotes the entrywise square. The function 𝝓 tracks the eigenvalues after
applying the one-step residual function 𝚽:

𝝀(𝚽(𝑨)) = 𝝓(𝝀(𝑨)) for a psd matrix𝑨.

Consequently,
𝝀(E[𝑨(𝑖)]) ≤ 𝝀(𝚽𝑖 (𝑨)) = 𝝓𝑖 (𝝀(𝑨)). (4.5)

In this display, 𝝓𝑘 is the 𝑖-fold composition of 𝝓, and the inequality holds entrywise.
The inequality in (4.5) follows by Proposition 4.5 and Weyl monotononicity principle
[Tro22, Cor. 9.9]:

𝑨 ⪯ 𝑯 =⇒ 𝝀(𝑨) ≤ 𝝀(𝑯).

The equality in (4.5) is unitary covariance (Proposition 4.4(a)). We now provide a
proof for Theorems 4.1 and 4.3.

66

Proof of Theorems 4.1 and 4.3. Introduce 𝝀(𝑖) := 𝝓𝑖 (𝝀(𝑨)) to track the right-hand
side of (4.5). Since 𝝀(𝑖) is defined as the iteration of the 𝝓 map, it obeys the
recurrence

𝝀(𝑖+1) = 𝝓(𝝀(𝑖)) = 𝝀(𝑖) −
[
𝝀(𝑖)

]2∑𝑛
𝑗=1 𝜆

(𝑖)
𝑗

. (4.6)

We make two observations. First, we the vectors 𝝀(𝑖) are entrywise decreasing:
For each 𝑖, 𝝀(𝑖+1) ≤ 𝝀(𝑖) . This observation is immediate from the recurrence (4.6).
Second, the entries of each vector 𝝀(𝑖) are sorted in nonincreasing order for each 𝑖.

Let us verify this second observation by induction. For the base case 𝑖 = 0, note
that 𝝀(0) = 𝝀(𝑨) is sorted in nonincreasing order by definition. Next, inductively
suppose that 𝝀(𝑖−1) is sorted in nonincreasing order. Then for 𝑗 ≥ 1,

𝜆
(𝑖)
𝑗+1 − 𝜆

(𝑖)
𝑗

=

[
𝜆
(𝑖−1)
𝑗+1 − 𝜆

(𝑖−1)
𝑗

]
−

[(
𝜆
(𝑖−1)
𝑗+1

)2 −
(
𝜆
(𝑖−1)
𝑗

)2
]

∑𝑛
ℓ=1 𝜆

(𝑖−1)
ℓ

=

[
𝜆
(𝑖−1)
𝑗+1 − 𝜆

(𝑖−1)
𝑗

] ©­«1 −
𝜆
(𝑖−1)
𝑗+1 + 𝜆

(𝑖−1)
𝑗∑𝑛

ℓ=1 𝜆
(𝑖−1)
ℓ

ª®¬ ≥ 0.

This completes the inductive argument, showing that the entries of 𝝀(𝑖) are sorted in
nonincreasing order for every 𝑖.

Having established some basic properties of the recurrence (4.6), we now shall
reason about the average

𝑎 (𝑖) :=
1
ℓ

ℓ∑︁
𝑗=1
𝜆
(𝑖)
𝑗

of the top ℓ eigenvalues of 𝝀(𝑖) . We take the parameter ℓ to be between 1 and 𝑟,
and we will primarily be interested in the edge cases ℓ = 1 (top eigenvalue) and
ℓ = 𝑟 (top 𝑟 eigenvalues). By averaging the first ℓ entries of the recurrence (4.6), we
obtain a recurrence for 𝑎 (𝑖):

𝑎 (𝑖+1) = 𝑎 (𝑖) −
ℓ−1 ∑ℓ

𝑗=1

[
𝜆
(𝑖)
𝑗

]2

∑𝑛
𝑗=1 𝜆

(𝑖)
𝑗

. (4.7)

We may bound the dominator of the second term as

𝑛∑︁
𝑗=1
𝜆
(𝑖)
𝑗

=

𝑟∑︁
𝑗=1
𝜆
(𝑖)
𝑗
+

𝑛∑︁
𝑗=𝑟+1

𝜆
(𝑖)
𝑗
≤ 𝑟𝑎 (𝑖) +

𝑛∑︁
𝑗=𝑟+1

𝜆 𝑗 (𝑨).

67

Here, we use the fact that the numbers 𝜆(𝑖)
𝑗

are nonincreasing in both 𝑖 and 𝑗 together
with the initial condition 𝜆(0)

𝑗
= 𝜆 𝑗 (𝑨). To bound the numerator of the second term

of (4.7), we use Jensen’s inequality,

1
ℓ

ℓ∑︁
𝑗=1

[
𝜆
(𝑖)
𝑗

]2
≥


1
ℓ

ℓ∑︁
𝑗=1
𝜆
(𝑖)
𝑗


2

=
[
𝑎 (𝑖)

]2
.

Substituting the two previous displays into (4.7) yields

𝑎 (𝑖+1) ≤ 𝑎 (𝑖) −
[
𝑎 (𝑖)

]2

𝑟𝑎 (𝑖) +∑𝑛
𝑗=𝑟+1 𝜆 𝑗

. (4.8)

To bound the recurrence (4.8), we compare to an ODE model

d
d𝑡
𝑥(𝑡) = − 𝑥(𝑡)2

𝑟𝑥(𝑡) +∑𝑛
𝑗=𝑟+1 𝜆 𝑗

with 𝑥(0) = 1
ℓ

ℓ∑︁
𝑗=1
𝜆 𝑗 . (4.9)

For each 𝑖, we have 𝑎 (𝑖) ≤ 𝑥(𝑖) because 𝑥 ↦→ −𝑥2/(𝑟𝑥 +∑𝑛
𝑗=𝑟+1 𝜆 𝑗) is decreasing on

R+. Fixing a level 𝛾 > 0, we may solve (4.9) to obtain the time 𝑡★ at which 𝑥(𝑡★) = 𝛾
using separation of variables:

𝑡★ =

∫ ℓ−1 ∑ℓ
𝑗=1 𝜆 𝑗

𝛾

𝑟𝑥 +∑𝑛
𝑗=𝑟+1 𝜆 𝑗

𝑥2 d𝑥

=

∑𝑛
𝑗=𝑟+1 𝜆 𝑗

𝛾
−
ℓ
∑𝑛
𝑗=𝑟+1 𝜆 𝑗∑ℓ
𝑗=1 𝜆 𝑗

+ 𝑟 log

(∑ℓ
𝑗=1 𝜆 𝑗

ℓ𝛾

)
≤

tr(𝑨 − ⟦𝑨⟧𝑟)
𝛾

+ 𝑟 log

(∑ℓ
𝑗=1 𝜆 𝑗

ℓ𝛾

)
.

(4.10)

In the last inequality, we recall that tr(𝑨 − ⟦𝑨⟧𝑟) =
∑𝑛
𝑗=𝑟+1 𝜆 𝑗 .

We can use (4.10) in two ways. First consider the case when ℓ = 𝑟 and bound

E tr(𝑨(𝑘)) =
𝑟∑︁
𝑗=1
𝜆 𝑗 (E[𝑨(𝑘)]) +

𝑛∑︁
𝑗=𝑟+1

𝜆 𝑗 (E[𝑨(𝑘)])

≤
𝑟∑︁
𝑗=1
𝜆
(𝑘)
𝑗
+

𝑛∑︁
𝑗=𝑟+1

𝜆
(𝑘)
𝑗
≤ 𝑟𝑎 (𝑖) + tr(𝑨 − ⟦𝑨⟧𝑟).

The first inequality uses (4.5) and instates the definition of 𝜆(𝑖)
𝑗

, and the second
inequality uses the definition of 𝑎 (𝑖) , the fact that 𝜆(𝑖)

𝑗
is nonincreasing in 𝑖, and the

68

boundary condition 𝜆(0)
𝑗

= 𝜆 𝑗 (𝑨). Apply (4.10) with ℓ = 𝑟 and 𝛾 := 𝜀/𝑟 · tr(𝑨 −
⟦𝑨⟧𝑟) to conclude that E tr(𝑨(𝑘)) ≤ (1 + 𝜀) tr(𝑨 − ⟦𝑨⟧𝑟) when

𝑘 ≥ 𝑟
𝜀
+ 𝑟 log

(
tr(⟦𝑨⟧𝑟)

𝜀 tr(𝑨 − ⟦𝑨⟧𝑟)

)
.

This result is stronger than as stated in Theorem 4.1. Second, consider the case
ℓ = 1 and set 𝛾 := 𝑏 + 𝜀 tr(𝑨 − ⟦𝑨⟧𝑟). Then (4.5) and (4.10) imply that

E(𝑨(𝑘))

 = 𝜆1(E[𝑨(𝑘)]) ≤ 𝜆(𝑘)1 ≤ 𝑏 + 𝜀 tr(𝑨 − ⟦𝑨⟧𝑟)

when
𝑘 ≥

tr(𝑨 − ⟦𝑨⟧𝑟)
𝑏 + 𝜀 tr(𝑨 − ⟦𝑨⟧𝑟)

+ 𝑟 log
(

∥𝑨∥
𝑏 + tr(𝑨 − ⟦𝑨⟧𝑟)

)
.

This is stronger than the result of Theorem 4.3.

4.4 Extension: Gibbs RPCholesky
The uniform, RPCholesky, and greedy pivoting strategies can be unified into a
common framework. The Gibbs RPCholesky method [CETW25, §2.3.4] selects a
random pivot at each iteration according to the rule

𝑠𝑖+1 ∼ diag(𝑨(𝑖))𝑝 .

We remind the reader that 𝑠 ∼ 𝒘 denotes a random sample from the (unnormalized)
weight vector 𝒘. The power 𝑝 ∈ (0,∞) controls the level of “greediness”. The
extreme case 𝑝 ↓ 0 corresponds to uniform sampling from the support of diag(𝑨(𝑖));
the other extreme 𝑝 ↑ +∞ selects the largest diagonal entries, with exact ties broken
uniformly at random. We recognize the cases 𝑝 = 0 and 𝑝 = ∞ are variants of
uniform and greedy selection. RPCholesky sits at the intermediate value 𝑝 = 1.

As the name suggests, the Gibbs RPCholesky method samples a pivot index from
a Gibbs distribution P{𝑠𝑖+1 = 𝑗} = exp(−𝛽𝑣 𝑗) with “energies” 𝑣 𝑗 = − log 𝑎 (𝑖)

𝑗 𝑗
and

“inverse-temperature” 𝛽 = 𝑝. For this reason, the symbol 𝛽 has been used to refer
to the power 𝑝 in previous literature [Ste24; CETW25]. Under the interpretation of
𝛽 = 𝑝 as inverse-temperature, the uniform, greedy, and RPCholesky strategies can
be analogized to the three bowls of porridge in the story of the three bears—too hot,
too cold, and just right. The recent paper [DPPL24] by Dong, Pan, Phan, and Lei
has explored an alternate definition of the energies 𝑣 𝑗 = −𝑎 (𝑖)𝑗 𝑗 , leading to sampling
probabilities 𝑠𝑖+1 ∼ exp(𝛽 diag(𝑨(𝑖))).

69

Our original paper [CETW25] introduced the Gibbs RPCholesky algorithm but
did not provide any numerical experiments. Stefan Steinerberger [Ste24] took up
the task of empirically evaluating the Gibbs RPCholesky method. Steineberger’s
experiments consider several examples, some of which benefit from higher 𝑝 and
others which favor lower 𝑝. However, except on specially constructed examples, the
differences between different methods are not dramatic (particularly away from the
extreme values 𝑝 ∈ {0,∞}). Steinerberger’s paper also includes theoretical results,
including a theorem showing that a single step of the 𝑝 = 2 Gibbs RPCholesky
reduces the squared Frobenius norm of a psd matrix by at least a factor 1 − 1/𝑛.

My preliminary conclusion from Steinerberger and Dong et al.’s investigations is
that, for non-pathological matrices, any sensible random pivoting selection that in-
corporates information from the diagonal of the residual matrix should yield decent
performance for low-rank approximation. To achieve the best possible performance,
one can treat the power 𝑝 (or inverse-temperature 𝛽 for the Dong et al. scheme) as
a hyperparameter and test multiple 𝑝 or 𝛽 values.

Even though Gibbs RPCholesky seems to work reliably on most matrices with
𝑝 > 1, significant failures can occur on synthetic, worst-case examples. Fix 𝑝 > 1,
and consider the matrix

𝑨 =

[
𝑛1/𝑝I100 0

0 1
𝑛−1001∗

𝑛−100

]
.

The optimal rank-one approximation to this matrix is

⟦𝑨⟧1 =

[
0 0
0 1

𝑛−1001∗
𝑛−100

]
,

and this approximation is computed by a partial pivoted Cholesky decomposition
in one step if any pivot 𝑠 ∈ {101, 102, . . . , 𝑛} is selected. For large 𝑛, this optimal
rank-one approximation to this matrix has vanishingly small relative error

tr(𝑨 − ⟦𝑨⟧1)
tr(𝑨) =

100𝑛1/𝑝

𝑛 + 100(𝑛1/𝑝 − 1)⌉
= (100 + 𝑜(1))𝑛1/𝑝−1.

and RPCholesky produces this optimal approximation in one step with near-
certainty:

P{𝑠 ≥ 101} = 𝑛 − 100
𝑛 + 100(𝑛1/𝑝 − 1)

= 1 − 𝑜(1) when 𝑠 ∼ diag(𝑨).

70

With with Gibbs RPCholesky with power 𝑝, a bad pivot is selected with roughly
99% probability:

P{𝑠 ≤ 100} = 100𝑛
(𝑛 − 100) + 100𝑛

=
100
101
+ 𝑜(1).

For large 𝑛, it takes Gibbs RPCholesky with power 𝑝 roughly 50 steps to compute
a good low-rank approximation to this matrix 𝑨, where RPCholesky (𝑝 = 1)
produces an excellent approximation with near certainty in a single step. Given
bad examples like these, we believe the power 𝑝 = 1 is a sensible default for
general-purpose use, particular if only a single 𝑝 value is to be used.

4.5 Connection to determinantal point processes
The RPCholesky algorithm has a number of connections to (fixed-size) determinan-
tal point processes (DPPs, Definition 3.21). This section reviews these connections.

RPCholesky as iterative 1-DPP sampling. The first interpretation is the most
trivial, but still yields some insight. A single step of RPCholesky performs one
step of diagonal sampling on the current residual matrix 𝑨(𝑖) , which coincides with
the 1-DPP distribution (since the determinant of a 1× 1 matrix—i.e., a number—is
just itself). As a consequence of this interpretation, we can derive a single-step
RPCholesky error bound by invoking Fact 3.22:

E tr(𝑨(1)) ≤ 2 tr(𝑨 − ⟦𝑨⟧1).

RPCholesky as iterative conditional DPP sampling. Another, much more power-
ful connection between RPCholesky and DPPs interprets the RPCholesky proce-
dure as iteratively performing conditional DPP sampling.

Proposition 4.6 (RPCholesky as conditional DPP sampling). Suppose we have run
the RPCholesky algorithm for 𝑖 steps on psd matrix 𝑨, selecting pivots 𝑠1, . . . , 𝑠𝑖.
The (𝑖 + 1)st pivot 𝑠𝑖+1 ∼ diag(𝑨(𝑖)) satisfies

P{𝑠𝑖+1 = 𝑗 | 𝑠1, . . . , 𝑠𝑖} = P
{
T = {𝑠1, . . . , 𝑠𝑖+1}

�� T ⊇ {𝑠1, . . . , 𝑠𝑖}
}
,

where T ∼ DPP𝑖+1(𝑨).

We see that the (𝑖 + 1)st step of RPCholesky can be seen as sampling from an
(𝑖 + 1)-DPP, conditional on the already-selected pivots belonging to that DPP. This
result follows directly from the definition of fixed-size DPPs and Proposition 3.20.

71

This connection between DPPs and RPCholesky suggests an algorithm for ap-
proximate 𝑘-DPP sampling. First, run RPCholesky for 𝑘 steps, producing piv-
ots 𝑠1, . . . , 𝑠𝑘 . Then, for steps 𝑡 = 0, 1, . . . , 𝑇 , select a random pivot index
𝑗 ∼ Unif{1, . . . , 𝑘}, evict pivot 𝑠 𝑗 from the pivot set, and resample 𝑠 𝑗 using a
single step of the RPCholesky procedure

𝑠 𝑗 ∼ diag(𝑨 − 𝑨⟨𝑠1, . . . , 𝑠 𝑗−1, 𝑠 𝑗+1, . . . , 𝑠𝑘⟩).

The reason behind this procedure’s success is intuitive. Initially, we generate the
pivots 𝑠1, . . . , 𝑠𝑘 sequentially, and they do not follow the 𝑘-DPP distribution. At
each step, we freeze all but one pivot 𝑠 𝑗 and resample 𝑠 𝑗 from the 𝑘-DPP distribution
conditional on the other pivots {𝑠𝑖 : 𝑖 ≠ 𝑗}. By repeating this procedure enough
time, the distribution of the pivots converges to the 𝑘-DPP distribution.

A sampling algorithm for a multivariate distribution of this type (freeze all but one
coordinate and sample the conditional distribution) is known as a Gibbs Markov
chain Monte Carlo (MCMC) sampler. This Gibbs DPP sampling procedure was
proposed by Rezaei and Oveis Gharan [RO19] to sample from a generalization of 𝑘-
DPPs that can be defined on general, possibly continuous state spaces. Fortunately,
ordinary 𝑘-DPPs on the finite set {1, . . . , 𝑛} are contained in this general setting.
Rezaei and Oveis Gharan’s theoretical bounds show that the RPCholesky-based
Gibbs MCMC sampler converges in at most 𝑇 = O(𝑘5 log 𝑘) steps, and their
numerical results suggest a more modest 𝑇 = O(𝑘2) steps suffice. To implement
their algorithm efficiently, one should use Cholesky downdating techniques to handle
the pivot evictions; we omit the details.

To raise a potentially provocative point, even Rezaei and Oveis Gharan’s empirical
results suggest that sampling a 𝑘-DPP using this algorithm requires quadratically
more work than executing RPCholesky. It is natural to ask: Is that work worth it?
Is the output of RPCholesky substantially worse than a sample from a 𝑘-DPP for
practical purposes? We leave these questions to the reader to ponder.

Projection DPPs. There is an important class of matrices for which RPCholesky
produces exact samples from a 𝑘-DPP. We make the following definition.

Definition 4.7 (Projection DPP). Let 𝑨 be an orthorpojector of rank exactly 𝑘 .
Then the 𝑘-DPP S ∼ DPP𝑘 (𝑨) is referred to as a projection DPP.

We emphasize that, in a projection DPP, the rank of the orthoprojector 𝑨 must be
equal to the size 𝑘 of the DPP S. Projection DPPs are fundamental to both the

72

theory and applications of DPPs. Theoretically, every (𝑘-)DPP can be realized as a
mixture of projection DPPs [HKPV06, p. 213], which gives rise to procedures for
sampling from 𝑘-DPPs.

Remarkably, the RPCholesky algorithm, applied to an orthoprojector, generates
exact samples from a projection DPP.

Proposition 4.8 (RPCholesky samples projection DPPs). Let 𝑨 be an orthopro-
jector of rank exactly 𝑘 . The pivot set S produced by 𝑘 steps of RPCholesky applied
to 𝑨 is a sample from the projection DPP S ∼ DPP𝑘 (𝑨).

This proposition appears in its essence in Gillenwater’s thesis [Gil14, sec. 2.2.4]
and a very clear version of the RPCholesky pseudocode (more-or-less the same
as our Program 4.1) appears in the work of Poulson [Pou20]. We emphasize that
Poulson only used the RPCholesky procedure to sample from projection DPPs: In
his work, the input matrix 𝑨 is always an orthoprojector, he runs for exactly rank 𝑨

steps, and the output is the pivot set S. The factor matrix 𝑭, critical to use cases of
RPCholesky for low-rank approximation, is discarded in Poulson’s work.

73

C h a p t e r 5

KERNELS AND GAUSSIAN PROCESSES

Although William of Occam first wielded his famous razor against the
superfluous elaborations of his Scholastic predecessors, his principle of
parsimony has since been incorporated into the methodology of
experimental science in the following form: given two explanations of
the data, all other things being equal, the simpler explanation is
preferable. This principle is very much alive today in the emerging
science of machine learning, whose expressed goal is often to discover
the simplest hypothesis that is consistent with the sample data.

Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K.
Warmuth, Occam’s razor [BEHW87]

The twin theories of reproducing kernel Hilbert spaces and Gaussian processes are
among the most beautiful topics in applicable mathematics, and they form the basis
for a class of simple and user-friendly machine learning methods. In this section, we
review these theories and how they are used in machine learning. In the following
chapter, we explain how RPCholesky can be used to accelerate these learning
algorithms and provide computational experiments.

Sources. This section serves to provide an introduction to kernel methods and
Gaussian processes. It reflects my own approach to this material and is not explicitly
based on any of particular published work, of mine or others. The content of this
section is influenced by Houman Owhadi’s excellent class “Stochastic processes
and regression”, which I took in Winter of 2022. Useful references on this material
include the books [SS02; RW05] and the survey [KHSS18].

Outline. Section 5.1 introduces the theory of reproducing kernel Hilbert spaces,
and Section 5.2 uses this formalism to derive the kernel interpolation method for
fitting data. Section 5.3 describes the parallel theory of Gaussian processes and
reformulates kernel interpolation as Gaussian process interpolation. Section 5.4
concludes by discussing regularized kernel and Gaussian process methods.

74

5.1 Reproducing kernel Hilbert spaces
One of the great annoyances in mathematical analysis is the fact that functions
𝑢 ∈ L2(R𝑑) do not have definite values at any given point. Indeed, the space L2(R𝑑)
is formally defined to consist of all square-integrable functions on R𝑑 , modulo al-
most everywhere equality (with respect to the Lebesgue measure). So for any given
𝑢 ∈ L2(R𝑑), there are elements of the equivalence class of 𝑢 taking every possible
value at any given point 𝑥, since the singleton set {𝑥} has measure zero.

If we restrict ourselves to continuous functions 𝑢 ∈ C(R𝑑) ∩ L2(R𝑑), things are
a bit better, since 𝑢(𝒙) has a defined value at each point 𝒙 ∈ R𝑑 . However, even
for continuous L2 functions, function values are not stable: For any 𝜀 > 0, any
point 𝒙 ∈ R𝑑 , and any value 𝛼 ∈ K, there exists a continuous perturbation 𝑒 of
norm ∥𝑒∥L2 (R)𝑑 ≤ 𝜀 such that (𝑢 + 𝑒) (𝒙) = 𝛼. The conclusion is that the value of
any L2 function at any point can be changed to any value by an arbitrarily small
perturbation.

These limitations of the L2 space motivates the concept of a reproducing kernel
Hilbert space (RKHS), which may be informally defined as follows.

An RKHS is a Hilbert space of functions that have definite values at every
point, and these values are stable under small perturbations.

Formally, we have the following definition:

Definition 5.1 (Reproducing kernel Hilbert space). Let X be a set. A reproducing
kernel Hilbert space (RKHS) on X is a Hilbert space of functions 𝑓 : X → K over
which the evaluation map 𝑥 ↦→ 𝑓 (𝑥) is a bounded linear functional for each 𝑥. That
is, for each 𝑥 ∈ X, there exists a prefactor 𝑐(𝑥) ∈ R+ such that

| 𝑓 (𝑥) | ≤ 𝑐(𝑥)∥ 𝑓 ∥H for each 𝑓 ∈ H.

The definition of the RKHS encompasses (and is equivalent to) the notion of stability
of function values under small perturbations. Indeed, for 𝑒 ∈ H in an RKHS H,

| (𝑓 + 𝑒) (𝑥) − 𝑓 (𝑥) | = |𝑒(𝑥) | ≤ 𝑐(𝑥)∥𝑒∥H.

As we will see, the seemingly innocuous property of point evaluation being a
bounded linear functional has surprising and far-reaching consequences.

Reproducing kernel Hilbert spaces (RKHSs) may initially appear exotic, but they
encompass many of the fundamental function spaces in mathematical analysis.

75

Example 5.2 (A Sobolev space). Consider, for instance, the space H1([0, 1]), con-
sisting of all square-integrable functions with a square-integrable (weak) derivative.
Its norm is

∥ 𝑓 ∥2H1 ([0,1]) =

∫ 1

0

(
| 𝑓 (𝑥) |2 + | 𝑓 ′(𝑥) |2

)
d𝑥.

This space is an RKHS. To see this, first consider a continuous representative
𝑓 ∈ H1([0, 1]) ∩C([0, 1]). By the intermediate value theorem, there exists a value
𝑥★ at which 𝑓 achieves its mean value

𝑓 (𝑥★) =
∫ 1

0
𝑓 (𝑥) d𝑥.

By the Cauchy–Schwarz inequality,

| 𝑓 (𝑥★) |2 =

����∫ 1

0
𝑓 (𝑥) d𝑥

����2 ≤ ∫ 1

0
| 𝑓 (𝑥) |2 d𝑥 ·

∫ 1

0
1 d𝑥 =

∫ 1

0
| 𝑓 (𝑥) |2 d𝑥.

For any two values 𝑥 ≤ 𝑦 in [0, 1],

| 𝑓 (𝑦) − 𝑓 (𝑥) |2 =

����∫ 𝑦

𝑥

𝑓 ′(𝑎) d𝑎
����2 ≤ ∫ 𝑦

𝑥

| 𝑓 ′(𝑎) |2 d𝑎 ·
∫ 𝑦

𝑥

1 d𝑎 ≤
∫ 1

0
| 𝑓 ′(𝑎) |2 d𝑎.

The same conclusion holds if 𝑦 ≤ 𝑥. Employing the two previous displays, we
conclude that for any 𝑥 ∈ [0, 1], we have

| 𝑓 (𝑥) |2 ≤ 2| 𝑓 (𝑥★) |2 + 2| 𝑓 (𝑥) − 𝑓 (𝑥★) |2

≤ 2
∫ 1

0

(
| 𝑓 (𝑥) |2 + | 𝑓 ′(𝑥) |2

)
d𝑥 = 2∥ 𝑓 ∥2H1 ([0,1]) .

We have established the RKHS property with 𝑐(𝑥) ≤
√

2 for all 𝑥 ∈ [0, 1]. This
conclusion extends to all 𝑓 ∈ H1([0, 1]) by density of C([0, 1]) in H1([0, 1]). We
conclude that H1([0, 1]) is an RKHS. ⋄

This example is illustrative. It suggests that functions in an RKHS should be
smoother (in the sense of possessing well behaved derivatives) than typical functions
in the space L2(𝜇). This intuition will prove valuable.

The reproducing kernel
Whenever one has a linear functional over a Hilbert space, is is generally worth
invoking the Riesz representation theorem to see if there are any interesting conse-
quences. In the cases of RKHSs, this is most certainly the case.

76

For each point 𝑥 ∈ X, the Riesz representation theorem furnishes a function 𝜅(·, 𝑥) ∈
H for which

𝑓 (𝑥) = ⟨𝜅(·, 𝑥), 𝑓 ⟩H. (5.1)

We have denoted this function by 𝜅(·, 𝑥) to indicate that applying this construction
at each 𝑥 ∈ X generates a parametric class of univariate functions (𝜅(·, 𝑥) : 𝑥 ∈
X). Just as well, this class of univariate functions comprise a bivariate function
𝜅 : X ×X→ K. The property (5.1) is referred to as the reproducing property of the
function 𝜅. We emphasize to the reader that, under our conventions, inner products
are conjugate linear in their first coordinate.

An especially interesting thing happens if we invoke the reproducing property (5.1)
for the special choice 𝑓 = 𝜅(·, 𝑥′), which gives

𝜅(𝑥, 𝑥′) = ⟨𝜅(·, 𝑥), 𝜅(·, 𝑥′)⟩H. (5.2)

We see that the bivariate function 𝜅 tabulates the pairwise inner products of its
univariate restrictions 𝜅(·, 𝑥). By Hermiticity of the H-inner product, we conclude
that

𝜅(𝑥, 𝑥′) = ⟨𝜅(·, 𝑥), 𝜅(·, 𝑥′)⟩H = ⟨𝜅(·, 𝑥′), 𝜅(·, 𝑥)⟩H = 𝜅(𝑥′, 𝑥).

The function 𝜅 is Hermitian, i.e., conjugate symmetric. Additionally, given any
(finite) set of points D ⊆ X, the function matrix 𝜅(D,D) is psd (see Definition 3.1).
To see thus, observe that for any 𝒄 ∈ KD,

𝒄∗𝜅(D,D)𝒄 =
∑︁
𝑥,𝑥′∈D

𝑐𝑥𝑐𝑥′ 𝜅(𝑥, 𝑥′) =
∑︁
𝑥,𝑥′∈D

𝑐𝑥𝑐𝑥′ ⟨𝜅(·, 𝑥), 𝜅(·, 𝑥′)⟩H

=

〈∑︁
𝑥∈D

𝑐𝑥𝜅(·, 𝑥),
∑︁
𝑥′∈D

𝑐𝑥′𝜅(·, 𝑥′)
〉
≥ 0.

The inequality is positive definiteness of the H-inner product. We conclude that
𝜅(D,D) is psd. Consequently, the function 𝜅 is a positive-definite kernel function
(Definition 3.2). Thus, a more appropriate name for the function 𝜅 is the reproducing
kernel of H.

Example 5.3 (Reproducing kernel for H1). We return to the case of H1([0, 1]),
introduced in Example 5.2. Since H1([0, 1]) is an RKHS, it has a reproducing
kernel 𝜅 : [0, 1]2 → K satisfying the property that

𝑓 (𝑥) =
∫ 1

0

(
𝜅(·, 𝑎) 𝑓 (𝑎) + 𝜕𝑎𝜅(·, 𝑎) 𝑓 ′(𝑎)

)
d𝑎 (5.3)

77

Figure 5.1: Left: Univariate restrictions 𝜅(·, 𝑎) of Sobolev kernel (5.4) for 𝑎 = 0.25
and 𝑎 = 0.5. Right: Contour plot of Sobolev kernel (5.4).

for any 𝑓 ∈ H1([0, 1]). We can recover the value of 𝑓 at any point just by integrating
against it and its derivative. Neat!

A formula for 𝜅 can be found by integrating the second term of (5.3) by parts and
solving an ODE boundary value problem [Sch07, §2.11]. The resulting formula is

𝜅(𝑥, 𝑥′) = cosh(min(𝑥, 𝑥′)) cosh(1 −max(𝑥, 𝑥′))
sinh(1) . (5.4)

The property (5.3) can be verified analytically or checked for example functions
𝑓 and values 𝑥 using a symbolic computing environment like Mathematica. An
illustration of this kernel is provided in Fig. 5.1. ⋄

Spaces from kernels
So far, we have defined the notion of an RKHS and showed that every RKHS H
has a reproducing kernel 𝜅 (that is, a positive-definite kernel function satisfying
the reproducing property (5.1)). Often in practice, we would like to in the reverse
direction: Begin with a set X, endow it with a positive-definite kernel function 𝜅,
and obtain an RKHS H for which 𝜅 is the kernel. This construction is possible in
view of the Moore–Aronszajn theorem [Aro50, p. 3.44]:

Fact 5.4 (RKHSs from kernels). Every positive-definite kernel function 𝜅 on X gives
rise to a unique H over which 𝜅 is the reproducing kernel.

Proof sketch. Notice that the span of univariate restrictions of the kernel 𝜅(·, 𝑥)
form an inner product space, where the inner product is defined by the relation (5.2)
and extended to linear combinations by sesquilinearity. This space may then be
upgraded to a Hilbert space by taking the closure.

78

This result speaks to how kernels are used in practice to learn from data. One begins
with a dataset D belonging to some ambient space X, typically X = R𝑑 . Then one
selects a kernel for this data, typically from some standard functional form, such as
the square-exponential kernel

𝜅se(𝒙, 𝒙′ | 𝜎) = exp
(
− |||𝒙 − 𝒙

′|||2

2𝜎2

)
(5.5)

or the Laplace kernel

𝜅Lap(𝒙, 𝒙′ | 𝜎) = exp
(
− |||𝒙 − 𝒙

′|||
𝜎

)
. (5.6)

Here, |||·||| is a norm, typically the ℓ1 or ℓ2 norm. Hyperparameters for these kernel
families, such as the bandwidth 𝜎 in (5.5) and (5.6), are picked either by ad-hoc
techniques like the median heuristic [GJK18] or by systematic procedures like cross
validation [LLJD+20]. One then uses this selected kernel 𝜅 to perform some data
analysis task like interpolation (Section 5.2) or regression (Section 5.4). Fact 5.4
guarantees the existence of an RKHS H for which 𝜅 is the kernel, and the fine details
of the Hilbert space H are typically not needed.

The kernel as a nonlinear inner product
There is another interpretation of kernel functions and RKHSs that can be useful.
The kernel 𝜅 can be seen as defining a sort of nonlinear inner product on a general
space X. More precisely, there exists a feature map 𝜙 : X → K mapping X into a
Hilbert space K over which 𝜅 coincides with the inner product

𝜅(𝑥, 𝑥′) = ⟨𝜙(𝑥), 𝜙(𝑥′)⟩K.

The space K is called the feature space. The feature map and the feature space are
not unique, but a natural choice of feature space is given by the RKHS H itself. With
this choice, the mapping 𝜙 : 𝑥 ↦→ 𝜅(·, 𝑥) constitutes a feature map, in view of (5.2).

5.2 Kernel interpolation
Having established the RKHS formalism, let us see how it can be used to learn
from data. Consider the task of learning a functional relation 𝑔 : X → K from
input–output pairs (𝑥1, 𝑦𝑥1), . . . , (𝑥𝑛, 𝑦𝑥𝑛) ∈ X × K. For convenience, we may
package the inputs into a multiset D = {𝑥1, . . . , 𝑥𝑛} and the outputs into a vector
𝒚 = (𝑦𝑥 : 𝑥 ∈ D) ∈ KD. (In the case where D has repeated elements 𝑥𝑖 = 𝑥 𝑗 for
𝑖 ≠ 𝑗 , we abuse notation and permit 𝑦𝑥𝑖 and 𝑦𝑥 𝑗 to be different values.)

79

If we assume that the output values 𝑦𝑥 are provided to us without noise, it makes
sense to seek a model 𝑔 : X→ K that interpolates the data at the provided points:

𝑔(𝑥) = 𝑦𝑥 for all 𝑥 ∈ D.

The interpolation condition may be written more concisely as 𝑔(D) = 𝒚.

There are infinitely many functions 𝑔 ∈ H interpolating the data. Of these, it is
natural to select the interpolating function 𝑔 of minimum norm. Indeed, if we think
of the RKHS norm as a measure of the smoothness (as in Example 5.2) or complexity
of a function, seeking the minimum-norm interpolant can be thought of as finding
the interpolating function of minimum complexity (cf. the Occam’s razor quote at
the beginning of the section).

Finding the interpolating function of minimum norm is an optimization problem
over the typically infinite dimensional space H:

𝑔 = argmin
𝑔∈H

𝑔(D)=𝒚

∥𝑔∥H. (5.7)

Remarkably, this optimization problem has a closed form solution:

Theorem 5.5 (Kernel interpolation: Solution formula). Let D be a finite set of
points and let 𝒚 ∈ KD be output values. Assume 𝜅(D,D) is nonsingular. Then the
optimization problem (5.7) has the following unique solution

𝑔 =
∑︁
𝑥∈D

𝜅(·, 𝑥)𝛽𝑥 where 𝜷 = 𝜅(D,D)−1𝒚.

Theorems of this type, which show that an infinite-dimensional optimization prob-
lem over an RKHS has a finitely parametrized solution consisting of a linear com-
bination of kernel functions, are known as representer theorems [SS02, §4.2]. For
completeness, and because the proof is beautiful and revealing, we shall provide
a proof of this representer theorem in the rest of this section. Code for kernel
interpolation is provided in Program 5.1.

Remark 5.6 (Interface for kernel methods). For the programs in this thesis, we use a
common interface to implement kernel methods. Sets of 𝑛 data points D ⊆ K𝑑 are
collected as rows of an 𝑛 × 𝑑 matrix D. A univariate functions g can evaluated on a
set of inputs 𝑔(D) as g(D). Similarly, the evaluation 𝜅(D,E) of a bivariate function
𝜅 can be evaluated as kappa(D,E). ⋄

80

Program 5.1 kernel_interp.m. Code to compute the kernel interpolant through
data 𝒚.
function [g,beta] = kernel_interp(y,kernel,D)
% Input: Outputs y, kernel function kernel(x,x’), and inputs D
% Output: Kernel interpolant g and coefficients beta

beta = kernel(D,D) \ y; % Get interpolation coefficients
g = @(X) kernel(X,D) * beta; % Define interpolant

end

Underdetermined systems of linear equations
To motivate the proof of Theorem 5.5, we shall begin with a review of the theory of
underdetermined systems of linear equations in finite dimensions.

The linear least-squares problem

𝒙 = argmin
𝒙∈K𝑛

∥𝑩𝒙 − 𝒄∥ for 𝑩 ∈ K𝑚×𝑛, 𝒄 ∈ K𝑚

is well-known, as are the normal equations characterizing its solution:

𝑩∗𝑩𝒙 = 𝑩∗𝒄.

There is a parallel theory, usually not covered in introductory linear algebra classes,
for the minimum norm solution to an underdetermined system of equations

𝒙★ = argmin
𝒙∈K𝑚

𝑩∗𝒙=𝒄

∥𝒙∥ for 𝑩 ∈ K𝑚×𝑛, 𝒄 ∈ K𝑛. (5.8)

The result is this:

Theorem 5.7 (Minimum-norm solution to an underdetermined system). Assume 𝑩

has full column rank. Then 𝒙 = 𝑩(𝑩∗𝑩)−1𝒄 = (𝑩†)∗𝒄 is the unique solution to
(5.8).

Proof. Decompose any solution 𝒙 to 𝑩∗𝒙 = 𝒄 as an orthogonal sum 𝒙 = 𝒙★ + 𝒙⊥
of a component 𝒙★ ∈ range(𝑩) and a component 𝒙⊥ ∈ range(𝑩)⊥. The orthogonal
complement of range(𝑩) is the nullspace of 𝑩∗, so

𝒄 = 𝑩∗𝒙 = 𝑩∗(𝒙★ + 𝒙⊥) = 𝑩∗𝒙★ + 0 = 𝑩∗𝒙★.

Consequently, we see that 𝒙★ is also a solution of 𝑩∗𝒙 = 𝒄, and its norm is smaller:

∥𝒙∥2 = ∥𝒙★∥2 + ∥𝒙⊥∥2 ≥ ∥𝒙★∥2. (5.9)

81

Equality holds in (5.9) if and only if 𝒙⊥ = 0. Since 𝒙★ ∈ range(𝑩), we may write
𝒙★ = 𝑩𝒚★, so that

𝒄 = 𝑩∗𝒙★ = (𝑩∗𝑩)𝒚★.

Since 𝑩 is full-rank, the matrix 𝑩∗𝑩 is invertible, so 𝒚★ = (𝑩∗𝑩)−1𝒄. We conclude
that 𝒙★ = 𝑩(𝑩∗𝑩)−1𝒄 is the unique minimal-norm solution to 𝑩∗𝒙 = 𝒄.

Underdetermined systems of linear equations in a Hilbert space
With the appropriate apparatus, the derivation for the minimum norm solution
of a finite-dimensional system of linear equations translates effortlessly to infinite
dimensions. We make the following definition [Ste98; TT15]:

Definition 5.8 (Quasimatrix). Let K be a Hilbert space. An K × 𝑛 quasimatrix 𝐹 is
a collection 𝐹 = (𝑓𝑖 : 1 ≤ 𝑖 ≤ 𝑛) of elements 𝑓𝑖 ∈ K. For a matrix 𝑯 ∈ K𝑛×𝑝, the
product 𝐹𝑯 is

𝐹𝑯 =

(
𝑛∑︁
𝑖=1

𝑓𝑖ℎ𝑖 𝑗 : 1 ≤ 𝑗 ≤ 𝑝
)
.

The matrix–vector product 𝐹𝒉 is defined analogously. For an K × 𝑚 quasimatrix
𝐺, the product 𝐺∗𝐹 is

𝐺∗𝐹 =
(
⟨𝑔𝑖, 𝑓 𝑗 ⟩K : 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛

)
∈ K𝑚×𝑛.

Similarly, 𝐺∗ 𝑓 = (⟨𝑔𝑖, 𝑓 ⟩ : 1 ≤ 𝑖 ≤ 𝑚) for 𝑓 ∈ K.

With this definition, Theorem 5.7 holds for underdetermined systems of equations
over a Hilbert space with the same proof.

Theorem 5.9 (Minimum-norm solution to an underdetermined system over a Hilbert
space). Let 𝐵 be an K × 𝑛 quasimatrix and let 𝒄 ∈ K𝑛. Assume that 𝐵 has linearly
dependent “columns” (𝑏𝑖 : 1 ≤ 𝑖 ≤ 𝑛) or, equivalently, that 𝐵∗𝐵 has full rank.
Then the system of linear systems 𝐵∗𝑥 = 𝒄 has a unique solution 𝑥 ∈ K of minimum
norm. This solution is 𝑥 = 𝐵(𝐵∗𝐵)−1𝒄.

This result immediately implies the representer theorem for kernel interpolation
(Theorem 5.5). To see this, introduce the quasimatrix

𝜅(·,D) := (𝜅(·, 𝑥) : 𝑥 ∈ D) ∈ KH×D

and its adjoint
𝜅(D, ·) := 𝜅(·,D)∗. (5.10)

82

Proof of Theorem 5.5. By the reproducing property and (5.10),

𝑔(D) = (𝑔(𝑥) : 𝑥 ∈ D) = (⟨𝜅(·, 𝑥), 𝑔⟩H : 𝑥 ∈ D) = 𝜅(D, ·)𝑔.

Consequently, the minimum-norm interpolation problem (5.7) is equivalent to find-
ing the minimum norm solution of the linear system 𝜅(D, ·)𝑔 = 𝒚. By Theorem 5.9,
the solution is

𝑔 = 𝜅(·,D) [𝜅(D, ·)𝜅(·,D)]−1𝒚.

To complete the proof, observe that

𝜅(D, ·)𝜅(·,D) = (⟨𝜅(𝑥, ·), 𝜅(𝑥′, ·)⟩H : 𝑥, 𝑥′ ∈ D)
= (𝜅(𝑥, 𝑥′) : 𝑥, 𝑥′ ∈ D) = 𝜅(D,D).

(5.11)

We conclude that 𝑔 = 𝜅(·,D)𝜅(D,D)−1𝒚, as desired.

Remark 5.10 (Rank-deficient kernel matrix). If the kernel matrix 𝜅 is rank-deficient,
then we have the following alternative version of Theorem 5.5:

Theorem 5.11 (Kernel interpolation: General case for solution formula). Let D be a
finite set of points and let 𝒚 ∈ KD be output values. Then there is a unique minimum
norm solution 𝑔 ∈ H to the least-squares problem

min
𝑔∈H
∥𝒚 − 𝑔(D)∥,

and it is given by
𝑔 = 𝜅(·,D)𝜅(D,D)†𝒚. (5.12)

Going forward, we shall refer to the function 𝑔 furnished by this theorem as the
kernel interpolant, even when 𝜅(D,D) is rank-deficient. In the rank-deficient case,
the function 𝑔 will not interpolate the data unless 𝒚 ∈ range(𝜅(D,D)). ⋄

Kernel interpolation, Nyström approximation, and error bounds
Kernel interpolation may be applied to any output data 𝒚 ∈ KD, but something
special happens when the data 𝒚 = 𝑓 (D) are outputs of a function 𝑓 ∈ H. In this
case, the kernel interpolant, now denoted 𝑓̂D, takes the form

𝑓̂D = 𝜅(·,D)𝜅(D,D)† 𝑓 (D) = 𝜅(·,D)𝜅(D,D)†𝜅(D, ·) 𝑓 . (5.13)

We have used the version (5.12) of the conclusion of Theorem 5.5. Observe the for-
mal similarity of the right-hand side of (5.13) to the column Nyström approximation

83

(3.5) of a psd matrix. Drawing out this formal connection between kernel interpo-
lation and Nyström approximation will give us a powerful theoretical framework.
We will develop and use this theory here to prove error bounds, and this theory will
play a major role when we extend RPCholesky to infinite dimensions in Chapter 7.

Definition 5.12 (Nyström approximation of a kernel function). Let 𝜅 be a positive-
definite kernel function on X and let D ⊆ X be a finite subset. The Nyström
approximation to 𝜅 induced by D is

𝜅̂D(𝑥, 𝑥′) := 𝜅(𝑥,D)𝜅(D,D)†𝜅(D, 𝑥′).

The residual kernel is 𝜅D := 𝜅 − 𝜅̂D.

Just as a column Nyström approximation to a psd matrix and its residual are psd
matrices, the Nyström approximation and its residual are both positive-definite
kernels. The reader is reminded that a “positive-definite” kernel function is more
analogous to a positive semidefinite matrix.

Proposition 5.13 (Nyström approximation of kernels). Let 𝜅 be a positive-definite
kernel function on X, and let S ⊆ X be subset. The Nyström approximate kernel 𝜅̂S

and its residual 𝜅S = 𝜅 − 𝜅̂S are both positive-definite kernels on X.

Proof. Let E ⊆ X and form the matrix 𝑨 := 𝜅(D ∪ E,D ∪ E) ∈ K(D∪E)×(D∪E) .
Introduce the matrix Nyström approximation 𝑨 := 𝑨⟨S⟩. One readily sees that

𝜅D(E,E) = 𝑨(E,E) and 𝜅D(E,E) = (𝑨 − 𝑨) (E,E).

By Proposition 2.9, these matrices are both psd. We conclude that 𝜅̂D and 𝜅D are
positive-definite kernels.

The following result gives a natural representation for the kernel interpolant.

Lemma 5.14 (Reproducing representation for kernel interpolant). Let H be an RKHS
on X, D ⊆ X be a finite set of points, and 𝑓 ∈ H. The kernel interpolant 𝑓̂D through
𝑓 at D admits the reproducing representation

𝑓̂S(𝑥) = ⟨𝜅̂S(·, 𝑥), 𝑓 ⟩H for each 𝑥 ∈ X.

Proof. Using quasimatrices, this result is easy. We compute

⟨𝜅̂S(·, 𝑥), 𝑓 ⟩ = (𝜅(·,D)𝜅(D,D)†𝜅(D, 𝑥))∗ 𝑓 = 𝜅(𝑥,D)𝜅(D,D)†𝜅(D, ·) 𝑓 .

By (5.13), this expression equals 𝑓̂D(𝑥).

84

We are tantalizingly close to proving error bounds for kernel interpolation. We need
one final result.

Lemma 5.15 (Self inner product of residual and Nyström kernels). With the setting
of Lemma 5.14, we have

⟨𝜅̂D(·, 𝑥), 𝜅̂D(·, 𝑥)⟩H = 𝜅̂D(𝑥, 𝑥) and ⟨𝜅D(·, 𝑥), 𝜅D(·, 𝑥)⟩H = 𝜅D(𝑥, 𝑥).

Proof. To prove the first identity, we employ the quasimatrix formalism:

⟨𝜅̂D(·, 𝑥), 𝜅̂D(·, 𝑥)⟩H = (𝜅(·,D)𝜅(D,D)†𝜅(D, 𝑥))∗(𝜅(·,D)𝜅(D,D)†𝜅(D, 𝑥))
= 𝜅(𝑥,D)𝜅(D,D)†𝜅(D, ·)𝜅(·,D)𝜅(D,D)†𝜅(D, 𝑥)
= 𝜅(𝑥,D)𝜅(D,D)†𝜅(D,D)𝜅(D,D)†𝜅(D, 𝑥)
= 𝜅(𝑥,D)𝜅(D,D)†𝜅(D, 𝑥) = 𝜅̂D(𝑥, 𝑥).

The third line is (5.11), and the fourth line is the identity 𝑴†𝑴𝑴† = 𝑴† for the
pseudoinverse. The second identity follows from the first:

⟨𝜅D(·, 𝑥), 𝜅D(·, 𝑥)⟩H = ⟨𝜅(·, 𝑥) − 𝜅̂D(·, 𝑥), 𝜅(·, 𝑥) − 𝜅̂D(·, 𝑥)⟩H
= 𝜅(𝑥, 𝑥) − 2𝜅̂D(𝑥, 𝑥) + ⟨𝜅̂D(·, 𝑥), 𝜅̂D(·, 𝑥)⟩H = 𝜅D(𝑥, 𝑥).

The final equality is ⟨𝜅̂D(·, 𝑥), 𝜅̂D(·, 𝑥)⟩H = 𝜅̂D(𝑥, 𝑥) and the definition of 𝜅D.

With Lemmas 5.14 and 5.15 in hand, error bounds for kernel interpolation follow
effortlessly.

Theorem 5.16 (Kernel interpolation: Pointwise error). Instate the setting and as-
sumptions of Lemma 5.14. Then the kernel interpolant satisfies the error bound

| 𝑓 (𝑥) − 𝑓̂D(𝑥) |2 ≤ 𝜅D(𝑥, 𝑥) · ∥ 𝑓 ∥2H. (5.14)

That is, the squared error at 𝑥 is bounded in terms of the diagonal entry of the
residual kernel 𝜅D at 𝑥. At each 𝑥, the bound is attained.

Proof. By Lemma 5.14, the error at 𝑥 is

𝑓 (𝑥) − 𝑓̂D(𝑥) = ⟨ 𝑓 , 𝜅D(·, 𝑥)⟩H.

Take absolute values, and bound via Cauchy–Schwarz:

| 𝑓 (𝑥) − 𝑓̂D(𝑥) |2 ≤ ⟨𝜅D(·, 𝑥), 𝜅D(·, 𝑥)⟩H · ∥ 𝑓 ∥2H = 𝜅D(𝑥, 𝑥) · ∥ 𝑓 ∥2H.

The final equality is Lemma 5.15. The bound is attained by setting 𝑓 = 𝜅D(·, 𝑥).

85

5.3 Gaussian processes
We now discuss the theory of Gaussian processes and their applications to learning
from data, which beautifully parallels the theory of RKHSs.

Definition 5.17 (Gaussian process). Let X be a set. A Gaussian process 𝑔 ∼
GP(𝑚, 𝜅) on X with mean function 𝑚 : X → K and covariance function 𝜅 :
X × X → K is a random function 𝑔 such that, for every finite subset D ⊆ X, the
function values 𝑔(D) obey a Gaussian distribution

𝑔(D) ∼ NormalK(𝑚(D), 𝜅(D,D)).

If 𝑚 is identically zero, we say that 𝑔 is centered and write 𝑔 ∼ GP(𝜅).

Naturally, the covariance function 𝜅 is required to have the property that 𝜅(D,D) is
psd for every D; that is, 𝜅 must be a positive-definite kernel. The term Gaussian
process is frequently abbreviated “GP”.

Remark 5.18 (Existence of GPs). The existence of a GP with any specified mean
function and any positive-definite kernel as covariance function is ensured by the
Kolmogorov extension theorem [Kle13, Thm. 14.36]. Unfortunately, this basic
existence result is not sufficient to ensure that statements like “𝑔 ∼ GP(𝑚, 𝜅) is
continuous” can be assigned definite probabilities (i.e., the event “𝑔 is continuous”
may not be measurable). Fortunately, in most cases of practical significance, there
are results that are powerful enough both to ensure existence of a GP and that global
properties like continuity and differentiability have definite probabilities. We will
not discuss these more nuanced issues of GP theory in this thesis. ⋄

We can also use Gaussian processes to design algorithms for learning from data.
The simplest method is Gaussian process interpolation. Suppose we are given a
(finite) data set D ⊆ X and corresponding labels 𝒚 ∈ KD, and we want to learn
a functional relationship 𝑔 : D → K. We adopt a Bayesian perspective. Begin
with a prior that the “true” functional relationship 𝑝 : D → K is a draw from a
Gaussian process, 𝑝 ∼ GP(𝜅); we use a centered prior for simplicity. We then model
the data 𝒚 as measurements of this function 𝒚 = 𝑝(D). We assume, for now, that
the measurements are obtained without noise. Under this model, the conditional
distribution of 𝑝 is given by the following result.

Theorem 5.19 (Conditioning a Gaussian process). Let 𝑝 ∼ GP(𝜅) be a GP on a
base space X, let D ⊆ X be a finite subset, and assume 𝜅(D,D) is nonsingular. Then

𝑝 | {𝑝(D) = 𝒚} ∼ GP(𝑔, 𝜅D) for 𝑔 = 𝜅(·,D)𝜅(D,D)−1𝒚. (5.15)

86

Figure 5.2: RKHS function (left) and single draw of a Gaussian process (right) for
the same positive-definite kernel 𝜅. The draw from the Gaussian process is observed
to be much “rougher” than the RKHS function.

In particular, the mean function is the kernel interpolant (5.12) and the covariance
function is the residual kernel (Definition 5.12).

Equation (5.15) characterizes the posterior distribution of the Gaussian process
conditional on observing the data, 𝑝(D) = 𝒚. The mean 𝑔 : X→ K of the posterior
provides a model of the functional relationship X → K that interpolates the data
(𝑥, 𝑦𝑥), and the covariance function 𝜅D captures the remaining uncertainty. In
particular, the posterior variance is

Var(𝑝(𝑥) | 𝑝(D) = 𝒚) = 𝜅D(𝑥, 𝑥). (5.16)

Observe that this posterior variance agrees with the pointwise error bound (5.14)
when ∥ 𝑓 ∥H = 1. We see that the diagonal entries of the residual kernel capture
the uncertainty in both the kernel interpolation and Gaussian process interpolation
settings. A notable feature of GPs is that the posterior variance (5.14) depends only
on the location of the input data D, not the values of the output data 𝒚.

The proof of Theorem 5.19 is standard, so we omit it; see [Tro23, Ch. 21] for an
introduction to conditioning results for Gaussian random variables.

Remark 5.20 (Gaussian processes don’t lie in the RKHS). Under fairly general
conditions, draws 𝑔 ∼ GP(𝜅) do not belong to the associated RKHS H for which 𝜅
is the kernel (with 100% probability)! A visual illustration is provided in Fig. 5.2,
which shows a function 𝑓 from the periodic Sobolev space H1

per([0, 1]) and a draw
𝑔 ∼ GP(𝜅) from a GP whose covariance function 𝜅 is the kernel for H1

per([0, 1]).
The GP realization 𝑔 ∉ H1

per([0, 1]) is observed to be much rougher than the RKHS
function 𝑓 ∈ H1

per([0, 1]). ⋄

87

5.4 Kernel ridge regression and Gaussian process regression
Gaussian process interpolation and kernel interpolation are two names and two
interpretations for the same methodology. As the names suggest, these methods
interpolate the data. Conventional wisdom from early machine learning practice
and statistical learning theory suggest interpolation can lead to overfitting, yielding
a model that fits the data but fails to generalize [Bis06, §§1.1, 3.2, & 5.5]. Recent
machine learning practice has challenged this conventional wisdom, and many the-
oretical explanations for this phenomenon of benign overfitting have been proposed
(e.g., [BLLT20; LR20; Bel21; CCBG22]).

Still, we may still have reasons to want to regularize kernel or GP fitting methods.
First, for problems in lower dimensions, overfitting with kernel and Gaussian process
methods may be a serious issue. Second, our data may be provided to us with noise,
and including regularization at the level of the noise may help mitigate the effects
of noise. Third, regularizing the problem makes it better conditioned and easier
to solve with preconditioned iterative methods; see Section 6.1. Finally, even if
one wants to interpolate the data, the kernel matrix 𝜅(D,D) can sometimes be
rank-deficient, at least up to the resolution of floating-point errors. For such a rank-
deficient problems, adding even a small amount of regularization (say, at the level
of the machine precision) may be necessary to obtain meaningful results.

Just as before, one can develop regularized data fitting methods in either the RKHS
or GP formalisms. The resulting method will be called kernel ridge regression
(KRR) or Gaussian process regression (GPR). As a change of pace, we will begin
with the GP approach and then develop the corresponding RKHS perspective.

Gaussian process regression
To incorporate regularization into a GP data-fitting pipeline, we assume the following
model. We begin from the same assumption the true underlying relationship is drawn
from a prior distribution

𝑝 ∼ GP(𝜅) (5.17a)

We now assume that the data 𝒚 ∈ KD is provided to us corrupted by noise:

𝒚 = 𝑝(D) + 𝜺 where 𝜺 ∼ NormalK(0, 𝜆 I). (5.17b)

The parameter 𝜆 ≥ 0 sets the variance of the noise 𝜺 ∈ KD, which is assumed to
have iid entries (𝜀𝑥 : 𝑥 ∈ D), independent of the GP 𝑔. Observe that 𝜆 = 0 recovers
the data model for GP interpolation. The posterior of 𝑝 given the data is as follows:

88

Theorem 5.21 (Gaussian process regression). Let 𝑝 ∼ GP(𝜅) be a GP on a base
space X, let D ⊆ X be a finite subset, and assume 𝜆 > 0. Under the noise model
(5.17b), the posterior is

𝑝 | 𝒚 ∼ GP(𝑔, 𝜅𝜆D),

where
𝑔 = 𝜅(·,D) [𝜅(D,D) + 𝜆I]−1𝒚

and

𝜅𝜆D(𝑥, 𝑥
′) = 𝜅(𝑥, 𝑥′) − 𝜅(𝑥,D) [𝜅(D,D) + 𝜆I]−1𝜅(D, 𝑥′) for 𝑥, 𝑥′ ∈ X.

Proof. We can employ a formal device to reduce the analysis of GPR to the result
Theorem 5.19 we already know for Gaussian process interpolation. Begin by
introducing a copy D′ of the set D and defining X′ := X∪D′. Now, package the data
(𝑝, 𝒚) into a Gaussian process 𝑝′ on X′ by setting 𝑝′ = 𝑝 on X and 𝑝′ = 𝒚 on D′.
This GP is centered and its covariance function 𝜅′ is characterized by the formula

𝜅′(D′ ∪ E,D′ ∪ E) =
[
𝜅(D,D) + 𝜆I 𝜅(D,E)
𝜅(E,D) 𝜅(E,E)

]
for E ⊆ X finite. (5.18)

Let us justify this statement block-by-block. The (1, 1)-block is the covariance of
the output data 𝒚, and it equals 𝜅(D,D) +𝜆I by (5.17b). The (1, 2)- and (2, 1)-blocks
are the cross-covariances between 𝒚 and 𝑝(E), which equal the cross-covariances
between 𝑝(D) and 𝑝(E) since the noise 𝜺 is independent of 𝑝. The (2, 2)-block is
the covariance of 𝑝(E), which is 𝜅(E,E) by definition of the covariance function.

The Gaussian process regression posterior conditions 𝑝 on the output values 𝒚.
Since 𝑝 and 𝑝′ agree on X, conditioning 𝑝 on 𝒚 is equivalent to conditioning 𝑝′

on the event 𝑝′(D′) = 𝒚, i.e., interpolating the values 𝒚 on the copied space D′. In
this sense, the Gaussian process regression prior on D is equivalent to the Gaussian
process interpolation prior on D′. Therefore, by Theorem 5.19, the posterior for
Gaussian process regression is

𝑝(E) | 𝒚 ∼ GP(𝜅′(E,D′)𝜅′(D′,D′)−1𝒚, 𝜅′D′ (E,E)) for E ⊆ X finite.

Invoking the formula (5.18) for 𝜅′ completes the proof.

For low-dimensional fitting tasks with noisy data, choosing the correct regularization
𝜆 is critical to the success of GPR. An illustration is provided in Fig. 5.3, which
applies GPR to fitting the ages of Nobel laureates in Physics versus the year of

89

𝜆 = 10−13 𝜆 = 1 𝜆 = 100
Figure 5.3: Fitting of Nobel laureate ages by prize year using GPR for three values
of the regularization 𝜆 = 10−13 (left), 𝜆 = 1 (middle), and 𝜆 = 100 (right); further
details are in the text.

their prize. To apply GPR, we first center the ages in the dataset to have mean
zero and employ a square-exponential kernel (5.5) with bandwidth 𝜎 = 5. The left
panel uses almost no regularization, and the resulting model is wildly oscillatory.
The right panel uses too much regularization, and the resulting model is nearly
constant and thus uninformative. The middle panel sits between these extremes and
produces an interesting model that captures trends in the data. In particular, this
model demonstrates that the average age of Nobel laureates was relatively stable
in the twentieth century and has since been rising. Even this goldilocks models is
perhaps more “wiggly” then one would like.

Remark 5.22 (Parameter selection). The Gaussian process framework also provides
a natural prescription for picking hyperparameters such as the regularization pa-
rameter 𝜆 and the bandwidth 𝜎 for a covariance function such as (5.5) or (5.6). In
general, assume the kernel 𝜅 = 𝜅𝜽 is parametrized by hyperparameters 𝜽 . Under the
data generation model (5.17), the likelihood (probability density) of observing the
data 𝒚 is

𝐿 (𝒚; 𝜽 , 𝜆) = 1
(2𝜋)𝑑/2 det(𝜅𝜽 (D,D) + 𝜆I)1/2

exp
(
− 𝒚
∗ [𝜅𝜽 (D,D) + 𝜆I]−1𝒚

2

)
.

Up to an affine transformation, the log-likelihood is

ℓ(𝒚; 𝜽 , 𝜆) = −𝒚∗ [𝜅𝜽 (D,D) + 𝜆I]−1𝒚 − log det[𝜅𝜽 (D,D) + 𝜆I] .

One can then pick the hyperparameters 𝜽 and 𝜆 to maximize the log-likelihood by an
iterative procedure like gradient descent. The computation of the log-determinant
and its gradients can be a nontrivial problem, for which algorithms based on ran-
domized trace estimation can be employed; see Part II. ⋄

90

Kernel ridge regression
The GPR method can also be derived within the RKHS formalism. The kernel
interpretation of GPR is referred to as kernel ridge regression (KRR).

To derive the KRR problem, we begin by formulating a least-squares regression
problem over the RKHS H. Given data 𝒚 ∈ KD, the least-squares fit

min
𝑔∈H
∥𝒚 − 𝑔(D)∥2.

has infinitely many solutions, all of which interpolate the data (at least as well as
possible; see Theorem 5.11). To make the procedure more resilient to noise, we can
reformulate this problem by adding a ridge penalty term:

𝑔̂ = argmin
𝑔∈H

∥𝒚 − 𝑔(D)∥2 + 𝜆 ∥𝑔∥2H for 𝜆 > 0. (5.19)

The ridge penalty 𝜆 ∥𝑔∥2H serves to penalize “roughness” or “complexity”, as mea-
sured by the RKHS norm. The (unique) solution 𝑔̂ is the KRR regression model,
which provides a model of the input output relation X→ K.

Theorem 5.23 (Kernel ridge regression: Solution formula). Let H be an RKHS and
let 𝜆 > 0. The KRR problem (5.19) has a unique solution, which satisfies

𝑔 = 𝜅(·,D) [𝜅(D,D) + 𝜆I]−1𝒚.

Equivalently,

𝑔 =
∑︁
𝑥∈D

𝜅(·, 𝑥)𝛽𝑥 where 𝜷 = argmin
𝜷∈KD

∥𝜅(D,D)𝜷 − 𝒚∥2 + 𝜆 𝜷∗𝜅(D,D)𝜷.

Proof sketch. First, argue that the solution 𝑔 lies in the column span of the quasi-
matrix 𝜅(·,D), arguing similarly to Theorem 5.7. Then, use the ansatz 𝑔 = 𝜅(·,D)𝜷
and solve for 𝜷.

Code for kernel ridge regression appears in Program 5.2.

91

Program 5.2 krr.m. Kernel ridge regression for data fitting.
function [fhat,beta] = krr(y,kernel,D,lamb)
% Input: Data y, kernel function kernel(x,x’), data D, and
% regularization lamb >= 0
% Output: Kernel interpolant fhat and coefficients beta

A = kernel(D,D) + lamb*eye(size(D,1)); % kappa(D,D) + lamb*I
beta = A \ y; % Get coefficients
fhat = @(X) kernel(X,D) * beta; % Define regression function

end

92

C h a p t e r 6

ACCELERATING KERNEL AND GAUSSIAN PROCESS
METHODS BY SUBSET SELECTION AND COLUMN

NYSTRÖM APPROXIMATION

Fortunately, there is a path forward. To implement kernel methods, we
simply need to approximate the kernel matrix. . . Even a poor
approximation of the kernel can suffice to achieve near-optimal
performance, both in theory and in practice.

Per-Gunnar Martinsson and Joel A. Tropp, Randomized numerical
linear algebra: Foundations and algorithms [MT20]

In last chapter, we saw how to use the theories of reproducing kernel Hilbert spaces
(RKHSs) and Gaussian processes (GPs) to develop methods for learning from data.
Throughout this discussion, we had little to say about the computational cost of
these methods. When run on a dataset D of size |D| = 𝑛, direct implementation of
all the methods in the previous chapter require forming, storing, and factorizing the
𝑛 × 𝑛 kernel matrix 𝜅(D,D). This incurs a heavy computational cost, sometimes
called the curse of kernelization [WCV12]:

Curse of kernelization. The cost of implementing kernel interpolation,
kernel ridge regression, and many other kernel methods on 𝑛 data points
using standard direct linear algebra methods requires O(𝑛2) storage and
O(𝑛3) operations.

In this chapter, we will see how RPCholesky and other psd column subset selection
methods can be used to accelerate kernel methods, resulting in faster algorithms.

We say up front that there is no free lunch here. RPCholesky and other psd low-rank
approximation are effective for kernel problems when the kernel matrix 𝜅(D,D) is
well-approximated by a low-rank matrix. Fortunately, many kernel matrices possess
this property, so the approaches described in this chapter have wide—though not
universal—applicability.

Sources. Section 6.1 is adapted from the paper

93

Mateo Díaz et al. Robust, Randomized Preconditioning for Kernel Ridge Regression.
July 2024. arXiv: 2304.12465v5

Section 6.2 is adapted from the original RPCholesky paper

Yifan Chen, Ethan N. Epperly, Joel A. Tropp, and Robert J. Webber. “Randomly
Pivoted Cholesky: Practical Approximation of a Kernel Matrix with Few Entry
Evaluations”. In: Communications on Pure and Applied Mathematics 78.5 (2025),
pp. 995–1041. doi: 10.1002/cpa.22234.

The material in Section 6.3 is new.

Outline. Sections 6.1 to 6.3 present three approaches to accelerating KRR (equiva-
lently, GPR) using RPCholesky or other psd column subset selection algorithms;
these sections are ordered from most expensive and most accurate to least expensive
and most approximate. Section 6.1 discusses using RPCholesky to precondition
the KRR linear systems; this approach leads to full accuracy, but requires O(𝑛2) op-
erations even under favorable conditions. Section 6.2 discusses the restricted KRR
problem, a cheaper approximate version of KRR with a reduced cost of O(𝑘2𝑛),
where 𝑘 is a user-tunable subset size. Section 6.3 discusses using RPCholesky for
KRR in the setting of active learning problems.

6.1 Column Nyström preconditioning
Our first way of using psd low-rank approximation methods to accelerate kernel
methods is via preconditioning. Let us focus on KRR. Per Theorem 5.23, the
optimal coefficients 𝜷 ∈ K𝑛 for KRR are the solution to a linear system

(𝑨 + 𝜆I)𝜷 = 𝒚 for 𝑨 := 𝜅(D,D). (6.1)

When 𝑛 is large (say, so large that one cannot fit the entire matrix 𝑨 in memory at
once), it is natural to use an iterative method like conjugate gradient [Saa03, §6.7]
to solve (6.1). However, if the matrix 𝑨 + 𝜆I is ill-conditioned, the convergence
of iterative methods will be slow. To improve convergence, we can form a column
Nyström approximation 𝑨 ≈ 𝑨 and use this approximation to precondition the linear
system, resulting in faster convergence.

Let 𝑨 = 𝑭𝑭∗ be a column Nyström approximation computed by any method; we rec-
ommend RPCholesky (or, more precisely, a fast implementation of RPCholesky,
see Chapter 8) for use in practice. Define the Nyström preconditioner 𝑷 := 𝑨 + 𝜆I.
In practice, it is grossly inefficient to store 𝑷 directly. Instead, we compute an

https://arxiv.org/abs/2304.12465v5
https://doi.org/10.1002/cpa.22234

94

Program 6.1 rpcholesky_precon.m. RPCholesky-preconditioned conjugate
gradient for solving KRR problems. Subroutine mypcg is provided in Program F.5.
function [g,Betas] = rpcholesky_precon(y,kernel,D,lamb,k,iter)
% Input: Outputs y, kernel function kernel(x,x’), inputs D,
% regularization lamb, rank k, and number of iterations iter
% Output: Kernel interpolant g and sequence Beta of coefficients
% produced by PCG, stacked columnwise

A = kernel(D,D); % Generate full kernel matrix
Acol = @(S) A(:,S); % Column generation subroutine
Asub = @(S) A(S,S); % Submatrix generation subroutine
d = diag(A); % Diagonal of kernel matrix
b = ceil(k/2); % Block size for accelerated RPC
F = acc_rpcholesky(Acol,Asub,d,k,b);% LRA by accelerated RPCholesky
[U,S,~] = svd(F,"econ"); % Economy-size SVD

% Define matrix-vector product, preconditioner
matvec = @(z) A*z + lamb*z;
pre = @(z) U*((S^2 + lamb*eye(k))\(U’*z)) + (z - U*(U’*z)) / lamb;

Betas = mypcg(matvec,pre,y,iter); % Coefficients by PCG
g = @(X) kernel(X,D) * Betas(:,end);% Define interpolant

end

(economy-size) SVD 𝑭 = 𝑼𝚺𝑽∗, from which we can apply the action of 𝑷 and its
inverse via the formulas

𝑷𝒛 = 𝑼(𝚺2(𝑼∗𝒛)) + 𝜆𝒛,
𝑷−1𝒛 = 𝑼((𝚺2 + 𝜆I)−1(𝑼∗𝒛)) + 𝜆−1(𝒛 −𝑼(𝑼∗𝒛)). (6.2)

To solve (6.1), we run preconditioned conjugate gradient (PCG) with preconditioner
𝑷. The matrix 𝑨 + 𝜆I is applied via the formula (𝑨 + 𝜆I)𝒛 = 𝑨𝒛 + 𝜆𝒛, and the
inverse-preconditioner is applied via the formula (6.2). See Program 6.1 for an
implementation. (Note that we use the faster accelerated version of RPCholesky
algorithm for our implementation; see Section 8.4.)

Computational cost. The computational cost of KRR with column Nyström pre-
conditioning consists of generating the entries of the kernel matrix 𝑨 = 𝜅(D,D),
forming the preconditioner 𝑷, and performing iterations with preconditioned con-
jugate gradient. We analyze the cost of two variants, a high-memory version where
the kernel matrix 𝑨 is formed once and stored, and a low-memory version where the
kernel matrix is regenerated each PCG iteration. We denote by “niter” the number

95

Implementation High-Memory Low-Memory

Storage O(𝑛2) O(𝑘𝑛)
Runtime O((𝑡𝜅 + niter)𝑛2 + 𝑘2𝑛) O(niter · 𝑡𝜅𝑛2 + 𝑘2𝑛)

Table 6.1: Storage and runtime costs for low-memory and high-memory column
Nyström preconditioned kernel ridge regression. Here, niter is the number of PCG
iterations and 𝑡𝜅 ≥ 1 the number of operations required for a single kernel function
evaluation.

of PCG iterations and 𝑡𝜅 ≥ 1 the number of operations required for a single kernel
function evaluation.

First, suppose that we generate and store the whole kernel matrix once, requiring
O(𝑛2) memory and O(𝑡𝜅𝑛2) time. Afterwards, computing and factorizing 𝑭 =

𝑼𝚺𝑽∗ using most column Nyström methods (RPCholesky, RLS sampling via the
RRLS algorithm, uniform sampling, greedy selection) requires O(𝑘2𝑛) operations.
Each PCG iteration consists of one matvec with 𝑨 + 𝜆I, costing O(𝑛2) operations,
and one invocation of the primitive (6.2), costing O(𝑘𝑛) operations. The total cost
is thus O((𝑡𝜅 + niter)𝑛2 + 𝑘2𝑛) operations.

Second, suppose we regenerate entries of kernel matrix on an as-needed basis.
The storage costs are now dominated by storing the factor 𝑼 needed for the
inverse-preconditioner operation (6.2), requring O(𝑘𝑛) memory. Forming the pre-
conditioner requires O(𝑡𝜅𝑘𝑛 + 𝑘2𝑛) operations, and each PCG iteration requires
O(𝑡𝜅𝑛2 + 𝑘𝑛) operations, since we must regenerate the matrix at each iteration. The
total cost is thus O(niter · 𝑡𝜅𝑛2 + 𝑘2𝑛) operations.

Table 6.1 compares both implementations. These implementations represent a clas-
sic time–space tradeoff. Regenerating the kernel matrix makes each PCG iteration
significantly more expensive but also cuts the storage costs dramatically.

Analysis. How many PCG iterations are required for RPCholesky-preconditioned
KRR to converge? The following result provides a partial answer:

Theorem 6.1 (RPCholesky preconditioning). Fix 𝜆 > 0 and psd matrix 𝑨 ∈ K𝑛×𝑛.
Introduce the tail rank

dtail(𝜆) := min

{
𝑟 ≥ 0 :

𝑛∑︁
𝑖=𝑟+1

𝜆𝑖 (𝑨) ≤ 𝜆
}
,

execute RPCholesky for 𝑘 ≥ dtail(𝜆) (1 + log(tr(𝑨)/𝜆)) steps to produce low-rank
approximation 𝑨, and instantiate the RPCholesky preconditioner 𝑷 := 𝑨+𝜆I. With

96

90% probability, the preconditioned condition number is controlled as

cond(𝑷−1/2(𝑨 + 𝜆I)𝑷−1/2) ≤ 30.

Consequently, PCG produces a solution 𝜷(niter) satisfying the guarantee

∥𝜷(niter) − 𝜷∥𝑨+𝜆I ≤ 𝜀 · ∥𝜷∥𝑨+𝜆I

after at most niter ≤ ⌈6 log(2/𝜀)⌉ steps. Here, ∥𝒛∥𝑴 := (𝒛∗𝑴𝒛)1/2 denotes the
norm associated to a positive definite matrix 𝑴.

A slight strengthening of this result and its proof appear in [DEFT+24, Thm. 2.2].

We conjecture that Theorem 6.1 holds with the tail dimension dtail(𝜆) replaced
by the effective dimension deff (𝜆), defined in Definition 3.16. To get a sense of
the difference between dtail(𝜆) and deff (𝜆), suppose the dimension 𝑛 is very large,
and consider a matrix with polynomially decaying spectrum 𝜆𝑖 (𝑨) = 𝑖−𝑝, where
𝑝 > 1 is fixed. The tail rank and effective dimensions are dtail(𝜆) = Θ(𝜆−1/(𝑝−1))
and deff (𝜆) = Θ(𝜆−1/𝑝). For a small power, say 𝑝 = 2, these parameters are
dtail(𝜆) = Θ(𝜆−1) and dtail(𝜆) = Θ(𝜆−1/2), leading to a dramatic difference when
𝜆 ≪ 1. For large 𝑝 (or high 𝜆), the distinction between tail rank and effective
dimension is less significant. Ultimately, the “missing link” that would allow us to
replace dtail(𝜆) in Theorem 6.1 by deff (𝜆) is better bounds for RPCholesky in the
spectral norm; see Section 11.1 for discussion on the types of bounds I conjecture.

Parameter selection. There are many approaches to choosing parameters for RP-
Cholesky preconditioning. One approach, useful in memory-constrained settings,
is to just choose the parameter 𝑘 as large as memory will allow. A second rule
of thumb, guided more by runtime considerations, is to set 𝑘 ∼ 𝑛1/2, so that the
O(𝑘2𝑛) cost of forming the preconditioner is comparable to the O(𝑛2) cost of a
single conjugate gradient step. Since many CG steps are typically required, I would
recommend values of 𝑘 ≈ 3

√
𝑛 or 𝑘 ≈ 10

√
𝑛. Last, one can use the residual trace

to set the approximation rank, running RPCholesky until the trace of the residual
matrix falls below a tolerance. The parameter 𝜆 provides a natural guide for the
scale of the tolerance.

Experiment. Here, we report an experiment performed by myself and coauthors
in [DEFT+24, Fig. 6]. Here, we apply several column Nyström preconditioners to
predict the highest occupied molecule orbital energy for 𝑛 = 5 × 104 data points

97

Figure 6.1: Relative residual (left) and SMAPE test error (right) for column
Nyström-preconditioned conjugate gradient with greedy (blue circles), uniform
(purple squares), RPCholesky (orange asterisks), and no preconditioning (yel-
low).

from the QM9 dataset [RvBR12; RDRv14]. We set the approximation rank to be
𝑘 := 103. For each choice of KRR coefficients 𝜷, we report the relative residual

∥(𝜅(D,D) + 𝜆I)𝜷 − 𝒚∥/∥𝒚∥

and the symmetric mean average percentage error

SMAPE(𝒚 (test) , 𝒚̂ (test)) = 1
𝑚

𝑚∑︁
𝑖=1

|𝑦 (test)
𝑖
− 𝑦̂ (test)

𝑖
|

(|𝑦 (test)
𝑖
| + | 𝑦̂ (test)

𝑖
|)/2

,

computed between the test data 𝒚 (test) and the predicted values 𝒚̂ (test)
= 𝜅(D(test) ,D)𝜷

for the test data.

Results are shown in Fig. 6.1. We see that, on this example, RPCholesky out-
performs the other two column Nyström preconditioning strategies, achieving the
lowest possible test error in about 60 iterations versus 100 iterations for the other two
methods. More than anything, this example illustrates that some preconditioner is
absolutely necessary to solve this problem using an iterative method, as the method
fails to converge at all without preconditioning.

Figure 6.1 shows just a single example of the success of Nyström preconditioning.
See [DEFT+24, §2.1] for many more experiments, including performance plots
which demonstrate that RPCholesky preconditioning is generally the most effective
column Nyström preconditioning method among available strategies on a testbed of
examples.

98

6.2 Restricted kernel ridge regression
Even in the most optimistic setting, column Nyström preconditioning for KRR still
requires work quadratic in the data size 𝑛. In this section, we will develop methods
with a runtime that is, in principle, linear in size of the data. More precisely, we
will describe restricted kernel ridge regression, an approximate form of KRR that
requires at most O(𝑘𝑛) storage and O(𝑘2𝑛) time, where 1 ≤ 𝑘 ≤ 𝑛 is a tunable
parameter. Larger values of 𝑘 typically leads to more accurate results, at the cost of
being more expensive.

Description of restricted KRR method
We have largely described kernel and GP fitting algorithms in abstract terms, as
minimum norm interpolants in a Hilbert space, solutions to infinite-dimensional
regularized least-squares problems, or as conditional expectations of Gaussian pro-
cesses. More prosaically, kernel interpolation is just interpolation of scattered data
(𝑥, 𝑦𝑥) by a linear combination of functions 𝜅(·, 𝑥) for 𝑥 ∈ D:

𝑔 =
∑︁
𝑥∈D

𝜅(·, 𝑥)𝛽𝑥 . (6.3a)

For KRR, we fit the data by a function of this form that minimizes a regularized
least-squares loss. More precisely, following Theorem 5.23, 𝜷 is chosen to satisfy

𝜷 = argmin
𝜷∈KD

∥𝜅(D,D)𝜷 − 𝒚∥2 + 𝜆 𝜷∗𝜅(D,D)𝜷. (6.3b)

To reduce computational cost and obtain a model 𝑔̂ : D→ K with fewer parameters,
it is natural to consider a restricted version of the full optimization problem (6.3)
where 𝜷 ∈ KD is only permitted to be nonzero in 𝑘 selected positions S ⊆ D.
Denoting 𝜷̂ = 𝜷(S), we have the following restricted version of the KRR problem:

𝑔̂ =
∑︁
𝑥∈S

𝜅(·, 𝑥)𝛽𝑥 (6.4a)

with
𝜷̂ = argmin

𝜷∈KS
∥𝜅(D,S) 𝜷̂ − 𝒚∥2 + 𝜆 𝜷̂∗𝜅(S,S) 𝜷̂. (6.4b)

We call (6.4) the restricted KRR method. Its solution satisfies the normal equations

[𝜅(S,D)𝜅(D,S) + 𝜆𝜅(S,S)] 𝜷̂ = 𝜅(S,D)𝒚. (6.5)

The landmark set S is fixed during restricted KRR, though it can (and should!) be
adaptively selected based on the data D using a procedure such as RPCholesky. The

99

landmarks S can be chosen by a psd column selection algorithm like RPCholesky.
To facilitate comparison, we call (6.3) the full-data KRR method.

Observe that the restricted KRR problem (6.4b) is a regularized least-squares prob-
lem of dimension 𝑛 × 𝑘 , where 𝑘 = |S|. Its solution defines a regression function 𝑔̂
that can evaluated at a point using only 𝑘 kernel function evaluations; compare to
the 𝑛 kernel function evaluations required to evaluate the full KRR model (6.3a).

Remark 6.2 (History and terminology). Methods for simplifying a regression prob-
lem by using only a subset of basis functions date back at least to work on scattered
data interpolation in the 1980s [Wah90, Ch. 7]. The modern literature on restricted
KRR began in the GP community with the work of Smola and Bartlett [SB00],
who coined the name sparse Gaussian process regression (SGPR). The method
reemerged in the kernel literature in the work of Rudi, Camoriano, and Rosasco
[RCR15] as the Nyström method.

I find the terms “sparse Gaussian process” and “Nyström method” both to be po-
tentially misleading. In sparse Gaussian process regression, it is the coefficient
vector 𝜷 that is sparse, not the kernel matrix or the target solution 𝑔̂. Confusingly,
methodologies where one designs a kernel with compact support [Wen04, Ch. 9]
or zero out small entries in the kernel matrix, resulting in a sparse kernel matrix,
are also common [FGN06]. As we have seen already and will continue to see in
this thesis, there are several non-equivalent ways of using Nyström approximation
to accelerate the solution of KRR problems, so the term “Nyström method” can also
be ambiguous. For these reasons. I use the term “restricted KRR” for (6.4), which
my co-authors and I introduced in [DEFT+24]. ⋄

Restricted KRR as Nyström approximation of the kernel
So far, we have presented restricted KRR as an ad hoc solution to reduce computa-
tional costs. We can also give interpretations of this method in both the RKHS and
GP formalisms. We look at the RKHS formalism first.

Recall that a subset S ⊆ D induces a Nyström approximation

𝜅(D,S)𝜅(S,S)†𝜅(S,D)

to the kernel matrix 𝜅(D,D) and a Nyström approximation of the entire kernel
function 𝜅:

𝜅̂S(𝑥, 𝑥′) = 𝜅(𝑥,S)𝜅(S,S)†𝜅(S, 𝑥′) for 𝑥, 𝑥′ ∈ X.

100

This observation leads to an interpretation of restricted KRR, which was suggested
to me by Yifan Chen:

Theorem 6.3 (Restricted KRR as Nyström approximation of the kernel). Let S ⊆
D ⊆ X be nested finite subsets of a base space X, and let 𝒚 ∈ KD be data. Assume
the regularization parameter 𝜆 > 0 is positive and the kernel matrix 𝜅(S,S) is in-
vertible. The restricted KRR function 𝑔̂ given by (6.4a) is the output of the full-data
KRR method applied to the data 𝒚 ∈ KD with the Nyström approximate kernel:

𝑔̂ = 𝜅̂S(·,D) [𝜅̂S(D,D) + 𝜆I]−1𝒚. (6.6)

To prove this result, we will employ the following lemma:

Lemma 6.4 (Nonsymmetric ridge regression identity). Let 𝑩,𝑪 ∈ K𝑛×𝑘 be matrices,
and choose 𝜆 ∈ K to ensure that the matrix inverses below are well-defined. Then

(𝑩∗𝑪 + 𝜆I)−1𝑩∗ = 𝑩∗(𝑪𝑩∗ + 𝜆I)−1.

The case 𝑩 = 𝑪, yields the identity (𝑩∗𝑩 + 𝜆I)−1𝑩∗ = 𝑩∗(𝑩𝑩∗ + 𝜆I), useful in the
analysis of ridge-regularized linear regression, which may be called the (symmetric)
ridge regression identity. The formula is easily checked by multiplying to clear the
inverses and checking that the left- and right-hand sides agree. It may also be
derived using the Sherman–Morrison–Woodbury formula.

Proof of Theorem 6.3. Let ℎ denote the right-hand side of (6.6). Our goal is to show
𝑔̂ = ℎ. We prove the case 𝜆 > 0.

Using the definition of the Nyström-approximate kernel, we may write

ℎ = 𝜅(·,S)𝜅(S,S)−1𝜅(S,D) [𝜅(D,S)𝜅(S,S)−1𝜅(S,D) + 𝜆I]†𝒚.

Introduce 𝑩 = 𝜅(D,S)𝜅(S,S)−1 and 𝑪 = 𝜅(D,S), and invoke the nonsymmetric
ridge regression identity to obtain

ℎ = 𝜅(·,S) [𝜅(S,S)−1𝜅(S,D)𝜅(D,S) + 𝜆I]−1𝜅(S,S)−1𝜅(D,S)𝒚
= 𝜅(·,S) [𝜅(S,D)𝜅(D,S) + 𝜆𝜅(S,S)]−1𝜅(D,S)𝒚.

Utilize the normal equations (6.5) to complete the proof.

101

Sparse Gaussian process regression
The GP framework provides alternative perspectives on the restricted KRR method.
In their original work, Smola and Bartlett [SB00] introduce SGPR as a way of
restricting the GPR problem to a subset of basis functions to increase computational
efficiency, similar to our original derivation of restricted KRR above.

One may also develop probabilistic interpretations of restricted KRR. The easiest
interpretation is that restricted KRR is equivalent to ordinary Gaussian process
regression on the restricted prior

𝑝 := E[𝑝 | 𝑝(S)] .

The restricted prior 𝑝 averages out all the randomness in the initial prior 𝑝 except
at the landmark points S. The equivalence of this approach with restricted KRR
follows from Theorems 3.13 and 6.3. There is also a more sophisticated probabilistic
interpretation due to Titsias [Tit09].

Experiment
Experiments for restricted KRR with RPCholesky and other column Nyström
methods on a scientific dataset are provided in [CETW25, §4.2]. Here, we provide
a more conceptual experiment to illustrate the benefits of RPCholesky as a method
for selecting the subset S for use with restricted KRR.

We consider the task of fitting a function 𝑓 : R2 → R from data D ⊆ R2 and 𝒚 :=
𝑓 (D) ∈ RD. For concreteness, we choose the function to be 𝑓 (𝒙) = sin((𝑥1+𝑥2)/10)
and D to consist of 𝑛 = 104 points inR2 forming a smiley face with radius 10; see the
right panel of Fig. 6.2 for illustration. We use the Matérn-5/2 kernel with bandwidth
𝜎 = 40, and we set the regularization to 𝜆 := 0.

Results for restricted KRR with both RPCholesky-selected points and uniformly
selected data points are shown in the right panel of Fig. 6.2. We see that the error,
measured as the largest difference between the true function 𝑓 and the model 𝑔 on
the dataset D,

error := max
𝒙∈D
| 𝑓 (𝒙) − 𝑔(𝒙) |, (6.7)

is substantially lower for RPCholesky restricted KRR than uniform restricted KRR.
An explanation for why can be seen in the left panel of Fig. 6.2, which shows
𝑘 = 100 points selected either by RPCholesky or uniformly at random. Each eye
comprises just 𝑛1/2 ≪ 𝑛 data points, which are easy for uniform sampling to miss.

102

Figure 6.2: Left: Error (6.7) for restricted KRR with RPCholesky-selected points
(orange asterisks) and uniformly selected points (purple squares). Lines show the
median of 100 trials, and shaded regions show the 10% and 90% quantiles. Right:
Sets of 𝑘 = 100 points selected either by RPCholesky or uniformly at random,
overlayed on the data D (black translucent circles). RPCholesky is seen to produce
an even coverage of the data, whereas uniform sampling misses the right eye.

RPCholesky, by contrast, selects points that are well-distributed across the whole
data set, including both eyes.

6.3 Active learning for kernel interpolation and ridge regression
So far, we have seen two approaches to that use RPCholesky and other subset selec-
tion algorithms to improve the efficiency of KRR. First, in Section 6.1, we employed
column Nyström approximations to precondition the full-data KRR problem. Under
ideal conditions, the cost of this approach was as low as O(𝑛2) operations. Next, in
Section 6.2, we used subset selection algorithms to restrict the KRR problem to a
set of 𝑘 selected centers, at a cost of O(𝑘2𝑛) operations. In both of these sections,
we assumed access to a dataset of 𝑛 data points D ⊆ X with labels 𝒚 ∈ K𝑛. In
this section, we will consider an active learning setting where we are given just the
unlabeled training data D ⊆ X and must choose what data to label.

For now, we suppose the set of data points D to potentially label is finite. Unlike
our other settings, the assumption that D is finite is non-vacuous; one can imagine
applications where there is an infinite set of points that we could label. We will
return to this infinite setting in Chapter 7. Given the set D, we can select 𝑘 points
to label by running RPCholesky (or another subset selection algorithm). After
we have a subset S ⊆ D, we are free to fit whatever model we want to the data
S and labels 𝒚 ∈ KS. In this framework, it is most natural to use a kernel or GP

103

Program 6.2 rpcholesky_active_krr.m. Active kernel ridge regression with
data points selected by RPCholesky. Subroutines krr and acc_rpcholesky are
provided in Programs 5.2 and 8.4.
function [g,beta,S] = rpcholesky_active_krr(y,kernel,D,lamb,k)
% Input: Outputs y, kernel function kernel(x,x’), inputs D,
% regularization lamb, and number of points k
% Output: Kernel interpolant g, coefficients beta, and subset S

Acol = @(S) kernel(D,D(S,:)); % Column subroutine
Asub = @(S) kernel(D(S,:),D(S,:)); % Submatrix subroutine
d = ones(size(D,1),1); % Diagonal of kernel matrix
b = ceil(k/2); % Block size for acc. RPC
[~,S] = acc_rpcholesky(Acol,Asub,d,k,b); % Subset selection by RPC

[g,beta] = krr(y,kernel,D(S,:),lamb); % Apply KRR

end

method, like kernel interpolation or KRR, to fit the data. One could also combine
kernel-based subset selection with any type of machine learning method such as an
artificial neural network. Code for active KRR with RPCholesky is provided in
Program 6.2, and theoretical guarantees are provided later in Corollary 7.6.

Remark 6.5 (Is this active learning?). The term “active learning” is contested in the
literature. Miller and Calder suggest drawing a distinction between coreset methods,
which “leverage the geometry of the underlying dataset. . . but not the set of labels
observed at labeled points during the active learning process”, and active learning
methods, which use both the geometry of the data set D and the observed labels
𝑦𝑥 at queried points 𝑥 ∈ D [MC23, §3.1]. Other researchers do not make this
distinction and refer to any machine learning that chooses points to label as an active
learning method [CP19; MMWY22]. We shall adopt the second definition in this
work, though our methods would be described as a “coreset method” in Miller and
Calder’s taxonomy. ⋄

To test RPCholesky as a method for active learning, we apply active kernel inter-
polation to 𝑛 = 105 randomly selected points from the SUSY dataset [BSW14]; we
hold out an additional 𝑛 randomly selected points as a test set. Data is standardized.
We compare active kernel interpolation with subsets selected uniformly at random
to those selected by RPCholesky. As the kernel, we use a Laplace kernel with
ℓ2 distances and bandwidth 𝜎 = 4. As a baseline, we also report the errors with

104

Figure 6.3: Comparison of active (line solid lines) and restricted (dark dashed lines)
kernel interpolation with subset S selected by RPCholesky (orange asterisks) or
uniformly at random (purple squares).

restricted KRR (with regularization parameter 𝜆 = 0) using the same subsets S.

Results are shown in Fig. 6.3. We see that RPCholesky active kernel interpolation
outperforms active kernel interpolation with uniformly selected points for most
values of 𝑘; the benefits are pronounced when the number of labeled points is
small, say, 𝑘 < 100. The baselines results for restricted KRR show much smaller
errors than the active learning methods, demonstrating that it is valuable to use label
information 𝑦𝑥 at each point 𝑥 ∈ D if it is available.

105

C h a p t e r 7

TO INFINITE DIMENSIONS

One should never try to prove anything that is not almost obvious.

A sentiment attributed to Alexandre Grothendieck by Allyn Jackson in
As if summoned from the void, the life of Alexandre Grothendieck [Jac04]

We have seen the RPCholesky algorithm is effective at producing low-rank ap-
proximations to a psd matrix. In the previous chapter, we applied this algorithm to
the kernel matrix associated with a finite set of data points, and we used the result-
ing low-rank approximations and subsets of landmark points to accelerate kernel
machine learning algorithms.

In Chapter 5, we worked with kernels 𝜅 : X × X → K defined over an infinite base
space X, but we only applied RPCholesky to kernel matrices 𝜅(D,D) associated
with finite subsets D ⊆ X. It is natural to ask: Is there an infinite-dimensional
version of RPCholesky that we can use to construct low-rank approximations to the
infinite kernel function 𝜅 and to identify landmark points S ⊆ X for the infinite set
X? This chapter answers this question in the affirmative.

Sources. This chapter is based on the following paper:

Ethan N. Epperly and Elvira Moreno. “Kernel Quadrature with Randomly Pivoted
Cholesky”. In: Advances in Neural Information Processing Systems 36 (2023),
pp. 65850–65868. url: https://dl.acm.org/doi/10.5555/3666122.36689
97.

The material has been significantly expanded, including a much lengthier introduc-
tion to the functional analysis setting, the new Theorem 7.1 (generalizing Theo-
rem 4.1), and a new application to active kernel interpolation in Section 7.4.

Outline. Section 7.1 sets the stage by introducing appropriate operators and func-
tion spaces for infinite-dimensional low-rank approximation. Section 7.2 presents
the infinite-dimensional RPCholesky algorithm, and Section 7.3 discusses imple-
mentations of this procedure using rejection sampling. Sections 7.4 and 7.5 provide
applications to active learning and quadrature.

https://dl.acm.org/doi/10.5555/3666122.3668997
https://dl.acm.org/doi/10.5555/3666122.3668997

106

7.1 Mathematical setting
In this section, we develop a functional analysis setting for low-rank approximation
of kernels and subset selections on general, possibly infinite sets, following the
treatments given in [HB04; Bac17; BBC19; EM23]. Inspired by the Grothendieck
quote at the start of this chapter, our goal will be to develop a function space setting
where the infinite dimensional extension of RPCholesky and its analysis is a direct
translation of the ordinary matrix setting.

Function spaces. Our setting will be a topological space X endowed with a Borel
measure 𝜇, upon which we define an RKHS H of functions 𝑓 : X → K. We let
𝜅 : X×X→ K denote the reproducing kernel of H, which we assume is continuous.

This set X supports two spaces of functions, the RKHS H and the space of square
integrable functions L2(𝜇). The relation between these spaces will be crucial to our
development. To ensure these two spaces place nicely with each other, we make the
assumption that the kernel 𝜅 is integrable along the diagonal:∫

X
𝜅(𝑥, 𝑥) d𝜇(𝑥) < +∞

and that H is dense in L2(𝜇). These assumptions imply that H is compactly embedded
in L2(𝜇) [HB04, Prop. 2].

Discovering the integral operator. Since H is compactly embedded in L2(𝜇), the
identity mapping 𝜄 𝑓 := 𝑓 defines a compact linear map 𝜄 : H→ L2(𝜇). The maps 𝜄
“forgets” that a function 𝑓 belongs to H and treats it as a function in L2(𝜇). Introduce
the symbol 𝐴 := 𝜄∗ for its adjoint. The adjoint 𝐴 : L2(𝜇) → H maps a function
𝑢 ∈ L2(𝜇) (which, in general, can be quite rough) to a “smooth” function 𝐴𝑢 ∈ H.
What could this mysterious operator 𝐴 be?

We shall discover the correct answer by a formal calculation. Let 𝑢 ∈ L2(𝜇) and
𝑓 ∈ H be arbitrary, and compute the inner product

⟨𝜄 𝑓 , 𝑢⟩L2 (𝜇) =

∫
X
𝑓 (𝑥)𝑢(𝑥) d𝜇(𝑥).

Recall that the adjoint is defined via the relation ⟨𝜄 𝑓 , 𝑢⟩L2 (𝜇) = ⟨ 𝑓 , 𝜄∗𝑢⟩H, so we must
find a way of introducing the H inner product. To do so, employ the reproducing
property ⟨ 𝑓 , 𝜅(·, 𝑥)⟩H = 𝑓 (𝑥) to obtain

⟨𝜄 𝑓 , 𝑢⟩L2 (𝜇) =

∫
X
⟨ 𝑓 , 𝜅(·, 𝑥)⟩H𝑢(𝑥) d𝜇(𝑥).

107

Pull the integral over 𝑥 into the inner product, yielding

⟨𝜄 𝑓 , 𝑢⟩L2 (𝜇) =

〈
𝑓 ,

∫
X
𝜅(·, 𝑥)𝑢(𝑥) d𝜇(𝑥)

〉
H
=: ⟨ 𝑓 , 𝜄∗𝑢⟩H.

We conclude that the adjoint 𝐴 = 𝜄∗ is the integral operator

𝐴𝑢 =

∫
X
𝜅(·, 𝑥)𝑢(𝑥) d𝜇(𝑥). (7.1)

A rigorous version of this argument is provided in [HB04, Prop. 2].

Properties of the integral operator. The integral operator 𝐴, defined by (7.1), can
also be seen as an operator on L2(𝜇), which we denote 𝐴L2 (𝜇)→L2 (𝜇) . Using the
“forgetting” map 𝜄 : H→ L2(𝜇), this operator can be written

𝐴L2 (𝜇)→L2 (𝜇) = 𝐴L2 (𝜇)→H · 𝜄 = 𝜄𝜄∗.

Thus, since the inclusion operator 𝜄 is compact (since H is compactly embedded in
L2(𝜇)), we conclude that 𝐴L2 (𝜇)→L2 (𝜇) is compact and psd.

To this point, we have been very careful about domains and codomains of linear
mappings; we will now permit ourselves to be more lax and will use 𝐴 to refer to the
transformation (7.1), whatever its domain and codomain are. Since 𝐴 is a compact
psd operator on L2(𝜇), it admits a spectral decomposition

𝐴 =

∞∑︁
𝑖=1

𝜆𝑖𝑒𝑖𝑒
∗
𝑖 , (7.2)

where 𝜆1 ≥ 𝜆2 ≥ · · · ≥ 0 are the eigenvalues of 𝐴 and {𝑒𝑖} form an orthonormal
basis of L2(𝜇). (We will tacitly assume that L2(𝜇) is infinite-dimensional for this
chapter, though the formalism all carries through for finite-dimensional spaces as
well.) Here, we let

𝑢∗ := ⟨𝑢, ·⟩L2 (𝜇) : L2(𝜇) → K

denote the adjoint of a function 𝑢 ∈ L2(𝜇), identified with the linear transformation
𝛼 ↦→ 𝛼𝑢 from K→ L2(𝜇).

In addition to being compact, the operator 𝐴 on L2(𝜇) is trace-class. Its trace is

tr(𝐴) =
∫

X
𝜅(𝑥, 𝑥) d𝜇. (7.3)

This conclusion may be derived formally as follows. Observe that an arbitrary
function in L2(𝜇) can be represented a limit 𝑢 = lim𝑛→∞(

∑𝑛
𝑖=1 𝑒𝑖𝑒

∗
𝑖
)𝑢. Therefore,

108

we compute∫
X
𝜅(𝑥, 𝑥) d𝜇 =

∫
X

∞∑︁
𝑖=1

𝑒𝑖 (𝑥) (𝑒∗𝑖 𝜅(·, 𝑥)) d𝜇(𝑥)

=

∫
X

∞∑︁
𝑖=1

(∫
X
𝜅(𝑥′, 𝑥)𝑒𝑖 (𝑥′) d𝜇(𝑥′)

)
𝑒𝑖 (𝑥) d𝜇(𝑥)

=

∞∑︁
𝑖=1

∫
X

(∫
X
𝜅(𝑥′, 𝑥)𝑒𝑖 (𝑥) d𝜇(𝑥)

)
𝑒𝑖 (𝑥′) d𝜇(𝑥′)

=

∞∑︁
𝑖=1
⟨𝐴𝑒𝑖, 𝑒𝑖⟩L2 (𝜇) =

∞∑︁
𝑖=1

𝜆𝑖 = tr(𝐴).

A rigorous proof of (7.3) is provided in [SS12, Thm. 3.10].

From the eigendecomposition (7.2), we can define the operator square root

𝐴1/2 :=
∞∑︁
𝑖=1

𝜆
1/2
𝑖
𝑒𝑖𝑒
∗
𝑖 : L2(𝜇) → L2(𝜇).

In fact, the range of the linear transformation 𝐴1/2 is H and the map 𝐴1/2 : L2(𝜇) →
H is an isometric embedding. To see this, first take 𝑢 ∈ H and compute

∥𝑢∥2L2 (𝜇) = ⟨𝑢, 𝑢⟩L2 (𝜇) = ⟨𝐴𝑢, 𝑢⟩H = ⟨𝐴1/2𝑢, 𝐴1/2𝑢⟩H = ∥𝐴1/2𝑢∥2H.

The second equality is an invocation of the adjoint relation ⟨𝑢, 𝑓 ⟩L2 (𝜇) = ⟨𝐴𝑢, 𝑓 ⟩H.
Since H is dense in L2(𝜇), we conclude that 𝐴1/2 : L2(𝜇) → H is an isometric
embedding.

Since 𝐴1/2 : L2(𝜇) → H is an isometric embedding, it follows that {𝐴1/2𝑒𝑖}∞𝑖=1 =

{𝜆1/2
𝑖
𝑒𝑖}∞𝑖=1 is an orthonormal system in H. In fact, it is an orthonormal basis, and

𝐴1/2 is an isometry [SS12, Thm. 3.1].

The expression (7.2) constitutes an eigenvalue decomposition for the integral oper-
ator 𝐴 associated with the kernel 𝜅, but what about 𝜅 itself? Does it have such an
eigendecomposition? Proceeding formally again, we compute∫

X
𝜅(𝑥, 𝑥′)𝑢(𝑥′) d𝜇(𝑥′) = 𝐴𝑢(𝑥) =

∞∑︁
𝑖=1

𝜆𝑖𝑒𝑖 (𝑥)⟨𝑒𝑖, 𝑢⟩L2 (𝜇)

=

∞∑︁
𝑖=1

∫
X
𝜆𝑖𝑒𝑖 (𝑥)𝑒𝑖 (𝑥′)𝑢(𝑥′) d𝜇(𝑥′) =

∫
X

(∞∑︁
𝑖=1

𝜆𝑖𝑒𝑖 (𝑥)𝑒𝑖 (𝑥′)
)
𝑢(𝑥′) d𝜇(𝑥′).

Since this equation holds for all 𝑥 and all 𝑢, it is natural to conjecture that

𝜅(𝑥, 𝑥′) =
∞∑︁
𝑖=1

𝜆𝑖𝑒𝑖 (𝑥)𝑒𝑖 (𝑥′).

109

Indeed, this Mercer decomposition holds true, and the convergence holds pointwise
[SS12, Thm. 3.1].

7.2 Infinite-dimensional psd low-rank approximation and RPCholesky
Having established the proper infinite-dimensional setting, we can now formulate
the appropriate low-rank approximation problem and devise an infinite-dimensional
version of randomly pivoted Cholesky to solve it.

As we saw in Section 5.2, a subset S ⊆ X induces a rank-𝑘 approximation

𝜅̂S(𝑥, 𝑥′) := 𝜅(𝑥,S)𝜅(S,S)†𝜅(S, 𝑥′)

to the kernel function 𝜅. It also defines the residual

𝜅S = 𝜅 − 𝜅̂S.

These objects suggest an infinite-dimensional version of the psd low-rank approxi-
mation and column subset selection problems:

Infinite-dimensional column subset selection problem. Find a subset
S ⊆ X of size 𝑘 that approximately minimizes the trace error∫

X
𝜅S(𝑥, 𝑥) d𝜇(𝑥) =

∫
X

[
𝜅(𝑥, 𝑥) − 𝜅(𝑥,S)𝜅(S,S)†𝜅(S, 𝑥)

]
d𝜇(𝑥).

Using the formalism developed in the previous section, we can recast this problem
in terms of integral operators. Indeed, introduce the Nyström-approximate operator

𝐴S𝑢 :=
∫

X
𝜅̂S(·, 𝑥)𝑢(𝑥) d𝜇(𝑥). (7.4)

Since the residual kernel 𝜅S(𝑥, 𝑥) = 𝜅(𝑥, 𝑥) − 𝜅̂S(𝑥, 𝑥) is psd and integrable along
the diagonal (Proposition 5.13), the residual operator 𝐴 − 𝐴S is psd, and the trace
error is

tr(𝐴 − 𝐴S) =
∫

X
𝜅S(𝑥, 𝑥) d𝜇(𝑥). (7.5)

Thus, choosing a subset S to control the integrated diagonal of the residual 𝜅S is
equivalent to construction a Nyström approximation of the integral operator 𝐴 with
a small trace error tr(𝐴 − 𝐴S).

Given this setup, the infinite-dimensional version of RPCholesky is natural.

110

Figure 7.1: 50 random points in the unit square generated by RPCholesky (left)
and uniform sampling (right). Points sampled using RPCholesky are more spread
out, demonstrating the repulsive nature of the RPCholesky sampling process.
RPCholesky is implemented using the uniform measure 𝜇 = Unif([0, 1]2) and the
Laplace kernel with bandwidth 10.

RPCholesky on a general space. Begin from the empty subset S0 := ∅,
iterate for 𝑖 = 0, 1, 2 . . . , 𝑘 − 1:

1. Sample a random pivot

𝑠𝑖+1 ∼ 𝜅S𝑖
(𝑥, 𝑥) d𝜇(𝑥) (7.6)

from the diagonal of the residual kernel 𝜅S𝑖
(𝑥, 𝑥). Here, 𝑠 ∼ 𝜈 to de-

notes a random element sampled from an unnormalized finite measure
𝜈. That is, P{𝑠 ∈ B} = 𝜈(B)/𝜈(X) for every measurable set B.

2. Induct the sampled pivot into the landmark set, S𝑖+1 := S𝑖 ∪ {𝑠𝑖+1}.

This procedure is easy to state, but it is unclear how to implement the sampling step
(7.6). We will turn to the issue of implementation in Section 7.3.

An illustration of the landmarks selected by RPCholesky on a continuous space
is given in Fig. 7.1. We see that the points produced by RPCholesky are more
well-distributed across the region, whereas points generated by uniform sampling
are more clustered. This example demonstrates that the RPCholesky sampling
process is repulsive; once a landmark is selected, it is less likely that nearby points
will be selected as landmarks.

The error bounds from Section 4.3 (Theorems 4.1 and 4.3) generalize to infinite-
dimensional RPCholesky in the natural way. The proofs are the same, modulo

111

appropriate details to handle the infinite-dimensional setting; we omit the details.

Theorem 7.1 (Continuous RPCholesky: Trace error). Instate the prevailing nota-
tion and assumptions, let 𝑟 ≥ 1 and 𝜀 > 0, and introduce the relative error of the
best rank-𝑟 approximation

𝜂 :=
∑∞
𝑖=𝑟+1 𝜆𝑖∑∞
𝑖=1 𝜆𝑖

.

The continuous RPCholesky method is guaranteed to produce a pivot set S achieving
the guarantee

E tr(𝐴 − 𝐴S) ≤ (1 + 𝜀)
∞∑︁

𝑖=𝑟+1
𝜆𝑖

after running for any number of steps 𝑘 satisfying

𝑘 ≥ 𝑟
𝜀
+ 𝑟 log

(
1
𝜀𝜂

)
.

Theorem 7.2 (Continuous RPCholesky: Spectral norm of expected error). Instate
the prevailing notation and assumptions, let 𝑟 ≥ 1 and 𝜀 > 0, and introduce the
relative error of the best rank-𝑟 approximation

𝜂 :=
∑∞
𝑖=𝑟+1 𝜆𝑖∑∞
𝑖=1 𝜆𝑖

.

The continuous RPCholesky method is guaranteed to produce a pivot set S achieving
the guarantee

𝜆max(E(𝐴 − 𝐴S)) ≤ 𝑏 + 𝜀
∞∑︁

𝑖=𝑟+1
𝜆𝑖

after running for any number of steps 𝑘 satisfying

𝑘 ≥ 1
𝜀
+ 𝑟 log

(
𝜆1
𝑏

)
.

Here, 𝜆max(·) denotes the largest eigenvalue of a Hermitian operator on L2(𝜇). In
particular, for such 𝑘 and any function 𝑔 ∈ L2(𝜇),

E⟨𝑔, (𝐴 − 𝐴S)𝑔⟩L2 (𝜇) ≤
(
𝑏 + 𝜀

∞∑︁
𝑖=𝑟+1

𝜆𝑖

)
∥𝑔∥2L2 (𝜇) .

Theorem 7.2 originally appeared as [EM23, Thm. 7]. The infinite-dimensional trace
error bound Theorem 7.1 has not appeared in print before; it is an immediate trans-
plant of the finite-dimensional result Theorem 4.1, originally proven in [CETW25,
Thm. 1.1], to the infinite setting.

112

Program 7.1 rejection_sample.m. General implementation of rejection sam-
pling from a target distribution 𝜏(𝑥) d𝜇(𝑥) using a proposal distribution 𝜋(𝑥) d𝜇(𝑥).
function s = rejection_sample(sample_proposal,pi,tau)
% Input: Function sample_proposal() generating a sample from
% proposal distribution, functions pi(p) and tau(p) defining
% (unnormalized) density functions for proposal and target
% Output: Sample s from proposal_distribution

while true
s = sample_proposal(); % Sample from proposal
if rand() < tau(s) / pi(s) % Accept with probability tau(s)/pi(s)

break
end

end

end

7.3 Implementing RPCholesky using rejection sampling
How could we implement the RPCholesky method in infinite dimensions? Nomi-
nally, storing even a single “column” 𝜅(·, 𝑠) of the “infinite kernel matrix” 𝜅 requires
infinite memory, which makes a direct implementation of infinite RPCholesky
similar to Program 4.1 impossible in general. We circumvent this limitation by
implementing RPCholesky in infinite dimensions using an alternative approach
based on rejection sampling.

Rejection sampling in general
Rejection sampling is a standard technique in probabilistic computing, originally
due to von Neumann [von51]. See [Liu04, §2.2] for a contemporary introduction to
rejection sampling. Suppose that we are interested in sampling 𝑠 ∼ 𝜏(𝑥) d𝜇(𝑥) from
an (unnormalized) target distribution 𝜏(𝑥) d𝜇(𝑥). Assume the target distribution
is difficult to sample from directly, but that we have easy access to samples from
an (unnormalized) proposal distribution 𝑝 ∼ 𝜋(𝑥) d𝜇(𝑥). Suppose additionally
that we know that the proposal distribution bounds the target distribution pointwise,
0 ≤ 𝜏 ≤ 𝜋. With these preliminaries, the rejection sampling procedure is as follows.

113

Rejection sampling. Repeat until termination:

1. Generate a sample 𝑝 ∼ 𝜋(𝑥) d𝜇(𝑥) from the proposal distribution.

2. Accept/reject? With probability 𝜏(𝑝)/𝜋(𝑝), accept by setting 𝑠 := 𝑝

and exiting this loop. Otherwise, reject the sample and repeat step 1.

A program implementing rejection sampling is given as Program 7.1.

The correctness of the rejection sampling procedure is established by the following
standard result, in essence due to von Neumann [von51].

Fact 7.3 (Rejection sampling). The rejection sampling procedure works: Provided
𝜏 > 0 on a set of positive measure, the procedure terminates with probability 1, and
it outputs a sample 𝑠 ∼ 𝜏(𝑥) d𝜇(𝑥).

The proof is short and simple; see [Liu04, §2.2] for a proof when 𝜇 is the Lebesgue
measure on R𝑛. (The proof is no different for general probability spaces.)

Rejection sampling for RPCholesky
We can use rejection sampling to perform the diagonal sampling step for RP-
Cholesky. We assume access to two primitive operations:

1. Kernel evaluations. We can evaluate the 𝜅(𝑥, 𝑥′) at any pair of points 𝑥, 𝑥′ ∈ X.

2. Sampling from the diagonal. We have access to an efficient procedure for
sampling 𝑝 ∼ 𝜅(𝑥, 𝑥) d𝜇(𝑥).

In typical machine learning applications, these primitives are easily accessible, as
(1) the kernel function 𝜅 is often given by an explicit functional form and (2) the
kernel function often satisfies 𝜅(𝑥, 𝑥) = 1 for all 𝑥, so sampling from the diagonal
amounts to uniform sampling from 𝜇. As we will see, access to these two weak
primitives will suffice to implement RPCholesky in infinite dimensions.

Consider step 𝑖 of RPCholesky. We seek a sample 𝑠𝑖+1 ∼ 𝜅S𝑖
(𝑥, 𝑥) d𝜇(𝑥) from

the target distribution 𝜅S𝑖
(𝑥, 𝑥) d𝜇(𝑥). To do so, we will employ rejection sampling

with 𝜅(𝑥, 𝑥) d𝜇(𝑥) as the proposal distribution. These distributions form a valid pair
for rejection sampling in view of the inequality

0 ≤ 𝜅S𝑖
(𝑥, 𝑥) ≤ 𝜅(𝑥, 𝑥) for every 𝑥 ∈ X,

114

Program 7.2 rejection_rpcholesky.m. Rejection sampling-based implemen-
tation of RPCholesky on general spaces.
function [S,R] = rejection_rpcholesky(kernel,sample_diagonal,k,d)
% Input: Kernel function kernel(S,T) giving m*n pairwise evaluations
% of the kernel function on the rows of an m*d matrix S and
% n*d matrix T, function sample_diagonal() giving a sample
% from kernel(x,x) dmu(x) outputted as a row vector,
% number of landmarks k, dimension d of data
% Output: Set S of k selected landmarks stored as a k*d array,
% Cholesky factor R = chol(kernel(S,S))

S = zeros(k,d); % Landmark set
R = zeros(k,k); % Cholesky factor
for i = 0:(k-1)

while true
S(i+1,:) = sample_diagonal(); % Proposal

% Quantities needed to evaluate ratio
c = R(1:i,1:i)’ \ kernel(S(1:i,:),S(i+1,:));
kss = kernel(S(i+1,:),S(i+1,:));
d = kss - norm(c)^2;
if rand() < d / kss % Accept or reject

% Update Cholesky factor upon acceptance
R(1:i,i+1) = c;
R(i+1,i+1) = sqrt(d);
break % Exit loop and sample next point

end
end

end

which holds due to Proposition 5.13.

Since we have efficient access to proposals 𝑝 ∼ 𝜅(𝑥, 𝑥) d𝜇(𝑥), implementing this
procedure just requires the ability to evaluate the ratio

ratio𝑖 (𝑥) :=
𝜅S𝑖
(𝑥, 𝑥)

𝜅(𝑥, 𝑥) =
𝜅(𝑥, 𝑥) − 𝜅̂S𝑖

(𝑥, 𝑥)
𝜅(𝑥, 𝑥) .

To do so, we maintain a Cholesky decomposition 𝜅(S𝑖,S𝑖) = 𝑹∗𝑖 𝑹𝑖 of the currently
selected kernel submatrix and evaluate ratio𝑖 (𝑥) using the formula

ratio𝑖 (𝑥) =
𝜅(𝑥, 𝑥) − ∥𝒄𝑖 (𝑥)∥2

𝜅(𝑥, 𝑥) where 𝒄𝑖 (𝑥) := 𝑹−∗𝑖 𝜅(S𝑖, 𝑥). (7.7)

Once a new pivot 𝑠𝑖+1 is accepted, the Cholesky factor can be updated using the

115

formula

𝑹𝑖+1 :=

[
𝑹𝑖 𝒄𝑖 (𝑠𝑖+1)
0 (𝜅(𝑠𝑖+1, 𝑠𝑖+1) − ∥𝒄𝑖 (𝑠𝑖+1)∥2)1/2

]
.

This rejection sampling-based implementation of RPCholesky is called Rejec-
tionRPCholesky. An implementation is given in Program 7.2.

Computational cost
The computational cost of RejectionRPCholesky can be characterized in multiple
ways. Each execution of the rejection sampling loop requires at most 𝑘 kernel
function evaluations and O(𝑘2) operations to perform the triangular solve in (7.7).
Thus, 𝑏 proposals of RejectionRPCholesky expends at most 𝑏𝑘 kernel function
evaluations and O(𝑏𝑘2) additional arithmetic operations, where 𝑘 ≤ 𝑏 denotes the
number of accepted proposals. An end-to-end cost estimate is provided by the
following result:

Proposition 7.4 (RejectionRPCholesky). Program 7.2 is correct: It produces
exact samples from the continuous RPCholesky algorithm. To measure the compu-
tational cost, introduce the relative trace error of the best rank-(𝑖−1) approximation:

𝜂𝑖 :=
∑∞
𝑗=𝑖 𝜆𝑖∑∞
𝑗=1 𝜆𝑖

.

The expected computational cost of Program 7.2 is at most

O
(
𝑘∑︁
𝑖=1

1
𝜂𝑖

)
≤ O

(
𝑘

𝜂𝑘

)
rejection sampling steps,

O
(
𝑘∑︁
𝑖=1

𝑖

𝜂𝑖

)
≤ O

(
𝑘2

𝜂𝑘

)
kernel function evaluations,

O
(
𝑘∑︁
𝑖=1

𝑖2

𝜂𝑖

)
≤ O

(
𝑘3

𝜂𝑘

)
additional arithmetic operations.

This result is [EM23, Thm. 4]. The main idea is that, to sample 𝑠𝑖+1, the probability
of each proposal being accepted is tr(𝐴− 𝐴{𝑠1,...,𝑠𝑖})/tr(𝑨) ≥ 𝜂𝑖. Ergo, the expected
number of proposals is a geometric random variable with expectation 1/𝜂𝑖, and the
result follows.

This result demonstrates that rejection sampling-based RPCholesky suffers from a
curse of smoothness: the runtime of the algorithm is higher when the eigenvalues 𝜆𝑖
decrease at a rapid rate. The reason for this curse is simple. When the eigenvalues

116

decay rapidly, the Nyström approximations 𝜅̂S𝑖
become increasingly close to the

kernel 𝜅. As such, the acceptance probability (7.7) goes down, requiring more
proposals to achieve each acceptance.

Elvira Moreno and I proposed a potentially costly fix for the curse of smoothness in
[EM23, Alg. 4]. Here is the idea: When the algorithm begins rejecting proposals at
a high rate (say, 10 rejections in a row), solve a global minimization problem

𝛼← max
𝑥∈X

ratio𝑖 (𝑥),

where ratio𝑖 (𝑥) was defined in (7.7). Then, run rejection sampling with the rescaled
proposal distribution 𝛼−1𝜅(𝑥, 𝑥) d𝜇(𝑥). This rescaling does not effect the distribu-
tion of proposals 𝑝 ∼ 𝛼−1𝜅(𝑥, 𝑥) d𝜇(𝑥), but the acceptance probabilities are scaled
by a factor 𝛼−1. Since 𝛼 ≤ 1, this has the effect of boosting the acceptance proba-
bilities. This procedure can be very effective; our paper [EM23] reports speedups
of 39× over the non-accelerated version. However, the accelerated RejectionRPC-
holesky procedure requires solving a global nonconvex optimization problem over
the domain X, which can be computationally costly. The development of tractable
rejection sampling schemes for RPCholesky that avoid nonconvex optimization is
an interesting direction for future research.

7.4 Application: Active kernel interpolation
Consider the active regression task of approximating a function 𝑓 ∈ H whose
value we may be query at 𝑘 locations S = {𝑠1, . . . , 𝑠𝑘 } ⊆ X, which we are free
to choose. A natural approach to this problem is to select the locations S using
RPCholesky, then interpolate the function values at those points using kernel
interpolation. Throughout this section, we let 𝑓̂S denote the kernel interpolant
through the points S.

The success of this active kernel interpolation strategy can be analyzed by combin-
ing the following known result for kernel interpolation with the trace error bound
Theorem 7.1 for RPCholesky:

Proposition 7.5 (Kernel interpolation: mean-squared error). Let 𝑓 ∈ H be a function
and let 𝑓̂S be its kernel interpolant through the points S. We have the error bound

∥ 𝑓 − 𝑓̂S∥2L2 (𝜇) ≤ ∥ 𝑓 ∥
2
H · tr(𝐴 − 𝐴S).

Proof. The bound follows by integrating the pointwise bound Theorem 5.16 and
using the identity (7.5) for tr(𝐴 − 𝐴S).

117

Figure 7.2: Top: Function 𝑓 (left), kernel interpolant 𝑓̂S with RPCholesky (middle),
and error | 𝑓 − 𝑓̂S | (right). Landmarks selected by RPCholesky are overlayed as
white dots in the middle plot. Function 𝑓 , kernel 𝜅, and measure 𝜇 are described in
the text. Bottom: mean-squared error of kernel interpolation through three different
sets of nodes. Lines show a mean of 100 trials, and shaded regions show one
standard deviation.

Combining with Theorem 7.1 yields the following immediate corollary:

Corollary 7.6 (Kernel interpolation with RPCholesky). With the setting and value
of 𝑘 from Theorem 7.1, a set S picked by 𝑘 steps of RPCholesky satisfies the bound

E∥ 𝑓 − 𝑓̂S∥2L2 (𝜇) ≤ ∥ 𝑓 ∥
2
H · (1 + 𝜀)

∞∑︁
𝑖=𝑟+1

𝜆𝑖 .

Moreover, we have an estimate that is uniform over all functions in the RKHS:

E sup

{
∥ 𝑓 − 𝑓̂S∥2L2 (𝜇)

∥ 𝑓 ∥2H
: 𝑓 ∈ H \ {0}

}
≤ (1 + 𝜀)

∞∑︁
𝑖=𝑟+1

𝜆𝑖 .

118

An example of the active interpolation methdology is shown in Fig. 7.2. Here, we
apply kernel interpolation to approximate the function

𝑓 (𝒙) = (1 + ∥𝒙∥)−1

on the domain X := R2. We use the standard Gaussian measure 𝜇 = NormalR(0, I2)
and set 𝜅 to be the Laplace kernel with bandwidth 1.

The top panels in Fig. 7.2 illustrate the approximation produced by active kernel
interpolation with RPCholesky-selected landmarks. The left panel plots the tar-
get function 𝑓 over to the finite window [−4, 4]2. The middle panel shows the
kernel interpolant 𝑓̂S computing by interpolating through 200 points selected by
RPCholesky, shown as white dots. The right panel shows the absolute error
| 𝑓 − 𝑓̂S |. RPCholesky kernel interpolation produces a small error near the origin,
with growing errors farther away. This behavior is expected, as the measure 𝜇
places most of its mass near the center, leading most of the landmarks to be placed
there. Fortunately, higher error in regions of small measure is usually acceptable in
applications.

The bottom panel of Fig. 7.2 compares the mean-squared error of three different sets
of kernel interpolation through three sets of landmarks: uniformly random points
𝑠1, . . . , 𝑠𝑘

iid∼ 𝜇, points selected by RPCholesky, and points from a tensor product
grid S = E × E where E = {Φ−1((2𝑖 − 1)/2

√
𝑘) : 𝑖 = 1, . . . , 𝑘}. Here, Φ denotes

the cdf of the standard Gaussian distribution NormalR(0, 1). We estimate the
mean-squared error ∥ 𝑓 − 𝑓̂S∥2L2 (𝜇) using the Monte Carlo estimator 𝑠−1 ∑𝑠

𝑖=1(𝑓 (𝑥𝑖)−
𝑓̂S(𝑥𝑖))2 where 𝑥1, . . . , 𝑥𝑠

iid∼ 𝜇; we use 𝑠 = 103 for these experiments. For each
value of 𝑘 , we display the mean of 100 trials; error bars show one standard deviation.
The tensor product nodes are deterministic, so the error bars capture only the Monte
Carlo fluctuations in the estimated mean-squared error, which are observed to be
small. The RPCholesky method achieves the lowest error of these three point sets.

Remark 7.7 (Beyond kernel interpolation). The continuous RPCholesky method
provides a general strategy for selecting points to label during active learning. While
we have used kernel interpolation as the learning method in this section, one can
also combine RPCholesky with any other functional regression technique. Kernel
ridge regression is one natural choice, but one can also use nonlinear approximation
methods such as artificial neural networks. ⋄

119

7.5 Application: Kernel quadrature
Another task we can apply RPCholesky to is numerical quadrature. Given a weight
function 𝑢 ∈ L2(𝜇), the task is to devise weights 𝒘 ∈ K𝑘 and nodes 𝑠1, . . . , 𝑠𝑘 ∈ X
so that ∫

X
𝑢(𝑥) 𝑓 (𝑥) d𝜇(𝑥) ≈

𝑘∑︁
𝑖=1

𝑤𝑖 𝑓 (𝑠𝑖) for all 𝑓 ∈ H.

To simplify notation in later parts of this section, I have made the unorthodox choice
to complex conjugate both the weight function 𝑢 and the quadrature weights 𝑤𝑖 in
this expression. The quality of a quadrature scheme (i.e., both weights and nodes)
for a given function 𝑓 is quantified by the error:

Err(S, 𝒘, 𝑓) :=

�����∫X
𝑢(𝑥) 𝑓 (𝑥) d𝜇(𝑥) −

𝑘∑︁
𝑖=1

𝑤𝑖 𝑓 (𝑠𝑖)
����� . (7.8)

We will use RPCholesky to pick the nodes S = {𝑠1, . . . , 𝑠𝑘 }, and there is a standard
procedure for picking the weights 𝒘. We begin by reviewing these ideal weights
and then prove error bounds for optimally weighted RPCholesky quadrature.

The ideal weights. There are five equivalent ways of characterizing the ideal weights,
which I summarized in [Epp23a]. We quickly derive the ideal weights and review
these interpretations, as each sheds different light on the kernel quadrature problem.

Characterization #1: Minimizing the worst-case error. Under this interpretation,
we choose 𝒘 to minimize the worst-case value of the error (7.8) over all 𝑓 ∈ H
with ∥ 𝑓 ∥H ≤ 1. To derive the worst-case error, use the integral operator 𝐴 and the
reproducing property to rewrite the error (7.8) as

Err(S, 𝒘, 𝑓) =
�����⟨𝑢, 𝑓 ⟩L2 (𝜇) −

𝑘∑︁
𝑖=1

𝑤𝑖 ⟨𝜅(·, 𝑠𝑖), 𝑓 ⟩H

����� = |⟨𝐴𝑢 − 𝜅(·,S)𝒘, 𝑓 ⟩H | . (7.9)

By the Cauchy–Schwarz inequality, the maximum value of this quantity over all 𝑓
with ∥ 𝑓 ∥H ≤ 1 is

Err(S, 𝒘) := max
∥ 𝑓 ∥H≤1

Err(S, 𝒘, 𝑓) = ∥𝐴𝑢 − 𝜅(·,S)𝒘∥H. (7.10)

Minimizing this quantity over 𝒘 is a linear least-squares problem. The normal
equations characterizing the minimizer 𝒘★ are

𝜅(S,S)𝒘★ = 𝐴𝑢(S) =
(∫

X
𝜅(𝑠𝑖, 𝑥)𝑢(𝑥) d𝜇(𝑥) : 1 ≤ 𝑖 ≤ 𝑘

)
. (7.11)

We call the solution to this system the ideal weights 𝒘★.

120

Characterization #2: Exactness. A classical way of deriving a quadrature rule on
𝑘 nodes is to require that it integrate 𝑘 chosen functions exactly. Here, the natural
choice for 𝑘 functions are the kernel functions 𝑓𝑖 := 𝜅(·, 𝑠𝑖). Enforcing exactness
Err(S, 𝒘, 𝑓𝑖) = 0 on these 𝑓𝑖 yields the same system (7.11) characterizing the ideal
weights.

Characterization #3: Interpolate and integrate. Another classical approach to
deriving quadrature rules is to interpolate the function at the nodes, then integrate
the interpolant. Using kernel interpolation as our method of interpolation, this
approach yields ideally weighted kernel quadrature:

𝑘∑︁
𝑖=1

𝒘★(𝑖) 𝑓 (𝑠𝑖) =
∫

X
𝑢(𝑥) 𝑓̂S(𝑥) d𝜇(𝑥).

Characterization #4: Conditional expectation. Our last two interpretations will
drawn on a Gaussian process frame. Imagine the function 𝑓 ∼ GP(𝜅) is drawn
from a Gaussian process with covariance function 𝜅. Under this model, the integral∫
X 𝑓 (𝑥)𝑢(𝑥) d𝜇(𝑥) is a random quantity, and we can obtain a quadrature rule by

evaluating the conditional expectation of this random quantity conditional on the
value 𝑓 (𝑠𝑖) of the function at queried positions 𝑠𝑖. Evaluating this conditional
expectation also yields kernel quadrature with the ideal weights:

𝑘∑︁
𝑖=1

𝒘★(𝑖) 𝑓 (𝑠𝑖) = E
[∫

X
𝑢(𝑥) 𝑓 (𝑥) d𝜇(𝑥)

���� 𝑓 (S)] .
Based on this interpretation, ideally weighted kernel quadrature is sometimes called
Bayesian quadrature.

Characterization #5: Minimizing the mean-squared error. As a last notion of how
the “ideal weights” could be designed, we could also choose the weights to minimize
the mean-squared error of the integral for a function 𝑓 ∼ GP(𝜅) drawn from the
Gaussian process GP(𝜅):

MSE(S, 𝒘) := E

�����∫X
𝑢(𝑥) 𝑓 (𝑥) d𝜇(𝑥) −

𝑘∑︁
𝑖=1

𝑤𝑖 𝑓 (𝑠𝑖)
�����2 .

We compute this mean-squared error formally. Begin by re-expressing the mean-
squared error using the H-inner product, following (7.9):

MSE(S, 𝒘) = |⟨𝐴𝑢 − 𝜅(·,S)𝒘, 𝑓 ⟩H |2

121

Now, employ a Karhunen-Loève expansion 𝑓 =
∑∞
𝑖=1 𝑧𝑖 (𝜆

1/2
𝑖
𝑒𝑖). The functions

𝜆
1/2
𝑖
𝑒𝑖 (defined above in (7.2)) form an orthonormal basis for H, and the random

variables 𝑧1, 𝑧2, . . .
iid∼ NormalK(0, 1) are iid and Gaussian. Similarly, we may

decompose 𝐴𝑢 − 𝜅(·,S)𝒘 =
∑∞
𝑖=1 𝑏𝑖 (𝜆

1/2
𝑖
𝑒𝑖) in this orthonormal basis is well.

The sequence (𝑏𝑖)∞𝑖=1 is square summable, and it admits the Pythagorean identity∑∞
𝑖=1 |𝑏𝑖 |2 = ∥𝐴𝑢 − 𝜅(·,S)𝒘∥2H. By orthonormality of {𝜆1/2

𝑖
𝑒𝑖}∞𝑖=1, we compute

MSE(S, 𝒘) = E |⟨𝐴𝑢 − 𝜅(·,S)𝒘, 𝑓 ⟩H |2 = E

����� ∞∑︁
𝑖=1

𝑧𝑖𝑏𝑖

�����2
=

∞∑︁
𝑖=1
|𝑏𝑖 |2 = ∥𝐴𝑢 − 𝜅(·,S)𝒘∥2H.

The mean-squared error MSE(S, 𝒘) for a function 𝑓 ∼ GP(𝜅) is equal to square the
worst-case error Err(S, 𝒘) over all 𝑓 ∈ H with ∥ 𝑓 ∥H ≤ 1, in view of (7.10). Thus,
the same set of ideal weights minimizes both the mean-squared error and worst-case
error.

Error bounds for ideally weighted kernel quadrature. The fact that five different
definitions of the ideal weights all coincide is a powerful demonstration of the
robustness of the RKHS and Gaussian process formalisms. Having thoroughly
convinced ourselves that the ideal weights given by (7.11) are, in five senses, the
natural way of weighting quadrature rules on RKHSs (or with respect to Gaussian
processes), let us now analysis the error for ideally weighted kernel quadrature.

Introduce the error
Err(S) := Err(S, 𝒘★)

for ideally weighted kernel quadrature. This quantity expresses both the worst-case
quadrature error over a function in the unit ball of H and the root-mean-squared error
of a function drawn from the corresponding Gaussian process (see interpretations
#1 and #5 above). Combing formulas (7.10) and (7.11), this quantity may be written

Err(S)2 =

𝐴𝑢 − 𝜅(·,S)𝜅(S,S)−1𝐴𝑢(S)

2
H. (7.12)

(We assume here and throughout this section that 𝜅(S,S) is nonsingular.) Introduc-
ing the definition of 𝐴, we obtain

Err(S)2 =

∫
X
𝜅(·, 𝑥)𝑢(𝑥) d𝜇(𝑥) −

∫
X
𝜅(·,S)𝜅(S,S)−1𝜅(S, 𝑥)𝑢(𝑥) d𝜇(𝑥)

2

H

=

(𝐴 − 𝐴S)𝑢

2

H
.

122

In the second line, we recognize the Nyström approximate integral operator 𝐴S,
defined above in (7.4). In Section 7.1, we saw that 𝐴1/2 is an isometry and a
bijection between L2(𝜇) and H. As such, it has an inverse, which we will denote
𝐴−1/2, that is an isometry and bijection from H to L2(𝜇). This transformations acts
according to the rule

𝐴−1/2 𝑓 =
∞∑︁
𝑖=1

𝜆
−1/2
𝑖

𝑒𝑖 (𝑒∗𝑖 𝑓) for 𝑓 ∈ H.

Additionally, for 𝑓 ∈ H for which the sequence {𝜆−1
𝑖
(𝑒∗
𝑖
𝑓)} is square-summable we

may also define a map 𝐴−1 by the formula

𝐴−1 𝑓 =

∞∑︁
𝑖=1

𝜆−1
𝑖 𝑒𝑖 (𝑒∗𝑖 𝑓).

Using these linear maps, we may bound

Err(S)2 =

𝐴−1/2(𝐴 − 𝐴S)𝑢

2

L2 (𝜇)

= ⟨(𝐴 − 𝐴S)𝐴−1(𝐴 − 𝐴S)𝑢, 𝑢⟩L2 (𝜇) ≤ ⟨(𝐴 − 𝐴S)𝑢, 𝑢⟩L2 (𝜇) .

The last inequality is valid because 𝐴− 𝐴S and 𝐴S are both psd operators. We have
established the following property:

Proposition 7.8 (Kernel quadrature error). The worst-case quadrature error Err(S)
defined in (7.12) admits the bound

Err(S)2 ≤ ⟨(𝐴 − 𝐴S)𝑢, 𝑢⟩L2 (𝜇) .

Combining with Theorem 7.2 immediately yields a result for RPCholesky kernel
quadrature with ideal weights.

Corollary 7.9 (Kernel quadrature with RPCholesky). Instate the prevailing nota-
tion and assumptions, and let 𝑟 ≥ 0 and 𝜀 > 0. Then

EErr(S)2 ≤ 𝜀 · ∥𝑢∥2L2 (𝜇) ·
∞∑︁
𝑟+1

𝜆𝑟

where S is selected by running 𝑘 steps of RPCholesky where

𝑘 ≥ 𝑟 log
(

2𝜆1
𝜀
∑∞
𝑖=𝑟+1 𝜆𝑖

)
+ 2
𝜀
.

123

Program 7.3 kernel_quad_wts.m. Program to compute the ideal kernel quadra-
ture weights for computing integrals

∫
X 𝑓 (𝑥)𝑢(𝑥) d𝜇(𝑥) of functions 𝑓 drawn from

an RKHS.
function [w,integrator] = kernel_quad_wts(kernel,S,Au)
% Input: Kernel function kernel(x,x’), landmark set S, and integrals
% Au = int kernel(S,x) u(x) dx
% Output: Ideal weights w and function integrator(f) computing the
% ideally weighted quadrature approximation w’*f(S)

w = kernel(S,S) \ Au;
integrator = @(f) w’*f(S);

end

Computational considerations. Implementing ideally weighted kernel quadrature
requires evaluating the integrals∫

X
𝜅(𝑠𝑖, 𝑥)𝑢(𝑥) d𝜇(𝑥) for 𝑖 = 1, 2, . . . , 𝑘 (7.13)

that compose the right-hand side of the system (7.11). Many schemes for quadrature
on RKHSs have been proposed that avoid the computation of these exact integrals
[DM22; SDM22; HOL22], but the rate of convergence is reduced. There is no
obvious way to obtain spectrally accurate kernel quadrature schemes without high-
accuracy evaluation of the integrals (7.13).

Example. As an illustration, we consider a simple problem in two dimensions. The
measure is 𝜇 = Normal(0, I2), the kernel is square-exponential with bandwidth 1,
the weight function is 𝑢 ≡ 1, and the function is 𝑓 (𝒙) = cos(∥𝒙∥). The integral is
known exactly:∫

X
𝑓 (𝒙) d𝜇(𝒙) = 1 −

√
2F(1/

√
2) = 0.27522154099292 . . .

Here, F is the Dawnson integral (DawsonF in Mathematica). The values of 𝐴𝑢 are
also known exactly:

𝐴𝑢(𝒙) = 1
2

exp
(
−∥𝒙∥

2

4

)
.

Figure 7.3 shows the results. The left panel shows 𝑘 = 30 nodes selected by
RPCholesky, with the shading indicating the diagonal values 𝜅S(𝒙, 𝒙) of the resid-
ual kernel. The right panel shows the relative error for the outputs of ideally
weighted kernel quadrature with 5 ≤ 𝑘 ≤ 60 nodes selected with RPCholesky

124

Figure 7.3: Left: Quadrature nodes selected by RPCholesky (𝑘 = 30, white).
Shading shows the diagonal elements of the residual kernel 𝜅S(𝒙, 𝒙). Right: Error
in evaluating integral

∫
X 𝑓 (𝒙) d𝜇(𝒙) using kernel quadrature for different numbers of

nodes 𝑘 , selected by RPCholesky or by iid sampling. We also show the error of the
simple Monte Carlo estimate

∫
X 𝑓 (𝒙) d𝜇(𝒙) ≈ 𝑘

−1 ∑𝑘
𝑖=1 𝑓 (𝒙𝑖) for 𝒙1, . . . , 𝒙𝑘

iid∼ 𝜇.
The function 𝑓 , kernel 𝜅, and measure 𝜇 are described in the text. Lines show a
mean of 100 trials, and shaded regions show one standard deviation.

and by iid sampling. We also compare the simple Monte Carlo integral estimate∫
X 𝑓 (𝒙) d𝜇(𝒙) ≈ 𝑘

−1 ∑𝑘
𝑖=1 𝑓 (𝒙𝑖) for 𝒙1, . . . , 𝒙𝑘

iid∼ 𝜇. The rate of convergence for
RPCholesky kernel quadrature is faster than both other methods.

See [EM23] for more experiments with RPCholesky quadrature, accuracy and tim-
ing comparisons of RPCholesky quadrature to more methods for kernel quadrature
[BBC20; DM22; SDM22; HOL22], and an application to chemistry.

125

C h a p t e r 8

BLOCKED ALGORITHMS

Since all machines have stores of finite size often divided up into high
speed and auxiliary sections, storage considerations often have a vitally
important part to play.

Jim Wilkinson, The use of iterative methods for finding the latent roots
and vectors of matrices [Wil55]

When designing algorithms, we often operate under the convenient fiction that
all memory elements can be accessed equally quickly and that the runtime of an
algorithm is roughly proportional to the total number of arithmetic operations. Un-
fortunately, the performance of algorithms in practice is more complicated than this
simple model suggests. In particular, matrix algorithms tend to be more perfor-
mant when data is processed in blocks rather than column-by-column or entry-by-
entry. This chapter responds to this reality by discussing improved variants of the
RPCholesky algorithm that are more hardware-efficient and utilize block matrix
computations.

Sources. This chapter is based on the paper

Ethan N. Epperly, Joel A. Tropp, and Robert J. Webber. Embrace Rejection: Kernel
Matrix Approximation by Accelerated Randomly Pivoted Cholesky. Apr. 2025.
arXiv: 2410.03969v3,

though some of the content appears in the original RPCholesky paper

Yifan Chen, Ethan N. Epperly, Joel A. Tropp, and Robert J. Webber. “Randomly
Pivoted Cholesky: Practical Approximation of a Kernel Matrix with Few Entry
Evaluations”. In: Communications on Pure and Applied Mathematics 78.5 (2025),
pp. 995–1041. doi: 10.1002/cpa.22234.

It expands on these references by providing a more detailed discussion of the benefits
of block matrix computations (Section 8.1) and a more thorough discussion of the
RBRP Cholesky method of [DCMP24] (Section 8.3).

Notation. Throughout this chapter, we will be interested in computing a pivoted
partial Cholesky decomposition of a psd matrix 𝑨 ∈ K𝑛×𝑛 of size 𝑛. The pivots will

https://arxiv.org/abs/2410.03969v3
https://doi.org/10.1002/cpa.22234

126

be denoted 𝑠1, . . . , 𝑠𝑘 , and 𝑨(𝑖) denotes the residual of the decomposition after the
first 𝑖 elimination steps:

𝑨(𝑖) = 𝑨 − 𝑨⟨{𝑠1, . . . , 𝑠𝑖}⟩. (8.1)

The matrix 𝑭 ∈ K𝑛×𝑘 denotes the factor matrix computed by the pivoted partial
Cholesky algorithm (Program 3.1), which satisfies 𝑨⟨{𝑠1, . . . , 𝑠𝑖}⟩ = 𝑭(:, 1 : 𝑖)𝑭(:
, 1 : 𝑖)∗ for every 𝑖.

Outline. Section 8.1 discusses the benefits of blocking for matrix computations with
a focus on kernel computations in particular. The next three sections present three
blocked versions of the RPCholesky algorithm, referred to as block RPCholesky
(Section 8.2), RBRP Cholesky (Section 8.3), and accelerated RPCholesky (Sec-
tion 8.4). A comparison of these methods appears in Section 8.5.

8.1 Why blocking?
Why are blocked algorithms faster than unblocked algorithms? The answer boils
down to memory transfers. Applied mathematicians and computer scientists tend
to analyze numerical algorithms by counting the number of arithmetic operations.
However, on modern computing architectures, movement of data between random
access memory and the cache can become the rate-limiting factor in the speed of
algorithms, exceeding the cost of floating point operations [DFFG+03, pp. 13, 581–
582].

A simplified model for kernel matrix computations
To get a sense of why memory transfer costs can make blocked algorithms faster than
unblocked methods, consider the following simplified scenario. Suppose we wish
to generate columns of a kernel matrix 𝑨 = 𝜅(D,D), where D ⊆ X is a set of 𝑛 data
points taking values in some set X. We consider an extremely simplified computing
machine with a memory hierarchy consisting of two layers; the data elements 𝑥 ∈ D
are stored in memory. In order to perform computations on data elements, they must
be moved from memory into the cache. However, the cache has a limit size and is
only able to store 1 ≪ 𝑡 ≪ 𝑛 elements of X at once.

First, suppose we generate columns of 𝑨 one at a time, as is done in the standard
RPCholesky algorithm. To generate each column 𝜅(D, 𝑥) requires bringing each
entry of 𝑥′ ∈ D into memory one at a time and evaluating 𝜅(𝑥′, 𝑥). Since the cache
has 𝑡 ≪ 𝑛 entries, most entries of D must be brought back from memory to the cache

127

for each column generation. Thus, generating 𝑘 columns requires O(𝑘𝑛) memory
transfers.

Now contrast this with a strategy where we generate columns in blocks B of size
|B| = 𝑏 ≤ 𝑡 − 1. To evaluate a block of columns 𝜅(D,B), we can now generate
the matrix row-wise 𝜅(𝑥′,B), moving each 𝑥′ ∈ D from memory to the cache in
sequence. The consequence is we can generate all 𝑏 columns at once using just 𝑛
memory transfers. Generating 𝑘 ≥ 𝑏 columns in blocks of size 𝑏 requires O(𝑛𝑘/𝑏)
memory transfers, a factor 𝑏 smaller than the one-column-at-a-time approach. Thus,
for an algorithm whose runtime is dominated by memory movement, the blocked
algorithm can be significantly faster.

Remark 8.1 (Cache and memory: Models and reality). The model we have used in
this section is a simplified version of the ideal cache model [FLPR99]. The memory
architecture for a modern computer is significantly more complicated than the basic
description given here. In particular, memory hierarchies are divided into many
more than two levels and data is moved between levels in chunks of fixed size called
cache lines. Given this complexity, we advise against using the model described
above to make quantitative predictions about the runtime of algorithms (i.e., it is not
typically true that generating columns in blocks of size 𝑏 is precisely 𝑏 times faster
than generating one-at-a-time). Rather, our point should be taken as qualitative and
conceptual. ⋄

The submatrix access model
In view of the discussion in the previous subsection, we see the entry access model
described in Section 3.1 may be too simplistic an abstraction to describe the behavior
of kernel matrix algorithms. A better abstraction, introduced in [ETW25], is the
submatrix access model:

Submatrix access model. We are given a matrix 𝑩 ∈ K𝑚×𝑛 that may be
efficiently accessed by submatrices 𝑩(S,T) of small size |S| · |T| ≪ 𝑚𝑛.
The access is most efficient when both S and T have size≫ 1.

The goal of this section will be to develop versions of RPCholesky that are efficient
in the submatrix access model.

128

Matrix–matrix arithmetic
Memory transfers also help explain why block matrix operations like matrix–matrix
multiplication are fast on modern computers. The core idea is that, with careful
implementation to manage data movement, computing a matrix–matrix product 𝑩𝑪
all at once requires fewer memory transfers than computing the product one column
𝑩𝒄𝑖 at a time.

Achieving high performance for block matrix arithmetic on modern computer archi-
tectures demands significant programming effort. Fortunately, much of this work
has already been done, with hardware vendors providing optimized implementations
of matrix multiplication as part of the Level-3 Basic Linear Algebra Subprograms
(BLAS3). Modern linear algebra libraries such as LAPACK are built to exploit
these routines, computing matrix factorizations (LU, Cholesky, QR, etc.) through
sequences of matrix multiplications implemented via BLAS3. For the algorithm de-
signer or numerical programmer, the takeaway is clear: To maximize performance,
it is advantageous to reorganize computations to rely on matrix–matrix operations
rather than on matrix–vector or vector–vector operations.

8.2 Algorithm 1: Block RPCholesky
Given currently selected pivots 𝑠1, . . . , 𝑠𝑖, the standard RPCholesky algorithm
draws a single next pivot at each iteration using the sampling rule

𝑠𝑖+1 ∼ diag(𝑨(𝑖)),

and it computes the next column 𝒇 𝑖+1 of the factor matrix 𝑭 by the formula

𝒇 𝑖+1 :=
𝒂𝑠𝑖+1 − 𝑭(:, 1 : 𝑖)𝑭(𝑠𝑖+1, 1 : 𝑖)∗

(𝑎𝑠𝑖+1𝑠𝑖+1 − 𝑭(𝑠𝑖+1, 1 : 𝑖)𝑭(𝑠𝑖+1, 1 : 𝑖)∗)1/2
. (8.2)

(Recall the definition of 𝑨(𝑖) in (8.1).) Each iteration exposes a single column 𝒂𝑠𝑖
of the matrix 𝑨 and evaluates the matrix–vector product 𝑭(:, 1 : 𝑖)𝑭(𝑠𝑖+1, 1 : 𝑖)∗.

To create a block variant of this algorithm, we can draw multiple random pivots at
once

𝑠𝑖+1, . . . , 𝑠𝑖+𝑏
iid∼ diag(𝑨(𝑖)), (8.3a)

where 𝑏 ≥ 1 is a user-specified block size. Setting S′ := {𝑠𝑖+1, . . . , 𝑠𝑖+𝑏}, a block of
𝑏 new columns of the factor matrix can be generating using the formula

𝑭(:, 𝑖 + 1 : 𝑖 + 𝑏) := (𝑨(:,S′) − 𝑭(:, 1 : 𝑖)𝑭(S′, 1 : 𝑖)∗)𝑹−1, (8.3b)

129

Program 8.1 block_rpcholesky.m. Block RPCholesky algorithm for psd low-
rank approximation and column subset selection. Subroutinesqrownorms is defined
in Program F.3.
function [F,S] = block_rpcholesky(Acol,d,k,b)
% Input: Function Acol for producing columns Acol(I) = A(:,I) of A,
% diagonal d of A, rank k, block size b
% Output: Factor F defining a rank-k approximation Ahat = F*F’, pivot
% set S

n = length(d); % Matrix size
F = zeros(n,k); % To store output
S = zeros(k,1); % To store pivots
shift = 4*max(d)*eps; % Shift to ensure positive definiteness
i = 0; % Index to store current position
while i < k

b = min(b,k-i); % At most k pivots
% Random sample using current diagonal as sampling weights
Snew = datasample(1:n,b,"Weights",d,"Replace",false);
S(i+1:i+b) = Snew; % Update pivots
G = Acol(Snew) - F(:,1:i)*F(Snew,1:i)’; % Columns of residual
R = chol(G(Snew,:) + shift*eye(b)); % Shift for stability
F(:,i+1:i+b) = G / R; % Update factor
d = d - sqrownorms(F(:,i+1:i+b)); % Update diagonal
d = max(d,0); % Ensure nonnegative diagonal in floating point
i = i + b; % Update index

end

end

where
𝑹∗𝑹 = 𝑨(S′,S′) − 𝑭(S′, 1 : 𝑖)𝑭(S′, 1 : 𝑖)∗ = 𝑨(𝑖) (S′,S′). (8.3c)

is an upper-triangular Cholesky factorization. Equation (8.3b) is the block Cholesky
analog of (8.2). The update steps (8.3) generate 𝑏 columns of the kernel matrix,
and they employ block matrix–matrix operations to update the factor matrix 𝑭.
We call the procedure (8.3) the block RPCholesky algorithm. Code is provided in
Program 8.1.

The redundant pivot problem. The block RPCholesky algorithm is simple and
performant. However, it can suffer from the redundant pivot problem: The selected
pivots S′ = {𝑠𝑖+1, . . . , 𝑠𝑖+𝑏} can contain similar information to each other, resulting
in a submatrix 𝑨(𝑖) (S′,S′) that is ill-conditioned. Redundant pivots can hurt the
performance of the algorithm in two ways:

130

1. Cholesky decomposition failure. On some examples, the matrix 𝑨(𝑖) (S′,S′)
can be (numerically) rank-deficient, causing the Cholesky decomposition
(8.3c) to fail.

2. Lower quality approximation/pivot set. For a fixed rank 𝑘 , a low-rank
approximation with redundant pivots is less accurate than an approximation
where each pivot is distinct. Additionally, for subset selection problems, the
computational task is to select a diverse set of representatives for a data set;
selecting redundant pivots is contrary to this goal.

The first issue can be addressed by adding a shift on the order of the machine precision
to the matrix 𝑨(𝑖) (S′,S′) in (8.3c) or applying RPCholesky to a shifted version
𝑨 + 𝜇I of the matrix. My coauthors and I have experimented with different values
for the shift parameter across different papers and different versions of our software,
with the goal of finding the minimum possible shift that guarantees convergence of
the algorithm. Our current recommendation is to use a shift of 4 max{𝑎𝑖𝑖}𝑢, where
𝑢 is the unit roundoff (𝑢 ≈ 10−16 in double precision).

The second issue may or may not be serious depending on the application. We
emphasize that redundant pivots do not hurt the quality of the approximation (at
least in exact arithmetic); by Proposition 2.9(c), the quality of a low-rank approx-
imation 𝑨⟨S ∪ Sredundant⟩ with redundant pivots is never worse than the low-rank
approximation 𝑨⟨S⟩ without redundant pivots. Rather, each redundant pivot is a
wasted opportunity to find a better pivot that better represents the data set. The next
two sections outline improved versions of block RPCholesky that subsample the
set of iid pivots (8.3a) to remove redundant pivots.

Analysis. The block RPCholesky bound satisfies the following guarantee, which
we take from [ETW25, Thm. 4.1].

Theorem 8.2 (Block randomly pivoted Cholesky). Let 𝑟 ≥ 1 be an integer, 𝜀 > 0
be a real number, and 𝑨 ∈ K𝑛×𝑛 be a psd matrix. Introduce the relative error of the
best rank-𝑟 approximation:

𝜂 := tr(𝑨 − ⟦𝑨⟧𝑟)/tr(𝑨).

Fix a block size 𝑏 that divides the rank 𝑘 . Block randomly pivoted Cholesky produces
an (𝑟, 𝜀)-approximation ((3.2)) provided

𝑘 ≥ 𝑟
𝜀
+ (𝑟 + 𝑏) log

(
1
𝜀𝜂

)
. (8.4)

131

The guarantee (8.4) for block RPCholesky is very similar to the guarantee (4.1) for
standard RPCholesky; the only difference between the bounds is that the (𝑟 + 𝑏)
factor in the block RPCholesky bound is replaced by 𝑟 in the standard RPCholesky
bound. The implication is that the worst-case guarantees for standard and block
RPCholesky are similar for any block size 1 ≤ 𝑏 ≤ O(𝑟). However, while the
theoretical bounds for standard and block RPCholesky are different, the perfor-
mance of these methods differs greatly in practice. On some instances, standard
RPCholesky produce far smaller errors than block RPCholesky. (On the other
hand, block RPCholesky can be much faster than standard RPCholesky, so it can
accommodate a larger value of 𝑘 given a fixed runtime budget.)

We refer the interested reader to [ETW25, Thm. 4.1] for a proof of this result,
which proceeds by a comparison with the accelerated RPCholesky algorithm (Sec-
tion 8.4). See also the discussion around [ETW25, Thm. 4.3] for a discussion of the
error bounds for block RPCholesky that can be inferred from the earlier works of
Deshpande, Rademacher, Vempala, and Wang [DRVW06].

8.3 Algorithm 2: RBRP Cholesky
The first approach to improving on block RPCholesky is robust blockwise random
pivoting (RBRP), which was proposed by Dong, Chen, Martinsson, and Pearce
[DCMP24]. This approach was developed concurrently with and released prior
to the accelerated RPCholesky algorithm, which we describe in the next section.
The RBRP strategy was originally developed for use with the randomly pivoted
QR algorithm (Chapter 9), but the idea works equally well when combined with
RPCholesky. We describe the RPCholesky variant here.

The RBRP algorithm is delightfully simple. Just like ordinary block RPCholesky,
we begin by drawing a set of iid random pivots

S′ = {𝑠′𝑖+1, . . . , 𝑠
′
𝑖+𝑏} with 𝑠′1, . . . , 𝑠

′
𝑏

iid∼ diag(𝑨(𝑖)).

Then, form the submatrix

𝑯 := 𝑨(𝑖) (S′,S′) = 𝑨(S′,S′) − 𝑭(S′, 1 : 𝑖)𝑭(S′, 1 : 𝑖)∗.

To filter any redundant pivots, we apply a step Dong et al. call robust blockwise
filtering, which runs Cholesky with greedy pivoting (Program 3.2) on 𝑯 until the
trace has been reduced by a factor 𝜏 ∈ (0, 1). (Dong et al. suggest 𝜏 = 1/𝑏.)
Letting T ⊆ S′ denote the set of pivots selected by the greedy method, we induct

132

Program 8.2 robust_block_filter.m. Implementation of robust blockwise
filtering, a subroutine for the RBRP Cholesky algorithm (Program 8.3).
function [T,L] = robust_block_filter(H,tau,lmax)
% Input: Psd matrix H, tolerance tau, maximum number of pivots to
% accept bmax
% Output: Set of pivots T, Cholesky factor L = chol(H(T,T), "lower")

b = size(H,1); % Matrix dimension
F = zeros(size(H)); % Store Cholesky factor
T = zeros(b,1); % Store pivots
d = diag(H); % Diagonal of H
orig_trace = sum(d); % Original trace of H

for i = 1:min(b,lmax) % Don’t exceed lmax pivots
[~,T(i)] = max(d); % Largest diag entry
hi = H(:,T(i)) - F(:,1:i-1)*F(T(i),1:i-1)’; % ith col of H-F*F’
F(:,i) = hi / sqrt(hi(T(i))); % Rescale
d = d - abs(F(:,i)).^2; % Update diagonal
if sum(d) <= tau * orig_trace; break; end % Terminate?

end

T = T(1:i); % Extract pivots
L = F(T,1:length(T)); % Extract Cholesky factor

end

the subselected pivots as new pivots:

𝑠𝑖+1 = 𝑠′𝑖1 , 𝑠𝑖+2 = 𝑠′𝑖2 , . . . , 𝑠𝑖+ℓ := 𝑠𝑖′
ℓ

where T = {𝑠′𝑖1 , . . . , 𝑠
′
𝑖ℓ
}.

Observe that this procedure inducts a random number of pivots 1 ≤ ℓ := |T| ≤ 𝑏 at
each step. Code for the robust blockwise filtering and RBRP Cholesky procedures
appear in Programs 8.2 and 8.3. At present, theoretical analysis for RBRP Cholesky
is unavailable.

8.4 Algorithm 3: Accelerated RPCholesky
Accelerated RPCholesky is another blocked variant of RPCholesky that solves the
redundant pivot problem [ETW25]. It is conceptually similar to the RBRP Cholesky
algorithm but uses rejection sampling in place of robust blockwise filtering. Com-
pared to block RPCholesky and RBRP Cholesky, accelerated RPCholesky has
the virtue that it produces the same random output as standard RPCholesky (Pro-
gram 4.1). Thus, it inherits RPCholesky’s theoretical guarantees (Section 4.3), and
it can be used for applications where the precise distribution of the RPCholesky

133

Program 8.3 rbrp_chol.m. RBRP Cholesky algorithm for psd low-rank approx-
imation and column subset selection. Subroutines robust_block_filter and
sqrownorms ared defined in Programs 8.2 and F.3.
function [F,S] = rbrp_chol(Acol,Asub,d,k,b)
% Input: Function Acol for producing columns Acol(I) = A(:,I) of A,
% function Asub for producing submatrices Asub(I) = A(I,I) of
% A, diagonal d of A, rank k, block size b
% Output: Factor F defining a rank-k approximation Ahat = F*F’, pivot
% set S

n = length(d); % Matrix size
F = zeros(n,k); % To store output
S = zeros(k,1); % To store pivots
i = 0; % Index to store current position
while i < k

% Random sample using current diagonal as sampling weights
Sp = datasample(1:n,b,"Weights",d,"Replace",false);
H = Asub(Sp) - F(Sp,1:i)*F(Sp,1:i)’; % Residual submatrix
[T,L] = robust_block_filter(H,1/b,k-i); % Block filtering
T = Sp(T); % Get selected pivots
l = length(T); % Number of pivots
S(i+1:i+l) = T; % Update pivots
G = Acol(T) - F(:,1:i)*F(T,1:i)’; % Columns of residual
F(:,i+1:i+l) = G / L’; % Update factor
d = d - sqrownorms(F(:,i+1:i+l)); % Update diagonal
d = max(d,0); % Ensure nonnegative diagonal in floating point
i = i + l; % Update index

end

end

pivots is important, such as fixed-size DPP sampling (Section 4.5). We will discuss
the relative strengths of the three algorithms in Sections 8.5 and 8.6.

Recall from Section 7.3 that rejection sampling allows one to sample from a (po-
tentially complicated) target distribution using samples from a simpler proposal
distribution. In that section, we used the diagonal of a kernel function 𝜅 as a pro-
posal distribution, with the RPCholesky sampling distribution as the target. Here,
we will use the same principles in a somewhat different way.

Suppose we have sampled an initial batch of pivots 𝑠1, . . . , 𝑠𝑖, giving rise to the
residual matrix 𝑨(𝑖) . We are interested in sampling a new set of pivots 𝑠𝑖+1, . . . , 𝑠𝑖+ℓ,

134

Program 8.4 acc_rpcholesky.m. Accelerated RPCholesky method for
psd low-rank approximation and column subset selection. Subroutine
rejection_sample_submatrix is defined in Program 8.5.
function [F,S] = acc_rpcholesky(Acol,Asub,d,k,b)
% Input: Function Acol for producing columns Acol(I) = A(:,I) of A,
% function Asub for producing submatrices Asub(I) = A(I,I) of
% A, diagonal d of A, rank k, block size b
% Output: Factor F defining a rank-k approximation Ahat = F*F’, pivot
% set S

n = length(d); % Matrix size
F = zeros(n,k); % To store output
S = zeros(k,1); % To store pivots
i = 0; % Index to store current position
while i < k

% Random sample using current diagonal as sampling weights
Sp = datasample(1:n,b,"Weights",d,"Replace",true);
H = Asub(Sp) - F(Sp,1:i)*F(Sp,1:i)’; % Residual submatrix
[T,L] = rejection_sample_submatrix(H,diag(H),k-i);
T = Sp(T); % Get selected pivots
l = length(T); % Number of pivots
S(i+1:i+l) = T; % Update pivots
G = Acol(T) - F(:,1:i)*F(T,1:i)’; % Columns of residual
F(:,i+1:i+l) = G / L’; % Update factor
d = d - sqrownorms(F(:,i+1:i+l)); % Update diagonal
d = max(d,0); % Ensure nonnegative diagonal in floating point
i = i + l; % Update index

end

end

each of which has distribution

𝑠𝑖+ 𝑗+1 ∼ diag(𝑨(𝑖+ 𝑗)) for 𝑗 = 0, . . . , ℓ − 1.

We shall sample these distributions using rejection sampling, with diag(𝑨(𝑖)) serv-
ing as the sampling distribution.

More precisely, we do the following. As in the other algorithms, we draw a block
of proposal pivots S′ = {𝑠′1, . . . , 𝑠

′
𝑏
} iid from the diagonal of the residual matrix:

𝑠′1, . . . , 𝑠
′
𝑏

iid∼ diag(𝑨(𝑖)).

We emphasize that the sampling must be performed with replacement. (The other
algorithms can be implemented with or without replacement.) We now use this

135

block of pivots to perform 𝑏 proposals of rejection sampling. Beginning with ℓ = 0,
we perform the following step for each 𝑗 = 1, . . . , 𝑏:

With probability
𝑨(𝑖+ℓ) (𝑠′

𝑗
, 𝑠′
𝑗
)

𝑨(𝑖) (𝑠′
𝑗
, 𝑠′
𝑗
)
, accept by setting ℓ ← ℓ + 1 and 𝑠𝑖+ℓ ← 𝑠′𝑗 .

The output of this rejection sampling loop is a collection of new pivots 𝑠𝑖+1, . . . , 𝑠𝑖+ℓ
of random size 1 ≤ ℓ ≤ 𝑏. (We have ℓ ≥ 1 since the first pivot is always accepted.)
Having selected new pivots, we then generate columns 𝑭(:, 𝑖 + 1 : 𝑖 + ℓ) using the
block update formula (8.3b). In the next round, we use the diagonal of 𝑨(𝑖+ℓ) as the
new proposal distribution for selecting new pivots. The accelerated RPCholesky
method is shown in Program 8.4.

The accelerated RPCholesky method uses rejection sampling to simulate the per-
formance of the original RPCholesky method while taking advantage of blockwise
matrix operations. We emphasize that the output of accelerated RPCholesky has
the same random distribution as the output of the original RPCholesky algorithm.

RejectionSampleSubmatrix subroutine. For computational efficiency and ex-
tensibility, the rejection sampling steps in the accelerated RPCholesky program
are encapsulated in a subroutine called RejectionSampleSubmatrix, shown in
Program 8.5. This subroutine takes as input a submatrix 𝑯 = 𝑨(𝑖) (S′,S′) ∈ KS′×S′

and proposal distribution subvector 𝒖 ≥ diag(𝑯) ∈ RS′
+ . The vector 𝒖 stores

the entries of the proposal distribution for the proposed pivots S′. In accelerated
RPCholesky, the proposal weights are diag(𝑨(𝑖) (S′,S′)). One can also Rejec-
tionSampleSubmatrix to develop a block version of the infinite-dimensional RP-
Cholesky sampler (Program 7.2), in which case the proposal distribution subvector
is 𝒖 = diag(𝜅(S′,S′)).

This subroutine works by performing a Cholesky decomposition of 𝑯 in place, with
a probabilistic decision made at each step whether to eliminate entry 𝑗 or ignore it
entirely. For 𝑗 = 1, . . . , 𝑏, do the following:

1. Accept/reject. With probability 𝑯(𝑠′
𝑗
, 𝑠′
𝑗
)/𝒖(𝑠′

𝑗
) accept and induct 𝑠′

𝑗
as a

new pivot T← T ∪ {𝑠′
𝑗
} and go to step 2. Otherwise, reject and skip step 2.

2. Update and eliminate. Perform a step of Cholesky decomposition to elimi-
nate 𝑠′

𝑗
. Specifically, set

𝑯({𝑠′𝑗 , . . . , 𝑠′𝑏}, 𝑠
′
𝑗) ← 𝑯({𝑠′𝑗 , . . . , 𝑠′𝑏}, 𝑠

′
𝑗)/𝑯(𝑠′𝑗 , 𝑠′𝑗)1/2,

136

Program 8.5 rejection_sample_submatrix.m. Sample a set of RPCholesky
pivots using rejection sampling. This subroutine is used in Program 8.4.
function [T,L] = rejection_sample_submatrix(H,u,lmax)
% Input: Psd matrix H and proposal distribution u
% Output: Indices T of selected pivots, Cholesky factor L
% = chol(H(T,T), "lower")

b = size(H,1); % Matrix dimension
T = zeros(b,1); % Buffer for accepted pivots
num_accepts = 0; % Counter for acceptances

for j = 1:b
if u(j) * rand() > H(j,j) % Rejection sampling

continue % If reject, continue
end
num_accepts = num_accepts + 1; % Increment counter
T(num_accepts) = j; % Accept i as pivot
H(j:b,j) = H(j:b,j) / sqrt(H(j,j)); % Overwrite H with Cholesky
% Update residual (Schur complement)
H(j+1:b,j+1:b) = H(j+1:b,j+1:b) - H(j+1:b,j)*H(j+1:b,j)’;
if num_accepts == lmax; break; end % At most lmax pivots

end

T = T(1:num_accepts); % Fix buffer size
L = tril(H(T,T)); % Extract Cholesky factor

end

then update

𝑯(S′𝑗+1:𝑏,S
′
𝑗+1:𝑏) ← 𝑯(S′𝑗+1:𝑏,S

′
𝑗+1:𝑏) − 𝑯(S′𝑗+1:𝑏, 𝑠 𝑗)𝑯(S

′
𝑗+1:𝑏, 𝑠 𝑗)

∗

with S′
𝑗+1:𝑏 := {𝑠′

𝑗+1, . . . , 𝑠
′
𝑏
}.

This procedure terminates with T storing the set of accepted pivots and the lower tri-
angular portion 𝑳 of 𝑯(T,T) containing a Cholesky factorization of the T-submatrix
of the (unmodified) input matrix 𝑯(T,T). Code is provided in Program 8.5.

Comparison of RejectionRPCholesky and accelerated RPCholesky. We now
have two different strategies for implementing RPCholesky using rejection sam-
pling, RejectionRPCholesky and accelerated RPCholesky. A comparison is
warranted.

We originally introduced RejectionRPCholesky for sampling from an infinite
space X endowed with a positive-definite kernel function 𝜅, but the algorithm also

137

works for implementing RPCholesky on a finite psd matrix 𝑨. RejectionRPC-
holesky uses the same proposal distribution diag(𝑨) throughout the algorithm,
and it forms only the pivot set S, not the factor matrix 𝑭. Assuming diag(𝑨) = 1
is the vector of ones, the RejectionSampleSubmatrix runs in roughly

O(𝑘3/𝜂𝑘) operations,

where 𝜂𝑘 = tr(𝑨 − ⟦𝑨⟧𝑘−1)/tr(𝑨) is the relative error of the best rank-(𝑘 − 1)
approximation. (Here, we assume that a random integer between 1 ≤ 𝑖 ≤ 𝑛 can be
generated in O(1) operations, which is true in the WordRAM model of computa-
tion.) The runtime of the algorithm is independent of the dimension 𝑛, but it suffers
from the curse of smoothness, with the algorithm slowing when the eigenvalues of
𝑨 decay rapidly. The reason for the curse of smoothness is that the proposal distri-
bution diag(𝑨) remains static throughout the algorithm, and the probability of each
proposal being accepted becomes smaller and smaller as the diagonal diag(𝑨(𝑖)) of
the residual shrinks. An additional weakness of RejectionSampleSubmatrix is
that it does not generate the factor matrix 𝑭, although it can be assembled in O(𝑘2𝑛)
operations if desired.

The accelerated RPCholesky defeats the curse of smoothness by updating the
proposal distribution after every 𝑏 proposals. The cost of the algorithm is at most

O(𝑘2𝑛 + 𝑘𝑏2) operations and (𝑘 + 1)𝑛 + 𝑘𝑏2 entry accesses,

only slightly more than standard RPCholesky provided the block size 𝑏 is not large.
Moreover, accelerated RPCholesky is designed so that most of the operations
are performed in a block-wise fashion, making it 5× to 40× faster than standard
RPCholesky in practice.

Ultimately, RejectionSampleSubmatrix (or a block version of it) is a useful algo-
rithm for certain scenarios, namely for applying RPCholesky to matrices with slow
spectral decay or for extremely large or infinite-dimensional problems. Accelerated
RPCholesky, by contrast, is excellent for general-purpose use, and I recommend
the algorithm for deployment in practice.

Picking the block size. An advantage of the accelerated RPCholesky algorithm
over the block RPCholesky algorithm is that it can accommodate a very large
block size while maintaining approximation quality, as the rejection sampling step
helps filter any redundant pivots. When the number of pivots 𝑘 is set by the user in

138

advance, I recommend 𝑏 = 𝑘/10 or even 𝑏 = 𝑘/3 as a good default value for the
block size.

One can also set the block size automatically to avoid additional algorithmic pa-
rameters. Here is one procedure I have used in my code. Initialize the block size
𝑏 at some default value. Each round of the algorithm, time both the rejection step
(i.e., sampling proposals S′, forming the submatrix 𝑨(𝑖) (S′,S′), and running Re-
jectionSampleSubmatrix) and the processing step (reading columns 𝑨(:,T) and
updating 𝑭). Let 𝑡r and 𝑡p be the respective runtimes. We may assume for simplicity
that the runtimes of these steps satisfy the proportionality relations

𝑡r ≈ 𝑐r𝑏
2 and 𝑡p ≈ 𝑐p𝑏. (8.5)

for appropriate constants 𝑐r and 𝑐p. It is reasonable want the rejection step to
comprise a modest fraction of the total runtime, say, 20%. Setting 𝑡r = 0.25𝑡p and
solving (8.5) suggests choosing the next block size as 𝑏 = 𝑡p/(4𝑡r). To make this
procedure robust, we make sure that the block size does not change too much from
iteration to iteration, and weset a maximum block size 𝑏max (e.g., 𝑏max = 𝑘/3 if 𝑘 is
known in advance). The resulting update rule is

𝑏 ← max
{
min

{
𝑡p

4𝑡r
· 𝑏, ⌈1.5𝑏⌉ , 𝑏max

}
,

⌈
𝑏

3

⌉}
.

Analysis. One can show that the accelerated RPCholesky algorithm achieves the
(𝑟, 𝜀)-guarantee using a limited number of proposals. Specifically, we have the
following result [ETW25, Thm. 4.1]:

Theorem 8.3 (Accelerated randomly pivoted Cholesky). Let 𝑟 ≥ 1 be an integer,
𝜀 > 0 be a real number, and 𝑨 ∈ K𝑛×𝑛 be a psd matrix. Introduce the relative error
of the best rank-𝑟 approximation:

𝜂 := tr(𝑨 − ⟦𝑨⟧𝑟)/tr(𝑨).

Fix a number of rounds 𝑡 and a number of proposals per round 𝑏. Accelerated
randomly pivoted Cholesky produces an (𝑟, 𝜀)-approximation to 𝑨 provided that

𝑏𝑡 ≥ 𝑟
𝜀
+ (𝑟 + 𝑏) log

(
1
𝜀𝜂

)
. (8.6)

We omit the proof, which is a more involved version of the standard RPCholesky
analysis (Theorem 4.1). The similarity between the block RPCholesky guarantee

139

Figure 8.1: Error ratio ((8.7), left) and speedup over standard RPCholesky (right)
for block RPCholesky and accelerated RPCholesky on a testbed of 125 psd kernel
matrices. The data is taken from [ETW25, Fig. 3].

(8.4) and the accelerated RPCholesky guarantee (8.6) is no accident. Theorem 8.2
follows as a corollary of Theorem 8.3 under the principle that “Accepting more
pivots can only help the approximation quality.”

8.5 Experiments
In [ETW25, §3.1], my coauthors and I compared the error and runtime of block
RPCholesky and accelerated RPCholesky for rank-1000 approximation of 125
test matrices with sizes between 4 × 104 and 105, including both synthetic and
real data. I reproduce the data from those experiments here in Fig. 8.1. Standard
RPCholesky provides a baseline for both speed and accuracy, and Fig. 8.1 plots
the speedup and error ratio

error ratio :=
algorithm error

standard RPCholesky error
(8.7)

for each matrix in the test suite. The runtimes in this data were computed using the
Python code employed in [CETW25; ETW25], not the MATLAB code provided in
this thesis. The block size was set to 𝑏 = 150.

We see that accelerated and block RPCholesky achieve comparable speed to each
other, with both methods achieving speedups of 5× to 40× over standard RP-
Cholesky. These experiments demonstrate the large benefits of blocking for the
speed of RPCholesky-type low-rank approximation algorithms.

These results show that the accuracy of block RPCholesky and accelerated RP-

140

Relative trace error Runtime (sec)

Block RPCholesky 3.89e-04 ± 1.40e-04 7.00 ± 0.63
Accelerated RPCholesky 4.85e-07 ± 3.60e-08 7.43 ± 1.06

RBRP Cholesky 6.62e-07 ± 1.35e-07 7.53 ± 0.80

Table 8.1: Runtime and relative error for rank-1000 approximation produced by
three blocked RPCholesky algorithms for the synthetic test matrix of dimension
𝑛 = 105 from [ETW25, Fig. 1]. (All methods use block size 𝑏 = 120.) The table
shows the mean and standard deviation computed over 100 trials, and data is taken
from [ETW25, Tab. 3].

Cholesky differs significantly. On all test matrices, the accelerated RPCholesky
method achieves the same error as standard RPCholesky, which makes sense be-
cause both methods produce the same random distribution of outputs. On 100 out
of 125 examples, the error of block RPCholesky is similar to the other methods,
with an error ratio between 1.00 and 1.16. Because of the redundant pivot problem,
block RPCholesky suffers significantly higher errors (up to 3000×) than standard
RPCholesky.

Our paper [ETW25] does not provide detailed experiments comparing RBRP
Cholesky to the other blocked RPCholesky algorithms, but it does compare the
algorithms on a single challenging synthetic matrix. We reproduce this table as
Table 8.1. We see that the performance of RBRP Cholesky and accelerated RP-
Cholesky are similar, with accelerated RPCholesky being slightly more accurate
and faster. (Notably, the output of accelerated RPCholesky is also less variable than
RBRP Cholesky, which is curious because the accelerated RPCholesky algorithm
uses “more randomness” than the RBRP Cholesky does.) The small advantage of
accelerated RPCholesky over RBRP Cholesky on this example pales in comparison
to the large improvement in accuracy both methods have over block RPCholesky.

8.6 Comparison of three algorithms
All three blocked RPCholesky algorithms have merits for some use cases.

The block RPCholesky is simple and fast, and it performs operations on chunks of
data of fixed size 𝑛×𝑏. As such, block RPCholesky algorithm is ideal for computing
hardware like GPUs that are optimized for repetitive operations on data buffers of
fixed size. Additionally, the block RPCholesky algorithm may be appropriate for
applications where its subpar accuracy can be compensated for by taking a larger
approximation rank 𝑘 .

141

Both accelerated RPCholesky and RBRP Cholesky algorithms both yield much
better low-rank approximations on tough examples than block RPCholesky. At
least for the CPU experiments reported in Section 8.5, the cost of using these more-
accurate methods is minimal, as these methods achieve nearly the same speedup
as block RPCholesky does. For this reason, I would recommend accelerated
either RPCholesky or RBRP Cholesky as a natural choice for most applications of
RPCholesky. The merits of these methods over block RPCholesky are particularly
pronounced when used for subset selection problems, where it is important not to
select redundant pivots.

The differences between RBRP Cholesky and accelerated RPCholesky are fairly
minor, but there are some reasons to prefer accelerated RPCholesky:

1. Accelerated RPCholesky produces the same random pivot distribution as
standard RPCholesky. As such, it inherits RPCholesky’s theoretical guar-
antees (Section 4.3), and it can be used in applications where the precise
distribution of pivots is important (e.g., sampling from a projection DPP,
Section 4.5).

2. In my computational experience, accelerated RPCholesky sometimes pro-
duces modestly better low-rank approximations on some examples (like the
one in Table 8.1).

Notwithstanding these differences, accelerated RPCholesky and RBRP Cholesky
tend to perform similarly in practice, and both are natural choices for deployment in
software.

142

C h a p t e r 9

RANDOMLY PIVOTED QR: LOW-RANK APPROXIMATION OF
GENERAL MATRICES

But the idea of using actual columns and rows of the matrix 𝑨 [for
low-rank approximation] can be highly attractive. Those vectors have
meaning. They are often sparse and/or nonnegative and they reflect
useful properties that we wish to preserve in approximating 𝑨.

Gilbert Strang and Cleve Moler, LU and CR Elimination [SM22, §6]

So far, this thesis has focused on low-rank approximation of psd matrices. Al-
gorithms for this task can achieve remarkable results, producing a near-optimal
low-rank approximation to any psd matrix after reading a fraction of its entries. The
algorithms we have seen accomplish this goal by forming a column Nyström ap-
proximation to a matrix 𝑨 using a judiciously chosen subset of columns. Among the
available algorithms for psd low-rank approximation from limited entry evaluations,
RPCholesky and its variants are among the fastest and most reliable.

The impossibility result Proposition 3.3 shows that producing accurate approxima-
tions to a general matrix is impossible from a small budget of entry evaluations
without additional information. Therefore, to produce a low-rank approximation to
a general matrix, we are generally interested in algorithms that read the full input
matrix, opening up a much larger design space for algorithms. In particular, natural
algorithms include the randomized SVD and its variants (Sections 2.3 and 2.4),
which multiply the input matrix 𝑩 by a randomized test matrix 𝛀 (constructed
independently from 𝑩).

Still, there are reasons in some applications to prefer low-rank approximations to 𝑩

spanned by a subset of the columns of 𝑩. This chapter will review randomly pivoted
QR algorithms for constructing such low-rank approximations and describe their
connection to RPCholesky and other methods for psd low-rank approximation.

Sources. The algorithm we call randomly pivoted QR algorithm was originally
proposed as adaptive sampling by Deshpande, Rademacher, Vempala, and Wang
[DRVW06; DV06]. Our treatment follows the papers

143

Yifan Chen, Ethan N. Epperly, Joel A. Tropp, and Robert J. Webber. “Randomly
Pivoted Cholesky: Practical Approximation of a Kernel Matrix with Few Entry
Evaluations”. In: Communications on Pure and Applied Mathematics 78.5 (2025),
pp. 995–1041. doi: 10.1002/cpa.22234

and

Ethan N. Epperly, Joel A. Tropp, and Robert J. Webber. Embrace Rejection: Kernel
Matrix Approximation by Accelerated Randomly Pivoted Cholesky. Apr. 2025.
arXiv: 2410.03969v3.

These papers revisited the randomly pivoted QR algorithm, though their focus
was more on RPCholesky. This chapter’s treatment of randomly pivoted QR
is substantially expanded from those papers. It contains new research including
discussion of numerical stability issues.

Outline. Section 9.1 introduces column projection approximations for approxi-
mating a matrix using a subset of their columns and discusses pivoted partial QR
algorithms for computing them. Section 9.2 presents randomly pivoted QR , and
Section 9.3 discuss fast implementations using rejection sampling. Related work
on sketchy pivoting is discussed in Section 9.4, and numerical experiments are pro-
vided in Section 9.5. Finally, Section 9.6 concludes by discussing the history and
connections between randomly pivoted QR and randomly pivoted Cholesky.

9.1 Low-rank approximation via column selection
Recall from Chapter 2 that many of the commonly used low-rank approximations
for general matrices are projection approximations. Given a matrix 𝑩 ∈ K𝑚×𝑛 and
a test matrix 𝛀, the projection approximation to 𝑩 is

𝑩 := 𝚷𝑩𝛀𝑩 = 𝑸𝑸∗𝑩 where 𝑸 = Orth(𝑩𝛀).

Throughout this chapter, 𝚷𝑭 denotes the orthoprojector onto range(𝑭).

Just as we obtained column Nyström approximations from choosing the test matrix
𝛀 = I(:,S) to be a column submatrix of the identity matrix, we may obtain column
projection approximations in the same way:

Definition 9.1 (Column projection approximation). Let 𝑩 ∈ K𝑚×𝑛 be a matrix and
let S ⊆ {1, . . . , 𝑛} be a set of pivot indices. The column projection approximation
to 𝑩 induced by S is

𝑩 := 𝚷𝑩(:,S)𝑩.

https://doi.org/10.1002/cpa.22234
https://arxiv.org/abs/2410.03969v3

144

Naturally, the column projection approximation 𝚷𝑩(:,S)𝑩 is the projection approx-
imation (Definition 2.2) to 𝑩 with test matrix 𝛀 = I(:,S). As column projection
approximations are projection approximations, they enjoy the properties listed in
Proposition 2.3.

Pivoted partial QR decomposition
Just as column Nyström approximations can be computed by pivoted Cholesky
decompositions, column projection approximations can be computed using pivoted
QR decompositions. We collect the low-rank approximation in a factorization
𝑩 = 𝑸𝑭∗, where 𝑸 ∈ K𝑚×𝑘 and 𝑭 ∈ K𝑛×𝑘 . Beginning from initial residual
𝑩(0) := 𝑩 , do the following for 𝑖 = 0, 1, 2, . . . , 𝑘 − 1:

• Select a pivot. Choose a pivot index 𝑠𝑖 ∈ {1, . . . , 𝑛} associated with a nonzero
pivot column 𝒃 (𝑖) ≠ 0.

• Update approximation. Set 𝒒𝑖 := 𝒃 (𝑖)𝑠𝑖 /∥𝒃
(𝑖)
𝑠𝑖 ∥ and 𝒇 𝑖 := 𝑩∗𝒒𝑖. Observe that

𝒒
𝑖
𝒇 ∗𝑖 = 𝒒

𝑖
𝒒∗
𝑖
𝑩(𝑖) is the orthogonal projection of the residual matrix 𝑩(𝑖) onto

its 𝑠𝑖th column.

• Update residual. Define 𝑩(𝑖+1) := 𝑩(𝑖) − 𝒒
𝑖
𝒇 ∗𝑖 = (I − 𝒒

𝑖
𝒒∗
𝑖
)𝑩(𝑖) .

As written, this procedure is effectively a Gram–Schmidt orthogonalization: We suc-
cessively select a pivot column and orthonormalize the remaining columns against
it. Neglecting rounding errors, the matrix 𝑸 produced by this procedure has or-
thonormal columns. See Program 9.1 for an implementation.

Remark 9.2 (Numerical stability of Gram–Schmidt). In fact, the implementation of
pivoted partial QR we described above and presented in Program 9.1 is actually
the modified Gram–Schmidt algorithm. The difference between the modified and
classical Gram–Schmidt algorithms in our context is that modified Gram–Schmidt
orthogonalizes the entire 𝑩 matrix against the selected pivot column, whereas clas-
sical Gram–Schmidt orthogonalizes only on an as-needed basis, forming columns of
𝑩(𝑖) on an as-needed basis using the formula 𝒃 (𝑖)𝑠 = 𝒃𝑠−

∑𝑖
𝑗=1 𝒒 𝑗𝒒

∗
𝑗
𝒃𝑠. The modified

Gram–Schmidt method has dramatically better properties in finite precision arith-
metic than classical Gram–Schmidt; see [Hig02, §19.8] for discussion and analysis.
Even using this modified Gram–Schmidt procedure, the columns of the matrix 𝑸

produced by this procedure can lose orthogonality in finite-precision arithmetic.
To ensure one obtains a 𝑸 matrix with numerically orthonormal columns, one can
perform pivoted partial QR using Householder reflectors; see [GV13, §5.1]. ⋄

145

Program 9.1 pivpartqr.m. Pivoted partial QR decomposition based on modified
Gram–Schmidt orthogonalization.
function [Q,F] = pivpartqr(B,S)
% Input: Matrix B and set of pivots S
% Output: Factors Q and F defining a rank-k approximation Bhat = Q*F’

[m,n] = size(B);
k = length(S); % Rank = number of pivots
Q = zeros(m,k); % Left factor (orthonormal cols)
F = zeros(n,k); % Right factor

for i = 1:k
s = S(i); % Get selected pivot
Q(:,i) = B(:,s) / norm(B(:,s)); % Normalize column
F(:,i) = B’ * Q(:,i); % Column of factor matrix
B = B - Q(:,i) * F(:,i)’; % Modified Gram-Schmidt

end

end

The pivoted partial QR algorithm computes a column projection approximation:

Proposition 9.3 (Pivoted partial QR computes a column projection approximation).
Pivoted partial QR decomposition (Program 9.1) with input matrix 𝑩 and pivot set
S computes a column projection approximation 𝚷𝑩(:,S)𝑩 = 𝑸𝑭∗.

Two factorizations of a column projection approximation
In applications, there are two common ways of representing a column projection
approximation in factored form. The first way is a pivoted partial QR decomposition:

𝚷𝑩(:,S)𝑩 = 𝑸𝑭∗ for 𝑸 = Orth(𝑩(:,S)) and 𝑭∗ = 𝑸∗𝑩.

The pivoted partial QR algorithm (Program 9.1) returns this factorization.

Another convenient way of representing the projection approximation is the inter-
polative decomposition (ID, [MT20, §13]), which takes the form

𝚷𝑩(:,S)𝑩 = 𝑩(:,S)𝑾∗ where 𝑾∗ = 𝑩(:,S)†𝑩. (9.1)

The interpolation matrix 𝑾 approximates the columns of 𝑩 as linear combinations
of the pivot columns 𝑩(:,S). The pivot columns are represented perfectly by the
interpolative decomposition, and, provided 𝑩(:,S) is full rank, the pivot columns

146

of 𝑾∗ are 𝑾∗(:,S) = I. The interpolative decomposition is a key ingredient for
rank-structured matrix computations [Mar11; Wil21] and tensor network algorithms
[OT10; TSL24].

The pivoted partial QR decomposition, as produced by many of the methods in
this chapter, can easily be converted to an interpolative decomposition. Indeed,
𝑭∗(:,S) = 𝑭(S, :)∗ is an upper-triangular matrix, so

𝚷𝑩(:,S)𝑩 = 𝑸𝑭∗ = 𝑸𝑭(S, :)∗𝑭(S, :)−∗𝑭∗ = 𝑩(:,S) [𝑭(S, :)−∗𝑭∗] .

Ergo, the interpolation matrix is𝑾 = 𝑭𝑭(S, :)−1, which can be computed inO(𝑛𝑘2)
operations using triangular solves.

To facilitate discussion of other algorithms later in this chapter, let us also introduce
the notion of an inexact interpolative decomposition.

Definition 9.4 (Exact and inexact interpolative decomposition). An exact interpola-
tive decomposition is a decomposition of the form (9.1). An inexact interpolative
decomposition is any low-rank approximation of the form

𝑩 = 𝑩(:,S)𝑾∗.

We say a randomized algorithm for computing an inexact ID is near-optimal if it is
guaranteed to produce an output satisfying

∥𝑩 − 𝑩(:,S)𝑾∗∥2F ≤ const ·

𝑩 −𝚷𝑩(:,S)𝑩

2
F

with 90% probability for any matrix 𝑩 and pivot set S.

The Gram correspondence: Equivalence between Cholesky and QR
The Gram correspondence (Theorem 2.12) establishes a link between column pro-
jection approximation and column Nyström approximation and, consequently, a
link between the pivoted partial QR and Cholesky algorithms. The general Gram
correspondence theorem (Theorem 2.12) yields the following corollary:

Corollary 9.5 (QR and Cholesky). Let 𝑨 be a psd matrix and let 𝑩 be any Gram
square root of 𝑨 (that is, 𝑨 = 𝑩∗𝑩). Let 𝑸 and 𝑭 be factors produced by pivoted
partial QR applied to 𝑩 with pivot set S. The following conclusions hold.

(a) Same factor. The pivoted partial Cholesky on 𝑨 with pivot set S produces the
factor matrix 𝑭, up to a possible scaling of the columns by elements 𝜔 ∈ K of
unit modulus.

147

(b) Connection between low-rank approximations. The low-rank approximation
𝑩 = 𝑸𝑭∗ produced by pivoted partial QR is a Gram square root of the
approximation 𝑨 = 𝑭𝑭∗ produced by pivoted partial Cholesky,

𝑨 = 𝑩∗𝑩,

(c) Same errors. For any 𝑝 ≥ 1, the approximation errors are related

∥𝑨 − 𝑨∥S𝑝
= ∥𝑩 − 𝑩∥2S2𝑝

.

Here, ∥·∥S𝑝
denotes the Schatten 𝑝-norm.

(d) Connection between residuals. At every step 𝑖, the 𝑖-step QR residual 𝑩(𝑖) :=
𝑩−𝑸(:, 1 : 𝑖)𝑭(:, 1 : 𝑖)∗ is a Gram square root of the 𝑖-step Cholesky residual
𝑨(𝑖) := 𝑨 − 𝑭(:, 1 : 𝑖)𝑭(:, 1 : 𝑖)∗.

(e) Diagonals and squared column norms. At each step 𝑖, the squared column
norms of 𝑩(𝑖) are the diagonal entries of 𝑨(𝑖) .

As we shall see, this result allows us to to seamlessly convert Cholesky-based
algorithms for psd low-rank approximation to QR-based algorithms for computing
column projection approximations to a general matrix. We restate the transference
of algorithms principle below:

Gram correspondence: Transference of algorithms. Every algorithm
producing a projection approximation to a general matrix should have an
analogous algorithm that produces a Nyström approximation to a psd matrix.

9.2 Randomly pivoted QR
Under the transference of algorithms, the RPCholesky procedure has an analog
for computing projection approximations to a general matrix using QR decomposi-
tion. We will call this algorithm randomly pivoted QR (RPQR) [DRVW06; DV06;
CETW25]; its history will be discussed later in Section 9.6.

The randomly pivoted QR algorithm is straighforward: Execute a pivoted partial
QR decomposition, drawing a random pivot column at each iteration

𝑠𝑖+1 ∼ scn(𝑩(𝑖)).

148

Program 9.2 rpqr.m. A modified Gram–Schmidt-based implementation of the
randomly pivoted QR algorithm for computing a column projection approximation.
Subroutine sqcolnorms is defined in Program F.4.
function [Q,F,S] = rpqr(B,k)
% Input: Matrix B and rank k
% Output: Factors Q and F defining rank-k approximation Bhat = Q*F’,
% set of pivots S

[m,n] = size(B);
Q = zeros(m,k); % Left factor (orthonormal cols)
F = zeros(n,k); % Right factor
S = zeros(k,1); % Pivots

for i = 1:k
% Random sample using current diagonal as sampling weights
[~,s] = datasample(1:n,1,"Weights",sqcolnorms(B));
S(i) = s; % Set pivot
Q(:,i) = B(:,s) / norm(B(:,s)); % Normalize column
F(:,i) = B’ * Q(:,i); % Column of factor matrix
B = B - Q(:,i) * F(:,i)’; % Modified Gram-Schmidt

end

end

sampled according to the squared column norms of the current residual matrix
𝑩(𝑖) . The squared column norm distribution is the natural analog of the diagonal
sampling 𝑠𝑖+1 ∼ diag(𝑨(𝑖)) used in RPCholesky in view of Corollary 9.5(e). See
Program 9.2 for an implementation.

Theoretical results
Under the Gram correspondence, theoretical results for RPCholesky immediately
lead to results for RPQR. In particular, we have the following:

Corollary 9.6 (Randomly pivoted QR). Let 𝑩 ∈ K𝑚×𝑛 be a matrix, and fix 𝑟 ≥ 1
and 𝜀 ≥ 0. Introduce the squared relative error of the best rank-𝑟 approximation:

𝜂 :=

𝑩 − ⟦𝑩⟧𝑟

2
F

∥𝑩∥2F
. (9.2)

Randomly pivoted QR produces an approximation 𝑩 satisfying

E∥𝑩 − 𝑩∥2F ≤ (1 + 𝜀)∥𝑩 − ⟦𝑩𝑟⟧∥
2
F.

149

provided the number of steps satisfies

𝑘 ≥ 𝑟
𝜀
+ 𝑟 log

(
1
𝜀𝜂

)
. (9.3)

More concisely, RPQR produces an (𝑟, 𝜀/2, 2)-approximation after (9.3) steps.
(Recall Definition 3.6 and the Lyapunov inequality E∥𝑩 − 𝑩∥F ≤ (E∥𝑩 − 𝑩∥2F)1/2.)

Implementation
We will not spend too much time on the implementation of the standard RPQR
algorithm, as we mainly advocate the accelerated RPQR algorithm for practical
computations, which will be introduced in the next section. Therefore, we describe
only a few implementation details for RPQR.

The implementation of RPQR in Program 9.2 is based on a modified Gram–Schmidt
procedure; see Remark 9.2 for discussion. This implementation is numerically stable
enough for most use cases, but it may be worth using an implementation based on
Householder reflectors if obtaining a 𝑸 matrix that has orthonormal columns up to
machine accuracy is necessary.

A second potential implementation issue is hardware efficiency. As we described
in the previous chapter, the fastest matrix algorithms are based on block matrix
computations; the implementation of RPQR provided in Program 9.2 is inherently
sequential, selecting a column and orthogonalizing the entire matrix against it at
every iteration. This deficit will be addressed using rejection sampling with the
accelerated RPQR algorithm, but there are other fixes that have been proposed for
pivoted QR decomposition with deterministic greedy pivoting that are worth men-
tioning. For fully deterministic implementations, the state of the art is provided
by the LAPACK routine xGEQP3. Quoting from the LAPACK manual, this routine
“only updates one column and one row of the rest of the matrix (information neces-
sary for the next pivoting phase) and delays the update of the rest of the matrix until
a block of columns has been processed” [ABBB+99, §2.4.2.3]. This modification
improves the efficiency of pivoted QR decompositions significantly and reorganizes
computations so a significant fraction of them utilize block matrix operations. A
second more recent idea is to use randomized dimensionality reduction, applying the
slow sequential pivoted QR algorithm to the matrix 𝑩 after it has been compressed
using randomized dimensionality reduction; see [MBMD+25] for details.

150

Block randomly pivoted QR
For historical reasons, we also mention that there is a straightforward block imple-
mentation of RPQR, analogous to block RPCholesky (Section 8.2). For most use
cases, robust block random pivoting [DCMP24] or accelerated RPQR (introduced
next section) provide a better alternative.

9.3 Accelerated randomly pivoted QR
The accelerated RPCholesky method (introduced in Section 8.4) uses rejection
sampling to simulate the performance of the original RPCholesky algorithm. It
is much faster than the standard RPCholesky algorithm in practice due to runtime
efficiencies from block-wise computations, and it produces the same random out-
put as ordinary RPCholesky. Under the Gram correspondence, the accelerated
RPCholesky algorithm has an analog, accelerated RPQR, that simulates the per-
formance of the RPQR algorithm while running much raster due to block-matrix
arithmetic.

Description of algorithm. One “round” of the accelerated RPQR algorithm may be
described as follows. Suppose we have already generated pivots 𝑠1, . . . , 𝑠𝑖 sampled
from the RPQR distribution, and, for each 𝑗 , denote the residual as

𝑩(𝑗) := 𝑩 − 𝑸 (𝑗)
(
𝑸 (𝑗)

)∗
𝑩 for 𝑸 (𝑗) = Orth(𝑩(:, {𝑠1, . . . , 𝑠 𝑗 })).

We wish to generate new pivots 𝑠𝑖+1, . . . , 𝑠𝑖+ℓ generated from the RPQR distribution

𝑠𝑖+ 𝑗 ∼ scn(𝑩(𝑖+ 𝑗)).

To do so,we fix a block size 𝑏 ≥ 1 and draw a collection S′ = {𝑠′1, . . . , 𝑠
′
𝑏
} iid with

replacement from the squared column norm distribution of 𝑩(𝑖)

𝑠′1, . . . , 𝑠
′
𝑏

iid∼ scn(𝑩(𝑖)).

Then, we filter the proposals T ⊆ S′ using rejection sampling, which can be
accomplished using the RejectionSampleSubmatrix subroutine (Program 8.5) on
𝑯 = [𝑩(𝑖) (:,S′)]∗𝑩(𝑖) (:,S′) with 𝒖 = diag(𝑯); see Section 8.4 for details on
RejectionSampleSubmatrix. Once the new pivots 𝑠𝑖+1, . . . , 𝑠𝑖+ℓ are inducted, we
update 𝑸 (𝑖+ℓ) , columns of the factor matrix 𝑭, and residual 𝑩(𝑖+ℓ) as needed.

Below, we describe two implementations of accelerated RPQR using different types
of orthogonalization. The first implementation (Program 9.3) is based on block
Gram–Schmidt orthogonalization, and the second (Program 9.4) employs House-
holder reflectors.

151

Program 9.3 acc_rpqr_bgs.m. Block Gram–Schmidt-based implementation of
accelerated RPQR algorithm for computing a column projection approximation to
a general matrix. Subroutines rejection_sample_submatrix and sqcolnorms
are provided in Programs 8.5 and F.4.
function [Q,F,S] = acc_rpqr_bgs(B,k,b)
% Input: Matrix B, rank k, block size b
% Output: Factors Q and F defining rank-k approximation Bhat = Q*F’,
% set of pivots S

[m,n] = size(B);
Q = zeros(m,k); % Left (orthonormal) factor
F = zeros(n,k); % Right factor
S = zeros(k,1); % Pivots
i = 0; % Index to store current position
while i < k

% Random sample using squared column norms as sampling weights
Sp = datasample(1:n,b,"Weights",sqcolnorms(B),"Replace",true);
H = B(:,Sp)’*B(:,Sp); % Gram matrix of residual
T = rejection_sample_submatrix(H,diag(H),k-i);
T = Sp(T); % Get selected pivots
l = length(T); % Number of pivots
S(i+1:i+l) = T; % Update pivots
[Q(:,i+1:i+l),~] = qr(B(:,T),"econ"); % Orthonormalize selection
F(:,i+1:i+l) = B’*Q(:,i+1:i+l); % Update factor
B = B - Q(:,i+1:i+l)*F(:,i+1:i+l)’; % Update residual
B = B - Q(:,i+1:i+l)*(Q(:,i+1:i+l)’*B);% Orthogonalize twice
i = i + l; % Update index

end

end

Implementation #1: Block Gram–Schmidt. Our first implementation of acceler-
ated RPQR is shown in Program 9.3 and uses block Gram–Schmidt to perform
orthogonalization. It is a fairly direct extension of the modified Gram–Schmidt im-
plementation of standard RPQR in Program 9.2. Throughout the algorithm, B stores
the current residual, the columns of the left orthonormal factor 𝑸 are obtained by
computing a QR decomposition of selected columns of B, and the factor matrix is
computed using the handy formula 𝑭(:, 𝑖 + 1 : 𝑖 + ℓ) = (𝑩(𝑖))∗𝑸(:, 𝑖 + 1 : 𝑖 + ℓ). Fol-
lowing best practices [GLRE05], we orthonormalize the residual matrix 𝑩 against
the newly orthonormalized columns 𝑸(:, 𝑖 + 1 : 𝑖 + ℓ) twice to improve numerical
stability. This implementation has worse stability properties than the Householder
reflector-based implementation in Program 9.4.

152

Implementation #2: Householder QR. A more numerically robust implementation
of accelerated RPQR can be obtained using Householder reflectors. Rather than
storing the orthonormal factor 𝑸 directly, we represent 𝑸 implicitly as the first 𝑘
columns of a product 𝑯1 · · ·𝑯𝑘 of Householder reflector matrices 𝑯𝑖, each of which
takes the form 𝑯𝑖 = I − 2𝒖

𝑖
𝒖∗
𝑖

for a unit vector 𝒖𝑖. This representation remains
storage-efficient, as we only need to store the unit vectors 𝒖𝑖. See [GV13, §§5.1 &
5.2] for more on Householder reflectors and QR factorization.

The advantage of a Householder reflector-based implementation over a Gram–
Schmidt-based implementation is that Householder QR methods are guaranteed
to produce a 𝑸 matrix whose columns are orthonormal up to machine precision
[Hig02, §19.3]. Gram–Schmidt-type methods do not possess such a guarantee
[Hig02, §19.8].

Program 9.4 provides a Householder-reflector based implementation of accelerated
RPQR. This implementation uses compact representations of the Householder QR
decomposition and carefully updates a QR decomposition of the matrix 𝑩(:,S)
throughout the algorithm, even as the pivot set S increases in size. See Appendix A
for discussion.

9.4 Related work: Sketchy pivoting
Per-Gunnar Martinsson and collaborators have pioneered a different family of meth-
ods for column subset selection called sketchy pivoting methods [VM17; DM23b;
DCMP24]. For completeness, we provide a brief introduction to the idea.

Fast random embeddings
The starting point for these methods is a type of matrix that we will call a fast
random embedding or fast sketching matrix. Informally, a fast random embedding
𝑺 ∈ K𝑚×𝑑 is a random matrix satisfying the following two properties:

• Fix an arbitrary 𝑘-dimensional subspace U ⊆ K𝑚. With high probability, 𝑺∗

preserves the lengths of all vectors in U up to a constant factor

c1∥𝒙∥ ≤ ∥𝑺∗𝒙∥ ≤ c2∥𝒙∥ for all 𝒙 ∈ U. (9.4)

Here, the c1, c2 ≈ 1 are absolute constants. The embedding dimension 𝑑

should be nearly proportional to the subspace dimension, 𝑑 = O(𝑘) or 𝑑 =

O(𝑘 log 𝑘).

153

Program 9.4 acc_rpqr.m. Householder reflector-based implementation of ac-
celerated RPQR algorithm for computing a column projection approximation to a
general matrix. Subroutines rejection_sample_submatrix, hhqr, apply_Qt,
get_Q, and sqcolnorms are provided in Programs 8.5, A.1 to A.3 and F.4.
function [Q,F,S] = acc_rpqr(B,k,b)
% Input: Matrix B, rank k, block size b
% Output: Factors Q and F defining rank-k approximation Bhat = Q*F’,
% set of pivots S

[m,n] = size(B);
hous = zeros(m,k); tau = zeros(k,1);% Compact Householder QR
S = zeros(k,1); % Pivots
i = 0; % Index to store current position
while i < k

% Random sample using squared column norms as sampling weights
Sp = datasample(1:n,b,"Weights",sqcolnorms(B(i+1:end,:)),...

"Replace",true);
% Form Gram matrix of selected pivots
Bp = B(i+1:end,Sp); % Bottom part of B stores residual
H = Bp’*Bp; % Gram matrix
T = rejection_sample_submatrix(H,diag(H),k-i);
T = Sp(T); % Get selected pivots
l = length(T); % Number of pivots
S(i+1:i+l) = T; % Update pivots
% Update Householder QR factorization
hous(:,i+1:i+l) = B(:,T);
[hous(i+1:end,i+1:i+l),tau(i+1:i+l)]... % Compute Householder

= hhqr(hous(i+1:end,i+1:i+l)); % reflectors
B(i+1:end,:) = apply_Qt(hous(i+1:end,i+1:i+l),... % Update

tau(i+1:i+l),B(i+1:end,:)); % residual
i = i + l;

end

Q = get_Q(hous,tau);
F = B(1:k,:)’;

end

• For any matrix 𝑩 ∈ K𝑚×𝑛, the product 𝑺∗𝑩 can be computed in at most
O(𝑚𝑛 log𝑚) operations.

Sketching will play a major role in Part III of this thesis; see that section for formal
definitions, constructions of fast random embeddings, and guidance on which type
of embedding to use.

154

Sketching pivoting
Suppose we are interested in selecting 𝑘 columns of a matrix 𝑩, where the parameter
𝑘 is known to the algorithm in advance. Using the sketchy pivoting approach, we
first draw a fast random embedding of size, say 𝑑 = 2𝑘 , and compute 𝑺∗𝑩. Then, to
select a subset of columns for 𝑩, we apply some traditional column subset selection
algorithm, such as a pivoted matrix decomposition, to the sketched matrix 𝑺∗𝑩. The
key feature of sketchy pivoting is that the traditional matrix decompositions needs
only be applied to the sketched matrix 𝑺∗𝑩, which is much smaller than the original
matrix 𝑩.

One major strength of sketchy pivoting is that the randomized embedding 𝑺∗ has the
effect of regularizing the matrix 𝑩. Empirically, one finds that one obtains a nearly
optimal set of columns even when one uses a poor column subset selection algorithm
on 𝑺∗𝑩 such as LU with partial pivoting (applied to the adjoint (𝑺∗𝑩)∗) [DM23a].
We will abbreviate the sketchy pivoting with partial-pivoted LU scheme as SkLUPP.
With an appropriate type of embedding (namely, a sparse sign embedding with
constant sparsity parameter 𝜁 ; see Appendix B.6), SkLUPP requires just O(𝑚𝑛 +
𝑘2𝑛) operations to select the column set S, faster than RPQR and its variants.

Quickly computing an inexact interpolative decomposition
To upgrade a skeleton set S computed by a sketchy pivoting method to an exact
interpolative decomposition (in the sense of Definition 9.4) requires O(𝑘𝑚𝑛) op-
erations, the same asymptotic cost as RPQR and its variants. However, a nearly
optimal inexact ID (also as in Definition 9.4) can be obtained rapidly by applying
another level of sketching. The idea is due to [DCMP24] and is called oversam-
pled sketchy interpolative decomposition. The idea is simple and clever: Generate
another random embedding 𝚽 ∈ K𝑚×𝑑 and solve the sketched least-squares problem

𝑾 = argmin
𝑾

∥𝚽∗𝑩 − (𝚽∗𝑩(:,S))𝑾∗∥F = [(𝚽∗𝑩(:,S))†(𝚽∗𝑩)]∗.

OSID is essentially an instantiation of the sketch-and-solve method for computing
an approximate least-squares solution, which will be discussed in Section 21.7.
Theoretical guarantees for sketch-and-solve are discussed in Section 21.7 and Ap-
pendix C, which confirm that—with appropriate parameter choices—OSID compi-
utes a nearly optimal inexact ID. The cost of sketchy pivoting with OSID may be as
low as O(𝑚𝑛 + 𝑘2𝑛) operations.

155

RPQR vs. sketchy pivoting
There are three main advantages of RPQR-based approaches over sketchy pivoting.
First, and least importantly in my opinion, RPQR-based approaches come with
theoretical guarantees of performance. At present, sketchy pivoting lacks such
theoretical guarantees, thought it has been put through extensive numerical testing.
Second, RPQR produces an exact ID, whereas the fast O(𝑚𝑛 + 𝑘2𝑛) version of
SkLUPP produces an inexact ID. One can use the column set from SkLUPP to
compute an exact ID, but then the total asymptotic cost of O(𝑘𝑚𝑛) is the same as
accelerated RPQR. Finally, to be most efficient, sketchy pivoting methods require
(an upper bound on) the column subset size 𝑘 to be known in advance. To determine
the number of columns 𝑘 at runtime may require periodically regenerating the
embedding matrix 𝑺∗ and recomputing 𝑺∗𝑩 with a larger value of 𝑑. By contrast,
RPQR methods can be run for a general number of steps 𝑘 and stopped at whatever
iteration one pleases.

Notwithstanding these limitations, sketchy pivoting methods are asymptotically
faster for subset selection and inexact ID than RPQR methods. I regard both
techniques (and adaptive randomized pivoting methods [CK24]) as effective, general
methods for column subset selection and ID computation.

9.5 Experiments
Throughout this section, we use the Householder QR-based implementation of
accelerated RPQR (Program 9.4) in all experiments. We also compare pivoted
partial QR with greedy pivoting (often simply called column-pivoted QR, CPQR in
the numerical literature) and SkLUPP. (Similarly to greedy pivoted Cholesky, CPQR
selects the largest-norm column as pivot at every step of QR decomposition.) For
SkLUPP, we compute the interpolative decomposition exactly (i.e., not with OSID)
and choose the sketching matrix to be a sparse sign embedding with embedding
dimension 𝑑 = 2𝑘; see Appendix B.6. We use the test matrix 𝑩 ∈ K𝑛×𝑛 of
dimension 𝑛 = 2500 with entries

𝑏𝑖 𝑗 =
1

𝒙𝑖 − 𝒚 𝑗

 for every 𝑖, 𝑗 = 1, . . . , 𝑛. (9.5)

Here, points {𝒙𝑖} and {𝒚 𝑗 } are equispaced Cartesian grids on [0, 1] × [0, 1] and
[1, 2] × [0, 1], respectively. Matrices similar to this appear as discretizations of inte-
gral operators, and significant work has gone into developing ways of approximating
them (e.g., by proxy point methods [YXY20]).

156

Figure 9.1: Accuracy of RPQR (orange circles), greedy pivoted QR (purple as-
terisks), and sketchy pivoting method (SkLUPP, blue crosses) for computing a
low-rank approximation to the matrix (9.5). Lines shown median of 100 trials, and
shaded regions show 10% and 90% quantiles.

Accuracy. Figure 9.1 presents an accuracy comparison of RPQR, greedy piv-
oted QR, and SkLUPP on this matrix. We see that RPQR consistently achieves
smaller errors than the other methods on this matrix, demonstrating the virtues of
incorporating randomness into pivot selection for computing a pivoted partial QR
decomposition. At rank 𝑘 = 50 on this example, RPQR is 3.0× more accurate than
SkLUPP and 4.2× more accurate than greedy pivoted QR.

Speed. Figure 9.2 compares the runtime of the ordinary and accelerated RPQR
algorithms (Programs 9.2 and 9.4). For accelerated RPQR, we set the block size to
𝑏 := max{𝑘/2, 200}. We see that accelerated RPQR is 13.5× faster than standard
RPQR when we reach a rank of 𝑘 = 𝑛, at which point we have computed a full
pivoted QR decomposition of the entire matrix. At this point, we can compare
the performance of accelerated RPQR to MATLAB’s greedy column-pivoted QR
decomposition, executed as [Q,R,P] = qr(B). We omit comparisons with sketchy
pivoting as it is not appropriate for computing a full pivoted QR decomposition. We
see that MATLAB’s built-in column-pivoted QR decomposition subroutine, calling
appropriate LAPACK routines written in Fortran, is only 1.6× faster than accelerated
RPQR, written in MATLAB. I consider these timing results to be promising, and it
suggests that an implementation of accelerated RPQR in a low-level programming
language might be faster than existing LAPACK routines for column-pivoted QR.

157

Figure 9.2: Runtime for standard RPQR (blue crosses) and accelerated RPQR
(orange circles) for different approximation ranks 𝑘 (single execution). The runtime
for MATLAB’s (full) greedy pivoted QR (i.e., [Q,R,P] = qr(B)) is shown as a
purple asterisk.

More experiments. Many further demonstration of the virtues of random pivoting
for approximation of general matrices appear in the paper [DCMP24], including
comparisons of the blocked and unblocked RPQR algorithm and the RBRP QR
algorithm.

9.6 RPCholesky and RPQR: History
In our presentation, we introduced RPCholesky first and used the transference of
algorithms principle to derive the RPQR algorithm. Historically, it went the other
way around. Here is the story, as best I can tell it.

Squared column norm sampling. In the late 1990s, theoretical computer scientists
and researchers in adjacent fields became interested in using randomization to ac-
celerate matrix computations, motivated by applications in data analysis [PTRV98;
FKV98]. As a fast way of constructing a low-rank approximation to a large matrix,
Frieze, Kannan, and Vempala suggested approximating a matrix by low-rank ap-
proximations spanned by columns 𝑠1, . . . , 𝑠𝑘

iid∼ scn(𝑩) drawn iid from the squared
column norm distribution [FKV98]. Their main result [FKV98, Thm. 2] establishes
the guarantee

E

𝑩 −𝚷𝑩(:,{𝑠1,...,𝑠𝑘})𝑩

2
F ≤

𝑩 − ⟦𝑩⟧𝑟

2
F +

𝑟

𝑘
∥𝑩∥2F for 𝑠1, . . . , 𝑠𝑘

iid∼ scn(𝑩).

Here, 𝑟 ≥ 1 is any fixed target rank. Introducing the squared relative-error of the best

158

rank-𝑟 approximation 𝜂 from (9.2), we see that 𝑘 = O(𝑟/𝜂) columns are sufficient
to obtain a low-rank approximation comparable to the best rank-𝑟 approximation to
𝑩. This analysis is tight: For a worst-case input matrix, 𝑘 = Ω(𝑟/𝜂) columns from
the squared column norm distribution are necessary to obtain this guarantee; see
[CETW25, Thm. C.3(b)].

Randomly pivoted QR introduced as “adaptive sampling”. The Frieze–Kannan–
Vempala algorithm suggests a natural improvement by iteration. Draw a single
column (or a small batch) from the squared column norm distribution, subtract off
the projection of the matrix onto these column(s), and repeat. This refinement was
proposed in 2006 by Deshpande, Rademacher, Vempala, and Wang [DRVW06] and
expanded on later that year by Deshpande and Vempala [DV06]; these authors called
their method adaptive sampling. The algorithms we have called RPQR and block
RPQR are essentially the same as Deshpande et al.’s adaptive sampling algorithm,
up to implementation details. The papers [DRVW06; DV06] also proposed volume
sampling, which draws a subset S of 𝑘 columns of 𝑩 with probability proportional
to the squared volume det[𝑩(:,S)∗𝑩(:,S)]; in modern language, the 𝑘-volume
sampling distribution is the 𝑘-DPP distribution on the Gram matrix 𝑩∗𝑩.

Desphande and coauthors combine their three primitives RPQR, block RPQR, and
volume sampling in creative ways to prove existence results and algorithms for
computing column projection approximations. Underlying these combinations are
two main theoretical results, which we now summarize. The first result [DRVW06,
Thm. 1.2] shows that, with a sufficiently large block size, block RPQR produces
accurate low-rank approximations.

Fact 9.7 (Block RPQR: Large block size). Let 𝑩 ∈ K𝑚×𝑛 be a matrix, and fix target
rank 𝑟 ≥ 1 and accuracy parameter 𝜀 ∈ (0, 1). Set the block size of block RPQR to
be 𝑏 ≥ 𝑟/𝜀, and execute the procedure for 𝑡 (block) steps. Then block RPQR outputs
a low-rank approximation 𝑩 satisfying

E∥𝑩 − 𝑩∥2F ≤ (1 − 𝜀)−1∥𝑩 − ⟦𝑩⟧𝑟 ∥2F + 𝜀𝑡 ∥𝑩∥
2
F.

This result establishes the qualitative conclusion that block RPQR, with a suffi-
ciently large block size, produces an approximation comparable to the best rank-𝑟
approximation after drawing 𝑘 = O(𝑟 log(1/𝜂)) columns, where 𝜂 is defined in
(9.2). This result demonstrates an exponential separation between iid squared
column norm sampling and block RPQR in the parameter 𝜂.

159

The second result provides a sharp bound on column projection approximations
built from the volume sampling distribution and a very crude bound for the plain
RPQR algorithm:

Fact 9.8 (RPQR and volume sampling). Let 𝑩 ∈ K𝑚×𝑛 and construct 𝑘-column
projection approximations 𝑩vol and 𝑩𝑅𝑃𝑄𝑅 using volume sampling and RPQR (with
block size 1), respectively. Then

E∥𝑩 − 𝑩vol∥2F ≤ (𝑘 + 1)

𝑩 − ⟦𝑩⟧𝑘

2

F, (9.6)

E

𝑩 − 𝑩𝑅𝑃𝑄𝑅

2
F ≤ (𝑘 + 1)!

𝑩 − ⟦𝑩⟧𝑘

2
F. (9.7)

The volume sampling bound is [DRVW06, Thm 1.3], and the RPQR bound is
[DV06, Prop. 2]. The volume sampling bound (9.6) is optimal in the sense that no
method can achieve a prefactor smaller than 𝑘 + 1 (which follows by Theorem 3.12
and the Gram correspondence). By contrast, the bound (9.7) is quite weak, and
seems to suggest that the unblocked versions of RPQR produce approximations
of extremely low quality. Using the weak bound (9.7), Deshpande and Vempala
produce algorithms with accuracy guarantees by combining 𝑟 steps of RPQR with
multiple rounds of block RPQR with a large block size 𝑏 = Ω(𝑟). The very weak
bound (9.6) is the only analysis of RPQR with block size 𝑏 = 1 established by
Deshpande et al.

Empirical evaluation of adaptive sampling/RPQR. In the years following the pub-
lication of Deshpande and coauthors work, there were various efforts to analyze the
empirical performance of adaptive sampling/RPQR-type algorithms and compare
them to alternatives. There was particular interest in using variants of the adaptive
sampling idea for Nyström approximation of psd matrices. A comparison of column
Nyström methods by Kumar, Mohri, and Talwalkar concluded [KMT12, p. 989] that
adaptive sampling “requires a full pass through [the kernel matrix] 𝑲 at each iteration
and is thus inefficient for large 𝑲”. As solution, the papers [KMT12; WZ13] pro-
posed cheaper, approximate versions of adaptive sampling that were more tractable.
Despite its appealing properties and attempts to address the method’s weaknesses,
the adaptive sampling algorithm has not seen wide use for applied computation
in the 2010s and early 2020s; indeed, the algorithm is not mentioned in a recent
comparison of popular methods for column selection [DM23a].

Randomly pivoted Cholesky. In 2017, Musco and Woodruff considered the problem
of computing a low-rank approximation to a psd matrix from a small number of

160

entry accesses [MW17]. Their goal was to produce a low-rank approximation 𝑨

to 𝑨 that is competitive with the best rank-𝑟 approximation when measured in the
Frobenius norm:

∥𝑨 − 𝑨∥2F ≤ (1 + 𝜀)

𝑨 − ⟦𝑨⟧𝑟

2

F with rank(𝑨) ≤ poly(𝑟, 1/𝜀). (9.8)

Producing a low-rank approximation of this quality from a small number of entry
accesses is a stringent requirement; see Section 11.2 for more discussion.

To motivate why psd low-rank approximation is even possible without reading the
whole input matrix, Musco and Woodruff use what we have called the transference
of algorithms principle to extend adaptive sampling to an algorithm for psd low-rank
approximation. They write:

Since 𝑨1/2𝑨1/2 = 𝑨, the entry 𝑎𝑖 𝑗 is just the dot product between the
𝑖th and 𝑗 th columns of 𝑨1/2. So with 𝑨 in hand, the dot products
have been ‘precomputed’ and [adaptive sampling] yields a low-rank
approximation algorithm for 𝑨1/2 running in just 𝑛 · poly(𝑘/𝜀) time.
Note that, aligning with our initial intuition that reading the diagonal
entries of 𝑨 is necessary to avoid the nnz(𝑨) time lower bound for
general matrices [i.e., Proposition 3.3], the diagonal entries of 𝑨 are the
column norms of 𝑨1/2, and hence their values are critical to computing
the adaptive sampling probabilities.

The algorithm Musco and Woodruff describe is, in its essence, RPCholesky.

The discussion of RPCholesky in Musco and Woodruff’s work is brief, serving to
motivate the development of more sophisticated algorithms with stronger theoretical
guarantees. The original paper of Musco and Woodruff does not provide pseu-
docode for RPCholesky, document an implementation of the algorithm, or report
any numerical experiments. (I have since learned from Cameron and Christopher
Musco that numerical experiments were done and not published.) Also, given the
brief treatment, some the subtleties of the adaptive sampling in Desphande and
coauthor’s work go unmentioned, such as the specific mixtures of unblocked and
blocked adaptive sampling that Deshpande and Vempala use to obtain algorithms
with relative error guarantees [DV06, §3.2]. To the best of my knowledge, Musco
and Woodruff’s work is the sole mention of the RPCholesky algorithm for psd
low-rank approximation in the literature prior to our work. (As mentioned in Sec-

161

tion 4.5, Poulson [Pou20] also uses the same computational steps as RPCholesky
for projection DPP sampling.)

Our paper [CETW25], originally released as a preprint in 2022, revisited the RP-
Cholesky algorithm, reinterpreted the procedure as a partial Cholesky decomposi-
tion, and suggested the name randomly pivoted Cholesky. To simply the algorithm
and remove the large block size limitation in Fact 9.7, we established new theoretical
results ensuring that RPCholesky produces near-optimal low-rank approximations
with block size 𝑏 = 1. (Our subsequent work [ETW25] extends this to general
block sizes.) This paper provided numerical experiments comparing RPCholesky
to other algorithms for column Nyström and using RPCholesky to accelerate kernel
computations in scientific machine learning.

From adaptive sampling to randomly pivoted QR. After we released our paper on
RPCholesky, we were surprised by the amount of interest our colleagues had in
the QR version of the procedure, even though it requires significantly more com-
putational work than RPCholesky (O(𝑘𝑛2) operations versus O(𝑘2𝑛) operations).
This feedback, as well as input from anonymous referees during peer review, led us
to devote more attention to the column projection approximations for general ma-
trices in revisions of our RPCholesky manuscript [CETW25] and in its followup
[ETW25]; I have tried to add further details in this thesis.

Let me summarize our contributions and proposals for RPQR. First, we reinterpreted
the adaptive sampling procedure of Deshpande and coauthors as a pivoted partial
QR decomposition with a random pivoting rule, and suggested the name randomly
pivoted QR. We hope the new name will make this algorithm more transparent to
researchers in numerical analysis and scientific computing and help to differentiate
between the QR and Cholesky versions of the adaptive sampling idea. Second,
we proved new theoretical results [CETW25, Cor. 5.2] and [ETW25, Cor. 5.2].
These results demonstrate that RPCholesky and RPQR produce approximations
comparable to the best rank-𝑟 approximation when the block size 𝑏 is set to any
value between 1 and O(𝑟). In particular, these results justify the use of the algorithm
without the multistep procedures and large block sizes used in Deshpande et al.’s
existing work. Third, we developed accelerated block implementations of RPQR
(Section 9.3). Finally, in this thesis, I discussed stable numerical implementations
using modified Gram–Schmidt and Householder reflectors; related ideas appear in
[CK24].

162

C h a p t e r 10

CUR DECOMPOSITIONS

Thus, 𝑪 and/or 𝑹 can be used in place of the eigencolumns and
eigenrows, but since they consist of actual data elements they will be
interpretable in terms of the field from which the data are drawn (to the
extent that the original data points and/or features are interpretable).

Michael W. Mahoney and Petros Drineas, CUR matrix decompositions
for improved data analysis [MD09]

A CUR decomposition or CUR approximation refers to a low-rank approximation
of a matrix 𝑩 of the form

𝑩 ≈ 𝑪𝑼𝑹 where 𝑪 = 𝑩(:,S) and 𝑹 = 𝑩(T, :).

The matrix 𝑩 is approximated by a low-rank approximation spanned by a subset
of both its rows and columns. The CUR decomposition is valued for its increased
interpretability over other types of low-rank approximations like the SVD [MD09].
The CUR decomposition is also favored in certain contexts because the 𝑪 and 𝑹

matrices inherit structural properties like sparsity from the matrix 𝑩 or because,
in some cases, CUR decompositions can be constructed without looking at the
entire input matrix (see Remark 3.5). This section reviews the theory of CUR
decompositions and discussed algorithms for computing them based on random
pivoting.

Sources. This chapter presents original research that has not previously been
published. The references [MD09; PN25] have been helpful in shaping this chapter.

Outline. The CUR decomposition does not fit into our existing taxonomy of ran-
domized low-rank approximation algorithms from Chapter 2, and it is not evident
how we should pick the middle factor 𝑼. To remedy this deficit, we shall begin
by briefly reviewing two additional types of low-rank approximation: two-sided
projection approximations (Section 10.1) and generalized Nyström approximations
(Section 10.2). These two classes yield two inequivalent types of CUR approxi-
mations, which we will refer to as CUR projection approximations and CUR cross
approximations. Section 10.3 discusses numerically stable representation of CUR

163

approximations, and Section 10.4 discusses random pivoting algorithms for com-
puting CUR decompositions. Finally, Section 10.5 reviews the Mahoney–Drineas
algorithm for computing CUR decompositions and Section 10.6 presents a numer-
ical comparison.

10.1 Two-sided and CUR projection approximation
Given a test matrix 𝛀 ∈ K𝑛×𝑘 , the projection approximation is the Frobenius-
norm optimal approximation to a matrix 𝑩 ∈ K𝑚×𝑛 in the column span of 𝑩𝛀.
Given a second test matrix 𝚿 ∈ K𝑚×ℓ, it is natural to define a two-sided projection
approximation as the Frobenius-norm optimal approximation to 𝑩 that both lies in
the column span of 𝑩𝛀 and lies in the row span of 𝚿∗𝑩. To this end, we have the
following result [Ste99, §4].

Proposition 10.1 (Optimal two-sided approximation). Fix matrices 𝑩 ∈ K𝑚×𝑛,
𝒀 ∈ K𝑚×𝑘 , and 𝒁 ∈ K𝑛×ℓ. Then the approximation

𝑩 := 𝚷𝒀𝑩𝚷𝒁 = 𝒀𝑼𝒁∗ for 𝑼 := 𝒀†𝑩𝒁†∗

is the unique Frobenius-norm optimal approximation to 𝑩 whose columns are
spanned by the columns of 𝒀 and whose rows are spanned by the rows of 𝒁∗.

Proof. Consider the space of all approximations

S := {𝒀𝑻𝒁∗ : 𝑻 ∈ K𝑘×ℓ}.

Geometrically, we are interested in characterizing the unique point 𝑩★ ∈ S that is
closest to 𝑩. The vectorization operation vec : (K𝑚×𝑛, ∥·∥F) → (K𝑚𝑛, ∥·∥) is a
linear isometry, so we can equivalently find the point vec(𝑩★) closest to vec(𝑩) in

vec(S) = {vec(𝒀𝑻𝒁∗) : 𝑻 ∈ K𝑘×ℓ} = {(𝒁 ⊗ 𝒀) 𝒕 : 𝒕 = vec(𝑻) ∈ K𝑘ℓ}.

The second equality is the vec–Kronecker product identity. Thus, we have

vec(𝑩★) = 𝚷𝒁⊗𝒀 (vec(𝑩)) = (𝒁 ⊗ 𝒀) (𝒁 ⊗ 𝒀)† vec(𝑩)

= (𝒁 ⊗ 𝒀) (𝒁† ⊗ 𝒀†) vec(𝑩) = vec(𝒀𝒀†𝑩𝒁†∗𝒁∗).

In the penultimate identity, we used the fact that the pseudoinverse of a Kronecker
product is the Kroncker product of the pseudoinverses, which follows by the SVD
and the mixed product property for the Kronecker product. In the last equality, we
applied the vec–Kronecker product identity twice. Ergo, 𝑩★ = 𝒀𝒀†𝑩𝒁†∗𝒁∗, as
promised.

164

This result motivates the following definition:

Definition 10.2 (Two-sided projection approximation and CUR projection approx-
imation). Given test matrices 𝛀 ∈ K𝑛×𝑘 and 𝚿 ∈ K𝑚×ℓ, the two-sided projection
approximation to 𝑩 ∈ K𝑚×𝑛 is

𝑩 := 𝚷𝑩𝛀𝑩𝚷𝑩∗𝚿.

If 𝛀 = I(:,S) and 𝚿 = I(:,T) are column submatrices of the identity matrix, the
resulting then the two-sided projection approximation is called a CUR projection
approximation. It takes the form

𝑩 = 𝑪𝑼𝑹 where 𝑪 = 𝑩(:,S), 𝑹 := 𝑩(T, :), and 𝑼 = 𝑪†𝑩𝑹†.

This definition provides the first natural choice 𝑼 = 𝑪†𝑩𝑹† for the core matrix
in a CUR decomposition. As a consequence of Proposition 10.1, this type of
approximation yields the smallest Frobenius norm error for any middle factor in a
CUR approximation. In view of this property, Park and Nakatsukasa [PN25] call
this type of CUR approximation a CUR best approximation. For this thesis, we
will use the term CUR projection approximation to emphasize the connection with
(two-sided) projection approximations. It is important to emphasize that a CUR
projection approximation achieves the lowest possible Frobenius norm error for a
given choice of 𝑪 and 𝑹; with a bad choice of columns and rows, the accuracy of
this “best approximation” can be quite poor.

Remark 10.3 (Decomposition or approximation). In the literature, the term “decom-
position” is often used to describe the factored approximation 𝑩 = 𝑪𝑼𝑹 ≈ 𝑩. I
prefer the term CUR approximation, as one typically has 𝑩 ≠ 𝑩 in applications.
Conditions for exactness of the CUR approximation are provided in [HH20]. ⋄

Before going forward, we catalog the following useful and standard (for example,
see [MD09; SE16; DM23a; CK24]) result:

Proposition 10.4 (One-sided to two-sided). Fix matrices 𝑩 ∈ K𝑚×𝑛, 𝒀 ∈ K𝑚×𝑘 ,
and 𝒁 ∈ K𝑛×ℓ. In any unitarily invariant norm |||·|||, we have

|||𝑩 −𝚷𝑩𝛀𝑩𝚷𝑩∗𝚿 ||| ≤ |||𝑩 −𝚷𝑩𝛀𝑩 ||| + |||𝑩 − 𝑩𝚷𝑩∗𝚿 |||.

Proof. Apply the triangle inequality:

|||𝑩 −𝚷𝑩𝛀𝑩𝚷𝑩∗𝚿 ||| ≤ |||𝑩 −𝚷𝑩𝛀𝑩 ||| + |||𝚷𝑩𝛀(𝑩 − 𝑩𝚷𝑩∗𝚿) |||.

165

By the operator ideal property |||𝑭𝑮 ||| ≤ ∥𝑭∥ · |||𝑮 |||, the second term may be
bounded as

|||𝚷𝑩𝛀(𝑩 − 𝑩𝚷𝑩∗𝚿) ||| ≤ ∥𝚷𝑩𝛀∥ · |||𝑩 − 𝑩𝚷𝑩∗𝚿 ||| = |||𝑩 − 𝑩𝚷𝑩∗𝚿 |||.

This completes the proof.

10.2 Generalized Nyström approximation and CUR cross approximation
The generalized Nyström approximation is a powerful low-rank approximation for-
mat that encompasses both projection approximations and Nyström approximations
as special cases. They also lead to another useful, inequalivant way of constructing
the middle factor for CUR approximations.

Definition 10.5 (Generalized Nyström approximation and CUR cross approxima-
tion). Given test matrices 𝛀 ∈ K𝑛×𝑘 and 𝚿 ∈ K𝑚×ℓ, the generalized Nyström
approximation to 𝑩 ∈ K𝑚×𝑛 is

𝑩⟨𝛀,𝚿⟩ := (𝑩𝛀) (𝚿∗𝑩𝛀)†(𝚿∗𝑩).

If 𝛀 = I(:,S) and 𝚿 = I(:,T) are column submatrices of the identity matrix, then
the generalized Nyström approximation is called a CUR cross approximation. It
takes the form

𝑩⟨S,T⟩ := 𝑪𝑼𝑹 where 𝑪 = 𝑩(:,S), 𝑹 := 𝑩(T, :), and 𝑼 = 𝑩(T,S)†.

Generalized Nyström approximation includes projection approximation and classi-
cal Nyström approximation as the special cases 𝚿 = I and 𝚿 = 𝛀.

The generalized Nyström approximation is interpolatory. Consider the case when
𝑘 ≤ ℓ and 𝚿∗𝑩𝛀 is full-rank. Then

𝑩⟨𝛀,𝚿⟩ ·𝛀 = 𝑩𝛀(𝚿∗𝑩𝛀)†(𝚿∗𝑩𝛀) = 𝑩𝛀.

Consequently, if |S| ≤ |T| and 𝑩(S,T) has full rank, then 𝑩 := 𝑩⟨S,T⟩ agrees with
the matrix 𝑩 in the selected columns: 𝑩(:,S) = 𝑩(:,S). Analogous statements
hold in the opposite case (𝑘 ≥ ℓ).

CUR projection approximation 𝑼 = 𝑪†𝑩𝑹† and CUR cross approximation 𝑼 =

𝑩(S,T)† are both natural. The former enjoys the optimality result Proposition 10.1,
and the latter satisfies the interpolatory property just discussed. The CUR cross

166

approximation is particularly attractive for approximating very large matrices, owing
to the following property: Once the index sets S and T have been identified, forming
the CUR cross approximation only requires accessing𝑚𝑘+𝑛ℓ entries of 𝑩. Thus, the
CUR cross approximation forms the basis for low-rank approximation algorithms
for general matrices that avoid reading the entire matrix (Remark 3.5).

Remark 10.6 (History and terminology). The generalized Nyström approximation
has an interesting history. The first references in the modern randomized linear
algebra literature are the seemingly independent works of Woolfe, Liberty, Rokhlin,
and Tygert [WLRT08] and of Clarkson and Woodruff [CW09]. An algebraically
equivalent type of approximation appears in [TYUC17b], and they suggest an im-
plementation with improved stability properties. The name generalized Nyström
approximation was suggested by Yuji Nakatsukasa [Nak20], who investigated dif-
ferent stable implementations that zero out small singular values in the core matrix
𝚿∗𝑩𝛀. Per-Gunnar Martinsson and Alex Townsend trace the origin of this type
of approximation all the way back to the work of Wedderburn [Wed34, p. 69] in
1934, whose writings contain the formula for a rank 𝑘 = ℓ = 1 generalized Nyström
approximation. The generalization to 𝑘 = ℓ > 1 appears 45 years later in [CF79];
see the paper [CFG95] for more discussion. An important difference between the
premodern usage of generalized Nyström approximation and its contemporary usage
are the settings of the parameters 𝑘 and ℓ; the early literature exclusively focused on
the case 𝑘 = ℓ, whereas the modern literature has exposed benefits of oversampling
(e.g., ℓ = ⌈1.5𝑘⌉ or 𝑘 = ⌈1.5ℓ⌉).

The name CUR cross approximation is taken from [PN25]. The name cross approx-
imation for the CUR cross approximation is classical [BR03], particularly when the
row and column subset have the same size |S| = |T|. The name refers to the fact
that the decomposition can be computed from only a subset of columns and rows
of the matrix. If these subsets are contiguous, they form the shape of a cross on the
matrix [GT01]; see Fig. 10.1 for illustration. Earlier literature also uses the term
pseudoskeleton approximations [GTZ97; GZT97; GT01]. ⋄

Weighted CUR cross approximations. One can also consider weighted versions of
the CUR cross approximation.

Definition 10.7 (Weighted CUR cross approximation). Let S ⊆ {1, . . . , 𝑛} be a set
of 𝑘 indices and T ⊆ {1, . . . , 𝑚} be a subset of ℓ indices, and let 𝑾1 ∈ K𝑘×𝑘 and

167

Figure 10.1: Diagram of cross approximation, showing how the entries selected to
form the approximation form a cross.

𝑾2 ∈ Kℓ×ℓ be positive definite. The weighted CUR cross approximation is

𝑩 := 𝑩(:,S)𝑾1(𝑾2𝑩(T,S)𝑾1)†𝑾2𝑩(T, :)
= 𝑩(:,S)𝑼𝑩(T, :) for 𝑼 = 𝑾1(𝑾2𝑩(T,S)𝑾1)†𝑾2.

If the matrix 𝑩(T,S) has full rank, then only one of the weight matrices plays a role
in the approximation. Indeed, if ℓ ≥ 𝑘 and 𝑩(T,S) has full column-rank, then

(𝑾2𝑩(T,S)𝑾1)† = 𝑾−1
1 · (𝑾2𝑩(T,S))†,

and the core matrix only depends on 𝑾2:

𝑼 = (𝑾2𝑩(T,S))†𝑾2.

A similar result holds if 𝑘 ≥ ℓ. In particular, if 𝑘 = ℓ and 𝑩(T,S) is full-rank,
then 𝑩 depends on neither weight matrix, and 𝑩 is just the ordinary CUR cross
approximation.

The justification for considering weighted CUR approximations is provided by the
following result.

Theorem 10.8 (The value of weighting for CUR approximations). Fix 𝑘 ≥ 1 and
any 𝑚 that is divisible by 𝑘 + 1. There exists a matrix 𝑩 ∈ R𝑚×2𝑘 and a column
subset S = {1, . . . , 2𝑘} of 𝑘 elements such that the squared unweighted CUR cross
approximation error is at least

𝑩 − 𝑩(:,S)𝑩(T,S)†𝑩(T, :)

2
F ≥ 1.5

𝑩 − 𝑩(:,S)𝑩(:,S)†𝑩(T, :)

2

F

unless the row subset T comprises at least

ℓ ≥ (3 − 2
√

2)𝑚 ≈ 0.172 · 𝑚 elements.

Conversely, for (diagonally) weighted CUR cross approximations, a row subset of
size

ℓ = O(𝑘 log 𝑘 + 𝑘/𝜀) (10.1)

168

is sufficient to obtain the guarantee

𝑩 − 𝑩(:,S) (𝑾2𝑩(T,S))†𝑾2𝑩(T, :)

2

F ≤ (1 + 𝜀)

𝑩 − 𝑩(:,S)𝑩(:,S)†𝑩(T, :)

2
F.

The proof is somewhat lengthy, so we defer it to Appendix D.2. I believe that the
dependence of ℓin (10.1) can be reduced to ℓ = O(𝑘/𝜀) by extending the results of
[CP19] to least-squares problems with multiple right-hand sides.

This result establishes a fundamental separation between the approximation capa-
bilities of weighted and unweighted CUR approximations. In short, the conclusion
of Theorem 10.8 may be summarized as follows.

Weighted CUR cross approximations achieve (1 + 𝜀)-type approximation
guarantees using a row-subset of size ℓ = O(𝑘 log 𝑘 + 𝑘/𝜀), whereas un-
weighted approximations a constant fraction of the matrix rows ℓ = Ω(𝑚) to
achieve such a guarantee.

In practice, the examples which demonstrate a separation between the weighted and
unweighted approximations are somewhat pathological, and unweighted CUR cross
approximations are usually fine for applications.

10.3 Numerically stable representations
Standard implementations of CUR approximations suffer from issues of numerical
stability, as Martinsson and Tropp explain [MT20, §13.1]:

A disadvantage of the [CUR cross approximation] is that, when the
singular values of 𝑩 decay rapidly, the factorization [𝑩⟨S,T⟩ = 𝑪𝑼𝑹]
is typically numerically ill-conditioned. The reason is that, whenever
the factorization is a good representation of 𝑩, the singular values of
𝑩(T,S) should approximate the 𝑘 dominant singular values of 𝑩, so
the singular values of 𝑼 end up approximating the inverses of these
singular values. This means that 𝑼 will have elements of magnitude
1/𝜎𝑘 , which is clearly undesirable when 𝜎𝑘 is small. In contrast, the
ID is numerically benign.

(We have modified this quote to have consistent notation with the rest of this chapter.)
The issues identified in this quote show that working with the standard representa-
tion 𝑩 = 𝑪𝑼𝑹 of the CUR approximation can be numerically problematic.

169

To fix this instability, the authors of [ADMM+15] propose representing the CUR
projection approximation using the factorization

𝑩 = 𝑸1𝚵𝑸
∗
2, (10.2)

where 𝑸1 := Orth(𝑩(:,S)), 𝑸2 := Orth(𝑩(T, :)∗), and 𝚵 := 𝑸∗1𝑩𝑸2. While
this format is stable, it no longer represents the low-rank approximation as a CUR
factorization 𝑩 = 𝑪𝑼𝑹. In particular, the factors 𝑸1 and 𝑸2 no longer inherit
structural properties of 𝑩 such as sparsity, and 𝑸1 and 𝑸2 lack the interpretability
benefits of approximating 𝑩 using columns and rows.

To remedy the numerical stability issues with CUR approximation while maintaining
a factored representation using selected columns and rows, I propose the following
new way to stably represent the CUR approximation. The observation is that it
can be more numerically stable to work with an implicit representation of the core
matrix 𝑼. Specifically, we represent 𝑼 as a product

𝑼 = 𝑷−1 · 𝑮 (10.3)

of a well-conditioned matrix 𝑮 and a (possibly ill-conditioned) upper-triangular
matrix 𝑷. This representation can be computed in the following ways:

1. For CUR projection approximations, first use a stable algorithm to compute
a row interpolative decomposition

𝑩 ≈ 𝑾𝑩(T, :) for 𝑾 = 𝑩𝑩(T, :)†.

To compute a stable representation (10.3), we compute a QR decomposition
of the column submatrix 𝑩(:,S):

𝑩(:,S) = 𝑸𝑷

and define 𝑮 := 𝑸∗𝑾. The core matrix 𝑼 admits the factorization (10.3).

2. For (weighted) CUR cross approximations with ℓ ≥ 𝑘 and weight matrix 𝑾2,
we compute a QR decomposition

𝑾2𝑩(T,S) = 𝑸𝑷.

and define 𝑮 := 𝑸∗𝑾2. The core matrix 𝑼 admits the factorization (10.3).

170

As we will see in Section 10.6, working with 𝑮 and 𝑷 matrices, rather than the
standard core matrix 𝑼, can lead to significant stability improvements to the CUR
approximation while maintaining the core essence of the decomposition 𝑩 ≈ 𝑪𝑼𝑹.
We emphasize that, to reap the numerical stability benefits of this approach, it is
critical to store the triangular matrix 𝑷, not its inverse 𝑷−1.

Motivation for improved stability. To motivate why the representation (10.3) is
more stable, first consider a square matrix 𝑩 ∈ K𝑛×𝑛, and work with the extreme
case when S = T = {1, . . . , 𝑛}. The standard CUR decomposition 𝑩 = 𝑪𝑼𝑹 has
factors 𝑪 = 𝑹 = 𝑩 and 𝑼 = 𝑩−1; in particular, forming 𝑼 as a dense array requires
explicit computation of the inverse 𝑩−1. As can be seen in the following MATLAB
code segment, the reconstruction error with this CUR decomposition can be large:

B = rand_with_evals(logspace(0,-15,1000)); % Condition num = 1e15

norm(B - B*inv(B)*B)/norm(B) % Outputs 9.7e-3

If we instead compute a QR decomposition 𝑩 = 𝑸𝑷 and represent the inverse as
𝑩−1 = 𝑷−1𝑸∗, the reconstruction error drops to the level of the machine precision:

[Q,P] = qr(B);

norm(B - B*(P\(Q’*B))/norm(B) % Outputs 1.6e-15

The stability difference between these two approaches is consequence of the fact
that, as a way of solving the system 𝑩𝑿 = 𝒀 , the procedure inv(B)*y is forward
but not backward stable [DT12], whereas P\(Q’*B) is backward stable. Notions of
forward and backward stability are discussed a great deal in Part III of this thesis.

The above example demonstrates the ineffectiveness of explicit inversion in storing
and representing the core matrix 𝑼 in a CUR decomposition in extreme case when
S = T = {1, . . . , 𝑛}. The same principle—that explicit computation of the inverse
of a matrix is bad—motivates the use of the implicitly represented core matrix
𝑼 = 𝑷−1 · 𝑮 for storing general CUR approximations.

Using the stable representation. The stable representation (10.3) of the core matrix
allows the CUR decomposition to be used in a numerically stable way for down-
stream tasks. The approximation 𝑩 can be stably reconstituted as a dense array by
the right–left evaluation𝑪 (𝑷−1(𝑮𝑹)) or the left–right evaluation ((𝑪𝑷−1)𝑮)𝑹; the
mixed evaluation order 𝑪 ((𝑷−1𝑮)𝑹) should be avoided, however. The left–right
and right–left evaluation orders can also be used to efficiently and stably generate

171

submatrices or individual entries of 𝑩. One can also compute matrix products as

𝑩 · 𝑿 = 𝑪 (𝑷−1(𝑮 (𝑹𝑿))) or 𝒀∗𝑩 = (((𝒀∗𝑪)𝑷−1)𝑮)𝑹.

Storing a CUR decomposition with stable representation (10.3) is economical, as
it only requires retaining the two submatrices 𝑪 = 𝑩(:,S) and 𝑹 = 𝑩(T, :), plus
O(𝑘ℓ) storage for the factored core matrix (10.3). If the matrix is structured, storing
𝑪 and 𝑹 may be significantly more efficient then storing general matrices 𝑸1 and
𝑸2 in the representation (10.2). In particular, when working with a function matrix
𝑩 = 𝜉 (X,Y) (Definition 3.1), the entries of 𝑪 = 𝑩(:,S) and 𝑹 = 𝑩(T, :) need not
ever be stored all at once, as they can be generated on-the-fly using the data X and
Y and the function 𝜉.

Remark 10.9 (Comparison with [PN25]). Park and Nakatsukasa [PN25] also con-
sider the numerical stability of CUR approximation, focusing on unweighted CUR
cross approximations. These authors are principally concerned with developing sta-
ble algorithms for reconstructing a CUR cross approximation as a dense array, which
differs from our emphasis on finding a stable way to store a CUR approximation
while maintaining the traditional 𝑪𝑼𝑹 factorization.

To convert the CUR approximation 𝑩 = 𝑪𝑼𝑹 to a dense matrix, Park and Nakat-
sukasa compute an (economy-size) SVD 𝑩(T,S) = 𝑾𝚺𝑽∗ and reconstruction 𝑩

using the formula 𝑩 = (𝑪𝑽𝚺−1) (𝑾∗𝑹). (They also mention the possibility of
using a QR decomposition in place of the SVD, which agrees with our approach.)
Park and Nakatsukasa provide a formal proof of stability for their approach, and
discuss a variant where the pseudoinverse 𝑩(T,S)† is regularized by setting the
small singular values of 𝑩(T,S) to zero.

This work extends the insights of Nakatsuksa and Park by proposing the 𝑪 (𝑷−1𝑮)𝑹
format as a stable way of representing a CUR decomposition of any type. In
particular, we show how to use this format to stably represent weighted CUR cross
approximations and CUR projection approximations, which is beyond the scope of
[PN25]. My hope is that this new work makes clear that, when appropriate care for
numerical stability is taken, the CUR approximation storage format is safe for use
in general-purpose computations, resolving the issues identified by Martinsson and
Tropp in the beginning of this section. ⋄

172

Program 10.1 rpcur2.m. Implementation of RPCUR2 for computing a CUR
projection approximation. Subroutine rpqr is provided in Program 9.2.
function [S,T,U,G,C] = rpcur2(B,k,l)
% Input: Matrix B and ranks k and l
% Output: Column and row sets S and T, k*l core matrix U defining CUR
% approximation Bhat = B(:,S) * U * B(T,:), matrices G and R
% defining (more) stable representation U = G / R

[~,F,T] = acc_rpqr(B’,l,floor(l/2)); % RPQR approximation B ~ F*Q’
W = F/tril(F(T,:)); % Row interpolation matrix
[Q,F,S] = acc_rpqr(B,k,floor(k/2)); % RPQR approximation B ~ Q*F’
C = tril(F(S,:))’; % R factor for qr(B(:,S))
G = Q’*W; % Well-conditioned matrix
U = C \ G; % Standard core matrix U

end

10.4 Algorithms
As CUR decompositions require identifying subsets S and T of the columns and rows
of the matrix 𝑩 that approximately span the matrix. As demonstrated throughout
this part of the thesis, random pivoting algorithms are well-suited to exactly this task.
There are a wide array of possible strategies for computing CUR decompositions
using the random pivoting approach. This thesis discusses two possible approaches,
which I will call RPCUR2 and RPCURLev. The former approach separately applies
RPQR to 𝑩 and 𝑩∗, and the latter approach applies RPQR to obtain a low-rank
approximation 𝑩 ≈ 𝑸𝑭∗, then applies leverage score sampling to 𝑸.

RPCUR2: Running RPQR twice
Our first strategy for computing a CUR decomposition is to simply run RPQR twice,
once on 𝑩 to obtain a column set S and once on 𝑩∗ to obtain a row set T. One
may be then combine these subsets to create a CUR decomposition of 𝑩. While
RPCUR2 can be used to create either type of CUR decomposition, it is most natural
when used for computing a CUR projection approximation. Code is provided in
Program 10.1.

Implementation. RPCUR2 requires two separate executions of RPQR, plus addi-
tional post-processing to construct the core matrix. The total runtime isO(𝑚𝑛(𝑘+ℓ))
operations. For runtime speed and numerical stability, I use the Householder-based
accelerated RPQR implementation (Program 9.4) in my code. (I have found exam-
ples where RPCUR2 fails catastrophically when using the modified Gram–Schmidt

173

implementation in Program 9.3.)

Analysis. A priori error bounds for the RPCUR2 algorithm can easily be inferred
from the results for RPQR (Corollary 9.6) and Proposition 10.4.

Corollary 10.10 (RPCUR2). Let 𝑩 ∈ K𝑚×𝑛 be a matrix, fix 𝑟 ≥ 1, and introduce
the squared relative error of the best rank-𝑟 approximation:

𝜂 :=

𝑩 − ⟦𝑩⟧𝑟

2
F

∥𝑩∥2F
.

RPCUR2 (Program 10.1) produces an approximation 𝑩 satisfying

E∥𝑩 − 𝑩∥2F ≤ 4

𝑩 − ⟦𝑩⟧𝑟

2

F,

provided the parameters 𝑘 and ℓ satisfy 𝑘, ℓ ≥ 𝑟 log(e/𝜂).

Automatic rank determination. If one wishes to compute a CUR decomposition
with error controlled by a tolerance 𝜏 in some unitarily invariant norm, one can
achieve this goal by running each RPQR step with a tolerance of 𝜏/2, in view of
Proposition 10.4.

RPCURLev: Combining RPQR and leverage score sampling
Our second algorithm for computing a CUR decomposition combines RPQR to
compute the column set S with leverage score sampling (Definition 3.15) to de-
termine the pivot set T. It most naturally outputs a (diagonally) weighted CUR
cross approximation, but it can also be used with to compute a CUR projection
approximation or unweighted CUR cross approximation if desired.

The RPCURLev algorithm proceeds as follows. First, run RPQR to obtain a column
projection approximation 𝑩 ≈ 𝑸𝑭∗. Recall that, for the matrix 𝑸 with orthonormal
columns, its leverage scores 𝝀 = srn(𝑸) are its squared row norms. We then form
T by sampling iid from the leverage score distribution

T = {𝑡1, . . . , 𝑡ℓ} where 𝑡1, . . . , 𝑡ℓ
iid∼ 𝝀.

We emphasize sampling is to be done with replacement. For reasons that will soon
become more clear, it is most natural to output a weighted CUR decomposition with
weight matrix 𝑾2 = Diag(𝝀(T))−1/2.

Code is given in Program 10.2. We highlight that this implementation computes the
pseudoinverse numerically using a column-pivoted QR decomposition, discarding

174

Program 10.2 rpcur_lev.m. Implementation of RPCURLev for computing a
weighted CUR cross approximation to a matrix. Subroutines rpqr and sqrownorms
are provided in Programs 9.2 and F.3.
function [S,T,U,G,P] = rpcur_lev(B,k,l)
% Input: Matrix B and ranks k and l
% Output: Column and row sets S and T, k*l core matrix U defining CUR
% approximation B ~ B(:,S) * U * B(T,:), matrices G and P
% defining (more) stable representation U = P \ G

[Q,~,S] = acc_rpqr(B,k,floor(k/2)); % RPQR approximation B ~ Q*F’
lev = sqrownorms(Q); % Leverage scores of Q
T = datasample(1:size(B,1),l,"Weights",lev); % Leverage score sample
w = lev(T) .^ (-1/2); % Reweight rows
[Q,P,p] = qr(w .* B(T,S),"econ","vector"); % Pivoted QR
dP = abs(diag(P)); % Diagonal of triangular factor
idx = find(dP > 20*eps*max(dP)); % Find large diagonal entries
Q = Q(:,idx); P = P(idx,idx); % Delete negligible values in Q,P
S = S(p(idx)); % Filter pivots
G = Q’ .* w.’; % Well-conditioned matrix
U = P \ G; % Standard core matrix U

end

entries from the index set S to ensure that 𝑩(T,S) is numerically full-rank. The
use of column pivoting makes this approach robust, even for sparse problems which
could have many zero entries.

Runtime. RPCURLev requires running 𝑘 steps of RPQR, sampling ℓ elements
from a weighted probability distribution on 𝑚 items, and doing post-processing on
an O(𝑘ℓ) matrix. The runtime of RPCURLev is O(𝑚𝑛𝑘 + 𝑘2ℓ). I use accelerated
RPQR (Program 9.4) in my implementation. As we will see in Fig. 10.3, the
RPCURLev algorithm can be meaningfully faster than the RPCUR2 algorithm.

Analysis. To analyze RPCURLev, we can make use of existing results from the
leverage score literature. We shall use the following result:

Fact 10.11 (Leverage score sampling for least squares). Let 𝑪 ∈ K𝑚×𝑘 be a full-rank
matrix, and let 𝑭 ∈ K𝑚×𝑛. Let 𝝀 = srn(Orth(𝑪)) be the leverage scores of 𝑪 and
sample an index set T of ℓ elements iid with replacement from 𝝀. Introduce the
diagonal weight matrix 𝑾 := Diag(𝝀(T))−1/2. Provided

ℓ ≥ Ω

(
𝑘 log 𝑘 + 𝑘

𝜀

)
,

175

it holds with at least 99% probability that

𝑭 − 𝑪 [𝑾𝑪 (T, :)]† [𝑾𝑭(T, :)]

F ≤ (1 + 𝜀)

𝑭 − 𝑪𝑪†𝑭

F.

This result is a variant of [CW17, Thm. 7.9], with the version stated here following
straightforwardly from the proof of that result. This result leads immediately to a
error bound for RPCURLev.

Corollary 10.12 (RPCURLev). Let 𝑩 ∈ K𝑚×𝑛 be a matrix, fix 𝑟 ≥ 1 and 𝜀 ∈ (0, 1),
and introduce the squared relative error of the best rank-𝑟 approximation:

𝜂 :=

𝑩 − ⟦𝑩⟧𝑟

2
F

∥𝑩∥2F
.

With 99% probability, the weighted CUR cross approximation 𝑩 produced by
RPCUR2 (Program 10.1) produces an approximation satisfying

ES∥𝑩 − 𝑩∥2F ≤ (1 + 𝜀)

𝑩 − ⟦𝑩⟧𝑟

2

F,

provided the parameters 𝑘 and ℓ satisfy

𝑘 ≥ 2𝑟
𝜀
+ 𝑟 log

(
2
𝜂𝜀

)
, ℓ ≥ Ω

(
𝑘 log 𝑘 + 𝑘

𝜀

)
Here, ES denotes the expectation over the randomness in the first index set S.

The proof is immediate from Corollary 9.6 and Fact 10.11. This result suggests (cor-
rectly) that both oversampling and weighting ℓ > 𝑘 are necessary for RPCURLev
to produce high-quality approximations in general.

The RPCURLev procedure represents only one way of combining RPQR with an
extra step of row sampling to produce a (weighted) CUR cross approximation. In
my experience, it reliably produces high-quality approximations when implemented
with moderately high oversampling ℓ = O(𝑘 log 𝑘); approaches using pivoting
[SE16; PN25; CK24] are more effective for small ℓ ≈ 𝑘 . In place of leverage score
sampling, natural alternatives are volume sampling [DRVW06; DW17; Der18],
adaptive randomized pivoting [CK24], leveraged volume sampling [DH18], the
Chen–Price method [CP19], and pivoting strategies such as the Park–Nakatsukasa
algorithm [PN25, Alg. 3.2].

Parameter settings. On worst-case examples, the logarithmic oversampling ℓ ≥
Ω(𝑘 log 𝑘) suggested by Corollary 10.12 is necessary for RPCURLev to succeed.

176

We recommend ℓ = ⌈1.5𝑘 log 𝑘⌉ as a sensible default value. If one wants to control
the error up to a tolerance 𝜏 in the Frobenius norm, we recommend running RPQR
with a lower tolerance (𝜏/3, say) to allow for the additional error produced by
selection of the row subset T.

10.5 Related work: Mahoney and Drineas’ algorithm
In their influential work on CUR decompositions for data analysis, Mahoney and
Drineas [MD09] proposed a pure leverage score sampling-based approach to select
index sets S and T for CUR approximations; see also the follow-up work [DMM08]
which obtains better theoretical results. Up to some small tweaks, their algorithm
works as follows:

1. SVD. Compute an SVD 𝑩 = 𝑼𝚺𝑽∗.

2. Column sampling. Choose a parameter 𝑘′ ≤ 𝑘 , and sample 𝑘 indices
S = {𝑠1, . . . , 𝑠𝑘 } iid from the leverage score distribution of 𝑽 (:, 1 : 𝑘′):

𝑠1, . . . , 𝑠𝑘
iid∼ srn(𝑽 (:, 1 : 𝑘′)).

3. Row sampling. Choose a parameter ℓ′ ≤ ℓ, and sample ℓ indices T =

{𝑡1, . . . , 𝑡ℓ} iid from the leverage score distribution of 𝑼(:, 1 : ℓ′):

𝑡1, . . . , 𝑡𝑘
iid∼ srn(𝑼(:, 1 : ℓ′)).

4. Output. Return the CUR projection approximation with index sets S and T.

To achieve a (𝑟, 1+𝜀, 2)-approximation, Mahoney and Drineas suggest choosing 𝑘′ =
ℓ′ = 𝑟 and 𝑘, ℓ = O((𝑟 log 𝑟)/𝜀2). I believe the parameters 𝑘, ℓ = O(𝑟/𝜀 + 𝑟 log 𝑟)
should suffice with modern proof techniques, but I have not confirmed this. In
their original algorithm, Drineas and Mahoney suggest including or not including
each element 1 ≤ 𝑠 ≤ 𝑛 or 1 ≤ 𝑡 ≤ 𝑚 in the sets S or T independently with
some probability so that the expected number of accepted indices is E[𝑘],E[ℓ] =
O((𝑟 log 𝑟)/𝜀2); we have modified the algorithm here to pick a fixed number of
indices. In our experiments, we set 𝑘′ = ⌈𝑘/(2 log 𝑘)⌉ and ℓ′ = ⌈ℓ/(2 log ℓ)⌉.
We refer to this algorithm as Mahoney–Drineas CUR (MDCUR) and provide an
implementation in Program 10.3.

Runtime. The dominant cost of the MDCUR algorithm is the SVD computation.
Using a dense SVD, its cost is O(𝑚𝑛min{𝑚, 𝑛}) operations. We can accelerate the

177

Program 10.3 md_cur.m. Implementation of MDCUR for computing a CUR
projection approximation.
function [S,T,U,G,P] = md_cur(B,k,l,U,V)
% Input: Matrix B, ranks k and l, and top left and right singular
% vectors U and V
% Output: Column and row sets S and T, k*l core matrix U defining CUR
% approximation B ~ B(:,S) * U * B(T,:), matrices G and P
% defining (more) stable representation U = P \ G

[m,n] = size(B);
S = datasample(1:n,k,"Replace",false,"Weights",sqrownorms(V));
T = datasample(1:m,l,"Replace",false,"Weights",sqrownorms(U));
[Q,R] = qr(B(T,:)’,"econ");
W = (B*Q)/R’; % Row interpolation matrix
[Q,P] = qr(B(:,S),"econ");
G = Q’*W; % Well-conditioned matrix
U = P \ G; % Standard core matrix U

end

algorithm by using a randomized SVD, reducing the cost to O(𝑚𝑛(𝑘′ + ℓ′)). The
remaining steps of the algorithm incur a post-processing cost of O(𝑚𝑘2 + 𝑛ℓ2).

Further alternatives. Another approach to computing CUR decompositions is
to use sketchy pivoting, discussed in Section 9.4 [DM23b]. The comparison of
randomly pivoted CUR methods to sketchy pivoting methods for CUR is similar
to the comparison of RPQR methods to sketchy pivoting methods for interpolative
decomposition. In particular, sketchy pivoting methods can be faster but generally
require an upper bound on the approximation rank 𝑘 to be known in advance, which
is a significant limitation for some applications. See Section 9.4 and [DCMP24] for
further discussion on the relative merits of sketchy pivoting and random pivoting.

There are many other algorithms for computing CUR decompositions including
squared row and column norm sampling [DKM06], adaptive cross approximation
[BR03], adaptive randomized pivoting [CK24], and more sophisticated multi-stage
sampling approaches [BW17]. Comparison of the random pivoting algorithms
against these approaches is a natural subject for future work.

10.6 Experiments
To begin exploring the performance of the two randomly pivoted CUR algorithms,
we present some preliminary tests on three different example matrices.

178

Figure 10.2: Left: Relative error ∥𝑩 − 𝑩∥F/∥𝑩∥F computed by the following meth-
ods: RPCUR2 (orange stars), RPCURLev with (blue circles) and without over-
sampling (yellow squares), and MDCUR (pink crosses). Solid light lines for CUR
algorithms use the stable representation𝑼 = 𝑷−1 ·𝑮 from Section 10.3, and dashed
dark lines store 𝑼 as a dense array. The error for the best rank-𝑘 approximation
𝑩 = ⟦𝑩⟧𝑘 is shown as a dotted black line. We plot the median of 100 trials, with
error bars showing 10% and 90% quantiles. Right: Points 𝑤 𝑗 in column subset
𝑗 ∈ S selected by random pivoting methods (top) and the Mahoney–Drineas algo-
rithm (bottom) with 𝑘 = 30.

Experiment #1: Function matrix. First, as a simple test of approximation quality
and numerical stability, we test the two randomly pivoted CUR algorithms of the
previous section on a simple test matrix 𝑩 ∈ C𝑛×𝑛 with entries

𝑏𝑖 𝑗 =
1

𝑧𝑖 − 𝑤 𝑗

The points 𝑧𝑖 and 𝑤 𝑗 are chosen to be equispaced on the complex unit circle T(C):

𝑧𝑖 := exp
(
2𝜋i · 𝑖 − 1

2𝑛

)
, 𝑤𝑖 := exp

(
2𝜋i · 𝑛 + 𝑖 − 1

2𝑛

)
for 𝑖 = 1, 2, . . . , 𝑛,

and we set 𝑛 := 1000. The points 𝑧𝑖 trace the portion of the unit circle in the upper half
plane, T(C) ∩ {Im(𝑧) ≥ 0}, and the 𝑤 𝑗 trace the lower half, T(C) ∩ {Im(𝑧) ≤ 0}.
Matrices similar to 𝑩 occur in the design of algorithms for structured systems
of linear equations and least-squares problems [CGSX+08; XXG12; XXCB14;
WEB25; BKW25].

Figure 10.2 shows results for RPCUR2, RPCURLev (with oversampling ℓ =

⌈1.5𝑘 log 𝑘⌉ and no oversampling ℓ = 𝑘), and MDCUR. As points of comparison, I
also include the optimal rank-𝑘 approximation. We note the following conclusions:

179

• Near-optimality for random pivoting. On this example, RPCUR2 and
RPCURLev with oversampling both produces approximations of comparable
quality to the optimal rank-𝑘 approximation. MDCUR, by contrast, converges
at a slower rate. These results demonstrates the benefits of using random
pivoting to select at least one of the row or column subsets.

• Necessity of oversampling for RPCURLev. Comparing the accuracy of the
RPCURLev method with and without oversampling, we see that oversampling
ℓ > 𝑘 is crucial to maintain accuracy of the procedure.

• Stability benefits of factored 𝑼 matrix representation (10.3). The solid
light curves show the results of the CUR algorithms with the stable represen-
tation (10.3), which eventually achieve machine accuracy and even slightly
beat the optimal rank-𝑘 approximation due to finite-precision effects. The
dark dashed curves show the results of the CUR algorithms with an explicit
𝑼 matrix. When the accuracy is smaller (⪅ 𝑢1/2 for the random pivoting
methods), the explicit 𝑼 implementations have similar accuracy to the fac-
tored representation. However, while the relative error of the stable methods
improve past this point, the relative error of the unstable implementations
begins to increase for large values of 𝑘 . These results confirm the significant
numerical issues of the standard implementation of the CUR decomposition
for high-accuracy matrix approximation.

• Visualization of column subsets. Column subsets S of 𝑘 = 30 elements
selected by random pivoting methods and the Mahoney–Drineas method are
depicted visually in the right panels of Fig. 10.2. Both methods cluster
landmarks near the edges of the semicircle, with random pivoting methods
producing a more even distribution. Because the Mahoney–Drineas method
samples points iid, its landmark set contains examples of nearly overlapping
landmarks and regions that lack landmarks, which explains the differences in
approximation quality with the random pivoting methods.

Example #2: Sparse matrix. As a second example, we evaluate the methods on the
Meszaros/large matrix from the SuiteSparse collection. This example was used
in the recent paper [CK24, §6.1]. We store this matrix as a dense matrix for the
experiments in this section.

We evaluate the runtime and accuracy of RPCUR2, RPCURLev (with oversampling
ℓ = ⌈1.5𝑘 log 𝑘⌉), and MDCUR on this example. To make the MDCUR competitive

180

Figure 10.3: Relative error (left) and runtime (right) for RPCUR2 (orange stars),
RPCURLev (blue circles), and MDCUR (pink crosses) on Meszaros/large sparse
matrix. We plot the median of 100 trials, with error bars showing 10% and 90%
quantiles.

in terms of runtime, we use the randomized SVD (Program 2.1) with rank 𝑘′

to approximate the dominant left and right singular vectors of 𝑩. RPCUR2 and
MDCUR are implemented without oversampling 𝑘 = ℓ. Due to the sparsity of
𝑩, the column pivoted QR decomposition in Program 10.2 is necessary for the
algorithm to succeed.

Results are shown in Fig. 10.3. The MDCUR algorithm is the fastest, and RPCUR2
is the slowest. Both RPCUR2 and RPCURLev achieve accuracy comparable to the
optimal rank-𝑘 approximation, whereas MDCUR lags behind the other methods,
particularly when 𝑘 ≥ 300. These results demonstrate how, on difficult exam-
ples, MDCUR can produce approximations comparable with the best rank-(𝑟 < 𝑘)
approximation, whereas the random pivoting approximations empirically produce
approximations comparable to the best rank-𝑘 approximation. The need for over-
sampling presents a weakness of pure leverage score sampling based approaches
over random pivoting approaches.

181

C h a p t e r 11

RANDOM PIVOTING: OPEN PROBLEMS

We conclude this part of the thesis with two open problems: improved error bounds
for RPCholesky (Section 11.1) and whether there are simple, effective algorithms
for approximating a psd matrix from a small number of entry accesses when errors
are measured using the Frobenius norm, rather than the trace (Section 11.2).

11.1 Open problem: RPCholesky error bounds
The bound Theorem 4.1 already provides a useful description of the performance of
RPCholesky, showing that one achieves an (𝑟, 𝜀)-approximation (Definition 3.6)
in

𝑘 ≤ 𝑟
𝜀
+ 𝑟 log

(
1
𝜀𝜂

)
steps. (11.1)

Here,

𝜂 =
tr(𝑨 − ⟦𝑨⟧𝑟)

tr(𝑨)
is the relative error of the best rank-𝑟 approximation. The bound Theorem 4.3 pro-
vides weak—but sometimes useful control—related to the spectral norm. There are a
few directions along which one could hope to improve our theoretical understanding
of RPCholesky.

Bounds in the limit 𝜂 ↓ 0. As noted in Remark 4.2, the bound (11.1) degenerates
to infinity in the limit when the relative error 𝜂 ↓ 0. At least in some cases,
this bound badly mischaracterizes the performance of the RPCholesky algorithm,
which converges in exactly 𝑟 steps when applied to a matrix with rank 𝑨 = 𝑟.

For cases when 𝜂 is small, [CETW25, Thm. 5.1] establishes that the (𝑟, 𝜀)-guarantee
holds when

𝑘 ≥ 𝑟
𝜀
+ 𝑟 +max

{
0, 𝑟2 log(2) + 𝑟 log(1/𝜀)

}
.

This bound is nice because it purges the relative error 𝜂 from the bound entirely
On the other hand, 𝑘 is required to be quadratic in 𝑟 to produce an approximation
comparable to the best-𝑟 approximation—ouch!

R. J. Webber and I conjecture that this bound can be improved as follows.

Conjecture 11.1 (Better 𝜂-free RPCholesky bounds). RPCholesky achieves an
(𝑟, 𝜀)-approximation to any psd matrix in 𝑟/𝜀 + O(𝑟 log(𝑟/𝜀)) operations.

182

Here is one concrete approach that could resolve this conjecture. Specifically, we
make another conjecture:

Conjecture 11.2 (Improved 𝑟-step bound). For any psd matrix 𝑨, the 𝑟-step RP-
Cholesky residual 𝑨(𝑟) satisfies

tr(𝑨 − 𝑨(𝑟)) ≤ 𝐶 (𝑟) tr(𝑨 − ⟦𝑨⟧𝑟) for 𝐶 (𝑟) = poly(𝑟). (11.2)

Conjecture 11.2 would imply Conjecture 11.1. Unfortunately, we are currently ex-
ponentially far from proving Conjecture 11.2; our best bound [CETW25, Lem. 5.5]
establishes (11.2) with 𝐶 (𝑟) = 2𝑟 .

Spectral-norm bounds. For reasons that will be described in Section 11.2, it is not
possible for RPCholesky or any psd low-rank approximation algorithm that uses
limited entry accesses to produce a relative-error approximation in the spectral norm
(that is, an (𝑟, 𝜀,∞)-approximation) in O(𝑛 poly(𝑟/𝜀)) entry access operations.
However, it is reasonable to hope that RPCholesky produces approximations that
are accurate when measured in the spectral norm once the number of steps is
comparable to the effective dimension, defined in Definition 3.16. Indeed, we saw
earlier in Fact 3.17 that ridge leverage score sampling achieves such a bound. We
conjecture that RPCholesky does equally well.

Conjecture 11.3 (RPCholesky: Spectral norm bounds). Let 𝜆 ≥ 0. If RPCholesky
is executed for 𝑘 = O(deff (𝜆) polylog(deff (𝜆), ∥𝑨∥/𝜆)) steps, it produces an index
set satisfying

𝑨⟨S⟩ ⪯ 𝑨 ⪯ 𝑨⟨S⟩ + 𝜆I

with at least 99% probability. Here, polylog denotes an unspecified polylogarithmic
function.

If such a result were true, it would provide theoretical support for the empirical
observation that RPCholesky performs similarly to or better than RLS sampling
for column Nyström preconditioning (Section 6.1). To be conservative, I have
included polylogarithmic factors in the conjecture, but I believe the conjecture will
also be true without them.

11.2 Open problem: Frobenius-norm psd low-rank approximation
The goal of this part of the thesis has been to develop algorithms that evaluate a small
number of entries to compute an (𝑟, 𝜀, 1)-approximation to a psd matrix. Recall

183

from Definition 3.6 that an (𝑟, 𝜀, 𝑝)-approximation is a random matrix 𝑨 such that

E∥𝑨 − 𝑨∥S𝑝
≤ (1 + 𝜀)

𝑨 − ⟦𝑨⟧𝑟

S𝑝
.

Recall that ∥·∥S𝑝
is the Schatten 𝑝-norm. It is frame the question: Does the psd

low-rank approximation problem admit efficient algorithms when 𝑝 > 1?

Many of the algorithms we have considered so far, including RPCholesky, uniform
column Nyström approximation, greedy pivoted partial Cholesky, and the entire
family of Gibbs RPCholesky methods (Section 4.4), are diagonal–column access
algorithms. These methods interact with the matrix 𝑨 only by reading the diagonal
and full columns. As we will see, diagonal–column access algorithms have fun-
damental limitations for psd low-rank approximation, and a more general class of
algorithms are needed order to compute (𝑟, 𝜀, 𝑝)-approximations for 𝑝 > 1.

The following result establishes establishes limits on both general and diagonal–
column access psd low rank approximation algorithms.

Proposition 11.4 (Psd low-rank approximation: Lower bound). Fix 𝑝 ∈ [1,∞]. On
a worst-case input matrix,

• A diagonal–column access algorithm must read Ω(𝑛2−1/𝑝) entries to guaran-
tee a (1, c, 𝑝)-approximation.

• Any algorithm must read Ω(max{𝑛, 𝑛2−2/𝑝}) entries to guarantee a (1, c, 𝑝)-
approximation.

Here, c > 0 is a universal constant.

Proof sketch. Choose 𝑛 to be large, and construct the matrix

𝑨 = 𝑷

[
I𝑛−⌈𝑛1/𝑝⌉ 0

0 1⌈2𝑛1/𝑝⌉1
∗
⌈2𝑛1/𝑝⌉

]
𝑷∗,

where 𝑷 is a uniformly random permutation matrix. The optimal rank-one approxi-
mation to this matrix is

⟦𝑨⟧1 = 𝑷

[
0 0
0 1⌈2𝑛1/𝑝⌉1

∗
⌈2𝑛1/𝑝⌉

]
𝑷∗.

184

We compute

∥𝑨∥S𝑝
=

(
(𝑛 − ⌈2𝑛1/𝑝⌉) · 1 + (⌈2𝑛1/𝑝⌉)𝑝

)1/𝑝
≥ (2 + 𝑜(1))𝑛1/𝑝,

𝑨 − ⟦𝑨⟧1

S𝑝

=

(
(𝑛 − ⌈2𝑛1/𝑝⌉) · 1

)1/𝑝
= (1 + 𝑜(1))𝑛1/𝑝 .

To produce a nontrivial low-rank approximation requires identifying a nonzero off-
diagonal entry.

Since each diagonal entry is one, any diagonal–column access algorithm must keep
accessing columns until it finds a nonzero off-diagonal entry. Each column access
has a ⌈2𝑛1/𝑝⌉/𝑛 = (2+𝑜(1))𝑛1/𝑝−1 probability of identifying a nonzero off-diagonal
entry, so it takes Ω(𝑛1−1/𝑝) column accesses (= Ω(𝑛2−1/𝑝) entry accesses) to find a
nonzero off-diagonal entry with high probability.

A general psd low-rank approximation algorithm is free to query off-diagonal entries
one-by-one. Until a nonzero entry is found, each query finds a nonzero off-diagonal
entry with probability O(𝑛2/𝑝−2), so it requires Ω(𝑛2−2/𝑝) accesses to find a nonzero
off-diagonal entry with high probability. The fact that it always requires Ω(𝑛)
accesses to produce a nontrivial low-rank approximation can be established by
considering the matrix e

𝑖
e∗
𝑖

where 𝑖 ∼ Unif{1, . . . , 𝑛}.

Proposition 11.4 shows that, for RPCholesky and other diagonal–column access
algorithms, approximating matrices in the trace norm is essentially as good as
one can expect, at least for an algorithm with an O(𝑛) runtime. However, this
result leaves open the possibility of achieving relative-error approximations in the
Frobenius norm with O(𝑛) operations using a more general access pattern. Indeed,
such O(𝑛) algorithms for producing (𝑟, 𝜀, 2)-approximations do exist. The first
such algorithm was discovered by Musco and Woodruff [MW17], which produces
an (𝑟, 𝜀, 2) in Õ(𝑛𝑟/𝜀2.5) entry accesses; this was improved to Õ(𝑛𝑟/𝜀) entries in
[BCW20]. Despite these appealingly low entry access counts, the algorithms of
[MW17; BCW20] are complicated and have large prefactor constants. That leads
us to the open question:

Is there a simple, effective, and practically performant algorithm for psd low-
rank approximation that achieves relative error guarantees in the Frobenius
norm?

As Proposition 11.4 shows, such an algorithm must use a more sophisticated access
model than diagonal and column accesses alone. Additionally, even basic existence

185

questions are open, as far as I am aware. For instance, does there exist a set
S of poly(𝑟/𝜀) pivots defining a column Nyström approximation 𝑨⟨S⟩ that is an
(𝑟, 𝜀, 2) approximation? Or must we use more sophisticated low-rank approximation
formats, such as weighted CUR cross approximations, to produce Frobenius-norm
relative-error approximations?

Part II

Leave-one-out randomized matrix
algorithms

Dedicated to my parents Meg and Tom Epperly.

186

187

C h a p t e r 12

MATRIX ATTRIBUTE ESTIMATION PROBLEMS

This kind of structure [sparsity] is readily exploited by the iterative
methods we shall discuss, for these algorithms use a matrix in the form
of a black box. The iterative algorithm requires nothing more than the
ability to determine 𝑨𝒙 for any 𝒙, which in a computer program will be
effected by a procedure whose internal workings need be of no concern
to the designer of the iterative algorithm.

Lloyd N. Trefethen and David Bau, III, Numerical Linear Algebra
[TB22, p. 244]

Frequently in applications, we encounter problems where we wish to learn infor-
mation about an unknown matrix 𝑩 ∈ C𝑚×𝑛 that can only be accessed by matrix–
vector products 𝝎 ↦→ 𝑩𝝎 and, possibly, matrix–vector products with the adjoint
𝝎 ↦→ 𝑩∗𝝎. As examples, we might be interested in learning the matrix trace tr(𝑩),
the matrix diagonal diag(𝑩), or individual entries 𝑏𝑖 𝑗 .

In this part of the thesis, I will present a new approach to designing randomized
algorithms for such matrix attribute estimation problems called the leave-one-out
approach. The leave-one-out approach leads to fast, resource-efficient algorithms
with state-of-the-art accuracy. After introducing the necessary preliminaries in
Chapter 13, we will discuss the leave-one-out approach in Chapter 14. This initial
chapter serves to motivate the problem of estimating attributes of a matrix through
matrix–vector products. We will address the questions “When are we able to access
a matrix 𝑩 only through matrix–vector products?” and “Which attributes of 𝑩 do
we want to estimate in applications?”

Sources. This is an introductory chapter and is not based on any particular research
article. The resources [US17; Pop23] are useful resources for applications of trace
and diagonal estimation algorithms, respectively.

Outline. Section 12.1 discusses matrix attribute estimation problems and the
matrix–vector (“matvec”) model for measuring their computational cost. Sec-
tion 12.2 discusses examples of matrix attribute estimation problems including
trace, diagonal, and row-norm estimation. It also discusses applications.

188

12.1 Matrix attribute estimation and the matvec model
Linear algebraic algorithms that access a matrix 𝑩 through matrix–vector products
(affectionately abbreviated matvecs) are extremely common. Examples include
power iteration for computing eigenvalues [GV13, §8.2] as well as Krylov iteration
for solving linear systems [Saa03], computing eigenvalues [Saa11], and applying
matrix functions [Che24]. For these classical iterative methods, the matrix 𝑩 is
often stored explicitly in memory as either a dense or sparse array, and matvec
algorithms are used due to their computational efficiency (particularly when 𝑩 is
sparse, making 𝒛 ↦→ 𝑩𝒛 is cheap to compute).

This thesis focuses on an alternative setting where the matrix 𝑩 is not stored explicitly
and 𝑩 can only be accessed through matvecs (and possibly matvecs with the adjoint
𝑩∗). This more restrictive setting is motivated by the following examples:

• Products of matrices. The matrix 𝑩 is a product of several other matrices,
𝑩 = 𝑪1𝑪2 · · ·𝑪ℓ. It is expensive to evaluate the matrix 𝑩, as it requires form-
ing the product, but matvecs with 𝑩 can be computed efficiently by multiplying
a vector against the 𝑪𝑖 matrices one at a time: 𝑩𝝎 = 𝑪1(𝑪2(· · · (𝑪ℓ𝝎) · · ·).
Important special cases are the Gram matrix 𝑩 = 𝑪∗𝑪 and powers 𝑩 = 𝑪𝑘 .

• Matrix functions. Let 𝑪 ∈ C𝑛×𝑛 be a matrix and 𝑓 : C → C be a function
defined on the spectrum of 𝑪. Set 𝑩 := 𝑓 (𝑪) using the standard extension
of scalar functions to matrix inputs [Hig08, §1.2]. Computing 𝑩 = 𝑓 (𝑪)
explicitly is typically costly, but matvecs 𝑩𝝎 = 𝑓 (𝑪)𝝎 can often be computed
efficiently by algorithms such as the Arnoldi method or, if 𝑪 is Hermitian, the
Lanczos method [Hig08, §13.2]. (In particular, for the special case 𝑓 (𝑧) = 𝑧−1,
computing products 𝑪−1𝝎 is equivalent to solving linear systems of the form
𝑪𝒚 = 𝝎, for which there has been much work [Saa03].)

• Automatic differentiation. Given a twice differentiable function 𝑓 : R𝑛 → R

and an input 𝒙 ∈ R𝑛, automatic differentiation allows one to compute matvecs
𝐷2 𝑓 (𝒙) · 𝝎 with the Hessian matrix 𝐷2 𝑓 (𝒙) ∈ R𝑛×𝑛 in a small multiple of
the runtime required to evaluate 𝑓 (𝒙) [BR24]. Similarly, given a function
𝑔 : R𝑛 → R𝑚, matvecs 𝐷𝑔(𝒙) · 𝝎 with the Jacobian matrix 𝐷𝑔(𝒙) ∈ R𝑚×𝑛

are also efficiently computable by automatic differentiation.

In all of these settings, matvecs with the adjoint 𝑩∗ are typically also available.
These examples motivate the matvec model:

189

Matvec model. A matrix 𝑩 ∈ R𝑚×𝑛 is provided that can only be accessed
through matvecs 𝝎 ↦→ 𝑩𝝎 and adjoint matvecs 𝝎 ↦→ 𝑩∗𝝎. The cost of an
algorithm is measured by the number of matvecs used.

Under the matvec model, the entire matrix 𝑩 can be recovered one column at a time
by computing the matvecs 𝑩e1, . . . , 𝑩e𝑛 with each of the standard basis vectors
e𝑖. Thus, in the matvec model, any problem can be solved at the “trivial cost” of
𝑛 matvecs. Thus, in this model, an algorithm is considered “efficient” if it beats
this trivial cost of 𝑛 matvecs. In this part of the thesis, we will seek algorithms
that produce approximate solutions but will expend a number of matvecs that is
independent of the dimensions 𝑚 and 𝑛 of the matrix.

Problems that are trivial for a matrix 𝑩 stored in memory become more challenging
when considered in the matvec model. For instance, consider the trace

tr(𝑩) =
𝑛∑︁
𝑖=1

𝑏𝑖𝑖

of a square matrix 𝑩 ∈ R𝑛×𝑛. If 𝑩 is stored in memory, the trace can be computed
exactly in O(𝑛) operations. However, in the matvec model, computing the trace
exactly—by either a deterministic or randomized algorithm—incurs the trivial cost
of 𝑛matvecs. This observation motivates the study of algorithms for approximating
the trace in the matvec model. We will discuss trace estimation in the matvec model
throughout this part of the thesis.

Trace estimation is a member of the family of matrix attribute estimation problems:

Matrix attribute estimation problem. Let 𝑄(𝑩) denote some attribute of
a matrix such as its trace tr(𝑩) or its entry 𝑏𝑖 𝑗 in position (𝑖, 𝑗). The matrix
attribute estimation problem is to compute an estimate𝑄 for𝑄(𝑩). The cost
an algorithm is measured by the number of matvecs, and the quality of the
solution is measured by the error |𝑄 −𝑄(𝑩) |.

We have written 𝑄(𝑩) for a scalar-valued attribute 𝑄(𝑩) ∈ K, but vector-valued or
matrix-valued attributes 𝒒(𝑩) ∈ K𝑑 or 𝑸(𝑩) ∈ K𝑚

′×𝑛′ are fine as well. In these
cases, we will measure the error using an appropriate norm.

In a sense, any linear algebra problem is an example of a matrix attribute estimation
problem. In this thesis, we will use this term more narrowly to describe attributes like

190

the trace that are linear or quadratic functions of the matrix 𝑩 and are computationally
challenging only within the matvec model.

As we will see in this part of the thesis, the matvec model provides a convenient
framework for designing and analyzing algorithms. However, like all computational
models, the matvec model is idealized. We note a few weaknesses:

• Post-processing costs. In the matvec model, we measure the cost of an
algorithm only by counting the number of matvecs. However, for problems
where the matvec operations are relatively cheap, the computational cost can
be dominated by post-processing to assemble the collected matvecs into the
estimator. Responding to this weakness, this thesis will focus on algorithms
with fast post-processing. We will even develop improved implementations
of one estimator with up to 7× faster post-processing (Remark 14.5).

• Blocking. Another deficit of measuring algorithm cost through matvec count
is that it ignores the computational benefits of blocking. For reasons discussed
in Section 8.1, performing ℓmatvecs 𝑩𝝎1, . . . , 𝑩𝝎ℓ individually can be much
more expensive than performing these matvecs in a batch, i.e., by computing
the matrix–matrix product 𝑩[𝝎1 · · · 𝝎ℓ]. The algorithms in this thesis will
always compute matvecs in batches, so they remain efficient even accounting
for the benefits of blocking.

• Opening the black box. The matvec model treats the matvec subroutine
𝝎 ↦→ 𝑩𝝎 as a black box. But, for matrix functions 𝑩 = 𝑓 (𝑪), matvecs 𝑓 (𝑪)𝝎
are often computed by the Arnoldi or Lanczos methods, which utilize matvecs
with 𝑪. In this context, matvecs with 𝑪 are the primitive operation that
should be minimized. Tyler Chen and collaborators have productively used
this observation to develop faster “Krylov-aware” matrix attribute estimation
algorithms [CH23; PCM25].

Notwithstanding these limitations, we will use the matvec model in this thesis.

12.2 Examples of matrix attribute estimation problems: Trace, diagonal, and
row-norm estimation

There are several interesting and practically useful matrix attribute estimation prob-
lems, including trace, diagonal, and row-norm estimation.

191

Trace estimation
The trace estimation problem is to approximate tr(𝑩) in the matrix–vector product
(matvec) model. Trace estimation has a number of applications, some of which
were surveyed in the paper [US17]. Here is a partial list:

• Triangle counting. Counting the number of triangles in a graph is a basic
problem in network science, and it is necessary to compute the clustering
coefficient [AD18]. This problem is a trace estimation problem, as the number
of triangles in a graph with adjacency matrix 𝑨 is tr(𝑨3)/6. This problem
is a natural demonstration of the matvec model, as matvecs with 𝑨3 can be
computed by iterated multiplication 𝑨(𝑨(𝑨𝝎)).

• Log-determinant [MMB21; WPHC+22]. Estimates of the log-determinant
are used in maximum likelihood estimation for Gaussian process methods
(Remark 5.22). This problem can be viewed as a trace estimation problem,
in view of the identity log det(𝑨) = tr log(𝑨). Matvecs with log(𝑨) can be
computed using the Lanczos method.

• Continuous normalizing flows [CRBD18; GCBS+19; SSKK+21; Now22].
Several machine learning models—such as neural ODEs [CRBD18], FFJORD
[GCBS+19], and diffusion models [SSKK+21]—evolve a random initial value
𝒙(0) under continuous dynamics d

d𝑡 𝒙(𝑡) = 𝑓 (𝒙(𝑡), 𝑡). These algorithms must
estimate the instantaneous rate of change of the log-likelihood of 𝒙(𝑡), which
is the negative trace of the Jacobian − tr(D 𝑓). Matvecs with the Jacobian can
be computed using automatic differentiation.

• Statistical physics. The partition function of a quantum system with Hamil-
tonian 𝑨 at inverse-temperature 𝛽 > 0 is 𝑧 := tr exp(−𝛽𝑨). Other thermo-
dynamics quantities can also be expressed as matrix traces; for instance, the
average energy is 𝑒 := 𝑧−1 tr(𝑨 exp(−𝛽𝑨)). Trace-exponentials also appear
in network science as Estrada index centrality measures [Est22].

• Norm estimation. Computing or estimating the norm of a matrix is a ubiq-
uitous task in matrix computations. This computation can be seen as a
trace estimation problem, as the Schatten 𝑝-norm is ∥𝑩∥S𝑝

:= tr[(𝑩∗𝑩)𝑝/2].
Matvecs with (𝑩∗𝑩)𝑝/2 can be computed by iterated multiplication (if 𝑝 is an
even integer) or by the Lanczos method.

192

Diagonal estimation
Given a square matrix 𝑩 ∈ K𝑛×𝑛, the diagonal estimation problem is to estimate
diag(𝑩) ∈ K𝑛. There are several applications of diagonal estimation algorithms.

• Statistics. The diagonal entries of a covariance matrix 𝑨 for a random vector
𝒙 ∈ K𝑛 are the variances of the individual entries 𝑎𝑖𝑖 = Var(𝑥𝑖). Similarly,
for jointly Gaussian random variables, the reciprocals of the diagonal of
the inverse-covariance matrix (precision matrix) 𝑨−1 store the conditional
variances:

1
𝑨−1(𝑖, 𝑖)

= Var(𝑥𝑖 | 𝑥1, . . . , 𝑥𝑖−1, 𝑥𝑖+1, . . . , 𝑥𝑛).

• Centrality measures. Many centrality measures for graphs are defined using
the diagonal of functions of the graph adjacency matrix 𝑨 (or related matrices
such as the graph Laplacian). For instance, the number of triangles incident on
vertex 𝑖 is the 𝑖th diagonal entry of 𝑨3/2 [AD18], and the subgraph centrality
of vertex 𝑖 is the 𝑖th diagonal entry of exp(𝑨) [Est22]. For a survey on
centrality measures, see [BJT23].

• Optimization. The convergence of gradient descent methods can be slow if
the problem is poorly scaled. This issue can be remedied by using the diagonal
of the Hessian matrix to precondition the descent method [YGSM+21]. An-
other application of diagonal estimation to semidefinite programming appears
in [Lin23].

Other applications of diagonal estimation include electronic structure calculations
in materials science [BKS07; LLYC+09], uncertainty quantification for linear re-
gression [Pop23], low-rank matrix approximation algorithms [FL24]. Chapter 16
discusses diagonal estimation algorithms.

Row-norm estimation
The problem of estimating the (squared) row- or column-norms of a matrix 𝑩 ∈
K𝑚×𝑛 also has many applications. This problem has received significantly less
attention than trace or diagonal estimation. Assuming matvec access to both 𝑩 and
𝑩∗, the row- and column-norm problems are equivalent, as column-norm estimation
on 𝑩 is row-norm estimation on 𝑩∗. Here are several applications:

193

• Leverage scores. As introduced in Definition 3.15, the leverage scores of
a matrix 𝑨 are the squared row norms of any orthonormal basis matrix 𝑼

for range(𝑨). Row-norm estimation algorithms play a crucial role in fast
algorithms for leverage score estimation [DMMW12]. Related ideas are used
to estimate effective resistances in networks [SS08].

• Matrix computations. Many standard linear algebra algorithms require
computation of row norms, and many of these algorithms are robust to those
row norms being computed approximately. For such algorithms, row-norm
estimates can allow for significant acceleration (see, e.g., [FL24]). Many
of the codes in this thesis require row or column norms, and can also be
accelerated using row-norm estimates (see Remark 18.2).

• Electronic structure theory. In electronic structure theory calculations, the
electron density can be obtained from the row norms of an implicit matrix,
making it possible to accelerate the computation using row-norm estimation
algorithms. This application appears in the thesis of Aleksandros Sobczyk
[Sob24].

Row-norm estimation also has close connections to the diagonal estimation problem
(Section 17.2), and many of the most effective algorithms for diagonal estimation
for psd matrices proceed through row-norm estimation [MMB21; Lin23; FL24].
See Chapter 17 for more discussion of and algorithms for row-norm estimation.

194

C h a p t e r 13

FUNDAMENTAL TOOLS: LOW-RANK AND MONTE CARLO
APPROXIMATIONS

What we are calling a quadratic trace estimator is often called the
Hutchinson’s trace estimator, especially when 𝒗 is chosen uniformly from
the set of vectors with entries ±𝑛−1/2. However, [Hut89] was not the first
use of quadratic trace estimators for the task of approximating the trace
of an implicit matrix; [Hut89] itself cites [Gir87] which addresses the
same task by using samples of 𝒗 drawn uniformly from the unit
hypersphere. Algorithms based on the use of random vectors date back
at least to the mid 1970s [ABKS75; WW76; WW77; Dd89].

Tyler Chen, Lanczos-based methods for matrix functions [Che22, §4.1.1]

This chapter introduces two approaches to matrix attribute estimation—Monte Carlo
approximation and low-rank approximation—which serve as building blocks for ma-
trix attribute estimation algorithms. After introducing these techniques individually,
we will see that they become more powerful when used in combination, as demon-
strated in the famous Hutch++ algorithm. This ideas will be refined in the next
section, where we will use them in combination with the leave-one-out approach to
the design of randomized matrix algorithm.

Sources. The main aims of this section are expository, and it is not based on any
particular research article. Section 13.3 discusses variance reduction technique for
matrix attribute estimation and Hutch++ algorithm from the paper [MMMW21b].
The concept of “resphering” matrix attribute estimation algorithms, which we dis-
cuss throughout this section, was first introduced in [ETW24].

Outline. Section 13.1 introduces the Monte Carlo approach to matrix attribute
estimation, and it shows how this approach can be used to develop Monte Carlo
estimators of the trace, diagonal, and row norms. This section also discusses choice
of random distribution for such algorithms and introduces the idea of “resphering” a
Monte Carlo estimator for a matrix with a known nullspace. Section 13.2 discusses
the use of low-rank approximation to estimate matrix attributes, and Section 13.3
describes how low-rank approximation can be used as a variance reduction technique

195

to improve the accuracy of Monte Carlo estimators. This variance technique is
exemplified by the Hutch++ algorithm, which is discussed in this section. We
conclude Section 13.3 by discussing weaknesses of the Hutch++ algorithm which
will be addressed by the leave-one-out approach in Chapter 14.

13.1 Monte Carlo approximation
Monte Carlo approximation is a simple yet powerful method for constructing ran-
domized estimators of a matrix attribute. In its basic form, the approach is to design
an unbiased estimator 𝑞 for a quantity of interest 𝑞 (so that E[𝑞] = 𝑞), and then
average several independent copies of 𝑞 to reduce variance [Liu04]. More general
versions of the method also allow for estimators that are not fully independent or
that introduce slight bias.

For matrix computations, many Monte Carlo estimators can be built using isotropic
random vectors.

Definition 13.1 (Isotropic random vector). A random vector 𝝎 ∈ K𝑛 is isotropic if
it satisfies E[𝝎𝝎∗] = I.

Examples of isotropic random vectors include standard Gaussian vectors 𝝎 ∼
NormalK(0, I) or vectors 𝝎 ∼ Unif(

√
𝑛 S(K𝑛)) drawn uniformly from the sphere

of radius
√
𝑛. Both of these constructions are defined in either the field of real or

complex numbers, K ∈ {R,C}. Another popular isotropic random distribution is
the random sign distribution Unif{±1}𝑛.

An isotropic random vector 𝝎 gives rise to a rank-one matrix 𝝎𝝎∗ that serves as
an unbiased estimator for to the identity matrix. This estimator can be improved by
forming an average 𝑠−1 ∑𝑠

𝑖=1 𝝎𝑖𝝎
∗
𝑖

of independent copies 𝝎1, . . . ,𝝎𝑠
iid∼ 𝝎. Using

this observation, one can design unbiased estimates for matrix attributes by intro-
ducing a copy of the identity matrix and replacing it by a stochastic approximation.
In the following examples, we develop several classical Monte Carlo estimators in
matrix computations using this perspective.

Example: Girard–Hutchinson trace estimator
As a first example of a Monte Carlo algorithm for matrix attribute estimation, we
consider the trace estimation problem. Let 𝑩 ∈ K𝑛×𝑛 be a square matrix. To estimate
tr(𝑩), introduce a copy of the identity matrix

tr(𝑩) = tr(𝑩 · I)

196

Program 13.1 girard_hutchinson.m. Unoptimized MATLAB implementation
of the Girard–Hutchinson estimator (13.1). The random_signs subroutine is de-
fined in Program F.2.
function tr = girard_hutchinson(B,n,s)
% Input: Function B() computing matrix products B(X) = B*X, number
% of rows n, and number of matvecs s
% Output: Estimate tr of trace(B)
tr = 0;
for i = 1:s

om = random_signs(n,1); % Generate vector of random signs
tr = tr + om’*B(om) / s; % Update trace estimate

end

end

and use the stochastic approximation 𝑠−1 ∑𝑠
𝑖=1 𝝎𝑖𝝎

∗
𝑖
≈ I, resulting in the estimator

t̂rGH := tr

(
𝑩 · 1

𝑠

𝑠∑︁
𝑖=1

𝝎𝑖𝝎
∗
𝑖

)
≈ tr(𝑩 · I) = tr(𝑩).

Invoking the linearity and the cyclic property of the trace, we can rewrite the
estimator t̂rGH in the more computationally useful form

t̂rGH =
1
𝑠

𝑠∑︁
𝑖=1

𝝎∗𝑖
(
𝑩𝝎𝑖

)
. (13.1)

The formula (13.1) clearly demonstrates that t̂rGH can be computed using 𝑠matvecs.
See Program 13.1 for un-optimized MATLAB code.

Estimators of the form (13.1) were used by Girard [Gir87; Gir89] and popularized
by Hutchinson [Hut89], so we will call this approximation the Girard–Hutchinson
estimator. Tyler Chen has conducted an in-depth study of the history of trace
estimation. His analysis identifies estimators related to (13.1) in work from quantum
physics dating back as early as the 1920s [Che22, §4.1.1].

Example: BKS diagonal estimator
Another Monte Carlo algorithm for a matrix attribute estimation problem is the BKS
diagonal estimator. Again, we begin with a square matrix 𝑩 and write 𝑩 = 𝑩 · I.
Replacing I with the stochastic approximation 𝑠−1 ∑𝑠

𝑖=1 𝝎𝑖𝝎
∗
𝑖
≈ I yields the diagonal

estimator

d̂iagBKS := diag
(
𝑩 · 1

𝑠

𝑠∑︁
𝑖=1

𝝎𝑖𝝎
∗
𝑖

)
≈ diag(𝑩). (13.2)

197

Program 13.2 bks.m. Bekas–Kokiopoulou–Saad estimator for the diagonal of a
matrix. Subroutine random_signs is provided in Program F.2.
function d = bks(B,n,s)
% Input: Function B() computing matrix products B(X) = B*X,
% number of columns n and number of matvecs s
% Output: Estimate d of the diagonal of B

Om = random_signs(n,s); % Matrix of random signs
d = mean(B(Om) .* Om,2); % BKS diagonal estimate

end

This estimator can be simplified by means of the identity

diag(𝒂𝒃∗) = 𝒂 ⊙ 𝒃 for 𝒂, 𝒃 ∈ K𝑛. (13.3)

Here, ⊙ denotes the entrywise product of vectors, and (·) denotes the entrywise
complex conjugate. Applying (13.3) and the linearity of the diagonal map yields a
simpler form for the diagonal estimator (13.2):

d̂iagBKS =
1
𝑠

𝑠∑︁
𝑖=1
(𝑩𝝎𝑖) ⊙ 𝝎𝑖 . (13.4)

Estimators similar to (13.4) appear to have originally developed by Bekas,
Kokiopoulou, and Saad [BKS07]. In this work, we will call d̂iagBKS the BKS
diagonal estimator. Code for the BKS diagonal estimator appears in Program 13.2.
We discuss diagonal estimation more thoroughly in Chapter 16.

Example: The Johnson–Lindenstrauss row-norm estimator
As a final example, we consider the problem of estimating the row norms of a possi-
bly rectangular matrix 𝑩 ∈ K𝑚×𝑛. Row-norm estimation is an interesting problem
because the row norms are nonlinear functions of the matrix. We shall focus on
developing unbiased estimates for the squared row norms of 𝑩, which we denote

srn(𝑩) :=
(
∥𝑩(𝑖, :)∥2 : 1 ≤ 𝑖 ≤ 𝑚

)
∈ R𝑚+ . (13.5)

To fashion an estimator for srn(𝑩), we first invoke the identity

srn(𝑩) = diag(𝑩𝑩∗).

Now insert a copy of the identity matrix in the middle of the matrix product 𝑩𝑩∗ =
𝑩 · I · 𝑩∗, and use the stochastic approximation 𝑠−1 ∑𝑠

𝑖=1 𝝎𝑖𝝎
∗
𝑖
≈ I, resulting in the

198

Program 13.3 jl_rownorm.m. Johnson–Lindenstrauss estimator for the (squared)
row norms of a matrix. Subroutines random_signs and sqrownorms re provided
in Programs F.2 and F.3.
function srn = jl_rownorm(B,n,s)
% Input: Function B() computing matrix products B(X) = B*X,
% number of columns n and number of matvecs s
% Output: Estimate srn of the squared row norms of B

Om = random_signs(n,s); % Matrix of random signs
srn = sqrownorms(B(Om))/s; % JL row norm estimate

end

Monte Carlo estimator

ŝrnJL := diag
(
𝑩 · 1

𝑠

𝑠∑︁
𝑖=1

𝝎𝑖𝝎
∗
𝑖 · 𝑩∗

)
≈ srn(𝑩).

This estimator can more conveniently be written as

ŝrnJL =
1
𝑠

𝑠∑︁
𝑖=1
|𝑩𝝎𝑖 |2, (13.6)

where the function | · |2 denotes the squared modulus, evaluated entrywise for a vector
input. We call this estimator the Johnson–Lindenstrauss row-norm estimator, as it
can be analyzed using the Johnson–Lindenstauss lemma [JL84]. Code is provided
in Program 13.3. We discuss row-norm estimation more in Chapter 17.

Which isotropic vector to use?
Having seen that isotropic random vectors can be used to build Monte Carlo estima-
tors of matrix attributes, we now discuss the choice of which isotropic distribution
to use.

Let us first catalog the popular options, many of which have separate definitions
over the fields K = R and K = C of real and complex numbers:

• Gaussian. A standard Gaussian vector 𝝎 ∼ NormalK(0, I) is isotropic.
Its entries are independent and drawn from the real or complex standard
Gaussian distribution. (Recall that a complex standard Gaussian random
variable 𝑔 ∼ NormalC(0, 1) takes the form 𝑔 = (𝑔1+ i𝑔2)/

√
2, where 𝑔1, 𝑔2 ∼

NormalR(0, 1) are independent real standard Gaussians.)

199

• Sphere. A random vector 𝝎 ∼ Unif(
√
𝑛S(K𝑛)) is isotropic. One can be

generated by drawing a standard Gaussian vector 𝒈 ∈ NormalK(0, I) and
scaling it to have constant length 𝝎 :=

√
𝑛/∥𝒈∥ · 𝒈.

• Random signs. A vector of random signs 𝝎 ∼ Unif{±1}𝑛 is isotropic. This
distribution has very low resource requirements, requiring only 𝑛 independent
uniformly random bits to generate. The random sign distribution is often
called the Rademacher distribution.

• Random phases. An analog of the random sign distribution for the complex
field is a vector of random phases 𝝎 ∼ Unif(T(C)𝑛), defined to be a random
vector whose entries are independent and drawn uniformly from the complex
unit circle T(C) := {𝜙 ∈ C : |𝜙 | = 1}. The random phase distribution is also
called the Steinhaus distribution.

Note that the random signs and random phases distributions can be unified
𝝎 ∼ Unif(T(K)𝑛) by defining the “unit circle” of the real numbers to be
T(R) := {𝜙 ∈ R : |𝜙 | = 1} = {±1}.

• Random coordinate. Last, one can also generate an isotropic random vector
by drawing a random standard basis element 𝝎 ∼ Unif{

√
𝑛e𝑖 : 1 ≤ 𝑖 ≤ 𝑛},

appropriately rescaled.

Which of these options should one use? To answer this question with some degree
of precision, we will focus on which of these random vectors to use for estimating
the trace of a real symmetric matrix 𝑨 ∈ R𝑛×𝑛 using the Girard–Hutchinson trace
estimator, although the same principles apply for other matrix attribute estimation
problems and algorithms as well.

Recall that the Girard–Hutchinson estimator for 𝑨 is defined as

t̂rGH :=
1
𝑚

𝑚∑︁
𝑖=1

𝝎∗𝑖 𝑨𝝎𝑖 for 𝝎1, . . . ,𝝎𝑚
iid∼ 𝝎.

We will compare the accuracy of this estimator with several random isotropic vectors
𝝎 by using the mean-squared error E(t̂rGH − tr(𝑨))2. Because the terms 𝝎∗

𝑖
𝑨𝝎

𝑖
are

iid and unbiased estimators for tr(𝑨), the mean-squared error is

E(t̂rGH − tr(𝑨))2 =
1
𝑚

Var(𝝎∗𝑨𝝎). (13.7)

200

In particular, we see that the mean-squared error decays at a O(1/𝑚) rate regardless
of the choice of isotropic test vector 𝝎. The O(1/𝑚) convergence rate in the mean-
squared error is typical of Monte Carlo methods. The quality of a distribution for
trace estimation is quanitified by the prefactor Var(𝝎∗𝑨𝝎), which depends on the
choice of test vector 𝝎.

Fact 13.2 (Girard–Hutchinson estimator: Variance formulas). Let 𝑨 ∈ R𝑛×𝑛 be a
real symmetric matrix with eigenvalues 𝜆1, . . . , 𝜆𝑛 ∈ R. Denote the mean eigenvalue
𝜆 := 𝑛−1 tr(𝑨) = 𝑛−1 ∑𝑛

𝑖=1 𝜆𝑖 and the mean diagonal element 𝑎 := 𝑛−1 ∑𝑛
𝑖=1 𝑎𝑖𝑖. The

following equations give the variance of the basic Girard–Hutchinson estimate
𝝎∗𝑨𝝎 for several choices for the isotropic random vector 𝝎 ∈ C𝑛:

Var(𝝎∗𝑨𝝎) = CK∥𝑨∥2F = CK

𝑛∑︁
𝑖=1

𝜆2
𝑖 for 𝝎 ∼ NormalK(0, I),

Var(𝝎∗𝑨𝝎) = 𝐾K

𝑨 − 𝜆I

2

F
= 𝐾K

𝑛∑︁
𝑖=1
(𝜆𝑖 − 𝜆)2 for 𝝎 ∼ Unif(

√
𝑛S(K𝑛)),

Var(𝝎∗𝑨𝝎) = CK

∑︁
𝑖≠ 𝑗

𝑎2
𝑖 𝑗 for 𝝎 ∼ Unif(T(K)𝑛),

Var(𝝎∗𝑨𝝎) = 𝑛2
𝑛∑︁
𝑖=1
(𝑎𝑖𝑖 − 𝑎)2 for 𝝎 ∼ Unif{

√
𝑛e𝑖}1≤𝑖≤𝑛.

The prefactors are CR = 2, CC = 1, 𝐾R = 2𝑛/(𝑛 + 2), and 𝐾C = 𝑛/(𝑛 + 1). These
equalities become upper bounds for a real nonsymmetric matrix.

These variance formulas are standard, and I have collected the simplest proofs of
these formulas I know in [Epp23b]. The random phase distribution Unif(T(K)𝑛)
and sphere distribution Unif(

√
𝑛S(K𝑛)) are known to be optimal in certain senses,

and these optimality results are also discussed in [Epp23b]. We may draw several
conclusions from these formulas:

The Gaussian distribution is dominated. The variance for the Gaussian distribution
𝝎 ∼ NormalK(0, I) is higher than both the sphere and random sign/phase distribu-
tions. Compared to the sphere distribution, the Gaussian distribution has a variance
depending on the aggregate size of 𝑨’s eigenvalues, whereas the sphere distribution
depends only on the spread of 𝑨’s eigenvalues. This size/spread distinction can
make a big difference for a matrix 𝑨 with large eigenvalues that are tightly clustered.
Compared to the random phase distribution, the variance for the Gaussian distribu-
tion depends on Frobenius norm ∥𝑨∥2F =

∑
𝑖, 𝑗 𝑎

2
𝑖 𝑗

, which reflects the magnitude of

201

all of 𝑨’s entries. By contrast, the variance of the random sign/phase distribution
depends on

∑
𝑖≠ 𝑗 𝑎

2
𝑖 𝑗

, which omits the contribution from 𝑨’s diagonal entries. This
property makes the random sign/phase distribution especially effective for matrices
with a heavy diagonal. I describe the case against Gaussians for stochastic trace
estimation in more detail and provide numerical evidence in [Epp24a].

Sphere vs. signs/phases. The sphere and sign/phase distributions both dominate the
Gaussian distribution, but which should be preferred? Ultimately, both choices of
distribution are effective, and we will use both in this thesis. The random sign/phase
distribution has the benefit that it ignores the influence of the diagonal of 𝑨, making
it effective for matrices with a heavy diagonal. The random sphere distribution,
however, is known to be (minimax) optimal for matrices 𝑨 drawn from unitarily
invariant families, such as the class of all symmetric matrices with ∥𝑨∥F ≤ 1.
This optimality result appears to have first been discovered in unpublished work of
Richard Kueng [Tro20, Prob. 1.23]; see [Epp23b] for a proof.

Real vs. complex. The variance formulas in Fact 13.2 show that using complex-
valued test vectors 𝝎 results in a variance about half that of their real-valued coun-
terparts. However, when applied to real matrices 𝑨, this benefit is typically offset
by the increased computational cost of using complex arithmetic. Further, existing
codes for evaluating the matvec operation might not be compatible with complex
data. As such, the reduced variance of complex-valued test vectors is usually not
worth the additional cost when the matrix 𝑨 is real-valued. For a complex-valued
matrix 𝑩 ∈ C𝑛×𝑛, however, it is generally preferable to use complex-valued test
vectors 𝝎.

Coordinate sampling is often dangerous. The variance for trace estimation with
random coordinate vectors is often much higher than alternate approaches. This
can be seen by a simple “back of the envelope” computation: Consider a matrix
𝑨 where all the entries are roughly of unit magnitude |𝑎𝑖 𝑗 | ≈ 1, with a similar
number of positive and negative entries, so that the average of diagonal entries is
small: 𝑎 ≈ 0. Then the variance of the Girard–Hutchinson estimator with random
coordinate sampling has scaling ∼ 𝑛3, whereas the other isotropic distributions in
Fact 13.2 have a variance of ∼ 𝑛2. Thus, in view of (13.7), the coordinate sampling
distribution may require up to 𝑛 matvecs to achieve accuracy comparable to what
other estimators can achieve with a single matvec. This is a dismal state of affairs,
particular since the trace estimation problem can be solved exactly in 𝑛 matvecs.
Random coordinate vectors do have their uses, particularly in computational models

202

more restrictive than the matvec model [BKM22], but they are best avoided except
in special situations.

Resphering: Improved Monte Carlo for rank-deficient matrices
So far, we have designed Monte Carlo methods for matrix attribute estimation based
on introducing the identity matrix 𝑩 = 𝑩 · I and replacing I with an unbiased
stochastic approximation. As we will see shortly, we will have many occasions to
apply Monte Carlo approximations to a rank-deficient matrix 𝑩 with a known (right
or left) nullspace. In such cases, we can use resphering to obtain lower variance
Monte Carlo estimators. Here is the main definition:

Definition 13.3 (Isotropic random vector on a subspace). Let U ⊆ K𝑛 be a subspace
over the real or complex numbers, and let 𝚷 denote the orthoprojector on U. A
random vector 𝝂 is said to be isotropic on U if E[𝝂𝝂∗] = 𝚷.

For any subspace U of dimension 𝑠, a uniformly random vector 𝝂 ∼ Unif(
√
𝑠S(U))

from the sphere of radius
√
𝑠 in U is isotropic on U. This will be our only example

of an isotropic vector on a subspace in this thesis.

To see how isotropic random vectors on a subspace can be employed, let 𝑩 ∈ C𝑛×𝑛 be
a square matrix and suppose we have access to a matrix 𝑸 ∈ C𝑛×𝑘 with orthonormal
columns for which 𝑩𝑸 = 0. To design a trace estimator for 𝑩, write

𝑩 = 𝑩 · 𝚷 for 𝚷 := I − 𝑸𝑸∗.

To approximate 𝚷, generate isotropic random vectors 𝝂1, . . . , 𝝂𝑠 on the subspace
range(𝑸)⊥ and introduce the stochastic approximation 𝑠−1 ∑𝑠

𝑖=1 𝝂𝑖𝝂
∗
𝑖
. This leads to

the resphered Girard–Hutchinson trace estimator

t̂rSGH := tr

(
𝑩 · 1

𝑠

𝑠∑︁
𝑖=1

𝝂𝑖𝝂
∗
𝑖

)
=

1
𝑠

𝑠∑︁
𝑖=1

𝝂∗𝑖
(
𝑩𝝂𝑖

)
.

To generate isotropic random vectors

𝝂 ∼ Unif
(√
𝑛 − 𝑘 · S(range(𝑸)⊥)

)
on the subspace range(𝑸)⊥ proceed as follows: Draw a random vector 𝝎 from the
normal or sphere distribution, orthogonalize it against 𝑸, and rescale to the proper
norm

𝝂 :=
√
𝑛 − 𝑘

∥(I − 𝑸𝑸∗)𝝎∥ · (I − 𝑸𝑸∗)𝝎 =

√
𝑛 − 𝑘

∥𝝎 − 𝑸(𝑸∗𝝎)∥ · (𝝎 − 𝑸(𝑸
∗𝝎)). (13.8)

203

We call the process of replacing 𝝎 by 𝝂 in this way resphering.

When applied to a rank-deficient matrix 𝑩 whose nonzero eigenvalues are clustered,
the resphered Girard–Hutchinson estimator can lead to significantly lower variance
than the standard Girard–Hutchinson estimator. Here is an example result.

Corollary 13.4 (Resphered Girard–Hutchinson estimator: Variance). Let 𝑨 ∈ R𝑛×𝑛

be a symmetric matrix with at most 𝑟 nonzero eigenvalues 𝜆1, . . . , 𝜆𝑟 , let 𝜆 :=
𝑟−1 ∑𝑟

𝑖=1 𝜆𝑖 denote their average, and let 𝝂 ∼ Unif(
√
𝑟 · S(range(𝑨))) be a test

vector. Then the resphered Girard–Hutchinson estimator 𝝂∗𝑨𝝂 has variance

Var(𝝂∗𝑨𝝂) = 2𝑟
𝑟 + 2

𝑟∑︁
𝑖=1
(𝜆𝑖 − 𝜆)2.

Excepting the trivial case when 𝜆𝑖 = 0 for all 𝑖, the variance Var(𝝂∗𝑨𝝂) is always
strictly smaller than for the plain Girard–Hutchinson estimator Var(𝝎∗𝑨𝝎) with
𝝎 ∼ Unif(

√
𝑛 · S(R𝑛)).

The technique now called resphering was first introduced in [ETW24], where it
appeared under the name “normalization.” In this thesis, I adopt the more descriptive
term “resphering,” a name suggested to me by Joel Tropp.

13.2 Low-rank approximation
Low-rank approximation provides another paradigm for solving matrix attribute
estimation problems. As we saw in Chapter 2, we can cheaply compute near-
optimal low-rank approximations to a general matrix 𝑩 using the randomized SVD
(Section 2.3) or to a psd matrix 𝑨 using Nyström approximation (Section 2.5).

Low-rank approximation gives a natural approach to any matrix attribute estimation
problem. To estimate an attribute 𝑄(𝑩) of a matrix 𝑩 ∈ C𝑚×𝑛, simply replace 𝑩 by
a low-rank approximation 𝑩 and use the 𝑄(𝑩) as an estimator for 𝑄(𝑩). This use
of low-rank approximation in this way was proposed by Saibaba, Alexanderian, and
Ipsen for trace estimation [SAI17].

The quality of the approximation 𝑄(𝑩) ≈ 𝑄(𝑩) is dictated by the quality of the
low-rank approximation 𝑩 ≈ 𝑩 and, consequently, the rate of singular value decay
in the matrix 𝑩 (recall Facts 2.5 and 2.11). For matrices with rapid singular
value decay, low-rank approximation-based estimators can produce highly accurate
results. On the other hand, for matrices with slow singular value decay, plain low-
rank approximation based estimators are often wholly inaccurate. This inconsistent

204

performance makes pure low-rank approximation based estimators only situationally
useful.

13.3 Combining Monte Carlo and low-rank approximation
The Monte Carlo and low-rank approximation approaches can be combined to
achieve better and more consistent results than either approach yields by itself.

Let us illustrate by deriving a simplified version of the Hutch++ algorithm for
trace estimation [MMMW21a]. Suppose we wish to estimate the trace of a ma-
trix 𝑩 ∈ C𝑛×𝑛 and are given a fixed budget of 𝑠 matvecs to accomplish the task.
Assume, for simplicity, that 𝑠 is divisible by 3. Begin by running the randomized
SVD (Section 2.3) to compute a matrix 𝑸 ∈ C𝑛×(𝑠/3) , which defines a rank-(𝑠/3)
approximation 𝑩 = 𝑸𝑸∗𝑩 to 𝑩. By linearity, we may decompose the trace of 𝑩:

tr(𝑩) = tr(𝑩) + tr(𝑩 − 𝑩) = tr(𝑸𝑸∗𝑩) + tr((I − 𝑸𝑸∗)𝑩).

The first term, tr(𝑩) = tr(𝑸𝑸∗𝑩), can be computed exactly by forming 𝑸∗𝑩.
To estimate the second term, we employ a Monte Carlo method, specifically the
Girard–Hutchinson estimator:

tr(𝑩 − 𝑩) ≈ 1
𝑠/3

𝑠/3∑︁
𝑖=1

𝜸∗𝑖
(
(I − 𝑸𝑸∗) (𝑩𝜸𝑖)

)
Here, 𝜸1, . . . , 𝜸𝑠/3 denote freshly generated isotropic random vectors, independent
of each other and the random test matrix used to execute the randomized SVD.
Combining the exact computation of the first term and the stochastic approximation
of the second yields the (simplified) Hutch++ estimator

t̂rSH++ := tr(𝑸(𝑸∗𝑩)) + 1
𝑠/3

𝑠/3∑︁
𝑖=1

𝜸∗𝑖
(
(I − 𝑸𝑸∗) (𝑩𝜸𝑖)

)
for 𝑸 = Orth(𝑩𝛀).

(13.9)
The computational cost of the simplified Hutch++ estimator is 𝑠 matvecs (2𝑠/3
with 𝑩 and 𝑠/3 with 𝑩∗) plus O(𝑠2𝑛) additional arithmetic operations.

The full Hutch++ estimator contains two optimizations over the simplified version
(13.9):

1. In some contexts, matvecs with 𝑩∗ are expensive or are entirely unavailable.
To avoid matvecs with 𝑩∗, we use the cyclic property of the trace to write

tr(𝑩) = tr(𝑸(𝑸∗𝑩)) = tr(𝑸∗(𝑩𝑸)).

205

Program 13.4 hutchpp.m. Hutch++ algorithm for trace estimation. The
random_signs subroutine is defined in Program F.2.
function tr = hutchpp(B,n,s)
% Input: Function B() computing matrix products B(X) = B*X, number
% of rows n, and number of matvecs s
% Output: Estimate tr of trace(B)

k = floor(s/3); % Rank is s/3
Om = randn(n,k); % Random Gaussian matrix
Y = B(Om); % Collect matvecs
[Q,~] = qr(Y,"econ"); % Randomized SVD
BQ = B(Q); % Collect matvecs

k = s-2*k; % Remaining matvecs
Ga = random_signs(n,k); % Random sign vectors
X = Ga - Q*(Q’*Ga); % Orthogonalize against Q
BX = B(X); % Collect matvecs
tr = trace(Q’*BQ) + trace(X’*BX) / k; % Hutch++ estimator

end

The expression tr(𝑸∗(𝑩𝑸)) can be evaluated using only matvecs with 𝑩,
removing matvecs with 𝑩∗ from the Hutch++ algorithm entirely.

2. The matrix I − 𝑸𝑸∗ is an orthoprojector and thus satisfies I − 𝑸𝑸∗ = (I −
𝑸𝑸∗)2. Therefore, the residual trace can be written more symmetrically as

tr(𝑩−𝑩) = tr((I−𝑸𝑸∗)𝑩) = tr((I−𝑸𝑸∗)2𝑩) = tr((I−𝑸𝑸∗)𝑩(I−𝑸𝑸∗)).

The symmetrically projected matrix (I − 𝑸𝑸∗)𝑩(I − 𝑸𝑸∗) always has a
smaller Frobenius norm than the one-sided projection (I − 𝑸𝑸∗)𝑩, so we
expect a smaller error in applying the Girard–Hutchinson estimator to the
former matrix rather than the latter (cf. Fact 13.2).

Combining these two optimizations yields the standard Hutch++ estimator

t̂rH++ := tr(𝑸∗(𝑩𝑸)) + 1
𝑠/3

𝑠/3∑︁
𝑖=1

𝜸∗𝑖
(
(I − 𝑸𝑸∗)

(
𝑩

(
(I − 𝑸𝑸∗) 𝜸𝑖

)))
, (13.10)

where 𝑸 = Orth(𝑩𝛀). Code is provided in Program 13.4.

The combination of low-rank approximation with Monte Carlo for trace estimation
and related problems was explored prior to the original Hutch++ paper. Notable

206

examples include the works of Gambhir, Stathopoulos, and Originos [GSO17] and
Lin [Lin17]. Meyer, Musco, Musco, and Woodruff [MMMW21a] crystallized these
ideas in the Hutch++ algorithm, provided mathematical analysis, and established
lower bounds on the best-possible accuracy for any trace estimation algorithm.

The Hutch++ algorithm illustrates the use of variance reduction in Monte Carlo
methods [Liu04, §2.3]. Specialized to trace estimation, the key idea of variance
reduction is to choose a matrix 𝑩, called a control variate, that closely approximates
𝑩 and whose trace can be computed exactly. Instead of applying a Monte Carlo
estimator to estimate tr(𝑩) directly, we instead estimate the trace of the residual
𝑩 − 𝑩 and add the result to tr(𝑩). This strategy typically yields an estimator with
lower variance. In principle, this variance reduction strategy can be applied using
any type of approximation 𝑩 ≈ 𝑩, but low-rank approximations have proven the
most effective for trace estimation so far.

Theoretical analysis of Hutch++
Error bounds for Hutch++ can be derived by combining error bounds for the
randomized SVD ((2.5)) with variance bounds for the Girard–Hutchinson estimator
(Fact 13.2). We will state and prove such a bound here, as it will serve as a
useful comparison for the error bounds for the XTrace and XNysTrace estimators
developed in the next section; see Section 15.1.

Theorem 13.5 (Hutch++: mean-squared error). Let 𝑩 ∈ R𝑛×𝑛 be a real matrix
and let t̂rH++ be the Hutch++ estimator (13.11) with a real standard Gaussian test
matrix 𝛀 ∈ R𝑛×(𝑠/3) and iid 𝜸1, . . . , 𝜸𝑠/3 ∈ R𝑛 drawn from any of the real isotropic
distributions from Fact 13.2, except the random coordinate distribution. Then

E
(
t̂rH++ − tr(𝑩)

)2
≤ 6
𝑠
· min
𝑟≤𝑠/3−2

𝑠 − 3
𝑠 − 3𝑟 − 3

·

𝑩 − ⟦𝑩⟧𝑟

2

F. (13.11)

Proof. Using the reduced matrix

𝑩red = (I − 𝑸𝑸∗)𝑩(I − 𝑸𝑸∗),

the error of Hutch++ may be expressed as

t̂rH++ − tr(𝑩) = 1
𝑠/3

𝑠/3∑︁
𝑖=1

𝝎∗𝑖 𝑩red𝝎𝑖 − tr(𝑩red) =
1
𝑠/3

𝑠/3∑︁
𝑖=1
(𝝎∗𝑖 𝑩red𝝎𝑖 − tr(𝑩red)).

(13.12)

207

The right-hand side of (13.12) is a sum of mean-zero random variables that are iid
conditional on 𝑩red. Therefore,

E
[
(t̂rH++ − tr(𝑩))2

�� 𝑩red
]
=

1
𝑠/3 Var

(
𝝎∗1𝑩red𝝎1

�� 𝑩red
)
.

Applying Fact 13.2, we obtain

E
[
(t̂rH++ − tr(𝑩))2

�� 𝑩red
]
≤ 6
𝑠
· ∥𝑩red∥2F.

Multiplying by an orthoprojector can only reduce the Frobenius norm. Therefore,

∥𝑩red∥F ≤ ∥(I − 𝑸𝑸∗)𝑩∥F.

Combining the two previous displays and taking the expectation, we obtain

E(t̂rH++ − tr(𝑩))2 ≤ 6
𝑠
· E∥(I − 𝑸𝑸∗)𝑩∥2F.

Invoking the randomized SVD error bound (2.5) establishes the desired result.

In Theorem 13.5, we assumed the matrix 𝑩 was real to use Fact 13.2. Versions of
this result are easy to derive for complex vectors.

The error bound (13.11) shows that the mean-squared error of Hutch++ is propor-
tional to 1/𝑠 times the (squared) Frobenius norm error of the best rank-𝑟 approx-
imation, where 𝑟 ≈ 𝑠/3. A bound similar to Theorem 13.5 appears in [ETW24,
Thm. 1.1]; see also [Mey21] and [MMMW21b, §5] in the arXiv version of the
Hutch++ paper.

The bound (13.11) describes the mean-squared error of the Hutch++ method in
practice, but it can be a bit imposing. Therefore, it can be informative to derive
simplified versions of the bound. Choosing 𝑟 = 𝑠/6 − 1 in the minimum (13.11)
yields

E
(
t̂rH++ − tr(𝑩)

)2
≤ 12

𝑠
·

𝑩 − ⟦𝑩⟧𝑠/6−1

2

F
. (13.13)

To further simplify, we can employ a crude bound on the best rank-𝑟 approximation
error (see, e.g., [GSTV07, Lem. 7], [MMMW21a, Lem. 13], and [ETW24, Fact 5.5]
for versons of this result).

Fact 13.6 (Rank-𝑟 approximation error). For any matrix 𝑩 ∈ K𝑚×𝑛 and 𝑟 ≥ 1,

𝑩 − ⟦𝑩⟧𝑟

 ≤ ∥𝑩∥∗𝑟 + 1
and

𝑩 − ⟦𝑩⟧𝑟

F ≤
∥𝑩∥∗
2
√
𝑟
.

208

Using Fact 13.6, we can further bound (13.13) as

E
(
t̂rH++ − tr(𝑩)

)2
≤ 72
𝑠2 · ∥𝑩∥

2
∗ . (13.14)

This result shows that the mean-squared error of Hutch++ is dominated by a quantity
that decays at a O(1/𝑠2) rate, improving on the Monte Carlo O(1/𝑠) rate (13.7) of
the Girard–Hutchinson estimator. However, the reader should be aware that this
“O(1/𝑠2) convergence rate” for Hutch++ is easy to misinterpret; see Section 15.2.

As a final simplification, suppose we apply Hutch++ to a psd matrix 𝑨. In this
case, the trace norm and the trace are the same, and (13.14) implies that(

E
(
t̂rH++ − tr(𝑨)

)2
)1/2
≤ 𝜀 tr(𝑨) when 𝑠 ≥ 6

√
2
𝜀
. (13.15)

We obtain a root-mean-squared error of 𝜀 tr(𝑨) when the number of matvecs 𝑠
is 𝑠 = O(1/𝜀). Meyer et al. show that the 𝑠 = O(1/𝜀) parameter complexity is
optimal for trace estimation; in particular, no algorithm achieves relative error 𝜀
using 𝑠 = O(1/𝜀0.999) matvecs for every input matrix 𝑨 [MMMW21a, §4] (see also
[Mey24, §2.3.5]).

Remark 13.7 (High probability bounds). It is straightforward to prove error bounds
for Hutch++ that control the error |t̂rH++−tr(𝑩) | with high probability by combining
high-probability error bounds for the randomized SVD with the Hanson–Wright
inequality. For the former, see relevant results in [HMT11; MM20; TW23]. For
the latter, see [RV13; Epp22b]. Using this approach, Meyer et al. established the
following result [MMMW21a, Thm. 1.1]:

Fact 13.8 (Hutch++: High probability error bound). When applied to a real psd
matrix 𝑨, Hutch++ with random sign vectors achieves the guarantee

|t̂rH++ − tr(𝑨) | ≤ 𝜀 tr(𝑨) with probability at least 1 − 𝛿 (13.16)

using 𝑠 = O(𝜀−1 ·
√︁

log(1/𝛿) + log(1/𝛿)) matvecs.

This result establishes that the probability of failing to produce a trace approximation
of relative error 𝜀 decreases exponentially in the number of matvecs 𝑠. ⋄

Improving Hutch++ using resphering
In passing, let us observe that we can enhance the Hutch++ algorithm by using
resphering, introduced in Section 13.1. Simply use the resphered Girard–Hutchinson

209

Program 13.5 hutchpp_resphere.m. Hutch++ algorithm with resphering for
trace estimation. The sqcolnorms subroutine is defined in Program F.4.
function tr = hutchpp_resphere(B,n,s)
% Input: Function B() computing matrix products B(X) = B*X, number
% of rows n, and number of matvecs s
% Output: Estimate tr of trace(B)

k = floor(s/3); % Rank is s/3
Om = randn(n,k); % Random Gaussian matrix
Y = B(Om); % Collect matvecs
[Q,~] = qr(Y,"econ"); % Randomized SVD
BQ = B(Q); % Collect matvecs

k2 = s-2*k; % Remaining matvecs
Ga = randn(n,k2); % Gaussian random vectors
X = Ga - Q*(Q’*Ga); % Orthogonalize against Q
X = sqrt(n-k) * X ./ sqcolnorms(X)’.^0.5; % Resphere
BX = B(X); % Collect matvecs
tr = trace(Q’*BQ) + trace(X’*BX) / k2; % Hutch++ estimator

end

estimator rather than the Girard–Hutchinson estimator to estimate tr((I−𝑸𝑸∗)𝑩(I−
𝑸𝑸∗)). Code is provided in Program 13.5.

The benefits of resphering are demonstrated in Fig. 13.1, which compares the Girard–
Hutchinson estimator to the Hutch++ algorithm with and without resphering. I use
input matrix

step := 𝑼 Diag(1, . . . , 1︸ ︷︷ ︸
50 times

, 10−3, . . . , 10−3︸ ︷︷ ︸
950 times

)𝑼∗ ∈ R103×103
. (13.17)

Here, 𝑼 is a Haar random orthogonal matrix. The matrix step has 𝑘 = 50 large
eigenvalues, after which the spectrum is flat. It takes the Hutch++methods roughly
𝑠 ≈ 3𝑘 = 150 matvecs to compute a low-rank approximation capturing these
dominant eigenvalues, explaining the substantial drop in the error of the Hutch++
methods at 𝑠 = 150 matvecs. With resphering, the error drops two more orders of
magnitude as 𝑠 is increased beyond 150, owing to the relatively flat distribution of
nonzero eigenvalues of the projected matrix (I−𝑸𝑸∗)step(I−𝑸𝑸). For 𝑠 = 300,
Hutch++ with resphering is 50× more accurate than Hutch++ without resphering
and 1800× more accurate than the Girard–Hutchinson estimator.

210

Figure 13.1: Comparison of Girard–Hutchinson and Hutch++ estimators with and
without resphering on the step matrix (13.17). Lines show median of 100 trials,
and error bars show 10% and 90% quantiles.

Weaknesses of Hutch++
The Hutch++ algorithm is an elegant approach for trace estimation, and it achieves
excellent accuracy compared to the Girard–Hutchinson estimator when applied to
matrices with rapidly decaying singular values. Even so, we recognize opportunities
for improvement, which will be realized by the XTrace and XNysTrace estimators
in the next chapter.

Apportionment. In its standard form, the Hutch++ algorithm uses a fixed division
of 2𝑠/3 matvecs for low-rank approximation and 𝑠/3 matvecs for residual trace
estimation. For a given matrix, this apportionment need not be optimal. For
matrices with rapidly decaying singular values, the ideal strategy would be to put all
matvecs into low-rank approximation; for matrices with slowly decreasing singular
values, the opposite strategy is warranted. The apportionment problem for Hutch++
can be addressed with an adaptive scheme that apportions matvecs between low-rank
approximation and residual trace estimation, as is done in [PCK22]. The XTrace
and XNysTrace estimators introduced in next section solve the apportionment
problem by redesigning the estimator to exploit a leave-one-out approach.

Exchangeability. The second weakness of Hutch++ is more conceptual. We have
the following property of the optimal (i.e., minimum-variance) trace estimator.

211

Exchangeability principle. Consider the class of estimators for tr(𝑨) com-
puted using matvecs 𝑨𝝎1, . . . , 𝑨𝝎𝑘 with iid random vectors 𝝎1, . . . ,𝝎𝑘 .
Among these methods, the minimum-variance unbiased estimator for tr(𝑨)
is a permutation-invariant function of 𝝎1, . . . ,𝝎𝑘 .

This principle is due to Halmos [Hal46], and it is easy to confirm. Indeed, the vari-
ance of any estimator t̂r(𝝎1, . . . ,𝝎𝑘) is reduced by averaging over all permutations
of the test vectors 𝝎1, . . . ,𝝎𝑘 :

Var ©­« 1
𝑘!

∑︁
𝜎∈S𝑘

t̂r(𝝎𝜎(1) , . . . ,𝝎𝜎(𝑘))
ª®¬

=
1
(𝑘!)2

∑︁
𝜎,𝜎′∈S𝑘

Cov
(
t̂r(𝝎𝜎(1) , . . . ,𝝎𝜎(𝑘)), t̂r(𝝎𝜎′ (1) , . . . ,𝝎𝜎′ (𝑘))

)
≤ 1
(𝑘!)2

∑︁
𝜎,𝜎′∈S𝑘

[
Var

(
t̂r(𝝎𝜎(1) , . . . ,𝝎𝜎(𝑘))

)
Var

(
t̂r(𝝎𝜎′ (1) , . . . ,𝝎𝜎′ (𝑘))

)]1/2

= Var(t̂r(𝝎1, . . . ,𝝎𝑘)).

The first identity is sesquilinearity of the covariance, the inequality is Cauchy–
Schwarz for the variance, and the second identity follows from the observation that
t̂r(𝝎𝜎(1) , . . . ,𝝎𝜎(𝑘)) has the same distribution for every permutation 𝜎.

The Hutch++ estimator is not exchangeable: Half the test vectors are used for low-
rank approximation, while the other half are used for residual trace estimation. As
such, there must be an exchangeable estimator with lower variance than Hutch++.
One way we could fashion such an estimator is by averaging the value of the
Hutch++ estimator over all possible splits of test vectors between these two tasks,
as in the derivation above. Unfortunately, computing this symmetrized Hutch++
estimator is computationally infeasible because there are

(2𝑠/3
𝑠/3

)
≥ 2𝑠/3 divisions of

2𝑠/3 test vectors into two equal groups. A new, different approach is needed to
obtain an exchangeable, variance-reduced trace estimator. The XTrace estimator
will remedy this shortcoming of Hutch++ by using a leave-one-out design, which
is exchangeable by construction.

212

C h a p t e r 14

THE LEAVE-ONE-OUT APPROACH AND APPLICATION TO
TRACE ESTIMATION

An idea which can be used only once is a trick. If one can use it more
than once it becomes a method.

George Pólya and Gabor Szegő, Problems and Theorems in Analysis I
[PS98, p. VIII]

In the previous chapter, we developed our basic tools—randomized Monte Carlo
and low-rank approximations for matrices—and used them to estimate matrix at-
tributes. This discussion culminated with the Hutch++ algorithm, which showed
how combining Monte Carlo estimation and low-rank approximation can lead to
more accurate trace estimates than either approach individually.

In this chapter, we will present the leave-one-out approach for matrix attribute
estimation, a flexibility methodology that combines Monte Carlo and low-rank
approximation in a way that squeezes as much information possible out of every
matvec. When the leave-one-out approach is applied to trace estimation, it results
in the XTrace and XNysTrace algorithms. Each method is an exchangeable
estimator that uses every matvec both for low-rank approximation and for Monte
Carlo estimation. This strategy ameliorates the weaknesses with Hutch++ identified
at the end of last chapter.

This chapter presents a tutorial-style introduction to leave-one out randomized ma-
trix algorithm design, focusing on developing trace estimators for general and psd
matrices. The basic idea is simple, but the formulas appearing in the final algo-
rithms can be complicated. This chapter will attempt to demystify these expressions
and to provide a clear example of how to derive a leave-one-out randomized matrix
algorithm. Subsequent chapters will present several additional applications of the
leave-one-out approach to matrix attribute estimation.

Sources. Both the leave-one-out approach and the XTrace and XNysTrace algo-
rithms were developed in the paper:

Ethan N. Epperly, Joel A. Tropp, and Robert J. Webber. “XTrace: Making the Most

213

of Every Sample in Stochastic Trace Estimation”. In: SIAM Journal on Matrix
Analysis and Applications (Mar. 2024), pp. 1–23. doi: 10.1137/23M1548323.

This chapter refines the original paper [ETW24] by developing new implementations
of the XNysTrace algorithm with processing costs that are up to 7× faster than the
implementations given in the original paper.

Outline. Section 14.1 introduces the leave-one-out approach to matrix attribute es-
timation and uses it to derive the XTrace algorithm for trace estimation. To imple-
ment this algorithm efficiently, we require a downdating formula for the randomized
SVD, which is developed in Section 14.2. We devise an efficient XTrace imple-
mentation using this formula in Section 14.3. Section 14.4 presents XNysTrace,
an improved version of XTrace for psd matrices. Sections 14.5 and 14.6 discusses
implementation of XNysTrace. Section 14.7 contains experimental comparison
of XTrace and XNysTrace to Hutch++ and the Girard–Hutchinson estimators,
Section 14.8 introduces resphered versions of XTrace and XNysTrace, and Sec-
tion 14.9 presents an application of trace estimators to computing the Estrada index
of a network. We conclude in Section 14.10 by summarizing the leave-one-out
approach to matrix attribute estimation.

14.1 XTrace: The leave-one-out approach
The leave-one-out approach to matrix attribute estimation consists of five steps:

1. Compute a low-rank approximation to the input matrix by multiplying it
against a collection of test vectors.

2. Decompose the quantity of interest into known piece depending on the low-
rank approximation plus a residual.

3. Construct a Monte Carlo estimate of the residual using a single random vector.

4. Downdate the low-rank approximation by recomputing it with a test vector
removed, and use the left-out test vector as the random vector in step 3.

5. Average the estimator from step 4 over all choices of vectors to leave out.

At present, these steps are fairly abstract. To make this program more complete, we
shall derive XTrace, a leave-one-out algorithm for estimating the trace of a general
square matrix 𝑩.

https://doi.org/10.1137/23M1548323

214

Step 1: Compute a low-rank approximation to the input matrix by multiplying it
against a collection of test vectors. The first step of the leave-one-out approach is
to construct a low-rank approximation of the matrix 𝑩. Here, since 𝑩 is a general
square matrix, we employ the randomized SVD (Section 2.3). Let 𝛀 ∈ K𝑛×𝑘 be a
random matrix with isotropic columns, compute the product 𝑩𝛀, and orthogonalize,
obtaining 𝑸 = Orth(𝑩𝛀). The resulting randomized SVD low-rank approximation
is

𝑩 := 𝑸𝑸∗𝑩.

Step 2: Decompose the quantity of interest into known piece depending on the low-
rank approximation plus a residual. Next, we decompose the quantity of interest,
tr(𝑩) in this case, into a known piece depending on the low-rank approximation and
an unknown residual term. The simplest decomposition exploits the linearity of the
trace:

tr(𝑩) = tr(𝑩) + tr(𝑩 − 𝑩) = tr(𝑸∗𝑩𝑸) + tr((I − 𝑸𝑸∗)𝑩).

We saw a better decomposition from our derivation of the Hutch++ algorithm.
Indeed, using the identity (I−𝑸𝑸∗)2 = I−𝑸𝑸∗ and the cyclic property of the trace,
the residual trace is

tr((I − 𝑸𝑸∗)𝑩) = tr((I − 𝑸𝑸∗)2𝑩) = tr((I − 𝑸𝑸∗)𝑩(I − 𝑸𝑸∗)).

Thus, in XTrace, we shall also use the following decomposition of the trace:

tr(𝑩) = tr(𝑩) + tr(𝑩 − 𝑩) = tr(𝑸∗𝑩𝑸) + tr((I − 𝑸𝑸∗)𝑩(I − 𝑸𝑸∗)).

Step 3: Construct a Monte Carlo estimate of the residual using a single random
vector. Now, we construct a Monte Carlo approximation to the residual trace
tr((I−𝑸𝑸∗)𝑩(I−𝑸𝑸∗)) using a single random vector 𝝎. Assuming 𝝎 is isotropic,
the natural estimator is the single-vector Girard–Hutchinson estimator

𝝎∗(I − 𝑸𝑸∗)𝑩(I − 𝑸𝑸∗)𝝎 ≈ tr((I − 𝑸𝑸∗)𝑩(I − 𝑸𝑸∗)).

One could also use resphering at this step, but we will postone this refinement to
simplify the presentation. Using the Monte Carlo estimate for the residual, we
obtain the following unbiased trace estimate:

t̂r := tr(𝑸∗𝑩𝑸) + 𝝎∗(I − 𝑸𝑸∗)𝑩(I − 𝑸𝑸∗)𝝎. (14.1)

Step 4: Downdate the low-rank approximation by recomputing it with a test vector
removed, and use the left-out test vector as the random vector in step 3. So far,

215

the estimate (14.1) is nothing special, basically just a lopsided version of Hutch++
where only a single vector 𝝎 is used to estimate the residual trace tr(𝑩 − 𝑩). Now,
we employ the core device of the leave-one-out approach. Pick an index 1 ≤ 𝑖 ≤ 𝑘 ,
and leave out the 𝑖th column of the test matrix 𝛀, resulting in a downdated low-rank
approximation

𝑩(𝑖) := 𝑸 (𝑖)𝑸
∗
(𝑖)𝑩 where 𝑸 (𝑖) := Orth(𝑩𝛀−𝑖).

Here and elsewhere, 𝛀−𝑖 denotes 𝛀 without its 𝑖th column, and 𝝎𝑖 denotes the
𝑖th column of 𝛀. The downdated low-rank approximation 𝑩(𝑖) is somewhat less
accurate because it has smaller rank 𝑘 − 1, but we have freed up an isotropic vector
𝝎𝑖 that is independent of the low-rank approximation 𝑩(𝑖) and the orthonormal basis
𝑸 (𝑖) . Introducing the downdated approximation 𝑩(𝑖) and the left-out vector vector
𝝎𝑖 in the trace estimate (14.1) from step 3, we obtain a new basic trace estimate:

t̂r𝑖 := tr(𝑸∗(𝑖)𝑩𝑸 (𝑖)) + 𝝎
∗
𝑖 (I − 𝑸 (𝑖)𝑸

∗
(𝑖))𝑩(I − 𝑸 (𝑖)𝑸

∗
(𝑖))𝝎𝑖 . (14.2)

We call t̂r𝑖 the 𝑖th basic XTrace estimator. It is an unbiased estimate for tr(𝑩),
owing to the independence of 𝝎𝑖 from 𝑸 (𝑖) .

Step 5: Average the estimator from step 4 over all choices of vectors to leave out.
Each basic XTrace estimator t̂r𝑖 can individually be a poor estimate of the trace,
but we can reduce variance by averaging all of them:

t̂rX :=
1
𝑘

𝑘∑︁
𝑖=1

t̂r𝑖 . (14.3)

We call t̂rX the (full) XTrace estimator, short for the eXchangeable Trace estimator.

Discussion. While it is not obvious yet, the XTrace estimator (14.3) can be com-
puted using only 2𝑘 matvecs (𝑘 to compute 𝑨𝛀, 𝑘 to compute 𝑨𝑸). Equivalently,
a fixed budget of 𝑠 matvecs can accommodate a rank of 𝑘 = ⌊𝑠/2⌋. (Henceforth, we
will assume 𝑠 is even for simplicity.) Thus, the XTrace estimator takes the form

t̂rX =
1
𝑠/2

𝑠/2∑︁
𝑖=1

[
tr(𝑸∗(𝑖)𝑩𝑸 (𝑖)) + 𝝎

∗
𝑖 (I − 𝑸 (𝑖)𝑸

∗
(𝑖))𝑩(I − 𝑸 (𝑖)𝑸

∗
(𝑖))𝝎𝑖

]
. (14.4)

Let us compare XTrace to Hutch++. With its budget of 𝑠 matvecs, Hutch++
dedicates 2𝑠/3 matvecs to generate a low-rank approximation 𝑩 = 𝑸𝑸∗𝑩 and
𝑠/3 matvecs to forming an estimate of the residual trace tr(𝑩 − 𝑩). XTrace, in

216

effect, uses the same pool of 𝑠/2 matvecs both to generate a family of low-rank
approximations 𝑩(𝑖) and to estimate all of the residual traces tr(𝑩 − 𝑩(𝑖)). In
this sense, XTrace uses all of its multipications with isotropic random test vectors
both for low-rank approximation and for Monte Carlo estimation. XTrace also
expends an additional 𝑠/2 matvecs to compute 𝑩𝑸, which is necessary to evaluate
the expressions tr(𝑸∗(𝑖)𝑩𝑸 (𝑖)).

XTrace fixes both weaknesses of Hutch++ that we identified in Section 13.3. First,
XTrace is exchangeable, being a symmetric function of all the matvecs 𝑩𝝎𝑖 col-
lected in the first phase of the algorithm. Second, and more importantly, XTrace is
based on a rank-(𝑠/2) approximation to 𝑩, which is more powerful than Hutch++’s
rank-(𝑠/3) approximation. Thus, XTrace can be significantly more accurate than
Hutch++ for matrices 𝑩 with rapid singular value decay, while maintaining accu-
racy for matrices with slow singular value decay. Moreover, XTrace achieves this
increased accuracy automatically through an exchangeable, leave-one-out design;
it does not require manually or adaptively apportioning matvecs between the low-
rank approximation and Monte Carlo estimation roles, as in the adaptive Hutch++
algorithm [PCK22]. (See Section 15.5 for discussion.)

14.2 Leave-one-out formula for the randomized SVD
To implement XTrace, we need a way of efficiently evaluating the XTrace estimator
(14.4). For the purpose of error estimation (Section 15.3), we will also need to
form each of the individual estimators t̂r𝑖 defined in (14.2). To develop efficient
implementations, we can use the following downdating formula for the randomized
SVD:

Theorem 14.1 (Downdating the randomized SVD). Let 𝑩 ∈ K𝑛×𝑛 and 𝛀 ∈ K𝑛×𝑘

be matrices, and assume 𝑩𝛀 is full-rank. Compute the matrix 𝑸 defining the
randomized SVD approximation 𝑩 = 𝑸𝑸∗𝑩 by an economy-size QR decomposition
𝑩𝛀 = 𝑸𝑹. The downdated matrices 𝑸 (𝑖) = Orth(𝑩𝛀−𝑖) admit the representation

𝑸 (𝑖)𝑸
∗
(𝑖) = 𝑸(I − 𝒔𝑖𝒔

∗
𝑖)𝑸∗ for 𝑖 = 1, 2, . . . , 𝑘 . (14.5)

The vectors 𝒔𝑖 are equal to the columns of 𝑹−∗, scaled to have unit norm.

This result was developed by myself and collaborators in [ET24; ETW24].

I find this result to be quite surprising. To compute the randomized SVD, we
must orthogonalize the matrix 𝑩𝛀, which is conventionally accomplished using

217

a QR decomposition 𝑩𝛀 = 𝑸𝑹. Theorem 14.1 demonstrates that the matrix 𝑹,
a useless byproduct in most randomized SVD implementations, contains all the
information needed to extract all 𝑘 downdated approximations 𝑩(𝑖) = 𝑸 (𝑖)𝑸

∗
(𝑖)𝑩.

These downdated approximations can be represented implicitly using the formula
(14.5), and the arithmetic cost is only O(𝑘3) operations to compute the 𝒔𝑖 vectors.
In particular, the cost is independent of both dimensions of the original matrix 𝑩!

Proof of Theorem 14.1. Fix an index 𝑖. To compute 𝑸 (𝑖) , we to form a QR decom-
position of 𝑩𝛀−𝑖. The decomposition 𝑩𝛀−𝑖 = 𝑸𝑹−𝑖 is nearly a QR decomposition,
but the matrix 𝑹−𝑖 is no longer triangular when 𝑖 < 𝑘 because its 𝑖th column has
been deleted. To restore triangularity, we take a (full) QR decomposition of 𝑹−𝑖,
which we partition as

𝑹−𝑖 =
[
𝑸 𝒒

] [
𝑹

0

]
for 𝑸 ∈ K𝑘×(𝑘−1) , 𝑹 ∈ K(𝑘−1)×(𝑘−1) , 𝒒 ∈ K𝑘 .

Using this factorization, we obtain a QR decomposition of 𝑩𝛀−𝑖, namely

𝑩𝛀−𝑖 = 𝑸𝑹−𝑖 = (𝑸𝑸)𝑹.

In particular, 𝑸 (𝑖) := 𝑸𝑸 is an orthonormal basis for the column space of 𝑩𝛀−𝑖.
Therefore, the outer product of 𝑸 (𝑖) with itself is

𝑸 (𝑖)𝑸
∗
(𝑖) = 𝑸(𝑸𝑸∗)𝑸∗.

Since
[
𝑸 𝒒

]
is unitary, the parenthesized term may be written as

𝑸𝑸∗ =
[
𝑸 𝒒

] [
𝑸 𝒒

]∗
− 𝒒 𝒒∗ = I − 𝒒 𝒒∗.

Combining the two previous displays yields

𝑸 (𝑖)𝑸
∗
(𝑖) = 𝑸(I − 𝒒 𝒒∗)𝑸∗.

To establish the desired result, it remains to show that the unit vector 𝒒 is proportional
to the 𝑖th column of 𝑹−∗. By construction, 𝒒 is orthogonal to the column space of
𝑹−𝑖. That is, 𝑹∗−𝑖𝒒 = 0. Restoring the deleted 𝑖th column to 𝑹 and recalling that 𝑹
is nonsingular, we conclude that 𝑹∗𝒒 = 𝛼 · e𝑖 for some nonzero scalar 𝛼. Therefore,
𝒒 = 𝛼 · 𝑹−∗e𝑖 is proportional to the 𝑖th column of 𝑹−∗.

218

14.3 Implementing XTrace efficiently
Having established Theorem 14.1, we can use it to calculate the basic XTrace
estimates t̂r𝑖, defined in (14.2). This section begins with a derivation for an efficiently
computable formula for the t̂r𝑖’s, after which implementation is discussed.

Formula for the basic XTrace estimates: Derivation
The easiest way to derive efficient formulas for a leave-one-out algorithm, in my
experience, is to proceed methodically and introduce variables to represent inter-
mediate matrices that arise during the derivation. Let me demonstrate as we derive
an efficient XTrace implementation.

We begin with the randomized SVD step. First, generate a random matrix 𝛀 ∈
K𝑛×(𝑠/2) with isotropic random columns. Next, form the product

𝒀 := 𝑩𝛀 (14.6)

and obtain its (economy-size) QR decomposition

𝒀 = 𝑸𝑹. (14.7)

Then, to use the randomized SVD downdating formula (14.5), generate the matrix
𝑺 (with columns 𝒔𝑖) by building 𝑹−∗ and recaling each of its columns to have norm
one. Finally, compute

𝒁 := 𝑩𝑸. (14.8)

The matrices 𝒀 , 𝑸, 𝑺, and 𝑸 will be used later in our derivation.

Next, we turn to the basic XTrace estimators t̂r𝑖, which were defined in (14.2). To
use the randomized SVD downdating formula (14.5), invoke the cyclic property of
the trace and write:

t̂r𝑖 = tr(𝑩𝑸 (𝑖)𝑸
∗
(𝑖)) + 𝝎

∗
𝑖 (I − 𝑸 (𝑖)𝑸

∗
(𝑖))𝑩(I − 𝑸 (𝑖)𝑸

∗
(𝑖))𝝎𝑖 .

Now, invoke the downdating formula (14.5):

t̂r𝑖 = tr(𝑩𝑸 (I − 𝒔𝑖𝒔
∗
𝑖)𝑸∗)︸ ︷︷ ︸

AO

+𝝎∗𝑖 (I − 𝑸(I − 𝒔𝑖𝒔
∗
𝑖)𝑸∗)𝑩(I − 𝑸 (I − 𝒔𝑖𝒔

∗
𝑖)𝑸∗)𝝎𝑖︸ ︷︷ ︸

BO

.

(14.9)
The result is a sum of two terms, AO and BO, which we will treat separately.

Begin with AO. Use the cyclic property of the trace and (14.8) to rewrite

AO = tr(𝑸∗𝑩𝑸(I − 𝒔𝑖𝒔
∗
𝑖)) = tr(𝑸∗𝒁(I − 𝒔𝑖𝒔

∗
𝑖)).

219

To evaluate this expression, compute

𝑯 := 𝑸∗𝒁. (14.10)

The expression AO now simplifies as

AO = tr(𝑯) − 𝒔∗𝑖 𝑯𝒔𝑖 . (14.11)

This formula constitutes our final expression for AO.

Now, we treat BO. Begin by forming the matrix

𝑾 := 𝑸∗𝛀, (14.12)

from which we may define a matrix 𝑿 ∈ K(𝑠/2)×(𝑠/2) with columns

𝒙𝑖 := (I − 𝒔𝑖𝒔
∗
𝑖)𝑸∗𝝎𝑖 = 𝒘𝑖 − 𝒔𝑖 · 𝒔∗𝑖 𝒘𝑖 . (14.13)

With this definition, BO can be written as

BO = 𝝎∗𝑖 (I − 𝑸𝑸∗ + 𝑸𝒔𝑖𝒔
∗
𝑖𝑸
∗)𝑩(𝝎𝑖 − 𝑸𝒙𝑖)

= (𝝎∗𝑖 (I − 𝑸𝑸∗) + 𝒘∗𝑖 𝒔𝑖 · 𝒔∗𝑖𝑸∗) (𝒚𝑖 − 𝒁𝒙𝑖).

Since 𝒀 = 𝑩𝛀 = 𝑸𝑹 is a QR decomposition,

(I − 𝑸𝑸∗)𝒚𝑖 = 0 and 𝑸∗𝒚𝑖 = 𝒓𝑖 .

Therefore,
BO = −𝝎∗𝑖 (I − 𝑸𝑸∗)𝒁𝒙𝑖 + 𝒘∗𝑖 𝒔𝑖 · 𝒔∗𝑖 (𝒓𝑖 − 𝑯𝒙𝑖).

To simplify further, introduce and form the matrix

𝑻 := 𝒁∗𝛀. (14.14)

Now, we may simplify BO as

BO = −𝒕∗𝑖 𝒙𝑖 + 𝒘∗𝑖 𝑯𝒙𝑖 + 𝒘∗𝑖 𝒔𝑖 · 𝒔∗𝑖 (𝒓𝑖 − 𝑯𝒙𝑖).

Finally, using the definition (14.13) of the vectors 𝒙𝑖, we simplify

BO = −𝒕∗𝑖 𝒙𝑖 + 𝒙∗𝑖 𝑯𝒙𝑖 + 𝒘∗𝑖 𝒔𝑖 · 𝒔∗𝑖 𝒓𝑖 .

Combining this expression for BO with the expression (14.11) for AO, we obtain our
final expression for t̂r𝑖:

t̂r𝑖 = tr(𝑯) − 𝒔∗𝑖 𝑯𝒔𝑖 − 𝒕∗𝑖 𝒙𝑖 + 𝒙∗𝑖 𝑯𝒙𝑖 + 𝒘∗𝑖 𝒔𝑖 · 𝒔∗𝑖 𝒓𝑖 . (14.15)

220

Program 14.1 diagprod.m. Efficient implementation of the diagprod operation
(14.16).
function d = diagprod(F,G)
% Input: Matrices F and G of the same size
% Output: The diagonal of the product d = diag(F’*G)

d = sum(conj(F).*G,1).’;

end

Formula for the basic XTrace estimates: Implementation
We now discuss a few implementation details for evaluating the formula (14.15) for
the basic trace estimates t̂r𝑖.

Diagonal entries of products. The formula (14.15) contains many expressions
such as 𝒇 ∗𝑖 𝒈𝑖, which constitute the diagonal entries of the matrix product 𝑭∗𝑮 for
𝑭,𝑮 ∈ K𝑑1×𝑑2 . We denote the vector of all 𝒇 ∗𝑖 𝒈𝑖 using the diagprod operation:

diagprod(𝑭,𝑮) := diag(𝑭∗𝑮) = (𝒇 ∗𝑖 𝒈𝑖 : 1 ≤ 𝑖 ≤ 𝑑2). (14.16)

One way of evaluating the diagprod operation would be to form the matrix product
𝑭∗𝑮 and extract its diagonal; this approach expends O(𝑑2

1𝑑2) operations. How-
ever, computing these expressions directly is cheaper, requiring just just O(𝑑1𝑑2)
operations to evaluate 𝒇 ∗𝑖 𝒈𝑖 for each 𝑖. Code is given in Program 14.1

The vectors 𝒙𝑖. The vectors 𝒙𝑖 defined in (14.13) can be packaged into a matrix 𝑿

with formula
𝑿 = 𝑾 − 𝑺 · Diag(diagprod(𝑺,𝑾)). (14.17)

Recall that Diag(𝒂) denotes the diagonal matrix with diagonal entries 𝑎𝑖. In MAT-
LAB, expression 𝑺 · Diag(𝒂) can be evaluated rapidly as S .* a.’.

XTrace implementation. Using all of the formulas we’ve developed, the vector
̂tr = (t̂r𝑖 : 1 ≤ 𝑖 ≤ 𝑠/2) of basic XTrace estimators (14.15) is

̂tr = tr(𝑯)1 − diagprod(𝑺,𝑯𝑺) − diagprod(𝑻, 𝑿) + diagprod(𝑿,𝑯𝑿)
+ diagprod(𝑾, 𝑺) ⊙ diagprod(𝑺, 𝑹). (14.18)

The XTrace estimator (14.4) is merely the mean of the entries of this vector; the
variance of the entries will be used for error estimation in Section 15.3. To evaluate
̂tr, we evaluate the equations (14.6) to (14.8), (14.10), (14.12), (14.14), (14.17)

221

Program 14.2 xtrace.m. Efficient implementation of the XTrace estimator. Sub-
routines diagprod, random_signs, and cnormc appear in Programs 14.1, F.1
and F.2.
function [tr, est] = xtrace(B,n,s)
% Input: Function B() computing matrix products B(X) = B*X, number
% of rows n, and number of matvecs s
% Output: Estimate tr of trace(B), estimate est of the error
% abs(tr - trace(B))

% Define test matrix
k = floor(s/2); % Approximation rank is s/2
Om = random_signs(n,k); % Matrix of random signs

% Randomized SVD and downdate
Y = B(Om); % Collect matvecs
[Q,R] = qr(Y,"econ"); % Randomized SVD
S = cnormc(inv(R’)); % Downdate RSVD, cnormc normalizes columns

% Compute other necessary matrices
Z = B(Q); % Collect matvecs
H = Q’*Z;
W = Q’*Om;
T = Z’*Om;
X = W - S .* diagprod(W,S).’;

% Compute estimator, output
tr_vec = trace(H) * ones(k,1) - diagprod(S,H*S) - diagprod(T,X)...

+ diagprod(X,H*X) + diagprod(W, S) .* diagprod(S, R);
tr = mean(tr_vec); % Trace estimate
est = std(tr_vec) / sqrt(k); % Error estimate

end

and (14.18). Stringing these formulas together produces a daunting and mysterious
looking program, but this program is nothing complicated—just matrix algebra.

An implementation of XTrace is provided in Program 14.2. This implementation
outputs the trace estimator t̂rX as first output tr; it also outputs an error estimate
est, which will be discussed in Section 15.3.

14.4 XNysTrace: Trace estimation for psd matrices
XTrace is an effective trace estimator for general square matrices, but it can be
made even more efficient for psd matrices. This section will derive XNysTrace,
an optimized trace estimator for psd matrices using the leave-one-out approach. We

222

uncover the algorithm by following the five-step process for deriving a leave-one-out
randomized matrix algorithm, similar to our derivation of XTrace in Section 14.1.
Sections 14.5 and 14.6 will discuss efficient implementation. Throughout this
section, and the following sections, 𝑨 ∈ K𝑛×𝑛 denotes a psd matrix.

Step 1: Compute a low-rank approximation to the input matrix by multiplying it
against a collection of test vectors. Since the matrix 𝑨 is psd, we have a more rich
set of low-rank approximation algorithms available to us. Here, we will employ the
single pass Nyström approximation

𝑨 := 𝑨⟨𝛀⟩

associated with a test matrix 𝛀 ∈ K𝑛×𝑠 with independent, isotropic random columns
(Section 2.5). An advantage of the single-pass Nyström approximation is that we
can form a rank-𝑠 approximation using only 𝑠 matvecs, whereas 𝑠 matvecs only
allow us to obtan a rank-(𝑠/2) approximation with the randomized SVD.

Step 2: Decompose the quantity of interest into known piece depending on the
low-rank approximation plus a residual. We decompose the trace by employing
the simplest possible approach

tr(𝑨) = tr(𝑨) + tr(𝑨 − 𝑨).

Step 3: Construct a Monte Carlo estimate of the residual using a single random
vector. To estimate the residual trace tr(𝑨 − 𝑨) using a single random vector, we
employ the single-vector Girard–Hutchinson estimator

𝝎∗(𝑨 − 𝑨)𝝎 ≈ tr(𝑨 − 𝑨),

which leads to the trace estimate

t̂r := tr(𝑨) + 𝝎∗(𝑨 − 𝑨)𝝎. (14.19)

Step 4: Downdate the low-rank approximation by recomputing it with a test vector
removed, and use the left-out test vector as the random vector in step 3. Now, we
invoke the leave-one-out trick. Define the downdated the Nyström approximation
by leaving out column 𝑖 of the test matrix 𝛀,

𝑨(𝑖) := 𝑨⟨𝛀−𝑖⟩.

223

Using the left-out vector 𝝎𝑖 as the test vector 𝝎 in (14.19) gives the family of basic
XNysTrace estimators

t̂r𝑖 := tr(𝑨(𝑖)) + 𝝎∗𝑖 (𝑨 − 𝑨(𝑖))𝝎𝑖 for 𝑖 = 1, . . . , 𝑠. (14.20)

Step 5: Average the estimator from step 4 over all choices of vectors to leave out.
Averaging the basic XNysTrace estimators t̂r𝑖 gives the full XNysTrace estimator

t̂rXN :=
1
𝑠

𝑠∑︁
𝑖=1

t̂r𝑖 =
1
𝑠

𝑠∑︁
𝑖=1

[
tr(𝑨(𝑖)) + 𝝎∗𝑖 (𝑨 − 𝑨(𝑖))𝝎𝑖

]
. (14.21)

Discussion. As we will show in Sections 14.5 and 14.6, the estimator XNysTrace
estimator (14.21) can be computed using only the 𝑠matvecs composing 𝑨𝛀. XNys-
Trace is exchangeable and dedicates all matvecs both to low-rank approximation
and to Monte Carlo estimation of the residual trace.

The use of Nyström approximation for variance reduction in trace estimation was
originally proposed by Persson, Cortinovis, and Kressner [PCK22], who devel-
oped a Hutch++-style algorithm using Nysẗrom approximation called Nyström++.
The XNysTrace algorithm improves on Nyström++ by using an exchangeable,
variance-reduced design.

The main difference between Hutch++, XTrace, and XNysTrace is the rank of
the matrix approximation. Given a fixed budget of 𝑠 matvecs, Hutch++ uses a rank-
(𝑠/3) approximation, XTrace uses a rank-(𝑠/2) approximation, and XNysTrace
uses a rank-𝑠 approximation. This disparity results in significant differences among
these estimators when applied to a matrix with rapidly decaying eigenvalues. As an
example, consider a psd matrix 𝑨 whose eigenvalues decay at an exponential rate
𝜆𝑖 (𝑨) ≤ 𝛼𝑖 for 𝛼 ∈ (0, 1). As we will show in Section 15.1, Hutch++, XTrace,
and XNysTrace satisfy error bounds of the form(

E
��t̂rH++ − tr(𝑨)

��2)1/2
≤ 𝐶1(𝛼) 𝛼𝑠/3;(

E
��t̂rX − tr(𝑨)

��2)1/2
≤
√
𝑠 𝐶2(𝛼) 𝛼𝑠/2;(

E
��t̂rXN − tr(𝑨)

��2)1/2
≤ 𝑠 𝐶3(𝛼) 𝛼𝑠 .

(14.22)

Here, 𝐶𝑖 (𝛼) denote prefactors depending only on 𝛼. For this matrix, the rate of
convergence of XTrace is 3/2× faster than Hutch++, and the convergence rate of
XNysTrace is 3× faster than Hutch++.

224

14.5 Leave-one-out formula for randomized Nyström approximation
Just as the randomized SVD downdating formula (Theorem 14.1) was the main
ingredient in making an efficient XTrace implementation, a fast Nyström approxi-
mation downdating formula will support a fast XNysTrace implementation. This
formula will also be useful in deriving other leave-one-out algorithms based on
randomized Nyström approximation.

Theorem 14.2 (Downdating randomized Nyström approximation). Let 𝑨 ∈ K𝑛×𝑛

be psd and let 𝛀 ∈ K𝑛×𝑘 be a matrix, and assume 𝑨𝛀 is full-rank. Denote
𝑯 := 𝛀∗(𝑨𝛀). Then, the downdated Nyström approximation 𝑨(𝑖) := 𝑨⟨𝛀−𝑖⟩ has
the representation

𝑨(𝑖) = (𝑨𝛀)
(
𝑯−1 − 𝑯−1(:, 𝑖)𝑯−1(𝑖, :)

𝑯−1(𝑖, 𝑖)

)
(𝑨𝛀)∗ (14.23a)

= 𝑨 − (𝑨𝛀𝑯−1(:, 𝑖)) (𝑨𝛀𝑯−1(:, 𝑖))∗

𝑯−1(𝑖, 𝑖)
. (14.23b)

The proof of this result relies on a consequence of the Banachiewicz inversion
formula. Here, we restate the version of this formula given in [PS05, eq. (0.7.2)].

Fact 14.3 (Banachiewicz inversion formula). Let 𝑷 ∈ K𝑑1×𝑑1 ,𝑸 ∈ K𝑑1×𝑑2 , 𝑹 ∈
K𝑑2×𝑑1 , 𝑺 ∈ K𝑑2×𝑑2 with 𝑷 nonsingular. Then the block matrix

𝑴 :=

[
𝑷 𝑸

𝑹 𝑺

]
is invertible if and only if the Schur complement 𝑴/𝑷 := 𝑺 − 𝑹𝑷−1𝑸 is invertible,
in which case

𝑴−1 =

[
𝑷 𝑸

𝑹 𝑺

]−1

=

[
𝑷−1 + 𝑷−1𝑸(𝑴/𝑷)−1𝑹𝑷−1 −𝑷−1𝑸(𝑴/𝑷)−1

−(𝑴/𝑷)−1𝑹𝑷−1 (𝑴/𝑷)−1

]
(14.24a)

=

[
𝑷−1 0
0 0

]
+

[
−𝑷−1𝑸

I

]
(𝑴/𝑷)−1

[
−𝑹𝑷−1 I

]
. (14.24b)

As a consequence, we obtain a formula relating the inverse of a matrix to the inverse
of a submatrix.

Corollary 14.4 (Downdating the inverse). Instate the notation and assumptions of
Fact 14.3, and denote E := {𝑑1 + 1, . . . , 𝑑1 + 𝑑2}. Then[

𝑷−1 0
0 0

]
= 𝑴−1 − 𝑴−1(:,E) [𝑴−1(E,E)]−1𝑴−1(E, :).

225

Proof. Rewrite (14.24b) as

𝑴−1 =

[
𝑷−1 0
0 0

]
+

[
−𝑷−1𝑸(𝑴/𝑷)−1

(𝑴/𝑷)−1

]
(𝑴/𝑷)

[
−(𝑴/𝑷)−1𝑹𝑷−1 (𝑴/𝑷)−1

]
,

and use (14.24a) to recognize the factors of the second term as submatrices of 𝑴−1:[
−𝑷−1𝑸(𝑴/𝑷)−1

(𝑴/𝑷)−1

]
= 𝑴−1(:,E),

[
−(𝑴/𝑷)−1𝑹𝑷−1 (𝑴/𝑷)−1

]
= 𝑴−1(E, :).

Finally observe that 𝑴/𝑷 = [𝑴−1(E,E)]−1 is the inverse of the block-(2, 2) entry
of 𝑴−1. Combining these observations yields the desired result.

With this formula and its corollary in hand, the proof of Theorem 14.2 is immediate.

Proof of Theorem 14.2. The Nyström approximation 𝑨⟨𝛀⟩ is invariant to permuta-
tion of the columns of 𝛀 (Proposition 2.9(b)). As such, we can assume without loss
of generality that 𝑖 = 𝑘 by permuting the 𝑖th column of 𝛀 to appear last.

The downdated Nyström approximation 𝑨(𝑘) takes the form

𝑨(𝑘) = 𝑨𝛀−𝑘
(
𝑯(𝑘)

)−1𝛀∗−𝑘𝑨 = 𝑨𝛀

[
𝑯−1
(𝑘) 0

0∗ 0

]
𝛀∗𝑨.

Invoking Corollary 14.4 and repackaging𝛀∗𝑨 = (𝑨𝛀)∗ yields the stated result.

Using the formula (14.23)
The Nyström downdating formula (14.23) can be combined with the stable Nyström
implementation from (2.11). We treat the shift 𝜇 as zero for the following discussion.
In practice, the shift 𝜇 given by (2.11a) should be used.

We compute the Nyström approximation in outer product form 𝑨 = 𝑭𝑭∗ using the
stable implementation in (2.11). First, we compute the matrix product 𝒀 = 𝑨𝛀.
Then, we obtain a Cholesky decomposition 𝛀∗𝑨𝛀 = 𝑹∗𝑹. Finally, we construct
the factor matrix 𝑭 = 𝒀𝑹−1. Using these matrices, the downdating formula (14.23)
may be written

𝑨(𝑖) = 𝑭𝑭∗ − 𝒛𝑖𝒛
∗
𝑖 for 𝑖 = 1, 2, . . . , 𝑘 (14.25a)

where
𝒁 := 𝑭𝑹−∗ · Diag

(
srn

(
𝑹−1))−1/2

. (14.25b)

The matrix 𝒁 contains all of the information needed to do Nyström downdating.

226

14.6 Implementing XNysTrace efficiently
We can use Theorem 14.2 to form the XNysTrace estimator rapidly. This section
begins with a derivation of an efficient formula for the basic XNysTrace estimates
(14.20). Then, we will discuss how to implement this formula.

Formula for the basic XNysTrace estimates: Derivation
Begin by generating a matrix 𝛀 with isotropic columns, compute the Nyström
𝑨 = 𝑭𝑭∗ via (2.11), and form 𝒁 from (14.25b). Then, substitute the Nyström
downdating formula (14.23a) in the definition (14.20) of the basic XNysTrace
estimators:

t̂r𝑖 = tr(𝑭𝑭∗ − 𝒛𝑖𝒛
∗
𝑖) + 𝝎∗𝑖 (𝑨 − 𝑨 + 𝒛𝑖𝒛∗𝑖)𝝎𝑖 . (14.26)

By Proposition 2.9(d), the Nyström approximation 𝑨 satisfies the interpolation
condition 𝑨𝝎𝑖 = 𝑨𝝎𝑖. Using this interpolation property, the cyclic property of the
trace, and the identity ∥𝑭∥2F = tr(𝑭∗𝑭), the formula (14.26) simplifies as

t̂r𝑖 = ∥𝑭∥2F − ∥𝒛𝑖∥
2 + |𝒛∗𝑖𝝎𝑖 |2.

More concisely, the vector of trace estimates tr = (t̂r𝑖 : 1 ≤ 𝑖 ≤ 𝑠) is

̂tr = ∥𝑭∥2F · 1 − srn(𝒁) + | diagprod(𝒁,𝛀) |2.

Formula for the basic XNysTrace estimates: Implementation
In practice, we use the shift 𝜇 given by formula (2.11a) to ensure numerical stability
and success of the Cholesky decomposition (2.11d). As a result, the XNysTrace
estimator produces an unbiased estimate of the shifted matrix 𝑨 + 𝜇I. To correct for
the shift, we remove the trace of the correction tr(𝜇I) = 𝑛𝜇 from each trace estimate,
resulting in the alternative formula

̂tr = ∥𝑭∥2F · 1 − srn(𝒁) + | diagprod(𝒁,𝛀) |2 − 𝑛𝜇 · 1.

We use this formula in our code. Code for XNysTrace is provided in Program 14.3,
which outputs the XNysTrace estimator t̂rXN as tr and an error estimate est; see
Section 15.3 for discussion.

Remark 14.5 (Comparison to XNysTrace implementation in [ETW24]). Our orig-
inal paper on XNysTrace [ETW24] uses a distnctive implementation based on a
QR decomposition of𝒀 . The implementation in Program 14.3 is significantly faster.
When applied to a problem of dimension 𝑛 = 105 with 𝑠 = 103 matvecs, the pro-
cessing time (that is, the total runtime minus the time required to perform matvecs)
for Program 14.3 was 7× faster than the implementation give in [ETW24]. ⋄

227

Program 14.3 xnystrace.m. Efficient and stable implementation of XNysTrace
estimator. Subroutines nystrom and diagprod appear in Programs 2.3 and 14.1.
function [tr,est] = xnystrace(A,n,s)
% Input: Function A() computing matrix products A(X) = A*X, number
% of rows n, and number of matvecs s
% Output: Estimate tr of trace(A), estimate est of the error
% abs(tr - trace(A))

[F,mu,Om,R] = nystrom(A,n,s); % Nystrom approx in outer product form
Z = (F/R’) .* (sqrownorms(inv(R)) .^ (-1/2))’; % Downdate it

% Compute vector of estimates
tr_vec = norm(F,"fro")^2 * ones(s,1) - sqcolnorms(Z) ...

+ abs(diagprod(Z,Om)) .^ 2 - mu * n * ones(s,1);
tr = mean(tr_vec); % Trace estimate
est = std(tr_vec) / sqrt(s); % Error estimate

end

14.7 Synthetic Experiments
To compare the XTrace and XNysTrace algorithms to Hutch++ and the Girard–
Hutchinson estimator, we evaluate on four test matrices with different spectra:

flat := 𝑼1 Diag(linspace(1, 3, 𝑛))𝑼∗1, (14.27a)

poly := 𝑼2 Diag(𝑖−2 : 𝑖 = 1, . . . , 𝑛)𝑼∗2, (14.27b)

exp := 𝑼3 Diag(0.7𝑖 : 𝑖 = 0, . . . , 𝑛 − 1)𝑼∗3, (14.27c)

step := 𝑼4 Diag(1, . . . , 1︸ ︷︷ ︸
50 times

, 10−3, . . . , 10−3︸ ︷︷ ︸
𝑛−50 times

)𝑼∗4. (14.27d)

Here, 𝑼𝑖 ∈ R𝑛×𝑛 denote Haar-random orthogonal matrices, linspace(1, 3, 𝑛) de-
notes equally spaced entries between 1 and 3, and 𝑛 := 103. Each matrix is real and
positive definite, although the exp matrix is singular up to numerical precision.

Results are shown in Fig. 14.1. Here are my conclusions:

With spectral decay, XNysTrace > XTrace > Hutch++ ≫ Girard–Hutchinson.
For matrices with eigenvalues decaying at a steady, and sufficiently rapid, rate
(e.g., the poly and exp examples), the ranking of methods is clear: XNysTrace,
XTrace, Hutch++, then Girard–Hutchinson. This disparity is most visible with
the exp examples, where XNysTrace converges at a 3× faster exponential rate than
Hutch++ and XTrace converges 1.5× faster. The Girard–Hutchinson estimator, by
contrast, converges at the much slower Monte Carlo rate Θ(𝑠−1/2).

228

Figure 14.1: Relative error of trace estimates by Girard–Hutchinson estimator (yel-
low squares), Hutch++ (purple asterisks), XTrace (blue crosses), and XNysTrace
(orange circles) for the four test matrices (14.27) for different numbers of matvecs
𝑠. Lines show median of 1000 trials and error bars show 10% and 90% quantiles.

Without spectral decay, variance reduction by low-rank approximation doesn’t
help. The Hutch++, XTrace, and XNysTrace estimators depend on reducing the
variance of the trace estimate by using a low-rank approximation of the matrix as
a control variate. This technique does not provide any benefit, and in fact slightly
harms the quality of the estimate, when the matrix has a flat spectrum. This effect
is visible with the flat matrix, where the Girard–Hutchinson estimator beats the
Hutch++, XTrace, and XNysTrace estimators by a small multiple. (Though,
resphering can help improve the variance-reduced estimators on problems like this,
as in Fig. 14.3 below.)

Weakness of XNysTrace on stepmatrix. Perhaps the most interesting example of
these four test matrices is the stepmatrix. This matrix has 𝑘 = 50 large eigenvalues,
with the remaining 𝑛 − 50 eigenvalues being much smaller. It takes Hutch++
about 𝑠 = 3𝑘 = 150 matvecs to produce a low-rank approximation capturing these
dominant eigenvalues, and it takes XTrace about 𝑠 = 2𝑘 = 100 matvecs. After
hitting this number of matvecs, the error of Hutch++ and XTrace drop about
three orders of magnitude (and even more with resphering, see Fig. 14.3 below).
By contrast, XNysTrace begins reaping the benefits of low-rank approximation

229

at about 𝑠 = 50 matvecs. Yet, the convergence of XNysTrace for 𝑠 > 50 is
more gradual than for either Hutch++ and XTrace. Consequently, Hutch++ and
XTrace achieve lower error than XNysTrace for sufficiently large 𝑠.

An explanation for this behavior is visible in the error bounds for the randomized
SVD and the single-pass Nyström approximation provided by Facts 2.5 and 2.11.
For a psd matrix, the error of the single-pass Nyström approximation depends on
the sum of the tail eigenvalues

∑
𝑖⪆𝑘 𝜆𝑖, whereas the randomized SVD error depends

on the ℓ2 norm of the tail eigenvalues (∑𝑖⪆𝑘 𝜆
2
𝑖
)1/2. On this example, the sum of

tail eigenvalues is larger than the ℓ2 norm of the tail eigenvalues by a factor of
about

√
𝑛. Thus, the randomized SVD-based XTrace and Hutch++ estimators can

approximate the stepmatrix better than the Nyström-based XNysTrace estimator.

Which method should I use? Unfortunately, the pattern of results in Fig. 14.1 defies
a truly simple conclusion. Still, I think there are some pretty clear recommendations
that can be gleaned from these experiments.

One can imagine two distinct settings for trace estimation. In the first setting,
one is writing general-purpose software, and the trace estimator must be designed
to handle arbitrary input matrices. In the second setting, one is interested in a
specific application, and the trace estimator needs only work well for matrices
appearing in that application. For the former setting, I would make the following
recommendation:

For general-purpose use, I would recommend XTrace or, for psd matrices,
either XTrace or XNysTrace. Both should be implemented with resphering
(Section 14.8).

While XTrace and XNysTrace are not the best trace estimators for every single
problem, the benefits over Hutch++ and the Girard–Hutchinson estimator can be
substantial on some problems. For problems with slow spectral decay (like the flat
matrix), the resphering step (Section 14.8) can substantially improve XNysTrace.

In a specific application, the choice of trace estimator can be determined by profiling.
As a rule of thumb, XNysTrace is the best estimator for psd matrices with consistent
spectral decay, XTrace is the best estimate for general matrices with at least some
singular value decay, and the Girard–Hutchinson estimator is the best estimator (by a
small margin) on problems with very little spectral decay. For additional approaches

230

Figure 14.2: Comparison of the error of XNysTrace on exp matrix (14.27c) on
Linux x86 machine (MATLAB Online, orange solid circles) and MacOS Apple
Silicon (Macbook Pro with M3 ARM chip, pink dashed triangles). The error on
the Linux system saturates at 2.7e-16 and the Mac system saturates at 4.6e-13,
1700× higher. Lines show median of 1000 trials and error bars show 10% and 90%
quantiles.

to trace estimation, see Section 15.5. The paper [ETW24] for comparisons of
XTrace with the Nyström++ and adaptive Hutch++ algorithms of [PCK22].

Remark 14.6 (Platform dependence). Curiously, during the numerical experiments
for this thesis, I observed that the numerical errors for XNysTrace were many
orders of magnitude higher for matrices than in [ETW24]. In [ETW24], the results
show XNysTrace achieving machine precision, whereas the new results showed the
error saturating roughly 103× higher. Eventually, I isolated the discrepancy to the
platform; the original experiments in [ETW24] were performed on an Mac computer
with an Intel x86 chip, and the new experiments werre performed on a Mac with
an Apple Silicon ARM chip. I was able to reproduce the numerical behavior in
the original paper [ETW24] on MATLAB Online, which uses x86 Linux machines.
See Fig. 14.2 for a comparison.

I am not aware for an underlying reason for the platform dependence on the nu-
merical accuracy. The distinction between x86 and Apple ARM systems persisted
in every numerical experiment I ran across multiple machines, including multiple
MATLAB versions up to 2024b. To show the best performance for the algorithm,
the experiments in Fig. 14.1 were performed on MATLAB Online (x86). ⋄

231

14.8 Resphering XTrace and XNysTrace
We can improve the XTrace and XNysTrace algorithms by using the resphering
technique, discussed at the end of Section 13.1.

Resphering XTrace
To resphere XTrace, we replace 𝝎𝑖 by

𝝂𝑖 :=
√︁
𝑛 − 𝑠/2 + 1 ·

(I − 𝑸 (𝑖)𝑸
∗
(𝑖))𝝎𝑖

∥(I − 𝑸 (𝑖)𝑸
∗
(𝑖))𝝎𝑖∥

.

The effect of this substitution is to scale the factor BO in (14.9) by

𝛼𝑖 :=
𝑛 − 𝑠/2 + 1

∥(I − 𝑸 (𝑖)𝑸
∗
(𝑖))𝝎𝑖∥

2 .

Using the 𝑿 matrix defined in (14.17), we evaluate the denominator to be

∥(I − 𝑸 (𝑖)𝑸
∗
(𝑖))𝝎𝑖∥

2 = 𝝎∗𝑖 (I − 𝑸(I − 𝒔𝑖𝒔
∗
𝑖)𝑸∗)𝝎𝑖 = ∥𝝎𝑖∥2 − ∥𝒙𝑖∥2.

Consequently, the vector of scaling factors is

𝜶 =
𝑛 − 𝑠/2 + 1

scn(𝛀) − scn(𝑿) .

As usual, division is performed elementwise. With resphering, the vector of XTrace
vectors is given by

̂tr = tr(𝑯)1 − diagprod(𝑺,𝑯𝑺) + 𝜶 ⊙ [− diagprod(𝑻, 𝑿)
+ diagprod(𝑿,𝑯𝑿) + diagprod(𝑾, 𝑺) ⊙ diagprod(𝑺, 𝑹)] .

An implementation of XTrace with resphering is provided in Program 14.4.

Resphering XNysTrace
To resphere XNysTrace requires a bit more thought. Remember that the basic
XNysTrace estimators take the form

t̂r𝑖 = tr(𝑨(𝑖)) + 𝝎∗𝑖 (𝑨 − 𝑨(𝑖))𝝎𝑖 where 𝑨(𝑖) := 𝑨⟨𝛀−𝑖⟩.

To resphere XNysTrace, we need to identify a matrix 𝑮 such that (𝑨− 𝑨(𝑖))𝑮 = 0.
Such a matrix is furnished the the interpolatory property of Nyström approximation
(Proposition 2.9(d)), which shows that 𝑮 = 𝛀−𝑖 has this feature:

(𝑨 − 𝑨(𝑖))𝛀−𝑖 = 0.

232

Program 14.4 xtrace_resphere.m. Efficient implementation of XTrace algo-
rithm with resphering. Subroutines diagprod and sqcolnorms are provided in
Programs 14.1 and F.4.
function [tr, est] = xtrace_resphere(B,n,s)
% Input: Function B() computing matrix products B(X) = B*X, number
% of rows n, and number of matvecs s
% Output: Estimate tr of trace(B), estimate est of the error
% abs(tr - trace(B))

% Define test matrix
k = floor(s/2); % Approximation rank is s/2
Om = randn(n,k); % Gaussian matrix

% Randomized SVD and downdate
Y = B(Om); % Collect matvecs
[Q,R] = qr(Y,"econ"); % Randomized SVD
S = cnormc(inv(R’)); % Downdate RSVD, cnormc normalizes columns

% Compute other necessary matrices
Z = B(Q); % Collect matvecs
H = Q’*Z;
W = Q’*Om;
T = Z’*Om;
X = W - S .* diagprod(W,S).’;

% Scaling factor
alpha = (n - k + 1) ./ (sqcolnorms(Om) - sqcolnorms(X));

% Compute estimator, output
tr_vec = trace(H) * ones(k,1) - diagprod(S,H*S)...

+ alpha .* (-diagprod(T,X) + diagprod(X,H*X)...
+ diagprod(W, S) .* diagprod(S, R));

tr = mean(tr_vec); % Trace estimate
est = std(tr_vec) / sqrt(k); % Error estimate

end

Thus, we can resphere XNysTrace by replacing 𝝎𝑖 by

𝝂𝑖 :=
√
𝑛 − 𝑠 + 1 ·

(I − 𝑸 (𝑖)𝑸
∗
(𝑖))𝝎𝑖

∥(I − 𝑸 (𝑖)𝑸
∗
(𝑖))𝝎𝑖∥

for 𝑸 (𝑖) := Orth(𝛀−𝑖).

To compute the vectors 𝝂𝑖, we need to orthonormalize the columns of the matrix 𝛀

after every possible column deletion. Fortunately, the randomized SVD downdating
formulas (Theorem 14.1) are exactly what we need to perform this computation.

233

Begin by computing a QR decomposition of 𝛀,

𝛀 = 𝑸𝑻, (14.28)

and form the downdating matrix 𝑺 by normalizing the columns of 𝑻−∗. The down-
dated orthonormal matrices 𝑸 (𝑖) then admit the relation

𝑸 (𝑖)𝑸
∗
(𝑖) = 𝑸(I − 𝒔𝑖𝒔

∗
𝑖)𝑸∗.

Using this display, a short computation shows the resphered XNysTrace estimators
with shifting are

̂tr = ∥𝑭∥2F · 1 − srn(𝒁) + 𝜶 ⊙ | diagprod(𝒁,𝛀) |2 − 𝑛𝜇 · 1 (14.29a)

where

𝜶 :=
𝑛 − 𝑠 + 1

scn(𝛀) − scn(𝑿) with 𝑿 := 𝑻 − 𝑻−∗ · Diag(scn(𝑻−∗))−1. (14.29b)

An interesting observation is that the resphered XNysTrace estimator (14.29) de-
pends only on the triangular factor of the QR decomposition (14.28). As such,
we can develop an implementation of the resphered XNysTrace estimator that
avoids QR decomposition entirely, which is beneficial since QR decomposition is
expensive. Indeed, we can instead compute a Cholesky decomposition

𝛀∗𝛀 = 𝑻∗𝑻

of the Gram matrix 𝛀∗𝛀. Forming the Gram matrix is highly discouraged as
a general practice in matrix computations [Hig22], but it is benign here because
Gaussian random matrices are very well-conditioned (at least if 𝑛 ≥ 𝑠/2) [Tro21,
§11.2 and p. 166]. An implementation of the resphered XNysTrace estimator is
provided in Program 14.5.

Remark 14.7 (Improved resphered XNysTrace implementation). The publicly
available code from [ETW24] uses a QR-based implementation of the resphered
XNysTrace estimator. We have improved it here by introducing the faster Cholesky-
based implementation. ⋄

Experiments
Figure 14.3 compares the Hutch++, XTrace and XNysTrace algorithms and their
resphered versions on the matrices flat and step defined in (14.27). We see that
resphering significantly improves the performance of all estimators on the flat
example and the XTrace and Hutch++ estimators on the step example.

234

Program 14.5 xnystrace_resphere.m. Efficient implementation of XNysTrace
algorithm with resphering. Subroutines diagprod, sqcolnorms, and sqrownorms
are provided in Programs 14.1, F.3 and F.4.
function [tr,est] = xnystrace_resphere(A,n,s)
% Input: Function A() computing matrix products A(X) = A*X, number
% of rows n, and number of matvecs s
% Output: Estimate tr of trace(A), estimate est of the error
% abs(tr - trace(A))

Om = randn(n,s); % Gaussian random test matrix
Y = A(Om); % Matrix product Y = A*Om
mu = eps*norm(Y,"fro")/sqrt(n); % Compute shift
Y = Y + mu * Om; % Apply shift to Y
H = Om’*Y;
R = chol((H+H’)/2); % Explicitly symmetrize H to be safe
F = Y/R; % Triangular substitution

% Downdating
Z = (F/R’) .* (sqrownorms(inv(R)) .^ (-1/2))’;

% Resphering
T = chol(Om’*Om);
Tinv = inv(T);
X = T - Tinv’ / diag(sqcolnorms(Tinv’));
alpha = (n-s+1) ./ (sqcolnorms(Om) - sqcolnorms(X));

% Compute vector of estimates
tr_vec = norm(F,"fro")^2 * ones(s,1) - sqcolnorms(Z) ...

+ alpha .* abs(diagprod(Z,Om)) .^ 2 - mu * n * ones(s,1);
tr = mean(tr_vec); % Trace estimate
est = std(tr_vec) / sqrt(s); % Error estimate

end

14.9 Application: Estrada index
As a running example throughout this part of the thesis, we will apply trace and
diagonal estimators to problems in network science. Given a graph with adjacency
matrix 𝑴, the Estrada index [Est22] is defined as the trace-exponential of the
adjacency matrix:

estr := tr(exp(𝑴)).

The Estrada index is a measure of centralization for a graph, that is, how “clustered”
or “spread out” its nodes are. This quantity is an ideal candidate for variance-reduced
trace estimators like XTrace, as the exponential function promotes spectral decay

235

Figure 14.3: Comparison of Hutch++, XTrace and XNysTrace algorithms (light
solid lines) and their resphered versions (dark dashed lines) on the flat ((14.27a),
left) and stepmatrices ((14.27d), right). Lines show median of 100 trials, and error
bars on the right panel show 10% and 90% quantiles. (Error bars are omitted on the
left panel for clarity.)

Figure 14.4: Relative error of trace estimates by Girard–Hutchinson estimator (yel-
low squares), Hutch++ (purple asterisks), XTrace (blue crosses), and XNysTrace
(orange circles) for Estrada index problem as a function of the number of matvecs
𝑠. Lines show median of 100 trials, and error bars show 10% and 90% quantiles.

in the matrix 𝑨 := exp(𝑴). The matrix 𝑨 is psd, allowing us to apply estimators
designed for psd matrices like XNysTrace.

Figure 14.4 provides a demonstration of various trace estimators applied to the
Estrada index. I test on the yeast network 𝑴 ∈ R2361×2361 from [BZCX+03];
for this small example, the exact values of the Estrada index can be computed
for reference. To obtain matvecs with 𝑨 = exp(𝑴), I employ forty steps of
the Lanczos algorithm [Che24, Ch. 6], which is sufficient to compute matvecs

236

to relative error 10−11. I implemented all trace estimators with resphering. The
conclusions are much the same as in Figs. 14.1 and 14.3, with ranking from best-to-
worst XNysTrace, XTrace, Hutch++, Girard–Hutchinson. On this example, the
difference between XNysTrace, XTrace, and Hutch++ is comparatively small, and
all of these variance-reduced methods leading to substantial accuracy improvements
over the Girard–Hutchinson estimator.

14.10 The leave-one-out approach: Summary
This chapter descrived the leave-one-out approach to designing randomized algo-
rithms for matrix attribute estimation. At a high level, this approach proceeds in
five steps:

1. Compute a low-rank approximation to the input matrix by multiplying it
against a collection of test vectors.

2. Decompose the quantity of interest into known piece depending on the low-
rank approximation plus a residual.

3. Construct a Monte Carlo estimate of the residual using a single random vector.

4. Downdate the low-rank approximation by recomputing it with a test vector
removed, and use the left-out test vector as the random vector in step 3.

5. Average the estimator from step 4 over all choices of vectors to leave out.

We employed this approach to derive the XTrace and XNysTrace estimators,
which improve on Hutch++ by using an exchangeable design. These algorithms all
the matrix–vector products both for low-rank approximation and residual trace esti-
mation. We will see more leave-one-out randomized matrix algorithms in upcoming
chapters.

The leave-one-out approach is simple, but deriving efficient implementations using it
required some effort. To derive fast algorithms, our main tools were the downdating
formulas for the randomized SVD (Theorem 14.1) and randomized Nyström approx-
imation (Theorem 14.2). The resphering technique further improves leave-one-out
estimators, at the cost of some additional complexity.

237

C h a p t e r 15

MORE ON TRACE ESTIMATION

From 1987 to 2020, an algorithm called Hutchinson’s Estimator was the
state-of-the-art for the trace estimation problem, with analysis giving
matching upper and lower bounds at Θ(1/𝜀2) Matrix–Vector products.
Notably, this Ω(1/𝜀2) lower bound was known only for this estimator,
and was not known to hold in general [WWZ14] We tried to generalize
that lower bound to hold for arbitrary Matrix-Vector algorithms, but that
didn’t work. While looking into why, we instead found an algorithm that
only used O(1/𝜀) Matrix-Vector products, called Hutch++.

Raphael A. Meyer

The last chapter introduced the leave-one-out approach for designing randomized
algorithms for matrix computations. As a demonstration of that technique, we saw
the XTrace and XNysTrace algorithms for trace estimation and developed efficient
implementations using downdating formulas for the randomized SVD and Nyström
approximation.

In this chapter, we will continue our discussion of trace estimation by discussing
a priori error analysis, a posteriori error estimation, adaptive determination of
parameters, and alternatives to XTrace and XNysTrace.

Sources. This chapter is based on the XTrace paper

Ethan N. Epperly, Joel A. Tropp, and Robert J. Webber. “XTrace: Making the Most
of Every Sample in Stochastic Trace Estimation”. In: SIAM Journal on Matrix
Analysis and Applications (Mar. 2024), pp. 1–23. doi: 10.1137/23M1548323.

Several aspects of the presentation have been significantly expanded, including
the discussion of how to interpret the XTrace error bounds in Section 15.2, the
discussion of adaptivity in Section 15.4, and the discussion of trace estimation
alternatives in Section 15.5.

Outline. Section 15.1 presents a priori error bounds for XTrace and XNysTrace,
and Section 15.2 discusses how to interpret them. Section 15.3 describes how to
estimate the error of XTrace and XNysTrace a posteriori, and Section 15.4 ex-
plains how these error estimates can be used to implement XTrace and XNysTrace

https://doi.org/10.1137/23M1548323

238

adaptively to meet an error tolerance. Finally, Section 15.5 presents alternatives to
XTrace and XNysTrace for trace estimation.

15.1 A priori error bounds
In this section, we introduce a priori error bounds for XTrace and XNysTrace,
analogous to Theorem 13.5 for Hutch++. Versions of these bounds originally
appeared as [ETW24, Thm. 1.1]. The first result is the following bound for XTrace:

Theorem 15.1 (XTrace: mean-squared error bound). Let 𝑩 ∈ R𝑛×𝑛 be a real
square matrix, and consider the XTrace estimator with test vectors 𝝎1, . . . ,𝝎𝑠/2

drawn iid from the standard normal NormalR(0, I𝑛) or sphere
√
𝑛 · S(R𝑛). This

estimator t̂rX is an unbiased estimate for the trace tr(𝑩) with mean-squared error

Var(t̂rX) ≤ min
𝑟≤𝑠/2−4

[
4e2𝑠

(𝑠/2 − 𝑟 − 3)2

𝑩 − ⟦𝑩⟧𝑟

2

F +
4𝑠

𝑠/2 − 𝑟 − 3

𝑩 − ⟦𝑩⟧𝑟

2

]
.

(15.1)
In particular, the root-mean-squared error decreases at a rate of at least O(𝑠−1):

[E(t̂rX − tr(𝑩))2]1/2 ≤ const
𝑠
· ∥𝑩∥∗. (15.2)

An analogous result holds for XNysTrace [ETW24, Thm. 1.1]:

Theorem 15.2 (XNysTrace: mean-squared error bound). Let 𝑨 ∈ R𝑛×𝑛 be a real
psd matrix and consider the XNysTrace estimator with test vectors 𝝎1, . . . ,𝝎𝑠/2

drawn iid from the standard normal NormalR(0, I𝑛) or sphere
√
𝑛 · S(R𝑛) distribu-

tions. Then the XNysTrace estimator t̂rXN provicdes an unbiased estimate for tr(𝑨)
with root-mean-squared error

Var(t̂rXN)1/2 ≤ 𝑠 min
𝑟≤𝑠−6

[
5e2

(𝑠 − 𝑟 − 5)2

𝑨 − ⟦𝑨⟧𝑟

∗

+
√

2
(𝑠 − 𝑟 − 5)3/2

𝑨 − ⟦𝑨⟧𝑟

F +
√

8
𝑠 − 𝑟 − 5

𝑨 − ⟦𝑨⟧𝑟

] . (15.3)

In particular, the root-mean-squared error decreases at a rate of at least O(𝑠−1):

[E(t̂rXN − tr(𝑨)2]1/2 ≤ const
𝑠
· tr(𝑨). (15.4)

These bounds, particularly the Hutch++-style O(1/𝑠) “convergence rates” of
XTrace (15.2) and XNysTrace (15.4) are easy to misinterpret; we will elabo-
rate more on what these bounds do and do not mean in Section 15.2.

239

For now, let us focus on the main error bounds (15.1) and (15.3), which are more
informative than the O(1/𝑠) convergence rate but perhaps harder to interpret. To
help make things simpler, we remind the reader of the comparison (14.22) above.
Let 𝑨 be a psd matrix with eigenvalues decaying at an exponential rate 𝜆𝑖 (𝑨) ≤ 𝛼𝑖

for 𝛼 ∈ (0, 1). Then the XTrace (Theorem 15.1, XNysTrace (Theorem 15.2), and
Hutch++ (Theorem 13.5) theorems imply that the root-mean-squared errors decay
at rates [

E
(
t̂rH++ − tr(𝑨)

)2]1/22 ≤ 𝑐1(𝛼) 𝛼𝑠/3;[
E
(
t̂rX − tr(𝑨)

)2]1/2 ≤ 𝑠1/2 𝑐2(𝛼) 𝛼𝑠/2;[
E
(
t̂rXN − tr(𝑨)

)2]1/2 ≤ 𝑠 𝑐3(𝛼) 𝛼𝑠 .

(15.5)

Here, the prefactors 𝑐1(𝛼), 𝑐2(𝛼), 𝑐3(𝛼) > 0 depend only on 𝛼. We see that
XNysTrace and XTrace converge at 3× and 1.5× the rate of Hutch++, respectively.
These theoretically predicted convergence rates are mirrored in the exp example in
Fig. 14.1.

We will prove the XTrace bound (Theorem 15.1) and omit the proof of the XNys-
Trace bound (Theorem 15.2), which is similar. The essence of the theorem is
contained in the following structural bound.

Lemma 15.3 (XTrace: Structural bound). Import the setting of Theorem 15.1. The
XTrace estimator is unbiased E[t̂rX] = tr(𝑩) and the variance admits the bound

Var(t̂rX) ≤
4
𝑠
· E

(I − 𝑸 (1)𝑸∗(1))𝑩

2

F
+ 4 E

(I − 𝑸 (12)𝑸
∗
(12))𝑩

2
.

Here, 𝑸 (1) = Orth(𝑩𝛀−1) and 𝑸 (12) = Orth(𝑩𝛀(:, 3 : 𝑠/2)).

Before we prove this lemma, let us use it to establish Theorem 15.1.

Proof of Theorem 15.1. Combining the XTrace structural bound Lemma 15.3 and
the randomized SVD bound (Fact 2.5) gives

Var(t̂rX) ≤
4
𝑠

min
𝑟≤𝑠/2−3

𝑠/2 − 2
𝑠/2 − 𝑟 − 2

𝑩 − ⟦𝑩⟧𝑟

2
F

+ 4 min
𝑟≤𝑠/2−4

𝑠/2 + 𝑟 − 3
𝑠/2 − 𝑟 − 3

(

𝑩 − ⟦𝑩⟧𝑟

2 + e2

𝑠/2 − 𝑟 − 2

𝑩 − ⟦𝑩⟧𝑟

2

F

)
.

Simplifying, we obtain (15.1). To prove (15.2), we set 𝑟 := ⌊𝑠/4⌋ − 4 and invoke
Fact 13.6.

240

We now prove the lemma:

Proof of Lemma 15.3. The unbiasedness of the XTrace estimator follows form its
construction; see [ETW24, p. 18] for a detailed proof.

By bilinearity of the variance and since every pair (t̂r𝑖, t̂r 𝑗) has the same distribution,
we have

Var(t̂rX) =
2
𝑠
· Var(t̂r1) +

(
1 − 2

𝑠

)
Cov(t̂r1, t̂r2). (15.6)

We will bound the variance Var(t̂r1) and the covariance Cov(t̂r1, t̂r2) separately.

To evaluate Var(t̂r1), use the chain rule for the variance:

Var(t̂r1) = E[Var(t̂r1 | 𝛀−1)] + Var(E[t̂r1 | 𝛀−1]). (15.7)

To compute the second term in (15.7), we observe that E[t̂r1 | 𝛀−1] = tr(𝑩). That
is, even conditional on the other test vectors 𝝎2, . . . ,𝝎𝑠/2, the first basic XTrace
estimator t̂r1 is unbiased. Thus, the second term in (15.7) is zero. To evaluate the
first term of (15.7), we invoke Fact 13.2 to obtain

Var(t̂r1 | 𝛀−1) = Var(𝝎∗𝑖 (I − 𝑸 (𝑖)𝑸
∗
(𝑖))𝑩(I − 𝑸 (𝑖)𝑸

∗
(𝑖))𝝎𝑖 | 𝛀−1)

≤ 2

(I − 𝑸 (𝑖)𝑸∗(𝑖))𝑩(I − 𝑸 (𝑖)𝑸∗(𝑖))

2

F
.

Thus, we have

Var(t̂r1) = E[Var(t̂r1 | 𝛀−1)] ≤ 2

(I − 𝑸 (𝑖)𝑸∗(𝑖))𝑩

2

F
. (15.8)

We have dropped the second projector I − 𝑸 (𝑖)𝑸
∗
(𝑖) , which can only increase the

Frobenius norm.

Now, we bound Cov(t̂r1, t̂r2). Introduce

𝑿 := (I − 𝑸 (12)𝑸
∗
(12))𝑩(I − 𝑸 (12)𝑸

∗
(12)). (15.9)

This matrix is independent of both 𝝎1 and 𝝎2 by design. Therefore, we may write

Cov(t̂r1, t̂r2) = E[(t̂r1 − tr(𝑩)) (t̂r2 − tr(𝑩))]
= E[(t̂r1 − tr(𝑩) + tr(𝑿) − 𝝎∗1𝑿𝝎1) (t̂r2 − tr(𝑩))]
= E[(t̂r1 − tr(𝑩) + tr(𝑿) − 𝝎∗1𝑿𝝎1) (t̂r2 − tr(𝑩) + tr(𝑿) − 𝝎∗2𝑿𝝎2)] .

The second line follows because t̂r2 is unbiased approximation to 𝑩, even conditional
on (𝝎𝑖 : 𝑖 ≠ 2). The third line follows because the first factor is mean zero, even

241

conditionally on (𝝎𝑖 : 𝑖 ≠ 1). Now, invoke Cauchy–Schwarz and the fact that the
two factors are identifically distributed to obtain

Cov(t̂r1, t̂r2) ≤ E
��t̂r1 − tr(𝑩) + tr(𝑿) − 𝝎∗1𝑿𝝎1

��2 (15.10)

Conditional on (𝝎𝑖 : 𝑖 ≠ 1), the terms tr(𝑩) and tr(𝑿) are constants and the quantity
in the absolute value signs is mean-zero. Furthermore, the first term of

t̂r1 = tr(𝑸∗(1)𝑩𝑸 (1)) + 𝝎
∗
1(I − 𝑸 (1)𝑸

∗
(1))𝑩(I − 𝑸 (1)𝑸

∗
(1))𝝎1,

is also conditionally constant. Therefore, we obtain,

Cov(t̂r1, t̂r2) ≤ E
[
Var

(
𝝎∗1 [(I − 𝑸 (1)𝑸

∗
(1))𝑩(I − 𝑸 (1)𝑸

∗
(1)) − 𝑿]𝝎1 | 𝛀−1

)]
.

Using Fact 13.2, we bound the right-hand side as

Cov(t̂r1, t̂r2) ≤ 2E

(I − 𝑸 (1)𝑸∗(1))𝑩(I − 𝑸 (1)𝑸∗(1)) − 𝑿

2

F
. (15.11)

We now do some wrangling to bound the right-hand side of (15.11). Introduce the
projectors 𝚷1 := 𝑸 (1)𝑸

∗
(1) and 𝚷12 := 𝑸 (12)𝑸

∗
(12) , and note the identity

I −𝚷1 = (I − Π1) (I − Π12) = (I − Π12) (I − Π1). (15.12)

We compute

∥(I −𝚷1)𝑩(I −𝚷1) − 𝑿∥2F = ∥(I −𝚷1) (I −𝚷12)𝑩(I −𝚷12) (I −𝚷1) − 𝑿∥2F
= ∥(I −𝚷1)𝑿 (I −𝚷1) − 𝑿∥2F
= ∥(I −𝚷1)𝑿 (I −𝚷1) − (I −𝚷1)𝑿I −𝚷1𝑿∥2F
= ∥−(I −𝚷1)𝑿𝚷1 −𝚷1𝑿∥2F
= ∥(I −𝚷1)𝑿𝚷1∥2F + ∥𝚷1𝑿∥2F
≤ ∥𝑿𝚷1∥2F + ∥𝚷1𝑿∥2F
= ∥𝑿 (𝚷1 −𝚷12)∥2F + ∥(𝚷1 −𝚷12)𝑿∥2F
= ∥𝑿 (𝚷1 −𝚷12)∥2 + ∥(𝚷1 −𝚷12)𝑿∥2

≤ 2∥𝑿∥2.

The first line is the identity (15.12), the second line is the definition of 𝑿 (15.9), the
fifth line is the Pythagorean theorem, the sixth line is the nonexpansiveness of the
orthoprojector I − 𝚷1, the seventh line invokes the identity 𝑿𝚷12 = 0, the eighth
line observes that 𝑿 (𝚷1 − 𝚷12) is a rank-one matrix, and the final line holds again

242

because the orthoprojector 𝚷1 − 𝚷12 is nonexpansive. Combining this result with
(15.11) and using the definition of 𝑿, we obtain

Cov(t̂r1, t̂r2) ≤ 4E

(I − 𝑸 (12)𝑸

∗
(12))𝑩(I − 𝑸 (12)𝑸

∗
(12))

2
.

Substituting this covariance bound and the variance bound (15.8) into the variance
decomposition (15.6) yields the stated result.

15.2 How to interpret the Hutch++ and XTrace error bounds
When the Hutch++ paper was released, it generated a large amount of interest, both
among specialists in randomized matrix computations and researchers in adjacent
areas such as machine learning, quantum information, and scientific computing. In
my view, part of this interest can be attributed to the the Hutch++ paper showing
that its method is optimal. Speaking precisely, the paper [MMMW21b] shows that
Hutch++ is optimal in the following sense:

Optimality of Hutch++. Hutch++ produces an approximation to the
trace of a psd matrix 𝑨 with relative error 𝜀 using 𝑠 = O(1/𝜀) matvecs.
Conversely, there is no algorithm that produces a trace estimate up to relative
error 𝜀 for an arbitrary psd input matrix in fewer than 𝑠 = O(1/[𝜀 log(1/𝜀)])
matvecs.

This lower bound was later improved to 𝑠 = O(1/𝜀) [Mey24], establishing that the
𝑠 = O(1/𝜀) rate of Hutch++ is optimal even up to logarithmic factors. I consider
the matching O(1/𝜀) complexity upper and lower bounds for trace estimation to be
one of the most beautiful results in the field of randomized matrix computations.

Given these facts, it is very tempting to invert the relation 𝑠 ∼ 1/𝜀 to claim that
the convergence rate for Hutch++ is 𝜀 ∼ 1/𝑠. Based on this analysis, we would
expect that plotting the error versus number of matvecs for Hutch++ on a log–log
plot should result in a curve with a slope of −1. Figure 15.1 tests this proposition.
Here, we evaluate Hutch++ (left) and XTrace (right) on a family of psd matrices of
dimension 𝑛 = 1000 with eigenvalues 𝜆𝑖 (𝑨) = 𝑖−𝛼 for each fixed 𝛼 = 0, 0.5, . . . , 3.
Darker curves show lower values of 𝛼 and lighter curves show higher values. We
report the average relative error over 100 trials. For reference, the curve 1/𝑠 is
marked as a black dashed line. Perhaps surprisingly, the error-versus-matvec curves
for both Hutch++ show a number of convergence rates that are both faster and

243

Figure 15.1: Root-mean-squared errors for Hutch++ (left) and XTrace (right) on
the family of psd matrices with eigenvalues 𝜆𝑖 (𝑨) = 𝑖−𝛼 for 𝛼 = 0, 0.5, . . . , 3.
Higher values of 𝛼 are indicated using lighter shades, and the the dashed black line
shows 𝜀 = 1/𝑠. Root-mean-squared errors are estimated using 100 trials.

slower than the error ∼ 1/𝑠 convergence rate we predicted from Hutch++ analysis.
What’s going on?

Part of the issue is a cultural difference between how different researchers talk about
the complexity or rate of convergence of an algorithm.

• Under one view, which might be labeled the computational mathematics
view, the performance of an algorithm is determined by its convergence rate.
In the context of trace estimate, the convergence rate is the number 𝛽 such
that the error 𝜀 scales like 𝑠𝛽 (or better). Equivalently, the convergence rate
𝛽 is gives upper bound on the slope of a log–log plot of the error plotted
against the number of matvecs. Under this interpretation, an algorithm has
a convergence rate of 1/𝑠 only if doubling 𝑠 halves the error (or better). As
Fig. 15.1 shows, the convergence rate of Hutch++ and XTrace can be both
slower and faster than 1/𝑠 for different input matrices.

• A second perspective, which we might label as the theoretical computer
science view, is concerned with the amount of computational resources (in
this case, matvecs 𝑠) required to achieve an of error 𝜀 for a worst-case input
matrix. Under this viewpoint, the complexity of an algorithm is 𝑠 = O(1/𝜀)
if the error-versus-matvec curve is bounded above by a curve of the form
“const/𝑠” for all 𝑠 ≤ 𝑛. It is in this second sense in which Hutch++ is optimal
and has a complexity of 𝑠 = O(1/𝜀).

244

Having understood these two viewpoints, we reconcile the perhaps surprising results
in Fig. 15.1 . The error analysis of Hutch++ and XTrace does not say that their
convergence rate isO(1/𝑠), just that the error-versus-matvec curve is bounded above
by a curve of the form “const/𝑠” for all 𝑠 ≤ 𝑛. Indeed, this is exactly the case in
Fig. 15.1: The error curves for both Hutch++ and XTrace are bounded above by
3/𝑠 for each of the seven test matrices.

This understanding of the Hutch++ and XTrace error bounds delivers both good
news and bad news about how these algorithms perform.

The good: Spectral convergence. On the positive side, Hutch++ and XTrace often
converge much faster than the O(1/𝑠) analysis would suggest. In fact, they converge
spectrally, with the trace errors decreasing at a rate proportional to the error of the
best rank-O(𝑠) approximation, measured in an appropriate norm. This phenomenon
was demonstrated theoretically in (15.5), which shows that the variance-reduced
trace estimators converge geometrically when the eigenvalues decay geometrically.
Spectral convergence is also demonstrated empirically in Fig. 15.1, where several
curves are seen to decrease significantly more rapidly then the dashed O(1/𝑠) rate.
This spectral convergence means that stochastic trace estimators are very effective at
estimating the trace of a matrix with rapidly decaying eigenvalues, such a matrix of
the form exp(−𝛽𝑨) arising from partition function calculations in quantum physics.

The bad: Hutch++ and XTrace are not always better than Girard–Hutchinson.
The Girard–Hutchinson converges at a rate ofO(1/𝑠1/2), in both the “computational
math” and “theoretical computer science” senses. Given the 𝑠 = O(1/𝜀) complexity
of Hutch++/XTrace and the 𝑠 = O(1/𝜀2) complex of the Girard–Hutchinson
estimator, one might surmise that Hutch++ or XTrace will always achieve lower
error than the Girard–Hutchinson estimator, except possibly for very small values
of 𝑠. Unfortunately, this is not the case.

For problems with sufficiently slow spectral decay, the Girard–Hutchinson
estimator will be (slightly) more accurate than Hutch++ and XTrace.

Let us justify this claim by applying both Hutch++ and the Girard–Hutchinson
estimator to the identity matrix 𝑨 = I. To yield generalizable conclusions, we use
Gaussian test vectors 𝝎 ∼ NormalR(0, I)—these are a bad choice for computation
in practice, but they suffice to illustrate the conceptual point. By Fact 13.2, the

245

variance of the Girard–Hutchinson estimator for this problem is

Var(t̂rGH) =
2
𝑠
∥I∥2F =

2𝑛
𝑠
.

Consequently, the root-mean-squared relative error is[
E

(
tr(I) − t̂rGH

tr(I)

)2]1/2

=

√
2

𝑠1/2 ·
1
𝑛1/2 .

Now, let us turn to Hutch++. For the matrix𝑸 produced by the Hutch++ algorithm,
the matrix (I−𝑸𝑸∗)I(I−𝑸𝑸∗) is a compression of the identity matrix to a uniformly
random subspace of dimension 𝑛 − 𝑠/3. Thus,

Var(t̂rH++) =
2
𝑠/3 ∥(I − 𝑸𝑸∗)I(I − 𝑸𝑸∗)∥2F =

6(𝑛 − 𝑠/3)
𝑠

.

Ergo, the root-mean-squared relative error for Hutch++ is[
E

(
tr(I) − t̂rH++

tr(I)

)2]1/2

=

√
6

𝑠1/2 ·
(𝑛 − 𝑠/3)1/2

𝑛
.

We observe two things: First, the convergence rate of Hutch++ on this example
is 1/𝑠1/2, the same as the Girard–Hutchinson estimator. Second, except for large
values 𝑠 ≈ 3𝑛, the root-mean-squared error for Hutch++ is larger than the Girard–
Hutchinson estimator by about

√
3. This simple computation demonstrates that, for

problems with slow spectral decay, the Girard–Hutchinson estimator can be better
than Hutch++ by a constant factor. The same qualitative conclusions hold for
XTrace and XNysTrace.

15.3 Posterior error estimation
In the past sections, we studied a priori bounds on the error for trace estimation algo-
rithms. Sharp forms of these error bounds are typically inaccessible in applications,
as they depend on the singular values of the matrix 𝑩. As such, it can be helpful
to have posterior bounds on the error for trace estimation algorithms. This section
develops posterior error estiamtes for the XTrace and XNysTrace algorithms.

Our approach to error estimation is straightforward. The XTrace and XNysTrace
algorithms generate a family of trace estimates t̂r𝑖 for 𝑖 = 1, . . . , ℓ with ℓ = 𝑠/2
(XTrace) or ℓ = 𝑠 (XNysTrace). The scaled standard deviation of these estimates
serves as a natural posterior estimate for the error |t̂rX − tr(𝑩) | or |t̂rXN − tr(𝑨) |.
Specifically, we define the error estimate

Êrr2 :=
1

ℓ(ℓ − 1)

ℓ∑︁
𝑖=1
|t̂r𝑖 − t̂r|2 where t̂r =

1
ℓ

ℓ∑︁
𝑖=1

t̂r𝑖 . (15.13)

246

We have the following result:

Proposition 15.4 (XTrace and XNysTrace: Posterior error estimate). For both
algorithms, the posterior error estimate (15.13) satisfies

E
[
Êrr2] = 1 − Cor(t̂r1, t̂r2)

1 + (ℓ − 1) Cor(t̂r1, t̂r2)
· E

(
tr(𝑩) − t̂r

)2
,

where Cor is the correlation. Moreover, if 𝑩 is a real symmetric matrix, the columns
𝝎1, . . . ,𝝎ℓ are iid standard Gaussian vectors, and the algorithm is XTrace, then

Cor(t̂r1, t̂r2) ≤ 2
E∥(I − 𝑸 (12)𝑸

∗
(12))𝑩(I − 𝑸 (12)𝑸

∗
(12))∥

2

E∥(I − 𝑸 (1)𝑸
∗
(1))𝑩(I − 𝑸 (1)𝑸

∗
(1))∥

2
F
. (15.14)

Here, 𝑸 (1) and 𝑸 (12) were defined in Lemma 15.3.

See [ETW24, §5.6] for a proof.

In practice, we find that the XTrace and XNysTrace estimates have a small positive
correlation. For example, [ETW24, §5.6] reports empirical correlations of at most
0.06 on the exp example (14.27c). In this typical setting, Proposition 15.4 shows
that Êrr provides a slight underestimate of the error, on average.

The second result of Proposition 15.4 provides some control on the size of these
correlations in the case where 𝑩 is real and symmetric and the test vectors are
Gaussian. In particular, if the matrix has a slow rate of spectral decay, then the
Frobenius norm in the denominator of (15.14) denominates the spectral norm in the
numerator, so the correlations are small.

Figure 15.2 compares the actual error to the error estimate for the XTrace algorithm
applied to the four test matrices (14.27). Across each test matrix for most numbers
of matvecs 𝑠, the error estimate closely tracks the true error, agreeing up to a factor
of 1.5×. There are two situations where the error estimate performs somewhat
less effectively: The first is at the value of 𝑠 = 100 matvecs for the step example.
This example confounds the error estimator because there is a large gap between
the eigenvalues 𝜆𝑠/2(𝑨) and 𝜆𝑠/2+1(𝑨), causing the basic XTrace estimators to
become more correlated, underestimating the error by a factor of about 0.3. The
second example occurs on the exp example for large values of 𝑠. Here, the trace
estimates are so accurate that the size of rounding errors comes into play, and the
error estimate is less quantitatively sharp. This is a non-issue in practice (in double
precision computation, at least), because the error estimate correctly diagnoses that
the trace has been computed up to “machine accuracy”.

247

Figure 15.2: Left-hand axes on each subplot show the error (blue solid crosses) and
the median error estimate (blue dashed crosses) for XTrace on the four test matrices
(14.27). Right-hand axes show the ratio of the median error estimate to the median
error (red dotted). Medians are computed using 1000 trials.

15.4 Adaptivity
The XTrace or XNysTrace algorithms can be implemented to adaptively determine
the number of matvecs required to achieve an error tolerance. The basic scheme is
simple. Begin by running the XTrace or XNysTrace algorithm with some initial
number of matvecs 𝑠 and compute the error estimate (15.13). If the error estimate
is below the tolerance, output the estimated trace. Otherwise, collect an additional
Δ𝑠 matvecs, set 𝑠← 𝑠 + Δ𝑠, and update estimates with the newly collected vectors,
repeating as many times as necessary to achieve the error tolerance.

A basic version of this scheme with Δ𝑠 := 𝑠 was proposed in [ETW24, §3.2]. With
this approach, the number of matvecs is doubled every time the error tolerance is
met. This approach can be wasteful, as it may collect roughly twice as many matvecs
as needed. On the other hand, it maintains the postprocessing cost of O(𝑠2𝑛) of the
original algorithm, since

𝑠2𝑛 + (𝑠/2)2𝑛 + (𝑠/4)2𝑛 + · · · = O(𝑠2𝑛).

A more economical approach is to use a constant incrementΔ𝑠, say, Δ𝑠 = 10. Imple-
mented directly, this approach requires a post-processing cost of O(𝑠3𝑛) operations,

248

since
𝑠2𝑛 + (𝑠 − 10)2𝑛 + (𝑠 − 20)2𝑛 + · · · = O(𝑠3𝑛).

However, the cost of the algorithm can be reduced to O(𝑠2𝑛) by carefully updating
the matrix factorizations as new matvecs are collected. In particular, XTrace
requires an incremental version of the QR decomposition, discussed in Appendix A.
An efficient adaptive version of XTrace (using the scipy routine qr_update
for the incremental QR functionality) was developed by Matt Piekenbrock and is
implemented in the primate software [Pie24].

15.5 Alternatives to XTrace and XNysTrace
XTrace and XNysTrace are very effective trace estimators for truly black-box
trace estimation of matrices enjoying rapidly decaying singular values. However,
in many applications, we have additional structure or lack decaying singular values.
In such cases, there may be more effective trace estimators, which we briefly review
in this section.

Adaptive Hutch++
The adaptive Hutch++ algorithm was introduced by Persson, Cortinovis, and Kress-
ner [PCK22] as a way of both solving the apportionment problem of Hutch++ (how
should matvecs be allocated between low-rank approximation and residual trace es-
timation?) and determining when to stop the algorithm. The core of their idea
is that the number of matvecs needed to perform trace estimation on the residual
matrix (I−𝑸𝑸∗)𝑨(I−𝑸𝑸∗) is determined by the Frobenius norm of that matrix (in
view of Fact 13.2 and related results). Thus, the number of additional residual trace
estimation matvecs can be estimated at runtime using a randomized norm estimator.

The adaptive Hutch++ algorithm gives a natural strategy for improving the Hutch++
algorithm, and it is more straightforward to implement than adaptive versions of
XTrace. However, in experiments reported in [ETW24], we find that adaptive
Hutch++ produces less accurate results than XTrace does for a fixed budget of
matvecs, with a few exceptions.

Stochastic Lanczos quadrature
Consider the task of computing tr 𝑓 (𝑨) for a Hermitian matrix 𝑨. The starting point
for stochastic Lanczos quadrature is the observation that the trace is an integral

tr(𝑓 (𝑨)) =
∫
R
𝑓 (𝑥) d𝜇𝑨(𝑥),

249

where 𝜇𝑨 =
∑𝑛
𝑖=1 𝛿𝜆𝑖 (𝑨) denotes the (unnormalized) spectral measure of 𝑨. Thus,

computing trace-functions of 𝑨 can be reformulated as a quadrature problem to
approximate integral with respect to the measure 𝜇𝑨.

Our first move to solve this problem will be to introduce a stochastic approximation
for 𝜇𝑨. For a vector 𝝎 ∈ K𝑛, we define the eigenvector spectral measure of 𝑨 and
𝝎 to be

𝜇𝑨,𝝎 =

𝑛∑︁
𝑖=1
|𝒖∗𝑖𝝎|2 𝛿𝜆𝑖 (𝑨) where 𝑨 =

𝑛∑︁
𝑖=1

𝜆𝑖 (𝑨)𝒖𝑖𝒖∗𝑖 is a spectral decomposition.

The eigenvector spectral measure of 𝑨 and 𝝎 has the property that

𝝎∗ 𝑓 (𝑨)𝝎 =

∫
R
𝑓 (𝑥) d𝜇𝑨,𝝎 (𝑥).

Stochastic Lanczos quadrature is based on the following observation: If 𝝎 is an
isotropic random vector, then the random measure 𝜇𝑨,𝝎 is an unbiased approxima-
tion to the spectral measure 𝜇𝑨, E[𝜇𝑨,𝝎] = 𝜇𝑨. (In general, defining the expectation
of a random measure requires care; no issues arise here because the measures 𝜇𝑨,𝝎
and 𝜇𝑨 are both supported on the spectrum of 𝑨, a finite set.) Thus, given ap-
proximate eigenvector spectral measures 𝜇𝑨,𝝎𝑖

≈ 𝜇𝑨,𝝎𝑖
for iid isotropic vectors

𝝎1, . . . ,𝝎𝑘 , we can fashion a Monte Carlo approximation to the spectral measure
𝜇𝑨 by averaging, 𝜇𝑨 ≈ 𝑘−1 ∑𝑘

𝑖=1 𝜇𝑨,𝝎𝑖
.

To approximate the eigenvector spectral measure 𝜇𝑨,𝝎 of the pair 𝑨 and 𝝎, we
can deploy the Lanczos algorithm [Lan50; Che24]. Given an initial vector 𝝎,
the Lanczos algorithm computes an orthonormal basis 𝑸 ∈ K𝑛×𝑡 for the Krylov
subspace

K𝑡 (𝑨,𝝎) := span{𝝎, 𝑨𝝎, 𝑨2𝝎, . . . , 𝑨𝑡−1𝝎}

and a Hermitian tridiagonal matrix 𝑻 such that

𝑸∗𝑨𝑸 = 𝑻,

where 𝑸(:, 1) = 𝝎/∥𝝎∥. We have the following amazing fact:

Fact 15.5 (Lanczos and quadrature). Introduce 𝜇𝑨,𝝎 := ∥𝝎∥2 · 𝜇𝑻,e1 , where 𝑻 is the
tridiagonal matrix produced by 𝑡 steps of the Lanczos procedure. Then 𝜇𝑨,𝝎 is the
unique 𝑡-point Gaussian quadrature measure for the eigenvector spectral measure
𝜇𝑨,𝝎. That is,

𝝎∗𝑝(𝑨)𝝎 =

∫
R
𝑝(𝑥) d𝜇𝑨,𝝎 (𝑥) =

∫
R
𝑝(𝑥) d𝜇𝑨,𝝎 (𝑥)

for all polynomial 𝑝 of degree < 2𝑡.

250

See [Che24, Ch. 2–3], [Tro20, §3], and [GM10] for more details on the Lanczos
method and the proof of this result.

Stochastic Lanczos quadrature consists of two levels of approximation

𝜇𝑨 ≈
1
𝑘

𝑘∑︁
𝑖=1

𝜇𝑨,𝝎𝑖
≈ 𝜇𝑨 :=

1
𝑘

𝑘∑︁
𝑖=1

𝜇𝑻𝑖 ,e1 .

First, we approximate the spectral measure 𝜇𝑨 by an average of eigenvector spectral
measures 𝜇𝑨,𝝎𝑖

generated by iid isotropic vectors 𝝎𝑖. Second, we approximate each
𝜇𝑨,𝝎𝑖

by a quadrature approximation 𝜇𝑻𝑖 ,e1 generated from the tridiagonal matrix 𝑻𝑖

obtained from applying the Lanczos method to each𝝎𝑖. Once formed, the stochastic
Lanczos quadrature approximation

𝜇𝑨 :=
1
𝑘

𝑘∑︁
𝑖=1

𝜇𝑻𝑖 ,e1 =

𝑘∑︁
𝑖=1

𝑡∑︁
𝑗=1

|𝒖∗
𝑖, 𝑗
𝝎𝑖 |2

𝑘
𝛿𝜆 𝑗 (𝑻𝑖) ≈ 𝜇𝑨

can be use to compute the trace of any trace-function of 𝑨 at a minimal additional
cost of O(𝑘 · 𝑡) operations:

tr(𝑓 (𝑨)) ≈
∫
R
𝑓 (𝑥) d𝜇𝑨(𝑥) =

𝑘∑︁
𝑖=1

𝑡∑︁
𝑗=1

|𝒖∗
𝑖, 𝑗
𝝎𝑖 |2

𝑘
𝑓 (𝜆 𝑗 (𝑻𝑖)).

Here, 𝑻𝑖 =
∑𝑡
𝑗=1 𝜆 𝑗 (𝑻𝑖)𝒖𝑖, 𝑗𝒖∗𝑖, 𝑗 denotes a spectral decomposition of each 𝑻𝑖.

To refine the stochastic Lanczos quadrature approximation, one must increase both
the number of isotropic vectors 𝑘 and the number of Lanczos steps 𝑡. The rate of
convergence is Monte Carlo in 𝑘 , and the rate of convergence in 𝑡 depends on the
regularity of the function 𝑓 . For analytic functions, the convergence is geometric
[CTU25, §3.2].

Stochastic Lanczos quadrature has advantages and disadvantages for computing
tr(𝑓 (𝑨)) over variance-reduced trace estimators like Hutch++ and XTrace. As a
disadvantage, the (root-mean-square) error of stochastic Lanczos quadrature con-
verges at the un-accelerated Monte Carlo rate O(𝑘−1/2), the same as the ordinary
non-variance-reduced Girard–Hutchinson estimator. For problems with decaying
eigenvalues, Hutch++ and XTrace can converge must faster. As an advantage,
once the stochastic Lanczos quadrature rule has been computed, one can estimate
tr(𝑓 (𝑨)) for as many different functions 𝑓 as desired. This feature contrasts with
Hutch++ and XTrace, which must be applied separately for each function 𝑓 .

251

Krylov-aware stochastic trace estimation
The virtues of Hutch++ and stochastic Lanczos quadrature are combined in the
Krylov-aware trace estimator of Chen and Hallman [CH23]. As with stochastic
Lanczos quadrature, their algorithm applies to functions 𝑓 (𝑨) of a Hermitian matrix
𝑨. Fix a block size 𝑏, number of Lanczos steps 𝑡, rank 𝑘 , and number of Girard–
Hutchinson steps𝑚. The Krylov-aware trace estimator begins by applying (roughly)
⌈𝑘/𝑏⌉ + 𝑡 steps of the block Lanczos method [GU77] to a matrix 𝛀 with iid standard
Gaussian columns to build an approximation

𝑓 (𝑨) ≈ 𝑸 𝑓 (𝑻)𝑸∗.

This approximation is then truncated to rank 𝑘 by symmetrically projecting onto the
matrix 𝑸𝑘 := 𝑸(:, 1 : 𝑘) containing the first 𝑘 columns of 𝑸:

𝑓 (𝑨) ≈ 𝑴 := 𝑸𝑘𝑸
∗
𝑘 · 𝑸 𝑓 (𝑻)𝑸

∗ · 𝑸𝑘𝑸
∗
𝑘 = 𝑸𝑘 [𝑓 (𝑻)] (1 : 𝑘, 1 : 𝑘)𝑸∗𝑘 .

Then, they estimate the residual trace tr(𝑓 (𝑨) − 𝑴) using the resphered Girard–
Hutchinson estimator, resulting in the estimate

t̂rKA = tr(𝑴) + 𝑛 − 𝑘
𝑚

𝑚∑︁
𝑖=1

𝝂∗
𝑖
(𝑓 (𝑨)𝝂

𝑖
)

𝝂∗
𝑖
𝝂
𝑖

for 𝝂𝑖 = (I−𝑸𝑘𝑸
∗
𝑘)𝜸𝑖, 𝜸𝑖

iid∼ NormalR(0, I).

Matvecs 𝑓 (𝑨)𝝂𝑖 in this display are performed using 𝑡 steps of the Lanczos algorithm.
See [CH23, §3] for details and [PCM25] for analysis of the approximation 𝑴.

The Krylov-aware trace estimator and XTrace accelerate the Hutch++ method
in different ways. The Krylov-aware estimator consolidates the computation of
matrix–vector products 𝑓 (𝑨)𝛀 and 𝑓 (𝑨)𝑸 into a single invokation of the block
Lanczos algorithm, but retains the need to perform matrix–vector products 𝑓 (𝑨)𝝂𝑖
for residual trace estimation. XTrace still needs two batches 𝑓 (𝑨)𝛀 and 𝑓 (𝑨)𝑸
of matvecs to form a low-rank approximation of 𝑓 (𝑨) but removes the need for
additional matvecs for residual trace estimation.

The main advantage of the Krylov-aware trace estimator over XTrace and XNys-
Trace is that it can be used to evaluate tr(𝑓 (𝑨)) for a family of functions 𝑓 at
minimal additional effort. For this reason, the Krylov-aware trace estimator is often
the best algorithm for the tr(𝑓 (𝑨)) problem.

Probing methods
Another family of methods for trace estimation are based on probing. Here, is one
version of the idea. We know that the Girard–Hutchinson estimator with random

252

sign vectors has a variance depending only on the sum of the off-diagonal entries:

Var(𝝎∗𝑨𝝎) = 2
∑︁
𝑖≠ 𝑗

𝑎2
𝑖 𝑗 for 𝑨 ∈ R𝑛×𝑛 symmetric and 𝝎 ∼ Unif{±1}𝑛.

Let us use this fact to our advantage. Suppose that we are able to partition the index
set {1, . . . , 𝑛} as a disjoint union of a small number of sets S1, . . . ,S𝑚 with the
property that the off-diagonal entries of each submatrix 𝑨(S𝑖,S𝑖) are small. Using
such an approximation, we can obtain an accurate approximation to the trace by
applying the Girard–Hutchinson estimator separately to each submatrix 𝑨(S𝑖,S𝑖)
where the random vectors 𝝎 are supported on each partition S𝑖. In particular, we
can define the stochastic probing estimator:

t̂rSP :=
1
𝑡

𝑚∑︁
𝑖=1

𝑡∑︁
𝑗=1

𝝎∗𝑖 𝑗 𝑨𝝎𝑖 𝑗 with

𝝎𝑖1(S𝑖), . . . ,𝝎𝑖𝑡 (S𝑖) iid∼ Unif{±1}S𝑖 ,

𝝎𝑖1(S𝑖) = · · · = 𝝎𝑖𝑡 (S𝑖) = 0.

Here, 𝑡 denotes the number of matvecs per set S𝑖, and S𝑖 := {1, . . . , 𝑛} \ S𝑖 denotes
the complement of each S𝑖.

Stochastic probing methods were initially developed in quantum chromodynamics
[MBFJ+11; BBCF+12], and they reached computational mathematics shortly there-
after [ASE14; GSO17]. There are also deterministic versions of probing [TS12].
See the paper [FRS25] for analysis of stochastic probing methods and a literature
review on probing.

Probing methods require a good partition S1, . . . ,S𝑚, which demands prior infor-
mation about the matrix 𝑨. In a typical application of probing, one is interested in
evaluating the trace (or diagonal) of 𝑨 = 𝑓 (𝑯) for a sparse matrix 𝑯. In this setting,
one can construct a partitioning S1, . . . ,S𝑚 from a (distance-𝑑) graph coloring of
the adjacency graph of 𝑯, with the hope that 𝑓 (𝑯) possesses decaying entries away
from the sparsity pattern of 𝑯.

Access to a good partitioning is a nontrivial requirement for probing methods.
However, when such an a partitioning is known, probing methods can be very
effective [FRS25, Fig. 3].

253

C h a p t e r 16

DIAGONAL ESTIMATION

Extracting [the diagonal of the inverse of 𝑨] is considered a challenging
task, in part because the problem cannot be easily expressed in the form
of a system of equations. The problem is usually harder to solve than a
linear system with the same matrix 𝑨. So far, not much literature has
been devoted to this topic, whereas the related problem of estimating the
trace of 𝑩 [= 𝑨−1] received much more attention.

Jok M. Tang and Yousef Saad, A probing method for computing the
diagonal of a matrix inverse [TS12]

Chapter 14 presented the basic leave-one-out methodology and applied it to the
problem of trace estimation. This section will use the same approach to develop
diagonal estimators, XDiag and XNysDiag, for general and psd matrices. We will
also encounter another approach to matrix attribute estimation based on unbiased
low-rank approximation.

Sources. The XDiag estimator was developed in the XTrace paper:

Ethan N. Epperly, Joel A. Tropp, and Robert J. Webber. “XTrace: Making the Most
of Every Sample in Stochastic Trace Estimation”. In: SIAM Journal on Matrix
Analysis and Applications (Mar. 2024), pp. 1–23. doi: 10.1137/23M1548323.

The XNysDiag algorithm and the unbiased randomized SVD algorithms are newly
developed in this thesis.

Outline. Section 16.1 introduces existing approaches to diagonal estimation not
using the leave-one-out approach, Section 16.2 presents the XDiag estimator for
the diagonal of a general matrix, Section 16.3 develops the XNysDiag estimator for
the diagonal of a psd matrix, and Sections 16.4 and 16.5 provides an experimental
comparison. We conclude with an alternative approach to matrix attribute estimation
based on unbiased low-rank approximation in Section 16.6. The XDiag estimator
can also be derived using this approach.

https://doi.org/10.1137/23M1548323

254

16.1 The BKS and Diag++ diagonal estimators
To begin this chapter, we briefly discuss existing approaches to the diagonal estima-
tion problem and propose a few modifications. Let 𝑩 ∈ K𝑛×𝑛 be a general square
matrix.

In Section 13.1, we reviewed the BKS diagonal estimator (13.4) for diag(𝑩). Given
iid isotropic vectors 𝝎1, . . . ,𝝎𝑠, we defined

d̂iagBKS =
1
𝑠

𝑠∑︁
𝑖=1
(𝑩𝝎𝑖) ⊙ 𝝎𝑖 . (16.1)

The BKS estimator is an unbiased Monte Carlo estimator for diag(𝑩). Given its
similarity to the Girard–Hutchinson trace estimator, this estimator is also sometimes
called Hutchinson’s diagonal estimator. Analysis appears in [BN22; DM23a].

Remark 16.1 (Original BKS estimator). The original work [BKS07] of Bekas,
Kokiopoulou, and Saad treated the real case 𝝎𝑖 ∈ R𝑛 and considered the estimator

d̂iagBKS,orig =

∑𝑠
𝑖=1(𝑩𝝎𝑖) ⊙ 𝝎𝑖∑𝑠
𝑖=1 𝝎𝑖 ⊙ 𝝎𝑖

. (16.2)

Division is performed entrywise. The original BKS estimator (16.2) and simplified
BKS estimator (16.1) coincide when the vectors 𝝎𝑖 are drawn iid from the random
sign distribution Unif{±1}𝑛. This thesis will work exclusively with the simplified
BKS estimator d̂iagBKS given in (16.1). ⋄

The Hutch++ variance reduction framework extends naturally to the diagonal esti-
mation problem. Given a budget of 𝑠 matvecs, begin by computing the randomized
SVD approximation of rank 𝑠/3. In detail, generate a test matrix 𝛀 ∈ K𝑛×(𝑠/3)

with isotropic random columns and form 𝑸 = Orth(𝑩𝛀). As usual, 𝑸 defines a
low-rank approximation 𝑩 = 𝑸(𝑸∗𝑩). Now, we decompose diag(𝑩) as

diag(𝑩) = diag(𝑩) + diag(𝑩 − 𝑩),

and apply the BKS estimator to estimate the residual diagonal. The resulting
unbiased Diag++ estimator is

d̂iagUD++ := diag(𝑸(𝑸∗𝑩)) + 1
𝑠/3

𝑠/3∑︁
𝑖=1
[(I − 𝑸𝑸∗)𝑩𝜸𝑖] ⊙ 𝜸𝑖 . (16.3)

The vectors 𝜸1, . . . , 𝜸𝑠/3 are chosen to be isotropic and iid. The computational cost
of the unbiased Diag++ estimator is 2𝑠/3 matvecs with 𝑩, 𝑠/3 matvecs with 𝑩∗,
and O(𝑠2𝑛) additional arithmetic operations. See Program 16.1 for code.

255

Program 16.1 udiagpp.m. Unbiased Diag++ estimator for the diagonal of a matrix.
Subroutine random_signs is provided in Program F.2.
function d = udiagpp(B,Bt,n,s)
% Input: Functions B() and Bt() computing matrix products B(X) =
% B*X and Bt(X) = B’*X, number of rows n, and number of
% matvecs s
% Output: Estimate d of the diagonal of B

% Randomized SVD
k = floor(s/3); % Approximation rank is s/3
Om = random_signs(n,k); % Matrix of random signs
BOm = B(Om); % Matvecs with B
[Q,~] = qr(BOm,"econ"); % Randomized SVD

% Unbiased Diag++ estimator
BtQ = Bt(Q); % Matvecs with B’
k = s - 2*k; % Remaining matvecs
Ga = random_signs(n,k); % More random signs
BGa = B(Ga); % Matvecs with B
d = diagprod(Q’,BtQ’) + mean((BGa - Q*(Q’*BGa)) .* Ga,2);

end

In the original paper on variance-reduced diagonal estimation [BN22], Baston and
Nakatsukasa use the following alternative definition of the Diag++ estimator:

d̂iagD++ := diag(𝑸𝑸∗(𝑩𝑸)𝑸∗) + 1
𝑠/3

𝑠/3∑︁
𝑖=1
[(I−𝑸𝑸∗)𝑩(I−𝑸𝑸∗)𝝎𝑖] ⊙𝝎𝑖 . (16.4)

This estimator requires only matvecs with 𝑩 and not its adjoint 𝑩∗, an advantage over
the unbiased Diag++ estimator. In general, the original Diag++ estimator is biased,
although this bias may be small relative to the diagonal if the matrix 𝑩 has rapid
singular value decay. To distinguish between the two estimators (16.3) and (16.4),
“the Diag++ estimator” will always refer to the original Diag++ estimator (16.4).

16.2 XDiag: A leave-one-out diagonal estimator for general matrices
The idea of XDiag is similar to XTrace. We proceed with a derivation.

Step 1: Compute a low-rank approximation to the input matrix by multiplying it
against a collection of test vectors. We begin by computing a low-rank approxi-
mation to 𝑩 using the randomized SVD. Let 𝛀 ∈ K𝑛×𝑠/2 be a random matrix with
isotropic columns, form the product 𝑩𝛀, and orthonormalize 𝑸 = Orth(𝑩𝛀). We

256

obtain the approximation
𝑩 := 𝑸𝑸∗𝑩.

Step 2: Decompose the quantity of interest into known piece depending on the
low-rank approximation plus a residual. The diagonal operation is linear. As such,

diag(𝑩) = diag(𝑩) + diag(𝑩 − 𝑩) = diag(𝑸𝑸∗𝑩) + diag((I − 𝑸𝑸∗)𝑩).

Step 3: Construct a Monte Carlo estimate of the residual using a single random
vector. To approximate the residual diagonal diag((I − 𝑸𝑸∗)𝑩), we employ the
single-vector BKS estimator:

diag((I − 𝑸𝑸∗)𝑩) ≈ (I − 𝑸𝑸∗)𝑩𝝎 ⊙ 𝝎.

This step leads to the unbiased diagonal estimate

d̂iag := diag(𝑸𝑸∗𝑩) + (I − 𝑸𝑸∗)𝑩𝝎 ⊙ 𝝎.

Step 4: Downdate the low-rank approximation by recomputing it with a test vector
removed, and use the left-out test vector as the random vector in step 3. Now,
rather than using a fresh vector 𝝎, we downdate the randomized SVD, obtaining a
new matrix 𝑸 (𝑖) = Orth(𝑩𝛀−𝑖) that is independent from the 𝑖th test vector 𝝎𝑖. This
process defines a family of basic XDiag estimators

d̂iag𝑖 := diag(𝑸 (𝑖)𝑸
∗
(𝑖)𝑩) + (I − 𝑸 (𝑖)𝑸

∗
(𝑖))𝑩𝝎𝑖 ⊙ 𝝎𝑖 for 𝑖 = 1, . . . , 𝑠/2.

Step 5: Average over all choices of vectors to leave out. Finally, we average over
the index 𝑖 to obtain the full XDiag estimate

d̂iagX :=
1
𝑠/2

𝑠/2∑︁
𝑖=1

[
diag(𝑸 (𝑖)𝑸

∗
(𝑖)𝑩) + (I − 𝑸 (𝑖)𝑸

∗
(𝑖))𝑩𝝎𝑖 ⊙ 𝝎𝑖

]
. (16.5)

Efficient formula and implementation. To implement XDiag efficiently, we employ
the randomized SVD downdating formula (14.5). In particular, we form 𝒀 = 𝑩𝛀,
compute the QR decomposition 𝒀 = 𝑸𝑹, and obtain the downdating matrix 𝑺 by
normalizing the columns of 𝑹−∗. The basic XDiag estimator is then

d̂iag𝑖 = diag(𝑸(I − 𝒔𝑖𝒔
∗
𝑖)𝑸∗𝑩) + (I − 𝑸𝑸∗ + 𝑸𝒔𝑖𝒔

∗
𝑖𝑸
∗)𝑩𝝎𝑖 ⊙ 𝝎𝑖 .

We can simplify this equation is several ways. First, define and compute

𝒁 := 𝑩∗𝑸.

257

Program 16.2 xdiag.m. Efficient implementation of XDiag. Subroutines cnormc
and diagprod are provided in Programs 14.1 and F.1.
function d = xdiag(B,Bt,n,s)
% Input: Functions B() and Bt() computing matrix products B(X) =
% B*X and Bt(X) = B’*X, number of rows n, and number of
% matvecs s
% Output: Estimate d of the diagonal of B

% Randomized SVD
k = floor(s/2); % Approximation rank is s/2
Om = random_signs(n,k); % Matrix of random signs
Y = B(Om); % Matvecs with B
[Q,R] = qr(Y,"econ"); % Randomized SVD
S = cnormc(inv(R’)); % Downdate RSVD, cnormc normalizes cols

% Form estimator
Z = Bt(Q); % Matvecs with B’
d = diagprod(Q’,Z’) + mean((Q*S)... % XDiag

.* (-conj(Z*S) + conj(Om) .* diagprod(S,R).’),2);

end

Second, observe that I − 𝑸𝑸∗ annihilates 𝑩𝝎𝑖 = 𝒚𝑖 and 𝑸∗𝑩𝝎𝑖 = 𝑸∗𝒚𝑖 = 𝒓𝑖.
Introducing 𝒁 and these observations, the basic XDiag estimators simplify as

d̂iag𝑖 = diagprod(𝑸∗, 𝒁∗) + 𝑸𝒔𝑖 ⊙ (−𝒁𝒔𝑖 + 𝒔
∗
𝑖 𝒓𝑖 · 𝝎𝑖).

Averaging, we obtain a formula for the full XDiag estimator.

d̂iagX = diagprod(𝑸∗, 𝒁∗) + 1
𝑠/2 [𝑸𝑺 ⊙ (−𝒁𝑺 +𝛀 · Diag(diagprod(𝑺, 𝑹)))]1.

Code is provided in Program 16.2.

Remark 16.2 (Original XDiag estimator). In our original paper [ETW24], my coau-
thors and I used the original BKS estimator (16.2) for residual trace estimation in
XDiag. However, all of the experiments used the random sign distribution and were
thus insensitive to the choice between the original and unbiased BKS estimators.
I now prefer the version of XDiag presented in this thesis, because it is unbiased
for any choice of isotropic test vectors. The publicly released code for the paper
[ETW24]—available at https://github.com/eepperly/XTrace—implements
the same version of XDiag that appears in this thesis. ⋄

https://github.com/eepperly/XTrace

258

16.3 XNysDiag: A leave-one-out diagonal estimator for psd matrices
We can develop an improved estimator XNysDiag for the diagonal of a psd matrix by
using Nyström approximation in place of the randomized SVD. The relationship be-
tween XNysDiag and XDiag is analogous to the relationship between XNysTrace
and XTrace.

Having presented many detailed algorithm derivations in the leave-one-out frame-
work, we now proceed more quickly. Let 𝑨 ∈ K𝑛×𝑛 be a psd matrix. Begin by
drawing a matrix 𝛀 ∈ K𝑛×𝑠 with iid isotropic columns, and define the Nyström
approximation

𝑨 := 𝑨⟨𝛀⟩.

Leaving out each column of 𝛀 in turn gives downdated approximations

𝑨(𝑖) := 𝑨⟨𝛀−𝑖⟩ for 𝑖 = 1, 2, . . . , 𝑠.

For each 𝑖, the diagonal may be decomposed as

diag(𝑨) = diag(𝑨(𝑖)) + diag(𝑨 − 𝑨(𝑖)).

Estimating the second term using the single-vector BKS diagonal estimator yields
the basic XNysDiag estimators

d̂iag𝑖 := diag(𝑨(𝑖)) + (𝑨 − 𝑨(𝑖))𝝎𝑖 ⊙ 𝝎𝑖 for 𝑖 = 1, 2, . . . , 𝑠.

Averaging over the index 𝑖 yields the full XNysDiag estimate

d̂iagXN =
1
𝑠

𝑠∑︁
𝑖=1

d̂iag𝑖 .

Efficient formula and implementation. To implement XNysDiag efficiently, we
compute the Nyström approximation 𝑨 = 𝑭𝑭∗ using (2.11) and form the matrix 𝒁

in (14.25b). The basic XNysDiag estimators are

d̂iag𝑖 = diag(𝑭𝑭∗ − 𝒛𝑖𝒛
∗
𝑖) + (𝑨 − 𝑭𝑭∗ + 𝒛𝑖𝒛∗𝑖)𝝎𝑖 ⊙ 𝝎𝑖

In view of the interpolatory property Proposition 2.9(d), we have the identity 𝑨𝝎𝑖 =

(𝑭𝑭∗)𝝎𝑖, so this formula simplifies to

d̂iag𝑖 = srn(𝑭) − |𝒛𝑖 |2 + (𝒛𝑖 ⊙ 𝝎𝑖) · 𝒛∗𝑖𝝎𝑖 .

Averaging over the index 𝑖 yields a formula for the full XNysDiag estimator:

d̂iagXN = srn(𝑭) − 1
𝑠

srn(𝒁) + 1
𝑠
(𝒁 ⊙ 𝛀) · Diag(diagprod(𝒁,𝛀)) · 1.

259

Program 16.3 xnysdiag.m. Efficient and stable implementation of XNysDiag
estimator. Subroutine nystrom is provided in Program 2.3.
function d = xnysdiag(A,n,s)
% Input: Function A() computing matrix products A(X) = A*X, number
% of rows n, and number of matvecs s
% Output: Estimate d of diag(A)

[F,mu,Om,R] = nystrom(A,n,s); % Nystrom approx
Z = (F/R’) .* (sqrownorms(inv(R)) .^ (-1/2))’; % Downdate it
d = sqrownorms(F) + (-sqrownorms(Z) + sum((Z...% Compute estimator

.* conj(Om)) .* diagprod(Z,Om).’,2))/s ...
- mu * ones(n,1);

end

For stability, we apply XNysDiag to 𝑨 + 𝜇I with the shift from (2.11a). We
correct the shift by subtracting 𝜇1 from the diagonal estimate. Code is provided in
Program 16.3.

Remark 16.3 (XNysDiag and XNysTrace). Observe that the XNysTrace estimator
is the sum of the entries of the XNysDiag estimator. In contrast, the XTrace
estimate does not equal to the sum of the entries of the XDiag estimate. ⋄

16.4 Synthetic Experiments
We compare diagonal estimators on two sets of synthetic examples. First, we test
with the four synthetic test matrices from (14.27) with varying spectral properties.
Second, we test on two matrices with similar spectra but very disparate distributions
of diagonal entries.

Tests on matrices with different spectra
Figure 16.1 provides a comparison of the BKS, unbiased Diag++, XDiag, and
XNysDiag algorithms on the synthetic matrices from (14.27). To quantify the
discrepancy between a diagonal approximation d̂iag and the true diagonal diag, we
use the maximum relative error:

maxrelerr = max
1≤𝑖≤𝑛

|d̂iag𝑖 − diag𝑖 |
|diag𝑖 |

. (16.6)

The comparison of diagonal estimators in Fig. 16.1 is similar with the comparison
of trace estimators in Fig. 14.1: The XNysDiag and XDiag estimators outperform
unbiased XDiag and the BKS estimator on problems with spectral decay (i.e., the

260

Figure 16.1: Maximum relative error of diagonal estimates by the BKS estimator
(yellow squares), unbiased Diag++ (purple asterisks), XDiag (blue crosses), and
XNysDiag (orange circles) for the four test matrices (14.27) as a function of the
numbers of matvecs 𝑠. The error metric is the maximum relative error, defined in
(16.6). Lines show the median of 100 trials, and shaded regions range from the 10%
to the 90% quantile.

poly and exp matrices), and the BKS estimator slightly outperforms the other
estimators when the spectrum is flat (i.e., the flat example). The step example
demonstrates a dissimilarity between the diagonal estimation and trace estimation
problems: For diagonal estimation, the XNysDiag estimator outperforms XDiag
on this example for any number of matvecs 𝑠, whereas XNysTrace does worse than
XTrace on this example for sufficiently large values of 𝑠.

Tests on matrices with similar spectra but different diagonals
A key distinction between diagonal estimation and trace estimation is that the diag-
onal entries may vary across many orders of magnitude. In such cases, it is harder to
estimate all of the diagonal entries up to a small relative error. To demonstrate this
point, we compare the diagonal estimators on two matrices with similar spectra but
very different diagonals: the poly matrix (14.27b) defined above and the following
scaledWishart matrix

scaledWishart := 𝑫1/2𝑮∗𝑮𝑫−1/2 (16.7)

261

Figure 16.2: Maximum relative error of diagonal estimates by the BKS estimator
(yellow squares), unbiased Diag++ (purple asterisks), XDiag (blue crosses), and
XNysDiag (orange circles) on the polymatrix ((14.27b), left) and scaledWishart
matrix ((16.7), right). The error metric is the maximum relative error, defined in
(16.6). Lines show the median of 100 trials, and shaded regions show the 10% and
90% quantiles.

where 𝑮 ∈ R2𝑛×𝑛 is a matrix with iid (real) standard Gaussian entries and 𝑫 :=
Diag(𝑖−2 : 𝑖 = 1, . . . , 𝑛) is a diagonal matrix with entries decaying at an algebraic
rate. We again set 𝑛 := 103. These two matrices have the following properties:

• Similar eigenvalue decay. Both poly and scaledWishart have polynomi-
ally decreasing eigenvalues spanning a similar range: 𝜆max/𝜆min is 1.0e6 for
poly and 5.0e6 for scaledWishart.

• Dustubct diagonal values. Despite their spectral similarities, poly and
scaledWishart have very different diagonals. The diagonal entries of poly
are comparable, with max 𝑎𝑖𝑖/min 𝑎𝑖𝑖 = 6.9e1, while the diagonal entries
of scaledWishart span many orders of magnitude, with max 𝑎𝑖𝑖/min 𝑎𝑖𝑖 =
1.0e6.

Results appear in Fig. 16.2. We see that while the ordinal ranking of the algorithms
remains unchanged (XNysDiag > XDiag > unbiased Diag++ > BKS), the maximum
relative error is significantly higher for the scaledWishart example than the poly
examples. These experiments demonstrate that accurately approximating the small
diagonal entries of a matrix whose diagonal entries span multiple orders of mag-
nitude can be challenging for variance-reduced diagonal estimators. This behavior
makes sense: Unbiased Diag++, XDiag, and XNysDiag all work by computing a

262

Figure 16.3: Maximum relative error of diagonal estimates by the BKS estimator
(yellow squares), unbiased Diag++ (purple asterisks), XDiag (blue crosses), and
XNysDiag (orange circles) for estimating the subgraph centralities. We show both
the the maximum relative error (left, (16.6)) and the relative ℓ2 error (right). Lines
show median of 100 trials, and error bars show 10% and 90% quantiles.

low-rank approximation of the input matrix, which naturally capture large matrix
entries better than smaller ones.

16.5 Application: Subgraph centralities
In Section 14.9, we used stochastic trace estimators to compute the Estrada index of
a graph with adjacency matrix 𝑴, which is defined as

estr := tr(exp(𝑴)).

The Estrada index serves as a global measure of how “centralized” or “clustered” the
nodes of a graph are. The subgraph centralities [Est22] provide an analogous notion
of how “central” each node is to a graph. The vector sc of subgraph centralities is
the diagonal of 𝑨 = exp(𝑴):

sc := diag(exp(𝑴)).

Consequently, the sum of the subgraph centralities is the Estrada index.

Figure 16.3 shows estimates of the the subgraph centralities calculated with dif-
ferent diagonal estimation algorithms. As in Fig. 14.4, we use the yeast dataset
[BZCX+03] and perform matvecs with 𝑨 = exp(𝑴) by forty steps of the Lanczos
algorithm [Che24, Ch. 6]. The left panel shows the maximum relative error (16.6)
and the right panel shows the ℓ2 error ∥d̂iag − diag∥/∥diag∥. We see that XNys-
Diag clearly outperforms XDiag and unbiased Diag++, which in turn outperform
the BKS estimator. In absolute terms, the maximum relative error for all methods

263

is fairly large, with the XNysDiag estimator achieving a maximum relative error of
0.3 with 𝑠 = 300 matvecs. The ℓ2 errors are much smaller for all methods. The
reason for the large discrepancy between the maximum relative error and ℓ2 error is
that the diagonal entries of 𝑨 span many orders of magnitude, similar to the scaled
Wishart example (16.7). Thus, the variance-reduced methods compute the largest
diagonal entries to high-accuracy but struggle to accurately approximate the smaller
entries. We will explore a partial solution to this “small diagonal entries” problem
in Sections 17.2 and 17.7.

16.6 Another view: Unbiased low-rank approximation
In this section, we will develop another way of deriving the XDiag estimator. This
strategy extends naturally to construct estimators for other matrix entries or linear
functionals. So far, we have approached the problem of matrix attribute estimation
by designing purpose-built unbiased estimators that target each particular matrix
attribute. But one could instead form an unbiased estimate 𝑩 of the input matrix
𝑩 ∈ K𝑚×𝑛 itself. Given such a 𝑩, one can obtain unbiased estimates for any lin-
ear matrix attribute 𝐿 (𝑩) by computing 𝐿 (𝑩). Here, 𝐿 : K𝑚×𝑛 → V denotes an
arbitrary linear map. Trace estimation and diagonal estimation are special cases of
this framework with 𝐿 = tr and 𝐿 = diag. Other special cases include 𝐿 (𝑩) = 𝑏𝑖 𝑗
(computing a specified entry) or 𝐿 (𝑩) = tr(𝑪∗𝑩) (computing the inner product with
another matrix 𝑪).

We can use the leave-one-out approach to develop unbiased low-rank approximation
primitives. We will illustrate by developing an unbiased version of the randomized
SVD. Consider the task of computing an unbiased rank-𝑘 approximation to a general
matrix 𝑩 ∈ K𝑚×𝑛. We follow the leave-one-out approach:

Step 1: Compute a low-rank approximation to the input matrix by multiplying it
against a collection of test vectors. Begin by generating a matrix 𝛀 ∈ K𝑛×𝑘 with iid
isotropic columns, and form the randomized SVD approximation: 𝑸 = Orth(𝑩𝛀)
and 𝑸𝑸∗𝑩 ≈ 𝑩.

Step 2: Decompose the quantity of interest into known piece depending on the
low-rank approximation plus a residual. The matrix 𝑩 can decomposed as

𝑩 = 𝑸𝑸∗𝑩 + (I − 𝑸𝑸∗)𝑩.

Step 3: Construct a Monte Carlo estimate of the residual using a single random
vector. To approximate the residual (I − 𝑸𝑸∗)𝑩, introduce a copy of the identity

264

matrix and introduce the unbiased stochastic approximation I ≈ 𝝎𝝎∗ furnished by
an isotropic vector 𝝎 ∈ K𝑛:

(I − 𝑸𝑸∗)𝑩 = (I − 𝑸𝑸∗)𝑩 · I ≈ (I − 𝑸𝑸∗)𝑩 · 𝝎𝝎∗.

This results in a stochastic approximation to 𝑩,

𝑩 ≈ 𝑸𝑸∗𝑩 + (I − 𝑸𝑸∗)𝑩𝝎𝝎∗.

Step 4: Downdate the low-rank approximation by recomputing it with a test vector
removed, and use the left-out test vector as the random vector in step 3. For each
𝑖, downdate the randomized SVD approximation to produce a downdated low-rank
approximation 𝑸 (𝑖)𝑸

∗
(𝑖)𝑩 that is independent of 𝝎𝑖. For each 𝑖, this procedure yields

an unbiased low-rank approximation

𝑩𝑖 := 𝑸 (𝑖)𝑸
∗
(𝑖)𝑩 + (I − 𝑸 (𝑖)𝑸

∗
(𝑖))𝑩𝝎𝑖𝝎

∗
𝑖 . (16.8)

Step 5: Average over all choices of vectors to leave out. Finally, average (16.8) over
the index 𝑖 to obtain the unbiased randomized SVD low-rank approximation

𝑩 :=
1
𝑘

𝑘∑︁
𝑖=1

[
𝑸 (𝑖)𝑸

∗
(𝑖)𝑩 + (I − 𝑸 (𝑖)𝑸

∗
(𝑖))𝑩𝝎𝑖𝝎

∗
𝑖

]
. (16.9)

Implementation. To develop an efficient unbiased randomized SVD implemen-
tation, we substitute the downdating formula (14.5) in (16.9) and simplify alge-
braically, à la Section 14.3. As usual, the derivation is somewhat complicated; we
omit the details. Here is the procedure: First, compute𝒀 := 𝑩𝛀, the (economy-size)
QR decomposition 𝒀 = 𝑸𝑹, the downdating matrix 𝑺 in (14.5), and the product
𝑪 := 𝑩∗𝑸. The basic unbiased randomized SVD estimators (16.8) are

𝑩𝑖 = 𝑸𝑪∗ + 𝑸𝒔𝑖 (−𝒔∗𝑖 𝑪∗ + 𝒔∗𝑖 𝒓𝑖 · 𝝎∗𝑖), (16.10)

and their mean is

𝑩 = 𝑸

[(
I − 𝑺𝑺∗

𝑘

)
𝑪∗ + 1

𝑘
· 𝑺 · Diag(diagprod(𝑺, 𝑹)) ·𝛀∗

]
.

An implementation appears in Program 16.4.

Deriving the XDiag estimator from the unbiased randomized SVD. Comparing
the XDiag estimator (16.5) to the unbiased randomized SVD approximation (16.9),

265

Program 16.4 usvd.m. Unbiased randomized SVD algorithm for unbiased low-
rank approximation and matrix attribute estimation. Subroutines diagprod,
random_signs, and cnormc are provided in Programs 14.1, F.1 and F.2.
function [U,S,V] = usvd(B,Bt,n,k)
% Input: Functions B() and Bt() computing matrix products B(X) =
% B*X and Bt(X) = B’*X, number of rows n, and number of
% matvecs s
% Output: Unbiased low-rank approximation Bhat to B, presented as an
% economy-size SVD Bhat = U*S*V’

% Define test matrix
Om = random_signs(n,k); % Matrix of random signs
Y = B(Om); % Matvecs with B
[Q,R] = qr(Y,"econ"); % Randomized SVD
S = cnormc(inv(R’)); % Downdate randomized SVD
C = Bt(Q); % Matvecs with B’

% Compute unbiased randomized SVD
F = (eye(k) - S*S’/k) * C’ + (S .* diagprod(S,R).’) * Om’ / k;
[UU,S,V] = svd(F,"econ");
U = Q*UU;

end

we see the XDiag estimator is the diagonal of the unbiased randomized SVD
approximation. In this way, the unbiased randomized SVD algorithm (Program 16.4)
gives another way of implementing XDiag: Simply run the unbiased randomized
SVD and form XDiag estimator by the formula d̂iag = diagprod(𝑼∗,𝚺𝑽∗). This
approach has the advantage that one can reuse the same unbiased randomized SVD
approximation to estimate other entries of the matrix on an as-needed basis via the
formula

𝑏𝑖 𝑗 ≈ 𝑏̂𝑖 𝑗 = 𝑼(𝑖, :)𝚺𝑽 (𝑗 , :)∗.

266

C h a p t e r 17

ROW-NORM ESTIMATION

I often say that when you can measure what you are speaking about, and
express it in numbers, you know something about it; but when you
cannot measure it, when you cannot express it in numbers, your
knowledge is of a meagre and unsatisfactory kind; it may be the
beginning of knowledge, but you have scarcely, in your thoughts,
advanced to the stage of science, whatever the matter may be.

Lord Kelvin [Kel89]

Among matrix attribute estimation problems, the trace estimation and diagonal
estimation problems have received the lion’s share of the attention. But there is
another problem of fundamental interest that also merits study: the problem of
estimating the row norms of a matrix 𝑩.

This chapter uses the leave-one-out approach to develop algorithms for estimating the
row norms of an implicit matrix. The resulting XRowNorm and XSymRowNorm
estimators are applicable to general and Hermitian matrices, respectively.

Sources. This chapter is based on original research that has not yet been published.
It uses the leave-one-out approach developed in the XTrace paper [ETW24].

Outline. The squared row norms of 𝑩 comprise the diagonal of 𝑩𝑩∗, so it is
natural to ask: Should we just use diagonal estimators for row-norm estimation? We
answer this question with a definitive “no” in Section 17.1. In fact, as we discuss
in Section 17.2, sometimes one can (and should) use row-norm estimators to solve
diagonal estimation problems! With the importance of purpose-built row-norm
estimators established, Section 17.3 describes existing variance-reduced but non-
leave-on-out row-norm estimators, Section 17.4 develops the XRowNorm algorithm
for general matrices, and Section 17.5 introduces the XSymRowNorm algorithm
for Hermitian matrices. Sections 17.6 and 17.7 provide experimental comparisons.

17.1 Is row-norm estimation just diagonal estimation?
Viewed one way, the row-norm estimation problem is a special case of the diagonal
estimation problem, owing to the identity srn(𝑩) = diag(𝑩𝑩∗). Therefore, the

267

row-norm estimation problem can be solved by applying a diagonal estimator, such
as XNysDiag, to 𝑩𝑩∗.

However, the most accurate algorithms for the row-norm estimation problem do
not proceed via diagonal estimation. To see why, let us compare two estimates of
srn(𝑩) = diag(𝑩𝑩∗): The BKS estimator

ŝrnBKS =
1
𝑘

𝑘∑︁
𝑖=1

𝑩(𝑩∗𝝎𝑖) ⊙ 𝝎𝑖 (17.1)

versus the Johnson–Lindenstrauss row-norm estimator

ŝrnJL =
1
𝑘

𝑘∑︁
𝑖=1
|𝑩𝝎𝑖 |2 =

1
𝑘

𝑘∑︁
𝑖=1
(𝑩𝝎𝑖) ⊙ (𝑩𝝎𝑖). (17.2)

The first difference between these estimators is their computational cost; to form a
𝑘-term estimate, the BKS estimator ŝrnBKS requires 𝑘 matvecs with 𝑩 and 𝑘 matvecs
with 𝑩∗. The Johnson–Lindenstrauss estimate ŝrnJL requires just 𝑘 matvecs with
𝑩. Perhaps a more significant difference emerges from the error analysis of these
two estimators.

Theorem 17.1 (Comparison of Monte Carlo row norm estimates). Let 𝑩 ∈ R𝑚×𝑛

be a real matrix with rows 𝜷∗𝑖 , and consider the squared row norm estimates (17.1)
and (17.2) using iid vectors on the sphere

√
𝑛S(K𝑛). Then, for each 1 ≤ 𝑖 ≤ 𝑚, we

have the variance bounds

E
���ŝrnJL(𝑖) −

𝜷𝑖

2
���2 =

1
𝑘
· 𝑛 − 1

𝑛
𝐾K ·

𝜷𝑖

4
, (17.3)

E
���ŝrnBKS(𝑖) −

𝜷𝑖

2
���2 ≤ 1

𝑘
· 𝐾K ·

𝑚∑︁
𝑗=1
|𝜷∗𝑖 𝜷 𝑗 |2. (17.4)

The constants are 𝐾R = 2𝑛/(𝑛 + 2) and 𝐾C = 𝑛/(𝑛 + 1).

This result suggests that the Johnson–Lindenstrauss row-norm estimator (17.2) is
superior to the BKS diagonal estimator applied to 𝑩𝑩∗ (17.1). The error of the
Johnson–Lindenstrauss estimator of the 𝑖th row norm depends only on the 𝑖th row
norm of 𝑩; by contrast, the bound on the error of the BKS estimator depends on the
magnitude of the inner products of the 𝑖th row of 𝑩 against all of the other rows. For
this example 𝑩 = 1𝜷∗, mean-squared error for the Monte Carlo row-norm estimator
(17.3) is roughly a factor of 𝑚 smaller than the bound (17.4) on the mean-squared
error for the BKS estimator. On this extreme case, the BKS estimator (17.1) is

268

essentially worthless as it expends Ω(𝑚) matvecs to achieve a nontrivial result.
(Recall that any matrix attribute estimation problem can be solved at a trivial cost
of min(𝑚, 𝑛) matvecs.) The Johnson–Lindenstrauss estimator (17.2), by contrast,
computes any row norm of any matrix 𝑩 to root-mean-squared relative error 𝜀 in
just O(1/𝜀2) matvecs, independent of the dimensions of 𝑩.

Theorem 17.1 demonstrates that dedicated algorithms for the row-norm estima-
tion problem can significantly outperform diagonal estimators applied to the outer
product matrix 𝑩𝑩∗. This result justifies our study of the row-norm estimation
problem as distinct from diagonal estimation, and motivates the development of
purpose-build row-norm estimators.

Proof of Theorem 17.1. Both the BKS and Johnson–Lindenstrauss row-norm esti-
mators (17.1) and (17.2) are averages of 𝑘 iid copies of a single-vector unbiased
estimator; ergo, the mean-squared error for each is 1/𝑘 times the variance of the
single-vector estimator.

Begin with the Johnson–Lindenstrauss estimator

ŝrnJL = |𝑩𝝎 |2,

and restrict attention to the 𝑖th coordinate ŝrnMC(𝑖) = |𝜷∗𝑖𝝎 |2. We may rewrite
this coordinate in the form of a Girard–Hutchinson trace estimator ŝrnMC(𝑖) =

𝝎∗(𝜷𝑖𝜷∗𝑖)𝝎. The matrix has simple eigenvalue

𝜷𝑖

2 and a multiple eigenvalue 0

with multiplicity 𝑛 − 1. The average eigenvalue is 𝜆 =

𝜷𝑖

2/𝑛. Therefore, by

Fact 13.2, we obtain

Var(ŝrnMC(𝑖)) = 𝐾K


(

𝜷𝑖

2 −

𝜷𝑖

2

𝑛

)2

+ (𝑛 − 1)
(

𝜷𝑖

2

𝑛

)2 =
𝑛 − 1
𝑛

𝐾K ·

𝜷𝑖

4

.

Now, we treat the single-vector BKS estimator

ŝrnBKS = 𝑩𝑩∗𝝎 ⊙ 𝝎

and restrict attention to the 𝑖th coordinate ŝrnBKS(𝑖) = 𝜷∗𝑖 𝑩
∗𝝎 ·𝜔𝑖. Observe that we

can write 𝜔𝑖 = 𝝎∗e1 and 𝜷∗𝑖 = e∗
𝑖
𝑩. Therefore,

ŝrnBKS(𝑖) = 𝜔1𝑩(𝑖, :)𝑩∗𝝎 = 𝝎∗(e𝑖e∗𝑖 𝑩𝑩∗)𝝎.

Invoking Fact 13.2, we obtain

Var(ŝrnBKS(𝑖)) ≤ 𝐾K

e𝑖e∗𝑖 𝑩𝑩∗

2

F = 𝐾K

𝜷∗𝑖 𝑩∗

2

= 𝐾K

𝑚∑︁
𝑗=1
|𝜷∗𝑖 𝜷 𝑗 |2.

269

This completes the proof of the stated results.

Remark 17.2 (History). Standard probabilistic proofs of the Johnson–Lindenstrauss
lemma [JL84] show that ŝrnJL approximates each squared row norm of 𝑩 up to
a constant factor, provided the number of matvecs is 𝑘 = O(log 𝑛). As such, it
is natural to attribute the estimator ŝrnJL to Johnson and Lindenstrauss. However,
despite being an immediate corollary of the Johnson–Lindenstrauss lemma (1984),
I was unable to find a reference where ŝrnJL was used to estimate the row norms of
an implicit matrix earlier than Spielman and Srivastava’s work in 2008 [SS08]. The
papers [DMMW12; LMP13] also use this technique. The value of purpose-built
row-norm estimators over diagonal estimators is emphasized by Mathur, Moka, and
Botev [MMB21] and in recent works of Michael Lindsey [Lin23; FL24]. ⋄

Numerical demonstration and application: Leverage-score estimation
As an application and a demonstration of Theorem 17.1, we compare the Johnson–
Lindenstrauss row-norm estimator and the BKS and XNysDiag diagonal estimators
for the problem of leverage-score estimation. Recall that the leverage scores of a
matrix 𝑩 are the squared row norms of 𝑸 := Orth(𝑩). Estimating leverage scores
is major application for row-norm estimators. Following [CP19; MMMW+23], we
focus on leverage-score estimation for polynomial regression.

Let 𝑥1, . . . , 𝑥𝑚 denote equally spaced points on [−1, 1], and define the polynomial
regression matrix 𝑩 ∈ R𝑚×𝑛 with entries 𝑏𝑖 𝑗 = 𝑇𝑗−1(𝑥𝑖); here, 𝑇𝑘 denotes the 𝑘th
Chebyshev polynomial (of the first kind). We set𝑚 := 105 and 𝑛 := 103. Figure 17.1
shows the results of applying the Johnson–Lindenstrauss row-norm estimator to 𝑸

and the BKS and XNysDiag diagonal estimators to 𝑸𝑸∗, where 𝑸 = Orth(𝑩). For
each method, we report the approximation ratio between the true leverage scores
ℓ := srn(𝑸) and the approximate leverage scores ̂ℓ, calculated as

approximation ratio := max

{
max

{
ℓ̂𝑖

ℓ𝑖
,
ℓ𝑖

ℓ̂𝑖

}
: 𝑖 = 1, . . . , 𝑛

}
As seen in the left panel, the approximation ratio for the Johnson–Lindenstrauss
row-norm estimator is dramatically lower than for the diagonal estimators. The
diagonal estimators also produce many negative leverage-score estimates, which are
clearly vacuous. The right panel shows the (positive) leverage-score estimates as a
function of the position 𝑥. The Johnson–Lindenstrauss estimates closely track the
true leverage scores, whereas the other estimates carry essentially no information.

270

Figure 17.1: Left: Approximation factor for Johnson–Lindenstrauss row-norm esti-
mator (orange circles) and BKS (yellow squares) and XNysDiag (purple asterisks)
diagonal estimators for estimating the leverage scores of the polynomial regression
matrix. Lines trace the median of 100 trials, and shaded regions show 10% and 90%
quantiles. Right: Scatter plot of positive leverage-score estimates by these methods
(single trial with 𝑠 = 60). The black dashed line indicates the true leverage scores.

Remark 17.3 (Estimating leverage scores: Better algorithms). Given a matrix
𝑩 ∈ K𝑚×𝑛, calculating 𝑸 = Orth(𝑩) and applying a row-norm estimate is a
poor algorithm. Forming 𝑸 expends an expensive O(𝑚𝑛2) operations and, if one
expends the effort to compute 𝑸, the leverage scores are cheap to compute exactly.
To obtain leverage-score estimates quickly, one should instead apply stochastic row-
norm estimates to a preconditioned version of the matrix 𝑩. This fast approach
requires roughly O(𝑚𝑛 + 𝑛3) operations; see [DMMW12] for details. Additionally,
the case of polynomial regression, continuous analogs of the leverage scores are
known in closed form. For theser easons, Fig. 17.1 serves as comparison point for
different algorithms, not as a serious application for row-norm estimation. ⋄

17.2 The square-root trick: Diagonal estimation via row-norm estimation
The last section provided strong evidence that one should not, as a matter of practice,
use diagonal estimators to solve row-norm estimation problems. But what about the
other way around? Can it ever be beneficial to use row-norm estimators to solve
diagonal estimation problems?

The following model describes one scenario where the answer to this question is
yes.

Square-root matvec model. The matrix 𝑨 is psd, and we have efficient
access to matrix–vector products 𝒛 ↦→ 𝑨1/2𝒛 with the square root 𝑨1/2.

271

I know of two scenarios where the square-root matvec model applies. First, if the
matrix 𝑨 is sufficiently well-conditioned, then matvecs with 𝑨1/2 can be computed
efficiently using the Lanczos algorithm [Che24, Ch. 6]. Second, if 𝑨 = 𝑓 (𝑴) is a
nonnegative function 𝑓 : R → R+, then matvecs with 𝑨 are often computed with
the Lanczos algorithm. In this setting, matvecs with 𝑨1/2 = 𝑓 1/2(𝑴) can often
be obtained at the same computational cost by applying the Lanczos method with
𝑓 1/2 rather than 𝑓 . The first setting was observed by Mathur, Moka, and Botev
[MMB21], and the second is used in [Lin23].

In the square-root matvec model, we can estimate diag(𝑨) = srn(𝑨1/2) by estimat-
ing the squared row norms of 𝑨1/2. This approach to diagonal estimation is called
the square-root trick. It was developed by Mathur, Moka, and Botev [MMB21]
and has been used to great effect in the works of Michael Lindsey [Lin23; FL24].
Section 17.7 will illustrate the power of this technique, using the subgraph centrality
task from Section 16.5 as an example.

17.3 Variance-reduced row-norm estimators
Row-norm estimators using a Hutch++-style variance reduction technique were
developed by Sobczyk and Luisier [SL22; Sob24]. The original version of their
estimator is constructed as follows. Let 𝑠 be a number of matvecs, evenly divisible by
four. Generate a random matrix𝛀 ∈ K𝑛×(𝑠/4) and iid isotropic columns 𝜸1, . . . , 𝜸𝑠/4.
Begin by computing the product

𝒀 := 𝑩∗(𝑩𝛀);

Then, orthogonalize 𝑸 := Orth(𝒀), obtaining a low-rank approximation 𝑩 :=
𝑩𝑸𝑸∗ ≈ 𝑩. We may decompose the squared row norms by incoking the identity

srn(𝑩) = srn(𝑩𝑸) + srn(𝑩(I − 𝑸𝑸∗)),

which is immediate from the relation srn(𝑩) = diag(𝑩𝑩∗). The first term can
be computed exactly by forming 𝑩𝑸, and the second term can be estimated with
the Johnson–Lindenstrauss row-norm estimator (17.2). This process yields the
variance-reduced estimator

srnSL4 := srn(𝑩𝑸) + 1
𝑠/4

𝑠/4∑︁
𝑖=1
|𝑩(I − 𝑸𝑸∗)𝜸𝑖 |2.

We shall call this the Sobczyk–Luisier 4 (SL4) row-norm estimator, as it apportions
its matvecs in four batches of size 𝑠/4. The SL4 method produces an unbiased

272

Program 17.1 sl4.m. Sobczyk–Luisier 4 algorithm for row-norm estimation. The
sqrownorms subroutine is defined in Program F.3.
function srn = sl4(B,Bt,m,n,s)
% Input: Functions B() and Bt() computing matrix products B(X) =
% B*X and Bt(X) = B’*X, dimensions m and n, and number of
% matvecs s
% Output: Estimate srn of the squared row norms of B

k = floor(s/4); % Approximation rank s/4
Om = random_signs(m,k); % Matrix of random signs
Y = Bt(B(Om)); % Matvecs with B and B’
[Q,~] = qr(Y,"econ"); % Orthonormalize
BQ = B(Q); % Matvecs with B
k = s - 3*k; % Remaining matvecs
Ga = random_signs(n,k); % Matrix of random signs
Ga = Ga - Q * (Q’*Ga); % Orthogonalize against Q
srn = sqrownorms(BQ) + sqrownorms(B(Ga))/k; % SL4 estimator

end

estimate of the squared row norms, and it requires 3𝑠/4 matvecs with 𝑩, 𝑠/4
matvecs with 𝑩∗, and O(𝑛𝑠2) additional arithmetic operations. Code is provided in
Program 17.1.

Before moving on to leave-one-out estimates of the row norms, let us mention a
refinement to the Sobczyk–Luisier estimator. If we generate a random matrix 𝛀 ∈
K𝑚×(𝑠/3) with 𝑠/3 columns, we can compute a low-rank approximation 𝑩 = 𝑩𝑸𝑸∗

to 𝑩 using 2𝑠/3 matvecs:

𝒀 := 𝑩∗𝛀 and 𝑸 := Orth(𝒀),

leaving 𝑠/3 matvecs to estimate the row norms of the residual. This procedure
results in a modified version of the Sobczyk–Luisier estimator, which we call the
Sobczyk–Luisier 3 (SL3) estimator:

srnSL3 := srn(𝑩𝑸) + 1
𝑠/3

𝑠/3∑︁
𝑖=1
|𝑩(I − 𝑸𝑸∗)𝜸𝑖 |2.

The computational cost of the SL3 estimator is 2𝑠/3 matvecs with 𝑩, 𝑠/3 matvecs
with 𝑩∗, and O(𝑛𝑠2) additional arithmetic operations. Code is provided in Pro-
gram 17.2.

How do the SL3 and SL4 estimates compare? The SL3 estimator uses a cruder
low-rank approximation than the SL4 estimator, requiring one less step of subspace

273

Program 17.2 sl3.m. Sobczyk–Luisier 3 algorithm for row-norm estimation. The
sqrownorms subroutine is defined in Program F.3.
function srn = sl3(B,Bt,m,n,s)
% Input: Functions B() and Bt() computing matrix products B(X) =
% B*X and Bt(X) = B’*X, dimensions m and n, and number of
% matvecs s
% Output: Estimate srn of the squared row norms of B

k = floor(s/3); % Approximation rank s/3
Om = random_signs(m,k); % Matrix of random signs
Y = Bt(Om); % Matvecs with B’
[Q,~] = qr(Y,"econ"); % Orthonormalize
BQ = B(Q); % Matvecs with B
k = s - 2*k; % Remaining matvecs
Ga = random_signs(n,k); % Matrix of random signs
Ga = Ga - Q * (Q’*Ga); % Orthogonalize against Q
srn = sqrownorms(BQ) + sqrownorms(B(Ga))/k; % SL3 estimator

end

iteration. For a fixed budget of 𝑠 matvecs, however, the rank of the SL3 estimator is
higher than the SL4 estimator, 𝑠/3 versus 𝑠/4. Its higher rank often makes the SL3
estimator preferable to the SL4 estimator. For instance, when applied to a matrix 𝑩

with exponentially decaying singular values𝜎𝑖 (𝑩) ≤ 𝛼𝑖, the SL4 estimator produces
estimates of the squared row norms with root-mean-squared error of size ≈ 𝛼𝑠/2,
whereas the SL3 estimator achieves a faster error decay ≈ 𝛼2𝑠/3. Thus, for problems
with rapid singular value decay, the SL3 estimator is preferable.

17.4 XRowNorm: A leave-one-out row-norm estimator
The SL4 estimator is based on a rank-(𝑠/4) randomized SVD approximation to 𝑩∗

with one step of subspace iteration, and the SL3 estimator is based on a rank-(𝑠/3)
approximation with no subspace iteration. By using a leave-one-out design, we can
enjoy the best of both worlds, employing a rank-(𝑠/3) approximation with one step
of subspace iteration. We call the resulting estimator XRowNorm. As we will see
in Section 17.6, XRowNorm and SL3 perform similarly, with XRowNorm offering
a small but noticeable benefit for some instances; see Fig. 17.2.

Begin by drawing a matrix 𝛀 ∈ K𝑛×(𝑠/3) with iid isotropic columns, and define a
rank-(𝑠/3) approximation to 𝑩∗:

𝒀 := 𝑩∗(𝑩𝛀), 𝑸 := Orth(𝒀), 𝑩 := 𝑩𝑸𝑸∗.

274

Now, employ the leave-one-out method. We obtain a family of downdated low-rank
approximations

𝑸 (𝑖) := Orth(𝒀−𝑖), 𝑩(𝑖) := 𝑩𝑸 (𝑖)𝑸
∗
(𝑖) .

The squared row norms can be decomposed as

srn(𝑩) = srn
(
𝑩𝑸 (𝑖)

)
+ srn

(
𝑩

(
I − 𝑸 (𝑖)𝑸

∗
(𝑖)

))
.

We estimate the second term by the single-vector Johnson–Lindenstrauss estimator
using the left-out vector 𝝎𝑖,

ŝrn𝑖 := srn
(
𝑩𝑸 (𝑖)

)
+

��𝑩 (
I − 𝑸 (𝑖)𝑸

∗
(𝑖)

)
𝝎𝑖

��2, (17.5)

and average to form the XRowNorm estimator

ŝrnX :=
1
𝑠/3

𝑠/3∑︁
𝑖=1

ŝrn𝑖 =
1
𝑠/3

𝑠/3∑︁
𝑖=1

[
srn

(
𝑩𝑸 (𝑖)

)
+

��𝑩 (
I − 𝑸 (𝑖)𝑸

∗
(𝑖)

)
𝝎𝑖

��2] . (17.6)

Efficient formula and implementation. To evaluate the XRowNorm estimator
efficiently, we compute the products 𝑮 := 𝑩𝛀 and 𝒀 := 𝑩∗𝑮, then form the QR
decomposition 𝒀 = 𝑸𝑹. By Theorem 14.1, the randomized SVD downdating is
described implicitly by the matrix 𝑺, obtained by normalizing the columns of 𝑹−∗.
We substitute the downdating formula (14.5) into (17.5) and (17.6), and we simplify
algebraically. We omit the details. The resulting formulas are

ŝrn𝑖 = srn(𝒁) − srn(𝒁𝒔𝑖) + |𝒈𝑖 − 𝒁𝒙𝑖 |2

and
ŝrnX = srn(𝒁) + 1

𝑠/3 [− srn(𝒁𝑺) + srn(𝑮 − 𝒁𝑿)] .

where 𝒁 := 𝑩𝑸 and

𝑿 := 𝑾 − 𝑺 · Diag(diagprod(𝑺,𝑾)) with 𝑾 := 𝑸∗𝛀. (17.7)

Observe that the formula for 𝑿 is the same as the formula (14.17) for XTrace.
The computational cost of XRowNorm is 2𝑠/3 matvecs with 𝑩, 𝑠/3 matvecs with
𝑩∗, and O((𝑚 + 𝑛)𝑠2) additional arithmetic operations. An implementation of
XRowNorm is provided in Program 17.3.

275

Program 17.3 xrownorm.m. Efficient implementation of the XRowNorm estima-
tor. Subroutines diagprod, random_signs, and cnormc appear in Programs 14.1,
F.1 and F.2.
function srn = xrownorm(B,Bt,n,s)
% Input: Functions B() and Bt() computing matrix products B(X) =
% B*X and Bt(X) = B’*X, number of rows n, and number of
% matvecs s
% Output: Estimate srn of the squared row norms of B

% Randomized SVD and downdating
k = floor(s/3); % Approximation rank is s/3
Om = random_signs(n,k); % Matrix of random signs
G = B(Om); % Matvecs with B
Y = Bt(G); % Matvecs with B’
[Q,R] = qr(Y,"econ"); % Orthogonalize
S = cnormc(inv(R’)); % cnormc normalizes columns

% Compute other necessary matrices
Z = B(Q); % Matvecs with B
W = Q’*Om;
X = W - S .* diagprod(S,W).’;

% Form estimate
srn = sqrownorms(Z) + (-sqrownorms(Z*S) + sqrownorms(G - Z*X))/k;

end

17.5 XSymRowNorm: Improved Hermitian row-norm estimation
For Hermitian matrices, we can develop an improved version of XRowNorm that
uses an approximation with larger rank 𝑠/2. We call the resulting estimator XSym-
RowNorm.

Let 𝑨 ∈ K𝑛×𝑛 be a Hermitian matrix. Begin by drawing a matrix 𝛀 ∈ K𝑛×(𝑠/2) and
calculating

𝒀 := 𝑨𝛀, 𝑸 := Orth(𝒀).

Since 𝑨 is Hermitian, the left-sided randomized SVD approximation 𝑨left = 𝑸𝑸∗𝑨

has the same quality as the right-sided approximation 𝑨 = 𝑨𝑸𝑸∗. Using the
right-sided approximation, we may decompose the squared row norms

srn(𝑨) = srn(𝑨𝑸) + srn(𝑨(I − 𝑸𝑸∗)).

Now, invoke the leave-one-out method and introduce downdated 𝑸 matrices

𝑸 (𝑖) := Orth(𝒀−𝑖).

276

Program 17.4 xsymrownorm.m. Efficient implementation of the XSymRowNorm
estimator. Subroutines diagprod, random_signs, and cnormc appear in Pro-
grams 14.1, F.1 and F.2.
function srn = xsymrownorm(A,n,s)
% Input: Function A() computing matrix products A(X) = A*X, number
% of rows n, and number of matvecs s
% Output: Estimate srn of the squared row norms of A

% Randomized SVD and downdating
k = floor(s/2); % Approximation rank is s/2
Om = random_signs(n,k); % Matrix of random signs
Y = A(Om); % Matvecs
[Q,R] = qr(Y,"econ"); % Orthogonalize
S = cnormc(inv(R’)); % cnormc normalizes columns

% Compute other necessary matrices
Z = A(Q); % Matvecs
W = Q’*Om;
X = W - S .* diagprod(S,W).’;

% Form estimate
srn = sqrownorms(Z) + (-sqrownorms(Z*S) + sqrownorms(Y - Z*X))/k;

end

Using an orthogonal decomposition of the squared row norms and the a single-
vector Johnson–Lindenstrauss estimator for the residual squared norms yields the
basic XSymRowNorm estimators

ŝrn𝑖 := srn
(
𝑨𝑸 (𝑖)

)
+

��𝑨 (
I − 𝑸 (𝑖)𝑸

∗
(𝑖)

)
𝝎𝑖

��2.
Finally, average to produce the XSymRowNorm estimator

ŝrnXS :=
1
𝑠/2

𝑠/2∑︁
𝑖=1

ŝrn𝑖 =
1
𝑠/2

𝑠/2∑︁
𝑖=1

[
srn

(
𝑨𝑸 (𝑖)

)
+

��𝑨 (
I − 𝑸 (𝑖)𝑸

∗
(𝑖)

)
𝝎𝑖

��2] .
Efficient formula and implementation. The efficient formula for XSymRowNorm
is similar to XRowNorm. Compute the matrix product 𝒀 := 𝑨𝛀, form the QR
decomposition 𝒀 = 𝑸𝑹, and produce the downdating matrix 𝑺 by normalizing the
columns of 𝑹−∗. Set 𝒁 := 𝑨𝑸 and produce the matrix 𝑿 from (17.7). The basic
XSymRowNorm estimates are

ŝrn𝑖 = srn(𝒁) − srn(𝒁𝒔𝑖) + |𝒚𝑖 − 𝒁𝒙𝑖 |2

277

Figure 17.2: Relative error of squared row-norm estimates by the JL estimator (yel-
low squares), SL4 estimator (purple asterisks), SL3 (pink triangles), XRowNorm
(blue crosses), and XSymRowNorm (orange circles) for the four test matrices
(14.27) for different numbers of matvecs 𝑠. The error metric is maximum rela-
tive error, defined in (17.8). Lines show median of 100 trials, and error bars show
10% and 90% quantiles.

and the XSymRowNorm estimator is

ŝrnXS = srn(𝒁) + 1
𝑠/2 [− srn(𝒁𝑺) + srn(𝒀 − 𝒁𝑿)] .

The computational cost of XSymRowNorm is 𝑠 matvecs with 𝑨 and O(𝑛𝑠2) addi-
tional arithmetic operations.

Remark 17.4 (XSymRowNorm for non-Hermitian matrices). While we have devel-
oped the XSymRowNorm estimator for the purpose of estimating the row norms of
a Hermitian matrix, the estimator also works for normal matrices or square matrices
that are nearly Hermitian. The XSymRowNorm estimator is always unbiased, is
effective when low-rank approximations 𝑸𝑸∗𝑩 and 𝑩𝑸𝑸∗ obtained by applying a
projector to the left or right side are similarly good low-rank approximations. ⋄

278

17.6 Synthetic Experiments
Figure 17.2 shows a comparison of row-norm estimators for the four test matrices
from (14.27). For each method, we plot the maximum relative error in the squared
row norms:

maxrelerr = max
1≤𝑖≤𝑛

|ŝrn𝑖 − srn𝑖 |
|srn𝑖 |

. (17.8)

The results are broadly similar to the experimental results for trace and diagonal esti-
mation in Figs. 14.1 and 16.1. For problems with rapid spectral decay, most notably
the expmatrix, the errors of the methods are sorted XSymRowNorm < XRowNorm
< SL3 < SL4≪ JL. The XRowNorm and SL3 estimators perform similarly on this
example, but the XRowNorm estimator edges it out by incorporating an additional
step of subspace iteration. The results for the stepmatrix also demonstrate the ben-
efit of this extra subspace iteration step, with SL4 and XRowNorm outperforming
SL3 and XSymRowNorm for sufficiently large values of 𝑠.

17.7 Application: Subgraph centralities, again
Now equipped with the square-root trick and varianced-reduced diagonal estimators,
we return to the task of estimating the subgraph centralities from Section 16.5. Recall
that the subgraph centralities of a graph with adjacency matrix 𝑴 are

sc := diag(exp(𝑴)).

In Section 16.5, we performed matvecs with 𝑨 = exp(𝑴) using the Lanczos method
[Che24, Ch. 6] associated with the function 𝑓 (𝑡) = exp(𝑡). To apply matvecs with
𝑨1/2, we can simply change the function to 𝑓 (𝑡) = exp(𝑡/2). Thus, for this problem,
matvecs with 𝑨1/2 are just as cheap as matvecs with 𝑨, making this an ideal setting
to apply the square-root trick.

Figure 17.3 measures the accuracy of the subgraph centrality estimated by the BKS
and XNysDiag diagonal estimators and by the JL and XSymRowNorm row-norm
estimators. When evaluated using the maximum relative error (left), we see that
the JL and XSymRowNorm estimators dramatically outperform both diagonal es-
timators, achieving nearly 10× smaller error using 𝑠 = 20 matvecs. These results
demonstrate how the square-root trick can yield diagonal estimates that are much
more accurate when the diagonal entries span many orders of magnitude. When
using the ℓ2 error (right), the variance-reduced XNysDiag and XSymRowNorm al-
gorithms significantly outperform the Monte Carlo-based JL and BKS estimates. In
particular, the XSymRowNorm estimator achieves the best of both worlds, attaining
both small maximum relative error and small ℓ2 error.

279

Figure 17.3: Maximum relative error of subgraph centrality estimates by the BKS
diagonal estimator (yellow squares), XNysDiag (purple asterisks), JL row-norm
estimator (blue crosses), and XSymRowNorm (orange circles) as a function of the
number of matvecs 𝑠. We show both the the maximum relative error (left, (16.6))
and the relative ℓ2 error (right). Lines show the median of 100 trials, and shaded
regions show 10% and 90% quantiles.

280

C h a p t e r 18

POSTERIOR ERROR ESTIMATES FOR LOW-RANK
APPROXIMATION

. . . we advocate using a posteriori error estimators to assess the quality
of the output of a randomized linear algebra computation. These error
estimators are often quite cheap, yet they can give (statistical) evidence
that the computation was performed correctly. We also recommend
adaptive algorithms that can detect when the accuracy is insufficient and
make refinements. With this approach, it is not pressing to produce
theory that justifies all of the internal choices (e.g., the specific type of
random embedding) in the NLA algorithm.

Per-Gunnar Martinsson and Joel A. Tropp, Randomized numerical
linear algebra: Foundations and algorithms [MT20]

In previous chapters, we employed the leave-one-out approach to estimate attributes
of a matrix 𝑩. In this chapter and the next one, we develop a conceptually distinct
application of the leave-one-out technique. Rather than using leave-one-out to
estimate matrix attributes as previously, we will use the leave-one-out method to
diagnose the quality of randomized matrix approximations. This chapter will deploy
the leave-one-out approach to compute error estimates for low-rank approximation,
and next chapter will apply this machinery to estimate the variance of a general
class of randomized matrix algorithms. The downdating formulas (Theorems 14.1
and 14.2) will be essential tools in devising efficient algorithms.

Sources. This chapter is based on the paper

Ethan N. Epperly and Joel A. Tropp. “Efficient Error and Variance Estimation for
Randomized Matrix Computations”. In: SIAM Journal on Scientific Computing
46.1 (Feb. 2024), A508–A528. doi: 10.1137/23M1558537.

Outline. Section 18.1 describes the leave-one-out approach to error estimation
in generality, and Section 18.2 applies this technique to the randomized SVD.
Section 18.3 contains numerical experiments.

https://doi.org/10.1137/23M1558537

281

18.1 Leave-one-out error estimation: General approach
We begin by developing the leave-one-out error estimation technique in a general
setting; the subsequent section (18.3) will apply this error estimation technique to
the randomized SVD.

Setting. Let 𝑩 ∈ K𝑚×𝑛 be an input matrix, and let 𝛀 ∈ K𝑛×𝑘 be a random test
matrix with iid isotropic columns. Consider a randomized approximation to 𝑩 that
depends on 𝛀:

𝑩 = 𝑩𝑘 = 𝑩(𝛀). (18.1)

We assume that forming the approximation 𝑩 requires evaluating 𝑩𝛀, and we
assume that 𝑩(𝛀) is defined for input matrices 𝛀 with any number of columns.
Examples include the randomized SVD and the randomized Nyström approxima-
tions, introduced in Section 13.2. We will abuse notation and write 𝑩𝑘 , 𝑩(𝛀), and
𝑩 interchangeably to refer to the approximation (18.1). For simplicity, we shall
assume that the approximation 𝑩 only depends on the deterministic input matrix 𝑩

and the random test matrix 𝛀, although the methods in this section apply equally
well to approximations 𝑩(𝛀,𝚿, . . .) that depend on additional random quantities
𝚿, . . . that are independent of 𝛀.

We are interested in efficiently estimating the mean-squared Frobenius error

MSE𝑘 := E ∥𝑩 − 𝑩𝑘 ∥2F.

This type of estimate has several applications. For example, it can be used to
adaptively select the number of matvecs 𝑘 that suffice to meet a target accuracy 𝜏:
Simply increment 𝑘 until the estimate �MSE satisfies �MSE ≤ 𝜏.

Existing approach: Girard–Hutchinson norm estimator. The Girard–Hutchinson
norm estimator [MT20, §4.8] provides one way of estimating the error ∥𝑩 − 𝑩∥F.
Given a matrix 𝑪 ∈ K𝑚×𝑛, the Girard–Hutchinson estimate of the squared Frobenius
norm is

ŜN :=
1
𝑠

𝑪𝜸𝑖

2
, (18.2)

where 𝜸1, . . . , 𝜸𝑠 are iid isotropic vectors. Observe that the Girard–Hutchinson
squared norm estimate ŜN coincides with the Girard–Hutchinson estimator for
tr(𝑪∗𝑪) = ∥𝑪∥2F. Applying the Girard–Hutchinson norm estimator to 𝑪 = 𝑩 − 𝑩

gives an unbiased estimate to the mean-squared error MSE𝑘 . As disadvantages of
this approach, computing the estimate ŜN requires 𝑠 fresh matvecs with the matrix
𝑩, and the only way to improve the estimate is to increase the number of matvecs

282

𝑠. The leave-one-out approach will give us an alternative error estimation technique
that require no additional matvecs with 𝑩 and that automatically improves with the
approximation quality parameter 𝑘 .

Leave-one-out errorr estimation. By now, our approach to designing a leave-one-
out error estimate should be routine. Begin by downating the approximation 𝑩 by
leaving out each column 𝝎𝑖 out in turn, producing a family of approximations

𝑩(𝑖) := 𝑩(𝛀−𝑖) for 𝑖 = 1, . . . , 𝑘 .

Then, use the left-out vector 𝝎𝑖 to form a Girard–Hutchinson norm estimate of each
downdated approximation:�MSE𝑖 := ∥(𝑩 − 𝑩)𝝎𝑖∥2 ≈

𝑩 − 𝑩(𝑖)

2

F.

Finally, average these basic estimates to obtain the leave-one-out error estimator

�MSE :=
1
𝑘

𝑘∑︁
𝑖=1

�MSE𝑖 =
1
𝑘

𝑘∑︁
𝑖=1

(𝑩 − 𝑩(𝑖))𝝎𝑖

2
.

This leave-one-out error estimation �MSE has several attractive features. First, the
error estimate requires with no additional matvecs with 𝑩 beyond those necessary to
form 𝑩𝛀. Second, the quality of this error estimate automatically improves as the
accuracy parameter 𝑘 is increased. The leave-one-out error estimator does have one
significant flaw: The estimator �MSE is an unbiased estimate of the mean-squared
error of the mean-squared error of the approximation 𝑩𝑘−1 with parameter 𝑘 − 1!

Proposition 18.1 (Leave-one-out error estimator). Instate the prevailing notation.
The leave-one-out estimator �MSE is an unbiased estimator for MSE𝑘−1. That is,

E[�MSE] = MSE𝑘−1.

The mean-squared error for many types of approximation 𝑩𝑘 , such as the randomized
SVD and the randomized Nyström approximations, are monotone MSE𝑘 ≤ MSE𝑘−1.
For such algorithms, the leave-one-out estimate �MSE overestimates of the error, on
average.

Since it is often more convenient to work with the error rather than the squared error,
we define the leave-one-out estimate of the error to be

Êrr := �MSE1/2.

283

18.2 Randomized SVD error estimation
Efficient implementations of the leave-one-out error estimates for the randomized
SVD can be derived using the randomized SVD downdating formula (14.5). The
implementation takes different forms with, and without, additional subspace itera-
tion. We will present only the version without subspace iteration; see [ET24] for
the version with subspace iteration.

Generate a random matrix 𝛀 with iid isotropic columns, and form the random-
ized SVD approximation 𝑩 := 𝑸𝑸∗𝑩 with a matrix product 𝒀 := 𝑩𝛀 and QR
decomposition 𝒀 = 𝑸𝑹. For the derivation, introduce the downdating matrix

𝑺 := 𝑹−∗ · Diag
(
∥𝑹−∗(:, 𝑖)∥−1 : 1 ≤ 𝑖 ≤ 𝑘

)
, (18.3)

which contains the normalized columns of 𝑹−∗. The leave-one-out error estimate is

MSE =
1
𝑘

𝑘∑︁
𝑖=1

(I − 𝑸(I − 𝒔𝑖𝒔
∗
𝑖)𝑸∗𝑩𝝎𝑖

2
.

By construction, I −𝑸𝑸∗ is an orthoprojector annihilating range(𝒀) = range(𝑩𝛀),
from which (I −𝑸𝑸∗)𝑩𝝎𝑖. In addition, 𝑸∗𝑩𝛀 = 𝑸∗𝒀 = 𝑹, so 𝑸∗𝑩𝝎𝑖 = 𝒓𝑖. Thus,

MSE =
1
𝑘

𝑘∑︁
𝑖=1

𝑸𝒔𝑖𝒔
∗
𝑖 𝒓𝑖

2
=

1
𝑘

𝑘∑︁
𝑖=1
|𝒔∗𝑖 𝒓𝑖 |2.

In the second equality, we use the fact that 𝑸𝒔𝑖 is unit vector. Finally, (18.3) implies
that

𝒔∗𝑖 𝒓𝑖 = (𝑺∗𝑹)𝑖𝑖 =Diag
(
∥𝑹−∗(:, 𝑖)∥−1 : 1 ≤ 𝑖 ≤ 𝑘

)
𝑖𝑖
= ∥𝑹−∗(:, 𝑖)∥−1

= ∥𝑹−1(𝑖, :)∥−1.

Ergo, the leave-one-out estimate of the mean-squared error is

MSE =
1
𝑘

𝑘∑︁
𝑖=1

𝑹−1(𝑖, :)

−2
,

and the leave-one-out error estimate is

Err :=

(
1
𝑘

𝑘∑︁
𝑖=1

𝑹−1(𝑖, :)

−2

)1/2

. (18.4)

The 𝑹 matrix, often an unused byproduct of the standard randomized SVD imple-
mentation, contains enough information by itself to provide an estimate of the error.
See Program 18.1 for code.

284

Program 18.1 rsvd_errest.m. Randomized SVD for matrix low-rank approxi-
mation together with leave-one-out error estimate. Subroutine random_signs is
provided in Program F.2.
function [U,S,V,est] = rsvd_errest(B,Bt,n,k)
% Input: Functions B() and Bt() computing matrix products B(X) =
% B*X and Bt(X) = B’*X, number of columns n, and rank k
% Output: Low-rank approximation Bhat to B, presented as an
% economy-size SVD Bhat = U*S*V’, error estimate

Om = random_signs(n,k); % Matrix of random signs
Y = B(Om); % Matvecs with B
[Q,R] = qr(Y,"econ"); % Orthogonalize
C = Bt(Q); % Matvecs with B’
[UU,S,V] = svd(C’,"econ"); % SVD of factor matrix
U = Q*UU; % Get left singular vectors
est = sqrt(mean(1./sqrownorms(inv(R)))); % Error estimate

end

The computational cost of the leave-one-out error estimator is just O(𝑘3) operations
to invert the matrix 𝑹. In particular, the cost of the leave-one-out error estimator is
independent of both the dimensions 𝑚 and 𝑛 of the input matrix 𝑩, and it is always
faster than the O((𝑚 + 𝑛)𝑘2) post-processing cost of a standard randomized SVD
implementation.

Remark 18.2 (Even faster leave-one-out error estimation). One can accelerate the
leave-one-out error estimator even further by estimating the row norms of 𝑹−1

using a stochastic estimator from Chapter 17. Using the Johnson–Lindenstrauss
row-norm estimator ((13.6)), O(log 𝑘) matvecs suffice to estimate all row norms of
𝑹−1 up to a constant relative error [Woo14, Thm. 4]. Further, each matvec 𝑹−1𝜸

can be computed in O(𝑘2) operations. Therefore, the accelerated leave-one-out
error estimator requires just O(𝑘2 log 𝑘) operations, which is much less than the
randomized SVD. ⋄

18.3 Experiments
Figure 18.1 presents a comparison between the leave-one-out error estimator (18.4)
and the Girard–Hutchinson norm estimator (18.2) with 𝑠 = 10 matvecs applied to
the randomized SVD on the four test matrices in (14.27). We measure the quality
of the error estimates using the approximation factor

𝛼 := max
{ est

err
,

err
est

}
− 1. (18.5)

285

Figure 18.1: Approximation factor for the leave-one-out (orange circles) and Girard–
Hutchinson (purple asterisks, 𝑠 = 10 matvecs) estimates for the error of the random-
ized SVD on the test matrices from (14.27) The error metric is the approximation
factor, defined in (18.5). Lines trace the median of 1000 trials, and error bars show
the 10% and 90% quantiles.

This is a sensible measure of the approximation quality, because an error estimate
with an approximation factor of 𝛼 is guaranteed to satisfy

1
1 + 𝛼 · est ≤ err ≤ (1 + 𝛼)est.

Here are my conclusions:

Leave-one-out error-estimator: pretty good for being free. Before commenting
on the finer distinctions between the leave-one-out error estimator and the Girard–
Hutchinson norm estimator, it is worth emphasizing from the outset that the leave-
one-out error estimator has a basic advantage over the Girard–Hutchinson norm
estimator: The leave-one-out error estimator requires no additional matrix–vector
products with the matrix 𝑩, and it requires a small number of arithmetic operations to
calculate. The Girard–Hutchinson estimator requires fresh matrix–vector products
with the matrix 𝑩. Thus, even on examples where the Girard–Hutchinson norm
estimator is better, the leave-one-out error estimator may still be preferable in many
applications, since it is basically free to compute.

Self-improving. Another advantage of the leave-one-out error estimator is that it

286

is self-improving. When one increases the approximation rank 𝑘 , the estimator
automatically improves. This differs from the Girard–Hutchinson estimator, which
requires additional matvecs to meaningfully improve quality of the estimator.

Overestimating the error when the singular values drop sharply. The major
weakness of the leave-one-out error estimator is that it provides an unbiased estimate
of the rank-(𝑘 − 1) randomized SVD error, which can overestimate the rank-𝑘
randomized SVD error when the singular values decrease rapidly. This phenomenon
is visible at values 𝑘 ≤ 100 in the exp example and at 𝑘 = 50 in the step example.

When the approximation becomes accurate to machine precision. Finally, for
𝑘 > 100 on the exp example, the randomized SVD approximation becomes accurate
to machine precision ∥𝑩 − 𝑩∥F ≈ 10−16. When this happens, the leave-one-out
error estimator overestimates the true error by a factor of about 3 due to numerical
issues. Fortunately, for most applications, small factors do not matter when an
approximation is accurate to machine-precision.

287

C h a p t e r 19

MATRIX JACKKNIFE VARIANCE ESTIMATION

Good simple ideas, of which the jackknife is a prime example, are our
most precious intellectual commodity, so there is no need to apologize
for the easy mathematical level.

Bradley Efron, The Jackknife, the Bootstrap and Other Resampling
Plans [Efr82, p. 1]

In the previous chapter, we discussed the leave-one-out error estimator as a way to
assess the error of an approximation 𝑩 ≈ 𝑩 computed by a randomized algorithm.
In this chapter, we shall turn our attention to assessing the quality of randomized
approximations to quantities 𝑸(𝑩) obtained from transforming a matrix 𝑩 ∈ K𝑚×𝑛

by a nonlinear function 𝑸 : K𝑚×𝑛 → K𝑚
′×𝑛′ . There are many examples of such

transformations:

1. Matrix functions. 𝑸(𝑩) = 𝑓 (𝑩), where 𝑓 : R→ R is a function.

2. Best rank-𝑟 approximation. 𝑸(𝑩) = ⟦𝑩⟧𝑟 .

3. Top-𝑟 singular values. 𝑸(𝑩) = (𝜎1(𝑩), . . . , 𝜎𝑟 (𝑩)) for given parameter 𝑟 .

4. Dominant singular subspace projectors. 𝑸(𝑩) = 𝑼(:, 1 : 𝑟)𝑼(:, 1 : 𝑟)∗ or
𝑸(𝑩) = 𝑽 (:, 1 : 𝑟)𝑽 (:, 1 : 𝑟)∗, where 𝑩 = 𝑼𝚺𝑽∗ is an SVD and 𝑟 is a given
parameter.

Each of these quantities can be estimated by applying a randomized algorithm to
produce an initial matrix approximation 𝑩 ≈ 𝑩 and then using 𝑸(𝑩) as a proxy for
𝑸(𝑩). This chapter addresses the following question:

How can we assess the quality of the approximation 𝑸(𝑩) ≈ 𝑸(𝑩) at
runtime?

This question is nontrivial. In contrast to the leave-one-out error estimation set-
ting, we typically do not have access to the true quantity of interest 𝑸(𝑩), even
via matvecs. Subject to this limitation, it may be infeasible or computationally

288

intractable to directly estimate the error ∥𝑸(𝑩) − 𝑸(𝑩)∥F, and we must settle for
other diagnostics of the quality of the computed solution. One useful diagnostic is
the variance of the estimator 𝑸(𝑩). The significance of the variance can be justified
by appealing to the following intuition [ET24, p. A511]:

In order to trust the answer provided by a randomized algorithm, the output
should be insensitive to the randomness used by the algorithm

The variance provides a quantitative measure of the random fluctuations in the
output of a randomized algorithm, allowing us to put this principle into action.

This chapter develops a general approach for estimating the variance of a randomized
matrix algorithm based on jackknife resampling, a standard technique in statistics.
Jackknife resampling is a leave-one-out approach, allowing us to use our matrix
downdating results to obtain highly efficient algorithms.

Sources. This chapter is based on the paper

Ethan N. Epperly and Joel A. Tropp. “Efficient Error and Variance Estimation for
Randomized Matrix Computations”. In: SIAM Journal on Scientific Computing
46.1 (Feb. 2024), A508–A528. doi: 10.1137/23M1558537.

Outline. Section 19.1 begins by describing the bias–variance decomposition of
a matrix estimator. We then introduce the matrix jackknife variance technique in
generality in Section 19.2, and we discuss its use in Section 19.3. Section 19.4
describes how to efficiently compute matrix jackknife estimates for a broad class of
“spectral transformations” of a Nyström approxiamtion to a psd matrix.

19.1 Bias–variance decomposition
Throughout this chapter, we shall be interested in estimating the variance of a
random matrix 𝑿 ∈ K𝑚×𝑛, defined as

Var(𝑿) := E ∥𝑿 − E 𝑿∥2F.

The matrix variance is the sum of the scalar variances of each entry of 𝑿:

Var(𝑿) =
𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1

Var(𝑥𝑖 𝑗) =
𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1

E |𝑥𝑖 𝑗 − E 𝑥𝑖 𝑗 |2. (19.1)

The variance measures the variability of 𝑿 with respect to the Frobenius norm;
for discussion of other Schatten norms, see [ET24, §6]. The standard deviation is
defined as SD(𝑿) := Var(𝑿)1/2.

https://doi.org/10.1137/23M1558537

289

Suppose 𝑩 is a random estimator for the matrix 𝑩. One convenient measure for the
approximation quality 𝑩 ≈ 𝑩 is the mean-squared error

MSE := E∥𝑩 − 𝑩∥2F.

The mean-squared error admits a bias–variance decomposition:

MSE = Bias2 + Var(𝑩) where Bias := ∥𝑩 − E 𝑩∥F. (19.2)

Consequently, the variance is a lower bound on the mean-squared error.

19.2 Matrix jackknife variance estimation
Jackknife resampling is an established approach for approximating the variance of
a statistical estimator. Typically, the method is applied to scalar statistics computed
from observational data. Here, we will hijack the basic machinery for the matrix-
valued outputs of randomized algorithms.

We begin with the general formalism. Let𝜔1, . . . , 𝜔𝑘 be iid random variables taking
values in a (measurable) space S, and use them to form a matrix-valued estimator
𝑿𝑘 = 𝑿𝑘 (𝜔1, . . . , 𝜔𝑘) ∈ K𝑚×𝑛. We will abuse notation and use 𝑿𝑘 to denote both
the deterministic function

𝑿𝑘 : (𝜔1, . . . , 𝜔𝑘) ∈ S𝑘 ↦−→ 𝑿𝑘 (𝜔1, . . . , 𝜔𝑘) ∈ K𝑚×𝑛.

and the output of that function for the random inputs 𝜔1, . . . , 𝜔𝑘 . We assume that
the estimator 𝑿𝑘 is a permutation-invariant function of its inputs 𝜔1, . . . , 𝜔𝑘 .

In statistics and randomized matrix computations, we are often interested in a family
of estimators (𝑿𝑘 : 𝑘 = 1, 2, . . .) that can be instantiated for any natural number 𝑘 .
Examples in statistics include the sample mean and variance:

𝑚𝑘 (𝜔1, . . . , 𝜔𝑘) =
1
𝑘

𝑘∑︁
𝑖=1

𝜔𝑖;

𝑣𝑘 (𝜔1, . . . , 𝜔𝑘) =
1

𝑘 − 1

𝑘∑︁
𝑖=1
|𝜔𝑖 − 𝑚𝑘 (𝜔1, . . . , 𝜔𝑘) |2.

Examples in randomized matrix computations include the randomized SVD and the
randomized Nyström approximation

𝑩(𝝎1, . . . ,𝝎𝑘) = 𝚷𝑩[𝝎1 ··· 𝝎𝑘]𝑩 and 𝑨(𝝎1, . . . ,𝝎𝑘) = 𝑨 ⟨[𝝎1 · · · 𝝎𝑘]⟩ .

290

We often assume the variance is monotone decreasing Var(𝑿𝑘) ≤ Var(𝑿𝑘−1) in the
sample size 𝑘 .

The jackknife variance estimate was introduced by Tukey in 1958 [Tuk58]. Here is
the idea. Define a family of jackknife replicates by recomputing the estimator with
each one of the samples 𝜔1, . . . , 𝜔𝑘 left out in turn:

𝑿 (𝑗) := 𝑿𝑘−1(𝜔1, . . . , 𝜔 𝑗−1, 𝜔 𝑗+1, . . . , 𝜔𝑘).

The jackknife variance estimate is defined as

Jack2(𝑿𝑘−1) :=
𝑘∑︁
𝑗=1

𝑿 (𝑗) − 𝑿 (·)

2

F
where 𝑿 (·) :=

1
𝑘

𝑘∑︁
𝑗=1

𝑿 (𝑗) . (19.3)

The jackknife estimate serves as an approximation of the variance of the (𝑘 − 1)-
sample estimator 𝑿𝑘−1, and it typically provides a modest overestimate of the
variance of the 𝑘-sample estimator 𝑿𝑘 as well.

Observe that the formula (19.3) for the jackknife variance estimator resembles the
traditional sample covariance estimate

Var(𝑿𝑘−1) ≈
1

𝑘 − 1

𝑘∑︁
𝑗=1

𝒁(𝑗) − 𝒁(·)

2

F
where 𝒁(·) :=

1
𝑘

𝑘∑︁
𝑗=1

𝒁(𝑗) (19.4)

for iid copies 𝒁(1) , . . . , 𝒁(𝑘) ∼ 𝑿𝑘−1 of the estimator. An important difference
between the jackknife estimate (19.3) and the sample covariance (19.4) is that the
jackknife estimate (19.3) is not divided by 𝑘 − 1. This difference may be justified
intuitively. The replicates 𝑿 (𝑗) are not independent, each one differs in a single
input coordinate. Since only one out of 𝑘 − 1 inputs differs between each pair of
replicates, the replicates 𝑿 (1) , . . . , 𝑿 (𝑘) should have a “(𝑘 − 1)−1 fraction” of the
variance of true iid copies 𝒁(1) , . . . , 𝒁(𝑘) ∼ 𝑿𝑘−1.

The quality of jackknife variance estimates can be analyzed using the Efron–Stein–
Steele inequality [ES81; Ste86]:

Fact 19.1 (Efron–Stein–Steele inequality). Let 𝜔1, . . . , 𝜔𝑘 be independent random
variables in a measurable space S, let 𝑓 : S𝑘 → K be a measurable function, and
introduce iid copies 𝜔′1, . . . , 𝜔

′
𝑘
. Then

Var(𝑍) ≤ 1
2

𝑘∑︁
𝑗=1

E
���𝑍 − 𝑍 (𝑗) ���2

where 𝑍 := 𝑓 (𝜔1, . . . , 𝜔𝑘) and 𝑍 (𝑗) := 𝑓 (𝜔1, . . . , 𝜔 𝑗−1, 𝜔
′
𝑗
, 𝜔 𝑗+1, . . . , 𝜔𝑘).

291

The Efron–Stein–Steele inequality is a powerful result that can be used to great effect
in high-dimensional probability. See [van14, §2.1] and [Tro21, §2.7] for accessible
introductions and [BLM13] for many uses of this inequality in probability theory.
It yields the following consequence for the jackknife estimator (19.3).

Theorem 19.2 (Matrix jackknife overestimates variance). With the prevailing nota-
tion and assumptions,

Var(𝑿𝑘−1) ≤ E Jack2(𝑿𝑘−1).

This result states the matrix jackknife variance estimator (19.3) overestimates the
variance of the (𝑘 − 1)-sample estimator on average. The fact that the jackknife
estimate overestimates the true variance is a bit disappointing, but it is remarkable
that the jackknife variance estimator possesses guarantees at this level of generality.
In practice, on the examples we consider in this thesis, the jackknife variance
estimate tends to be accurate to within an order of magnitude, which is good enough
to provide actionable information in applications.

Proof of Theorem 19.2. First consider a scalar statistic 𝑥𝑘−1 = 𝑥𝑘−1(𝜔1, . . . , 𝜔𝑘−1)
and introduce replicates 𝑥 (𝑗) = 𝑥𝑘−1(𝜔1, . . . , 𝜔 𝑗−1, 𝜔 𝑗+1, . . . , 𝜔𝑘) with mean 𝑥 (·) .
Observe that the replicates 𝑥 (𝑗) share the same distribution. Additionally,

𝑥𝑘−1 = 𝑥𝑘−1(𝜔1, . . . , 𝜔𝑘−1) = 𝑥 (𝑘) .

By the Efron–Stein–Steele inequality,

Var(𝑥𝑘−1) ≤
1
2

𝑘−1∑︁
𝑗=1

E
���𝑥𝑘−1 − 𝑥𝑘−1(𝜔1, . . . , 𝜔 𝑗−1, 𝜔

′
𝑗 , 𝜔 𝑗+1, . . . , 𝜔𝑘−1)

���2 ,
where 𝜔′

𝑗
denotes an independent copy of 𝜔 𝑗 . The 𝜔 𝑗 are iid random variables, so

wecan replace 𝜔′
𝑗

by 𝜔𝑘 . Thus, we obtain

Var(𝑥𝑘−1) ≤
1
2

𝑘−1∑︁
𝑗=1

E
���𝑥 (𝑘) − 𝑥 (𝑗) ���2 .

Since each element of {𝑥 (ℓ) − 𝑥 (𝑗) : ℓ ≠ 𝑗} has the same distribution, we can replace
𝑥 (𝑘) by 𝑥 (ℓ) and average over the index ℓ, obtaining

Var(𝑥𝑘−1) ≤
1

2𝑘

𝑘∑︁
𝑗 ,ℓ=1

E
���𝑥 (ℓ) − 𝑥 (𝑗) ���2 .

292

Next, we compute

E
𝑘∑︁
𝑗=1

���𝑥 (𝑗) − 𝑥 (·) ���2 = E
𝑘∑︁
𝑗=1

�����𝑥 (𝑗) − 1
𝑘

𝑘∑︁
ℓ=1

𝑥 (ℓ)

�����2
= E

𝑘∑︁
𝑗=1


���𝑥 (𝑗) ���2 − 2

𝑘

𝑘∑︁
ℓ=1

Re
(
𝑥 (𝑗)𝑥 (ℓ)

)
− 1
𝑘2

𝑘∑︁
ℓ,𝑝=1

Re
(
𝑥 (ℓ)𝑥 (𝑘)

)
= E


1
2

𝑘∑︁
𝑗=1

���𝑥 (𝑗) ���2 + 1
2

𝑘∑︁
ℓ=1

���𝑥 (𝑗) ���2 − 1
𝑘

𝑘∑︁
𝑗 ,ℓ=1

Re
(
𝑥 (𝑗)𝑥 (ℓ)

)
=

1
2𝑘

𝑘∑︁
𝑗 ,ℓ=1

E
���𝑥 (ℓ) − 𝑥 (𝑗) ���2 = Jack2(𝑥𝑘−1).

In the second line, we expand the square. In the third line we consolidate the second
and third terms, break the sum

∑𝑘
𝑗=1 |𝑥 (𝑗) |

2 into two equal pieces, and reindex by
replacing 𝑗 with ℓ. In the last line, we recombine. Joining the two previous displays
leads to the the desired result

Var(𝑥𝑘−1) ≤ Jack2(𝑥𝑘−1). (19.5)

The matrix case follows by decomposing the matrix variance as a sum of the variance
of its entries (19.1) and invoking (19.5) entry-by-entry.

Remark 19.3 (What about the bias?). Jackknife estimates of the bias were developed
by Quenouille in 1949 [Que49], predating jackknife variance estimates by nearly a
decade. Quenouille’s bias estimate can be formed for a randomized matrix approxi-
mation, but its usefulness in this setting is unclear. Quenouille estimate is typically
analyzed under the assumption that the bias can be expanded in reciprocal powers
of 𝑘 . Randomized low-rank approximation algorithms seemingly do not satisfy this
property. Thus, it is unclear what, if any, insight Quenouille’s bias estimate provides
for randomized matrix algorithms. ⋄

19.3 Using matrix jackknife variance estimation
In principle, the use cases for matrix jackknife variance estimation could be very
broad. In this thesis, we will apply jackknife variance estimation to quantities
𝑿𝑘 = 𝑸(𝑨) computed from a randomized Nyström approximation 𝑨 ≈ 𝑨; see
[ET24] for further examples. To instantiate the jackknife methodology, we treat

𝑿𝑘 = 𝑿𝑘 (𝝎1, . . . ,𝝎𝑘)

293

as a function of the iid columns 𝝎𝑖 of the random test matrix 𝛀. We will focus on
this setting for the remainder of the chapter.

A limitation of the matrix jackknife variance estimator is that it captures just one
term in the bias–variance decomposition (19.2). To approximate the mean-squared
error, a separate estimate of the bias is necessary. However, the information provided
by the jackknife variance estimate is still actionable.

If the variance is high, the mean-squared error is high, and the output of the
algorithm should not be trusted. If the variance is low, then the jackknife
variance estimate is equivocal, as the mean-squared error could be low or
high.

For a user, what does it mean if the variance is high? There are at least two
possibilities:

1. Too few samples. The approximation 𝑨 is under-resolved. More samples (i.e.,
more columns in the test matrix 𝛀) are needed to produce an approximation
𝑨 of sufficiently high quality to estimate the quantity of interest.

2. Bad conditioning. The quantity of interest𝑸(𝑨) could be poorly conditioned
in the sense that small changes to the input 𝑨 result in large changes to 𝑸(𝑨).
In this case, even if the approximation 𝑨 ≈ 𝑨 is highly accurate, 𝑸(𝑨) can
be far from 𝑸(𝑨) owing to the inherent sensitivity of the quantity of interest.
When dealing with a badly conditioned problems, adding additional samples
may not help improve the quality of the approximation 𝑸(𝑨) ≈ 𝑸(𝑨).

In either case, high variance—diagnosed by a jackknife estimate—flashes a signal
not to trust the computed output.

Jackknife variance estimation can be deployed at runtime to detect these bad behav-
iors. One possible use case is to run the jackknife variance estimate and provide a
warning to the user if high variance is detected. As an alternative, jackknife variance
estimation can be used to adaptively determine the approximation rank 𝑘 until the
variance drops below a specified threshold.

The main advantage of jackknife variance estimation is it provides a way of estimat-
ing the quality of a very general class of quantities produced by randomized matrix
approximation algorithms. Like the leave-one-out error estimate, it requires no

294

additional matrix–vector products beyond those used to run the original algorithm.
To achieve the maximum efficiency for the jackknife variance estimator, one can
develop purpose-build fast implementations using the randomized SVD or the ran-
domized Nyström downdating results (Theorems 14.1 and 14.2). The remainder of
this chapter develops an example of application of the matrix jackknife for assessing
the quality of “spectral transformations” of Nyström approximations; see [ET24] for
several more examples.

19.4 Example: Spectral transformations of Nyström approximations
Many of the ways we use Nyström approximations to psd matrices can be encom-
passed under the umbrella of applying a spectral transformation to the matrix. We
make the following definition:

Definition 19.4 (Spectral transformation). Let 𝒇 denote a vector-valued function
𝒇 : R𝑛+ → C𝑛, and let 𝑨 ∈ K𝑛×𝑛 denote a psd matrix with eigendecomposition
𝑨 = 𝑼 Diag(𝝀(𝑨))𝑼∗. The spectral transformation of 𝑨 by 𝒇 is

𝒇 [𝑨] := 𝑼 Diag(𝒇 (𝝀(𝑨)))𝑼∗.

We remind the reader that the eigenvalues 𝝀(𝑨) are sorted in nonincreasing or-
der. The spectral transformation may fail to be uniquely defined if 𝑨 has repeated
eigenvalues.

The spectral transformation 𝒇 is rank-𝑘 if

𝒅(𝑘 + 1 : 𝑛) = 0 =⇒ [𝒇 (𝒅)] (𝑘 + 1 : 𝑛) for every 𝒅 ∈ R𝑛+.

For a rank-𝑘 spectral transformation, we can extend its domain of definition to
matrices of size 𝑘 by

𝒇 (𝑑1, . . . , 𝑑𝑘) := [𝒇 (𝑑1, . . . , 𝑑𝑘 , 0 . . . , 0)] (1 : 𝑘). (19.6)

Many of the application of Nyström approximations can be reinterpreted as spectral
transformations. Here are several examples:

1. Spectral projectors: One of the main uses for Nyström approximation is to
approximate eigenvectors. However, even when the eigenvalues are distinct,
the eigenvectors are only defined up to a sign (or phase, if K = C); when there
are repeated eigenvalues, the non-uniqueness of eigenvectors become more

295

severe. To resolve many of these uniqueness issues, we can use spectral pro-
jectors. Given a subset S ⊆ {1, . . . , 𝑛} and a matrix 𝑨 = 𝑼 Diag(𝝀(𝑨))𝑼∗,
the spectral projector associated with the index set S is

𝚷S(𝑨) = 𝑼(:,S)𝑼(:,S)∗.

Natural examples include S = {1, . . . , 𝑘} (top-𝑘 subspace) or S = { 𝑗} (single
eigenvector). The spectral projector is the orthprojector on the invariant sub-
space spanned by the eigenvectors span{𝒖𝑠 : 𝑠 ∈ S} indexed by S. Spectral
projectors are spectral transformation associated with the constant function
𝒇 (𝒅) = ∑

𝑠∈S e𝑠. As a spectral transformation, the spectral projector function
𝒇 is rank-𝑘 if and only if S ⊆ {1, . . . , 𝑘}.

2. Rank-𝑟 truncation. We can truncate rank-𝑘 Nyström approximations to
smaller rank 𝑟 < 𝑘 to reduce storage. The rank-𝑟 approximation operation
𝑨 ↦→ ⟦𝑨⟧𝑟 is also a spectral transformation, associated with the function

𝒇 (𝑑1, . . . , 𝑑𝑛) = (𝑑1, . . . , 𝑑𝑟 , 0, . . . , 0) for every 𝒅 ∈ R𝑛+.

This spectral transformation is rank-𝑘 for every 1 ≤ 𝑘 ≤ 𝑛.

3. Matrix functions. Another use of Nyström approximations, developed by
David Persson and collaborators [PK23; PMM25], is to approximate a (stan-
dard) matrix functions 𝑓 (𝑨). The idea is straightforward: Given a Nyström
approximation 𝑨 ≈ 𝑨, call 𝑓 (𝑨) as the funNyström approximation to 𝑓 (𝑨).
The funNyström approximation is the spectral transformation associated with
the function

𝒇 (𝑑1, . . . , 𝑑𝑛) = (𝑓 (𝑑1), . . . , 𝑓 (𝑑𝑛)) for all 𝒅 ∈ R𝑛+.

For every 1 ≤ 𝑘 ≤ 𝑛, this spectral transformation is rank-𝑘 if and only if
𝑓 (0) = 0. (The requirement that 𝑓 (0) = 0 can always be satisfied by shifting
𝑓̃ := 𝑓 − 𝑓 (0).)

Given these various settings, it is natural to seek ways of estimating the variance of
spectral transformations of a Nyström approximation.

For the rest of this section, we consider the task of estimating a general spectral
transformation 𝒇 [𝑨] using a single-pass Nyström approximation 𝑨 = 𝑨⟨𝛀⟩ to a
psd matrix 𝑨. We assume the test matrix 𝛀 ∈ K𝑛×𝑘 is composed of independent
columns, and we assume that 𝒇 has rank 𝑘 .

296

Variance estimation for spectral transformations: O(𝑘4) algorithm
The simplest approach to variance estimation for spectral transformations passes
through a variant of the downdating formula (14.25) for Nyström approximations.

Begin by computing the Nyström approximation as in Program 2.4: We form
𝒀 := 𝑨𝛀, compute 𝑯 := 𝛀∗𝒀 , factorize 𝑯 = 𝑹∗𝑹, define 𝑭 := 𝒀𝑹−1, and compute
an SVD 𝑭 = 𝑼𝚺𝑽∗. The Nyström approximation is now given as

𝑨 = 𝑼𝑫𝑼∗ where 𝑫 = 𝚺2.

(For numerically stable implementation in practice, one should add shift correction
to this procedure; see (2.11).) Following (14.23), the family of downdated Nyström
approximations 𝑨(𝑖) = 𝑨⟨𝛀−𝑖⟩ is

𝑨(𝑖) = 𝑼𝑫𝑼∗ − 𝒛𝑖𝒛
∗
𝑖 where 𝒁 := 𝑭𝑹−∗ · Diag

(
srn(𝑹−1)

)−1/2
.

Using the SVD 𝑭 = 𝑼𝚺𝑽∗, we can rewrite the downdating rule as

𝑨(𝑖) = 𝑼(𝑫 − 𝒘𝑖𝒘
∗
𝑖)𝑼∗ where 𝑾 = 𝚺𝑽∗𝑹−∗ · Diag

(
srn(𝑹−1)

)−1/2
.

Consequently, the entire family of Nyström approximations is given by the𝑾 matrix,
which can be computed in O(𝑘3) operations.

Using the downdating matrix 𝑾 in a straightforward way, we can compute the
jackknife variance estimate in O(𝑘4) operations. The spectral transformation of
each 𝑨(𝑖) is given as

𝒇 [𝑨(𝑖)] = 𝑼 𝒇 [𝑫 − 𝒘𝑖𝒘
∗
𝑖]𝑼∗,

where we have used the extension (19.6) of spectral functions to 𝑘 × 𝑘 matrices.
Thus, we have

Jack2(𝒇 [𝑨]) =
𝑘∑︁
𝑗=1

 𝒇 [𝑨(𝑗)] − 1
𝑘

𝑘∑︁
𝑖=1

𝒇 [𝑨(𝑖)]

2

F

=

𝑘∑︁
𝑗=1

𝑿 (𝑗) − 𝑿 (·)

2

F
,

where

𝑿 (𝑗) := 𝒇 [𝑫 − 𝒘 𝑗𝒘
∗
𝑗] and 𝑿 (·) :=

1
𝑘

𝑘∑︁
𝑗=1

𝑿 (𝑗) .

Computing each 𝑿 (𝑗) directly requires a spectral decomposition of 𝑿 (𝑗) at O(𝑘3)
cost. Since there are 𝑘 replicates 𝑿 (𝑗) , the total cost is O(𝑘4) operations. Once the
replicates have been formed, the jackknife variance estimate requires an additional
O(𝑘3) arithmetic operations. Code is provided in Program 19.1.

297

Program 19.1 nystrom_jack.m. Single-pass Nyström approximation with jack-
knife variance estimation for spectral transformation. Subroutine nystrom is pro-
vided in Program 2.3.
function [U,D,jack] = nystrom_jack(A,n,k,f)
% Input: Function A() computing matrix products A(X) = A*X, number
% of rows n, rank k, spectral transformation f()
% Output: Shift-corrected Nystrom approximation Ahat = U*D*U’,
% represented by factors U and D, and jackknife standard
% deviation estimate jack

[F,mu,~,R] = nystrom(A,n,k); % Compute Nystrom approximation
[U,S,V] = svd(F,"econ"); % Economy-size SVD
D = max(S.^2 - mu, 0); % Apply shift correction

W = ((S*V’)/R’)*diag(sqrownorms(inv(R)).^(-0.5)); % Downdating matrix
Xs = zeros(k,k,k); % Jackknife replicates
for j = 1:k

[Q,d] = eig(D - W(:,j)*W(:,j)’,"vector");
d = d(end:-1:1); Q = Q(:,end:-1:1); % Evals in decreasing order
Xs(:,:,j) = Q * diag(f(d)) * Q’; % Spectral transform

end
jack = norm(Xs - mean(Xs,3),"fro"); % Jackknife estimate

end

Acceleration to O(𝑘3) operations
In some cases, variance estimation for spectral transformations can be accelerated to
O(𝑘3) operations. Specifically, consider a spectral transformation for which 𝒇 (𝒅)
has only 𝑟 nonzero entries for every 𝒅 ∈ R𝑛+. To compute 𝒇 [𝑫 − 𝒘

𝑗
𝒘∗
𝑗
] efficiently,

observe that 𝑫 − 𝒘
𝑗
𝒘∗
𝑗

is a rank-one modification to a diagonal matrix 𝑫. The
spectral decomposition of each 𝑫 − 𝒘

𝑗
𝒘∗
𝑗
= 𝑸 (𝑗) Diag(𝒅 (𝑗))𝑸∗(𝑗) can be computed

in O(𝑘2) operations; see [Dem97, §5.3.3]. Then, each 𝑿 (𝑗) = 𝒇 [𝑫 − 𝒘
𝑗
𝒘∗
𝑗
] can

be computed in O(𝑘2𝑟) operations. Thus, the total runtime using this approach is
O(𝑘3𝑟) operations. If 𝑟 = O(1), the total cost is O(𝑘3) operations, as promised.
See the code of [ET24] for an implementation of this faster algorithm.

Experiment
To demonstrate the effectiveness of the jackknife variance estimation technique, we
use it to assess the variance of spectral transformations of Nyström approximations
to a psd matrix 𝑨. We set 𝑨 to be the exp matrix (14.27c), and we consider two
spectral transformations: the dominant rank-10 projector 𝒇 [𝑨] := 𝚷1:10(𝑨) and the

298

Figure 19.1: Jackknife standard deviation estimate (orange circles), error (purple
asterisks), and standard deviation (pink triangles) for spectral transformations of
Nyström approximations of ranks 25 ≤ 𝑘 ≤ 150. Spectral transformations are the
dominant rank-10 projector 𝒇 [𝑨] := 𝚷1:10(𝑨) (left) and the matrix square root
𝒇 [𝑨] := 𝑨1/2 (right).

matrix square root 𝒇 [𝑨] := 𝑨1/2. We test approximation ranks 25 ≤ 𝑘 ≤ 150.

Results appear in Fig. 19.1. For each spectral transformation and each Nys-
tröm approximation, we show the error ∥ 𝒇 [𝑨] − 𝒇 [𝑨] ∥F, the standard deviation
Var(𝒇 [𝑨])1/2, and the jackknife standard deviation estimate Jack(𝒇 ([𝑨]). For both
examples, we see that the jackknife variance estimate serves as a modest overes-
timate of both the error and standard deviation, providing a useful diagnostic of
the quality of the computed approximation. Many more examples of the jackknife
methodology are provided in [ET24, §§1.2 & 5].

299

C h a p t e r 20

LEAVE-ONE-OUT RANDOMIZED MATRIX ALGORITHMS:
OPEN PROBLEMS

This chapter discusses open problems related to leave-one-out randomized matrix
algorithms including error analysis (Section 20.1), leave-one-out algorithms for
Hermitian indefinite matrices (Section 20.2), and numerically stable downdating
formulas for subspace iteration (Section 20.3).

20.1 Open problem: Error analysis
This part of the thesis has discussed matrix attribute estimation algorithms. The
basic versions of XTrace and XNysTrace have a priori bounds on the mean-
squared error, and most of the remaining algorithms have no error analysis at all.
In my view, theoretical analysis of these algorithms is not a major limitation; they
are based on sound principles—unbiased Monte Carlo approximation, variance
reduction by low-rank approximation, and exchangeable leave-one-out design—and
they achieve spectral accuracy in practice. Still, it is natural to desire for a more
comprehensive mathematical analysis of these algorithms.

There are several natural topics for future research:

• Develop sharp error bounds for XTrace and XNysTrace that hold with
high-probability.

• Obtain a priori error bounds, either high-probability or on the mean-squared
error, for the randomized diagonal estimators and row-norm estimators from
Chapters 16 and 17.

• Obtain bounds on the variance of the leave-one-error estimate from Chap-
ter 14.

20.2 Open problem: Hermitian indefinite matrices
This thesis has developed leave-one-out matrix attribute estimation algorithms for
general matrices using the randomized SVD (e.g., XTrace) and algorithms for
psd matrices using single-pass Nyström approximation (e.g., XNysTrace). Can
optimized leave-one-out algorithms be devised for matrices that have additional

300

Program 20.1 xsymtrace.m. Implementation of the XNysTrace algorithm de-
signed to work with Hermitian indefinite matrices. Subroutines diagprod and
random_signs appear in Program 14.1 and Program F.2.
function [tr,est] = xsymtrace(A,n,s)
% Input: Function A() computing matrix products A(X) = A*X, number
% of rows n, and number of matvecs s
% Output: Estimate tr of trace(A), estimate est of the error
% abs(tr - trace(A))

% Nystrom approximation
Om = random_signs(n,s); % Test matrix of random signs
Y = A(Om); % Matrix product Y = A*Om
H = Om’*Y;
[L,D] = ldl((H+H’)/2); % LDLt factorization
F = Y/L’; % Triangular substitution

% Downdating
Z = (F/D)/L;
d = diag(inv(H)); % Downdated approx is F*D*F’-Z(:,i)*Z(:,i)’/d(i)

% Compute vector of estimates
tr_vec = trace(D\(F’*F)) * ones(s,1) - sqcolnorms(Z) ./ d ...

+ abs(diagprod(Om,Z)) .^ 2 ./ d;
tr = mean(tr_vec); % Trace estimate
est = std(tr_vec) / sqrt(s); % Error estimate

end

structure, but are not psd? In particular, is there a way to improve leave-one-out
matrix algorithms for Hermitian indefinite matrices?

As we discussed in Remark 2.10, one can apply single-pass Nyström approximation
to Hermitian indefinite matrices without modification, although it can be inaccurate
on certain instances. Program 20.1 provides an implementation of XSymTrace,
a version of XNysTrace designed to work with Hermitian indefinite matrices.
Results for this algorithm on our testbed of synthetic matrices with different spectral
characteristics appear in Fig. 20.1. We use the same test matrices from previous
sections, except that we randomize the sign of each eigenvalue so the matrices are
indefinite. We see that the XSymTrace estimator is substantially less accurate
than XTrace on three of four examples, demonstrating the failure of (single-pass)
Nyström approximation for indefinite matrices. Thus, we do not regard XSymTrace
as an effective general-purpose algorithm for trace estimation of Hermitian indefinite

301

Figure 20.1: Comparison of XTrace (orange solid) and XSymTrace (blue dashed)
on four test matrices (14.27) with different spectral characteristics. Lines show
median of 100 trials, and shaded regions show 10% and 90% quantiles.

matrices. (Nevertheless, its performance may be acceptable for matrices with only
a small number of negative eigenvalues or with very rapid spectral decay.)

For this reason, determining the “right” approach to developing leave-one-out algo-
rithms for Hermitian indefinite matrices remains an open problem. The oversam-
pling technique discussed in Remark 2.10 may be a promising strategy, although
downdating the regularized pseudoinverses ⟦𝛀∗𝑨𝛀⟧†

𝑘
may be a nontrivial task.

(The methods from Section 19.4 could prove helpful.) For the oversampled Nys-
tröm method to lead to substantial speedups over XTrace, it is important to keep
the oversampling factor as small as possible, potentially using smaller oversampling
factors than considered by Park and Nakatsukasa [PN25]. I also believe there could
be new approaches to low-rank approximation of Hermitian indefinite matrices that
could be more natural and powerful than the truncated Nyström method.

20.3 Open problem: Numerically stable downdating for subspace iteration
In Section 18.2, we developed an efficient implementation of the leave-one-out
error estimator for the randomized SVD (without subspace iteration). This method
immediately yields error estimates for randomized subspace iteration (Section 2.4);

302

Program 20.2 rsi_errest.m. Randomized subspace iteration for producing a
low-rank approximation to a general matrix with leave-one-out error estimation.
Subroutines cnormc and diagprod are provided in Program F.1 and Program 14.1.
function [U,D,V,est] = rsi_errest(B,Bt,n,k,q)
% Input: Functions B() and Bt() computing matrix products B(X) =
% B*X and Bt(X) = B’*X, number of columns n, rank k, and
% number of subspace iteration steps q
% Output: Low-rank approximation Bhat to B, presented as an
% economy-size SVD Bhat = U*S*V’ and error estimate est

assert(mod(q,2) == 0); % Only implemented for even steps
Om = randn(n,k); % Gaussian random test matrix with n rows

Z = B(Om); Y = Z; % First subspace iteration step
for i = 1:(q/2-1)

Y = B(Bt(Y)); % Two subspace iteration steps
end

[Q,R] = qr(Y,"econ"); % Orthogonalize
C = Bt(Q); % Matvecs with B’
[UU,D,V] = svd(C’,"econ"); % SVD of factor matrix
U = Q*UU; % Get left singular vectors

S = cnormc(inv(R’)); % Downdating matrix
QtZ = Q’*Z;
est = norm(Z-Q*QtZ+Q*S.*diagprod(S,QtZ).’,"fro")/sqrt(k);

end

see Program 20.2 for an implementation.

Figure 20.2 charts performance of randomized subspace iteration and its error
estimate as function of the subspace iteration count 𝑞. We see that the leave-one-
out error estimator closely tracks the true value of the error across all values of 𝑞.
However, for 𝑞 ≥ 6, the error (and error estimates) for randomized subspace iteration
actually increase with the number of subspace iteration steps 𝑞. This behavior arise
from numerical issues. As shown in Fig. 20.2, these numerical issues are easily
cured by using intermediate orthogonalization, discussed in Section 2.4.

This brings us to the open problem. At present, it is not known whether there exists
a numerically stable way of downdating the randomized approximation computed
via orthogonalized subspace iteration. As such, the leave-one-out error estimation
technique is currently limited to randomized subspace iteration without intermediate

303

Figure 20.2: Error for randomized SVD with subspace iteration with (solid orange
circles) and without (solid light blue crosses) intermediate reorthogonalization for
rank-100 approximation of the poly matrix (14.27b) as a function of the subspace
iteration count 𝑞. leave-one-out error estimate (without intermediate reorthogonal-
ization) is shown as dashed dark blue crosses. Solid lines trace the median of 100
trials, and shaded regions show 10% and 90% quantiles.

reorthogonalization. The open problem is to remove this limitation by extending
leave-one-out randomized matrix algorithms to be compatible with subspace itera-
tion. There could be other benefits to stable downdating approaches for randomized
subspace iteration, including numerically stable versions of XNysTrace incorpo-
rating subspace iteration.

Part III

Sketching, solvers, and stability

Dedicated to my grandparents Bob and Sarah Epperly, Kathie and Bill Quarles,
and John and Christine Weidner.

304

305

C h a p t e r 21

ALGORITHMS FOR LEAST SQUARES, A BRIEF HISTORY

But recent research led to new uses of randomization: random mixing
and random sampling, which can be combined to form random
projections. These ideas have been explored theoretically and have
found use in some specialized applications (e.g., data mining), but they
have had little influence so far on mainstream numerical linear algebra.
Our paper answers a simple question, Can these new techniques beat
state-of-the-art numerical linear algebra libraries in practice? Through
careful engineering of a new least-squares solver, which we call
Blendenpik, and through extensive analysis and experimentation, we
have been able to answer this question, yes.

Haim Avron, Petar Maymounkov, and Sivan Toldeo, Blendenpik:
Supercharging LAPACK’s least-squares solver [AMT10, §1]

The third part of this thesis will investigate randomized algorithms for linear least-
squares fitting and related problems. Our core algorithmic tool will be (linear)
randomized dimensionality reduction, also known as sketching. This introductory
chapter will set the stage, introducing the linear least-squares problem and algo-
rithms for solving it from a historical perspective. Our historical journey will be
brief emphasizing topics that will inform the technical development in subsequent
chapters.

Sources. This is an introductory chapter, not based on any particular research article.
The reference [BMR22] provides a definitive history of numerical linear algebra
from antiquity to the first years of the twenty-first century. Our tale will hew closely
to their account for the history of deterministic methods for least squares. In the past
twenty-five years, randomized methods have greatly expanded the class of algorithms
for least squares. My understanding of the history of these methods is informed
by my reading of the original literature, surveys [Woo14; MT20; MDME+23], and
discussions with the researchers involved.

Outline. We begin our tour in Section 21.1 with the origins of linear least squares
and its solution by the normal equations. We encounter the numerical instabilities of

306

this approach in Section 21.2 and Golub’s QR factorization as a stable alternative in
Section 21.3. But how accurate is the QR factorization method? This question is an-
swered in Section 21.4, which reviews perturbation theory, and Section 21.5, which
describes forward and backward stability. For the largest problems, direct methods
like QR factorization are prohibitively slow, and we must turn to iterative methods,
discussed in Section 21.6. Randomization enters in Section 21.7, which describes
the sketch-and-solve method as a quick way to obtain an approximate least-squares
solution. To achieve higher accuracy, one can use randomization to precondition an
iterative method, resulting in the sketch-and-precondition method (Section 21.9).
This chapter concludes in Section 21.11 with questions about the numerical stability
of sketch-and-precondition raised in the recent paper [MNTW24]. These concerns
will be resolved in Chapter 22, which describes fast, numerically stable randomized
least-squares solvers.

21.1 The overdetermined linear least-squares problem
The overdetermined linear least-squares problem

𝒙 = argmin
𝒛∈K𝑛

∥𝒄 − 𝑩𝒛∥ (21.1)

is ubiquitous in modern science, engineering, mathematics, and computer science.
Throughout this part of the thesis, 𝑩 ∈ K𝑚×𝑛 denotes a matrix of coefficients,
𝒄 ∈ K𝑚 is the right-hand side, and 𝒙 = 𝑩†𝒄 ∈ K𝑛 denotes optimal least-squares
solution (i.e., the solution to (21.1)). Approximate minimizers will be called 𝒛 or 𝒙̂ .
We will typically assume that 𝑩 is full-rank, so that (21.1) has a unique solution.

Legendre published the first description of the method of least squares in 1805
[BMR22, p. 57]. Legendre was motivated by problems in geodesy, and he used the
method of least squares to estimate the length of the Paris meridian between Dunkirk
and Barcelona. In this early work, Legendre took a “bare hands” approach, writing
down an expression for the total squared deviation and finding a linear system for
the least-squares system by computing the partial derivatives and setting them to
zero.

We can repeat Legendre’s approach, aided by modern matrix notation (for now,
focusing on the real case K = R.) The gradient of the least-squares objective
function (21.1) is

∇𝒛∥𝒄 − 𝑩𝒛∥2 = 2𝑩∗(𝒄 − 𝑩𝒛).

307

Setting this derivative to zero, and rearranging, we obtain the normal equations for
the least-squares problem:

(𝑩∗𝑩)𝒙 = 𝑩∗𝒄. (21.2)

Provided that 𝑩 has full rank, the normal equations comprise a square, consistent sys-
tem of linear equations, and the unique least-squares solution is 𝒙 = (𝑩∗𝑩)−1(𝑩∗𝒄).
A similar computation with Wirtinger derivatives establishes the normal equations
in the complex case (K = C).

Legendre’s claim to the discovery of the method of least squares was disputed
by Gauss, who first published on least squares in 1811. (He claimed to have
discovered the method in unpublished work in 1795 [BMR22, pp. 58–60]..) Gauss
was motivated by problems in astronomy, and he successfully used the method of
least squares to localize the orbit of Ceres. Gauss’s work expanded on Legendre’s
by establishing a connection between least squares, statistics, and the “normal”
distribution that now bears Gauss’s name. Unfortunately, the disagreement between
Legendre and Gauss was not cordial. To quote from [BMR22, p. 60],

[Gauss] claimed that he already used his method [of least squares]
(Unser Prinzip) in 1795 but that its publication was delayed by the
Napoleonic wars. Although his name was mentioned by Gauss, Leg-
endre was badly offended. In a letter to Gauss dated May 31, 1809, he
rightfully stated that priority is only established by publication. Gauss
did not answer him.

21.2 Numerical instabilities of the normal equations
As the nineteenth century became the twentieth, the generally accepted practice for
solving a linear least-squares problems were to solve “Gauss’ normal equations”
[van74, p. 17] by the “Choleski square-root method” [Hou58, p. 339]. In the 1960s,
issues of numerical stability associated with this approach became wildly known;
Golub’s paper [Gol65, §1] provides a crisp example (see also [Läu61]).

How accurately can we solve systems of linear equations? In order to understand
the numerical instabilities associated with solving the normal equations, we must
first understand how accurately we can solve linear systems of equations. We provide
a brief review of numerical stability for linear systems, a subject pioneered by von
Neumann and Goldstine [vG47] and Turing [Tur48].

308

To solve a system of linear equations

𝑴𝒙 = 𝒇 (21.3)

on a digital computer requires the real or complex entries of the matrix 𝑴 and the
vector 𝒇 to be stored using finite-precision representations. Most modern computing
platforms use floating-point representations of numbers; see [Hig02, §2] or [Ove01]
for an introduction to floating-point numbers.

The accuracy of a system of floating-point numbers is characterized by the unit
roundoff 𝑢, which captures the magnitude of errors in representing real numbers
using floating-point representations and the scale of rounding errors incurred when
arithmetic operations are performed. The unit roundoff is 𝑢 ≈ 10−16 in double-
precision arithmetic and 𝑢 ≈ 10−8 in single precision. The precision of a floating-
point number system is also sometimes characterized using the machine epsilon,
which is twice the unit roundoff 𝑢.

Even storing the matrix 𝑴 incurs errors on the order of the unit roundoff:

𝑴stored = 𝑴 + 𝑬 for 𝑬 ⪅ ∥𝑴∥𝑢.

Solving the linear system (21.3) with the stored matrix 𝑴stored results in an approx-
imate solution

𝒙̂ = 𝑴−1
stored 𝒇 ≈ 𝑴−1 𝒇 − 𝑴−1𝑬𝑴−1 𝒇 .

Here, we expanded the inverse (𝑴 + 𝑬)−1 ≈ 𝑴−1 − 𝑴−1𝑬𝑴−1 to first order in the
perturbation 𝑬. Therefore, the (relative) forward error is roughly of size

𝒙̂ − 𝑴−1 𝒇

𝑴−1 𝒇

 ≈

𝑴−1𝑬𝑴−1 𝒇

𝑴−1 𝒇

 ≤ ∥𝑴−1∥ · ∥𝑬∥ ≈ ∥𝑴−1∥∥𝑴∥𝑢 =: cond(𝑴)𝑢.

We see that the relative forward error in solving the linear system of equations (21.3)
using the stored floating-point representation of 𝑴 is on the order of the condition
number cond(𝑴) := ∥𝑴−1∥∥𝑴∥ times the unit roundoff.

This conclusion is striking. Even the act of storing the matrix 𝑴 has already in-
troduced errors in the computed solution 𝒙̂ of size cond(𝑴)𝑢 [GV13, §2.7.11]. Of
course, solving a linear system of equations requires many arithmetic operations,
each of which introduces additional rounding errors. Fortunately, it can be shown
that—even in the presence of such rounding errors—our heuristic calculation de-
scribes the correct magnitude of the numerical errors produced in solving 𝑴𝒙 = 𝒇

with stable methods such as Cholesky or QR factorization:

309

Numerically stable algorithms for solving a linear system 𝑴𝒙 = 𝒇 produce a
solution that is accurate up to a relative forward error of roughly cond(𝑴)𝑢.

See [Hig02, Chs. 7–10] for a rigorous treatment of perturbation theory and stability
analysis for the solution of linear systems of equations.

Numerical instabilities arising from the normal equations. From our discussion
of linear systems, the numerical issues with solving the normal equations (21.2) are
now apparent. By the boxed maxim above, we would expect that solving the normal
equations produces a solution with a relative error of size roughly cond(𝑩∗𝑩)𝑢.
Defining the condition number of a rectangular matrix as

cond(𝑩) := ∥𝑩∥∥𝑩†∥ = 𝜎max(𝑩)
𝜎min(𝑩)

,

we see that the condition number of 𝑩∗𝑩 is the square of the condition number of
𝑩:

cond(𝑩∗𝑩) = cond(𝑩)2.

Thus, we obtain the following rule-of-thumb for solution of least-squares problems
by the normal equations:

Solutions to the least-squares problem (21.1) that explicitly form the normal
equations (21.2) yield relative forward errors of roughly cond(𝑩)2𝑢.

This problem of squaring the condition number is the main deficiency with solving
least-squares problems by forming the normal equations. Golub’s paper [Gol65,
§1] identifies a related potential problem, called numerical rank deficiency, where
the numerically computed 𝑩∗𝑩 matrix becomes rank-deficient.

21.3 Numerically stable algorithms by QR factorization
In addition to elucidating the numerical instabilities of the normal equations, Golub’s
paper [Gol65] also identifies a solution: QR factorization.

Recall that a QR factorization of a matrix 𝑩 refers to one of two factorizations. The
full QR factorization takes the form

𝑩 = 𝑸full

[
𝑹

0

]

310

where 𝑸full ∈ K𝑚×𝑚 is unitary and 𝑹 ∈ K𝑛×𝑛 is upper triangular. The thin or
economy-size QR factorization is

𝑩 = 𝑸𝑹,

where 𝑸 ∈ K𝑚×𝑛 has orthonormal columns and 𝑹 ∈ K𝑛×𝑛 is upper triangular. We
emphasize that each of these representations constitutes an exact decomposition of
the matrix 𝑩, in contrast to the partial QR decompositions discussed in Chapter 9. A
full QR decomposition can be converted to an economy-size QR decomposition by
extracting the first 𝑛 columns of 𝑸full; that is, 𝑸 := 𝑸full(:, 1 : 𝑛). Unless otherwise
stated, QR decompositions in this thesis are economy-sized.

The QR factorization for a square matrix and stable algorithms for it them was
developed by Givens in the 1950s for use in computations at Oak Ridge National
Laboratory. (The technical report [Giv54] describes the use of “Givens rotations”
in eigenvalue computations.) In 1958, Householder developed a faster and equally
stable approach using relection matrices now known as Householder reflectors
[Hou58]. Golub’s insight was to extend Householder’s method to compute QR
factorizations of a tall rectangular matrix 𝑩. From there, the unique solution 𝒙 to a
full-rank least-squares problem (21.1) is readily obtained as

𝒙 = 𝑹−1(𝑸∗𝒃).

Golub’s procedure has dramatically better numerical stability properties than direct
solution of the normal equations. With appropriate implementation, it runs in
O(𝑚𝑛2) operations.

21.4 Perturbation theory for least-squares
Had QR factorization truly defeated the normal equations fundamental flaw, squar-
ing the condition number? Just a year after Golub’s paper [Gol65] was published,
Golub and Wilkinson provided a somewhat disappointing answer [GW66] by prov-
ing the following perturbation theorem:

Fact 21.1 (First-order perturbation theory for least squares). Consider the least-
squares problem (21.1). Let 𝜀 > 0, and consider perturbations 𝚫𝑩 and 𝚫𝒄 of
magnitude

∥𝚫𝑩∥ ≤ 𝜀∥𝑩∥, ∥𝚫𝒄∥ ≤ 𝜀∥𝒄∥.

Then, the solution of the perturbed least-squares problem

𝒙̂ = argmin
𝒛∈K𝑛

∥(𝒄 + 𝚫𝒄) − (𝑩 + 𝚫𝑩)𝒛∥2,

311

satisfies

∥𝒙̂ − 𝒙∥ ≤ cond(𝑩)𝜀 ·
(
∥𝒄∥
∥𝑩∥ + ∥𝒙∥

)
+ cond(𝑩)2𝜀 · ∥𝒄 − 𝑩𝒙∥

∥𝑩∥ + O(𝜀2).

Moreover, this bound is approximately attainable.

Golub and Wilkinson summarize the message of their theorem, writing [GW66,
p. 144]

We conclude that although the use of the orthogonal transformation [i.e,
QR factorization] avoids some of the ill effects inherent in the use of the
normal equations the value of cond(𝑩)2 is still relevant to some extent.

(We have amended the quote to use the present notation.) In particular, Golub and
Wilkinson’s analysis implies that, for a good least-squares solver, the (forward) error
should scale like cond(𝑩)𝑢 when the residual is small and like cond(𝑩)2𝑢 when the
residual is large.

Golub and Wilkinson’s first-order perturbation theorem (Fact 21.1) describes the
essential nature of the sensitivity of the least-squares problems to small perturbations
in the inputs. Genuine perturbation bounds (rather than first-order estimates) were
developed later by Wedin in his 1973 paper [Wed73]; see [Hig02, Thm. 20.1] for
a clean modern statement and a proof. Here is a simplication of the (Golub–
Wilkinson–)Wedin result that I have used in my work [Epp24b; EMN25]:

Fact 21.2 (Perturbation bounds for least squares). Consider a perturbed least-
squares problem (21.1):

𝒙̂ = argmin
𝒛∈K𝑛

∥(𝒄 + 𝚫𝒄) − (𝑩 + 𝚫𝑩)𝒙̂ ∥ with ∥𝚫𝑩∥ ≤ 𝜀∥𝑩∥, ∥𝚫𝒄∥ ≤ 𝜀∥𝒄∥.

Then, provided that cond(𝑩)𝜀 ≤ 0.1, the following bounds hold.

∥𝒙 − 𝒙̂ ∥ ≤ 2.23 cond(𝑩)
(
∥𝒙∥ + cond(𝑩) ∥𝒄 − 𝑩𝒙∥

∥𝑩∥

)
𝜀, (21.4)

∥𝑩(𝒙 − 𝒙̂)∥ ≤ 2.23 (∥𝑩∥∥𝒙∥ + cond(𝑩)∥𝒄 − 𝑩𝒙∥) 𝜀. (21.5)

A useful feature of this result is the bound on the error ∥𝑩(𝒙 − 𝒙̂)∥. I call this
quantity the residual error. It is the norm distance between the computed and the
true residual

∥𝑩(𝒙 − 𝒙̂)∥ = ∥(𝒄 − 𝑩𝒙) − (𝒄 − 𝑩𝒙̂)∥.

312

In addition, the residual norm of the solution 𝒙̂ admits the Pythagorean decompo-
sition

∥𝒄 − 𝑩𝒙̂ ∥2 = ∥𝒄 − 𝑩𝒙∥2 + ∥𝑩(𝒙 − 𝒙̂)∥2. (21.6)

Observe that the bound (21.4) on the forward error ∥𝒙 − 𝒙̂ ∥ follows immediately
from the bound (21.5) on the residual error, together with the identity

∥𝒚∥ ≤ ∥𝑩𝒚∥
𝜎min(𝑩)

= cond(𝑩) · ∥𝑩𝒚∥∥𝑩∥ for every 𝒚 ∈ K𝑛. (21.7)

21.5 Forward and backward stability
Let us take a break from our tour through history and stop to ask: What does it mean
to solve a least-squares problem accurately? These questions have been lurking in
the background of our discussion. Now, we address them head-on.

In Section 21.2, we saw that the mere act of storing a matrix already introduces
perturbations on the order of the unit roundoff 𝑢. Since backward perturbations
(i.e., perturbations to the inputs 𝑩 and 𝒄) are inevitable, it is natural to suggest that a
least-squares problem has been solved accurately if the computed solution 𝒙̂ is the
exact solution to a corrupted version of the least-squares problem

𝒙̂ = argmin
𝒛∈K𝑛

∥(𝒄 + 𝚫𝒄) − (𝑩 + 𝚫𝑩)𝒛∥2. (21.8)

Here, the backward perturbations 𝚫𝒄 and 𝚫𝑩 should be of norm “roughly” O(𝑢).
Specifically, we make the following definition:

Definition 21.3 (Backward stable). A vector 𝒙̂ ∈ K𝑛 is a backward stable solution to
the least-squares problem (21.1) if it is the exact solution to a modified least-squares
problem (21.8), where the perturbations admit bounds ∥𝚫𝒄∥ ≲ ∥𝒄∥𝑢 and ∥𝚫𝑩∥ ≲
∥𝑩∥𝑢. A least-squares algorithm is backward stable if it produces backward stable
solutions on every input matrix 𝑩 that is numerically full-rank; that is, cond(𝑩)𝑢 ≪
1.

Informally, we use the notation 𝛼 ≲ 𝛽 to indicate that 𝛼 is at most 𝛾𝛽 for some
“modest” prefactor 𝛾. Since we are considering numerical algorithms on 𝑚 × 𝑛
matrices, we will allow the prefactor to depend polynomially on the parameters 𝑚
and 𝑛. Many authors also stipulate that the prefactor 𝛾 be “modest” in the sense that
it is a low-degree polynomial in 𝑚 and 𝑛 with small constants. We will not put such
a requirement our formal definition of stability, though a method with a prefactor
𝛾 = 10100 is certainly not stable in any practically useful sense. We defer a formal
description of the notations ≲ and≪ to Section 22.1.

313

Backward stability is generally considered to be the gold standard stability prop-
erty for a numerical algorithm (with one small caveat, discussed in Remark 21.5).
The (Householder) QR factorization method of Golub is backward stable [Hig02,
Thm. 20.3].

The distance ∥𝒙̂ − 𝒙∥ from the computed solution 𝒙̂ to the true solution 𝒙 is called
the forward error, and the relative forward error is ∥𝒙̂ − 𝒙∥/∥𝒙∥. If 𝒙̂ is computed
by a backward stable method, the size of the forward error (and the residual error
∥𝑩(𝒙 − 𝒙̂)∥) is controlled by the Golub–Wilkinson–Wedin theorem (Fact 21.2):

∥𝒙 − 𝒙̂ ∥ ≲ cond(𝑩)
(
∥𝒙∥ + cond(𝑩) ∥𝒄 − 𝑩𝒙∥

∥𝑩∥

)
𝑢; (21.9)

∥𝑩(𝒙 − 𝒙̂)∥ ≲ (∥𝑩∥∥𝒙∥ + cond(𝑩)∥𝒄 − 𝑩𝒙∥) 𝑢. (21.10)

As we will see later in this chapter, there are many interesting least-squares algo-
rithms that satisfy weaker notions of numerical stability than backward stability. In
particular, we have the concept of forward stability:

Definition 21.4 ((Strong) forward stability). An approximate least-squares solution
is 𝒙̂ ∈ K𝑛 is forward stable if it satisfies (21.9) and strongly forward stable if it
satisfies (21.10). Similarly, a least-squares algorithm is (strongly) forward stable if
it always produces a (strongly) forward stable solution whenever 𝑩 is numerically
full-rank; that is, cond(𝑩)𝑢 ≪ 1.

Backward stability implies strong forward stability implies forward stability, but
the reverse implications do not hold. We will encounter methods that are strongly
forward stable but not backward stable in Sections 22.2 and 22.4.

Remark 21.5 (Columnwise stability). The notion of backward stability (Defini-
tion 21.3) is more precisely called normwise backward stability. It states that the
computed solution to a least-squares problem is the exact solution to a perturbed
least-squares problem (21.8) that is close to the original least-squares problem (21.1)
in norm. The Householder QR algorithm also satisfies a stronger stability property
called columnwise backward stable [Hig02, Thm. 20.3], where the perturbation 𝚫𝑩

satisfies
∥𝚫𝒃𝑖∥ ≲ ∥𝒃𝑖∥𝑢 for each 𝑖 = 1, . . . , 𝑛.

The distinction between normwise and columnwise backward stability can be impor-
tant for least-squares problems in which the column norms 𝒃𝑖 span multiple orders
of magnitude.

314

Fortunately, any normwise backward stable least-squares solver can be converted
into a columnwise backward stable solver. First, preprocess the matrix 𝑩 by scaling
its columns to have unit norm. Then solve the least-squares problem using a
normwise stable solver. Finally, post-processing the computed least-squares solution
𝒙 by counter-scaling its entries. The columnwise backward stable of this approach
follows from the theorems of van der Sluis [van69]. The conclusion is that, by
using column scaling, the distinction between normwise and columnwise stability
can be elided. For the rest of this thesis, we will only refer to normwise concepts of
stability. ⋄

21.6 Krylov iterative methods: CGNE, CGLS, and LSQR
In the decades after Golub introduced the Householder QR factorization method
for solving least-squares problems, the fundamental paradigm for the solution of
least-squares problem remained largely unchanged. If one requested the solu-
tion a least-squares problem in a programming environment such as MATLAB, it
would be computed by Householder way of QR factorization. Certainly, there were
improvements—researchers developed fast blocked algorithms for Householder QR
[Lan98], applied pivoting to solve sparse [GN86] and (nearly) rank-deficient [BG65]
and packaged high-quality QR implementations were into optimized software pack-
ages like LAPACK [ABBB+99]—but the fundamental structure “QR factorize then
solve” remained in place.

While the period 1966–2000 saw relatively little development in direct, high-
accuracy least-squares algorithms, researchers began exploring iterative methods
for least-squares problems, most notably Krylov subspace methods. These methods
produce approximate solutions to the least-squares problem (21.1) via a sequence
of matrix–vector products 𝒛 ↦→ 𝑩𝒛 and 𝒗 ↦→ 𝑩∗𝒗. The first methods, variously
known as “conjugate gradient least squares” (CGLS) or “conjugate gradient normal
equations” (CGNE), worked by applying the conjugate gradient method [HS52] to
the normal equations (21.2). Paige and Saunder provided improvement with their
LSQR method [PS82]. LSQR is based on the Golub–Kahan process for bidiago-
nalizing a matrix [GV13, §10.4]; it produces the same output as CGLS and CGNE
in exact arithmetic, but it has improved stability properties in finite precision. Code
for LSQR is provided in Program 21.1. Research on Krylov solvers for least-squares
problems continued into the 2010s, producing the LSMR [FS11] and LSMB [HG18]
algorithms.

315

Program 21.1 mylsqr.m. Implementation of LSQR for solving least-squares prob-
lems, iteratively.
function X = mylsqr(B,Bt,c,x0,iter)
% Input: Functions B() and Bt() computing matrix products B(z) =
% B*z and Bt(z) = B’*z, right-hand side c, initialization x0,
% number of iterations iter
% Output: Approximate least-squares solutions stacked columnwise as X

% First step of Golub-Kahan bidiagonalization
r = c - B(x0); beta = norm(r); u = r / beta;
v = Bt(u); alpha = norm(v); v = v / alpha;
w = v; phibar = beta; rhobar = alpha;

X = zeros(size(v,1),iter+1); X(:,1) = x0; % Initialize history
for i = 1:iter

% Golub-Kahan bidiagonalization
u = B(v) - alpha*u; beta = norm(u); u = u / beta;
v = Bt(u) - beta*v; alpha = norm(v); v = v / alpha;
rho = sqrt(rhobar^2 + beta^2);
c = rhobar / rho;
s = beta / rho;
theta = s * alpha;
rhobar = - c * alpha;
phi = c * phibar;
phibar = s * phibar;

% Update solution, search direction
X(:,i+1) = X(:,i) + (phi/rho) * w;
w = v - (theta/rho) * w;

end

end

We have already seen that the accuracy of solutions to least-squares problems
depends on the condition number cond(𝑩) of the matrix 𝑩. The conditioning also
controls the rate of convergence for iterative methods. In particular, we have the
following convergence result for CGNE and LSQR, derived from standard results
for conjugate gradient [Saa03, eq. (6.128)]:

Fact 21.6 (CGNE and LSQR convergence). Let 𝒙1, 𝒙2, . . . denote the iterates pro-
duced by the CGNE or LSQR algorithm (in exact arithmetic). Then

∥𝑩(𝒙 − 𝒙𝑘)∥ ≤ 2
(
cond(𝑩) − 1
cond(𝑩) + 1

) 𝑘
∥𝑩(𝒙 − 𝒙0)∥ ≤ 2e−𝑘/cond(𝑩) ∥𝑩(𝒙 − 𝒙0)∥.

316

This bound shows that CGNE and LSQR take at most O(cond(𝑩) log(1/𝜀)) iter-
ations to solve a least-sqaures problem to “𝜀 accuracy” in exact arithmetic. While
the bound Fact 21.6 is not always quantitatively sharp, it has some predictive power:
Except in rare cases, iterative methods converge slowly for ill-conditioned problems.

Iterative methods for least-squares problems are important tools. In particular, they
provide a path to solve large sparse least-squares problems that would be impossible
to solve using direct methods. However, by the turn of the century, direct methods
based on QR factorization—proposed by Golub to solve least-squares problems in
1965—still remained the most effective algorithms for solving most least-squares
problems.

21.7 Randomization enters: The sketch-and-solve method
The late 1990s and early 2000s saw the origins of the modern field of randomized
numerical linear [FKV98; PTRV98]. The first researchers in this effort were com-
puter scientists, who saw randomization as a way of speeding up computations for
large-scale data analysis.

Drineas, Mahoney, and Muthukrishnan developed the first randomized methods
for least-squares in 2006 [DMM06]. They proposed computing an approximate
least-squares solution by subsampling a collection of rows of 𝑩 (and entries of 𝒄),
reweighting, then solving the subsampled system. Later that year, Sarlós [Sar06]
proposed algorithms that multiply the matrix 𝑩 and 𝒄 by a randomized dimension-
ality reduction matrix (also called a sketching matrix) and solve the “sketched”
least-squares problem. These randomized algorithms offered new strategies for
quickly obtaining an approximate solution to a least-squares problem.

In modern language, the algorithms of Drineas et al. and Sarlós are examples of
the sketch-and-solve paradigm. Sketch-and-solve algorithms for the least-squares
problem (21.1) proceed as follows:

1. Generate a random sketching matrix 𝑺 ∈ K𝑚×𝑑 with 𝑛 ≤ 𝑑 ≪ 𝑚 columns.

2. Sketch the data 𝑩 and 𝒄 by computing the matrix products 𝑺∗𝑩 and 𝑺∗𝒄.

3. Solve the reduced least-squares problem

𝒙̂ = argmin
𝒛∈K𝑛

∥(𝑺∗𝑩)𝒛 − (𝑺∗𝒄)∥2. (21.11)

An implementation appears in Program 21.2.

317

Program 21.2 sketch_solve.m. Sketch-and-solve method for solving overdeter-
mined linear least-squares problems.
function x = sketch_solve(B,c,S)
% Input: Matrix B, right-hand side c, and sketching matrix S
% Output: Approximate least-squares solution x

x = (S’*B) \ (S’*c);

end

21.8 Which sketch should I use? The subspace embedding property
Our discussion of sketch-and-solve raises two questions: “Which random matrix 𝑺

should we pick as the sketching matrix?” and “How accurate is the accurate is the
sketch-and-solve solution?” To answer both of these questions, we appeal to the
concept of a subspace embedding, which is essentially due to Sarlós [Sar06].

Definition 21.7 (Subspace embedding). A matrix 𝑺 ∈ K𝑚×𝑑 is called a subspace
embedding for a matrix 𝑭 ∈ K𝑚×𝑛 with distortion 𝜂 ∈ (0, 1) when

(1 − 𝜂)∥𝑭𝒛∥ ≤ ∥(𝑺∗𝑭)𝒛∥ ≤ (1 + 𝜂)∥𝑭𝒛∥ for every 𝒛 ∈ K𝑛. (21.12)

A sketching matrix 𝑺 is said to be an oblivious subspace embedding with dimension
𝑛, distortion 𝜂, and failure probability 𝛿 ∈ [0, 1) if, for every matrix 𝑭 ∈ K𝑚×𝑛, the
condition (21.12) holds with probability at least 1 − 𝛿.

A subspace embedding maps a high-dimensional vector 𝒗 ∈ K𝑚 to a low-
dimensional vector 𝑺∗𝒗 ∈ K𝑑 while simultaneously preserves the norm of each
vector 𝒗 ∈ range(𝑭). The range of the 𝑭 is the titular subspace, for which 𝑺 is an
embedding. The following theorem characterizes the accuracy of the sketch-and-
solve method when implemented with a subspace embedding:

Theorem 21.8 (Sketch-and-solve). Let 𝑺 ∈ K𝑑×𝑚 be a subspace embedding for
[𝑩 𝒄] of distortion 𝜂, and let 𝒙̂ be the sketch-and-solve solution (21.11). Then

∥𝒄 − 𝑩𝒙̂ ∥ ≤ min

{(
1 + 9𝜂2

(1 − 𝜂)4

)1/2
,

1 + 𝜂
1 − 𝜂

}
· ∥𝒄 − 𝑩𝒙∥

= (1 + O(𝜂2))∥𝒄 − 𝑩𝒙∥.

The theory for sketch-and-solve is surprisingly nuanced; see Appendix C for an
introduction this theory, a proof of this result, and a discussion of history.

318

Figure 21.1: Example of a sparse sign embedding, illustrated with 𝜁 = 4, 𝑚 = 15,
and 𝑑 = 10. Observe that there are precisely 𝜁 nonzero entries per row of 𝑺 or
column of 𝑺∗.

Theorem 21.8 provides guarantees for the that the sketch-and-solve method when
implemented with any subspace embedding. The literature contains many construc-
tions of subspace embeddings (see [MT20, §§8–9] and [MDME+23, Chs. 2, 6, &
7]), and debates about which construction to use continue to this day. Appendix B
weighs in on this debate by providing detailed discussion of the most popular sub-
space embedding constructions and presenting numerical comparisons. Based on
the results documented in this appendix, I recommend sparse sign embeddings as
the subspace embedding of choice for most applications:

Definition 21.9 (Sparse sign embedding). A sparse sign embedding 𝑺 ∈ R𝑚×𝑑 with
sparsity 𝜁 is a random matrix constructed as follows. Each row is independent and
possesses exactly 𝜁 nonzero entries. The nonzero entries are placed in uniformly
random positions (selected without replacement) and have uniform ±𝜁−1/2 values.

As we document in Appendix B, sparse-sign embeddings have a nearly ideal distor-
tion parameter 𝜂 and support a fast product operation 𝑩 ↦→ 𝑺∗𝑩, owing to sparsity.
See Fig. 21.1 for a cartoon illustration of the sparse sign embedding construction.

The best-known analysis fo sparse oblivious subspace embeddings due to Cohen
[Coh16, Thm. 4.2]:

Fact 21.10 (Sparse sign embeddings). Fix parameters 𝑛 ≥ 1, 𝜂 ∈ (0, 1), and
𝛿 ∈ (0, 1). With embedding dimension 𝑑 = O(𝑛 log(𝑛/𝛿)/𝜂2) and sparsity
𝜁 = O(log(𝑛/𝛿)/𝜂), a sparse sign embedding 𝑺 ∈ R𝑚×𝑑 is an oblivious sub-
space embedding with dimension 𝑛, distortion 𝜂, and failure probability 𝛿. Since 𝑺

319

is sparse, matrix–vector products 𝑺∗𝒗 can be computed in O(𝑛 log(𝑛/𝛿)/𝜂) opera-
tions.

Evidence provided in Appendix B suggests that sparse sign embeddings are reliable
with more aggressive parameter choices (e.g., 𝑑 = 2𝑛 and 𝜁 = 8). Providing a
theoretical explanation for the reliable performance of sparse sketching matrices
with smaller values of 𝑑 and 𝜁 has been a major research effort in recent years; see
[CDDR24; CDD25a; Tro25].

As a corollary of Fact 21.10, we get the following runtime guarantees for sketch-
and-solve with a sparse sign embedding:

Corollary 21.11 (Sketch-and-solve). Using a sparse sign embedding with Cohen’s
parameter settings (Fact 21.10), one can achieve a (1+𝜀)-approximate least-squares
solution

∥𝒄 − 𝑩𝒙̂ ∥ ≤ (1 + 𝜀)∥𝒄 − 𝑩𝒙∥

with 99% probability with a sketching matrix of embedding dimension

𝑑 = O
(
𝑛 log 𝑛
𝜀

)
.

The total runtime is
O

(
𝑚𝑛 log 𝑛
𝜀1/2 + 𝑛

3 log 𝑛
𝜀

)
. (21.13)

Corollary 21.11 shows that, using a sketching matrix like a sparse sign embedding
with a fast multiply operation, sketch-and-solve runs in roughly O(𝑚𝑛 + 𝑛3) oper-
ations. For large, highly overdetermined problems (𝑚 ≫ 𝑛 ≫ 1), this is a large
speedup over Householder QR factorization. However, the runtime sketch-and-
solve depends inversely on the least-squares suboptimality 𝜀. As such, improving
the accuracy of sketch-and-solve is costly, and sketch-and-solve is mainly useful as
a way of obtaining a cheap, approximate solution to a least-squares problem for a
relatively large value of 𝜀 ∈ [0.25, 1]. Indeed, we have already seen sketch-and-
solve type methods used to construct approximate interpolative decompositions in
Section 9.4 and CUR decompositions in Section 10.4. (Note that weighted row
sampling is a type of sketching.)

21.9 Making randomized least-squares accurate: Sketch-and-precondition
The papers [DMM06; Sar06] demonstrate that randomized algorithms offer a fast
way of obtaining an approximate least-squares solutions. Can randomized meth-

320

ods also solve least-squares problems to high accuracy? Rokhlin and Tygert an-
swered this question by developing the sketch-and-precondition method [RT08].
This method was popularized by Avron, Maymounkov, and Toledo [AMT10], who
developed a variant of the algorithm they called Blendenpik. The papers [MSM14;
CFS21] propose further variants of sketch-and-precondition.

Rokhlin and Tygert’s core observation is that the sketched matrix 𝑺∗𝑩 provides an
excellent preconditioner for the least-squares problem (21.1). This preconditioner
can be combined with a Krylov iterative method (Section 21.6) such as CGNE or
LSQR to solve the least-squares problem rapidly to high precision.

Here is the main technical result for sketch-and-precondition, in modern language.

Proposition 21.12 (Randomized preconditioning). Let 𝑺 ∈ K𝑑×𝑚 be a subspace
embedding for 𝑩 with distortion 𝜂 < 1. Construct the sketched matrix 𝑺∗𝑩, and let

𝑺∗𝑩 = 𝑼𝑴

be any factorization 𝑺∗𝑩 into a matrix 𝑼 ∈ K𝑑×𝑛 with orthonormal columns and a
nonsingular matrix 𝑴. Then

𝜎max(𝑩𝑴−1) ≤ 1
1 − 𝜂 , 𝜎min(𝑩𝑴−1) ≥ 1

1 + 𝜂 .

Consequently,
cond(𝑩𝑴−1) ≤ 1 + 𝜂

1 − 𝜂 = 1 + O(𝜂).

Proof. We establish the upper bound on 𝜎max(𝑩𝑴−1); the lower bound on
𝜎min(𝑩𝑴−1) follows on similar lines. By the variational characterization of the
largest singular value, we have

𝜎max(𝑩𝑴−1) = max
∥𝒗∥=1

𝑩𝑴−1𝒗

.

Now, apply the subspace embedding property to bound

𝜎max(𝑩𝑴−1) = max
∥𝒗∥=1

𝑩𝑴−1𝒗

 ≤ 1

1 − 𝜂 max
∥𝒗∥=1

𝑺∗𝑩𝑴−1𝒗

.

But 𝑺∗𝑩𝑴−1 = 𝑼, so

𝜎max(𝑩𝑴−1) = max
∥𝒗∥=1

𝑩𝑴−1𝒗

 ≤ 1

1 − 𝜂 · max
∥𝒗∥=1

𝑺∗𝑩𝑴−1𝒗

=
1

1 − 𝜂 · max
∥𝒗∥=1

∥𝑼𝒗∥ = 1
1 − 𝜂 · max

∥𝒗∥=1
∥𝒗∥ = 1

1 − 𝜂 .

In the penultimate equality, we used the fact that 𝑼 has orthonormal columns, and
thus ∥𝑼𝒗∥ = ∥𝒗∥.

321

Provided that 𝑺 is a subspace embedding with small distortion 𝜂, randomized
preconditioning brings the condition number of 𝑩 below an absolute constant. For
example, cond(𝑩𝑴−1) ≤ 3 when 𝜂 ≤ 1/2. This results shows that randomization
produces a preconditioner of extraordinary quality. Using this preconditioner with a
Krylov method like LSQR or CGNE produces a solution that converges very rapidly
(see Corollary 21.13 below). This observation motivates the following (prototype)
sketch-and-precondition algorithm:

1. Generate a sketching matrix 𝑺 ∈ R𝑛×𝑑 .

2. Sketch the matrix 𝑩, computing 𝑺∗𝑩.

3. Form an orthonormal decomposition 𝑺∗𝑩 = 𝑼𝑴.

4. Solve the least-squares problem (21.1) using LSQR with preconditioner 𝑴.

Implementations details will follow in next section and code is provided in Pro-
gram 21.3.

As we will see below in Corollary 21.13, with an appropriate implementation,
the sketch-and-precondition algorithm runs in at most operations O(𝑚𝑛 log(𝑚/𝜀) +
𝑛3 log 𝑛) to produce a (1+𝜀)-approximate least-squares solution. Since the accuracy
parameter 𝜀 appears inside the logarithm, we see that the sketch-and-precondition
method can achieve high accuracy (machine-precision accuracy, even) in a small
number of LSQR steps. Contrast this with the sketch-and-solve method, whose
runtime scales with the inverse-accuracy parameter 1/𝜀 and thus cannot achieve
high accuracy without an astronomical slowdown. For large, highly over-determined
problems (1 ≪ 𝑛 ≪ 𝑚) sketch-and-precondition is asymptotically faster than the
QR factorization method, which requires O(𝑚𝑛2) operations.

I consider the sketch-and-precondition method to be one of the most striking ex-
amples of a randomized algorithm for matrix computations. Here, randomness can
be used to solve a least-squares problems to any desired accuracy level (in exact
arithmetic at least) at a cost that is (asymptotically) faster than the QR factoriza-
tion method. Forty-five years after its ascendance to the throne, the QR method
faces its first serious challenger as the method of choice for solving general dense
least-squares problems, at least ones satisfying 1 ≪ 𝑛 ≪ 𝑚.

322

21.10 Implementation and analysis of sketch-and-precondition
The sketch-and-precondition algorithm will be important in the rest of this thesis.
In this section, we will discuss implementation choices and present analysis.

Choice of orthonormal decomposition. To put the randomized preconditioning idea
into practice, the two natural orthonormal decompositions are the QR decomposition

𝑺∗𝑩 = 𝑸𝑹

and the (economy-size) SVD

𝑺∗𝑩 = 𝑼𝑴 for 𝑴 = 𝚺𝑽∗.

In the former case, the inverse-preconditioning operation 𝑹−1𝒛 can efficiently per-
formed by triangular substitution. In the latter case, 𝑴−1 = 𝑽𝚺−1 has a simple
closed form. For reasons that will emerge in Section 22.7, we will use the SVD-
based implementation for this thesis.

Initialization. In their original paper, Rokhlin and Tygert suggested initializing via
the sketch-and-solve and solve solution

𝒙0 := (𝑺∗𝑩) (𝑺∗𝒄) = 𝑴−1(𝑼∗(𝑺∗𝒄)).

to initialize the sketc Their motivation for using this initialization was to reduce the
number of iteration steps required to converge. As we will see, the choice of ini-
tialization also has numerical stability implications for the sketch-and-precondition
algorithm (Section 22.4).

Interestingly, the matter of initialization is not mentioned in the influential paper
[AMT10]. By default, their code uses the trivial, zero initialization 𝒙0 := 0, although
they do provide the sketch-and-solve initialization as an optional flag.

Choice of iterative method. The sketch-and-precondition algorithm can be imple-
mented using any preconditioned Krylov iterative method. In this thesis, we will
use preconditioned LSQR in all our implementations.

In this thesis, we will precondition LSQR “explicitly” by performing the change of
variables

𝒙 = 𝑴−1𝒚 (21.14)

and applying standard LSQR to the preconditioned least-squares problem

𝒚 = argmin
𝒛∈K𝑛

𝒄 − 𝑩(𝑴−1𝒛)

. (21.15)

323

Program 21.3 sketch_precondition.m. Sketch-and-precondition method for
solving overdetermined linear least-squares problems. Subroutine mylsqr is pro-
vided in Program 21.1.
function X = sketch_precondition(B,c,S,iter)
% Input: Matrix B, right-hand side c, sketching matrix S, and
% iteration count iter
% Output: Approximate least-squares solution x

[U,D,V] = svd(S’*B,"econ"); % Sketch and compute SVD
prec = V / D; % Form preconditioner
y0 = U’*(S’*c); % Sketch-and-solve initialize
Y = mylsqr(@(z) B*(prec*z), ... % Preconditioned LSQR

@(z) prec’*(B’*z), ...
c, y0, iter);

X = prec * Y; % Change of variables

end

We emphasize that the product 𝑩𝑴−1 should not be formed explicitly. Instead, its
action is achieved by applying the matrices in sequence 𝒛 ↦→ 𝑩(𝑴−1𝒛). Likewise,
the adjoint is applied as 𝒗 ↦→ 𝑴−∗(𝑩∗𝒗). Once (21.15) has been solved, the
solution 𝒙 to the least-squares problem (21.1) is obtained from the change-of-
variables formula (21.14). See also [Mei24, Alg. 8] for an alternate approach to
preconditioning LSQR.

Implementation. An implementation of sketch-and-precondition using the above
recommendation appears in Program 21.3.

Analysis. By combining Fact 21.6, Theorem 21.8, and Proposition 21.12, we can
analyze the sketch-and-precondition method.

Corollary 21.13 (Sketch-and-precondition: Exact arithmetic). Let 𝑺 ∈ K𝑑×𝑚 be a
subspace embedding for [𝑩 𝒄] with distortion 𝜂 < 1. The sketch-and-precondition
algorithm (Program 21.3) in exact arithmetic satisfies the bound

∥𝒄 − 𝑩𝒙𝑘 ∥2 ≤
(
1 + 36
(1 − 𝜂)4

· 𝜂2+𝑘
)
∥𝒄 − 𝑩𝒙∥2. (21.16)

In particular, using a sparse sign embedding with 𝜂 = 1/2 (see Fact 21.10), sketch-
and-precondition produces a (1 + 𝜀)-approximate least-squares solution

∥𝒄 − 𝑩𝒙𝑘 ∥ ≤ (1 + 𝜀)∥𝒙 − 𝑩𝒙∥.

after 𝑘 = O(log(1/𝜀)) iterations and O(𝑚𝑛 log(𝑛/𝜀) + 𝑛3 log 𝑛) operations.

324

Figure 21.2: Forward (left), residual (middle), and backward (right) error of sketch-
and-precondition with the zero initialization (single execution). Errors for direct
method (MATLAB’s mldivide) shown for reference.

Proof. By Theorem 21.8,

cond(𝑩𝑴−1) ≤ 1 + 𝜂
1 − 𝜂 .

Therefore,
cond(𝑩𝑴−1) − 1
cond(𝑩𝑴−1) + 1

≤ 𝜂.

Therefore, by the Pythagorean identity (21.6) and the LSQR guarantee (Fact 21.6),
we obtain the bound

∥𝒄 − 𝑩𝒙𝑘 ∥2 ≤ 4𝜂2𝑘 ∥𝑩(𝒙 − 𝒙0)∥2 + ∥𝒄 − 𝑩𝒙∥2.

Finally, invoking the Pythagorean identity (21.6) and the sketch-and-solve guarantee
(Theorem 21.8),

∥𝑩(𝒙 − 𝒙0)∥2 = ∥𝒄 − 𝑩𝒙0∥2 − ∥𝒄 − 𝑩𝒙∥2 ≤ 9𝜂2

(1 − 𝜂)4
∥𝒄 − 𝑩𝒙∥2.

Combining the two previous displays, we obtain the sketch-and-precondition guaran-
tee (21.16). The runtime guarantee for producing a (1+𝜀)-approximate least-squares
solution follows from Fact 21.10.

21.11 Is sketch-and-precondition numerically unstable?
In 2023, Meier, Nakasukasa, Townsend, and Webb released a preprint demonstrating
that the version of sketch-and-precondition from the popular paper [AMT10]—
that is, the version with the zero initialization 𝒙0 := 0—is numerically unstable
[MNTW24].

A variant of their experiment appears in Fig. 21.2. Here, I generated a random
least-squares problem of dimensions 4000 × 50 using Program 21.4 with condition

325

Program 21.4 random_ls_problem.m. Generate a random least-squares problem
with prescribed dimensions, condition number, and residual norm. Subroutine
haarorth is provided in Program F.7.
function [B,c,x,r,s,V] = random_ls_problem(m,n,condB,rnorm)
% Input: Dimensions m and n, condition number condB, and residual
% norm rnorm
% Output: Matrix B, right-hand side c, solution x = B\c, residual r
% = c - B*x, singular values s, and right singular vectors V

U = haarorth(m,n+1); % Haar-random left sing vecs
V = haarorth(n,n); % Haar-random right sing vecs
s = logspace(-log10(condB),0,n)’; % Log-spaced sing vals
B = U(:,1:n)*diag(s)*V’;
x = orth(randn(n,1)); % Unit-vector solution
r = U(:,end) * rnorm; % Residual orthog to range(B)
c = B*x + r;

end

number condB = cond(𝑩) = 1012 and residual norm rnorm = ∥𝒄 − 𝑩𝒙∥ = 10−4.
The sketching matrix 𝑺 is a sparse sign embedding (Definition 21.9) with dimensions
4000 × 100 and sparsity level 𝜁 = 4.

The left panel of Fig. 21.2 plots the relative forward error ∥𝒙 − 𝒙̂ ∥/∥𝒙∥; the middle
panel plots the relative residual error ∥𝑩(𝒙 − 𝒙̂)∥/∥𝑩𝒙∥; and the right panel plots the
backward error ∥𝚫𝑩∥F/∥𝑩∥F, the magnitude of the minimal backward perturbation
𝚫𝑩 in (21.8). In fact, we report an estimate of this quantity, computed using
Program 22.4 described below. As we see, all of these error quantities are well
above the error levels for MATLAB’s QR-based mldivide, shown as a black
dotted line. Therefore, we recognize that sketch-and-precondition with the zero ini-
tialization 𝒙0 := 0 is numerically unstable, in both the backward and forward senses
(see Section 21.5).

The work of Meier et al. raised serious questions about the viability of sketch-and-
precondition as a replacement for least-squares solvers based on QR factorization,
at least in applications that demand high numerical accuracy. Perhaps QR factor-
ization’s place on the throne as the default least-squares solver for general-purpose
software remained safe after all.

Fortunately, the instabilities of sketch-and-precondition are curable. In next chapter,
we will develop fast, numerically stable randomized least-squares solvers, including

326

a simple modification of the sketch-and-precondition that is backwards. Using these
stable algorithms, we can solve least-squares problems to machine accuracy up to
an order of magnitude faster than traditional least-squares solvers based on QR
factorization.

327

C h a p t e r 22

FAST, STABLE RANDOMIZED LEAST-SQUARES SOLVERS

For me, eig(A) epitomizes the successful contribution of numerical
analysis to our technological world. Physicists, chemists, engineers, and
mathematicians know that computing eigenvalues of matrices is a solved
problem. Simply invoke eig(A). . . and you tap into the work of
generations of numerical analysts. The algorithm involved, the QR
algorithm, is completely reliable, utterly nonobvious, and amazingly fast.

Lloyd N. Trefethen, An Applied Mathematician’s Apology [Tre22, p. 52]

Last chapter, we saw the results of Meier, Nakatsuksa, Townsend, and Webb
[MNTW24], who showed that a common implementation of the sketch-and-
precondition algorithm is numerically unstable, achieving errors in floating-point
arithmetic that are are orders of magnitude higher than standard direct methods.
Meier et al.’s work left open the question of whether any randomized least-squares
solver is numerically stable, even in the forward sense.

This chapter answers this question in the affirmative. We discuss three algo-
rithms: the sketch-and-descend algorithm and sketch-and-precondition algorithm
with sketch-and-solve initialization, which are (strongly) forward stable but not back-
ward stable, and sketch-and-precondition with iterative refinement (SPIR), which is
stable in both the (strong) forward and backward senses.

Sources. This chapter is based on the papers

Ethan N. Epperly. “Fast and Forward Stable Randomized Algorithms for Linear
Least-Squares Problems”. In: SIAM Journal on Matrix Analysis and Applications
(Dec. 2024), pp. 1782–1804. doi: 10.1137/23M1616790

and

Ethan N. Epperly, Maike Meier, and Yuji Nakatsukasa. “Fast Randomized Least-
Squares Solvers Can Be Just as Accurate and Stable as Classical Direct Solvers”.
In: Communications on Pure and Applied Mathematics, accepted (2025). Preprint
available at https://arxiv.org/abs/2406.03468v2.

https://doi.org/10.1137/23M1616790
https://arxiv.org/abs/2406.03468v2

328

Outline. After some notation in Section 22.1, we discuss the sketch-and-descend,
sketch-and-precondition, and SPIR algorithms in Sections 22.2, 22.4 and 22.5.
For our stability proofs, we will need to analyze modified versions of sketch-and-
precondition using the Lanczos algorithm in place of LSQR. For this reason, our
treatment will be briefly interrupted in Section 22.3 with an introduction to the
Lanczos algorithm and its relationship to other Krylov methods. Section 22.6
contains experiments, and Section 22.7 investiates estimation of the backward error.

22.1 Notation
Before we go further, let us establish some notation. We are interested in under-
standing the behavior of iterative least-squares algorithms that operate on 𝑚 × 𝑛
matrices and may require O(log(1/𝑢)) iterations to converge to the maximum nu-
merically achievable accuracy. As such, the total number of arithmetic operations
for algorithms in this chapter will be a polynomial in these three parameters: the
dimensions 𝑚 and 𝑛 and the iteration count log(1/𝑢). Since each arithmetic oper-
ation incurs some rounding error, it is natural to expect that iterative least-squares
algorithms should be only accurate up to error poly(𝑚, 𝑛, log(1/𝑢))𝑢. (Here, poly
denotes an unspecified polynomial function.)

With this in mind, we write 𝛼 ≲ 𝛽 or 𝛽 ≳ 𝛼 if 𝛼 ≤ 𝛾𝛽 for a prefactor 𝛾 =

poly(𝑚, 𝑛, log(1/𝑢)). We write 𝛼 ≍ 𝛽 if 𝛼 ≲ 𝛽 ≲ 𝛼. Similarly, we write 𝛼 ≪ 𝛽 if
𝛼 ≤ 𝛽/𝛾 for a sufficiently large polynomial factor 𝛾 = poly(𝑚, 𝑛, log(1/𝑢)). (That
is, the factor 𝛾 is as large a polynomial function as needed to complete the analysis.)
For an algorithm to be stable in a practical sense, we hope the polynomial factors 𝛾
are small. As we will see in Chapter 23, the proofs are already complicated when
we make no effort to track the prefactors.

We work in the standard model of floating-point arithmetic [Hig02, §2.2]. We write
fl(𝒛) for the value of a quantity 𝒛 evaluated in floating-point, and we introduce
err(𝒛) := fl(𝒛) − 𝒛. When using the fl and err notations, we will always assume that
the quantity is computed most natural way, i.e., 𝑨𝑹−1𝒛 is evaluated as A*(R\z),
not A*(inv(R)*z) and certainly not (A*inv(R))*z.

Throughout, we focus on the least-squares problem (21.1) with matrix 𝑩 and right-
hand side 𝒄. The condition number of 𝑩 will be denoted 𝜅 := cond(𝑩).

329

22.2 Sketch-and-descend: A strongly forward stable least-squares solver
After Meier, Nakatsukasa, Townsend, and Webb demonstrated instabilities in sketch-
and-precondition [MNTW24], it was natural to ask whether other least-squares
algorithms were numerically stable. (The stabilizing effects of the sketch-and-solve
initialization, discussed below in Section 22.4, were not known at the time.) Joel
Tropp suggested to me the possibility that iterative sketching methods would be
numerically stable. As it happens, these methods are strongly forward stable (but
not backward stable) when implemented appropriately.

Iterative sketching methods and the sketch-and-descend method
We now describe the family of iterative sketching methods, culminating in a method
we call the sketch-and-descend method.

Iterative Hessian sketch. In 2016, Pilanci and Wainwright developed an alternative
to the sketch-and-precondition paradigm for rapidly solving least-squares problems
to high-accuracy. They called their approach iterative Hessian sketch [PW16]. Their
basic idea is to reformulate the least-squares problem (21.1) as a sum of a quadratic
term and a linear term:

𝒙 = argmin
𝒛∈K𝑛

[
∥𝑩𝒛∥2 − 2Re((𝑩∗𝒄)∗𝒛)

]
. (22.1)

Then, reformulate this equation by introducing an offset 𝒙𝑖:

𝒙 = argmin
𝒛∈K𝑛

[
∥𝑩(𝒛 − 𝒙𝑖)∥2 − 2Re((𝑩∗ [𝒄 − 𝑩𝒙𝑖])∗(𝒛 − 𝒙𝑖))

]
. (22.2)

Both (22.1) and (22.2) are exact reformulations of the least-squares problem (21.1),
with all three optimization problems sharing the same solution 𝒙 (which is unique
when 𝑩 has full rank).

Now, we can introduce sketching. Beginning from an initialization 𝒙0 ∈ K𝑛, we
iterate for 𝑖 = 0, 1, In their original algorithm, Pilanci and Wainwright draw
a new sketch 𝑺𝑖 ∈ K𝑚×𝑑 at each iteration, and they sketch only the quadratic term,
resulting in the iteration

𝒙𝑖+1 = argmin
𝒛∈K𝑛

[

𝑺∗𝑖 𝑩(𝒛 − 𝒙𝑖)

2 − 2Re((𝑩∗ [𝒄 − 𝑩𝒙𝑖])∗(𝒛 − 𝒙𝑖))
]
.

Solving this optimization problem, we see that the resulting iteration is

𝒙𝑖+1 := 𝒙𝑖 + [(𝑺∗𝑖 𝑩)∗(𝑺∗𝑖 𝑩)]−1𝑩∗(𝒄 − 𝑩𝒙𝑖).

330

This iteration constitutes Pilanci and Wainwright’s iterative Hessian sketch algorithm
for the least-squares problem (21.1).

An advantage of the iterative Hessian sketch approach is that it generalizes nicely to
more general optimization problems, including constrained least-squares problems;
see [PW16] for details. For this thesis, we will focus only on the unconstrained
least-squares problem (21.1).

From iterative Hessian sketch to sketch-and-descend. In the years following Pilanci
and Wainwright’s original paper, researchers developed optimizations to the iterative
Hessian sketch method for the unconstrained linear least-squares problems (21.1).
First, the iteration-dependent sketching matrix 𝑺𝑖 was replaced by a single sketching
matrix 𝑺 ∈ K𝑚×𝑑 used across all iterations. Second, the procedure was accelerated
by incorporating dampling and momentum

𝒙𝑖+1 := 𝒙𝑖 + 𝛼[(𝑺∗𝑩)∗(𝑺∗𝑩)]−1𝑩∗(𝒄 − 𝑩𝒙𝑖) + 𝛽(𝒙𝑖 − 𝒙𝑖−1). (22.3)

When implemented with a subspace embedding of distortion 𝜂, the optimal values
of the coefficients 𝛼 and 𝛽 are

𝛼 = (1 − 𝜂2)2, 𝛽 = 𝜂2. (22.4)

These refinements were developed in concurrent papers of Ozaslan, Pilanci, and
Arikan [OPA19] and Lacotte and Pilanci [LP23].

In my view, the name iterative Hessian sketch is somewhat of a misnomer for the
modern version of the procedure (22.3) for least squares, as only a single sketch
is computed. (When I have publicly presented on this work, the names iterative
Hessian sketch and iterative sketching for this procedure caused confusion.) With
the optimizations of [OPA19; LP23], the iteration (22.3) can be interpreted as
preconditioned gradient descent with heavy-ball momentum for the least-squares
objective (21.1). Thus, the procedure (22.3) can be interpreted as a version of
sketch-and-precondition where a (momentum-accelerated) gradient method is used
in place of a Krylov solver. To avoid potential confusion, we will refer to the iteration
(22.3) as the sketch-and-descend method for this thesis.

Numerically stable implementation of sketch-and-descend
The original works [PW16; OPA19; LP23] do not offer precise guidance on how
to implement the iterative Hessian sketch/sketch-and-descend method. Directly
forming and manipulating the matrix (𝑺∗𝑩)∗(𝑺∗𝑩) can lead to numerical issues,

331

analogous to those involved in solving the normal equations (Section 21.2). To
address this issues, my paper [Epp24b] proposes implementing the iteration (22.3)
by first computing a QR decomposition (or other orthonormal factorization) of the
sketched matrix

𝑺∗𝑩 = 𝑸𝑹,

and using the update rule

𝒙𝑖+1 := 𝒙𝑖 + 𝛼𝑹−1(𝑹−∗(𝑩∗(𝒄 − 𝑩𝒙𝑖))) + 𝛽(𝒙𝑖 − 𝒙𝑖−1). (22.5)

The matrices 𝑹−1 and 𝑹−∗ are applied by triangular substitution, not explicit inver-
sion.

For numerical stability, it is important to evaluate (22.5) in the parenthesized order.
The following implementation

𝒙𝑖+1 := 𝒙𝑖 + 𝛼𝑹−1(𝑹−∗(𝑩∗𝒄 − 𝑩∗(𝑩𝒙𝑖)))) + 𝛽(𝒙𝑖 − 𝒙𝑖−1), (Bad!)

equivalent to (22.5) in exact arithmetic, can be numerically disastrous.

As a refinement, we can choose the initial iterate 𝒙0 to be the sketch-and-solve
solution (Section 21.7). Using this good initialization can reduce the iteration
count needed to convergence. Code for the sketch-and-descend method using these
improvements is provided in Program 22.1. Evidence that these modifications
improve stability appears in [Epp24b, Fig. 3].

Remark 22.1 (Sketch-and-descend versus sketch-and-precondition). The sketch-
and-descend method with optimal parameters (22.4) and the sketch-and-
precondition method with sketch-and-solve initialization (Section 22.4) typically
perform quite similarly in practice. As such, I usually recommend the sketch-
and-precondition method in practice, as the algorithm has no free parameters. An
exception where sketch-and-descend may be preferable is in parallel computing
environments [MSM14], because sketch-and-descend requires fewer parallel syn-
chronization steps. ⋄

Analysis in exact arithmetic
With an appropriate embedding and suitable parameter choices 𝛼, 𝛽, the sketch-and-
descend method converges geometrically, and the total runtime is O(𝑚𝑛 log(𝑛/𝜀) +
𝑛3 log 𝑛), the same as sketch-and-precondition. Indeed, with the optimal parameters
𝛼, 𝛽, the rate of convergence is even the same for sketch-and-descent as for sketch-
and-precondition. We have the following result:

332

Program 22.1 sketch_descend.m. Sketch-and-descend method for solving
overdetermined linear least-squares problems.
function X = sketch_descend(B,c,S,alpha,beta,iter)
% Input: Matrix B, right-hand side c, sketching matrix S, damping
% and momentum coefficients alpha and beta, and iteration
% count iter
% Output: Approximate least-squares solution x

X = zeros(size(B,2),iter+1); % Initialize history
[Q,R] = qr(S’*B,"econ"); % Sketch and compute QR
X(:,1) = R\(Q’*(S’*c)); % Sketch-and-solve initialize
X(:,2) = X(:,1) + alpha * (R\(R’\(B’*(c-B*X(:,1))))); % Step one
for i = 2:iter

X(:,i+1) = X(:,i)...
+ alpha * (R\(R’\(B’*(c-B*X(:,i)))))... % Damped gradient
+ beta * (X(:,i) - X(:,i-1)); % Momentum

end

end

Theorem 22.2 (Sketch-and-descend: Exact arithmetic). Let 𝑺 ∈ K𝑑×𝑚 be a sub-
space embedding for [𝑩 𝒄] with distortion 𝜂 < 1, and let 𝒙𝑖 denote the iterates
produced by the sketch-and-descend method (Program 22.1) in exact arithmetic.
For the trivial parameter choices 𝛼 = 1 and 𝛽 = 0, we have

∥𝒄 − 𝑩𝒙𝑘 ∥2 ≤
(
1 + 27𝜂 · [(2 +

√
2)𝜂]2𝑘

)
∥𝒄 − 𝑩𝒙∥2,

provided the convergence rate is less than one: (2 +
√

2)𝜂 < 1. With the optimal
parameter choices (22.4), we have the improved bound

∥𝒄 − 𝑩𝒙𝑘 ∥2 ≤
(
1 + 256
(1 − 𝜂)2

· 𝑘𝜂2𝑘−1
)
∥𝒄 − 𝑩𝒙∥2.

In particular, when implemented with a sparse sign embedding with Cohen’s pa-
rameter choices (Fact 21.10), sketch-and-descend produces a (1 + 𝜀)-approximate
least-squares solution

∥𝒄 − 𝑩𝒙𝑘 ∥ ≤ (1 + 𝜀)∥𝒙 − 𝑩𝒙∥.

with 99% probability after 𝑘 = O(log(1/𝜀)) iterations and O(𝑚𝑛 log(𝑛/𝜀) +
𝑛3 log 𝑛) operations.

The essence of this result appears in the works of Pilanci and coauthors [PW16;
OPA19; LP23]. The precise result stated here is an immediate consequence of
[Epp24b, Thms. 3.1 & B.1].

333

Analysis in finite precision arithmetic
In my paper [Epp24b], I proved that sketch-and-descend with trivial parameter
choices 𝛼 = 1 and 𝛽 = 0 is strongly forward stable. We have the following result
[Epp24b, Thm. 4.1]:

Theorem 22.3 (Sketch-and-descend is strongly forward stable). Let 𝑺 ∈ K𝑚×𝑑 be
a subspace embedding for [𝑩 𝒄] of distortion 𝜂 ≤ 0.29 with 𝑑 ≤ 𝑚, suppose
𝑩 is numerically full-rank 𝜅𝑢 ≪ 1, and assume the multiply operation is stable
∥err(𝑺∗𝒗)∥ ≲ ∥𝒗∥𝑢. The sketch-and-descend method with trivial parameter choices
𝛼 = 1 and 𝛽 = 0 is geometrically convergent until reaching strong forward stability

∥𝑩(𝒙 − fl(𝒙𝑘))∥ ≤ 20
√
𝜂[(2+

√
2)𝜂+𝛾𝜅𝑢]𝑘 +𝛾 (∥𝑩∥∥𝒙∥ + 𝜅∥𝒄 − 𝑩𝒙∥) 𝑢. (22.6)

Here, the prefactor 𝛾 = poly(𝑚, 𝑛). In particular, for real data and implemented with
a sparse sign embedding with Cohen’s parameter settings (Fact 21.10), sketch-and-
descend produces a strongly forward stable solution in O(𝑚𝑛 log(𝑛/𝑢) + 𝑛3 log 𝑛)
operations.

The statement in [Epp24b] is for real arithmetic, but the proof transfers to complex
arithmetic without issue. The bound (22.6) on the residual error leads to a bound on
the forward error ∥𝒙 − fl(𝒙𝑘)∥ by using the identity (21.7). We will omit proof of
this result because our upcoming results for sketch-and-precondition are of greater
practical relevance.

22.3 Intermezzo: Lanczos, conjugate gradient, and LSQR
Error analysis of Krylov iterative methods in finite precision arithmetic remains
a notoriously difficult and incomplete area of study. Moreover, our theoretical
understanding is uneven across different methods: The Lanczos algorithm has been
extensively analyzed in finite precision, but virtually nothing is known about LSQR.
Consequently, for analytical purposes, it is useful to study a version of sketch-and-
precondition based on the Lanczos algorithm.

An introduction the Lanczos algorithm is beyond the scope of this thesis; see Tyler
Chen’s monograph [Che24]. The Lanczos algorithm is a Krylov subspace method
that takes as input a Hermitian matrix 𝑴 ∈ K𝑛×𝑛 (or, more precisely, a subroutine
implementing matrix–vector products 𝒗 ↦→ 𝑴𝒛) and a vector 𝒇 ∈ K𝑛. It produces
a Hermitian tridiagonal matrix 𝑻 ∈ K𝑘×𝑘 and a matrix 𝑸 ∈ K𝑛×𝑘 with orthonormal
columns such that

334

Program 22.2 lanczos.m. Lanczos algorithm for partially tridiagonalizing a
matrix.
function [Q,T] = lanczos(M,f,k)
% Input: Function M() computing matrix-vector products, vector f,
% and number of steps k
% Output: Matrix Q with orthonormal columns and tridiagonal matrix T

Q = zeros(length(f),k+1); T = zeros(k+1); % Initialize
Q(:,1) = f / norm(f);
for i = 1:k

if i == 1
Q(:,2) = M(Q(:,1));

else
Q(:,i+1) = M(Q(:,i)) - T(i,i-1)*Q(:,i-1);

end
T(i,i) = Q(:,i+1)’*Q(:,i);
Q(:,i+1) = Q(:,i+1) - T(i,i)*Q(:,i);
T(i,i+1) = norm(Q(:,i+1)); T(i+1,i) = T(i,i+1);
Q(:,i+1) = Q(:,i+1) / T(i,i+1);

end
T = T(1:k,1:k); Q = Q(:,1:k);

end

• The first column of 𝑸 is 𝒒1 = 𝒇 /∥ 𝒇 ∥.

• For each 1 ≤ 𝑡 ≤ 𝑘 , the leading 𝑡 columns of 𝑸 form a basis for the Krylov
subspace span{ 𝒇 ,𝑴 𝒇 , . . . ,𝑴 𝑡−1 𝒇 }.

• The matrix 𝑻 = 𝑸∗𝑴𝑸.

The computational cost of the Lanczos method is 𝑘 matvecs with 𝑴 plus O(𝑛𝑘)
additional storage and arithmetic. See Program 22.2.

The Lanczos method is frequently used to approximate the action 𝑔(𝑴) 𝒇 of a
function of 𝑴 on the vector 𝒇 . Specifically, the Lanczos function approximation is
defined as �𝑔(𝑴) 𝒇 := 𝑸 𝑔(𝑸∗𝑴𝑸) 𝑸∗ 𝒇 = ∥ 𝒇 ∥ · 𝑸𝑔(𝑻)e1.

In particular, the choice 𝑔(𝑥) = 𝑥−1 yields the Lanczos linear solver:�𝑴−1 𝒇 = ∥ 𝒇 ∥ · 𝑸𝑻−1e1.

We have the following equivalence:

335

In exact arithmetic, the LSQR algorithm applied to the least-squares problem

𝒙 = argmin
𝒛∈K𝑛

∥𝒄 − 𝑩𝒙∥

produces the same sequence of iterates 𝒙0, 𝒙1, . . . as either the conjugate
gradient method or the Lanczos method applied to the normal equations

(𝑩∗𝑩)𝒙 = 𝑩∗𝒄

Given both the strong theoretical results for Lanczos and the equivalence between
LSQR, CG, and Lanczos, it is natural to analyze versions of sketch-and-precondition
that use Lanczos on the normal equations in place of LSQR.

Remark 22.4 (Reorthogonalization). When the Lanczos algorithm is executed in
finite-precision arithmetic, rounding errors leads the matrix 𝑸 to deviate from
orthonormality. This loss of orthogonality can lead to significant problems for some
applications of the Lanczos method, which may be mitigated using different types
of reorthogonalization strategies; see [Dem97, §7.4–7.6] for a discussion of several
options. Remarkably, for Lanczos function approximation and Lanczos linear solves,
the Lanczos algorithm produces satisfactory results in finite precision arithmetic
even without reorthogonalization [DK91; DGK98; MMS18]; see [Che24, Ch. 4] for
a discussion of this surprising phenomenon. All results in this thesis apply to the
plain version of the Lanczos algorithm without any form of reorthogonalization. ⋄

22.4 Sketch-and-precondition with sketch-and-solve initialization
After the initial release of Meier et al.’s manuscript, a curious thing was observed:
Using the sketch-and-solve initialization greatly improves the numerical stability of
sketch-and-precondition. The published version of [MNTW24] provides evidence
that the forward error of sketch-and-precondition with sketch-and-solve initializa-
tion is close to that of QR-based direct methods (i.e., evidence of weak forward
stability). My paper [Epp24b] shows that the residual error is also comparable with
QR-based methods, providing evidence of strong forward stability. For difficult
problems, however, sketch-and-precondition with sketch-and-solve initialization is
still not to backward stable; see Fig. 22.1 ahead.

In [MNTW24; Epp24b], the stabilizing effects of the sketch-and-solve initialization
are presented as empirical findings, and no rigorously explanation was available.
Maike Meier, Yuji Nakatsukasa, and myself provided such an explanation by proving

336

the following result [EMN25, Thm. 8.2]:

Theorem 22.5 (Sketch-and-precondition: Strong forward stability). Assume we
work over the real field K = R. Let 𝑺 ∈ R𝑚×𝑑 be a subspace embedding for
[𝑩 𝒄] of distortion 𝜂 ≤ 0.9 and with 𝑑 ≤ 𝑚, suppose 𝑩 is numerically full-
rank 𝜅𝑢 ≪ 1, and assume the multiply operation is stable ∥err(𝑺∗𝒗)∥ ≲ ∥𝒗∥𝑢.
Then the Lanczos-based implementation of sketch-and-precondition with sketch-
and-solve initialization produces a strongly forward stable solution to the least-
squares problem (21.1) afterO(log(1/𝑢)) iterations. To produce such a solutionwith
a sparse sign embedding with Cohen’s parameter settings (Fact 21.10), sketch-and-
precondition requires at most O(𝑚𝑛 log(𝑛/𝑢) + 𝑛3 log 𝑛) operations.

A proof of a simplified version of this result is provided in Chapter 23.

22.5 Sketch-and-precondition with iterative refinement
In matrix computations, iterative refinement is a standard approach to improving the
quality of a computed solution [Hig02, Ch. 12 & §20.5]. In its basic form, iterative
refinement executes the following sequence of steps:

𝒙1 := NotFullyStableSolver(𝑩, 𝒄);
𝒙2 := 𝒙1 + NotFullyStableSolver(𝑩, 𝒄 − 𝑩𝒙1).

(22.7)

Here, NotFullyStableSolver is any subroutine producing an approximate least-
squares solution: NotFullyStableSolver(𝑩, 𝒄) ≈ 𝑩†𝒄. Equation (22.7) de-
scribes one step of iterative refinement. In general, multiple steps of iterative
refinement may be necessary to achieve full accuracy. (That is, we continue on as
𝒙3 := 𝒙2 + NotFullyStableSolver(𝑩, 𝒄 − 𝑩𝒙2), etc.).

The most conventional use of iteration refinement is mixed-precision iterative re-
finement. Here, the NotFullyStableSolver routine is furnished by a factorization
of 𝑩 computed using a lower numerical precision (i.e., single precision):

(𝑸, 𝑹) ← LowPrecisionQR(𝑩); NotFullyStableSolver(𝑩, 𝒄) = 𝑹−1(𝑸∗𝒄).

In this thesis, we will perform iterative refinement in a uniform numerical precision
𝑢 (e.g., double precision) and use sketch-and-precondition as the NotFullySta-
bleSolver subroutine.

This motivates us to consider sketch-and-precondition with iterative refinement
(SPIR, [EMN25]). We begin with the sketch-and-solve initialization

𝒙0 := (𝑺∗𝑩)†(𝑺∗𝒄).

337

Program 22.3 spir.m. Sketch-and-precondition with iterative refinement for solv-
ing overdetermined linear least-squares problems.
function X = spir(B,c,St,iter1,iter2)
% Input: Matrix B, right-hand side c, sketching matrix St, and
% iteration count iter
% Output: Approximate least-squares solution x

[~,D,V] = svd(St*B,"econ"); % Sketch and compute SVD
prec = V / D; % Form preconditioner
y0 = Ut*(St*c); % Sketch-and-solve initialize
Y1 = mylsqr(@(z) B*(prec*z), ... % Sketch-and-precondition

@(z) prec’*(B’*z), ...
c, y0, iter1);

Y2 = mylsqr(@(z) B*(prec*z), ... % Refinement step
@(z) prec’*(B’*z), ...
c, Y(:,end), iter2);

X = prec * [Y1 Y2(:,2:end)]; % Change of variables

end

Then, we produce a first approximate solution by running sketch-and-precondition
with initialization 𝒙0:

𝒙1 := SketchAndPrecondition(𝑩, 𝒄, initialization = 𝒙0),

Then, we apply a single step of iterative refinement

𝒙2 := 𝒙1+SketchAndPrecondition(𝑩, 𝒄−𝑩𝒙1, initialization = 0). (22.8a)

Perhaps confusingly, it is imperative that we use the zero initialization for the
iterative refinement step. Alternatively, rather than the traditional refinement step
(22.8a), we can use the following restarting refinement step:

𝒙2 := 𝒙1 + SketchAndPrecondition(𝑩, 𝒄, initialization = 𝒙1). (22.8b)

In our experience, the traditional (22.8a) and restarting (22.8b) refinement steps have
similar stability properties. An implementation of SPIR appears in Program 22.3.

The backward stability of SPIR may be surprising in view of the classic work of
Golub and Wilkinson [GW66], who showed that standard mixed-precision iterative
refinement (22.7) does not greatly substantially improve the numerical accuracy for
least-squares problems except for nearly consistent systems. The setting of SPIR
is differs from Golub and Wilkinson’s setting. SPIR performs iterative refinement

338

in uniform precision, while using preconditioned Krylov methods (appropriately
initialized) as the solvers. This change in setting explains the difference in stability
behavior.

Unfortunately, we do not have a completely unconditional proof of backward stability
for SPIR. We need one small assumption:

Definition 22.6 (Non-pathological rounding error assumption). A vector 𝒙̂ ∈ K𝑛

satisfies the non-pathological rounding error assumption if

∥𝒙̂ ∥ ≳ ∥𝒙∥ + 𝜅𝑢
(
∥𝒙∥ + 𝜅 ∥𝒄 − 𝑩𝒙∥

∥𝑩∥

)
.

The Golub–Wilkinson–Wedin theorem (Fact 21.2) shows that the errors for a
strongly forward or backward approximate least-squares solution have magnitude

∥𝒙̂ − 𝒙∥ ≲ 𝜅𝑢

(
(∥𝒙∥ + 𝜅 ∥𝒄 − 𝑩𝒙∥

∥𝑩∥

)
.

Moreover, this bound is approximately attained for “most” backward perturbations
𝚫𝑩 and 𝚫𝒄 [GW66, §5]. So the non-pathological rounding error assumption just
states that (1) the error 𝒙̂ − 𝒙 is of the typical size expected for a backward stable
method (that is, ∥𝒙̂ − 𝒙∥ is not abnormally small) and (2) the errors 𝒙̂ − 𝒙 do not
catastrophically cancel with the true solution 𝒙 in such a way that 𝒙̂ has an unusually
small norm.

With this assumption, we state the following backward stability theorem:

Theorem 22.7 (SPIR: Backward stability). Assume we work over the real field
K = R. Let 𝑺 ∈ R𝑚×𝑑 be a subspace embedding for [𝑩 𝒄] of distortion 𝜂 ≤ 0.9
and with 𝑑 ≤ 𝑚, suppose 𝑩 is numerically full-rank 𝜅𝑢 ≪ 1, and assume the
multiply operation is stable ∥err(𝑺∗𝒗)∥ ≲ ∥𝒗∥𝑢. Finally, assume that the computed
solution satisfies the non-pathological rounding error assumption. Then the Lanc-
zos-based implementation of SPIR with traditional refinement (22.8a) produces a
backward stable solution to the least-squares problem (21.1) after O(log(1/𝑢))
total iterations. In particular, implemented with a sparse sign embedding with
Cohen’s parameter settings (Fact 21.10), the runtime is O(𝑚𝑛 log(𝑛/𝑢) + 𝑛3 log 𝑛)
operations.

Chapter 23 provides a proof of a simplified version of this result.

339

Remark 22.8 (FOSSILS). Our paper [EMN25] also introduces FOSSILS, a back-
ward stable version of iterative Hessian sketch/sketch-and-descend. While there are
a few scenarios when one might prefer FOSSILS over SPIR (cf. Remark 22.1), SPIR
is generally the preferable method in practice. See [EMN25, §4.4] for discussion. ⋄

Remark 22.9 ((Numerically) rank-deficient problems). For problems that are nu-
merically rank-deficient (𝜅𝑢 ⪆ 1), the sketch-and-precondition algorithm does not
work properly. In this case, there are three options:

1. “Smoothed analysis.” One way of addressing numerical rank-deficiency is
to add a small independent random perturbation to each matrix entry (say, a
centered Gaussian with standard deviation 10𝑢∥𝑩∥F). This operation has a
regularizing effect on a matrix, causing it to become numerically full rank
with high probability. This idea was proposed in the context of randomized
least-squares solvers by Meier et al. [MNTW24]. The idea of perturbing the
input to an algorithm to avoid bad instances is known as smoothed analysis
[ST01], and it has established itself as a core tool in the design of randomized
matrix algorithms [KT24, §6.3]. A disadvantage of this approach is that it
destroys any benevolent structure that may be present in the matrix 𝑩, such
as sparsity.

2. Ridge regularization. Another way of regularizing a least-squares problem
is to add a small ridge-regularization penalty to the least-squares objective:

𝒙reg = argmin
𝒛∈K𝑛

∥𝒄 − 𝑩𝒛∥2 + 𝜇2∥𝒛∥2.

The ridge-regularized least-squares problem is equivalent to an ordinary least-
squares problem involving an augmented matrix:

𝒙reg = argmin
𝒛∈K𝑛

[
𝒄

0

]
−

[
𝑩

𝜇I

]
𝒛

.
To solve rank-deficient problems, we can add a small amount of ridge regu-
larization (say, 𝜇 = 10𝑢∥𝑩∥F). See arXiv version 2 of [EMN25] for details.

3. Truncation. A third approach is to truncate the least-squares problem by
computing an SVD 𝑺∗𝑩 = 𝑼𝚺𝑽∗ of the sketched matrix. Then, instead
of using the standard-inverse preconditioner 𝑴−1 = 𝑽𝚺−1, one executes
preconditioned LSQR with a rectangular inverse-preconditioner 𝑷 := 𝑽 (:, 1 :
𝑟)𝚺(1 : 𝑟, 1 : 𝑟)−1, where 1 ≤ 𝑟 ≤ 𝑛 is the number of singular values of 𝑺∗𝑩

340

Figure 22.1: Forward (top left), residual (top right), and backward (bottom) errors
for five randomized least-squares solvers: sketch-and-precondition with zero initial-
ization (yellow solid squares), sketch-and-descend with trivial parameters 𝛼 = 1,
𝛽 = 0 (purple dashed asterisks), sketched and descend with optimized parameters
(22.4) (blue dotted crosses), sketch-and-precondition with sketch-and-solve initial-
ization (pink dash-dotted triangles), and SPIR (restarted after 25 iterations, orange
solid circles). We present a single execution. Errors for direct method (MATLAB’s
mldivide) shown for reference.

above a level, say, 10𝜎1𝑢. Truncating in this way has the effect of restricting
the solution to lie in the range of 𝑽 (:, 1 : 𝑟), a subspace on which the linear
transformation 𝑩 is numerically full-rank. See [EMN25] for details.

⋄

22.6 Experiments
Figure 22.1 compares the accuracy, stability, and convergence rates of different ran-
domized least-squares problems. We use the same problem instance from Fig. 21.2,
and we use a sparse sign embedding with embedding dimension 𝑑 := 20𝑛 and
sparsity level 𝜁 = 4 for all methods. (A larger embedding dimension is necessary

341

to ensure convergence of sketch-and-descend with trivial parameter choices.) We
see that all methods, except sketch-and-precondition with the zero initialization,
are strongly forward stable. The convergence rate of sketch-and-descend with the
trivial parameter settings is slower than the other methods; all other methods have
the same geometric rate of convergence. We see that all methods except SPIR fail
to be backward stable, with the backward error stagnating far above the level of the
direct method. SPIR, with refinement performed starting at iteration 25, converges
to full backward stability. In fact, SPIR achieves a slightly smaller backward error
than even the direct method.

22.7 The backward error and its estimation
As stated in Definition 21.3, an approximate least-squares solution 𝒙̂ ∈ K𝑛 is
backward stable if there are small perturbations 𝚫𝒄 and 𝚫𝑩, of unit roundoff size,
such that 𝒙̂ is the exact solution of the perturbed system

𝒙̂ = argmin
𝒛∈K𝑛

∥(𝒄 + 𝚫𝒄) − (𝑩 + 𝚫𝑩)𝒛∥.

The minimal size of these perturbations is called the backward error.

Definition 22.10 (Backward error). Introduce a parameter 𝜃 ∈ [0, +∞]. The back-
ward error is

BE𝜃 (𝒙̂) := min
{
∥ [𝚫𝑩 𝜃 · 𝚫𝒄] ∥F : 𝒙̂ = argmin

𝒛∈K𝑛

∥(𝒄 + 𝚫𝒄) − (𝑩 + 𝚫𝑩)𝒛∥
}
.

The most natural values for 𝜃 are 𝜃 = +∞ (i.e., 𝚫𝒄 is required to be set to zero)
or, provided 𝑩 and 𝒄 are commensurately scaled, 𝜃 = 1 (equal weight placed on
both 𝚫𝑩 and 𝚫𝒄). Assuming the normalization ∥𝑩∥ = ∥𝒄∥ = 1, an approximate
least-squares solution 𝒙̂ is backward stable if and only if BE1(𝒙̂) ≲ 𝑢.

To deploy randomized least-squares solvers, it is desirable to have estimates of the
backward error that are computable at runtime. These error estimates can be used
as stopping criteria for the algorithm.

The question of how to compute or estimate the backward error of an approximate
least-squares solution has a surprisingly deep history. As Higham writes [Hig02,
§20.7], “Although it has been known since the 1960s that a particular method for
solving the LS problem, namely the Householder QR factorization method, yields
a small normwise backward error. . . it was for a long time an open problem to
obtain a formula for the backward error of an arbitrary approximate solution.”

342

Program 22.4 backerr_est.m. Karlson–Waldén estimate of the backward error
for an least-squares solution.
function be = backerr_est(B,c,x,s,V)
% Input: Matrix B, column vector of singular values s,
% right singular vectors V of B, right-hand side c, and
% approximate LS solution x
% Output: Backward error estimate be for min ||c-B*x||

r = c - B*x; % Residual
om = norm(r) / norm(x);
be = om / norm(r) * norm((V’*(B’*r)) ./ (s.^2 + om^2).^0.5);

end

This problem was resolved in 1995 by Waldén, Karlson, and Sun [WKS95], who
discovered a formula for it. Higham developed a numerically stable version of
Waldén, Karlson, and Sun’s formula. Unfortunately, the Waldén–Karlson–Sun–
Higham formula requires a steepO(𝑚3) operations to evaluate, making it impractical
for many use cases.

The Karlson–Waldén estimate. The great cost of the Waldén–Karlson–Sun–
Higham formula inspired a flurry of research effort over two decades to develop
and analyze computationally efficient estimates for the backward error. This line
of work was initiated by Karlson and Waldén [KW97] and refined over a series
of follow-up works [Gu98; Grc03; GSS07; GJT12]. These papers converged on
estimates of the following form [GSS07, §2]:

B̂E𝜃 (𝒙̂) :=
𝜃

(1 + 𝜃2∥𝒙̂ ∥2)1/2

(
𝑩∗𝑩 + 𝜃

2∥𝒄 − 𝑩𝒙̂ ∥2

1 + 𝜃2∥𝒙̂ ∥2

)−1/2

𝑩∗(𝒄 − 𝑩𝒙̂)

.
Following previous papers [GJT12], we shall this the Karlson–Waldén estimate for
the backward error. This estimate can be evaluated in O(𝑚𝑛2) operations. Given
a QR factorization or SVD of 𝑩, then O(𝑚𝑛) operations suffice [GSS07]. An
implementation of the Karlson–Waldén estimate appears in Program 22.4.

The series of papers [Gu98; Grc03; GSS07] gave increasingly sharp characteriza-
tions of the quality of the Karlson–Waldén estimate. Gratton, Jiránek, and Titley-
Peloquin conclusively resolved this line of research, providing a sharp analysis of
the estimate [GJT12]. Here is a simplified version of their result:

343

Fact 22.11 (Karlson–Waldén estimate). Over the real field K = R, the Karlson–
Waldén estimate is sharp within a factor of

√
2:

1 · B̂E𝜃 (𝒙̂) ≤ BE𝜃 (𝒙̂) ≤
√

2 · B̂E𝜃 (𝒙̂) (22.9)

for every 𝜃 ∈ [0, +∞] and 𝒙̂ ∈ R𝑛. The constants 1 and
√

2 in (22.9) cannot be
improved.

Improving the Karlson–Waldén estimate with sketching. The cost of O(𝑚𝑛2)
operations for the Karlson–Waldén estimate is still prohibitive for deployment with
randomized least-squares solvers, since our goal is to achieve runtimes of roughly
O(𝑚𝑛+𝑛3) operations. Fortunately, we can accelerate the Karlson–Waldén estimate
with sketching. My coauthors and I in [EMN25] proposed the sketched Karlson–
Waldén estimate:

B̂Esk,𝜃 (𝒙̂) :=
𝜃

(1 + 𝜃2∥𝒙̂ ∥2)1/2

(
(𝑺∗𝑩)∗(𝑺∗𝑩) + 𝜃

2∥𝒄 − 𝑩𝒙̂ ∥2

1 + 𝜃2∥𝒙̂ ∥2

)−1/2

𝑩∗(𝒄 − 𝑩𝒙̂)

.
Here, 𝑺 is a subspace embedding. We have the following analysis for the sketched
Karlson–Waldén estimate, adapted from [EMN25, Prop. 4.2]:

Proposition 22.12 (Sketched Karlson–Waldén estimate). Consider the real field
K = R, let 𝜃 ∈ [0, +∞], 𝒙̂ ∈ R𝑛, and let 𝑺 ∈ R𝑚×𝑑 be a subspace embedding with
distortion 𝜂. The sketched Karlson–Waldén estimate is sharp up to the following
bounds:

(1 − 𝜂) · B̂E𝜃 (𝒙̂) ≤ BE𝜃 (𝒙̂) ≤
√

2(1 + 𝜂) · B̂E𝜃 (𝒙̂).

To compute the sketched Karlson–Waldén estimate, we can modify Program 22.4
to use the SVD of the sketched 𝑩 matrix, 𝑺∗𝑩 = 𝑼𝚺𝑽∗, in place of the original
𝑩 matrix. With a sparse sign embedding (Definition 21.9), the estimator requires
a one-time set-up cost of roughly O(𝑚𝑛 + 𝑛3) operations, after which the cost of
computing the estimator is O(𝑚𝑛) operations.

Adaptively stopping sketch-and-precondition and SPIR. We can use the sketched
Karlson–Waldén estimate to adaptively stop SPIR when backward stability has been
achieved. We can also use automatic methods to switch between the two stages of
SPIR. See [EMN25, §4] for details.

344

C h a p t e r 23

PROOFS OF STABILITY

Once in a lifetime a user of computer arithmetic should examine the
details of a backward error analysis.

Beresford N. Parlett, The Symmetric Eigenvalue Problem, [Par98, §2.6.1]

The two main classes of rounding error analysis are not, as my audience
might imagine, ‘backwards’ and ‘forwards’, but rather ‘one’s own’ and
‘other people’s’. One’s own is, of course, a model of lucidity; that of
others serves only to obscure the essential simplicity of the matter in
hand.

James Wilkinson, NAG 1984 Annual General Meeting [Wil85]

In this chapter, we will provide stability analysis for sketch-and-precondition and
sketch-and-precondition with iterative refinement (SPIR). As Wilkinson’s quote
at the beginning of the section highlights, every numerical analyst has their own
approach to rounding error analysis. My approach more qualitative, and I prefer
to avoid carefully tracking the size of constants and prefactors. Even at this level
of granularity, the numerical stabilility analysis of randomized iterative methods
involves lengthy calculations and estimates.

For this thesis, I will provide the simplest argument for strong forward stability of
sketch-and-precondition and backward stability of SPIR that I am aware of. To make
the analysis as simple as possible, this thesis will develop first-order perturbation
estimates. The original paper [EMN25] contains detailed analysis which accounts
for the higher-order terms. Throughout this section, important intermediate results
are boxed:

I am an important result.

Sources. This chapter is adapted from the following paper:

345

Ethan N. Epperly, Maike Meier, and Yuji Nakatsukasa. “Fast Randomized Least-
Squares Solvers Can Be Just as Accurate and Stable as Classical Direct Solvers”.
In: Communications on Pure and Applied Mathematics, accepted (2025). Preprint
available at https://arxiv.org/abs/2406.03468v2.

Outline. Section 23.1 introduces standing assumptions and notation for this section.
Sections 23.2 and 23.3 analyze the floating-point errors incurred during sketching.
Next, in Sections 23.4 and 23.5, we analyze the stability of multiplications by the
matrices 𝑩 and 𝑹−1, as well as their adjoints. We take a brief pause from analysis
in Section 23.6, which describes existing stability results for Lanczos linear solves.
Section 23.7 contains the core of the stability analysis, establishing a general formula
the floating point errors introduced in a single iterative refinement step with sketch-
and-precondition. As a consequence of this general formula, we derive strong
forward stability for sketch-and-precondition (with sketch-and-solve initialization)
in Section 23.8 and backward stability of SPIR in Section 23.9.

23.1 Standing assumptions and more notation
Throughout this section, we will assume the normalization

∥𝑩∥ = ∥𝒄∥ = 1.

As in Chapter 22, we will denote 𝜅 := cond(𝑩), and we will use the standing
assumption that 𝜅𝑢 ≪ 1.

A vector 𝒛 ∈ K𝑛 is exactly represented if fl(𝒛) = 𝒛. Throughout, 𝒆, 𝒆′, etc. denote
arbitrary vectors of norm ≲ 𝑢 (likewise, for matrices 𝑬, 𝑬′, etc.). We will freely
interchange the value of 𝒆 from line-to-line, even in the same line (i.e., we could
write 𝒆 + 𝒆′ = 𝒆). We will use HOT (“higher order terms”) to denote any term
proportional to 𝑢2, suppressing all prefactors depending on 𝑚, 𝑛, the norms of
various objects, and 𝜅. So, for our purposes ∥𝒛∥𝜅100𝑢2 = HOT. The “HOT”
notation helps to streamline stability arguments to their essence, at the cost of losing
precise information about the size of higher-order terms.

23.2 Sketching and QR factorizing
Our first order of business will be the assess the quality of the randomized precon-
ditioner 𝑹 in the presence of rounding errors.

First, we investigate the rounding errors incurred in sketching and computing the
QR decomposition. We have assumed the sketching operation is numerically stable

https://arxiv.org/abs/2406.03468v2

346

in the sense that
fl(𝑺∗𝑩) = 𝑺∗𝑩 + 𝑬.

QR factorization is backward stable [Hig02, Thm. 19.4], so there exists a matrix 𝑼

for which
𝑼 fl(𝑹) = fl(𝑺∗𝑩) + 𝑬 = 𝑺∗𝑩 + 𝑬 . (23.1)

Now, we use (23.1) to assess the quality of the numerically computed 𝑹 matrix as a
preconditioner for 𝑩. By the subspace embedding property, we have

𝑩 fl(𝑹)−1

 ≤ 1

1 − 𝜂 ·

𝑺∗𝑩 fl(𝑹)−1

=

1
1 − 𝜂 ·

𝑼 + 𝑬 fl(𝑹)−1

 ≤ 1
1 − 𝜂 + ·

1
1 − 𝜂

∥𝑬∥
𝜎min(fl(𝑹))

.

To bound the minimum singular value of fl(𝑹), we compute

𝜎min(fl(𝑹)) = 𝜎min(𝑺∗𝑩 + 𝑬) ≥ 𝜎min(𝑺∗𝑩) − ∥𝑬∥

≥ 1
1 + 𝜂 · 𝜎min(𝑩) − ∥𝑬∥ ≥

1
(1 + 𝜂)𝜅 − O(𝑢) ≥

const
𝜅

. (23.2)

In the last inequality, we used the hypothesis 𝜅𝑢 ≪ 1 (so that 𝑢 ≪ 1/𝜅). Therefore,

𝑩 fl(𝑹)−1

 ≤ 1
1 − 𝜂 + O(𝜅𝑢) ≤ const. (23.3)

A similar argument shows
∥𝑹∥ ≤ const. (23.4)

and
𝜎min(𝑩 fl(𝑹)−1) ≥ 1

1 + 𝜂 − O(𝜅𝑢) ≥ const > 0. (23.5)

Thus, the numerically computed matrix fl(𝑹) is a good preconditioner for 𝑩, satis-
fying the following bound:

cond(𝑩 fl(𝑹)−1) = cond(𝑩𝑹−1) + O(𝜅𝑢) ≤ const < 1.

To make our lives easier, we make the following notational affordance: Going
forward, the symbol 𝑹 will denote the numerically computed preconditioner 𝑹.

347

23.3 The sketch-and-solve solution
Now, we analyze the numerically computed sketch-and-solve solution. Householder
QR factorization is a backward stable for solving a least-squares problem [Hig02,
Thm. 20.3]. Therefore, the numerically computed sketch-and-solve solution 𝒙0 =

(𝑺∗𝑩)†(𝑺∗𝒄) is
fl(𝒙0) = (𝑺∗𝑩 + 𝑬)†(𝑺∗𝒄)

To first order, the pseudoinverse of a perturbation of a matrix 𝑭 is

(𝑭 + 𝑬)† = 𝑭† + (𝑭∗𝑭)−1𝑬∗(I − 𝑭𝑭†) − 𝑭†𝑬𝑭† + HOT.

Instantiating this result with 𝑭 := 𝑺∗𝑩 and invoking the identity 𝒙0 = (𝑺∗𝑩)†(𝑺∗𝒄),
we obtain

∥𝑩(𝒙 − fl(𝒙0))∥ = ∥𝑩(𝒙 − 𝒙0)∥ +

𝑩(𝑩∗𝑺𝑺∗𝑩)−1𝑬∗𝑺∗(𝒄 − 𝑩𝒙0)

+

𝑩(𝑺∗𝑩)†𝑬𝒙0

 + HOT.

By the analysis of sketch-and-solve (Theorem 21.8), the residual error is bounded:
∥𝑩(𝒙 − 𝒙0)∥ ≲ ∥𝒄 − 𝑩𝒙∥. Now, invoking the subspace embedding property and
the submultiplicative property of the spectral norm, we have

∥𝑩(𝒙 − fl(𝒙0))∥ ≲ ∥𝒄 − 𝑩𝒙∥ + ∥𝑺∗𝑩(𝑩∗𝑺𝑺∗𝑩)−1∥∥𝑬∥∥𝒄 − 𝑩𝒙∥
+ ∥𝑺∗𝑩(𝑺∗𝑩)†∥∥𝑬∥∥𝒙0∥ + HOT.

We have 𝑺∗𝑩(𝑩∗𝑺𝑺∗𝑩)−1 = (𝑺𝑩)†∗, which has norm ≲ 𝜅. Thus,

∥𝑩(𝒙 − fl(𝒙0))∥ ≲ ∥𝒄 − 𝑩𝒙∥ + ∥𝒙0∥𝑢 + HOT.

Finally, we note that ∥𝒙0∥𝑢 ≤ ∥𝒙∥𝑢 + ∥𝒙 − 𝒙0∥𝑢 = ∥𝒙∥𝑢 + HOT. We conclude

∥𝑩(𝒙 − fl(𝒙0))∥ ≲ ∥𝒄 − 𝑩𝒙∥ + ∥𝒙∥𝑢 + HOT. (23.6)

The residual error of the numerically computed sketch-and-solve solution is bounded
by a multiple of the residual ∥𝒄 − 𝑩𝒙∥ plus ∥𝒙∥𝑢.

23.4 Stability of multiplication and triangular solves
The basic primitive in all of these algorithms are taking linear combinations of vec-
tors and performing matrix multiplications. The stability of these basic operations

348

is analyzed in [Hig02, §§2–3]. We will use the crudest versions of these results. For
exactly represented vectors 𝒛, 𝒘 ∈ K𝑛 and 𝒗 ∈ K𝑚 and scalar 𝜉 ∈ K, we have

∥err(𝜉 · 𝒛)∥ ≲ |𝜉 | · ∥𝒛∥ + HOT, (23.7a)

∥err(𝒛 ± 𝒘)∥ ≲ ∥𝒛 ± 𝒘∥𝑢 + HOT, (23.7b)

∥err(𝑩𝒛)∥ ≲ ∥𝒛∥𝑢 + HOT, (23.7c)

∥err(𝑩∗𝒗)∥ ≲ ∥𝒗∥𝑢 + HOT. (23.7d)

Solves by triangular matrices will be another important primitive for us. The key
fact about triangular solves is that they are backward stable. In particular, for an
exactly represented vector 𝒛,

fl(𝑹−1𝒛) = (𝑹 + 𝚫𝑹)−1𝒛 for ∥𝚫𝑹∥ ≲ 𝑢.

Here, we used the bound ∥𝑹∥ ≲ 1 (equation (23.4)). Using the first-order expansion
(𝑹 + 𝚫𝑹)−1 = 𝑹−1 − 𝑹−1 · 𝚫𝑹 · 𝑹−1 + HOT, it follows that

fl(𝑹−1𝒛) = [𝑹−1 − 𝑹−1 · 𝚫𝑹 · 𝑹−1]𝒛 + HOT = 𝑹−1𝒛 +

𝑹−1𝒛

 · 𝑹−1𝒆 + HOT.

We conclude that

err(𝑹−1𝒛) =

𝑹−1𝒛

 · 𝑹−1𝒆 + HOT. (23.8a)

A similar argument shows that

err(𝑹−∗𝒛) = ∥𝑹−∗𝒛∥ · 𝑹−∗𝒆 + HOT. (23.8b)

23.5 Stability of interleaved multiplications
The sketch-and-precondition algorithm consists sequences of multiplies with the
matrix 𝑩, the preconditioner 𝑹, and their adjoints.

Let us first analyze the floating-point errors incurred in evaluating the product
𝑹−∗𝑩∗𝒛. Combining (23.7d) and (23.8b), we obtain

err(𝑹−∗𝑩∗𝒛) = ∥𝑹−∗𝑩∗𝒛∥ · 𝑹−∗𝒆︸ ︷︷ ︸
errors from applying 𝑹−∗

+ ∥𝒛∥ · 𝑹−∗𝒆′︸ ︷︷ ︸
𝑹−∗·err(𝑩∗𝒛)

+HOT.

Applying the bound ∥𝑩𝑹−1∥ ≲ 1 (equation (23.3)), we conclude

err(𝑹−∗𝑩∗𝒛) = ∥𝒛∥ · 𝑹−∗𝒆 + HOT. (23.9)

349

Next, let us analyze 𝑹−∗𝑩∗𝑩𝑹−1𝒛. First, applying (23.7c) and (23.8a), observe that

err(𝑩𝑹−1𝒛) =

𝑹−1𝒛

 · 𝑩𝑹−1𝒆︸ ︷︷ ︸
𝑩·err(𝑹−1𝒛)

+

𝑹−1𝒛

 · 𝒆′︸ ︷︷ ︸
errors from applying 𝑩

+HOT.

Deploying the bound ∥𝑩𝑹−1∥ ≲ 1 (equation (23.3)) and the inequality ∥𝑹−1𝒛∥ ≤
∥𝒛∥/𝜎min(𝑹) ≲ 𝜅∥𝒛∥ (equation (23.2)), we obtain

err(𝑩𝑹−1𝒛)

 ≲ 𝜅𝑢∥𝒛∥ + HOT.

Combining this result with (23.9) and using the bound 1/𝜎min(𝑹) ≲ 𝜅, we conclude

err(𝑹−∗𝑩∗𝑩𝑹−1𝒛)

 ≲ 𝜅𝑢∥𝒛∥ + HOT. (23.10)

The results (23.9) and (23.10) will be used later in our analysis.

23.6 Accuracy of Lanczos linear solves
The finite-precision analysis of Lanczos function approximation and Lanczos linear
solves is the subject of papers [DK91; DGK98; MMS18]. We draw on the results
of these works, though only in a qualitative manner. Specifically, we will use the
following consequence of the analysis of these papers:

Fact 23.1 (Lanczos linear solves: Well-conditioned matrix). Let 𝑴 be a positive
definite matrix with condition number bounded by an absolute constant

cond(𝑴) ≤ const,

and assume matrix–vector products are computed to effective precision 𝑢̃ ≥ 𝑢:

∥err(𝑴𝒛)∥ ≲ ∥𝑴∥∥𝒛∥𝑢̃ for every exactly represented 𝒛 ∈ R𝑛.

Then O(log(1/𝑢̃)) steps of the Lanczos linear solver produces an approximation to
𝑴−1𝒛 that is forward stable in the effective precision 𝑢̃:

∥err(𝑴−1𝒛)∥ ≲ ∥𝑴∥−1∥𝒛∥𝑢̃. (23.11)

The ≲ notation in (23.11) suppresses polylogarithic factors in the inverse-effective
precision 1/𝑢̃ and the dimension of 𝑴.

See [EMN25, App. C] for a detailed explanation of how this result can be derived
from [MMS18].

350

In the Lanczos-based sketch-and-precondition method, we use Lanczos to solve the
normal equations

𝑴𝒚 = 𝒇 for 𝑴 := 𝑹−∗𝑩∗𝑩𝑹−1, 𝒇 := 𝑹−∗𝑩∗(𝒄 − 𝑩𝒙𝑖).

As shown in (23.10), multiplies 𝑴𝒛 = 𝑹−∗(𝑩∗(𝑩(𝑹−1𝒛))) is forward stable in
effect precision 𝑢̃ = 𝜅𝑢, up to higher order terms. Further, by (23.3) and (23.5),
the matrix 𝑴 is well-conditioned, cond(𝑴) ≤ const. Thus, Fact 23.1 implies that
Lanczos produces a solution to the normal equations satisfying

fl(𝒚) − 𝑴−1 fl(𝒇)

 ≲ 𝜅𝑢∥fl(𝒇)∥ + HOT. (23.12)

23.7 The error formula
We now analyze an iterative refinement step using sketch-and-precondition:

𝒙𝑖+1 ← 𝒙𝑖 + 𝑹−1 (𝑹−∗𝑩∗𝑩𝑹−1)−1︸ ︷︷ ︸
applied via Lanczos

𝑹−∗𝑩∗(𝒄 − 𝑩𝒙𝑖). (23.13)

Here, 𝒙𝑖 denotes an arbitrary 𝑖th iterate. Throughout this section, we let fl and err
denote only the floating-point errors incurred during the refinement step (23.13).

Begin by using the error bounds for vector subtraction (23.7b) and matrix multipli-
cation (23.7c) to obtain

∥err(𝒄 − 𝑩𝒙𝑖)∥ ≲ (1 + ∥𝒙𝑖∥)𝑢 + HOT.

Next, invoking (23.9) yields

err(𝑹−∗𝑩∗(𝒄 − 𝑩𝒙𝑖)) = (1 + ∥𝒙𝑖∥)𝑹−∗𝑩∗𝒆︸ ︷︷ ︸
𝑹−∗𝑩∗·err(𝒄−𝑩𝒙𝑖)

+ ∥𝒄 − 𝑩𝒙𝑖∥ · 𝑹−∗𝒆′︸ ︷︷ ︸
errors from applying 𝑹−∗𝑩∗

+HOT.

Employing the bound ∥𝑹−∗𝑩∗∥ ≲ 1 ((23.3)), this equation simplifies

err(𝑹−∗𝑩∗(𝒄 − 𝑩𝒙𝑖)) = (1 + ∥𝒙𝑖∥)𝒆 + ∥𝒄 − 𝑩𝒙𝑖∥ · 𝑹−∗𝒆′ + HOT.

Now, introduce the shorthand 𝑴 := 𝑹−∗𝑩∗𝑩𝑹−1 and apply the Lanczos linear solve
bound (23.12) to obtain

err(𝑴−1𝑹−∗𝑩∗(𝒄 − 𝑩𝒙𝑖)) = (1 + ∥𝒙𝑖∥)𝒆 + ∥𝒄 − 𝑩𝒙𝑖∥ · 𝑴−1𝑹−∗𝒆′︸ ︷︷ ︸
𝑴−1·err(𝑹−∗𝑩∗ (𝒄−𝑩𝒙𝑖))

+ 𝜅∥𝑹−∗𝑩∗(𝒄 − 𝑩𝒙𝑖)∥𝒆′′︸ ︷︷ ︸
errors from applying 𝑴−1

+HOT. (23.14)

351

We have simplified by noting that ∥𝑴−1∥ ≤ const. To reduce further, we note that

∥𝑹−∗𝑩∗(𝒄 − 𝑩𝒙𝑖)∥ = ∥𝑹−∗𝑩∗(𝒄 − 𝑩𝒙 + 𝑩(𝒙 − 𝒙𝑖))∥
= ∥𝑹−∗𝑩∗(𝑩𝒙 − 𝑩𝒙𝑖)∥ ≲ ∥𝑩(𝒙 − 𝒙𝑖)∥.

The second equality is the orthogonality of the residual 𝒄 − 𝑩𝒙 to the range of 𝑩

and the inequality is (23.3). We also note that 𝑴−1𝑹−∗ = 𝑹(𝑩∗𝑩)−1. Applying all
of these observations and combining with (23.14), we obtain

err(𝑴−1𝑹−∗𝑩∗(𝒄 − 𝑩𝒙𝑖)) = (1 + ∥𝒙𝑖∥ + 𝜅∥𝑩(𝒙 − 𝒙𝑖)∥)𝒆
+ ∥𝒄 − 𝑩𝒙𝑖∥ · 𝑹(𝑩∗𝑩)−1𝒆′ + HOT.

Now, employ the inversion bound (23.8a) and addition bound (23.7b) to conclude

err(𝒙𝑖+1) = (1 + ∥𝒙𝑖∥ + 𝜅∥𝑩(𝒙 − 𝒙𝑖)∥)𝑹−1𝒆 + ∥𝒄 − 𝑩𝒙𝑖∥ · (𝑩∗𝑩)−1𝒆′︸ ︷︷ ︸
𝑹−1·err(𝑴−1𝑹−∗𝑩∗ (𝒄−𝑩𝒙𝑖))

+

𝑹−1𝑴−1𝑹−∗𝑩∗(𝒄 − 𝑩𝒙𝑖)

 · 𝑹−1𝒆′′︸ ︷︷ ︸
errors from applying𝑹−1

+ ∥𝒙∥𝒆′′′︸ ︷︷ ︸
errors from final addition

+HOT.

This display constitutes an error bound for a single sketch-and-precondition step.
To simplify, note that

𝑹−1𝑴−1𝑹−∗𝑩∗(𝒄 − 𝑩𝒙𝑖)

 =

𝑩†(𝒄 − 𝑩𝒙𝑖)

 = ∥𝒙 − 𝒙𝑖∥ ≤ ∥𝒙∥ + ∥𝒙𝑖∥.

Thus, we have shown

err(𝒙𝑖+1) = (1 + ∥𝒙∥ + ∥𝒙𝑖∥ + 𝜅∥𝑩(𝒙 − 𝒙𝑖)∥)𝑹−1𝒆

+ ∥𝒄 − 𝑩𝒙𝑖∥ · (𝑩∗𝑩)−1𝒆′ + HOT. (23.15)

23.8 Forward stability of sketch-and-precondition
Now we show strong forward stability of sketch-and-precondition with the sketch-
and-solve initialization. By (23.6), the numerically computed sketch-and-solve
solution satisfies

∥fl(𝒙0)∥ ≤ ∥𝒙∥ + ∥𝒙 − fl(𝒙0)∥ ≤ ∥𝒙∥ + 𝜅∥𝑩(𝒙 − fl(𝒙0))∥ ≲ ∥𝒙∥ + 𝜅∥𝒄 − 𝑩𝒙∥.

Here, we used the hypothesis 𝜅𝑢 ≪ 1. Similarly,

1 = ∥𝒄∥ ≤ ∥𝒄 − 𝑩𝒙∥ + ∥𝒙∥.

352

Substituting the previous two displays in the error formula (23.15) gives

err(𝒙1) = (∥𝒙∥ + 𝜅∥𝒄 − 𝑩𝒙∥)𝑹−1𝒆 + ∥𝒄 − 𝑩𝒙∥ · (𝑩∗𝑩)−1𝒆′ + HOT.

Finish up by multiplying by 𝑩, taking norms, and using the bound s

𝑩𝑹−1

 ≲ 1

(equation (23.3)) and

𝑩(𝑩∗𝑩)−1

 =

𝑩†

 = 𝜅. We obtain

∥𝑩(𝒙 − fl(𝒙1))∥ ≲ ∥𝒙∥𝑢 + 𝜅∥𝒄 − 𝑩𝒙∥𝑢 + HOT. (23.16)

This bound is strong forward stability, up to the higher-order terms.

23.9 Backward stability of SPIR
Now, we show backward stability of SPIR. Our main tool will be the following
characterization [EMN25, Thm. 2.8 & Cor. 2.9]:

Theorem 23.2 (Backward stability: Componentwise errors). Consider a real least-
squares problem (21.1) with the normalization ∥𝑩∥ = ∥𝒄∥ = 1, and introduce the
SVD 𝑩 =

∑𝑛
𝑖=1 𝜎𝑖𝒖𝑖𝒗

∗
𝑖
. A vector 𝒙̂ is backward stable solution to the least-squares

problem (21.1) if and only if��𝒗∗𝑖 (𝒙 − 𝒙̂)�� ≲ 𝜎𝑖 (𝑩)−1 · (1 + ∥𝒙̂ ∥)𝑢 + 𝜎𝑖 (𝑩)−2 · ∥𝒄 − 𝑩𝒙̂ ∥𝑢 for each 𝑖 = 1, . . . , 𝑛.

Consequently, if the error takes the form

𝒙 − 𝒙̂ = (1 + ∥𝒙̂ ∥) · fl(𝑹)−1𝒆 + ∥𝒄 − 𝑩𝒙̂ ∥ · (𝑩∗𝑩)−1𝒆′,

then 𝒙̂ is backward stable.

The proof follows by comparing the backward error to the Karlson–Waldén estimate
using Fact 22.11, then decomposing the Karlson–Waldén estimate using the singular
value decomposition of 𝑩. The computation is straightforward, and we omit the
details here.

To prove backward stability of SPIR, we use the following ingredients: the charac-
terization theorem (Theorem 23.2), the error formula (23.15), and the strong forward
stability of sketch-and-precondition (23.16). Begin by using strong forward stability
(23.16) of the numerically computed solution fl(𝒙1) together with the error formula
(23.15) to obtain

err(𝒙2) = (1 + ∥𝒙∥)𝑹−1𝒆 + ∥𝒄 − 𝑩𝒙∥ · (𝑩∗𝑩)−1𝒆′ + HOT.

353

We see that fl(𝒙2) and ∥𝒙∥ differ by an amount of sizeO(𝑢), so we may replace ∥𝒙∥𝑢
by ∥fl(𝒙2)∥𝑢 up to higher order terms. Similarly, the 𝒙 minimizes the least-squares
residual norm, so ∥𝒄 − 𝑩𝒙∥ ≤ ∥𝒄 − 𝑩𝒙̂ ∥. Thus, we have shown

err(𝒙2) = (1 + ∥fl(𝒙2)∥)𝑹−1𝒆 + ∥𝒄 − 𝑩 fl(𝒙2)∥ · (𝑩∗𝑩)−1𝒆′ + HOT.

This conclusion is precisely backward stability, up to higher-order terms.

Remark 23.3 (What about the benign rounding error assumption?). The careful
reader may notice that our derivation did not use the non-pathological rounding
error assumption (Definition 22.6). Thus, we conclude that backward stability to
first order holds without this assumption. As far as I am aware, this assumption
is needed to control higher-order terms and prove the backward stability of SPIR
(Theorem 22.7). ⋄

354

C h a p t e r 24

SKETCHING, SOLVERS, AND STABILITY: OPEN PROBLEMS

This chapter presents open problems related to this part of the thesis. First, in
Section 24.1, we discuss improving our stability analysis to treat CG or LSQR in
place of Lanczos. Second, Section 24.2 investigates open problems in the numerical
stability of Krylov methods. We conclude in Section 24.3 by pondering the stability
properties of preconditioned iterative methods for square systems of linear equations.

24.1 From Lanczos to conjugate gradient to LSQR
The major limitation of our analysis sketch-and-precondition and SPIR in the last
chapter was that we analyzed a Lanczos-based version of the procedure. In practice,
we instead use LSQR or perhaps conjugate gradient on the normal equations. To
close this gap between theory and practice, we ask: Could we analyze sketch-and-
precondition-type methods with conjugate gradient or LSQR?

The path to analyzing sketch-and-precondition with conjugate gradient seems more
clear. The conjugate gradient algorithm has already been analyzed many times in
finite-precision arithmetic [Gre89; GS92; Gre97a; MS06]. Further, the pseudocodes
for conjugate gradient and the Lanczos algorithm are fairly similar. Given this
existing body of work and these connections, it is natural to hope that a version of
Fact 23.1 should be attainable for conjugate gradient. I am actively working on this
question in collaboration with Deeksha Adil, Anne Greenbaum, and Christopher
Musco.

Analyzing sketch-and-precondition with LSQR seems harder as a practical matter,
as there is no existing rigorous analysis of the LSQR method in finite precision
arithmetic (to the best of my knowledge). However, in principle, any tools used to
analyze conjugate gradient or Lanczos should be extensible to LSQR, as well.

24.2 Numerical stability of Krylov methods
In the Lanczos stability result (Fact 23.1), the ≲ notation suppresses prefactors that,
apon closer analysis, are quantitatively large. The analysis of [MMS18], which
underrides the proof of Fact 23.1, shows that the Lanczos algorithm solves an 𝑛 × 𝑛

355

positive definite linear system 𝑴 𝒇 up accuracy roughly

∥𝑴∥ ·

fl(𝑴−1 𝒇) − 𝑴−1 𝒇

 ⪅ poly(𝑛) · cond(𝑴)3𝑢̃ log4(1/𝑢̃) · ∥ 𝒇 ∥. (24.1)

Here, as in Fact 23.1, 𝑢̃ ≥ 𝑢 denotes the effective precision at which matvecs with
𝑴 are computed. The analysis of [DGK98, Thm. 2.2] is stronger, roughly implying
that

∥𝑴∥ ·

fl(𝑴−1 𝒇) − 𝑴−1 𝒇

 ⪅ poly(𝑛) · cond(𝑴)2.25𝑢̃ log0.5(1/𝑢̃) · ∥ 𝒇 ∥. (24.2)

(The full version of [DGK98, Thm. 2.2] is stronger (24.2), as it bounds the resid-
ual

 𝒇 − 𝑴 fl(𝑴−1 𝒇)

.) As a point of comparison, recall that a (forward) stable

algorithm for the linear system 𝑴𝒚 = 𝒇 achieves a much higher accuracy

∥𝑴∥ ·

fl(𝑴−1 𝒇) − 𝑴−1 𝒇

 ⪅ poly(𝑛) · cond(𝑴)𝑢 · ∥ 𝒇 ∥. (24.3)

In my numerical experience, I have always found the Lanczos algorithm to be forward
stable or nearly so. As such, I believe the the polylogarithmic factors poly(log(1/𝑢̃))
and superlinear powers of cond(𝑴) in (24.1) and (24.2) are parasitic.

In our analysis, the unappealing aspects of (24.1) and (24.2) are hidden by the ≲

notation. The condition number of 𝑴 = 𝑹−∗𝑩∗𝑩𝑹−1 is O(1) and polylogarithmic
factors in log(1/𝑢) ≥ log(1/𝑢̃) are suppressed under the≲ relation. Still, if one were
to develop versions of stability theorems in this thesis with explicit prefactors, those
prefactors would pay a steep price for the weak bounds (24.1) and (24.2). As such,
developing improved versions of Fact 23.1 with better dependence on cond(𝑴) and
log(1/𝑢̃) is a natural question for future work. In particular, a precise open question
is to determine whether the Lanczos algorithm is forward stable (24.3).

24.3 From least squares to linear systems
On inspection, the analysis in Chapter 23 uses randomness only to construct the
preconditioner 𝑹 and the initialization 𝒙0. As such, if one had another means of
producing a high-enough quality preconditioner 𝑹 and initialization 𝒙0, our analysis
would also establish backward stability in this case (with a single step of iterative
refinement). Remarks to these effects are made in [EMN25, §6.7].

Unfortunately, finding a good initialization 𝒙0 satisfying ∥𝒄 − 𝑩𝒙0∥ ≲ ∥𝒄 − 𝑩𝒙∥
appears challenging beyond the setting of highly overdetermined least squares.
Indeed, for a least-squares problem which is consistent (𝒄 = 𝑩𝒙), finding such a good
initialization amounts to solving the problem! As such, randomized preconditioning

356

represents the only setting of which I am aware for which one has access to both
high-quality initialization and high-quality preconditioner.

Still, the techniques we studied in this thesis could be useful beyond the setting of
randomized least squares. In particular, it is natural to ask:

Can we say anything about the solution to linear systems of equations by
preconditioned iterative methods from trivial initialization 𝒙0 = 0?

I investigated this question with Anne Greenbaum and Yuji Nakatsukasa in [EGN25],
and we showed that iterative methods on the preconditioned normal equations
converge to backward stability after sufficiently many iterative refinement. As with
this thesis, the analysis only holds for Lanczos, but the numerical results suggest it
holds for LSQR as well. I also make the caveat that our analysis requires that our
analysis requires that applying the inverse-preconditioner 𝒛 ↦→ 𝑹−1𝒛 is done in a
backward stable manner.

This leaves open a fundamental question: What about other iterative methods?
Is preconditioned conjugate gradient (with iterative refinement) backward stable,
provided with a high-enough quality preconditioner? What about preconditioned
GMRES? These are natural and basic questions about the attainable accuracy of
some of the most fundamental preconditioned iterative methods of computational
mathematics, and they remain open. Some preliminary numerical evidence for
preconditioned conjugate gradient is provided in [EGN25, Fig. 4], showing that
preconditioned conjugate gradient is backward stable with, and only with, iterative
refinement.

357

A p p e n d i x A

INCREMENTAL QR DECOMPOSITION

In both Parts I and II of this thesis, we are interested in maintaining a QR decom-
position of a tall matrix 𝒀 ∈ K𝑚×𝑘 that evolves by having new columns appended to
its end. It is straightforward using appropriate calls to a linear algebra library like
LAPACK [ABBB+99], though I am unaware of a reference. For completeness, I
provide a description of this “incremental QR decomposition” primitive here. I also
provide a MATLAB implementation using internal undocumented functions, which
provide an interface to the corresponding LAPACK calls. (Warning: MATLAB
internal functions are subject to be removed or changed between releases.) In the
following discussion, we use names of LAPACK routines for real, double-precision
arithmetic.

Suppose the entries of 𝒀 ∈ K𝑚×𝑘 are stored in column-major order in a buffer Y.
New (blocks of) columns are added by appending to the end of the buffer. If the
allocated space for the buffer is ever exhausted, a new buffer of twice the size is
allocated and the contents of the existing buffer are copied over. To store a QR
decomposition using LAPACK, we allocate a second small buffer tau, which also
can be dynamically resized as necessary. See Fig. A.1(a) for an illustration.

A (full) QR decomposition

𝒀 = 𝑸

[
𝑹

0

]
for 𝑸 ∈ K𝑚×𝑚 and 𝑹 ∈ K𝑘×𝑘

can now be computed in place using the LAPACK command dgeqrf. The matrix
𝑹 is overwritten over the upper triangular portion of the buffer Y, and the matrix 𝑸

is represented implicitly as a product of Householder reflectors, which are stored in
the strictly lower triangular parts of the Y buffer and the first 𝑘 entries of tau. See
Fig. A.1(b) for illustration.

New columns or blocks of columns can be adjoined to the matrix 𝒀 by appending
to the buffer Y. The newly added columns are stored as-is, whereas the existing
columns have been overwritten by the QR decomposition. One can continue to add
columns in this way for as long as desired. See Fig. A.1(c).

358

Figure A.1: Data layout for incremental QR decomposition, illustrated with a buffer
of size 42 for Y and size 6 for tau. (a) Initial matrix𝒀 ∈ K7×3 stored in first 21 entries
of Y buffer; remaining buffer positions are unoccupied. (b) QR decomposition of 𝒀
overwritten on 𝒀 in place; upper triangle of 𝒀 stores the R factor, and lower triangle
(and first three entries of tau buffer) store the Q factor implicitly using Householder
reflectors. (c) Matrix 𝒀 is expanded to size 7 × 5; new columns are appended to the
end of the Y buffer. (d) New columns are brought into QR decomposition format.

Suppose at some future time one wishes to compute a QR decomposition of the
matrix 𝒀 with its new columns. Denote 𝒀1 ∈ K𝑚×𝑘 the previous matrix with its full
QR decomposition

𝒀1 = 𝑸1

[
𝑹11

0

]
already computed and stored in place, and denote by 𝒀2 ∈ K𝑚×ℓ the newly added
columns, so that 𝒀 =

[
𝒀1 𝒀2

]
. As a first step, apply the matrix 𝑸∗1 to 𝒀2 in place,

which can be accomplished using the LAPACK routine dormqr. The result of this
operation can be written as

𝑸∗1𝒀 = 𝑸∗1

[
𝒀1 𝒀2

]
=:

[
𝑹11 𝑹12

0 ˜𝒀2

]
for 𝑹12 ∈ K𝑘×ℓ and ˜𝒀2 ∈ K(𝑚−𝑘)×ℓ .

The matrix 𝒀2 in the buffer Y has been overwritten by two matrices, 𝑹12 and ˜𝒀2

stacked on top of each other. The top part of this matrix, 𝑹12, shall serve as the
upper right block of the R factor of the full matrix 𝒀 . The bottom part ˜𝒀2 is
QR factorized in place, again using the LAPACK routine dgeqrf. (The Q factor
requires ℓ additional elements of storage, which are placed into the next ℓ entries of
the buffer tau.) Symbolically, this QR decomposition may be written

˜𝒀2 = 𝑸2

[
𝑹22

0

]
for 𝑸2 ∈ K(𝑚−𝑘)×(𝑚−𝑘) and 𝑹22 ∈ Kℓ×ℓ .

Combining, the two previous displays, we have obtained a QR decomposition of

359

the new 𝒀 matrix

𝒀 =

[
𝒀1 𝒀2

]
= 𝑸1

[
I 0
0 𝑸2

] 
𝑹11 𝑹12

0 𝑹22

0 0

 =: 𝑸

[
𝑹

0

]
.

The dimensions are 𝑸 ∈ K𝑚×𝑚 and 𝑹 ∈ K(𝑘+ℓ)×(𝑘+ℓ) . We have updated the
QR decomposition in place; see Fig. A.1(d) for the data layout at the end of this
procedure.

Computational cost. The computational cost of the update procedure consists of
O(𝑚𝑘ℓ) operations to multiply 𝒀2 by 𝑸∗1, and O(𝑚ℓ2) operations to compute the
QR decomposition of ˜𝒀2 in place. The total cost of updating the QR decomposition
of an 𝑚 × 𝑘 matrix with ℓ column appends is O(𝑚ℓ(𝑘 + ℓ)) operations.

This incremental QR procedure is very efficient. To see this, suppose we aggregate
columns in increments of sizes ℓ1, . . . , ℓ𝑡 resulting in a total of 𝑝 =

∑𝑡
𝑖=1 ℓ𝑖 columns.

Then the total cost of computing the QR decomposition is

O
(
𝑡∑︁
𝑖=1

𝑚ℓ𝑖 (ℓ𝑖 + 𝑝)
)
= O(𝑚𝑝2).

The total cost of the incremental QR decomposition, O(𝑚𝑝2), is the same asym-
potically as computing the QR decomposition of an 𝑚 × 𝑝 matrix 𝒀 all at once.
However, the practical speed of this procedure very much depends on the block sizes
ℓ𝑖; many small column updates are much slower to process than one larger one.

Inverting the R factor. For the applications of the incremental QR decomposition
in Part II of this thesis, we need to have access to the inverse of the 𝑹 matrix. While
computing the inverse of a matrix explicitly is usually heresy in numerical linear
algebra [Hig02, §14.1], this instance may be an exception where matrix inversion
is well-justified. (The trace estimates produced by XTrace do reach machine
accuracy—see Fig. 14.1—so using explicit inversion in that application does not
appear to resulting in numerical issues!)

The inverse of the R factor can be computed in place using the LAPACK routine
dtrtri. To perform the update steps, observe that we have the block matrix inverse
identity [

𝑹11 𝑹12

0 𝑹22

]−1

=

[
𝑹−1

11 −𝑹−1
11 𝑹12𝑹

−1
22

0 𝑹−1
22

]
.

360

The inverses 𝑹−1
11 and 𝑹−1

22 , after which the triple product −𝑹−1
11 𝑹12𝑹

−1
22 can be

computed in place using the BLAS routine dtrmm.

Working with the Q factor. This implementation presents the Q factor implicitly,
represented in the lower triangular portion of the buffer Y and the buffer tau.
For most purposes, this representation is sufficient, as one can compute matrix
products with 𝑸 and 𝑸∗ using the LAPACK routine dormqr. If desired, an explicit
representation the economy Q factor can be extracted using the LAPACK routine
dorgqr; the cost is O(𝑚𝑝2) operations, where 𝑝 denotes the current number of
columns. For computational efficiency, one should make sure to only extract the Q
factor only once, when the matrix 𝒀 has reached its maximal size.

The design of LAPACK. Many of LAPACK’s design decisions, such as the infamous
“leading dimension” input for matrix algorithms and the representation of QR
decomposition via packed, in-place formats are confusing and unintuitive for new
users. The effortlessness by which the incremental QR decomposition primitive can
be implemented using LAPACK routines speaks to the wisdom of these aspects of
LAPACK. Indeed, the efficient implementation described here would not be possible,
or would be much less efficient, without LAPACK’s in-place QR decomposition and
leading dimension argument, allowing for seamless execution of matrix routines in
place on submatrices. As a technical community, we owe a great debt to the designers
of well-designed pieces of computational mathematics software like LAPACK.

Implementation. A MATLAB implementation of the incremental QR primitive is
provided in Program A.1. Instead of LAPACK routines, this implementation uses
undocumented MATLAB functions, which provide an interface to the low-level
LAPACK routines. This implementation works in MATLAB 2023b, but their is no
guarantee the relevant private functions are not removed or changed in upcoming
MATLAB releases. This program defines an incremental_qr class, whose usage
is demonstrated in the following code segment:

iqr = incremental_qr(Y); % Initialize incremental_qr object

iqr.addcols(Ynew); % Append Ynew to matrix, update QR

Qx = iqr.applyQ(x); % Compute Q*x

Qtx = iqr.applyQt(x); % Compute Q’*x

y = iqr.projectOut(x); % Compute x - Q*Q’*x

Q = iqr.getQ(); % Extract economy Q factor

R = iqr.getR(); % Extrace square R factor

361

Program A.1 hhqr.m. Compute a Householder QR decomposition of input matrix,
represented in compact format. Warning: Uses undocumented internal MATLAB
functions.
function [hous,tau] = hhqr(Y)
% Input: Matrix Y
% Output: Compact representation [hous,tau] for QR factorization of Y

[hous,tau] = matlab.internal.decomposition.compactQR(Y);

end

Program A.2 apply_Qt.m. Apply the adjoint of (full) Q matrix for a compactly
represented Householder QR decomposition. Warning: Uses undocumented inter-
nal MATLAB functions.
function QtX = apply_Qt(hous,tau,X)
% Input: Compact representation [hous,tau] for QR factorization,
% input matrix X
% Output: Product QtX = Q’*X

QtX = matlab.internal.decomposition.applyHouseholder(hous, tau,...
X, true, size(hous,2));

end

Program A.3 get_Q.m. Get the (thin) Q matrix for a compactly represented
Householder QR decomposition. Warning: Uses undocumented internal MATLAB
functions.
function Q = get_Q(hous,tau)
% Input: Compact representation [hous,tau] for QR factorization
% Output: Thin QR factor Q

[m,k] = size(hous);
Q = matlab.internal.decomposition.applyHouseholder(hous, tau,...

[eye(k);zeros(m-k,k)], false, k);

end

Some of the functionality of the incremental_qr class is broken out into subrou-
tines hhqr, apply_Qt, and get_Q, which are provided in Programs A.1 to A.3.
These subroutines are used in the bespoke incremental QR implementation in
the Householder reflector-based accelerated randomly pivoted QR implementation
(Program 9.4).

362

Program A.1: An implementation of the incremental QR primitive described in
Appendix A. Warning: This implementation is based off of undocumented inter-
nal MATLAB functions that are subject to be removed or change between releases.
Subroutines hhqr, apply_Qt, and get_Q are provided in Programs A.1 to A.3.
classdef incremental_qr < handle

% Implementation of the incremental QR decomposition of a tall matrix

% with an increasing number of columns

properties

H % Matrix to store evolving QR decomposition

tau % Vector to store scalars for Householder reflections

k % Number of columns in current matrix

n % Height of matrix

end

methods

function obj = incremental_qr(Y,varargin)

% Initialize the QR decomposition with matrix Y

[obj.H, obj.tau] = hhqr(Y);

[obj.n,obj.k] = size(Y);

if ~isempty(varargin) % Optionally: Set size

obj.H = [obj.H zeros(obj.n,varargin{1}-obj.k)];

end

end

function obj = addcols(obj, Ynew)

% Add new columns to the existing QR decomposition

l = size(Ynew,2);

% Double and copy if necessary

if obj.k + l > size(obj.H,2)

obj.H = [obj.H zeros(size(obj.H))];

obj.tau = [obj.tau;zeros(size(obj.tau))];

obj.addcols(Ynew);

return

end

Ynew = obj.applyQtfull(Ynew); % Apply Qt to Ynew

363

Ybot = Ynew(obj.k+1:end,:); % Extract bottom of Ynew

% Form QR decomposition of bottom

[Ynew(obj.k+1:end,:),obj.tau(obj.k+1:obj.k+l)]...

= hhqr(Ybot);

obj.H(:,obj.k+1:obj.k+l) = Ynew; % Write to buffer

obj.k = obj.k + l; % Increase size of k

end

function Qx = applyQ(obj, x)

% Apply the Q matrix to a vector x

Qx = matlab.internal.decomposition.applyHouseholder(...

obj.H, obj.tau, [x;zeros(obj.n-obj.k,...

size(x,2))], false, obj.k);

end

function Qtx = applyQt(obj, x)

% Apply the transpose of the Q matrix to a vector x

Qtx = apply_Qt(obj.H.obj.tau,x);

Qtx = Qtx(1:obj.k,:);

end

function y = projectOut(obj, x)

% Compute y = (I-Q*Q’)*x

y = apply_Qt(obj.H.obj.tau,x);

y(1:obj.k,:) = 0;

y = matlab.internal.decomposition.applyHouseholder(...

obj.H, obj.tau, y, false, obj.k);

end

function Q = getQ(obj)

% Return the Q matrix from the current QR decomposition

Q = get_Q(obj.H,obj.tau);

end

function R = getR(obj)

% Return the R matrix from the current QR decomposition

364

R = triu(obj.H); % Extract the upper triangular part

R = R(1:obj.k,1:obj.k);

end

end

end

365

A p p e n d i x B

WHICH SKETCH SHOULD I USE?

Our implementation of CQRRPT uses structured sparse sketching
operators since these can provide exceptional speed without sacrificing
reliability of the algorithm.

Maksim Melnichenko, Oleg Balabanov, Riley Murray, James Demmel,
Michael W. Mahoney, and Piotr Luszczek, CholeskyQR with

randomization and pivoting for tall matrices (CQRRPT) [MBMD+25]

This appendix surveys the various constructions sketching matrices and compares
them. Echoing [DM23b], my conclusion is that, among the available options, sparse
sign embeddings (Appendix B.6) are the fastest and most reliable for general-purpose
use.

Sources. This appendix is a significantly expanded version of a blog post I wrote
on this topic [Epp23c], and it is informed by my numerical experience writing the
papers [Epp24b; EMN25]. The original inspiration for this line of research was the
numerical experiments of [DM23b], which first demonstrated to me the significant
speed advantage of sparse random embeddings over alternatives.

Outline. Appendix B.1 begins by describing, in more detail, the kind of properties
we desire for sketching matrices to be useful for applications in matrix computations.
The next sections provide a tour through standard options for sketching matrices:
Gaussian embeddings (Appendix B.2), iid embeddings (Appendix B.3), subsampled
randomized trigonometric transforms (Appendix B.4), and iid sparse embeddings
(Appendix B.5). Each of these constructions is seen to have both merits and
demerits. We conclude our tour with sparse sign embeddings in Appendix B.6,
which we observe to have a balance of speed and accuracy (i.e., low distortion)
not matched by other types of dimensionality maps. We end with some concluding
thoughts in Appendix B.7 and a postscript on recent developments in Appendix B.8.

B.1 What properties do we want sketching matrices to have?
Before studying different types of sketching matrices, let us revisit the question:
What properties does a sketching matrix need for use in matrix computations?

366

This section answers this question in three subsections. First, we redefine the
subspace embedding to allow different “upper” and “lower” distortion parameters,
and we investigate the asymmetric importance of these parameters. Next, we discuss
the distribution of singular values for a sketched matrix. Finally, we discuss the
differences between subspace embeddings and Johnson–Lindenstrauss embeddings.

Redefining subspace embeddings and the sketching asymmetry principle
In Chapter 21, we defined a subspace embedding 𝑺 ∈ K𝑚×𝑑 for a matrix 𝑭 ∈ K𝑚×𝑛

as a matrix for which

(1 − 𝜂)∥𝑭𝒛∥ ≤ ∥𝑺∗(𝑭𝒛)∥ ≤ (1 + 𝜂)∥𝑭𝒛∥ for all 𝒛 ∈ K𝑛. (B.1)

The parameter 𝜂 ∈ [0, 1], called the distortion, measures the quality of the em-
bedding. This definition is somewhat lacking in that it uses the same parameter 𝜂
both upper and lower bound ∥𝑺∗(𝑭𝒛)∥. In this appendix, we will use the following
two-parameter version of the subspace embedding property:

Definition B.1 (Subspace embeddings, again). A matrix 𝑺 ∈ K𝑚×𝑑 is said to be a
subspace embedding for a matrix 𝑭 ∈ K𝑚×𝑛 with lower distortion 𝜂− ∈ [0, 1) and
upper distortion 𝜂+ ≥ 0 provided that

(1 − 𝜂−)∥𝑭𝒛∥ ≤ ∥(𝑺∗𝑭)𝒛∥ ≤ (1 + 𝜂+)∥𝑭𝒛∥ for every 𝒛 ∈ K𝑛.

If 𝜂 := max{𝜂−, 𝜂+} < 1, we say that 𝑺 is a subspace embedding for 𝑭 with distortion
𝜂.

This simple change in definition reframes our perspective on what properties we
should desire for a sketching matrix, and we have new versions of Theorem 21.8
and Proposition 21.12 consistent with this new definition:

Theorem B.2 (Sketch-and-solve, again). Let 𝑺 be a subspace embedding for [𝑩 𝒄]
with distortions 𝜂−, 𝜂+, and let 𝒙̂ be the sketch-and-solve solution. Then

∥𝒄 − 𝑩𝒙̂ ∥ ≤ max
{

1 + 𝜂+
1 − 𝜂−

,
4.5 max{𝜂+, 𝜂−}2
(1 − 𝜂−)4

}
· ∥𝒄 − 𝑩𝒙∥.

Proposition B.3 (Randomized preconditioning, again). Let 𝑺 be a subspace em-
bedding for 𝑩 with distortions 𝜂−, 𝜂+. Construct the sketched matrix 𝑺∗𝑩, and
let

𝑺∗𝑩 = 𝑼𝑴

367

be any orthonormal decomposition of 𝑺∗𝑩, as in Proposition 21.12. Then

𝜎max(𝑩𝑴−1) ≤ 1
1 − 𝜂−

, 𝜎min(𝑩𝑴−1) ≥ 1
1 + 𝜂+

, cond(𝑩𝑴−1) ≤ 1 + 𝜂+
1 − 𝜂−

.

We see that the bounds on the sketch-and-solve residual norm and the condition
number diverge as 𝜂− ↑ 1, but remain bounded when 𝜂+ ↑ 1. This demonstrates a
fundamental asymmetry in the importance of the lower and upper distortions:

The sketching asymmetry principle. For most applications of sketching
in linear algebra, the most important requirement for a sketching matrix is
that the lower distortion is bounded away from 1, e.g., 𝜂− ≤ 0.9. Sketching
algorithms typically produce meaningful results even with weak control on
the upper distortion 𝜂+, say, 𝜂+ ≤ O(log 𝑛).

The sketching asymmetry principle is a recent perspective, as most foundational
works on sketching and subspace embeddings are concerned with establishing the
subspace embedding property with a single distortion parameter 𝜂, which is some-
times defined differently than we have (e.g., [CDDR24, Def. 1.1]). The sketching
asymmetry principle was developed and advocated for in recent work of Joel Tropp
[Tro25], who suggests the name subspace injection for a sketching matrix satisfying
𝜂− < 1.

The distribution of singular values
As the name suggests, a subspace embedding for 𝑭 preserves the lengths of all
vectors in the subspace range(𝑭). The distortions 𝜂−, 𝜂+ describe the minimum
(1 − 𝜂−) and maximum (1 + 𝜂+) factors by which 𝑺∗ can rescale vectors in this
subspace. As the following result shows, these factors must always bound an
interval containing there singular values of the matrix 𝑺∗𝑸, where 𝑸 = Orth(𝑭):

Proposition B.4 (Singular values to subspace embedding). Instate the notation of
Proposition B.3. Let 𝑭 ∈ K𝑚×𝑛 be a matrix, and let 𝑸 be any matrix whose columns
for an orthonormal basis for range(𝑭). Then 𝑺 ∈ K𝑚×𝑑 is a subspace embedding
for 𝑭 with distortions 𝜂−, 𝜂+ if and only if

1 − 𝜂− ≤ 𝜎min(𝑺∗𝑸) ≤ 𝜎max(𝑺∗𝑸) ≤ 1 + 𝜂+.

This result is standard, and its proof is straightforward; see, e.g., [KT24, Prop. 5.2].

368

Can the distribution of the singular values of 𝑺∗𝑸 tell us anything about sketching
in matrix computations? Perhaps. We have the following result:

Proposition B.5 (Singular values and randomized preconditioning). Instate the
notation of Proposition B.3. The singular values of the preconditioned matrix
𝑩𝑴−1 are the reciprocals of the singular values of 𝑺∗𝑸.

Proof. Let 𝑩 = 𝑸(𝑩∗𝑩)1/2 be the polar decomposition, and let 𝑺∗𝑩 = 𝑼𝑴

be any orthonormal decomposition. Now, taking a polar decomposition 𝑴 =

𝑽 (𝑩∗𝑺∗𝑺𝑩)1/2, we have

𝑩𝑴−1 = 𝑸(𝑩∗𝑩)1/2(𝑩∗𝑺𝑺∗𝑩)−1/2𝑽∗.

Therefore, the squared singular values of 𝑩𝑴−1 are

𝝈
(
𝑩𝑴−1)2

= 𝝀
(
(𝑩∗𝑩)1/2(𝑩∗𝑺𝑺∗𝑩)−1(𝑩∗𝑩)1/2

)
.

(Recall that we extend nonlinear functions to vectors entrywise.) Since 𝑺∗𝑩 =

𝑺∗𝑸(𝑩∗𝑩)1/2, we have the simplification:

𝝈
(
𝑩𝑴−1)2

= 𝝀
(
(𝑸∗𝑺𝑺∗𝑸)−1

)
= 𝝈(𝑺∗𝑸)−2.

Conclude by observing that the eigenvalues of (𝑸∗𝑺𝑺∗𝑸)−1 are the inverses of the
eigenvalues of 𝑸∗𝑺𝑺∗𝑸, which are the inverse-squares of the singular values of
𝑺∗𝑸.

This result shows that the singular values of 𝑺∗𝑸 determine the singular values of the
preconditioned matrix 𝑩𝑴−1. In principle, knowing the singular values of 𝑩𝑴−1

can lead to bounds on the convergence of sketch-and-precondition-type algorithms
that are more precise than the simple bounds we derived in Corollary 21.13. See
[Gre97b, §3.1] for a discussion of such spectrum-adaptive bounds for Krylov itera-
tive methods. (Be aware that these spectrum-adaptive are valid in exact arithmetic
but often fail in finite-precision arithmetic.)

In my experience, I understanding the precise distribution of the singular values
𝑺∗𝑸 is usually not that informative for studying the behavior of linear algebraic
algorithms. Still, plotting the distribution of singular values of 𝑺∗𝑸 can be a valuable
way of understanding the behavior of sketching matrices, particularly those that lack
the subspace embedding property for given parameters 𝜂+, 𝜂−. Are there just a few
stray singular values that escape the interval [1 − 𝜂−, 1 + 𝜂+]? A small clump? Or

369

does the bulk of singular values extend past the endpoints of the interval? These are
all different ways an embedding can fail to have the subspace embedding property,
and visualizing the singular values can help diagnose how a sketching matrix fails
to have the subspace embedding property.

Subspace embeddings vs. Johnson–Lindenstrauss embeddings
In matrix computations, the term “sketching” is generally accepted to have a very
broad definition. To some, any form of linear dimensionality reduction is an instance
of sketching. Typically, we expect that the sketching process should “preserve
lengths” of the matrix or vectors being sketched. The subspace embedding property
(Definition B.1) is one way of formalizing this length-preservation property, but
there are others. In particular, we have the following standard definition:

Definition B.6 (Johnson–Lindenstrauss embedding). A matrix 𝑺 ∈ K𝑚×𝑑 is said to
be a Johnson–Lindenstrauss embedding with distortion 𝜂 ∈ [0, 1) for a finite subset
E ⊆ K𝑚 if

(1 − 𝜂)∥𝒗∥ ≤ ∥𝑺∗𝒗∥ ≤ (1 + 𝜂)∥𝒗∥ for every 𝒗 ∈ E.

The Johnson–Lindenstrauss lemma [JL84] states that, e.g., Gaussian embeddings
(Appendix B.2) are oblivious Johnson–Lindenstrauss embeddings with embedding
dimension 𝑑 = O(𝜂−2 log |E|) (with failure probability, say, 1/𝑛) [Woo14, Lem. 18].
We see the embedding dimension need only be logarithmic in the cardinality of the
set of points E.

Both the Johnson–Lindenstrauss embedding property and subspace embedding
property are useful conditions for a sketching matrix to satisfy. But it is impor-
tant not to confuse them. Johnson–Lindenstrauss embeddings preserve lengths
of vectors in a finite set E and the embedding dimension 𝑑 ∼ (log |E|)/𝜂2 must
be logarithmic in the cardinality |E|. Subspace embeddings preserve lengths of
vectors in a finite-dimensional subspace range(𝑭) and the embedding dimension
𝑑 ∼ dim range(𝑭)/𝜂2 must be linear in the dimension dim range(𝑭). In Part III of
this thesis, we are exclusively concerned with the subspace embedding property.

B.2 Gaussian embeddings
To understand sketching, the best place to start is with Gaussian embeddings, which
admit a beautiful and mathematically precise theory. While Gaussian embeddings
are often less computationally efficient than other types of embeddings, they set the
standard to which other types of dimensionality reduction maps will aspire.

370

Definition B.7 (Gaussian embedding). A Gaussian embedding (over K) is a matrix
𝑺 ∈ K𝑚×𝑑 with iid NormalK(0, 1/𝑑) entries.

The Gaussian distribution has many beautiful properties. These properties can
be applied to give very sharp quantitative analysis of Gaussian embeddings. In
particular, we will employ the following fundamental fact:

For any matrix 𝑸 ∈ K𝑚×𝑛 with orthonormal columns and a Gaussian matrix
𝑺 ∈ K𝑚×𝑑 over K, the sketch 𝑺∗𝑸 ∈ K𝑑×𝑛 has iid NormalK(0, 1/𝑑) entries.

On the basis of this result, analysis of Gaussian embeddings reduces to questions
about the singular values of rectangular matrices with iid Gaussian entries, which
are among the most well-studied in random matrix theory.

Asymptotic theory. In the large-data limit 𝑛, 𝑑 → ∞, the behavior of Gaussian
embeddings is captured by standard asymptotic results from random matrix theory.
We have the following result:

Fact B.8 (Gaussian embeddings, distribution of singular values: large-data limit).
Consider a family of matrices 𝑸𝑖 ∈ K𝑚𝑖×𝑛𝑖 and Gaussian embeddings 𝑺𝑖 ∈ K𝑚𝑖×𝑑𝑖

over K with dimensions 𝑚𝑖, 𝑛𝑖, 𝑑𝑖 → ∞ tending to infinity and with limiting aspect
ratio 𝑛𝑖/𝑑𝑖 → 𝜚 ∈ (0, 1). Then the distribution of singular values of 𝑺∗𝑖𝑸𝑖 con-
verges (weakly in probability) to the Marčenko–Pastur singular value distribution, a
continuous probability distribution on R+ with density

𝑓mp(𝜎) =
√︁
(𝜎2
+ − 𝜎2)+(𝜎2 − 𝜎2

−)+
𝜋𝜚𝜎

.

Here,
𝜎± = 1 ± √𝜚

and 𝑎+ := max{𝑎, 0} denotes the positive part of a real number.

Fact B.8 is a deep fact of random matrix theory, proven (in a somewhat different form)
in Marčenko and Pastur’s seminal paper [MP67]. Its proof requires a significant
mathematical apparatus.

This result demonstrates that the distribution of singular values converges to a
continuous distribution supported on the interval [𝜎−, 𝜎+], but it does not rule
out the possibility of a few extraneous singular values exiting this interval. The
following result [BY93] forbids it.

371

Figure B.1: Left: Superimposed singular value distributions 𝝈(𝑺∗𝑸) for 100 inde-
pendent realizations of a Gaussian embedding applied to a matrix 𝑸 ∈ R𝑚×𝑛 with
dimension 𝑛 = 1000. The embedding dimension is 𝑑 = 2𝑛. The Marčenko–Pastur
singular value distribution is shown as a black dashed line for reference. Right:
Empirical cumulative distribution function of lower and upper distortions. The
asymptotic limiting value 𝜂 =

√︁
𝑛/𝑑 is shown in black.

Fact B.9 (Gaussian embeddings, extreme singular values: large-data limit). Assume
the setting of Fact B.8 and assume in addition that 𝑺𝑖 are independent. Then
𝜎max(𝑺∗𝑖𝑸𝑖) → 𝜎+ and 𝜎min(𝑺∗𝑖𝑸𝑖) → 𝜎−, almost surely as 𝑖 → ∞. In particular,
the upper and lower distortions 𝜂+, 𝜂− both converge almost surely to √𝜚 =

√︁
𝑛/𝑑.

Rearranging the relation 𝜂 ≈
√︁
𝑛/𝑑, we derive the relation

𝑑 ≈ 𝑛/𝜂2.

This gives us guidance for how to set the embedding dimension 𝑑 for a Gaussian
embedding to achieve a desired distortion 𝜂.

Empirical results. The asymptotic theory for Gaussian embeddings accurately pre-
dicts the empirical results. The left panel of Fig. B.1 shows the distribution of
singular values 𝝈(𝑺∗𝑸) for a Gaussian embedding over 100 independent random
trials. We set 𝑛 := 1000 and 𝑑 := 2𝑛. (The value of 𝑚 and the matrix 𝑸 are imma-
terial, owing to the boxed fact above.) Each trial is plotted as a single transluscent
histogram, and the histograms for all 100 trials are superimposed. The empirically
computed singular value distributions show remarkable fidelty to the Marčenko–
Pastur singular value distribution, marked as a dotted black line. Not one of the
100 random realizations shows a significant excursion from the the bounds of the
Marčenko–Pastur density curve.

372

The right panel plots the cumulative distribution of the distortion parameters 𝜂+
and 𝜂− for these 100 trials The distortion parameters are consistently close to the
almost-sure limit value 𝜂 =

√︁
𝑛/𝑑 = 1/

√
2, marked as a dotted vertical line.

Nonasymptotic results. In practice, we do not apply sketching matrices to a series of
problems asymptotically growing to infinity; we apply sketching to a given problem
of a fixed size. As such, we value theoretical results that predict the performance of
Gaussian embeddings for a specific problem size.

Fact B.10 (Gaussian embeddings, extreme singular values: nonasymptotic results).
Let 𝑺 ∈ R𝑚×𝑑 be a real Gaussian embedding, let 𝑩 ∈ R𝑚×𝑛 be a real matrix, and let
𝜂+, 𝜂− be the distortions. Then

E[𝜂+],E[𝜂−] ≤
√︁
𝑛/𝑑.

Furthermore, we have the tail bound

P
{
𝜂+ ≥

√︁
𝑛/𝑑 + 𝑡

}
≤ exp

(
−𝑑𝑡

2

2

)
and P

{
𝜂− ≥

√︁
𝑛/𝑑 + 𝑡

}
≤ exp

(
−𝑑𝑡

2

2

)
.

This result is due to [DS01]. See [AS17, Cor. 6.38] for an exposition and [MT20,
Thm. 8.4] for a generalization. It’s proof requires many techniques. The bound
on E[𝜂+] is a direct consequence of Chevet’s theorem [Che78], and the bound on
E[𝜂−] follows from Gordon’s inequalities [Gor85]. The tail bounds follow from
concentration for Lipschitz continuous functions of Gaussian random variables
[van14, Thm. 3.25]. I recommend the references [van14; AS17; Ver18; Tro21] for
learning about this family of ideas. A similar (but slightly worse) result is also
known for complex Gaussian embeddings [AS17, Prop. 6.3.3].

Universality. As we will see in the rest of this chapter, the most effective random
embeddings tend to exhibit performance similar to Gaussian embeddings, a mani-
festation of the probabilistic phenomenon of universality. Providing mathematical
support to this type of universality phenomenon has been an active subject for re-
search (see, e.g., [OT18; DL19; Bv24; CDD25a; CDDR24; Tro25]), but even the
best-known mathematical tools are not precise enough to fully explain empirically
observed universality phenomena. Notwithstanding these theoretical gaps, Martins-
son and Tropp recommend using the Gaussian theory to inform parameter decisions
[MT20, §9.7]:

Even so, we would like to have a priori predictions about how our
algorithms will behave. Beyond that, we need reliable methods for se-

373

lecting algorithm parameters, especially in the streaming setting where
we cannot review the data and repeat the computation.

Here is one answer to these concerns. As a practical matter, we can
simply invoke the lessons from the Gaussian theory, even when we are
using a different type of random embedding. The universality result [of
[OT18]] gives a rationale for this approach in one special case. We also
recommend undertaking computational experiments to verify that the
Gaussian theory gives an adequate description of the observed behavior
of an algorithm.

I fully agree with this viewpoint, and the experiments provided in this chapter
should provide insights to practitioners interested in the differences between types
of random embeddings.

B.3 IID embeddings
One simple way of constructing a non-Gaussian sketching matrix is to replace the
Gaussian distribution with another random distribution, such as the (scaled) random
sign distribution Unif{±𝑑−1/2}. As long as the new distribution has mean zero,
variance 1/𝑑, and is sufficiently well-behaved (e.g., exhibits rapidly decaying sub-
gaussian tails), the performance is generally comparable to a Gaussian embedding.
Figure B.2 shows the behavior of a sketching matrix with iid Unif{±𝑑−1/2} entries
applied to the matrix

𝑸 :=

[
I𝑛
0

]
∈ R𝑚×𝑛 for 𝑚 := 105, 𝑛 := 103; (B.2)

we use embedding dimension 𝑑 = 2𝑛. (This matrix presents a hard case for certain
other sketching matrices, as we will see below.) The results are essentially identical
to those for Gaussian embeddings in Fig. B.1, providing a clear demonstration of
the universality phenomenon.

B.4 Subsampled trigonometric transforms
Subsampled randomized trigonometric transforms (SRTTs) are widely viewed as
among the most effective types of sketching matrices for use in matrix computations.
Speaking to other researchers, one hears claims such as “SRTTs behave exactly like
Gaussian embeddings”. Do these claims hold up to scrutiny? We shall see.

Let us begin with the definition:

374

Figure B.2: Left: Superimposed singular value distributions 𝝈(𝑺∗𝑸) for 100 in-
dependent realizations of a iid scaled sign embedding applied to the adversarial
matrix (B.2) with embedding dimension 𝑑 = 2𝑛. The Marčenko–Pastur singular
value distribution is shown as a black dashed line for reference. Right: Empirical
cumulative distribution function of lower and upper distortions. The asymptotic
limiting value 𝜂 =

√︁
𝑛/𝑑 is shown in black.

Definition B.11 (Subsampled randomized trigonometric transform). A (standard)
subsampled randomized trigonometric transform is a sketching matrix 𝑺 ∈ K𝑚×𝑑

defined as a scaled product of three matrices.

𝑺∗ =

√︂
𝑚

𝑑
𝑹𝑭𝑫 .

These matrices have the following definitions:

• 𝑫 = Diag(𝜺) is a diagonal matrix with entries 𝜀1, . . . , 𝜀𝑚 drawn iid from
either the random sign Unif{±1} or random phase UnifT(C) distributions.

• 𝑭 is a unitary fast trigonometric transform for which 𝑭𝒛 can be computed in
O(𝑚 log𝑚) operations. Examples include the discrete Fourier transform, the
(type-II) discrete cosine transform, the (Walsh–)Hadamard transform, or the
Hartley transform.

• 𝑹 is a restriction to 𝑑 coordinates, sampled uniformly without replacement.

This construction is due to Ailon and Chazelle [AC06] (see also [WLRT08]). SRTTs
are often called SRFTs or SRHTs when 𝑭 is the discrete Fourier transform or
(Walsh–)Hadamard transform. In fact, the name SRFT is often used even when
with other types of trigonometric transforms. In this work, we exclusively use the

375

discrete cosine transform as our trigonometric transform 𝑭 and the random signs
distribution for 𝑫.

Runtime. The operation count for sketching using SRTTs is smaller than for
Gaussian embeddings. Since we use a fast trigonmetric transform 𝑭, the sketch
𝑺∗𝒗 =

√︁
𝑛/𝑑 · 𝑹(𝑭(𝑫𝒗)) can be computed in O(𝑚 log𝑚) operations. Compare

with O(𝑑𝑚) operations for Gaussian embeddings. In principle, the runtime for
SRTTs can be reduced to O(𝑚 log 𝑑) operations [WLRT08].

Fast trigonometric transforms are notoriously difficult to implement [Van92]. Even
with a world-class implementation, the computational throughput of fast trigono-
metric transforms (as measured by floating point operations per second) is much
less than for matrix multiplication. For sufficiently large problems, SRTTs are sub-
stantially faster than Gaussian embeddings, but the speedups can be less impressive
than one might hope. In my experience, sparse sketching matrices (Appendices B.5
and B.6) are typically significantly faster than SRTTs.

Analysis. Guarantees for the SRHT were proven by Tropp [Tro11]. Here is a
simplified version of his result:

Fact B.12 (Standard SRHTs: Subspace embedding property). Standard SRHTs of
size𝑚×𝑑 are oblivious subspace embeddings for dimension 𝑛with distortion 𝜂 = 0.6
and failure probability 𝛿 = O(1/𝑛) provided that

𝑑 ≥ const · (𝑛 + log𝑚) log 𝑛.

The full versions of Tropp’s results have explicit constants. The analysis of [Tro11]
can be extended to prove subspace embedding bounds for general distortions 𝜂 > 0
(such a resulted is stated in [Woo14, Thm. 7]) and adapted to the random phase
distribution for 𝑫 or other types of trigonometric transforms.

Tropp’s result suggests (correctly) that an embedding dimension of 𝑑 ∼ 𝑛 log 𝑛 is
necessary for standard SRTTs to achieve the subspace embedding property (for
constant 𝜂 < 1). Compare with Gaussian embeddings, which allow 𝑑 ∼ 𝑛, with no
need for a logarithmic oversampling factor.

Bad examples. If we want to use sketching matrices as primitives in general-purpose
software, then we must demand that they work reliably when applied to any input
matrix. As such, even a single bad example can dissuade us from using a particular
type of dimensionality reduction map.

376

Figure B.3: Left: Superimposed singular value distributions 𝝈(𝑺∗𝑸) for 100 inde-
pendent realizations of standard SRTT applied to the adversarial matrix (B.2) with
embedding dimension 𝑑 = 2𝑛 (top) and 𝑑 = ⌈𝑛 log 𝑛⌉ (bottom). The Marčenko–
Pastur singular value distribution is shown as a black dashed line for reference.
Right: Empirical cumulative distribution function of lower and upper distortions.
The asymptotic limiting value 𝜂 =

√︁
𝑛/𝑑 is shown in black.

With that context, we evaluate the adversarial example matrix 𝑸 defined in (B.2).
Results with embedding dimension 𝑑 = 2𝑛 are shown in the top panels of Fig. B.3.
We see that, on this difficult example, the embedding has lower distortion 𝜂− ≈ 1
with high probability. Thus, the standard SRTT with 𝑑 ∼ 𝑛 is not effective for this
type of matrix.

Consistent with Fact B.12, we may remedy this issue by setting 𝑑 ∼ 𝑛 log 𝑛. The
bottom panels of Fig. B.3 show the same experiments with 𝑑 = ⌈𝑛 log 𝑛⌉. We now
see that we reliably obtain an embedding with 𝜂 < 0.9, although the singular value
statistics still deviate significantly from the appropriate Marčenko–Pastur singular
value distribution.

377

One can also confirm the failures of standard SRTTs with 𝑑 ≪ 𝑛 log 𝑛 theoretically.
The following result appears in [Tro11, §3.3]:

Fact B.13 (Standard SRHTs: Subspace embedding property). For 𝑛 ≥ 1, construct
the orthnormal matrix 𝑸 := I𝑛 ⊗ e1 ∈ R𝑛

2×𝑛, and consider the action of a standard
SRHT with embedding dimension 𝑑 on 𝑸. Then 𝜂− = 1 with high probability unless
𝑑 ≥ Ω(𝑛 log 𝑛).

This failure mode is a consequence of the coupon collector phenomenon [MR95,
§3.6]; see [Tro11, §3.3] for details.

The bad examples for the SRTT are unfortunate, and their existence appears to not
be widely known. SRTTs are routinely used with a small embedding dimension
(say, 𝑑 = 2𝑛 and 𝑑 = 3𝑛), accompanied implicitly or explicitly by claims that they
are “just as good a Gaussian embedding”.

Rerandomization. The performance of subsampled randomized trigonometric
transforms can be greatly improved by adding an additional layer of randomness.
We make the following definition:

Definition B.14 (Rerandomized subsampled randomized trigonometric transform).
A rerandomized subsampled randomized trigonometric transform is a sketching
matrix 𝑺 ∈ K𝑚×𝑑 defined so that

𝑺∗ =

√︂
𝑚

𝑑
𝑹𝑭𝑫1𝑭𝑫2,

where 𝑭 and 𝑹 are as in Definition B.11 and 𝑫1 and 𝑫2 are independent random
diagonal matrices populated with random signs or random phases.

A version of the rerandomization trick using random Givens rotations appears in
[RT08]. The Blendenpik software from the paper [AMT10] contains a version of
rerandomization more similar to Definition B.14. Another version of rerandomiza-
tion is advocated in the paper [TYUC17a].

Empirically, the rerandomized SRTT appears to achieve the touted “just as good as
Gaussian” performance of SRTTs. Figure B.4 shows the results of rerandomized
SRTTs applied to the adversarial matrix (B.2). The singular values are observed
to follow Marčenko–Pastur statistics, and the distortion is quite similar to Gaussian
embeddings—or even slightly better.

378

Figure B.4: Left: Superimposed singular value distributions 𝝈(𝑺∗𝑸) for 100 in-
dependent realizations of a rerandomized SRTT applied to the adversarial matrix
(B.2) with embedding dimension 𝑑 = 2𝑛. The Marčenko–Pastur singular value dis-
tribution is shown as a black dashed line for reference. Right: Empirical cumulative
distribution function of lower and upper distortions. The asymptotic limiting value
𝜂 =

√︁
𝑛/𝑑 is shown in black.

Unfortunately, theoretical guarantees for the near-Gaussian behavior of rerandom-
ized SRTTs are not known. This is a natural subject for future work.

Remark B.15 (Adding even more randomness). Another variant of SRTTs, adding
further randomness, is to use random signed permutation matrices instead of di-
agonal matrices. This idea can mollify, but not fix, the issues with the standard
SRTT (Definition B.11). It is also compatible with the rerandomized SRTT (Defini-
tion B.14), but I am unaware of an example where this trick substantially improves
on rerandomized SRTTs. ⋄

Implementation. A MATLAB class implementing SRTTs is shown in Program B.1.
We use random signs for the diagonal matrices and discrete cosine transforms as
the fast trigonometric transform. The first arguments to the constructor are the
dimensions 𝑑 and 𝑚, and the third argument is the number of rounds of random-
ization, set to 1 for standard SRTTs (Definition B.11) or 2 for rerandomized SRTTs
(Definition B.14). We have overloaded the multiplication routine (mtimes), so 𝑺∗𝒗

can be computed as St * v.

B.5 IID sparse embeddings
With rerandomization, SRTTs appear to have distortions and singular value distri-
butions that closely match Gaussian embeddings, even when applied to challenging
instances. Despite their O(𝑚 log𝑚) runtimes, these embeddings are often not as

379

Program B.1 srtt.m. Class implementing subsampled randomized trigonmetric
transforms. The argument rounds sets the number of rounds of randomization (1
for standard SRTTs, 2 for rerandomized SRTTs). The subroutine random_signs is
provided in Program F.2.
classdef srtt

properties
signs % Matrix of random signs
idx % Indexes for subsampling

end

methods
function St = srtt(d, m, rounds)

St.signs = random_signs(m, rounds); % Generate signs
St.idx = randsample(m, d, false); % Subsample indices

end

function y = mtimes(St, x)
for i = 1:size(St.signs,2)

x = dct(St.signs(:,i) .* x); % Random trig trans
end
y = x(St.idx,:); % Subsample
y = sqrt(length(x)/length(y)) * y; % Rescale

end
end

end

fast as one would hope; see Fig. B.7.

Another way to obtain a sketching matrix with an efficient apply operation 𝑩 ↦→ 𝑺∗𝑩

is through sparse constructions. In this section, we will explore one class of
sparse random embeddings with iid entries. These embeddings already have some
appealing properties, and they are (comparatively) easy to analyze. In next section,
we will consider another class of sparse random embeddings that have even better
properties. We make the following definition:

Definition B.16 (IID sparse embedding). An iid sparse embedding 𝑺 ∈ R𝑚×𝑑 with
expected sparsity 𝜁 ∈ [0, 𝑑] is a random matrix with iid entries drawn from the
scaled sparse sign distribution

𝑠 =


+𝜁−1/2 with probability 𝜁/2𝑑,

0, with probability 1 − 𝜁/𝑑,

−𝜁−1/2 with probability 𝜁/2𝑑.

380

As the name suggests, the parameter 𝜁 is equal to the expected number of nonzero
entries in each row of 𝑺. As such, the expected number of nonzero entries in
the entire matrix is nnz(𝑺) = 𝜁𝑚, and the expected fraction of nonzero entries is
nnz(𝑺)/𝑚𝑑 = 𝜁/𝑑.

Runtime and implementation. We will not focus on how to implement and ana-
lyze the runtime of iid sparse embeddings, because sparse sign embeddings (Ap-
pendix B.6) are more effective in practice.

IID sparse maps can be generated efficiently by (1) randomly generating the number
nnz(𝑺) (which has a binomial distribution with parameters 𝑛𝑑 and 𝜁/𝑑), (2) gener-
ating the positions of those entries, and (3) then generating the values ±𝜁−1/2. There
are several ways to implement step (2); one way is to randomly generate random
positions (𝑖, 𝑗) ∼ Unif({1, . . . , 𝑑} × {1, . . . , 𝑚}) and add them to a hashtable until
nnz(𝑺) distinct positions are found. (In the unusual case where nnz(𝑺) ≥ 𝑚𝑑/2,
one should instead select random positions to disinclude). The expected runtime is
O(𝜁𝑚). Once generated, iid sparse maps can be applied to a vector in O(nnz(𝑺)+𝑑)
operations, so the expected runtime is O(𝜁𝑚 + 𝑑) operations.

Analysis. The subspace injection properties of iid sparse embeddings were studied
in a recent paper of Tropp [Tro25, Thm. 6.3]. Here is a simplified version of his
result:

Fact B.17 (IID sparse embeddings: Subspace injection). Let 𝑩 ∈ R𝑚×𝑛 be a real
matrix, and fix 𝜂− > 0. An iid sparse embeddings 𝑺 ∈ R𝑚×𝑑 with expected sparsity
𝜁 satisfies the (oblivious) subspace injection property

∥𝑺∗(𝑩𝒛)∥ ≥ (1 − 𝜂−)∥𝑩𝒛∥ for every 𝒛 ∈ R𝑛

with probability at least 1 − 𝛿 provided that

𝑑 ≥ 16 max{𝑛, 6 log(2𝑛/𝛿)}
𝜂2
−

and 𝜁 ≥ 32 log(𝑛/𝛿)
𝜂2
−

.

This result shows that an embedding dimension of 𝑑 ∼ 𝑛 and sparsity 𝜁 ∼ log 𝑛 to
obtain a nontrivial (lower) distortion 𝜂− < 1. Tropp’s result has explicit constants;
however, the bounds are pessemistic.

Remark B.18 (Coherence–sparsity tradeoff). The full version of Tropp’s bound
establishes a coherence–sparsity tradeoff for iid sparse embeddings. The smaller
the coherence of 𝑩 (defined to be its largest leverage score, Definition 3.15), the

381

smaller the sparsity parameter 𝜁 can be. Indeed, for the most incoherent matrices,
Tropp’s result shows that an expected sparsity of 𝜁 = O(log(𝑛)/𝑚) is sufficient to
obtain the subspace injection property. In this extreme case, the embedding has
just E[nnz(𝑺)] = O(log 𝑛) nonzero entries! These results allow the practitioner to
employ very aggressive choices for the parameter 𝜁 if they have strong assurances
that the matrix is incoherent. On the other hand, for general use, it is advisable to
use the “safe” parameter settings 𝑑 ∼ 𝑛 and 𝜁 ∼ log 𝑛. ⋄

Limitations. A first limitation of iid sparse embeddings is that, for a worst-case
subspace, they provably require an expected sparsity parameter 𝜁 ∼ log 𝑛 to achieve
the subspace injection condition 𝜂− < 1.

Proposition B.19 (IID sparse embeddings: Logarithmic sparsity is necessary).
Consider a iid sparse embedding 𝑺 ∈ R𝑚×𝑑 with expected sparsity 𝜁 ≤ 0.5𝑑. There
exists a matrix 𝑸 for which 𝑺 is not a subspace injection for 𝑸 (i.e., the lower
distortion has the trivial value 𝜂− = 1) with 50% probability unless 𝜁 ≥ 0.5 log 𝑛.

Proof. Consider the adversarial matrix 𝑸 ∈ R𝑚×𝑛 from (B.2). The matrix 𝑸 has
the effect of selecting the first 𝑛 columns of 𝑺∗, so 𝑺∗𝑸 ∈ R𝑑×𝑛 is an iid sparse
embedding with expected sparsity 𝜁 .

To show that 𝑺 has lower distortion 𝜂− = 1 with at least 50% probability, it is
sufficient to show that 𝑺∗𝑸 has a zero column with at least 50% probability. Each
column of 𝑺∗𝑸 has the following probability of being fully zero:

𝑝 :=
(
1 − 𝜁

𝑑

)𝑑
≥ exp(−2𝜁).

Here, we used the numerical inequality 1 − 𝛼 ≥ exp(−2𝛼), which is valid for all
𝛼 ∈ [0, 0.5]. Thus, the probability that some column of 𝑺∗𝑸 is zero is 1− (1− 𝑝)𝑛.
For this probability to be at most 1/2, we must have 𝑝 ≤ 1 − 2−1/𝑛. Observe that

1 − 2−1/𝑛 = 1 − exp
(
− log 2

𝑛

)
≤ log 2

𝑛
.

Thus, by the chain of inequalities exp(−2𝜁) ≤ 𝑝 ≤ 1 − 2−1/𝑛 ≤ (log 2)/𝑛 and some
algebra, we deduce

𝜁 ≥ 1
2

log
(
𝑛

log 2

)
>

1
2

log 𝑛.

The stated result is proven.

382

Figure B.5: Left: Superimposed singular value distributions 𝝈(𝑺∗𝑸) for 100 inde-
pendent realizations of a iid sparse embedding applied to the adversarial matrix (B.2)
with embedding dimension 𝑑 = 2𝑛 for expected sparsity levels 𝜁 ∈ {1, 2, 4, 8, 16}
(top to bottom). The Marčenko–Pastur singular value distribution is shown as the
black dashed line. Right: Empirical cumulative distribution function of lower and
upper distortions. The asymptotic limiting value 𝜂 =

√︁
𝑛/𝑑 is shown in black.

A second limitation of iid sparse embeddings, less significant in my eyes, is that it
appears to require 𝜁 ∼ 1/𝜂2

− to achieve lower distortion 𝜂− [CDD25a, Rem. 3.6]. In
contrast, sign embeddings (Appendix B.6) allow 𝜁 ∼ 1/𝜂 to obtain distortion 𝜂.

Empirical results. Figure B.5 shows the results for iid sparse embeddings on the
difficult instance (B.2). We set 𝑑 := 2𝑛 and we test sparsity parameters 𝜁 = 2𝑖 for

383

0 ≤ 𝑖 ≤ 4. We observe gradual convergence towards the Marčenko–Pastur singular
value distribution as 𝜁 increases. To achieve a high probability of success, we
require expected sparsity 𝜁 > 8 (for this problem size).

B.6 Sparse sign embeddings
The weakness of iid sparse embeddings is in the name—the entries are generated
iid. Because of this, it is possible—likely, even—that full rows of 𝑺 are zero unless
𝜁 is chosen sufficiently large. We can remedy this issue by using embeddings that
have a fixed number of nonzeros per row. This motivates the following definition:

Definition B.20 (Sparse sign embedding). A sparse sign embedding 𝑺 ∈ R𝑚×𝑑 with
sparsity 𝜁 is a random matrix constructed as follows. Each row is independent and
possesses exactly 𝜁 nonzero entries. The nonzero entries are placed in uniformly
random positions (selected without replacement) and have uniform ±𝜁−1/2 values.

See Fig. 21.1 in the main body for an illustration.

Sparse sign embeddings go by many names: sparse Johnson–Lindenstrauss embed-
dings (SJLTs, [KN12]), oblivious sparse norm-approximating projections (OSNAPs,
[NN13]), sparse sign embeddings [MT20], hashing matrices [CFS21], short-axis
sketching operators (SASOs, [MDME+23]), and sparse maps [NT24]. (We note,
however, that some of these terms refer to a broader class of embeddings, with
sparse sign embeddings—as defined above—serving as just one instance.) As best
I can tell, this construction is due to Kane and Nelson [KN12]. The case 𝜁 = 1 of
the sparse sign embedding is known as a CountSketch, which was introduced in the
paper [CCF04].

Let us begin this time with empirical results. Figure B.6 shows the results for sparse
sign embeddings on the difficult example (B.2). We set 𝑑 := 2𝑛 and we test sparsity
parameters 𝜁 = 2𝑖 for 0 ≤ 𝑖 ≤ 4. We see that, for 𝜁 ≥ 4, the sparse sign embedding
is completely reliable, showing only slight excursions from the Marčenko–Pastur
singular value distribution and producing a lower distortion 𝜂− ≤ 0.8. Compare
with the 𝜁 = 4 and 𝜁 = 8 panels of Fig. B.5, which show nonzero probbabilities
of complete failure, 𝜂− = 1. This suggests that sparse sign embeddings “work” for
smaller values of the sparsity parameter 𝜁 than for iid sparse embeddings.

For smaller values of 𝜁 , the performance of sparse sign embeddings deteriorates.
The CountSketch matrix (i.e., 𝜁 = 1) fails catastrophically (i.e., 𝜂− = 1) in every
trial in this example. The 𝜁 = 2 embedding also fails catastrophically about 50%

384

Figure B.6: Left: Superimposed singular value distributions 𝝈(𝑺∗𝑸) for 100
independent realizations of a sparse sign embedding applied to the adversarial
matrix (B.2) with embedding dimension 𝑑 = 2𝑛 for expected sparsity levels
𝜁 ∈ {1, 2, 4, 8, 16} (top to bottom). The Marčenko–Pastur singular value distri-
bution is shown as a black dashed line for reference. Right: Empirical cumulative
distribution function of lower and upper distortions. The asymptotic limiting value
𝜂 =

√︁
𝑛/𝑑 is shown in black.

385

of the time. Based on these examples, 𝜁 = 3 is the smallest value I would accept
for general-purpose use (with embedding dimension 𝑑 ∼ 𝑛). The CountSketch
embedding (𝜁 = 1) achieves the subspace embedding property only with a quadratic
embedding dimension 𝑑 ∼ 𝑛2 [Woo14, Thm. 23]!

The experiments in thesis add to a growing body of evidence [TYUC19; DM23b;
Epp23c; MBMD+25; EMN25; CNRS+25; CEMT25] that sparse sign embeddings
are fast and completely reliable for linear algebraic computations. The insights of
this literature may be crystallized into a hypothesis:

Of the existing constructions, sparse sign embeddings are the most effective
oblivious subspace embedding for general-purpose use in matrix compu-
tations. They are reliable (i.e., achieve 𝜂− bounded away from 1) when
implemented with an embedding dimension as low as 𝑑 = 2𝑛 and constant
sparsity parameter 𝜁 = 4 or 𝜁 = 8.

In the rest of this section, I will support this claim with evidence.

Implementation and runtime comparison
Making sparse sign embeddings fast in practice requires careful implementation
and a good sparse linear algebra library. Often, to obtain the greatest speed in a
high-level programming language, such as MATLAB or Python, the construction of
the sparse sign embedding should be written in a low-level programming language,
like C or C++.

The challenge of implementing sparse sign embeddings is selecting the locations
of the nonzero entries in each row without replacement. One simple approach,
appropriate when 1 ≈ 𝜁 ≪ 𝑑 is to use rejection sampling. Generate a stream
indices 𝑖 ∼ Unif{1, . . . , 𝑑}, and check whether each index has already been picked,
stopping when 𝜁 indices have been selected. This approach is illustrated in the
following code segment.

positions = zeros(zeta,1); i = 0;

while i <= zeta % Pick zeta positions

idx = randsample(d,1); % Random index in [1,d]

for j = 1:(i-1) % Check for duplicates

if positions(j) == idx; continue; end % Reject duplicate

positions(i) = idx; i = i + 1; % Accept new position

end

386

Figure B.7: Runtimes for initialization (top left), matrix–vector apply (top right),
dense matrix–matrix apply (bottom left), and sparse matrix–matrix apply (bottom
right) for Gaussian embeddings (purple asterisks), standard SRTTs (blue crosses),
and sparse sign embeddings (orange circles). Lines show median of 100 trials, and
shaded regions show 10% and 90% quantiles.

Assuming 𝜁 ≤ 𝑑/2, the expected cost of generating the nonzero locationsis O(𝜁2)
operations per row. For small values of 𝜁 and with a low-level implementation in C,
the overhead of this rejection sampling approach is minimal, and it produces sparse
sign embeddings rapidly in practice. C code for generating sparse sign embeddings
with this construction appears in Appendix E.

More efficient implementations of sparse sign embeddings have been developed
as part of the RandBLAS/RandLAPACK software project. In particular, us-
ing a careful implementation of Fisher–Yates sampling, the RandBLAS software
builds sparse sign embeddings O(𝜁𝑚 + 𝑑) operations, which is nearly optimal. See
[MDME+23, App. A] for details.

Figure B.7 compares the runtimes of Gaussian embeddings, (standard) subsampled
trigonometric transforms, and sparse sign embeddings (with sparsity 𝜁 = 4). We
consider a family of problems with dimensions 𝑛 = 𝑚1/2 ∈ [10, 600], and we
set 𝑑 := 2𝑛 for each value of 𝑛. We evaluate four components of the runtime:

387

time to construct the embedding, i.e., generate the necessary random variables (top
left), time to compute a matrix–vector product 𝑺∗𝒄 (top right), time to compute the
product 𝑺∗𝑩 with a dense matrix 𝑩 ∈ R𝑚×𝑛 (bottom left), and time to multiply with
a sparse matrix 𝑩 ∈ R𝑚×𝑛 with 10 nonzeros per column (bottom right). (For the last
of these, we omit the SRTT because it does not possess a fast multiply operation
with sparse matrices.) Sparse sign embeddings are definitively the fastest on all
metrics except initialization. In particular, for 𝑛 = 600, the dense matrix–matrix
product operation for sparse sign embeddings is 19× faster than SRTTs and 86×
faster than Gaussian embeddings.

Analysis
The best analysis of sparse sign embeddings remains the work of Cohen [Coh16]
(Fact 21.10). I restate his theorem below.

Fact B.21 (Sparse sign embeddings: Subspace embedding property). Sparse sign
embeddings are oblivious subspace embeddings with dimension 𝑛, distortion 𝜂 ∈
(0, 1), and failure probability 𝛿 ∈ (0, 1) provided

𝑑 ≥ Ω

(
𝑛 log(𝑛/𝛿)

𝜂2

)
and 𝜁 ≥ Ω

(
log(𝑛/𝛿)

𝜂

)
.

In particular, Cohen’s results show that logarithmic sparsity 𝜁 = O(log 𝑛) and
a log-linear embedding dimension 𝑑 = O(𝑛 log 𝑛) suffice to obtain the subspace
embedding guarantee.

Cohen’s analysis helps explain the success of sparse embeddings. However, it falls
short of explaining the near-Gaussian behavior of sparse sign embeddings when
implemented with a linear embedding dimension 𝑑 = O(𝑛) and constant sparsity
𝜁 = 4. Closing this gap remained an open problem in the years after Cohen’s
analysis.

While no further progress has been made on analyzing sparse sign embeddings,
recent work has improved our understanding of related constructions. We saw above
the work of Tropp (Fact B.17, [Tro25]), which considered iid sparse embeddings.
Another construction is given as follows:

Definition B.22 (SparseStack). Let 𝑑, 𝑚, 𝜁 ≥ 1 be integer parameters such that 𝜁
divides evenly into 𝑑. An SparseStack is a sparse matrix with exactly one nonzero
entry per subcolumn 𝑺∗((𝑖 − 1)𝜁 + 1 : 𝑖𝜁 , 𝑗) of 𝑺∗ for 1 ≤ 𝑖 ≤ 𝑑/𝜁 and 1 ≤ 𝑗 ≤ 𝑚.

388

This entry is placed in a uniformly random position and has a uniformly random
value ±1/

√
𝜁 .

SparseStacks were introduced alongside sparse sign embeddings in the original
paper of Kane and Nelson [KN12]. The SparseStack model is studied in [CDDR24;
CDD25a]. The paper [CDD25a] contains the following result.

Fact B.23 (SparseStack). SparseStacks are oblivious subspace embeddings with
dimension 𝑛, distortion 𝜂 ∈ (0, 1), and failure probability 𝛿 ∈ (0, 1) provided

Ω

(
𝑛 + log(1/𝛿)

𝜂2

)
≤ 𝑑 ≤ O(e𝑛) and 𝜁 ≥ Ω

(
log2(𝑛/(𝜂𝛿))

𝜂
+ log3(𝑛/(𝜂𝛿)

)
.

This bound shows that an embedding dimension of 𝑑 ∼ 𝑛 suffices for SparseStacks
to achieve the subspace embedding property provided that the sparsity level is
𝜁 ∼ log3 𝑛. Compare with Tropp’s bound (Fact B.17), which states that 𝑑 ∼ 𝑛 and
𝜁 ∼ log 𝑛 imply the subspace injection property for iid sparse maps.

To summarize, no theoretical results yet explain the success of sparse sign embed-
dings with the aggressive parameters 𝑑 = 2𝑛 and a 𝜁 = 4. The bound Fact B.21 of
Cohen [Coh16], showing 𝑑 ∼ 𝑛 log 𝑛 and 𝜁 ∼ log 𝑛, almost reaches the parameter
settings we use in practice, and recent works [CDDR24; CDD25a; Tro25] (analyz-
ing slightly types of sparse embeddings) show that a linear embedding dimension
𝑑 ∼ 𝑛 suffices, provided one has a large enough sparsity parameter (e.g., 𝜁 ∼ log 𝑛
in [Tro25]).

Impossibility results: What they say and what they don’t say
Particularly sophisticated readers may be aware that there are impossibility results
showing that sparse embeddings with 𝜁 = 4, as we recommend. Cohen [Coh16,
§1], summarizing [NN14], writes:

Lower bounds ([NN14]), on the other hand, suggest that the true tradeoff
allows 𝑑 = O(𝐵(𝑛 + log(1/𝛿))/𝜂2) with 𝜁 = O(log𝐵 (𝑛/𝛿)/𝜂).

I have rephrased Cohen’s notation to be consistent with ours, and the emphasis is
added. Cohen suggests that [NN14] establishes a sparsity–embedding dimension
tradeoff, controlled by a continuous parameter 𝐵 > 0. In particular, to obtain a linear
embedding dimension 𝑑 ∼ 𝑛, Cohen suggests that a logarithmic embedding dimen-
sion 𝜁 ∼ log 𝑛 is necessary to achieve the subspace embedding property. If true, this

389

provide given strong theoretical evidence that constant-sparsity embeddings could
fail for some instances.

A careful reading of the paper [NN14] yields a more nuanced conclusion. Specif-
ically, upon close inspections, the arguments of [NN14, §3] yield the following
result.

Fact B.24 (Sparse embeddings: Lower bound). Assume 𝑚 ≥ 100𝑛2. Any sparse
oblivious subspace embedding 𝑺 ∈ R𝑚×2𝑛 with embedding dimension 𝑑 = 2𝑛,
distortions 𝜂+, 𝜂−, and failure probability 𝛿 = 0.02 must have

𝜁 ≥ const ·
(
1 − 𝜂−
1 + 𝜂+

)2 log 𝑛
log log 𝑛

We make a few observations. First, to achieve a subspace embedding with 𝜂 < 1
and embedding dimension 𝑑 = 2𝑛, this bound shows we need a sparsity level of
𝜁 ∼ (log 𝑛)/log log 𝑛. This is slightly weaker than the suggested 𝜁 = Ω(log 𝑛)
lower bound in Cohen’s quote above. Second, and more importantly, Fact B.24
leaves open the possibility of constant sparsity embeddings 𝜁 = const satisfying the
subspace embedding property with

𝜂− = const < 1 and 𝜂+ = O
(√︄

log 𝑛
log log 𝑛

)
. (B.3)

Under the sketching asymmetry principle, an embedding with these parameters will
produce meaningful results in most applications. Recall: For a sketching matrices
to be useful, the lower distortion 𝜂− must be away from 1, but we can tolerate the
upper distortion 𝜂+ to be logarithmically large

Let us clarify that Fact B.24 does not prove that sparse sign embeddings with
parameters 𝑑 = 2𝑛 and 𝜁 = const achieve the distortion scaling in (B.3); it just states
that these distortions are consistent with the best-known information-theoretic lower
bounds from [NN14, §3]. I conjecture that sparse sign embeddings attain these
bounds.

Conjecture B.25 (Sparse sign embeddings: Linear embedding dimension and con-
stant sparsity). Sparse sign embeddings with parameters 𝑑 = 2𝑛 and 𝜁 = 4 are
oblivious subspace embeddings with dimension 𝑛, failure probability 𝛿 = 0.01, and
distortions given by (B.3).

As some evidence for this c,kaim, we can use the techniques of [NN14] to show that
the upper distortion satisfies 𝜂+ ≥ Ω((log 𝑛)/log log 𝑛) with high probability.

390

Proposition B.26 (Sparse sign embeddings: Upper distortion). Consider a sparse
sign embedding 𝑺 ∈ R𝑚×𝑑 with parameters 𝑑 = 2𝑛 and 𝜁 = const. Then, there exists
a matrix 𝑸 for which the upper distortion of 𝑺 is

𝜂+ ≥ const ·

√︄
log 𝑛

log log 𝑛

with 99% probability.

Proof sketch. The idea is similar to the analysis of [NN14]. Set 𝑸 to be the “the
adversarial matrix” (B.2). Then 𝑺∗𝑸 is a sparse random matrix with 𝜁 entries in
each column in uniformly random positions, with random values ±𝜁−1/2. Think
of each row of 𝑺∗𝑸 as a bin and each nonzero entry as a ball dropped into a
uniformly random bin (with the constraint that, within each column, no two balls
are dropped in the same bin). Up to the dependencies within each column (which
become insignificant in the limit 𝑛→∞, since 𝜁 = const), this is an instance of the
classical balls-and-bins problem, for which it is known the heaviest bin has at least
const · (log 𝑛)/log log 𝑛) balls with high probability (see, e.g., [NN14, Lem. 14]).
Thus, with high probability,

𝜂+ = 𝜎max(𝑺∗𝑸) ≥ max
1≤𝑖≤𝑑

∥(𝑺∗𝑸) (𝑖, :)∥

≥

√︄
const · log 𝑛

log log 𝑛
·
(
±𝜁−1/2)2

= const ·

√︄
log 𝑛

log log 𝑛
.

The argument is complete.

B.7 Conclusions
In my experience working, the question “Which sketch should you use?” is shrouded
in folklore and accounts of personal experience. Despite the importance of sketching
to modern randomized matrix computations, there seems to be little consensus
on which types of sketching matrices to use in practice. In this chapter, I have
evaluated different sketching matrices on a challenging test matrix and summarized
the relevant theoretical literature. On the basis of this evidence, I and others believe
sparse sign embeddings are a strong candidate for the sketching matrix of choice
for most applications. Still, there remain open questions, and it is worth further
investigations into the theoretical properties and empirical behavior of sparse sign
embeddings and other sketching matrices.

391

B.8 Postscript: Recent developments
Subsequent to my defense and initial drafting of this thesis, Chris Camaño, Raphael
Meyer, Joel Tropp, and myself released a paper [CEMT25] revisiting the theory
of sketching. In particular, it shows that subspace injection matrices satisfying the
isotropy condition

E[∥𝑺∗𝒗∥2] = ∥𝒗∥2 for all 𝒗 ∈ K𝑛

produce sketch-and-solve solutions 𝒙̂ ∈ K𝑛 that are accurate up to a constant factor

∥𝒄 − 𝑩𝒙̂ ∥ ≤ const · ∥𝒄 − 𝑩𝒙∥.

It also analyzes the use of such random matrices in other randomized linear algebra
primitives, including the randomized SVD (Section 2.3), Nyström approximation
(Section 2.5), and generalized Nyström approximation (Section 10.2). This paper
also provides more evidence for the reliability of sparse sketching matrices, and it
discusses how SparseStack embeddings (Definition B.22) may be easier to construct
than sparse sign embeddings (Definition B.20). Perhaps it is the SparseStack, not
the sparse sign embedding, that should be the sketching matrix of choice for most
applications!

As another late-breaking update, Chenakkod, Dereziński, and Dong released a new
preprint [CDD25b] containing an even sharper analysis of SparseStack embeddings.
They show that SparseStacks are oblivious subspace embeddings with parameters

𝑑 = O
(
𝑛

𝜂2

)
and 𝜁 = O

(
log1+O(1/log log log log 𝑛) (𝑛)

𝜂

)
.

This result improves on Fact B.23, and it achieves the lower bound of [NN14] for
oblivious subspace embeddings up to subpolylogarithmic factors.

392

A p p e n d i x C

ANALYSIS OF SKETCH-AND-SOLVE

The classical result for sketch-and-solve, cited in many popular surveys and exposi-
tory works [MT20; MDME+23; KT24] and many of my own works, is as follows:

Proposition C.1 (Sketch-and-solve: Simple bound). Let 𝑺 be a subspace embedding
for [𝑩 𝒄] with lower and upper distortions 𝜂−, 𝜂+ (Definition B.1), and let 𝒙̂ be the
corresponding sketch-and-solve solution. Then

∥𝒄 − 𝑩𝒙̂ ∥ ≤ 1 + 𝜂+
1 − 𝜂−

· ∥𝒄 − 𝑩𝒙∥.

In particular, using a sparse sign embedding with Cohen’s parameter settings
(Fact B.21), sketch-and-solve produces (1 + 𝜀)-approximate least-squares solution
with 99% probability provided

𝑑 = O
(
𝑛 log 𝑛
𝜀2

)
.

The runtime is
O

(
𝑚𝑛 log 𝑛 + 𝑛

3 log 𝑛
𝜀2

)
operations.

Proof. We make the following chain of inequalities

∥𝒄 − 𝑩𝒙̂ ∥ ≤ 1
1 − 𝜂−

· ∥𝑺∗(𝒄 − 𝑩𝒙̂)∥ ≤ 1
1 − 𝜂−

· ∥𝑺∗(𝒄 − 𝑩𝒙)∥ ≤ 1 + 𝜂+
1 − 𝜂−

· ∥𝒄 − 𝑩𝒙∥.

The first and third inequality are subspace embedding property, and the second
inequality is the optimality of 𝒙̂ as a solution to the sketched least-squares problem
argmin𝒛∈K𝑛 ∥𝑺∗(𝒄 − 𝑩𝒙̂)∥.

This bound suggests that the residual norm of the sketch-and-solve solution is within
a factor 1 + O(𝜂) of the optimal residual norm and that an embedding dimension
𝑑 ∼ 1/𝜀2 is necessary to obtain a (1 + 𝜀)-approximate least-squares solution. In
fact, this scaling can be improved using a sharper analysis:

Theorem C.2 (Sketch-and-solve: Sharper bound). Let 𝑺 be a subspace embedding
for [𝑩 𝒄] with lower and upper distortion 𝜂−, 𝜂+ (Definition B.1) and let 𝒙̂ =

393

(𝑺∗𝑩)†(𝑺∗𝒄) be the sketch-and-solve solution. Assume 𝜂 := max{𝜂+, 𝜂−} ≤ 1.
Then

∥𝒄 − 𝑩𝒙̂ ∥ ≤
(
1 + 4.5𝜂2

(1 − 𝜂−)4

)
∥𝒄 − 𝑩𝒙∥.

In particular, using a sparse sign embedding with Cohen’s parameter settings
(Fact B.21), sketch-and-solve produces (1 + 𝜀)-approximate least-squares solution
with 99% probability provided

𝑑 = O
(
𝑛 log 𝑛
𝜀

)
.

The runtime is
O

(
𝑚𝑛 log 𝑛 + 𝑛

3 log 𝑛
𝜀

)
operations.

This result establishes represents a significant improvement over Proposition C.1 in
the limit where 𝜂 → 0 (equivalently 𝑑 → ∞), and the resulting 1 + O(𝜂2) scaling
is sharp, as demonstrated by exact computations for Gaussian embeddings [BP20;
Epp24d]. The sharp 𝑑 ∼ 1/𝜀 scaling for sketch-and-solve has been known since
the work of Drineas, Mahoney, Muthukrishnan, and Sarlós [DMMS11], originally
released in 2007; see also the expository notes [LK22; Mey23]. However, these
earlier bounds pass through a different technical argument and require hypotheses
on the sketching matrix 𝑺 beyond the subspace embedding property. This bound,
a version of which was published in the blog post [Epp25], is the only result I
know which established the correct 1+ O(𝜂2) scaling with the subspace embedding
property as the sole hypothesis.

We proceed now with its proof.

Proof of Theorem C.2. We shall bound ∥𝑩(𝒙̂ − 𝒙)∥. To do so, we use the represen-
tation

𝑩(𝒙̂ − 𝒙) = 𝑩(𝑺∗𝑩)†𝑺∗(𝒄 − 𝑩𝒙).

Letting 𝑩 = 𝑸𝑹 be an (economy-size) QR decomposition, we have

𝑩(𝒙̂ − 𝒙) = 𝑸(𝑺∗𝑸)†𝑺∗(𝒄 − 𝑩𝒙) = 𝑸(𝑸∗𝑺𝑺∗𝑸)−1𝑸∗𝑺𝑺∗(𝒄 − 𝑩𝒙).

Thus, introducing 𝒓 := (𝒄 − 𝑩𝒙)/∥𝒄 − 𝑩𝒙∥, we have

∥𝑩(𝒙̂ − 𝒙)∥ ≤

(𝑸∗𝑺𝑺∗𝑸)−1

 · ∥𝑸∗𝑺𝑺∗𝒓∥ · ∥𝒄 − 𝑩𝒙∥. (C.1)

394

We now bound the right-hand side of (C.1). By Proposition B.4, we have

(𝑸∗𝑺𝑺∗𝑸)−1

 = 1
𝜎min(𝑺∗𝑸)2

≤ 1
(1 − 𝜂−)2

. (C.2)

Bounding ∥𝑸∗𝑺𝑺∗𝒓∥ requires a more sophisticated argument. Observe that

∥𝑸∗𝑺𝑺∗𝒓∥ is a submatrix of [𝑸 𝒓]∗𝑺𝑺∗ [𝑸 𝒓] − I.

The columns of the matrix [𝑸 𝒓] form an orthonormal basis for range([𝑩 𝒄]).
Therefore, by Proposition B.4 again, we have

∥𝑸∗𝑺𝑺∗𝒓∥ ≤

[𝑸 𝒓]∗𝑺𝑺∗ [𝑸 𝒓] − I

 ≤ max{(1+𝜂+)2−1, 1− (1−𝜂−)2}. (C.3)

Combining (C.2) and (C.3) and substituting in (C.1) yields

∥𝑩(𝒙̂ − 𝒙)∥ ≤ 2𝜂 + 𝜂2

(1 − 𝜂−)2
∥𝒄 − 𝑩𝒙∥.

Combining with the Pythagorean identity,

∥𝒄 − 𝑩𝒙̂ ∥2 = ∥𝒄 − 𝑩𝒙∥2 + ∥𝑩(𝒙̂ − 𝒙)∥2 ≤
(
1 + (2𝜂 + 𝜂

2)2
(1 − 𝜂−)4

)
∥𝒄 − 𝑩𝒙∥2.

Finally, with the hypothesis, 𝜂 ≤ 1, we have (2𝜂 + 𝜂2)2 ≤ 9𝜂2. Take square roots
and use the identity (1 + 𝑥)1/2 ≤ 1 + 0.5𝑥 for 𝑥 ≥ −1 to complete the argument.

395

A p p e n d i x D

DEFERRED PROOFS

This section contains deferred proofs of results from the main text.

D.1 Proof of Theorem 3.12
We use a more algebraic version of the proof of [DRVW06, Prop. 3.3]. Fix a
sufficiently small parameter 𝛿 > 0 and generate the matrix

𝑨 = (𝑘 + 1)I𝑘+1 − (1 − 𝛿)1𝑘+11∗𝑘+1 ∈ R
(𝑘+1)×(𝑘+1) .

This matrix has eigenvalue (𝑘 + 1) with multiplicity 𝑘 and eigenvalue (𝑘 + 1)𝛿 with
multiplicity one. Therefore,

tr(𝑨 − ⟦𝑨⟧𝑘) = (𝑘 + 1)𝛿.

Since the matrix 𝑨 is the same under any conjugation by a permutation matrix, we
can assume without loss of generality that S = {1, . . . , 𝑘}. We compute

tr(𝑨 − 𝑨⟨S⟩) = 𝑎 (𝑘+1) (𝑘+1) − 𝒂𝑘+1(1 : 𝑘)∗𝑨(1 : 𝑘, 1 : 𝑘)−1𝒂𝑘+1(1 : 𝑘).

Applying the Sherman–Morrison formula gives

𝑨(1 : 𝑘, 1 : 𝑘)−1 =
1

𝑘 + 1
· I𝑘 +

1 − 𝛿
(𝑘 + 1) (1 + 𝑘𝛿) · 1𝑘1

∗
𝑘 .

Thus,

tr(𝑨 − 𝑨⟨S⟩) = (𝑘 + 𝛿) − (1 − 𝛿)
2𝑘

𝑘 + 1
− (1 − 𝛿)3𝑘2

(𝑘 + 1) (1 + 𝑘𝛿) = (𝑘 + 1)2𝛿 + O(𝛿2).

Taking 𝛿 sufficiently small proves the claim.

D.2 Proof of Theorem 10.8
The existence result for weighted CUR decompositions follows from Fact 10.11. We
focus on establishing the nonexistence result for unweighted CUR approximations.
Our argument is based on a construction of Dereziński, Warmuth, and Hsu [DH18,
Thm. 1]. First consider the case 𝑘 = 1.

396

Consider the matrix

𝑩 =



1 1
𝑝−1/2 0
𝑝−1/2 0
...

...

𝑝−1/2 0


∈ R(𝑝+1)×2,

and choose column subset S := {1}. The column projection approximation is

𝑩CP = 𝑩(:,S)𝑩(:,S)†𝑩 =

[
𝒃1

1
2𝒃1

]
,

with error
∥𝑩 − 𝑩CP∥2F =

1
2
.

Let T ⊆ {1, . . . , 𝑝 + 1} denote any row subset of ℓ elements of 𝑩. If 1 ∉ T, then the
unweighted CUR cross approximation is zero and thus ∥𝑩 − 𝑩∥2F = 3. Thus, we
may assume 1 ∈ T. Then the unweighted CUR cross approximation is

𝑩 = 𝑩(:,S)𝑩(T,S)†𝑩(T, :) =
[
𝒃1

𝒃1 (T)∗𝒃2 (T)
𝒃1 (T)∗𝒃1 (T) 𝒃1

]
=

[
𝒃1

𝒃1
1+(ℓ−1)/𝑝

]
with error

∥𝑩 − 𝑩∥2F = 1 − 2
1 + (ℓ − 1)/𝑝 +

2
(1 + (ℓ − 1)/𝑝)2

=: 𝑓 (ℓ). (D.1)

The function 𝑓 is strictly decreasing on the interval [1, 𝑝 + 1] and it achieves the
value 3/4 at ℓ = 1 + (3 − 2

√
2)𝑝. The result is proven for 𝑘 = 1.

To prove the result for 𝑘 > 1, generate a block diagonal matrix with 𝑘 copies of
𝑩/
√
𝑘 , and set S = {1, 𝑝 + 1, . . . , (𝑘 − 1)𝑝 + 1}. The optimal squared Frobenius

column projection error is again 1/2, and the CUR error is bounded by

∥𝑩 − 𝑩∥2F ≥
1
𝑘
(𝑓 (𝜃1ℓ) + · · · + 𝑓 (𝜃2ℓ) + · · · 𝑓 (𝜃𝑘ℓ)) , (D.2)

where 𝜃 𝑗ℓ denotes the number of indices assigned to block 𝑗 . Here, to handle
boundary cases, the values 𝑓 (𝑡) are defined as (D.1) for 0 < 𝑡 ≤ 𝑝, 𝑓 (0) = 3, and
𝑓 (𝑡) = 1/2 for 𝑡 > 𝑝. With this definition, 𝑓 is convex onR+. Therefore, by Jensen’s
inequality, the right-hand side of (D.2) is minimized by the equal apportionment
𝜃1 = · · · = 𝜃𝑘 = 1/𝑘:

∥𝑩 − 𝑩∥2F ≥
1
𝑘
(𝑓 (𝜃1ℓ) + · · · + 𝑓 (𝜃2ℓ) + · · · 𝑓 (𝜃𝑘ℓ)) ≥ 𝑓 (ℓ/𝑘).

Ergo, the optimal unweighted CUR decomposition has a squared Frobenius norm
error at least 1.5× the squared Frobenius column projection error provided ℓ ≤
𝑘 + (3 − 2

√
2)𝑝𝑘 .

397

A p p e n d i x E

IMPLEMENTATION OF SPARSE RANDOM EMBEDDINGS

Program E.1: MEX (MATLAB-callable C function) implementation of sparse sign
embeddings.
#include <math.h>

#include "mex.h"

int log_base_d(long a, int d) {

int output = 0;

while (a > 0) {

a /= d;

output += 1;

}

return output-1;

}

void mexFunction(int nlhs, mxArray *plhs[],

int nrhs, const mxArray *prhs[]) {

mwSize d = (mwSize) mxGetScalar(prhs[0]);

mwSize m = (mwSize) mxGetScalar(prhs[1]);

mwSize zeta = (mwSize) mxGetScalar(prhs[2]);

mwSize nnz = m*zeta;

int idx_per_rand = log_base_d((long) RAND_MAX + 1, d);

int bit_per_rand = log_base_d((long) RAND_MAX + 1, 2);

if (zeta > d) zeta = d;

double lowval = -1/sqrt((double) zeta);

double increment = -2*lowval;

plhs[0] = mxCreateSparse(d,m,nnz,false);

double *vals = mxGetPr(plhs[0]);

mwIndex *rows = mxGetIr(plhs[0]);

398

mwIndex *colstarts = mxGetJc(plhs[0]);

// Set values

int myrand = rand();

for (int i = 0; i+bit_per_rand < nnz; i += bit_per_rand) {

for (int j = i; j < i+bit_per_rand; ++j) {

vals[j] = (myrand % 2) * increment + lowval;

myrand = myrand >> 1;

}

myrand = rand();

}

for (int i = bit_per_rand*(nnz/bit_per_rand); i < nnz; ++i) {

vals[i] = (myrand % 2) * increment + lowval;

myrand = myrand >> 1;

}

// Set column starts

for (int i = 1; i < m+1; ++i){

colstarts[i] = i*zeta;

}

// Set row indices

myrand = rand();

int ir = 0;

for (int i = 0; i < m*zeta; i += zeta) {

int idx = 0;

while (idx < zeta) {

rows[i+idx] = myrand % d;

ir++;

if (ir == idx_per_rand) {

ir = 0;

myrand = rand();

} else {

myrand /= d;

}

int j = 0;

for (; j < idx; ++j) {

if (rows[i+idx] == rows[i+j]) break;

399

}

idx += (int) (j == idx);

}

}

}

400

A p p e n d i x F

HELPFUL MATLAB SUBROUTINES

Program F.1 cnormc.m. Code to normalize the columns of a matrix.
function M = cnormc(M)
% Input: Matrix M
% Output: Matrix M rescaled to have unit norm columns

M = M ./ vecnorm(M,2,1);

end

Program F.2 random_signs.m. Generate matrix of random signs.
function Om = random_signs(n,s)
% Input: Dimensions n, s for random sign matrix
% Output: An n*s random sign matrix Om

Om = -3 + 2*randi(2,n,s);
end

Program F.3 sqrownorms.m. Compute squared row norms of a matrix.
function srn = sqrownorms(F)
% Input: Matrix F
% Output: Vector srn containing the squared row norms of F

srn = vecnorm(F,2,2) .^ 2;

end

Program F.4 sqcolnorms.m. Compute squared column norms of a matrix.
function scn = sqcolnorms(F)
% Input: Matrix F
% Output: Vector scn containing the squared column norms of F

scn = vecnorm(F,2,1)’ .^ 2;

end

401

Program F.5 mypcg.m. Preconditioned conjugate gradient for solving positive
definite linear systems.
function X = mypcg(A,pre,b,iter)
% Input: Function A() computing matrix products A(z) = A*z, function
% pre applying the preconditioner, right-hand side b, and
% number of iterations iter
% Output: Approximate solutions stacked columnwise as X

X = zeros(size(b,1),iter+1); % Initialize solutions
z = pre(b); p = z; % Initialize search direction
for i = 1:iter

v = A(p); % Apply A
zb = z’*b; eta = zb / (v’*p);
X(:,i+1) = X(:,i) + eta*p; % Update solution
b = b - eta*v; % Update residual
z = pre(b); % Apply preconditioner
gamma = z’*b/zb;
p = z + gamma*p; % Update search direction

end

end

Program F.6 rand_with_evals.m. Generate a Hermitian matrix with Haar-
random eigenvectors and the specified eigenvalues.
function A = rand_with_evals(evals)
% Input: Eigenvalues evals
% Output: Hermitian matrix A with specified eigenvalues

n = length(evals);
[Q,~] = qr(randn(n));
A = Q * diag(evals) * Q’;
A = (A+A’)/2;

end

402

Program F.7 haarorth.m. Generate a Haar-random matrix with orthonormal
columns.
function Q = haarorth(m,n)
% Input: Dimensions m and n
% Output: Haar-random matrix Q with orthonormal columns

[Q,R] = qr(randn(m,n),"econ"); % Orthonomalize a Gaussian matrix
Q = Q*diag(sign(diag(R))); % Rescale as appropriately

end

403

BIBLIOGRAPHY

[ABBB+99] Edward Anderson, Zhaojun Bai, Christian Bischof, L. Susan
Blackford, James Demmel, Jack Dongarra, Jeremy Du Croz,
Anne Greenbaum, Sven Hammarling, Alan McKenney, and Danny
Sorensen. LAPACK Users’ Guide. 3rd ed. Society for Industrial and
Applied Mathematics, 1999. doi: 10.1137/1.9780898719604
(Cited on pp. 41, 149, 314, 357).

[ABKS75] Ralph Alben, Marshall Blume, Henry Krakauer, and Lawrence
Schwartz. “Exact Results for a Three-Dimensional Alloy with Site
Diagonal Disorder: Comparison with the Coherent Potential Ap-
proximation”. In: Physical Review B 12.10 (Nov. 1975), pp. 4090–
4094. doi: 10.1103/PhysRevB.12.4090 (Cited on p. 194).

[AC06] Nir Ailon and Bernard Chazelle. “Approximate Nearest Neighbors
and the Fast Johnson-Lindenstrauss Transform”. In: Proceedings of
the Thirty-Eighth Annual ACM Symposium on Theory of Comput-
ing. May 2006, pp. 557–563. doi: 10.1145/1132516.1132597
(Cited on p. 374).

[AD18] Mohammad Al Hasan and Vachik S. Dave. “Triangle Counting in
Large Networks: A Review”. In: WIREs Data Mining and Knowl-
edge Discovery 8.2 (2018), e1226. doi: 10.1002/widm.1226
(Cited on pp. 191, 192).

[ADMM+15] David Anderson, Simon Du, Michael Mahoney, Christopher Mel-
gaard, Kunming Wu, and Ming Gu. “Spectral Gap Error Bounds for
Improving CUR Matrix Decomposition and the Nyström Method”.
In: Proceedings of the Eighteenth International Conference on Ar-
tificial Intelligence and Statistics. Feb. 2015, pp. 19–27. url: h
ttps://proceedings.mlr.press/v38/anderson15.html
(Cited on p. 169).

[AKGH+14] Charu C. Aggarwal, Xiangnan Kong, Quanquan Gu, Jiawei Han,
and Philip S. Yu. “Active Learning: A Survey”. In: Data Classifi-
cation. Chapman and Hall/CRC, 2014, pp. 599–634. doi: 10.120
1/b17320 (Cited on p. 44).

[ALV22] Nima Anari, Yang P. Liu, and Thuy-Duong Vuong. “Optimal Sub-
linear Sampling of Spanning Trees and Determinantal Point Pro-
cesses via Average-Case Entropic Independence”. In: Proceedings
of Sixty-Third Annual Symposium on Foundations of Computer
Science. Oct. 2022, pp. 123–134. doi: 10.1109/FOCS54457.202
2.00019 (Cited on p. 56).

https://doi.org/10.1137/1.9780898719604
https://doi.org/10.1103/PhysRevB.12.4090
https://doi.org/10.1145/1132516.1132597
https://doi.org/10.1002/widm.1226
https://proceedings.mlr.press/v38/anderson15.html
https://proceedings.mlr.press/v38/anderson15.html
https://doi.org/10.1201/b17320
https://doi.org/10.1201/b17320
https://doi.org/10.1109/FOCS54457.2022.00019
https://doi.org/10.1109/FOCS54457.2022.00019

404

[AM15] Ahmed Alaoui and Michael W Mahoney. “Fast Randomized Ker-
nel Ridge Regression with Statistical Guarantees”. In: Advances
in Neural Information Processing Systems. Vol. 28. 2015. url:
https://dl.acm.org/doi/10.5555/2969239.2969326
(Cited on p. 51).

[AMT10] Haim Avron, Petar Maymounkov, and Sivan Toledo. “Blendenpik:
Supercharging LAPACK’s Least-Squares Solver”. In: SIAM Jour-
nal on Scientific Computing 32.3 (Jan. 2010), pp. 1217–1236. doi:
10.1137/090767911 (Cited on pp. 1, 4, 305, 320, 322, 324, 377).

[And05] Tsuyoshi Ando. “Schur Complements and Matrix Inequalities:
Operator-Theoretic Approach”. In: The Schur Complement and
Its Applications. Ed. by Fuzhen Zhang. Numerical Methods and
Algorithms. Springer, 2005, pp. 137–162. doi: 10.1007/0-387-
24273-2_6 (Cited on p. 22).

[AOR16] Nima Anari, Shayan Oveis Gharan, and Alireza Rezaei. “Monte
Carlo Markov Chain Algorithms for Sampling Strongly Rayleigh
Distributions and Determinantal Point Processes”. In: Conference
on Learning Theory. June 2016, pp. 103–115. url: https://pr
oceedings.mlr.press/v49/anari16.html (Cited on p. 56).

[Aro50] Nachman Aronszajn. “Theory of Reproducing Kernels”. In: Trans-
actions of the American Mathematical Society 68.3 (1950),
pp. 337–404. doi: 10.2307/1990404 (Cited on p. 77).

[AS17] Guillaume Aubrun and Stanisław J. Szarek. Alice and Bob Meet Ba-
nach: The Interface of Asymptotic Geometric Analysis and Quan-
tum Information Theory. Vol. 223. Mathematical Surveys and
Monographs. American Mathematical Society, 2017. doi: 10.1
090/surv/223 (Cited on p. 372).

[ASE14] Erlend Aune, Daniel P. Simpson, and Jo Eidsvik. “Parameter Esti-
mation in High Dimensional Gaussian Distributions”. In: Statistics
and Computing 24 (2014), pp. 247–263. doi: 10.1007/s11222-
012-9368-y (Cited on p. 252).

[Bac17] Francis Bach. “On the Equivalence between Kernel Quadrature
Rules and Random Feature Expansions”. In: The Journal of Ma-
chine Learning Research 18.1 (2017), pp. 714–751. doi: https:
//dl.acm.org/doi/10.5555/3122009.3122030 (Cited on
p. 106).

[BBC19] Ayoub Belhadji, Rémi Bardenet, and Pierre Chainais. “Kernel
Quadrature with DPPs”. In: Advances in Neural Information Pro-
cessing Systems. Vol. 32. 2019. url: https://dl.acm.org/doi
/10.5555/3454287.3455445 (Cited on p. 106).

https://dl.acm.org/doi/10.5555/2969239.2969326
https://doi.org/10.1137/090767911
https://doi.org/10.1007/0-387-24273-2_6
https://doi.org/10.1007/0-387-24273-2_6
https://proceedings.mlr.press/v49/anari16.html
https://proceedings.mlr.press/v49/anari16.html
https://doi.org/10.2307/1990404
https://doi.org/10.1090/surv/223
https://doi.org/10.1090/surv/223
https://doi.org/10.1007/s11222-012-9368-y
https://doi.org/10.1007/s11222-012-9368-y
https://doi.org/https://dl.acm.org/doi/10.5555/3122009.3122030
https://doi.org/https://dl.acm.org/doi/10.5555/3122009.3122030
https://dl.acm.org/doi/10.5555/3454287.3455445
https://dl.acm.org/doi/10.5555/3454287.3455445

405

[BBC20] Ayoub Belhadji, Rémi Bardenet, and Pierre Chainais. “Kernel In-
terpolation with Continuous Volume Sampling”. In: Proceedings
of the Thirty-Seventh International Conference on Machine Learn-
ing. Nov. 2020, pp. 725–735. url: https://dl.acm.org/doi
/10.5555/3524938.3525006 (Cited on p. 124).

[BBCF+12] Ronald Babich, Richard C. Brower, Michael A. Clark, George T.
Fleming, James C. Osborn, Claudio Rebbi, and David Schaich.
“Exploring Strange Nucleon Form Factors on the Lattice”. In:
Physical Review D 85.5 (Mar. 2012), p. 054510. doi: 10.1103/Ph
ysRevD.85.054510 (Cited on p. 252).

[BCW20] Ainesh Bakshi, Nadiia Chepurko, and David P. Woodruff. “Robust
and Sample Optimal Algorithms for PSD Low Rank Approxima-
tion”. In: Proceedings of the Sixty-First Annual IEEE Symposium
on Foundations of Computer Science. Nov. 2020, pp. 506–516.
doi: 10.1109/FOCS46700.2020.00054 (Cited on p. 184).

[BDHO24] Pau Batlle, Matthieu Darcy, Bamdad Hosseini, and Houman
Owhadi. “Kernel Methods Are Competitive for Operator Learn-
ing”. In: Journal of Computational Physics 496 (Jan. 2024),
p. 112549. doi: 10.1016/j.jcp.2023.112549 (Cited on p. 2).

[BEHW87] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Man-
fred K. Warmuth. “Occam’s Razor”. In: Information processing
letters 24.6 (1987), pp. 377–380 (Cited on p. 73).

[Bel21] Mikhail Belkin. “Fit without Fear: Remarkable Mathematical Phe-
nomena of Deep Learning through the Prism of Interpolation”. In:
Acta Numerica 30 (May 2021), pp. 203–248. doi: 10.1017/S096
2492921000039 (Cited on p. 87).

[BG65] Peter Businger and Gene H. Golub. “Linear Least Squares Solu-
tions by Householder Transformations”. In: Numerische Mathe-
matik 7.3 (June 1965), pp. 269–276. doi: 10.1007/BF01436084
(Cited on p. 314).

[Bis06] Christopher M. Bishop. Pattern Recognition and Machine Learn-
ing. Information Science and Statistics. New York: Springer, 2006.
url: https://dl.acm.org/doi/10.5555/1162264 (Cited on
p. 87).

[BJT23] Francis Bloch, Matthew O. Jackson, and Pietro Tebaldi. “Centrality
Measures in Networks”. In: Social Choice and Welfare 61.2 (Aug.
2023), pp. 413–453. doi: 10.1007/s00355- 023- 01456- 4
(Cited on p. 192).

[BKM22] Vladimir Braverman, Aditya Krishnan, and Christopher Musco.
“Sublinear Time Spectral Density Estimation”. In: Proceedings of
the Fifty-Fourth Annual ACM SIGACT Symposium on Theory of

https://dl.acm.org/doi/10.5555/3524938.3525006
https://dl.acm.org/doi/10.5555/3524938.3525006
https://doi.org/10.1103/PhysRevD.85.054510
https://doi.org/10.1103/PhysRevD.85.054510
https://doi.org/10.1109/FOCS46700.2020.00054
https://doi.org/10.1016/j.jcp.2023.112549
https://doi.org/10.1017/S0962492921000039
https://doi.org/10.1017/S0962492921000039
https://doi.org/10.1007/BF01436084
https://dl.acm.org/doi/10.5555/1162264
https://doi.org/10.1007/s00355-023-01456-4

406

Computing. June 2022, pp. 1144–1157. doi: 10.1145/3519935
.3520009 (Cited on p. 202).

[BKS07] Costas Bekas, Effrosyni Kokiopoulou, and Yousef Saad. “An Esti-
mator for the Diagonal of a Matrix”. In: Applied Numerical Math-
ematics. Numerical Algorithms, Parallelism and Applications (2)
57.11 (Nov. 2007), pp. 1214–1229. doi: 10.1016/j.apnum.200
7.01.003 (Cited on pp. 192, 197, 254).

[BKW25] Bernhard Beckermann, Daniel Kressner, and Heather Wilber.
Compression Properties for Large Toeplitz-like Matrices. Feb.
2025. arXiv: 2502.09823v1 (Cited on p. 178).

[BLLT20] Peter L. Bartlett, Philip M. Long, Gábor Lugosi, and Alexander
Tsigler. “Benign Overfitting in Linear Regression”. In: Proceed-
ings of the National Academy of Sciences 117.48 (Dec. 2020),
pp. 30063–30070. doi: 10.1073/pnas.1907378117 (Cited on
p. 87).

[BLM13] Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concen-
tration Inequalities: A Nonasymptotic Theory of Independence.
Oxford University Press, 2013. doi: 10.1093/acprof:oso/978
0199535255.001.0001 (Cited on p. 291).

[BMR22] Claude Brezinski, Gérard Meurant, and Michela Redivo-Zaglia. A
Journey through the History of Numerical Linear Algebra. Society
for Industrial and Applied Mathematics, 2022. doi: 10.1137/1.9
781611977233 (Cited on pp. 305–307).

[BN22] Robert A. Baston and Yuji Nakatsukasa. Stochastic Diagonal Es-
timation: Probabilistic Bounds and an Improved Algorithm. Jan.
2022. arXiv: 2201.10684v1 (Cited on pp. 254, 255).

[BP20] Burak Bartan and Mert Pilanci. Distributed Sketching Methods for
Privacy Preserving Regression. June 2020. arXiv: 2002.06538v2
(Cited on p. 393).

[BR03] Mario Bebendorf and Sergej Rjasanow. “Adaptive Low-Rank Ap-
proximation of Collocation Matrices”. In: Computing 70.1 (Feb.
2003), pp. 1–24. doi: 10.1007/s00607-002-1469-6 (Cited on
pp. 166, 177).

[BR24] Mathieu Blondel and Vincent Roulet. The Elements of Differen-
tiable Programming. July 2024. arXiv: 2403.14606v2 (Cited on
p. 188).

[BSW14] Pierre Baldi, Peter Sadowski, and Daniel Whiteson. “Searching for
Exotic Particles in High-Energy Physics with Deep Learning”. In:
Nature Communications 5.1 (July 2014), p. 4308. doi: 10.1038
/ncomms5308 (Cited on p. 103).

https://doi.org/10.1145/3519935.3520009
https://doi.org/10.1145/3519935.3520009
https://doi.org/10.1016/j.apnum.2007.01.003
https://doi.org/10.1016/j.apnum.2007.01.003
https://arxiv.org/abs/2502.09823v1
https://doi.org/10.1073/pnas.1907378117
https://doi.org/10.1093/acprof:oso/9780199535255.001.0001
https://doi.org/10.1093/acprof:oso/9780199535255.001.0001
https://doi.org/10.1137/1.9781611977233
https://doi.org/10.1137/1.9781611977233
https://arxiv.org/abs/2201.10684v1
https://arxiv.org/abs/2002.06538v2
https://doi.org/10.1007/s00607-002-1469-6
https://arxiv.org/abs/2403.14606v2
https://doi.org/10.1038/ncomms5308
https://doi.org/10.1038/ncomms5308

407

[BT19] Bernhard Beckermann and Alex Townsend. “Bounds on the Sin-
gular Values of Matrices with Displacement Structure”. In: SIAM
Review 61.2 (Jan. 2019), pp. 319–344. doi: 10.1137/19M124443
3 (Cited on p. 12).

[Bv24] Tatiana Brailovskaya and Ramon van Handel. “Universality and
Sharp Matrix Concentration Inequalities”. In: Geometric and Func-
tional Analysis 34.6 (Dec. 2024), pp. 1734–1838. doi: 10.1007
/s00039-024-00692-9 (Cited on p. 372).

[BW09a] Mohamed-Ali Belabbas and Patrick J. Wolfe. “On Landmark Se-
lection and Sampling in High-Dimensional Data Analysis”. In:
Philosophical Transactions of the Royal Society A: Mathemati-
cal, Physical and Engineering Sciences 367.1906 (Nov. 2009),
pp. 4295–4312. doi:10.1098/rsta.2009.0161 (Cited on pp. 27,
29).

[BW09b] Mohamed-Ali Belabbas and Patrick J. Wolfe. “Spectral Methods
in Machine Learning and New Strategies for Very Large Datasets”.
In: Proceedings of the National Academy of Sciences 106.2 (Jan.
2009), pp. 369–374. doi: 10.1073/pnas.0810600105 (Cited on
p. 55).

[BW17] Christos Boutsidis and David P. Woodruff. “Optimal CUR Ma-
trix Decompositions”. In: SIAM Journal on Computing 46.2 (Jan.
2017), pp. 543–589. doi: 10.1137/140977898 (Cited on p. 177).

[BY93] Z. D. Bai and Y. Q. Yin. “Limit of the Smallest Eigenvalue of a
Large Dimensional Sample Covariance Matrix”. In: The Annals of
Probability 21.3 (July 1993), pp. 1275–1294. doi: 10.1214/aop
/1176989118 (Cited on p. 370).

[BZCX+03] Dongbo Bu, Yi Zhao, Lun Cai, Hong Xue, Xiaopeng Zhu,
Hongchao Lu, Jingfen Zhang, Shiwei Sun, Lunjiang Ling, Nan
Zhang, Guojie Li, and Runsheng Chen. “Topological Structure
Analysis of the Protein–Protein Interaction Network in Budding
Yeast”. In: Nucleic Acids Research 31.9 (May 2003), pp. 2443–
2450. doi: 10.1093/nar/gkg340 (Cited on pp. 235, 262).

[Car10] Eric Carlen. “Trace Inequalities and Quantum Entropy: An Intro-
ductory Course”. In: Contemporary Mathematics. Ed. by Robert
Sims and Daniel Ueltschi. Vol. 529. American Mathematical So-
ciety, 2010, pp. 73–140. doi: 10.1090/conm/529/10428 (Cited
on p. 65).

[CCBG22] Yuan Cao, Zixiang Chen, Misha Belkin, and Quanquan Gu. “Be-
nign Overfitting in Two-layer Convolutional Neural Networks”.
In: Advances in Neural Information Processing Systems 35 (Dec.

https://doi.org/10.1137/19M1244433
https://doi.org/10.1137/19M1244433
https://doi.org/10.1007/s00039-024-00692-9
https://doi.org/10.1007/s00039-024-00692-9
https://doi.org/10.1098/rsta.2009.0161
https://doi.org/10.1073/pnas.0810600105
https://doi.org/10.1137/140977898
https://doi.org/10.1214/aop/1176989118
https://doi.org/10.1214/aop/1176989118
https://doi.org/10.1093/nar/gkg340
https://doi.org/10.1090/conm/529/10428

408

2022), pp. 25237–25250. url: https://dl.acm.org/doi/10
.5555/3600270.3602100 (Cited on p. 87).

[CCF04] Moses Charikar, Kevin Chen, and Martin Farach-Colton. “Finding
Frequent Items in Data Streams”. In: Theoretical Computer Sci-
ence. Automata, Languages and Programming 312.1 (Jan. 2004),
pp. 3–15. doi: 10.1016/S0304-3975(03)00400-6 (Cited on
p. 383).

[CD13] Jiawei Chiu and Laurent Demanet. “Sublinear Randomized Algo-
rithms for Skeleton Decompositions”. In: SIAM Journal on Matrix
Analysis and Applications 34.3 (Jan. 2013), pp. 1361–1383. doi:
10.1137/110852310 (Cited on p. 35).

[CDD25a] Shabarish Chenakkod, Michał Dereziński, and Xiaoyu Dong. Op-
timal Oblivious Subspace Embeddings with Near-optimal Sparsity.
To appear in ICALP 2025. Apr. 2025. arXiv:2411.08773v2 (Cited
on pp. 319, 372, 382, 388).

[CDD25b] Shabarish Chenakkod, Michał Dereziński, and Xiaoyu Dong. Opti-
mal Subspace Embeddings: Resolving Nelson-Nguyen Conjecture
Up to Sub-Polylogarithmic Factors. Aug. 2025. doi: 10.48550/a
rXiv.2508.14234. eprint: 2508.14234 (Cited on p. 391).

[CDDR24] Shabarish Chenakkod, Michał Dereziński, Xiaoyu Dong, and Mark
Rudelson. “Optimal Embedding Dimension for Sparse Subspace
Embeddings”. In: Proceedings of the Fifty-Sixth Annual ACM Sym-
posium on Theory of Computing. June 2024, pp. 1106–1117. doi:
10.1145/3618260.3649762 (Cited on pp. 319, 367, 372, 388).

[CDV20] Daniele Calandriello, Michal Derezinski, and Michal Valko. “Sam-
pling from a 𝑘-DPP without Looking at All Items”. In: Advances in
Neural Information Processing Systems. Vol. 33. 2020, pp. 6889–
6899. url: https://dl.acm.org/doi/10.5555/3495724.34
96302 (Cited on p. 56).

[CEMT25] Chris Camaño, Ethan N. Epperly, Raphael A. Meyer, and Joel A.
Tropp. Faster Linear Algebra Algorithms with Structured Ran-
dom Matrices. Aug. 2025. doi: 10.48550/arXiv.2508.21189.
eprint: 2508.21189 (cs) (Cited on pp. 385, 391).

[CET25] Chris Camaño, Ethan N. Epperly, and Joel A. Tropp. Successive
Randomized Compression: A Randomized Algorithm for the Com-
pressed MPO–MPS Product. Apr. 2025. arXiv: 2504.06475v1
(Cited on p. 7).

[CETW25] Yifan Chen, Ethan N. Epperly, Joel A. Tropp, and Robert J. Webber.
“Randomly Pivoted Cholesky: Practical Approximation of a Kernel
Matrix with Few Entry Evaluations”. In: Communications on Pure
and Applied Mathematics 78.5 (2025), pp. 995–1041. doi: 10.10

https://dl.acm.org/doi/10.5555/3600270.3602100
https://dl.acm.org/doi/10.5555/3600270.3602100
https://doi.org/10.1016/S0304-3975(03)00400-6
https://doi.org/10.1137/110852310
https://arxiv.org/abs/2411.08773v2
https://doi.org/10.48550/arXiv.2508.14234
https://doi.org/10.48550/arXiv.2508.14234
2508.14234
https://doi.org/10.1145/3618260.3649762
https://dl.acm.org/doi/10.5555/3495724.3496302
https://dl.acm.org/doi/10.5555/3495724.3496302
https://doi.org/10.48550/arXiv.2508.21189
2508.21189
https://arxiv.org/abs/2504.06475v1
https://doi.org/10.1002/cpa.22234
https://doi.org/10.1002/cpa.22234

409

02/cpa.22234 (Cited on pp. 31, 43, 47, 49, 53, 57, 60, 61, 68,
69, 93, 101, 111, 125, 139, 143, 147, 158, 161, 181, 182).

[CF79] Randall E. Cline and Robert E. Funderlic. “The Rank of a Differ-
ence of Matrices and Associated Generalized Inverses”. In: Linear
Algebra and its Applications 24 (Apr. 1979), pp. 185–215. doi:
10.1016/0024-3795(79)90158-7 (Cited on p. 166).

[CFG95] Moody T. Chu, Robert E. Funderlic, and Gene H. Golub. “A Rank–
One Reduction Formula and Its Applications to Matrix Factoriza-
tions”. In: SIAM Review 37.4 (Dec. 1995), pp. 512–530. doi: 10.1
137/1037124 (Cited on p. 166).

[CFS21] Coralia Cartis, Jan Fiala, and Zhen Shao. Hashing Embeddings
of Optimal Dimension, with Applications to Linear Least Squares.
May 2021. arXiv: 2105.11815v1 (Cited on pp. 320, 383).

[CGSX+08] Shivkumar Chandrasekaran, Ming Gu, X. Sun, Jianlin Xia, and
Jiang Zhu. “A Superfast Algorithm for Toeplitz Systems of Linear
Equations”. In: SIAM Journal on Matrix Analysis and Applications
29.4 (2008), pp. 1247–1266. doi: 10.1137/040617200 (Cited on
pp. 32, 178).

[CH23] Tyler Chen and Eric Hallman. “Krylov-Aware Stochastic Trace Es-
timation”. In: SIAM Journal on Matrix Analysis and Applications
44.3 (Sept. 2023), pp. 1218–1244. doi: 10.1137/22M1494257
(Cited on pp. 190, 251).

[Che22] Tyler Chen. “Lanczos-Based Methods for Matrix Functions”. PhD
thesis. University of Washington, 2022. url: https://researc
h.chen.pw/thesis.pdf (Cited on pp. 194, 196).

[Che24] Tyler Chen. The Lanczos Algorithm for Matrix Functions: A Hand-
book for Scientists. Oct. 2024. arXiv: 2410.11090v1 (Cited on
pp. 188, 235, 249, 250, 262, 271, 278, 333, 335).

[Che78] Simone Chevet. “Séries de variables aléatoires gaussiennes à
valeurs dans 𝐸 ⊗̂𝜀𝐹. Application aux produits d’espaces de Wiener
abstraits”. In: Séminaire Maurey-Schwartz (1977–1978). talk:19,
pp. 1–15. url: https://www.numdam.org/item/SAF_1977-1
978____A14_0/ (Cited on p. 372).

[CK06] Harr Chen and David R. Karger. “Less Is More: Probabilistic Mod-
els for Retrieving Fewer Relevant Documents”. In: Proceedings of
the Twenty-Ninth Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval. Aug. 2006,
pp. 429–436. doi: 10.1145/1148170.1148245 (Cited on p. 44).

https://doi.org/10.1002/cpa.22234
https://doi.org/10.1002/cpa.22234
https://doi.org/10.1002/cpa.22234
https://doi.org/10.1016/0024-3795(79)90158-7
https://doi.org/10.1137/1037124
https://doi.org/10.1137/1037124
https://arxiv.org/abs/2105.11815v1
https://doi.org/10.1137/040617200
https://doi.org/10.1137/22M1494257
https://research.chen.pw/thesis.pdf
https://research.chen.pw/thesis.pdf
https://arxiv.org/abs/2410.11090v1
https://www.numdam.org/item/SAF_1977-1978____A14_0/
https://www.numdam.org/item/SAF_1977-1978____A14_0/
https://doi.org/10.1145/1148170.1148245

410

[CK24] Alice Cortinovis and Daniel Kressner. Adaptive Randomized Piv-
oting for Column Subset Selection, DEIM, and Low-Rank Approx-
imation. Dec. 2024. arXiv: 2412.13992v1 (Cited on pp. 29, 155,
161, 164, 175, 177, 179).

[CLV17] Daniele Calandriello, Alessandro Lazaric, and Michal Valko. “Dis-
tributed Adaptive Sampling for Kernel Matrix Approximation”. In:
Proceedings of the Twentieth International Conference on Artifi-
cial Intelligence and Statistics. Apr. 2017, pp. 1421–1429. url:
https://proceedings.mlr.press/v54/calandriello17a
.html (Cited on p. 52).

[ÇM09] Ali Çivril and Malik Magdon-Ismail. “On Selecting a Maximum
Volume Sub-Matrix of a Matrix and Related Problems”. In: Theo-
retical Computer Science 410.47-49 (Nov. 2009), pp. 4801–4811.
doi: 10.1016/j.tcs.2009.06.018 (Cited on p. 54).

[CNRS+25] Tyler Chen, Pradeep Niroula, Archan Ray, Pragna Subrahmanya,
Marco Pistoia, and Niraj Kumar. GPU-Parallelizable Randomized
Sketch-and-Precondition for Linear Regression Using Sparse Sign
Sketches. June 2025. doi: 10.48550/arXiv.2506.03070. eprint:
2506.03070 (Cited on p. 385).

[Coh16] Michael B. Cohen. “Nearly Tight Oblivious Subspace Embeddings
by Trace Inequalities”. In: Proceedings of the Twenty-Seventh An-
nual ACM-SIAM Symposium on Discrete Algorithms. Society for
Industrial and Applied Mathematics, Jan. 2016, pp. 278–287. doi:
10.1137/1.9781611974331.ch21 (Cited on pp. 318, 387, 388).

[CP19] Xue Chen and Eric Price. “Active Regression via Linear-Sample
Sparsification”. In: Proceedings of the Thirty-Second Conference
on Learning Theory. June 2019, pp. 663–695. url: https://pro
ceedings.mlr.press/v99/chen19a.html (Cited on pp. 103,
168, 175, 269).

[CRBD18] Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David K
Duvenaud. “Neural Ordinary Differential Equations”. In: Advances
in Neural Information Processing Systems. Vol. 31. 2018. url: ht
tps://dl.acm.org/doi/10.5555/3327757.3327764 (Cited
on p. 191).

[CTU25] Tyler Chen, Thomas Trogdon, and Shashanka Ubaru. “Randomized
Matrix-Free Quadrature: Unified and Uniform Bounds for Stochas-
tic Lanczos Quadrature and the Kernel Polynomial Method”. In:
SIAM Journal on Scientific Computing 47.3 (June 2025), A1733–
A1757. doi: 10.1137/23M1600414 (Cited on p. 250).

https://arxiv.org/abs/2412.13992v1
https://proceedings.mlr.press/v54/calandriello17a.html
https://proceedings.mlr.press/v54/calandriello17a.html
https://doi.org/10.1016/j.tcs.2009.06.018
https://doi.org/10.48550/arXiv.2506.03070
2506.03070
https://doi.org/10.1137/1.9781611974331.ch21
https://proceedings.mlr.press/v99/chen19a.html
https://proceedings.mlr.press/v99/chen19a.html
https://dl.acm.org/doi/10.5555/3327757.3327764
https://dl.acm.org/doi/10.5555/3327757.3327764
https://doi.org/10.1137/23M1600414

411

[CW09] Kenneth L. Clarkson and David P. Woodruff. “Numerical Linear
Algebra in the Streaming Model”. In: Proceedings of the Forty-
First Annual ACM Symposium on Theory of Computing. May 2009,
pp. 205–214. doi: 10.1145/1536414.1536445 (Cited on p. 166).

[CW17] Kenneth L. Clarkson and David P. Woodruff. “Low-Rank Approx-
imation and Regression in Input Sparsity Time”. In: Journal of the
ACM 63.6 (Feb. 2017), pp. 1–45. doi: 10.1145/3019134 (Cited
on p. 175).

[CY25] Alice Cortinovis and Lexing Ying. “A Sublinear-Time Randomized
Algorithm for Column and Row Subset Selection Based on Strong
Rank-Revealing QR Factorizations”. In: SIAM Journal on Matrix
Analysis and Applications (Mar. 2025), pp. 22–44. doi: 10.1137
/24M164063X (Cited on p. 35).

[DCMP24] Yijun Dong, Chao Chen, Per-Gunnar Martinsson, and Katherine
Pearce. Robust Blockwise Random Pivoting: Fast and Accurate
Adaptive Interpolative Decomposition. Dec. 2024. arXiv: 2309.1
6002v5 (Cited on pp. 125, 131, 150, 152, 154, 157, 177).

[DCV19] Michal Derezinski, Daniele Calandriello, and Michal Valko. “Ex-
act Sampling of Determinantal Point Processes with Sublinear
Time Preprocessing”. In: Advances in Neural Information Pro-
cessing Systems. Vol. 32. 2019. url: https://dl.acm.org/doi
/10.5555/3454287.3455323 (Cited on p. 56).

[Dd89] Hans De Raedt and Pedro de Vries. “Simulation of Two and Three-
Dimensional Disordered Systems: Lifshitz Tails and Localization
Properties”. In: Zeitschrift für Physik B Condensed Matter 77.2
(June 1989), pp. 243–251. doi: 10.1007/BF01313668 (Cited on
p. 194).

[DEFT+24] Mateo Díaz, Ethan N. Epperly, Zachary Frangella, Joel A. Tropp,
and Robert J. Webber. Robust, Randomized Preconditioning for
Kernel Ridge Regression. July 2024. arXiv: 2304.12465v5 (Cited
on pp. 93, 96, 97, 99).

[DELZ24] Zhiyan Ding, Ethan N. Epperly, Lin Lin, and Ruizhe Zhang. “The
ESPRIT Algorithm under High Noise: Optimal Error Scaling and
Noisy Super-Resolution”. In: Sixty-Fifth IEEE Annual Symposium
on Foundations of Computer Science. 2024, pp. 2344–2366. doi:
10.1109/FOCS61266.2024.00137 (Cited on p. 7).

[Dem97] James W. Demmel. Applied Numerical Linear Algebra. Society for
Industrial and Applied Mathematics, 1997. doi: 10.1137/1.978
1611971446 (Cited on pp. 297, 335).

https://doi.org/10.1145/1536414.1536445
https://doi.org/10.1145/3019134
https://doi.org/10.1137/24M164063X
https://doi.org/10.1137/24M164063X
https://arxiv.org/abs/2309.16002v5
https://arxiv.org/abs/2309.16002v5
https://dl.acm.org/doi/10.5555/3454287.3455323
https://dl.acm.org/doi/10.5555/3454287.3455323
https://doi.org/10.1007/BF01313668
https://arxiv.org/abs/2304.12465v5
https://doi.org/10.1109/FOCS61266.2024.00137
https://doi.org/10.1137/1.9781611971446
https://doi.org/10.1137/1.9781611971446

412

[Der18] Manfred K. Dereziński Michałand Warmuth. “Reverse Iterative
Volume Sampling for Linear Regression”. In: The Journal of Ma-
chine Learning Research 19.1 (2018), pp. 853–891. url: https:
//dl.acm.org/doi/10.5555/3291125.3291148 (Cited on
p. 175).

[Der19] Michał Dereziński. “Fast Determinantal Point Processes via
Distortion-Free Intermediate Sampling”. In: Conference on Learn-
ing Theory. June 2019, pp. 1029–1049. url: https://proceedi
ngs.mlr.press/v99/derezinski19a.html (Cited on p. 56).

[DFFG+03] Jack Dongarra, Ian Foster, Geoffrey Fox, William Gropp, Ken
Kennedy, Linda Torczon, and Andy White, eds. Sourcebook of Par-
allel Computing. Morgan Kaufmann Publishers Inc., 2003. url:
https://dl.acm .org/doi/10.5555/941480 (Cited on
p. 126).

[DGK98] Vladamir Druskin, Anne Greenbaum, and Leonid Knizhnerman.
“Using Nonorthogonal Lanczos Vectors in the Computation of
Matrix Functions”. In: SIAM Journal on Scientific Computing
19.1 (Jan. 1998), pp. 38–54. doi: 10.1137/S1064827596303661
(Cited on pp. 335, 349, 355).

[DH18] Manfred K. Dereziński Michałand Warmuth and Daniel J. Hsu.
“Leveraged Volume Sampling for Linear Regression”. In: Thirty-
Second Conference on Neural Information Processing Systems.
2018, p. 10. url: https://dl.acm.org/doi/10.5555/33271
44.3327176 (Cited on pp. 175, 395).

[DK91] Vladamir L. Druskin and Leonid A. Knizhnerman. “Error Bounds
in the Simple Lanczos Procedure for Computing Functions of Sym-
metric Matrices and Eigenvalues”. In: Computational Mathematics
and Mathematical Physics 31.7 (1991), pp. 20–30. url: https:
//dl.acm.org/doi/abs/10.5555/151905.151908 (Cited on
pp. 335, 349).

[DKM06] Petros Drineas, Ravi Kannan, and Michael W. Mahoney. “Fast
Monte Carlo Algorithms for Matrices III: Computing a Com-
pressed Approximate Matrix Decomposition”. In: SIAM Journal
on Computing 36.1 (Jan. 2006), pp. 184–206. doi: 10.1137/S00
97539704442702 (Cited on p. 177).

[DKM20] Michał Dereziński, Rajiv Khanna, and Michael W Mahoney. “Im-
proved Guarantees and a Multiple-Descent Curve for Column Sub-
set Selection and the Nyström Method”. In: Advances in Neural
Information Processing Systems 33 (2020). url: https://dl.ac
m.org/doi/10.5555/3495724.3496140 (Cited on p. 29).

https://dl.acm.org/doi/10.5555/3291125.3291148
https://dl.acm.org/doi/10.5555/3291125.3291148
https://proceedings.mlr.press/v99/derezinski19a.html
https://proceedings.mlr.press/v99/derezinski19a.html
https://dl.acm.org/doi/10.5555/941480
https://doi.org/10.1137/S1064827596303661
https://dl.acm.org/doi/10.5555/3327144.3327176
https://dl.acm.org/doi/10.5555/3327144.3327176
https://dl.acm.org/doi/abs/10.5555/151905.151908
https://dl.acm.org/doi/abs/10.5555/151905.151908
https://doi.org/10.1137/S0097539704442702
https://doi.org/10.1137/S0097539704442702
https://dl.acm.org/doi/10.5555/3495724.3496140
https://dl.acm.org/doi/10.5555/3495724.3496140

413

[DL19] Edgar Dobriban and Sifan Liu. “Asymptotics for Sketching in
Least Squares Regression”. In: Advances in Neural Information
Processing Systems. Vol. 32. 2019. url: https://dl.acm.org
/doi/10.5555/3454287.3454617 (Cited on p. 372).

[DM05] Petros Drineas and Michael W. Mahoney. “On the Nyström Method
for Approximating a Gram Matrix for Improved Kernel-Based
Learning”. In: Journal of Machine Learning Research 6.72 (2005),
pp. 2153–2175. url: https://jmlr.org/papers/v6/drinea
s05a.html (Cited on pp. 47, 48).

[DM16] Petros Drineas and Michael W. Mahoney. “RandNLA: Random-
ized Numerical Linear Algebra”. In: Communications of the ACM
59.6 (May 2016), pp. 80–90. doi: 10.1145/2842602 (Cited on
p. 2).

[DM21] Michał Dereziński and Michael W. Mahoney. “Determinantal Point
Processes in Randomized Numerical Linear Algebra”. In: Notices
of the American Mathematical Society 68.01 (Jan. 2021), p. 1. doi:
10.1090/noti2202 (Cited on p. 55).

[DM22] Raaz Dwivedi and Lester Mackey. “Generalized Kernel Thinning”.
In: International Conference on Learning Representations. Avail-
able at https://arxiv.org/abs/2110.01593v8. Jan. 2022
(Cited on pp. 123, 124).

[DM23a] Prathamesh Dharangutte and Christopher Musco. “A Tight Anal-
ysis of Hutchinson’s Diagonal Estimator”. In: 2023 Symposium on
Simplicity in Algorithms. Society for Industrial and Applied Math-
ematics, Jan. 2023, pp. 353–364. doi: 10.1137/1.97816119775
85.ch32 (Cited on pp. 154, 159, 164, 254).

[DM23b] Yijun Dong and Per-Gunnar Martinsson. “Simpler Is Better: A
Comparative Study of Randomized Pivoting Algorithms for CUR
and Interpolative Decompositions”. In: Advances in Computational
Mathematics 49.4 (Aug. 2023), p. 66. doi: 10.1007/s10444-02
3-10061-z (Cited on pp. 152, 177, 365, 385).

[DMBS79] Jack J. Dongarra, Cleve B. Moler, James R. Bunch, and G. W.
Stewart. LINPACK Users’ Guide. Society for Industrial and Ap-
plied Mathematics, Jan. 1979. doi: 10.1137/1.9781611971811
(Cited on p. 41).

[DMM06] Petros Drineas, Michael W. Mahoney, and S. Muthukrishnan.
“Sampling Algorithms for ℓ2 Regression and Applications”. In:
Proceedings of the Seventeenth Annual ACM-SIAM Symposium on
Discrete Algorithm. Jan. 2006, pp. 1127–1136. url: https://dl
.acm.org/doi/10.5555/1109557.1109682 (Cited on pp. 316,
319).

https://dl.acm.org/doi/10.5555/3454287.3454617
https://dl.acm.org/doi/10.5555/3454287.3454617
https://jmlr.org/papers/v6/drineas05a.html
https://jmlr.org/papers/v6/drineas05a.html
https://doi.org/10.1145/2842602
https://doi.org/10.1090/noti2202
https://arxiv.org/abs/2110.01593v8
https://doi.org/10.1137/1.9781611977585.ch32
https://doi.org/10.1137/1.9781611977585.ch32
https://doi.org/10.1007/s10444-023-10061-z
https://doi.org/10.1007/s10444-023-10061-z
https://doi.org/10.1137/1.9781611971811
https://dl.acm.org/doi/10.5555/1109557.1109682
https://dl.acm.org/doi/10.5555/1109557.1109682

414

[DMM08] Petros Drineas, Michael W. Mahoney, and S. Muthukrishnan.
“Relative-Error 𝐶𝑈𝑅 Matrix Decompositions”. In: SIAM Journal
on Matrix Analysis and Applications 30.2 (Jan. 2008), pp. 844–
881. doi: 10.1137/07070471X (Cited on p. 176).

[DMMS11] Petros Drineas, Michael W. Mahoney, S. Muthukrishnan, and
Tamás Sarlós. “Faster Least Squares Approximation”. In: Nu-
merische Mathematik 117.2 (Feb. 2011), pp. 219–249. doi: 10
.1007/s00211-010-0331-6 (Cited on p. 393).

[DMMW12] Petros Drineas, Malik Magdon-Ismail, Michael W. Mahoney, and
David P. Woodruff. “Fast Approximation of Matrix Coherence
and Statistical Leverage”. In: The Journal of Machine Learning
Research 13.1 (2012), pp. 3475–3506. url: https://dl.acm.o
rg/doi/10.5555/2503308.2503352 (Cited on pp. 193, 269,
270).

[DPPL24] Yijun Dong, Xiang Pan, Hoang Phan, and Qi Lei. “Randomly Piv-
oted V-optimal Design: Fast Data Selection under Low Intrinsic
Dimension”. In: Workshop on Machine Learning and Compres-
sion, NeurIPS 2024. 2024. url: https://openreview.net/fo
rum?id=WPvQVQrbch (Cited on p. 68).

[DRVW06] Amit Deshpande, Luis Rademacher, Santosh Vempala, and Grant
Wang. “Matrix Approximation and Projective Clustering via Vol-
ume Sampling”. In: Proceedings of the Seventeenth Annual ACM-
SIAM Symposium on Discrete Algorithm. 2006, pp. 1117–1126.
doi: 10.1145/1109557.1109681 (Cited on pp. 43, 55, 131, 142,
147, 158, 159, 175, 395).

[DS01] Kenneth R. Davidson and Stanislaw J. Szarek. “Chapter 8 - Lo-
cal Operator Theory, Random Matrices and Banach Spaces”. In:
Handbook of the Geometry of Banach Spaces. Ed. by W. B. John-
son and J. Lindenstrauss. Vol. 1. Handbook of the Geometry of
Banach Spaces. Elsevier Science B.V., Jan. 2001, pp. 317–366.
doi: 10.1016/S1874-5849(01)80010-3 (Cited on p. 372).

[DT12] Alex Druinsky and Sivan Toledo. How Accurate is inv(A)*b?
Jan. 2012. arXiv: 1201.6035v1 (Cited on p. 170).

[DV06] Amit Deshpande and Santosh Vempala. “Adaptive Sampling and
Fast Low-Rank Matrix Approximation”. In: Approximation, Ran-
domization, and Combinatorial Optimization. Algorithms and
Techniques. Lecture Notes in Computer Science. 2006, pp. 292–
303. doi: 10.1007/11830924_28 (Cited on pp. 142, 147, 158–
160).

https://doi.org/10.1137/07070471X
https://doi.org/10.1007/s00211-010-0331-6
https://doi.org/10.1007/s00211-010-0331-6
https://dl.acm.org/doi/10.5555/2503308.2503352
https://dl.acm.org/doi/10.5555/2503308.2503352
https://openreview.net/forum?id=WPvQVQrbch
https://openreview.net/forum?id=WPvQVQrbch
https://doi.org/10.1145/1109557.1109681
https://doi.org/10.1016/S1874-5849(01)80010-3
https://arxiv.org/abs/1201.6035v1
https://doi.org/10.1007/11830924_28

415

[DW17] Michał Dereziński and Manfred K. Warmuth. “Unbiased Estimates
for Linear Regression via Volume Sampling”. In: Advances in
Neural Information Processing Systems 30 (2017). url: https:
//dl.acm.org/doi/10.5555/3294996.3295068 (Cited on
p. 175).

[Eck87] Roger Eckhardt. “Stan Ulam, John von Neumann, and the Monte
Carlo Method”. In: Los Alamos Science, Special Issue 15 (1987),
pp. 131–137. url: https://mcnp.lanl.gov/pdf_files/Art
icle_1987_LAS_Eckhardt_131--141.pdf (Cited on p. 1).

[Efr82] Bradley Efron. The Jackknife, the Bootstrap and Other Resampling
Plans. Society for Industrial and Applied Mathematics, 1982. doi:
10.1137/1.9781611970319 (Cited on p. 287).

[EGN25] Ethan N. Epperly, Anne Greenbaum, and Yuji Nakatsukasa. Stable
Algorithms for General Linear Systems by Preconditioning the
Normal Equations. Mar. 2025. arXiv: 2502.17767v2 (Cited on
p. 356).

[EGW25] Ethan N. Epperly, Gil Goldshlager, and Robert J. Webber. Ran-
domized Kaczmarz with Tail Averaging. Apr. 2025. arXiv: 2411.1
9877v3 (Cited on p. 7).

[ELN22] Ethan N. Epperly, Lin Lin, and Yuji Nakatsukasa. “A Theory of
Quantum Subspace Diagonalization”. In: SIAM Journal on Matrix
Analysis and Applications 43.3 (2022), pp. 1263–1290. doi: 10.1
137/21M145954X (Cited on p. 5).

[EM23] Ethan N. Epperly and Elvira Moreno. “Kernel Quadrature with
Randomly Pivoted Cholesky”. In: Advances in Neural Information
Processing Systems 36 (2023), pp. 65850–65868. url: https:
//dl.acm.org/doi/10.5555/3666122.3668997 (Cited on
pp. 105, 106, 111, 115, 116, 124).

[EMN25] Ethan N. Epperly, Maike Meier, and Yuji Nakatsukasa. “Fast Ran-
domized Least-Squares Solvers Can Be Just as Accurate and Stable
as Classical Direct Solvers”. In: Communications on Pure and Ap-
plied Mathematics, accepted (2025). Preprint available at https:
//arxiv.org/abs/2406.03468v2 (Cited on pp. 311, 327, 336,
339, 340, 343–345, 349, 352, 355, 365, 385).

[Epp22a] Ethan N. Epperly. Low-Rank Approximation Toolbox: Nyström Ap-
proximation. Oct. 2022. url: https://www.ethanepperly.co
m/index.php/2022/10/11/low-rank-approximation-too
lbox-nystrom-approximation/ (Cited on p. 22).

[Epp22b] Ethan N. Epperly. Note to Self: Hanson–Wright Inequality. Oct.
2022. url: https://www.ethanepperly.com/index.php/2

https://dl.acm.org/doi/10.5555/3294996.3295068
https://dl.acm.org/doi/10.5555/3294996.3295068
https://mcnp.lanl.gov/pdf_files/Article_1987_LAS_Eckhardt_131--141.pdf
https://mcnp.lanl.gov/pdf_files/Article_1987_LAS_Eckhardt_131--141.pdf
https://doi.org/10.1137/1.9781611970319
https://arxiv.org/abs/2502.17767v2
https://arxiv.org/abs/2411.19877v3
https://arxiv.org/abs/2411.19877v3
https://doi.org/10.1137/21M145954X
https://doi.org/10.1137/21M145954X
https://dl.acm.org/doi/10.5555/3666122.3668997
https://dl.acm.org/doi/10.5555/3666122.3668997
https://arxiv.org/abs/2406.03468v2
https://arxiv.org/abs/2406.03468v2
https://www.ethanepperly.com/index.php/2022/10/11/low-rank-approximation-toolbox-nystrom-approximation/
https://www.ethanepperly.com/index.php/2022/10/11/low-rank-approximation-toolbox-nystrom-approximation/
https://www.ethanepperly.com/index.php/2022/10/11/low-rank-approximation-toolbox-nystrom-approximation/
https://www.ethanepperly.com/index.php/2022/10/04/note-to-self-hanson-wright-inequality/
https://www.ethanepperly.com/index.php/2022/10/04/note-to-self-hanson-wright-inequality/

416

022/10/04/note-to-self-hanson-wright-inequality/
(Cited on p. 208).

[Epp23a] Ethan N. Epperly. Five Interpretations of Kernel Quadrature. Dec.
2023. url: https://www.ethanepperly.com/index.php/20
23/12/01/five-interpretations-of-kernel-quadratur
e/ (Cited on p. 119).

[Epp23b] Ethan N. Epperly. Stochastic Trace Estimation. Jan. 2023. url:
https://www.ethanepperly.com/index.php/2023/01/26
/stochastic-trace-estimation/ (Cited on pp. 200, 201).

[Epp23c] Ethan N. Epperly. Which Sketch Should I Use? Nov. 2023. url:
https://www.ethanepperly.com/index.php/2023/11/27
/which-sketch-should-i-use/ (Cited on pp. 365, 385).

[Epp24a] Ethan N. Epperly. Don’t Use Gaussians in Stochastic Trace Esti-
mation. Jan. 2024. url: https://www.ethanepperly.com/in
dex.php/2024/01/28/dont-use-gaussians-in-stochast
ic-trace-estimation/ (Cited on p. 201).

[Epp24b] Ethan N. Epperly. “Fast and Forward Stable Randomized Algo-
rithms for Linear Least-Squares Problems”. In: SIAM Journal on
Matrix Analysis and Applications (Dec. 2024), pp. 1782–1804.
doi: 10.1137/23M1616790 (Cited on pp. 311, 327, 331–333,
335, 365).

[Epp24c] Ethan N. Epperly. Low-Rank Approximation Toolbox: The Gram
Correspondence. Dec. 2024. url: https://www.ethanepperly
.com/index.php/2024/12/07/low-rank-approximation-
toolbox-the-gram-correspondence/ (Cited on pp. 11, 29).

[Epp24d] Ethan N. Epperly. Note to Self: Sketch-and-Solve with a Gaussian
Embedding. Nov. 2024. url: https://www.ethanepperly.co
m/index.php/2024/11/19/note-to-self-sketch-and-so
lve-with-a-gaussian-embedding/ (Cited on p. 393).

[Epp25] Ethan N. Epperly. Note to Self: How Accurate Is Sketch and Solve?
Feb. 2025. url: https://www.ethanepperly.com/index.ph
p/2025/02/12/note-to-self-how-accurate-is-sketch-
and-solve/ (Cited on p. 393).

[ES81] Bradley Efron and Charles Stein. “The Jackknife Estimate of Vari-
ance”. In: The Annals of Statistics 9.3 (1981), pp. 586–596. doi:
10.1214/aos/1176345462 (Cited on p. 290).

[Est22] Ernesto Estrada. “The Many Facets of the Estrada Indices of Graphs
and Networks”. In: SeMA Journal 79.1 (Mar. 2022), pp. 57–125.
doi: 10.1007/s40324-021-00275-w (Cited on pp. 191, 192,
234, 262).

https://www.ethanepperly.com/index.php/2022/10/04/note-to-self-hanson-wright-inequality/
https://www.ethanepperly.com/index.php/2022/10/04/note-to-self-hanson-wright-inequality/
https://www.ethanepperly.com/index.php/2022/10/04/note-to-self-hanson-wright-inequality/
https://www.ethanepperly.com/index.php/2023/12/01/five-interpretations-of-kernel-quadrature/
https://www.ethanepperly.com/index.php/2023/12/01/five-interpretations-of-kernel-quadrature/
https://www.ethanepperly.com/index.php/2023/12/01/five-interpretations-of-kernel-quadrature/
https://www.ethanepperly.com/index.php/2023/01/26/stochastic-trace-estimation/
https://www.ethanepperly.com/index.php/2023/01/26/stochastic-trace-estimation/
https://www.ethanepperly.com/index.php/2023/11/27/which-sketch-should-i-use/
https://www.ethanepperly.com/index.php/2023/11/27/which-sketch-should-i-use/
https://www.ethanepperly.com/index.php/2024/01/28/dont-use-gaussians-in-stochastic-trace-estimation/
https://www.ethanepperly.com/index.php/2024/01/28/dont-use-gaussians-in-stochastic-trace-estimation/
https://www.ethanepperly.com/index.php/2024/01/28/dont-use-gaussians-in-stochastic-trace-estimation/
https://doi.org/10.1137/23M1616790
https://www.ethanepperly.com/index.php/2024/12/07/low-rank-approximation-toolbox-the-gram-correspondence/
https://www.ethanepperly.com/index.php/2024/12/07/low-rank-approximation-toolbox-the-gram-correspondence/
https://www.ethanepperly.com/index.php/2024/12/07/low-rank-approximation-toolbox-the-gram-correspondence/
https://www.ethanepperly.com/index.php/2024/11/19/note-to-self-sketch-and-solve-with-a-gaussian-embedding/
https://www.ethanepperly.com/index.php/2024/11/19/note-to-self-sketch-and-solve-with-a-gaussian-embedding/
https://www.ethanepperly.com/index.php/2024/11/19/note-to-self-sketch-and-solve-with-a-gaussian-embedding/
https://www.ethanepperly.com/index.php/2025/02/12/note-to-self-how-accurate-is-sketch-and-solve/
https://www.ethanepperly.com/index.php/2025/02/12/note-to-self-how-accurate-is-sketch-and-solve/
https://www.ethanepperly.com/index.php/2025/02/12/note-to-self-how-accurate-is-sketch-and-solve/
https://doi.org/10.1214/aos/1176345462
https://doi.org/10.1007/s40324-021-00275-w

417

[ET24] Ethan N. Epperly and Joel A. Tropp. “Efficient Error and Variance
Estimation for Randomized Matrix Computations”. In: SIAM Jour-
nal on Scientific Computing 46.1 (Feb. 2024), A508–A528. doi:
10.1137/23M1558537 (Cited on pp. 216, 280, 283, 288, 292,
294, 297, 298).

[ETW24] Ethan N. Epperly, Joel A. Tropp, and Robert J. Webber. “XTrace:
Making the Most of Every Sample in Stochastic Trace Estimation”.
In: SIAM Journal on Matrix Analysis and Applications (Mar. 2024),
pp. 1–23. doi: 10.1137/23M1548323 (Cited on pp. 24, 194, 203,
207, 212, 213, 216, 226, 230, 233, 237, 238, 240, 246–248, 253,
257, 266).

[ETW25] Ethan N. Epperly, Joel A. Tropp, and Robert J. Webber. Embrace
Rejection: Kernel Matrix Approximation by Accelerated Randomly
Pivoted Cholesky. Apr. 2025. arXiv: 2410.03969v3 (Cited on
pp. 125, 127, 130–132, 138–140, 143, 161).

[FGN06] Reinhard Furrer, Marc G. Genton, and Douglas Nychka. “Covari-
ance Tapering for Interpolation of Large Spatial Datasets”. In:
Journal of Computational and Graphical Statistics 15.3 (2006),
pp. 502–523. JSTOR: 27594195 (Cited on p. 99).

[FKV98] Alan Frieze, Ravi Kannan, and Santosh Vempala. “Fast Monte-
Carlo Algorithms for Finding Low-Rank Approximations”. In:
Proceedings of the Thirty-Ninth Annual Symposium on Founda-
tions of Computer Science. Nov. 1998, pp. 370–370. doi: 10.110
9/SFCS.1998.743487 (Cited on pp. 1, 34, 48, 49, 157, 316).

[FL24] Mark Fornace and Michael Lindsey. Column and Row Subset Se-
lection Using Nuclear Scores: Algorithms and Theory for Nyström
Approximation, CUR Decomposition, and Graph Laplacian Re-
duction. Aug. 2024. arXiv: 2407.01698v2 (Cited on pp. 192,
193, 269, 271).

[FLPR99] Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar
Ramachandran. “Cache-Oblivious Algorithms”. In: Proceedings
of the Fortieth Annual Symposium on Foundations of Computer
Science. Oct. 1999, pp. 285–297. doi: 10.1109/SFFCS.1999.8
14600 (Cited on p. 127).

[FRS25] Andreas Frommer, Michele Rinelli, and Marcel Schweitzer. “Anal-
ysis of Stochastic Probing Methods for Estimating the Trace of
Functions of Sparse Symmetric Matrices”. In: Mathematics of
Computation 94.352 (2025), pp. 801–823. doi: 10.1090/mco
m/3984 (Cited on p. 252).

https://doi.org/10.1137/23M1558537
https://doi.org/10.1137/23M1548323
https://arxiv.org/abs/2410.03969v3
http://www.jstor.org/stable/27594195
https://doi.org/10.1109/SFCS.1998.743487
https://doi.org/10.1109/SFCS.1998.743487
https://arxiv.org/abs/2407.01698v2
https://doi.org/10.1109/SFFCS.1999.814600
https://doi.org/10.1109/SFFCS.1999.814600
https://doi.org/10.1090/mcom/3984
https://doi.org/10.1090/mcom/3984

418

[FS01] Shai Fine and Katya Scheinberg. “Efficient SVM Training Using
Low-Rank Kernel Representations”. In: Journal of Machine Learn-
ing Research 2 (Dec. 2001), pp. 243–264. url: https://www.jm
lr.org/papers/v2/fine01a.html (Cited on pp. 39, 41, 47).

[FS11] David Chin-Lung Fong and Michael Saunders. “LSMR: An It-
erative Algorithm for Sparse Least-Squares Problems”. In: SIAM
Journal on Scientific Computing 33.5 (Jan. 2011), pp. 2950–2971.
doi: 10.1137/10079687X (Cited on p. 314).

[GCBS+19] Will Grathwohl, Ricky T. Q. Chen, Jesse Bettencourt, Ilya
Sutskever, and David Duvenaud. “FFJORD: Free-form Contin-
uous Dynamics for Scalable Reversible Generative Models”. In:
International Conference on Learning Representations. Available
at https://arxiv.org/abs/1810.01367v3. 2019 (Cited on
p. 191).

[GEL22] Nithin Govindarajan, Ethan N. Epperly, and Lieven De Lathauwer.
“(𝐿𝑟 , 𝐿𝑟 , 1)-Decompositions, Sparse Component Analysis, and the
Blind Separation of Sums of Exponentials”. In: SIAM Journal on
Matrix Analysis and Applications 43.2 (June 2022), pp. 912–938.
doi: 10.1137/21M1426444 (Cited on p. 7).

[Gil14] Jennifer Ann Gillenwater. “Approximate Inference for Determinan-
tal Point Processes”. PhD thesis. University of Pennsylvania, 2014,
p. 163. url: https://jgillenw.com/thesis.pdf (Cited on
p. 72).

[Gir87] Didier A. Girard. Un Algorithme Simple et Rapide Pour la Vali-
dation Croisée Généralisée sur des Problèmes de Grande Taille.
Rapport de recherche IMAG-RR-665-M. Institut d’informatique
et de mathématiques appliquées de Grenoble (IMAG), 1987. url:
http://www-ljk.imag.fr/membres/Didier.Girard/TR-6
65-M-IMAG.pdf (Cited on pp. 2, 194, 196).

[Gir89] Didier A. Girard. “A Fast "Monte-Carlo Cross-Validation" Pro-
cedure for Large Least Squares Problems with Noisy Data”. In:
Numerische Mathematik 56.1 (Jan. 1989), pp. 1–23. doi: 10.100
7/BF01395775 (Cited on p. 196).

[Git11] Alex Gittens. “The Spectral Norm Error of the Naïve Nyström
Extension”. In: (Oct. 2011). arXiv: 1110.5305v1 (Cited on pp. 27,
29).

[Giv54] Wallace Givens. Numerical Computation of the Characteristic Val-
ues of a Real Symmetric Matrix. Tech. rep. Oak Ridge National Lab,
1954. url: https://www.osti.gov/servlets/purl/441217
5 (Cited on p. 310).

https://www.jmlr.org/papers/v2/fine01a.html
https://www.jmlr.org/papers/v2/fine01a.html
https://doi.org/10.1137/10079687X
https://arxiv.org/abs/1810.01367v3
https://doi.org/10.1137/21M1426444
https://jgillenw.com/thesis.pdf
http://www-ljk.imag.fr/membres/Didier.Girard/TR-665-M-IMAG.pdf
http://www-ljk.imag.fr/membres/Didier.Girard/TR-665-M-IMAG.pdf
https://doi.org/10.1007/BF01395775
https://doi.org/10.1007/BF01395775
https://arxiv.org/abs/1110.5305v1
https://www.osti.gov/servlets/purl/4412175
https://www.osti.gov/servlets/purl/4412175

419

[GJK18] Damien Garreau, Wittawat Jitkrittum, and Motonobu Kanagawa.
Large Sample Analysis of the Median Heuristic. Oct. 2018. eprint:
1707.07269v3 (Cited on p. 78).

[GJT12] Serge Gratton, Pavel Jiránek, and David Titley-Peloquin. “On the
Accuracy of the Karlson–Waldén Estimate of the Backward Error
for Linear Least Squares Problems”. In: SIAM Journal on Matrix
Analysis and Applications 33.3 (Jan. 2012), pp. 822–836. doi:
10.1137/110825467 (Cited on p. 342).

[GLRE05] Luc Giraud, Julien Langou, Miroslav Rozložník, and Jasper Van
Den Eshof. “Rounding Error Analysis of the Classical Gram-
Schmidt Orthogonalization Process”. In: Numerische Mathematik
101.1 (July 2005), pp. 87–100. doi: 10.1007/s00211-005-061
5-4 (Cited on p. 151).

[GM10] Gene H. Golub and Gérard A. Meurant. Matrices, Moments, and
Quadrature with Applications. Princeton Series in Applied Math-
ematics. Princeton University Press, 2010. JSTOR: j.ctt7tbvs
(Cited on p. 250).

[GM13] Alex Gittens and Michael Mahoney. “Revisiting the Nyström
Method for Improved Large-Scale Machine Learning”. In: Interna-
tional Conference on Machine Learning. May 2013, pp. 567–575.
url: https://proceedings.mlr.press/v28/gittens13.ht
ml (Cited on p. 29).

[GN86] Alan George and Esmond Ng. “Orthogonal Reduction of Sparse
Matrices to Upper Triangular Form Using Householder Transfor-
mations”. In: SIAM Journal on Scientific and Statistical Computing
7.2 (Apr. 1986), pp. 460–472. doi: 10.1137/0907031 (Cited on
p. 314).

[Gol65] Gene Golub. “Numerical Methods for Solving Linear Least
Squares Problems”. In: Numerische Mathematik 7.3 (June 1965),
pp. 206–216. doi: 10.1007/BF01436075 (Cited on pp. 307, 309,
310).

[Gor85] Yehoram Gordon. “Some Inequalities for Gaussian Processes and
Applications”. In: Israel Journal of Mathematics 50.4 (1985),
pp. 265–289. doi: 10.1007/BF02759761 (Cited on p. 372).

[GPBV19] Guillaume Gautier, Guillermo Polito, Remi Bardenet, and Michal
Valko. “DPPy: DPP Sampling with Python”. In: Journal of Ma-
chine Learning Research (2019), p. 7. url: https://jmlr.org
/papers/v20/19-179.html (Cited on p. 56).

[Grc03] Joseph F. Grcar. “Optimal Sensitivity Analysis of Linear Least
Squares”. In: Lawrence Berkeley National Laboratory, Report
LBNL-52434 99 (2003). url: https://crd.lbl.gov/asse

1707.07269v3
https://doi.org/10.1137/110825467
https://doi.org/10.1007/s00211-005-0615-4
https://doi.org/10.1007/s00211-005-0615-4
http://www.jstor.org/stable/j.ctt7tbvs
https://proceedings.mlr.press/v28/gittens13.html
https://proceedings.mlr.press/v28/gittens13.html
https://doi.org/10.1137/0907031
https://doi.org/10.1007/BF01436075
https://doi.org/10.1007/BF02759761
https://jmlr.org/papers/v20/19-179.html
https://jmlr.org/papers/v20/19-179.html
https://crd.lbl.gov/assets/pubs_presos/MCS/CCSE/LBNL-52434.pdf
https://crd.lbl.gov/assets/pubs_presos/MCS/CCSE/LBNL-52434.pdf

420

ts/pubs_presos/MCS/CCSE/LBNL- 52434.pdf (Cited on
p. 342).

[Gre89] Anne Greenbaum. “Behavior of Slightly Perturbed Lanczos and
Conjugate-Gradient Recurrences”. In: Linear Algebra and its Ap-
plications 113 (1989), pp. 7–63. doi: 10.1016/0024-3795(89
)90285-1 (Cited on p. 354).

[Gre97a] Anne Greenbaum. “Estimating the Attainable Accuracy of Recur-
sively Computed Residual Methods”. In: SIAM Journal on Matrix
Analysis and Applications 18.3 (July 1997), pp. 535–551. doi:
10.1137/S0895479895284944 (Cited on p. 354).

[Gre97b] Anne Greenbaum. Iterative Methods for Solving Linear Systems.
Frontiers in Applied Mathematics 17. Society for Industrial and
Applied Mathematics, 1997. doi: 10.1137/1.9781611970937
(Cited on p. 368).

[GS12] Venkatesan Guruswami and Ali Kemal Sinop. “Optimal Column-
Based Low-Rank Matrix Reconstruction”. In: Proceedings of the
Twenty-Third Annual ACM-SIAM Symposium on Discrete Algo-
rithms. Jan. 2012, pp. 1207–1214. doi: 10.1137/1.9781611973
099.95 (Cited on pp. 29, 43, 55).

[GS92] Anne Greenbaum and Zdeněk Strakoš. “Predicting the Behavior of
Finite Precision Lanczos and Conjugate Gradient Computations”.
In: SIAM Journal on Matrix Analysis and Applications 13.1 (Jan.
1992), pp. 121–137. doi: 10.1137/0613011 (Cited on p. 354).

[GSO17] Arjun Singh Gambhir, Andreas Stathopoulos, and Kostas Orginos.
“Deflation as a Method of Variance Reduction for Estimating the
Trace of a Matrix Inverse”. In: SIAM Journal on Scientific Com-
puting 39.2 (Jan. 2017), A532–A558. doi: 10.1137/16M1066361
(Cited on pp. 206, 252).

[GSS07] Joseph F. Grcar, Michael A. Saunders, and Zheng Su. Estimates of
Optimal Backward Perturbations for Linear Least Squares Prob-
lems. Tech. rep. Lawrence Berkeley National Lab, 2007. url: htt
ps://web.stanford.edu/group/SOL/reports/SOL-2007-
1.pdf (Cited on p. 342).

[GSTV07] Anna C. Gilbert, Martin J. Strauss, Joel A. Tropp, and Roman
Vershynin. “One Sketch for All: Fast Algorithms for Compressed
Sensing”. In: Proceedings of the Thirty-Ninth Annual ACM Sym-
posium on Theory of Computing. June 2007, pp. 237–246. doi:
10.1145/1250790.1250824 (Cited on p. 207).

[GT01] Sergei Goreinov and Evgeny Tyrtyshnikov. “The Maximal-Volume
Concept in Approximation by Low-Rank Matrices”. In: Contem-
porary Mathematics. Ed. by Vadim Olshevsky. Vol. 280. American

https://crd.lbl.gov/assets/pubs_presos/MCS/CCSE/LBNL-52434.pdf
https://crd.lbl.gov/assets/pubs_presos/MCS/CCSE/LBNL-52434.pdf
https://crd.lbl.gov/assets/pubs_presos/MCS/CCSE/LBNL-52434.pdf
https://doi.org/10.1016/0024-3795(89)90285-1
https://doi.org/10.1016/0024-3795(89)90285-1
https://doi.org/10.1137/S0895479895284944
https://doi.org/10.1137/1.9781611970937
https://doi.org/10.1137/1.9781611973099.95
https://doi.org/10.1137/1.9781611973099.95
https://doi.org/10.1137/0613011
https://doi.org/10.1137/16M1066361
https://web.stanford.edu/group/SOL/reports/SOL-2007-1.pdf
https://web.stanford.edu/group/SOL/reports/SOL-2007-1.pdf
https://web.stanford.edu/group/SOL/reports/SOL-2007-1.pdf
https://doi.org/10.1145/1250790.1250824

421

Mathematical Society, 2001, pp. 47–51. doi: 10.1090/conm/28
0/4620 (Cited on p. 166).

[GTZ97] Sergei A. Goreinov, Evgeny E. Tyrtyshnikov, and Nikolai L. Za-
marashkin. “A Theory of Pseudoskeleton Approximations”. In:
Linear Algebra and its Applications 261.1 (Aug. 1997), pp. 1–21.
doi: 10.1016/S0024-3795(96)00301-1 (Cited on p. 166).

[Gu15] Ming Gu. “Subspace Iteration Randomization and Singular Value
Problems”. In: SIAM Journal on Scientific Computing 37.3 (Jan.
2015), A1139–A1173. doi: 10 . 1137 / 130938700 (Cited on
pp. 19, 20, 23).

[GU77] Gene H. Golub and Richard Underwood. “The Block Lanczos
Method for Computing Eigenvalues”. In: Mathematical Software.
Ed. by John R. Rice. Academic Press, Jan. 1977, pp. 361–377. doi:
10.1016/B978-0-12-587260-7.50018-2 (Cited on p. 251).

[Gu98] Ming Gu. “Backward Perturbation Bounds for Linear Least
Squares Problems”. In: SIAM Journal on Matrix Analysis and Ap-
plications 20.2 (Jan. 1998), pp. 363–372. doi: 10.1137/S08954
79895296446 (Cited on p. 342).

[GV13] Gene H. Golub and Charles F. Van Loan. Matrix Computations.
Fourth. Johns Hopkins Studies in the Mathematical Sciences. Johns
Hopkins Press, 2013. url: https://epubs.siam.org/doi/b
ook/10.1137/1.9781421407944 (Cited on pp. 144, 152, 188,
308, 314).

[GW66] Gene H. Golub and James H. Wilkinson. “Note on the Iterative Re-
finement of Least Squares Solution”. In: Numerische Mathematik
9.2 (Dec. 1966), pp. 139–148. doi: 10.1007/BF02166032 (Cited
on pp. 310, 311, 337, 338).

[GZT97] Sergei A. Goreinov, Nikolai L. Zamarashkin, and Evgeny E. Tyr-
tyshnikov. “Pseudo-Skeleton Approximations by Matrices of Max-
imal Volume”. In: Mathematical Notes 62.4 (Oct. 1997), pp. 515–
519. doi: 10.1007/BF02358985 (Cited on p. 166).

[Hal46] Paul R. Halmos. “The theory of unbiased estimation”. In: The
Annals of Mathematical Statistics 17.1 (Mar. 1946), pp. 34–43.
doi: 10.1214/aoms/1177731020 (Cited on p. 211).

[HB04] Matthias Hein and Olivier Bousquet. Kernels, Associated Struc-
tures and Generalizations. Technical Report 127. Max Planck In-
stitute for Biological Cybernetics, July 2004. url: https://is.m
pg.de/publications/2816 (Cited on pp. 106, 107).

https://doi.org/10.1090/conm/280/4620
https://doi.org/10.1090/conm/280/4620
https://doi.org/10.1016/S0024-3795(96)00301-1
https://doi.org/10.1137/130938700
https://doi.org/10.1016/B978-0-12-587260-7.50018-2
https://doi.org/10.1137/S0895479895296446
https://doi.org/10.1137/S0895479895296446
https://epubs.siam.org/doi/book/10.1137/1.9781421407944
https://epubs.siam.org/doi/book/10.1137/1.9781421407944
https://doi.org/10.1007/BF02166032
https://doi.org/10.1007/BF02358985
https://doi.org/10.1214/aoms/1177731020
https://is.mpg.de/publications/2816
https://is.mpg.de/publications/2816

422

[HG18] Eric Hallman and Ming Gu. “LSMB: Minimizing the Backward
Error for Least-Squares Problems”. In: SIAM Journal on Matrix
Analysis and Applications 39.3 (Jan. 2018), pp. 1295–1317. doi:
10.1137/17M1157106 (Cited on p. 314).

[HH20] Keaton Hamm and Longxiu Huang. “Perspectives on CUR De-
compositions”. In: Applied and Computational Harmonic Analysis
48.3 (May 2020), pp. 1088–1099. doi: 10.1016/j.acha.2019
.08.006 (Cited on p. 164).

[Hig02] Nicholas J. Higham. Accuracy and Stability of Numerical Algo-
rithms. Society for Industrial and Applied Mathematics, 2002.
doi: 10.1137/1.9780898718027 (Cited on pp. 31, 144, 152,
308, 309, 311, 313, 328, 336, 341, 346–348, 359).

[Hig08] Nicholas J. Higham. Functions of Matrices: Theory and Compu-
tation. Society for Industrial and Applied Mathematics, 2008. doi:
10.1137/1.9780898717778 (Cited on p. 188).

[Hig22] Nicholas J. Higham. Seven Sins of Numerical Linear Algebra. Oct.
2022. url: https://nhigham.com/2022/10/11/seven-sins
-of-numerical-linear-algebra/ (Cited on p. 233).

[Hig90] Nicholas J. Higham. “Analysis of the Cholesky Decomposition of
a Semi-Definite Matrix”. In: Reliable Numerical Commputation.
Ed. by M. G. Cox and S. Hammarling. Oxford University Press,
Sept. 1990. doi: 10.1093/oso/9780198535645.003.0010
(Cited on pp. 29, 39, 41).

[HJ12] Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cam-
bridge University Press, Oct. 2012. doi: 10.1017/CBO97805118
10817 (Cited on p. 34).

[HKPV06] J. Ben Hough, Manjunath Krishnapur, Yuval Peres, and Bálint
Virág. “Determinantal Processes and Independence”. In: Proba-
bility Surveys 3 (Jan. 2006), pp. 206–229. doi: 10.1214/154957
806000000078 (Cited on p. 72).

[HMT11] Nathan Halko, Per-Gunnar Martinsson, and Joel A. Tropp. “Find-
ing Structure with Randomness: Probabilistic Algorithms for Con-
structing Approximate Matrix Decompositions”. In: SIAM Review
53.2 (Jan. 2011), pp. 217–288. doi: 10.1137/090771806 (Cited
on pp. 1, 2, 17, 19, 20, 23, 208).

[HOL22] Satoshi Hayakawa, Harald Oberhauser, and Terry Lyons. “Pos-
itively Weighted Kernel Quadrature via Subsampling”. In: Ad-
vances in Neural Information Processing Systems 35 (Dec. 2022),
pp. 6886–6900. doi: https://dl.acm.org/doi/10.5555/360
0270.3600769 (Cited on pp. 123, 124).

https://doi.org/10.1137/17M1157106
https://doi.org/10.1016/j.acha.2019.08.006
https://doi.org/10.1016/j.acha.2019.08.006
https://doi.org/10.1137/1.9780898718027
https://doi.org/10.1137/1.9780898717778
https://nhigham.com/2022/10/11/seven-sins-of-numerical-linear-algebra/
https://nhigham.com/2022/10/11/seven-sins-of-numerical-linear-algebra/
https://doi.org/10.1093/oso/9780198535645.003.0010
https://doi.org/10.1017/CBO9780511810817
https://doi.org/10.1017/CBO9780511810817
https://doi.org/10.1214/154957806000000078
https://doi.org/10.1214/154957806000000078
https://doi.org/10.1137/090771806
https://doi.org/https://dl.acm.org/doi/10.5555/3600270.3600769
https://doi.org/https://dl.acm.org/doi/10.5555/3600270.3600769

423

[Hou58] Alston S. Householder. “Unitary Triangularization of a Nonsym-
metric Matrix”. In: Journal of the ACM 5.4 (Oct. 1958), pp. 339–
342. doi: 10.1145/320941.320947 (Cited on pp. 307, 310).

[HS52] Magnus R. Hestenes and Eduard Stiefel. “Methods of Conjugate
Gradients for Solving Linear Systems”. In: Journal of Research of
the National Bureau of Standards 49.6 (1952), pp. 409–436. doi:
10.6028/jres.049.044 (Cited on p. 314).

[Hut89] M. F. Hutchinson. “A Stochastic Estimator of the Trace of the In-
fluence Matrix for Laplacian Smoothing Splines”. In: Communica-
tions in Statistics - Simulation and Computation 18.3 (May 1989),
pp. 1059–1076. doi: 10.1080/03610918908812806 (Cited on
pp. 194, 196).

[Jac04] A. Jackson. “As If Summoned from the Void, the Life of Alexandre
Grothendieck”. In: Notices of the AMS 51 (2004), pp. 1038–1056.
url: https://www.ams.org/notices/200409/fea-grothen
dieck-part1.pdf (Cited on p. 105).

[JL84] William B. Johnson and Joram Lindenstrauss. “Extensions of Lip-
schitz Mappings into a Hilbert Space”. In: Contemporary mathe-
matics 26 (1984), pp. 189–206. doi: 10.1090/conm/026/737400
(Cited on pp. 198, 269, 369).

[JWHT21] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshi-
rani. An Introduction to Statistical Learning: With Applications in
R. Springer Texts in Statistics. Springer US, 2021. doi: 10.1007
/978-1-0716-1418-1 (Cited on p. 51).

[Kel89] William Thomson Baron Kelvin. Popular Lectures and Addresses.
Macmillan and Company, 1889. doi: 10.1017/CBO9780511997
242 (Cited on p. 266).

[KHSS18] Motonobu Kanagawa, Philipp Hennig, Dino Sejdinovic, and
Bharath K. Sriperumbudur. Gaussian Processes and Kernel Meth-
ods: A Review on Connections and Equivalences. July 2018. arXiv:
1807.02582v1 (Cited on p. 73).

[Kle13] A. Klenke. Probability Theory: A Comprehensive Course. Univer-
sitext. Springer London, 2013. doi: 10.1007/978-3-030-5640
2-5 (Cited on p. 85).

[KMT12] Sanjiv Kumar, Mehryar Mohri, and Ameet Talwalkar. “Sampling
Methods for the Nyström Method”. In: (2012), p. 26. url: https
://jmlr.org/papers/v13/kumar12a.html (Cited on p. 159).

[KN12] Daniel M. Kane and Jelani Nelson. “Sparser Johnson-
Lindenstrauss Transforms”. In: Proceedings of the Twenty-Third
Annual ACM-SIAM Symposium on Discrete Algorithms. 2012,

https://doi.org/10.1145/320941.320947
https://doi.org/10.6028/jres.049.044
https://doi.org/10.1080/03610918908812806
https://www.ams.org/notices/200409/fea-grothendieck-part1.pdf
https://www.ams.org/notices/200409/fea-grothendieck-part1.pdf
https://doi.org/10.1090/conm/026/737400
https://doi.org/10.1007/978-1-0716-1418-1
https://doi.org/10.1007/978-1-0716-1418-1
https://doi.org/10.1017/CBO9780511997242
https://doi.org/10.1017/CBO9780511997242
https://arxiv.org/abs/1807.02582v1
https://doi.org/10.1007/978-3-030-56402-5
https://doi.org/10.1007/978-3-030-56402-5
https://jmlr.org/papers/v13/kumar12a.html
https://jmlr.org/papers/v13/kumar12a.html

424

pp. 1195–1206. doi: 10.1137/1.9781611973099.94 (Cited
on pp. 383, 388).

[KT11] Alex Kulesza and Ben Taskar. “𝑘-DPPs: Fixed-Size Determinantal
Point Processes”. In: International Conference on Machine Learn-
ing. Jan. 2011. url: https://dl.acm.org/doi/10.5555/310
4482.3104632 (Cited on pp. 55, 56).

[KT12] Alex Kulesza and Ben Taskar. “Determinantal Point Processes
for Machine Learning”. In: Foundations and Trends in Machine
Learning 5.2–3 (Dec. 2012), pp. 123–286. doi: 10.1561/22000
00044 (Cited on p. 55).

[KT24] Anastasia Kireeva and Joel A. Tropp. Randomized Matrix Compu-
tations: Themes and Variations. Feb. 2024. doi: 10.7907/7yade
-5k351 (Cited on pp. 2, 339, 367, 392).

[KV17] Ravindran Kannan and Santosh Vempala. “Randomized Algo-
rithms in Numerical Linear Algebra”. In: Acta Numerica 26 (2017),
pp. 95–135. doi: 10.1017/S0962492917000058 (Cited on p. 2).

[KW92] Jacek Kuczyński and Henryk Woźniakowski. “Estimating the
Largest Eigenvalue by the Power and Lanczos Algorithms with
a Random Start”. In: SIAM Journal on Matrix Analysis and Ap-
plications 13.4 (1992), pp. 1094–1122. doi: 10.1137/0613066
(Cited on p. 2).

[KW97] Rune Karlson and Bertil Waldén. “Estimation of Optimal Back-
ward Perturbation Bounds for the Linear Least Squares Problem”.
In: BIT Numerical Mathematics 37.4 (Dec. 1997), pp. 862–869.
doi: 10.1007/BF02510356 (Cited on p. 342).

[Lan50] Cornelius Lanczos. “An Iteration Method for the Solution of the
Eigenvalue Problem of Linear Differential and Integral Operators”.
In: Journal of Research of the National Bureau of Standards (1950).
doi: 10.6028/jres.045.026 (Cited on pp. 2, 249).

[Lan98] Bruno Lang. “Using Level 3 BLAS in Rotation-Based Algo-
rithms”. In: SIAM Journal on Scientific Computing 19.2 (Jan.
1998), pp. 626–634. doi: 10.1137/S1064827595280211 (Cited
on p. 314).

[Läu61] Peter Läuchli. “Jordan-Elimination und Ausgleichung nach kle-
insten Quadraten”. In: Numerische Mathematik 3.1 (Dec. 1961),
pp. 226–240. doi: 10.1007/BF01386022 (Cited on p. 307).

[LH74] Charles L. Lawson and Richard J. Hanson. Solving Least
Squares Problems. Prentice-Hall Series in Automatic Computa-
tion. Prentice-Hall, 1974. doi: 10 . 1137 / 1 . 9781611971217
(Cited on p. 40).

https://doi.org/10.1137/1.9781611973099.94
https://dl.acm.org/doi/10.5555/3104482.3104632
https://dl.acm.org/doi/10.5555/3104482.3104632
https://doi.org/10.1561/2200000044
https://doi.org/10.1561/2200000044
https://doi.org/10.7907/7yade-5k351
https://doi.org/10.7907/7yade-5k351
https://doi.org/10.1017/S0962492917000058
https://doi.org/10.1137/0613066
https://doi.org/10.1007/BF02510356
https://doi.org/10.6028/jres.045.026
https://doi.org/10.1137/S1064827595280211
https://doi.org/10.1007/BF01386022
https://doi.org/10.1137/1.9781611971217

425

[Lin17] Lin Lin. “Randomized Estimation of Spectral Densities of Large
Matrices Made Accurate”. In: Numerische Mathematik 136.1 (May
2017), pp. 183–213. doi: 10.1007/s00211-016-0837-7 (Cited
on p. 206).

[Lin23] Michael Lindsey. Fast Randomized Entropically Regularized
Semidefinite Programming. Mar. 2023. arXiv: 2303 . 12133v1
(Cited on pp. 192, 193, 269, 271).

[Liu04] Jun S. Liu. Monte Carlo Strategies in Scientific Computing.
Springer Series in Statistics. New York, NY: Springer New York,
2004. doi: 10.1007/978-0-387-76371-2 (Cited on pp. 112,
113, 195, 206).

[LK22] Brett W. Larsen and Tamara G. Kolda. Sketching Matrix Least
Squares via Leverage Scores Estimates. Jan. 2022. arXiv: 2201.1
0638v1 (Cited on p. 393).

[LLJD+20] Yong Liu, Shizhong Liao, Shali Jiang, Lizhong Ding, Hailun Lin,
and Weiping Wang. “Fast Cross-Validation for Kernel-Based Al-
gorithms”. In: IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence 42.5 (May 2020), pp. 1083–1096. doi: 10.110
9/TPAMI.2019.2892371 (Cited on p. 78).

[LLSS+17] Huamin Li, George C. Linderman, Arthur Szlam, Kelly P. Stanton,
Yuval Kluger, and Mark Tygert. “Algorithm 971: An Implementa-
tion of a Randomized Algorithm for Principal Component Anal-
ysis”. In: ACM Transactions on Mathematical Software 43.3 (Jan.
2017). doi: 10.1145/3004053 (Cited on pp. 11, 24).

[LLYC+09] Lin Lin, Jianfeng Lu, Lexing Ying, Roberto Car, and Weinan E.
“Fast Algorithm for Extracting the Diagonal of the Inverse Matrix
with Application to the Electronic Structure Analysis of Metal-
lic Systems”. In: Communications in Mathematical Sciences 7.3
(Sept. 2009), pp. 755–777. doi: 10.4310/CMS.2009.V7.N3.A12
(Cited on p. 192).

[LMP13] Mu Li, Gary L. Miller, and Richard Peng. “Iterative Row Sam-
pling”. In: Fifty-Fourth IEEE Annual Symposium on Foundations
of Computer Science. 2013, pp. 127–136. doi: 10.1109/FOCS.2
013.22 (Cited on p. 269).

[LP23] Jonathan Lacotte and Mert Pilanci. Faster Least Squares Optimiza-
tion. Apr. 2023. arXiv: 1911.02675v3 (Cited on pp. 330, 332).

[LR20] Tengyuan Liang and Alexander Rakhlin. “Just Interpolate: Ker-
nel “Ridgeless” Regression Can Generalize”. In: The Annals of
Statistics 48.3 (June 2020). doi: 10.1214/19-AOS1849 (Cited on
p. 87).

https://doi.org/10.1007/s00211-016-0837-7
https://arxiv.org/abs/2303.12133v1
https://doi.org/10.1007/978-0-387-76371-2
https://arxiv.org/abs/2201.10638v1
https://arxiv.org/abs/2201.10638v1
https://doi.org/10.1109/TPAMI.2019.2892371
https://doi.org/10.1109/TPAMI.2019.2892371
https://doi.org/10.1145/3004053
https://doi.org/10.4310/CMS.2009.V7.N3.A12
https://doi.org/10.1109/FOCS.2013.22
https://doi.org/10.1109/FOCS.2013.22
https://arxiv.org/abs/1911.02675v3
https://doi.org/10.1214/19-AOS1849

426

[Mac75] Odile Macchi. “The Coincidence Approach to Stochastic Point
Processes”. In: Advances in Applied Probability 7.1 (Mar. 1975),
pp. 83–122. doi: 10.2307/1425855 (Cited on p. 55).

[Mar11] P. G. Martinsson. “A Fast Randomized Algorithm for Computing
a Hierarchically Semiseparable Representation of a Matrix”. In:
SIAM Journal on Matrix Analysis and Applications 32.4 (Oct.
2011), pp. 1251–1274. doi: 10 . 1137 / 100786617 (Cited on
pp. 44, 146).

[MBFJ+11] C. Morningstar, J. Bulava, J. Foley, K. J. Juge, D. Lenkner, M.
Peardon, and C. H. Wong. “Improved Stochastic Estimation of
Quark Propagation with Laplacian Heaviside Smearing in Lattice
QCD”. In: Physical Review D 83.11 (June 2011), p. 114505. doi:
10.1103/PhysRevD.83.114505 (Cited on p. 252).

[MBMD+25] Maksim Melnichenko, Oleg Balabanov, Riley Murray, James Dem-
mel, Michael W. Mahoney, and Piotr Luszczek. CholeskyQR with
Randomization and Pivoting for Tall Matrices (CQRRPT). Mar.
2025. arXiv: 2311.08316v3 (Cited on pp. 149, 365, 385).

[MC23] Kevin Miller and Jeff Calder. “Poisson Reweighted Laplacian
Uncertainty Sampling for Graph-Based Active Learning”. In:
SIAM Journal on Mathematics of Data Science 5.4 (Dec. 2023),
pp. 1160–1190. doi: 10.1137/22M1531981 (Cited on p. 103).

[MCRR20] Giacomo Meanti, Luigi Carratino, Lorenzo Rosasco, and Alessan-
dro Rudi. “Kernel Methods Through the Roof: Handling Billions
of Points Efficiently”. In: Advances in Neural Information Process-
ing Systems. Vol. 33. 2020, pp. 14410–14422. url: https://d
l.acm.org/doi/abs/10.5555/3495724.3496932 (Cited on
p. 2).

[MD09] Michael W. Mahoney and Petros Drineas. “CUR Matrix Decom-
positions for Improved Data Analysis”. In: Proceedings of the Na-
tional Academy of Sciences 106.3 (Jan. 2009), pp. 697–702. doi:
10.1073/pnas.0803205106 (Cited on pp. 44, 162, 164, 176).

[MDME+23] Riley Murray, James Demmel, Michael W. Mahoney, N. Benjamin
Erichson, Maksim Melnichenko, Osman Asif Malik, Laura Grig-
ori, Piotr Luszczek, Michał Dereziński, Miles E. Lopes, Tianyu
Liang, Hengrui Luo, and Jack Dongarra. Randomized Numerical
Linear Algebra : A Perspective on the Field With an Eye to Soft-
ware. Apr. 2023. arXiv: 2302.11474v2 (Cited on pp. 2, 59, 305,
318, 383, 386, 392).

[Mei24] Maike Meier. “Randomized Algorithms and Theory for Rank Esti-
mation and Least Squares”. PhD thesis. University of Oxford, Dec.

https://doi.org/10.2307/1425855
https://doi.org/10.1137/100786617
https://doi.org/10.1103/PhysRevD.83.114505
https://arxiv.org/abs/2311.08316v3
https://doi.org/10.1137/22M1531981
https://dl.acm.org/doi/abs/10.5555/3495724.3496932
https://dl.acm.org/doi/abs/10.5555/3495724.3496932
https://doi.org/10.1073/pnas.0803205106
https://arxiv.org/abs/2302.11474v2

427

2024. url: https://ora.ox.ac.uk/objects/uuid:70eb0fd
6-7245-4a36-8b06-c5b8ba4b19c0 (Cited on p. 323).

[Mey21] Raphael A. Meyer. Hutch++ for Undergrads. Feb. 2021. url:
https://ram900.com/hutchplusplus/%5C#hutch%5C_for
%5C_undergrads (Cited on p. 207).

[Mey23] Raphael A. Meyer. RandNLA Proof Wiki: Active L2 Regression via
Leverage Score Sampling. 2023. url: https://randnla.githu
b.io/leverage-score-regression/ (Cited on p. 393).

[Mey24] Raphael Arkady Meyer. “Towards Optimal Matrix-Vector Com-
plexity in Numerical Linear Algebra”. PhD thesis. New York
University Tandom School of Engineering, May 2024 (Cited on
pp. 208, 242).

[MM15] Cameron Musco and Christopher Musco. “Randomized Block
Krylov Methods for Stronger and Faster Approximate Singular
Value Decomposition”. In: Proceedings of the Twenty-Eigth Inter-
national Conference on Neural Information Processing Systems.
Dec. 2015, pp. 1396–1404. url: https://dl.acm.org/doi/10
.5555/2969239.2969395 (Cited on pp. 1, 21, 23).

[MM17] Cameron Musco and Christopher Musco. “Recursive Sampling
for the Nyström Method”. In: Proceedings of the Thirtieth Inter-
national Confernece on Neural Information Processing Systems.
2017, pp. 3833–3845. url: https://dl.acm.org/doi/10.555
5/3294996.3295140 (Cited on pp. 51, 52).

[MM20] Cameron Musco and Christopher Musco. Projection-Cost-
Preserving Sketches: Proof Strategies and Constructions. 2020.
arXiv: 2004.08434v1 (Cited on p. 208).

[MMB21] Anant Mathur, Sarat Moka, and Zdravko Botev. “Variance Reduc-
tion for Matrix Computations with Applications to Gaussian Pro-
cesses”. In: ed. by Qianchuan Zhao and Li Xia. Vol. 404. Springer,
2021, pp. 243–261. doi: 10.1007/978-3-030-92511-6_16
(Cited on pp. 191, 193, 269, 271).

[MMMW+23] Raphael A. Meyer, Cameron Musco, Christopher Musco, David P.
Woodruff, and Samson Zhou. “Near-Linear Sample Complexity for
𝐿𝑝 Polynomial Regression”. In: Proceedings of the Thirty-Fourth
Annual ACM-SIAM Symposium on Discrete Algorithms. Jan. 2023.
doi: 10.1137/1.9781611977554 (Cited on p. 269).

[MMMW21a] Raphael A. Meyer, Cameron Musco, Christoper Musco, and David
P. Woodruff. “Hutch++: Optimal Stochastic Trace Estimation”. In:
Symposium on Simplicity in Algorithms. Jan. 2021. doi: 10.1137
/1.9781611976496 (Cited on pp. 204, 206–208).

https://ora.ox.ac.uk/objects/uuid:70eb0fd6-7245-4a36-8b06-c5b8ba4b19c0
https://ora.ox.ac.uk/objects/uuid:70eb0fd6-7245-4a36-8b06-c5b8ba4b19c0
https://ram900.com/hutchplusplus/%5C#hutch%5C_for%5C_undergrads
https://ram900.com/hutchplusplus/%5C#hutch%5C_for%5C_undergrads
https://randnla.github.io/leverage-score-regression/
https://randnla.github.io/leverage-score-regression/
https://dl.acm.org/doi/10.5555/2969239.2969395
https://dl.acm.org/doi/10.5555/2969239.2969395
https://dl.acm.org/doi/10.5555/3294996.3295140
https://dl.acm.org/doi/10.5555/3294996.3295140
https://arxiv.org/abs/2004.08434v1
https://doi.org/10.1007/978-3-030-92511-6_16
https://doi.org/10.1137/1.9781611977554
https://doi.org/10.1137/1.9781611976496
https://doi.org/10.1137/1.9781611976496

428

[MMMW21b] Raphael A. Meyer, Cameron Musco, Christopher Musco, and
David P. Woodruff. Hutch++: Optimal Stochastic Trace Estima-
tion. June 2021. arXiv: 2010.09649v5 (Cited on pp. 194, 207,
242).

[MMS18] Cameron Musco, Christopher Musco, and Aaron Sidford. “Stabil-
ity of the Lanczos Method for Matrix Function Approximation”.
In: Proceedings of the Twenty-Ninth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms. Society for Industrial and Applied
Mathematics, Jan. 2018, pp. 1605–1624. doi: 10.1137/1.97816
11975031.105 (Cited on pp. 335, 349, 354).

[MMWY22] Cameron Musco, Christopher Musco, David P. Woodruff, and
Taisuke Yasuda. “Active Linear Regression for ℓ𝑝 Norms and Be-
yond”. In: Sixty-Third Annual IEEE Symposium on Foundations of
Computer Science. Oct. 2022, pp. 744–753. doi: 10.1109/FOCS5
4457.2022.00076 (Cited on p. 103).

[MNTW24] Maike Meier, Yuji Nakatsukasa, Alex Townsend, and Marcus
Webb. “Are Sketch-and-Precondition Least Squares Solvers Nu-
merically Stable?” In: SIAM Journal on Matrix Analysis and Ap-
plications (June 2024), pp. 905–929. doi: 10.1137/23M1551973
(Cited on pp. 5, 306, 324, 327, 329, 335, 339).

[MP67] Volodymyr A. Marčenko and Leonid A. Pastur. “Distribution of
Eigenvalues for Some Sets of Random Matrices”. In: Mathematics
of the USSR-Sbornik 1.4 (Apr. 1967), p. 457. doi: 10.1070/SM19
67v001n04ABEH001994 (Cited on p. 370).

[MR95] Rajeev Motwani and Prabhakar Raghavan. Randomized Algo-
rithms. 1st edition. Cambridge University Press, Aug. 1995. doi:
10.1017/CBO9780511814075 (Cited on pp. 53, 377).

[MS06] Gérard Meurant and Zdeněk Strakoš. “The Lanczos and Conjugate
Gradient Algorithms in Finite Precision Arithmetic”. In: Acta Nu-
merica 15 (May 2006), pp. 471–542. doi: 10.1017/S096249290
626001X (Cited on p. 354).

[MSM14] Xiangrui Meng, Michael A. Saunders, and Michael W. Mahoney.
“LSRN: A Parallel Iterative Solver for Strongly Over- or Underde-
termined Systems”. In: SIAM Journal on Scientific Computing 36.2
(Jan. 2014), pp. C95–C118. doi: 10.1137/120866580 (Cited on
pp. 320, 331).

[MT20] Per-Gunnar Martinsson and Joel A. Tropp. “Randomized Numer-
ical Linear Algebra: Foundations and Algorithms”. In: Acta Nu-
merica 29 (May 2020), pp. 403–572. doi: 10.1017/S09624929
20000021 (Cited on pp. 2, 92, 145, 168, 280, 281, 305, 318, 372,
383, 392).

https://arxiv.org/abs/2010.09649v5
https://doi.org/10.1137/1.9781611975031.105
https://doi.org/10.1137/1.9781611975031.105
https://doi.org/10.1109/FOCS54457.2022.00076
https://doi.org/10.1109/FOCS54457.2022.00076
https://doi.org/10.1137/23M1551973
https://doi.org/10.1070/SM1967v001n04ABEH001994
https://doi.org/10.1070/SM1967v001n04ABEH001994
https://doi.org/10.1017/CBO9780511814075
https://doi.org/10.1017/S096249290626001X
https://doi.org/10.1017/S096249290626001X
https://doi.org/10.1137/120866580
https://doi.org/10.1017/S0962492920000021
https://doi.org/10.1017/S0962492920000021

429

[MW17] Cameron Musco and David P. Woodruff. “Sublinear Time Low-
Rank Approximation of Positive Semidefinite Matrices”. In: Fifty-
Eighth Annual IEEE Symposium on Foundations of Computer Sci-
ence. Oct. 2017, pp. 672–683. doi: 10.1109/FOCS.2017.68
(Cited on pp. 29, 160, 184).

[Nak20] Yuji Nakatsukasa. Fast and Stable Randomized Low-Rank Matrix
Approximation. Sept. 2020. arXiv: 2009.11392v1 (Cited on pp. 1,
166).

[NN13] Jelani Nelson and Huy L. Nguyên. “OSNAP: Faster Numerical
Linear Algebra Algorithms via Sparser Subspace Embeddings”.
In: Fifty-Fourth IEEE Annual Symposium on Foundations of Com-
puter Science. 2013, pp. 117–126. doi: 10.1109/FOCS.2013.21
(Cited on p. 383).

[NN14] Jelani Nelson and Huy L. Nguyên. “Lower Bounds for Oblivious
Subspace Embeddings”. In: Automata, Languages, and Program-
ming. Vol. 8572. 2014, pp. 883–894. doi: 10.1007/978-3-662-
43948-7_73 (Cited on pp. 388–391).

[Now22] Sebastian Nowozin. Thoughts on Trace Estimation in Deep Learn-
ing. Aug. 2022. url: https://www.nowozin.net/sebastian
/blog/thoughts-on-trace-estimation-in-deep-learni
ng.html (Cited on p. 191).

[NP23] Yuji Nakatsukasa and Taejun Park. “Randomized Low-Rank Ap-
proximation for Symmetric Indefinite Matrices”. In: SIAM Journal
on Matrix Analysis and Applications 44.3 (Sept. 2023), pp. 1370–
1392. doi: 10.1137/22M1538648 (Cited on p. 23).

[NT24] Yuji Nakatsukasa and Joel A. Tropp. “Fast and Accurate Random-
ized Algorithms for Linear Systems and Eigenvalue Problems”.
In: SIAM Journal on Matrix Analysis and Applications 45.2 (June
2024), pp. 1183–1214. doi: 10.1137/23M1565413 (Cited on
p. 383).

[OPA19] Ibrahim Kurban Ozaslan, Mert Pilanci, and Orhan Arikan. “Iter-
ative Hessian Sketch with Momentum”. In: IEEE International
Conference on Acoustics, Speech and Signal Processing. 2019,
pp. 7470–7474. doi: 10.1109/ICASSP.2019.8682720 (Cited
on pp. 330, 332).

[OT10] Ivan Oseledets and Eugene Tyrtyshnikov. “TT-cross Approxima-
tion for Multidimensional Arrays”. In: Linear Algebra and its Ap-
plications 432.1 (2010), pp. 70–88. doi: 10.1016/j.laa.2009
.07.024 (Cited on pp. 44, 146).

https://doi.org/10.1109/FOCS.2017.68
https://arxiv.org/abs/2009.11392v1
https://doi.org/10.1109/FOCS.2013.21
https://doi.org/10.1007/978-3-662-43948-7_73
https://doi.org/10.1007/978-3-662-43948-7_73
https://www.nowozin.net/sebastian/blog/thoughts-on-trace-estimation-in-deep-learning.html
https://www.nowozin.net/sebastian/blog/thoughts-on-trace-estimation-in-deep-learning.html
https://www.nowozin.net/sebastian/blog/thoughts-on-trace-estimation-in-deep-learning.html
https://doi.org/10.1137/22M1538648
https://doi.org/10.1137/23M1565413
https://doi.org/10.1109/ICASSP.2019.8682720
https://doi.org/10.1016/j.laa.2009.07.024
https://doi.org/10.1016/j.laa.2009.07.024

430

[OT18] Samet Oymak and Joel A Tropp. “Universality Laws for Random-
ized Dimension Reduction, with Applications”. In: Information
and Inference: A Journal of the IMA 7.3 (Sept. 2018), pp. 337–
446. doi: 10.1093/imaiai/iax011 (Cited on pp. 372, 373).

[Ove01] Michael L. Overton. Numerical Computing with IEEE Floating
Point Arithmetic. Society for Industrial and Applied Mathematics,
Jan. 2001. doi: 10.1137/1.9780898718072 (Cited on p. 308).

[Par98] Beresford N. Parlett. The Symmetric Eigenvalue Problem. Classics
in Applied Mathematics. Society for Industrial and Applied Math-
ematics, Jan. 1998. doi: 10.1137/1.9781611971163 (Cited on
pp. 20, 344).

[PBK25] David Persson, Nicolas Boullé, and Daniel Kressner. “Randomized
Nyström Approximation of Non-negative Self-Adjoint Operators”.
In: SIAM Journal on Mathematics of Data Science (June 2025),
pp. 670–698. doi: 10.1137/24M165082X (Cited on p. 29).

[PCK22] David Persson, Alice Cortinovis, and Daniel Kressner. “Improved
Variants of the Hutch++ Algorithm for Trace Estimation”. In:
SIAM Journal on Matrix Analysis and Applications (Sept. 2022),
pp. 1162–1185. doi: 10.1137/21M1447623 (Cited on pp. 210,
216, 223, 230, 248).

[PCM25] David Persson, Tyler Chen, and Christopher Musco. Randomized
Block-Krylov Subspace Methods for Low-Rank Approximation of
Matrix Functions. Feb. 2025. arXiv: 2502.01888v1 (Cited on
pp. 190, 251).

[Pie24] Matt Piekenbrock. primate: Implicit matrix function and trace es-
timator. Dec. 2024. url: https://github.com/peekxc/prim
ate (Cited on p. 248).

[PK23] David Persson and Daniel Kressner. “Randomized Low-Rank Ap-
proximation of Monotone Matrix Functions”. In: SIAM Journal on
Matrix Analysis and Applications 44.2 (June 2023), pp. 894–918.
doi: 10.1137/22M1523923 (Cited on p. 295).

[PMM25] David Persson, Raphael A. Meyer, and Christopher Musco.
“Algorithm-Agnostic Low-Rank Approximation of Operator
Monotone Matrix Functions”. In: SIAM Journal on Matrix Analy-
sis and Applications 46.1 (Mar. 2025), pp. 1–21. doi: 10.1137/2
3M1619435 (Cited on p. 295).

[PN25] Taejun Park and Yuji Nakatsukasa. “Accuracy and Stability of
CUR Decompositions with Oversampling”. In: SIAM Journal on
Matrix Analysis and Applications 46.1 (Mar. 2025), pp. 780–810.
doi: 10.1137/24M1660346 (Cited on pp. 162, 164, 166, 171, 175,
301).

https://doi.org/10.1093/imaiai/iax011
https://doi.org/10.1137/1.9780898718072
https://doi.org/10.1137/1.9781611971163
https://doi.org/10.1137/24M165082X
https://doi.org/10.1137/21M1447623
https://arxiv.org/abs/2502.01888v1
https://github.com/peekxc/primate
https://github.com/peekxc/primate
https://doi.org/10.1137/22M1523923
https://doi.org/10.1137/23M1619435
https://doi.org/10.1137/23M1619435
https://doi.org/10.1137/24M1660346

431

[Pop23] Niclas Joshua Popp. “Randomized Diagonal Estimation”. MA the-
sis. KTH Royal Insitute of Technology, 2023. url: https://u
rn.kb.se/resolve?urn=urn:nbn:se:kth:diva-339542
(Cited on pp. 187, 192).

[Pou20] Jack Poulson. “High-Performance Sampling of Generic Deter-
minantal Point Processes”. In: Philosophical Transactions of the
Royal Society A: Mathematical, Physical and Engineering Sci-
ences 378.2166 (Mar. 2020), p. 20190059. doi: 10.1098/rsta.2
019.0059 (Cited on pp. 72, 161).

[PS05] Simo Puntanen and George P. H. Styan. “Historical Introduction:
Issai Schur and the Early Development of the Schur Complement”.
In: The Schur Complement and Its Applications. Ed. by Fuzhen
Zhang. Numerical Methods and Algorithms. Springer, 2005, pp. 1–
16. doi: 10.1007/0-387-24273-2_1 (Cited on p. 224).

[PS82] Christopher C. Paige and Michael A. Saunders. “LSQR: An Al-
gorithm for Sparse Linear Equations and Sparse Least Squares”.
In: ACM Transactions on Mathematical Software 8.1 (Mar. 1982),
pp. 43–71. doi: 10.1145/355984.355989 (Cited on p. 314).

[PS98] George Pólya and Gabor Szegő. Problems and Theorems in Analy-
sis I. Springer, 1998. doi: 10.1007/978-3-642-61983-0 (Cited
on p. 212).

[PTRV98] Christos H. Papadimitriou, Hisao Tamaki, Prabhakar Raghavan,
and Santosh Vempala. “Latent Semantic Indexing: A Probabilis-
tic Analysis”. In: Proceedings of the Seventeenth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems.
May 1998, pp. 159–168. doi: 10.1145/275487.275505 (Cited
on pp. 1, 157, 316).

[Puk06] Friedrich Pukelsheim. Optimal Design of Experiments. Society for
Industrial and Applied Mathematics, Jan. 2006. doi: 10.1137/1
.9780898719109 (Cited on p. 44).

[PW16] Mert Pilanci and Martin J. Wainwright. “Iterative Hessian Sketch:
Fast and Accurate Solution Approximation for Constrained Least-
Squares”. In: The Journal of Machine Learning Research 17.1
(2016), pp. 1842–1879. url: https://dl.acm.org/doi/10.5
555/2946645.2946698 (Cited on pp. 329, 330, 332).

[PZBC+07] Peristera Paschou, Elad Ziv, Esteban G. Burchard, Shweta
Choudhry, William Rodriguez-Cintron, Michael W. Mahoney, and
Petros Drineas. “PCA-correlated SNPs for Structure Identification
in Worldwide Human Populations”. In: PLoS genetics 3.9 (2007),
e160. doi: 10.1371/journal.pgen.0030160 (Cited on p. 44).

https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-339542
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-339542
https://doi.org/10.1098/rsta.2019.0059
https://doi.org/10.1098/rsta.2019.0059
https://doi.org/10.1007/0-387-24273-2_1
https://doi.org/10.1145/355984.355989
https://doi.org/10.1007/978-3-642-61983-0
https://doi.org/10.1145/275487.275505
https://doi.org/10.1137/1.9780898719109
https://doi.org/10.1137/1.9780898719109
https://dl.acm.org/doi/10.5555/2946645.2946698
https://dl.acm.org/doi/10.5555/2946645.2946698
https://doi.org/10.1371/journal.pgen.0030160

432

[Que49] Maurice H. Quenouille. “Approximate Tests of Correlation in
Time-Series”. In: Journal of the Royal Statistical Society. Series B
(Methodological) 11.1 (1949), pp. 68–84. JSTOR: 2983696 (Cited
on p. 292).

[RCCR18] Alessandro Rudi, Daniele Calandriello, Luigi Carratino, and
Lorenzo Rosasco. “On Fast Leverage Score Sampling and Opti-
mal Learning”. In: Proceedings of the Thirty-Second International
Conference on Neural Information Processing Systems. Dec. 2018,
pp. 5677–5687. url: https://dl.acm.org/doi/10.5555/33
27345.3327470 (Cited on p. 52).

[RCR15] Alessandro Rudi, Raffaello Camoriano, and Lorenzo Rosasco.
“Less Is More: Nyström Computational Regularization”. In: Ad-
vances in Neural Information Processing Systems. Vol. 28. 2015.
url: https://dl.acm.org/doi/10.5555/2969239.2969424
(Cited on p. 99).

[RCV14] Juri Ranieri, Amina Chebira, and Martin Vetterli. “Near-Optimal
Sensor Placement for Linear Inverse Problems”. In: IEEE Trans-
actions on Signal Processing 62.5 (2014), pp. 1135–1146. doi:
10.1109/TSP.2014.2299518 (Cited on p. 44).

[RDRv14] Raghunathan Ramakrishnan, Pavlo O. Dral, Matthias Rupp, and
O. Anatole von Lilienfeld. “Quantum Chemistry Structures and
Properties of 134 Kilo Molecules”. In: Scientific Data 1.1 (Dec.
2014), p. 140022. doi: 10.1038/sdata.2014.22 (Cited on
p. 97).

[RO19] Alireza Rezaei and Shayan Oveis Gharan. “A Polynomial Time
MCMC Method for Sampling from Continuous Determinantal
Point Processes”. In: Proceedings of the Thirty-Sixth International
Conference on Machine Learning. May 2019, pp. 5438–5447. url:
https://proceedings.mlr.press/v97/rezaei19a.html
(Cited on pp. 56, 71).

[RST10] Vladimir Rokhlin, Arthur Szlam, and Mark Tygert. “A Randomized
Algorithm for Principal Component Analysis”. In: SIAM Journal
on Matrix Analysis and Applications 31.3 (Jan. 2010), pp. 1100–
1124. doi: 10.1137/080736417 (Cited on pp. 19, 21, 23).

[RT08] Vladimir Rokhlin and Mark Tygert. “A Fast Randomized Algo-
rithm for Overdetermined Linear Least-Squares Regression”. In:
Proceedings of the National Academy of Sciences 105.36 (Sept.
2008), pp. 13212–13217. doi: 10 . 1073 / pnas . 0804869105
(Cited on pp. 1, 4, 320, 377).

http://www.jstor.org/stable/2983696
https://dl.acm.org/doi/10.5555/3327345.3327470
https://dl.acm.org/doi/10.5555/3327345.3327470
https://dl.acm.org/doi/10.5555/2969239.2969424
https://doi.org/10.1109/TSP.2014.2299518
https://doi.org/10.1038/sdata.2014.22
https://proceedings.mlr.press/v97/rezaei19a.html
https://doi.org/10.1137/080736417
https://doi.org/10.1073/pnas.0804869105

433

[RV13] Mark Rudelson and Roman Vershynin. “Hanson-Wright Inequality
and Sub-Gaussian Concentration”. In: Electronic Communications
in Probability 18.none (Jan. 2013), pp. 1–9. doi: 10.1214/ECP.v
18-2865 (Cited on p. 208).

[RvBR12] Lars Ruddigkeit, Ruud van Deursen, Lorenz C. Blum, and Jean-
Louis Reymond. “Enumeration of 166 Billion Organic Small
Molecules in the Chemical Universe Database GDB-17”. In: Jour-
nal of Chemical Information and Modeling 52.11 (Nov. 2012),
pp. 2864–2875. doi: 10.1021/ci300415d (Cited on p. 97).

[RW05] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian
Processes for Machine Learning. Adaptive Computation and Ma-
chine Learning Series. MIT Press, 2005. doi: 10.7551/mitpres
s/3206.001.0001 (Cited on pp. 2, 73).

[Saa03] Yousef Saad. Iterative Methods for Sparse Linear Systems. 2nd ed.
Vol. 82. Society for Industrial and Applied Mathematics, 2003.
doi: 10.1137/1.9780898718003 (Cited on pp. 93, 188, 315).

[Saa11] Yousef Saad. Numerical Methods for Large Eigenvalue Problems.
Classics in Applied Mathematics. Society for Industrial and Ap-
plied Mathematics, Jan. 2011. doi: 10.1137/1.9781611970739
(Cited on p. 188).

[SAI17] Arvind K. Saibaba, Alen Alexanderian, and Ilse C. F. Ipsen. “Ran-
domized Matrix-Free Trace and Log-Determinant Estimators”. In:
Numerische Mathematik 137.2 (Oct. 2017), pp. 353–395. doi: 10
.1007/s00211-017-0880-z (Cited on p. 203).

[Sar06] Tamás Sarlós. “Improved Approximation Algorithms for Large
Matrices via Random Projections”. In: Forty-Seventh Annual IEEE
Symposium on Foundations of Computer Science. Oct. 2006,
pp. 143–152. doi: 10.1109/FOCS.2006.37 (Cited on pp. 316,
317, 319).

[SB00] Alex J. Smola and Peter L. Bartlett. “Sparse Greedy Gaussian Pro-
cess Regression”. In: Advances in Neural Information Processing
Systems. Vol. 13. 2000. url: https://dl.acm.org/doi/10.55
55/3008751.3008838 (Cited on pp. 99, 101).

[Sch07] R Schaback. Kernel-Based Meshless Methods. Available online at
http://num.math.uni-goettingen.de/~schaback/teach
ing/Appverf_II.pdf. July 2007 (Cited on p. 77).

[SDM22] Abhishek Shetty, Raaz Dwivedi, and Lester Mackey. “Distribution
Compression in Near-Linear Time”. In: International Conference
on Learning Representations. Avilable at https://arxiv.org
/abs/2111.07941v6. Apr. 2022 (Cited on pp. 123, 124).

https://doi.org/10.1214/ECP.v18-2865
https://doi.org/10.1214/ECP.v18-2865
https://doi.org/10.1021/ci300415d
https://doi.org/10.7551/mitpress/3206.001.0001
https://doi.org/10.7551/mitpress/3206.001.0001
https://doi.org/10.1137/1.9780898718003
https://doi.org/10.1137/1.9781611970739
https://doi.org/10.1007/s00211-017-0880-z
https://doi.org/10.1007/s00211-017-0880-z
https://doi.org/10.1109/FOCS.2006.37
https://dl.acm.org/doi/10.5555/3008751.3008838
https://dl.acm.org/doi/10.5555/3008751.3008838
http://num.math.uni-goettingen.de/~schaback/teaching/Appverf_II.pdf
http://num.math.uni-goettingen.de/~schaback/teaching/Appverf_II.pdf
https://arxiv.org/abs/2111.07941v6
https://arxiv.org/abs/2111.07941v6

434

[SE16] D. C. Sorensen and Mark Embree. “A DEIM Induced CUR Fac-
torization”. In: SIAM Journal on Scientific Computing 38.3 (Jan.
2016), A1454–A1482. doi: 10 . 1137 / 140978430 (Cited on
pp. 164, 175).

[SL22] Aleksandros Sobczyk and Mathieu Luisier. “Approximate Eu-
clidean Lengths and Distances beyond Johnson-Lindenstrauss”.
In: Advances in Neural Information Processing Systems 35 (2022),
pp. 19357–19369. url: https://dl.acm.org/doi/10.5555/3
600270.3601677 (Cited on p. 271).

[SM22] Gilbert Strang and Cleve Moler. “LU and CR Elimination”. In:
SIAM Review 64.1 (Feb. 2022), pp. 181–190. doi: 10.1137/20M1
358694 (Cited on p. 142).

[Sob24] Aleksandros Sobczyk. “Algorithms for Hermitian Eigenproblems
and Applications in Quantum Chemistry and Machine Learning”.
PhD thesis. ETH Zurich, 2024. doi: 10.3929/ethz-b-0007347
41 (Cited on pp. 193, 271).

[SS02] B. Schölkopf and A.J. Smola. Learning with Kernels: Support Vec-
tor Machines, Regularization, Optimization, and Beyond. Adaptive
Computation and Machine Learning. MIT Press, 2002. doi: 10.7
551/mitpress/4175.001.0001 (Cited on pp. 2, 73, 79).

[SS08] Daniel A. Spielman and Nikhil Srivastava. “Graph Sparsification
by Effective Resistances”. In: Proceedings of the Fortieth An-
nual ACM Symposium on Theory of Computing. Victoria British
Columbia Canada: ACM, May 2008, pp. 563–568. doi: 10.1145
/1374376.1374456 (Cited on pp. 193, 269).

[SS11] Stefan A. Sauter and Christoph Schwab. Boundary Element Meth-
ods. Vol. 39. Springer Series in Computational Mathematics.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. doi: 10.10
07/978-3-540-68093-2 (Cited on p. 32).

[SS12] Ingo Steinwart and Clint Scovel. “Mercer’s Theorem on Gen-
eral Domains: On the Interaction between Measures, Kernels,
and RKHSs”. In: Constructive Approximation 35.3 (June 2012),
pp. 363–417. doi: 10.1007/s00365-012-9153-3 (Cited on
pp. 108, 109).

[SS90] G. W. Stewart and Ji-guang Sun. Matrix Perturbation Theory. 1st
Edition. Computer Science and Scientific Computing. Academic
Press, 1990 (Cited on p. 13).

[SSKK+21] Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek
Kumar, Stefano Ermon, and Ben Poole. “Score-Based Generative
Modeling through Stochastic Differential Equations”. In: Ninth
International Conference on Learning Representations. Available

https://doi.org/10.1137/140978430
https://dl.acm.org/doi/10.5555/3600270.3601677
https://dl.acm.org/doi/10.5555/3600270.3601677
https://doi.org/10.1137/20M1358694
https://doi.org/10.1137/20M1358694
https://doi.org/10.3929/ethz-b-000734741
https://doi.org/10.3929/ethz-b-000734741
https://doi.org/10.7551/mitpress/4175.001.0001
https://doi.org/10.7551/mitpress/4175.001.0001
https://doi.org/10.1145/1374376.1374456
https://doi.org/10.1145/1374376.1374456
https://doi.org/10.1007/978-3-540-68093-2
https://doi.org/10.1007/978-3-540-68093-2
https://doi.org/10.1007/s00365-012-9153-3

435

at https://arxiv.org/abs/2011.13456v2. 2021 (Cited on
p. 191).

[ST01] Daniel Spielman and Shang-Hua Teng. “Smoothed Analysis of Al-
gorithms: Why the Simplex Algorithm Usually Takes Polynomial
Time”. In: Proceedings of the Thirty-Third Annual ACM Sympo-
sium on Theory of Computing. Hersonissos Greece: ACM, July
2001, pp. 296–305. doi: 10.1145/380752.380813 (Cited on
p. 339).

[Ste24] Stefan Steinerberger. Randomly Pivoted Partial Cholesky: Random
How? Apr. 2024. arXiv: 2404.11487v1 (Cited on pp. 68, 69).

[Ste86] J. Michael Steele. “An Efron-Stein Inequality for Nonsymmetric
Statistics”. In: Annals of Statistics 14.2 (June 1986), pp. 753–758.
doi: 10.1214/aos/1176349952 (Cited on p. 290).

[Ste98] G. W. Stewart. Afternotes Goes to Graduate School. Society for
Industrial and Applied Mathematics, Jan. 1998. doi: 10.1137/1
.9781611971422 (Cited on p. 81).

[Ste99] Gilbert W. Stewart. “Four Algorithms for the the Efficient Com-
putation of Truncated Pivoted QR Approximations to a Sparse
Matrix”. In: Numerische Mathematik 83 (1999), pp. 313–323. doi:
10.1007/s002110050451 (Cited on p. 163).

[TB22] Lloyd N. Trefethen and David Bau. Numerical Linear Algebra.
Vol. 181. Society for Industrial and Applied Mathematics, 2022.
doi: 10.1137/1.9781611977165 (Cited on p. 187).

[Tit09] Michalis Titsias. “Variational Learning of Inducing Variables in
Sparse Gaussian Processes”. In: Proceedings of the Twelfth Inter-
national Conference on Artificial Intelligence and Statistics. Apr.
2009, pp. 567–574. url: https://proceedings.mlr.press/v
5/titsias09a.html (Cited on p. 101).

[Tre05] Nick Trefethen. Ten Digit Algorithms. Tech. rep. 05/13. University
of Oxford, 2005. url: https://people.maths.ox.ac.uk/tre
fethen/papers.html (Cited on p. 7).

[Tre22] Lloyd N. Trefethen. An Applied Mathematician’s Apology. Society
for Industrial and Applied Mathematics, Jan. 2022. doi: 10.1137
/1.9781611977196 (Cited on p. 327).

[Tro11] Joel A. Tropp. “Improved Analysis of the Subsampled Randomized
Hadamard Transform”. In: Advances in Adaptive Data Analysis
03.01n02 (Apr. 2011), pp. 115–126. doi: 10.1142/S179353691
1000787 (Cited on pp. 375, 377).

[Tro20] Joel A Tropp. Randomized Algorithms for Matrix Computations.
2020. doi: 10.7907/nwsv-df59 (Cited on pp. 201, 250).

https://arxiv.org/abs/2011.13456v2
https://doi.org/10.1145/380752.380813
https://arxiv.org/abs/2404.11487v1
https://doi.org/10.1214/aos/1176349952
https://doi.org/10.1137/1.9781611971422
https://doi.org/10.1137/1.9781611971422
https://doi.org/10.1007/s002110050451
https://doi.org/10.1137/1.9781611977165
https://proceedings.mlr.press/v5/titsias09a.html
https://proceedings.mlr.press/v5/titsias09a.html
https://people.maths.ox.ac.uk/trefethen/papers.html
https://people.maths.ox.ac.uk/trefethen/papers.html
https://doi.org/10.1137/1.9781611977196
https://doi.org/10.1137/1.9781611977196
https://doi.org/10.1142/S1793536911000787
https://doi.org/10.1142/S1793536911000787
https://doi.org/10.7907/nwsv-df59

436

[Tro21] Joel A. Tropp. Probability in High Dimensions. 2021. doi: 10.79
07/mxr0-c422 (Cited on pp. 233, 291, 372).

[Tro22] Joel A. Tropp. Matrix Analysis. 2022 (Cited on p. 65).

[Tro23] Joel A. Tropp. Probability Theory & Computational Mathematics.
Dec. 2023. doi: 10.7907/Q75SZ-E1E79 (Cited on pp. 46, 86).

[Tro25] Joel A. Tropp. Comparison Theorems for the Minimum Eigenvalue
of a Random Positive-Semidefinite Matrix. Jan. 2025. arXiv: 2501
.16578v1 (Cited on pp. 319, 367, 372, 380, 387, 388).

[TS12] Jok M. Tang and Yousef Saad. “A Probing Method for Computing
the Diagonal of a Matrix Inverse”. In: Numerical Linear Algebra
with Applications 19.3 (2012), pp. 485–501. doi: 10.1002/nla
.779 (Cited on pp. 252, 253).

[TSL24] Joseph Tindall, Miles Stoudenmire, and Ryan Levy. Compress-
ing Multivariate Functions with Tree Tensor Networks. Oct. 2024.
arXiv: 2410.03572v1 (Cited on pp. 44, 146).

[TT15] Alex Townsend and Lloyd N. Trefethen. “Continuous Analogues
of Matrix Factorizations”. In: Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Sciences 471.2173 (Jan.
2015), p. 20140585. doi: 10.1098/rspa.2014.0585 (Cited on
p. 81).

[Tuk58] John Tukey. “Bias and Confidence in Not Quite Large Samples”.
In: Annals of Mathematical Statistics 29 (1958), p. 614 (Cited on
p. 290).

[Tur48] Alan M. Turing. “Rounding-off Errors in Matrix Processes”. In:
The Quarterly Journal of Mechanics and Applied Mathematics 1.1
(1948), pp. 287–308. doi: 10.1093/qjmam/1.1.287 (Cited on
p. 307).

[TW23] Joel A. Tropp and Robert J. Webber. Randomized Algorithms for
Low-Rank Matrix Approximation: Design, Analysis, and Applica-
tions. Sept. 2023. arXiv: 2306.12418v3 (Cited on pp. 1, 2, 17,
19–21, 23, 26, 29, 208).

[TYUC17a] Joel A. Tropp, Alp Yurtsever, Madeleine Udell, and Volkan Cevher.
“Fixed-Rank Approximation of a Positive-Semidefinite Matrix
from Streaming Data”. In: Advances in Neural Information Pro-
cessing Systems. Vol. 30. 2017, pp. 1225–1234. url: https://dl
.acm.org/doi/10.5555/3294771.3294888 (Cited on pp. 24,
29, 377).

https://doi.org/10.7907/mxr0-c422
https://doi.org/10.7907/mxr0-c422
https://doi.org/10.7907/Q75SZ-E1E79
https://arxiv.org/abs/2501.16578v1
https://arxiv.org/abs/2501.16578v1
https://doi.org/10.1002/nla.779
https://doi.org/10.1002/nla.779
https://arxiv.org/abs/2410.03572v1
https://doi.org/10.1098/rspa.2014.0585
https://doi.org/10.1093/qjmam/1.1.287
https://arxiv.org/abs/2306.12418v3
https://dl.acm.org/doi/10.5555/3294771.3294888
https://dl.acm.org/doi/10.5555/3294771.3294888

437

[TYUC17b] Joel A. Tropp, Alp Yurtsever, Madeleine Udell, and Volkan Cevher.
“Practical Sketching Algorithms for Low-Rank Matrix Approxi-
mation”. In: SIAM Journal on Matrix Analysis and Applications
38.4 (Jan. 2017), pp. 1454–1485. doi: 10.1137/17M1111590
(Cited on p. 166).

[TYUC19] Joel A. Tropp, Alp Yurtsever, Madeleine Udell, and Volkan Cevher.
“Streaming Low-Rank Matrix Approximation with an Application
to Scientific Simulation”. In: SIAM Journal on Scientific Comput-
ing 41.4 (Jan. 2019), A2430–A2463. doi: 10.1137/18M1201068
(Cited on p. 385).

[US17] Shashanka Ubaru and Yousef Saad. “Applications of Trace Esti-
mation Techniques”. In: High Performance Computing in Science
and Engineering. Lecture Notes in Computer Science. Springer,
2017, pp. 19–33. doi: 10.1007/978-3-319-97136-0_2 (Cited
on pp. 187, 191).

[UT19] Madeleine Udell and Alex Townsend. “Why Are Big Data Matrices
Approximately Low Rank?” In: SIAM Journal on Mathematics of
Data Science 1.1 (Jan. 2019), pp. 144–160. doi: 10.1137/18M11
83480 (Cited on p. 12).

[van14] Ramon van Handel. Probability in High Dimension. June 2014.
doi: 10.21236/ADA623999 (Cited on pp. 291, 372).

[Van19] Axel Vanraes. Python Implementation of the RLS-Nyström Method.
2019. url: https://github.com/axelv/recursive-nystro
m (Cited on p. 52).

[van69] Abraham van der Sluis. “Condition Numbers and Equilibration of
Matrices”. In: Numerische Mathematik 14.1 (1969), pp. 14–23.
doi: 10.1007/BF02165096 (Cited on p. 314).

[van74] A. van der Sluis. “Stability of the Solutions of Linear Least Squares
Problems”. In: Numerische Mathematik 23.3 (June 1974), pp. 241–
254. doi: 10.1007/BF01400307 (Cited on p. 307).

[Van92] Charles Van Loan. Computational Frameworks for the Fast Fourier
Transform. Society for Industrial and Applied Mathematics, 1992.
doi: 10.1137/1.9781611970999 (Cited on p. 375).

[Ver18] Roman Vershynin. High-Dimensional Probability: An Introduction
with Applications in Data Science. Vol. 47. Cambridge University
Press, 2018. doi: 10.1017/9781108231596 (Cited on p. 372).

[vG47] John von Neumann and Herman Heine Goldstine. “Numerical In-
verting of Matrices of High Order”. In: Bulletin of the Americal
Mathematical Society (1947). doi: 10.1090/S0002-9904-1947
-08909-6 (Cited on p. 307).

https://doi.org/10.1137/17M1111590
https://doi.org/10.1137/18M1201068
https://doi.org/10.1007/978-3-319-97136-0_2
https://doi.org/10.1137/18M1183480
https://doi.org/10.1137/18M1183480
https://doi.org/10.21236/ADA623999
https://github.com/axelv/recursive-nystrom
https://github.com/axelv/recursive-nystrom
https://doi.org/10.1007/BF02165096
https://doi.org/10.1007/BF01400307
https://doi.org/10.1137/1.9781611970999
https://doi.org/10.1017/9781108231596
https://doi.org/10.1090/S0002-9904-1947-08909-6
https://doi.org/10.1090/S0002-9904-1947-08909-6

438

[VM17] Sergey Voronin and Per-Gunnar Martinsson. “Efficient Algorithms
for CUR and Interpolative Matrix Decompositions”. In: Advances
in Computational Mathematics 43.3 (June 2017), pp. 495–516.
doi: 10.1007/s10444-016-9494-8 (Cited on p. 152).

[von51] John von Neumann. “13. Various Techniques Used in Connection
with Random Digits”. In: Applied Mathe Series 12.36-38 (1951),
p. 5. url: https://mcnp.lanl.gov/pdf_files/InBook_Co
mputing_1961_Neumann_JohnVonNeumannCollectedWorks
_VariousTechniquesUsedinConnectionwithRandomDigits
.pdf (Cited on pp. 112, 113).

[Wah90] Grace Wahba. Spline Models for Observational Data. Society for
Industrial and Applied Mathematics, 1990. doi: 10.1137/1.978
1611970128 (Cited on p. 99).

[WCV12] Zhuang Wang, Koby Crammer, and Slobodan Vucetic. “Breaking
the Curse of Kernelization: Budgeted Stochastic Gradient Descent
for Large-Scale SVM Training”. In: Journal of Machine Learning
Research 13.100 (2012), pp. 3103–3131. url: https://jmlr.o
rg/papers/v13/wang12b.html (Cited on p. 92).

[WDT22] Heather Wilber, Anil Damle, and Alex Townsend. “Data-Driven
Algorithms for Signal Processing with Trigonometric Rational
Functions”. In: SIAM Journal on Scientific Computing 44.3 (June
2022), pp. C185–C209. doi: 10.1137/21M1420277 (Cited on
p. 44).

[WEB25] Heather Wilber, Ethan N. Epperly, and Alex H. Barnett. “Superfast
Direct Inversion of the Nonuniform Discrete Fourier Transform via
Hierarchically Semiseparable Least Squares”. In: SIAM Journal on
Scientific Computing (June 2025), A1702–A1732. doi: 10.1137
/24M1656694 (Cited on pp. 7, 178).

[Wed34] J. Wedderburn. Lectures on Matrices. Vol. 17. Colloquium Publica-
tions. Providence, Rhode Island: American Mathematical Society,
Dec. 1934. doi: 10.1090/coll/017 (Cited on p. 166).

[Wed73] Per-Åke Wedin. “Perturbation Theory for Pseudo-Inverses”. In:
BIT Numerical Mathematics 13.2 (June 1973), pp. 217–232. doi:
10.1007/BF01933494 (Cited on p. 311).

[Wen04] Holger Wendland. Scattered Data Approximation. Cambridge
Monographs on Applied and Computational Mathematics. Cam-
bridge University Press, 2004. doi: 10.1017/CBO978051161753
9 (Cited on p. 99).

[Wil21] Heather Denise Wilber. “Computing Numerically With Rational
Functions”. PhD thesis. Cornell University, 2021. url: https:

https://doi.org/10.1007/s10444-016-9494-8
https://mcnp.lanl.gov/pdf_files/InBook_Computing_1961_Neumann_JohnVonNeumannCollectedWorks_VariousTechniquesUsedinConnectionwithRandomDigits.pdf
https://mcnp.lanl.gov/pdf_files/InBook_Computing_1961_Neumann_JohnVonNeumannCollectedWorks_VariousTechniquesUsedinConnectionwithRandomDigits.pdf
https://mcnp.lanl.gov/pdf_files/InBook_Computing_1961_Neumann_JohnVonNeumannCollectedWorks_VariousTechniquesUsedinConnectionwithRandomDigits.pdf
https://mcnp.lanl.gov/pdf_files/InBook_Computing_1961_Neumann_JohnVonNeumannCollectedWorks_VariousTechniquesUsedinConnectionwithRandomDigits.pdf
https://doi.org/10.1137/1.9781611970128
https://doi.org/10.1137/1.9781611970128
https://jmlr.org/papers/v13/wang12b.html
https://jmlr.org/papers/v13/wang12b.html
https://doi.org/10.1137/21M1420277
https://doi.org/10.1137/24M1656694
https://doi.org/10.1137/24M1656694
https://doi.org/10.1090/coll/017
https://doi.org/10.1007/BF01933494
https://doi.org/10.1017/CBO9780511617539
https://doi.org/10.1017/CBO9780511617539
https://heatherw3521.github.io/phd_thesis.pdf
https://heatherw3521.github.io/phd_thesis.pdf

439

//heatherw3521.github.io/phd_thesis.pdf (Cited on
pp. 32, 44, 146).

[Wil55] James Hardy Wilkinson. “The Use of Iterative Methods for Finding
the Latent Roots and Vectors of Matrices”. In: Mathematical Tables
and Other Aids to Computation 9.52 (1955), pp. 184–191. doi: 10
.2307/2002055 (Cited on p. 125).

[Wil85] J. H. Wilkinson. “The State of the Art in Error Analysis”. In: NAG
Newsletter 2/85 (1985). Invited lecture for the NAG 1984 Annual
General Meeting, pp. 5–28 (Cited on p. 344).

[WKS95] Bertil Waldén, Rune Karlson, and Ji-Guang Sun. “Optimal Back-
ward Perturbation Bounds for the Linear Least Squares Problem”.
In: Numerical Linear Algebra with Applications 2.3 (May 1995),
pp. 271–286. doi: 10.1002/nla.1680020308 (Cited on p. 342).

[WLRT08] Franco Woolfe, Edo Liberty, Vladimir Rokhlin, and Mark Tygert.
“A Fast Randomized Algorithm for the Approximation of Ma-
trices”. In: Applied and Computational Harmonic Analysis 25.3
(Nov. 2008), pp. 335–366. doi: 10.1016/j.acha.2007.12.002
(Cited on pp. 166, 374, 375).

[WMG19] Romain Warlop, Jérémie Mary, and Mike Gartrell. “Tensorized
Determinantal Point Processes for Recommendation”. In: Proceed-
ings of the Twenty-Fifth ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining. July 2019, pp. 1605–
1615. doi: 10.1145/3292500.3330952 (Cited on p. 44).

[Woo14] David P. Woodruff. “Sketching as a Tool for Numerical Linear
Algebra”. In: Foundations and Trends in Theoretical Computer
Science 10.1–2 (Oct. 2014), pp. 1–157. doi: 10.1561/04000000
60 (Cited on pp. 2, 284, 305, 369, 375, 385).

[WPHC+22] Jonathan Wenger, Geoff Pleiss, Philipp Hennig, John Cunningham,
and Jacob Gardner. “Preconditioning for Scalable Gaussian Pro-
cess Hyperparameter Optimization”. In: Proceedings of the Thirty-
Ninth International Conference on Machine Learning. June 2022,
pp. 23751–23780. url: https://proceedings.mlr.press/v
162/wenger22a.html (Cited on p. 191).

[WS00] Christopher K. I. Williams and Matthias Seeger. “Using the Nys-
tröm Method to Speed up Kernel Machines”. In: Proceedings of the
Thirteenth International Conference on Neural Information Pro-
cessing Systems. NIPS’00. Cambridge, MA, USA: MIT Press, Jan.
2000, pp. 661–667 (Cited on p. 47).

[WW76] Denis Weaire and A. R. Williams. “New Numerical Approach to
the Anderson Localization Problem”. In: Journal of Physics C:

https://heatherw3521.github.io/phd_thesis.pdf
https://heatherw3521.github.io/phd_thesis.pdf
https://heatherw3521.github.io/phd_thesis.pdf
https://doi.org/10.2307/2002055
https://doi.org/10.2307/2002055
https://doi.org/10.1002/nla.1680020308
https://doi.org/10.1016/j.acha.2007.12.002
https://doi.org/10.1145/3292500.3330952
https://doi.org/10.1561/0400000060
https://doi.org/10.1561/0400000060
https://proceedings.mlr.press/v162/wenger22a.html
https://proceedings.mlr.press/v162/wenger22a.html

440

Solid State Physics 9.17 (1976), p. L461. doi: 10.1088/0022-37
19/9/17/004 (Cited on p. 194).

[WW77] Denis Weaire and A. R. Williams. “The Anderson Localization
Problem. I. A New Numerical Approach”. In: Journal of Physics
C: Solid State Physics 10.8 (1977), p. 1239. doi: 10.1088/0022
-3719/10/8/025 (Cited on p. 194).

[WWZ14] Karl Wimmer, Yi Wu, and Peng Zhang. “Optimal Query Complex-
ity for Estimating the Trace of a Matrix”. In: Automata, Languages,
and Programming. Vol. 8572. Springer, 2014, pp. 1051–1062. doi:
10.1007/978-3-662-43948-7_87 (Cited on p. 237).

[WZ13] Shusen Wang and Zhihua Zhang. “Improving CUR Matrix De-
composition and the Nyström Approximation via Adaptive Sam-
pling”. In: The Journal of Machine Learning Research 14.1 (2013),
pp. 2729–2769. doi: https://dl.acm.org/doi/10.5555/256
7709.2567748 (Cited on p. 159).

[XXCB14] Yuanzhe Xi, Jianlin Xia, Stephen Cauley, and Venkataramanan
Balakrishnan. “Superfast and Stable Structured Solvers for Toeplitz
Least Squares via Randomized Sampling”. In: SIAM Journal on
Matrix Analysis and Applications 35.1 (2014), pp. 44–72. doi:
10.1137/120895755 (Cited on p. 178).

[XXG12] Jianlin Xia, Yuanzhe Xi, and Ming Gu. “A Superfast Structured
Solver for Toeplitz Linear Systems via Randomized Sampling”.
In: SIAM Journal on Matrix Analysis and Applications 33.3 (Jan.
2012), pp. 837–858. doi: 10.1137/110831982 (Cited on p. 178).

[YGSM+21] Zhewei Yao, Amir Gholami, Sheng Shen, Mustafa Mustafa, Kurt
Keutzer, and Michael Mahoney. “ADAHESSIAN: An Adaptive
Second Order Optimizer for Machine Learning”. In: Proceedings
of the AAAI Conference on Artificial Intelligence 35.12 (May 2021),
pp. 10665–10673. doi: 10.1609/aaai.v35i12.17275 (Cited
on p. 192).

[YXY20] Xin Ye, Jianlin Xia, and Lexing Ying. “Analytical Low-Rank Com-
pression via Proxy Point Selection”. In: SIAM Journal on Matrix
Analysis and Applications 41.3 (Jan. 2020), pp. 1059–1085. doi:
10.1137/19M1247838 (Cited on p. 155).

https://doi.org/10.1088/0022-3719/9/17/004
https://doi.org/10.1088/0022-3719/9/17/004
https://doi.org/10.1088/0022-3719/10/8/025
https://doi.org/10.1088/0022-3719/10/8/025
https://doi.org/10.1007/978-3-662-43948-7_87
https://doi.org/https://dl.acm.org/doi/10.5555/2567709.2567748
https://doi.org/https://dl.acm.org/doi/10.5555/2567709.2567748
https://doi.org/10.1137/120895755
https://doi.org/10.1137/110831982
https://doi.org/10.1609/aaai.v35i12.17275
https://doi.org/10.1137/19M1247838

	Acknowledgements
	Abstract
	Published Content and Contributions
	Table of Contents
	List of Illustrations
	List of Tables
	List of Programs
	Introduction
	Part I: Random pivoting
	Part II: Leave-one-out randomized matrix algorithms
	Part III: Sketching, solvers, and stability
	About this thesis
	Notation

	Low-rank approximation foundations
	Low-rank approximation basics
	Projection approximation
	The randomized SVD
	Randomized subspace iteration
	Nyström approximation
	The Gram correspondence

	Random pivoting
	Low-rank approximation of psd matrices
	The entry access model
	The psd low-rank approximation problem
	Pivoted partial Cholesky decompositions
	Column Nyström approximation
	Subset selection problems
	Column Nyström approximation and Gaussian random variables
	Non-adaptive random sampling methods

	Randomly pivoted Cholesky
	Algorithm and implementation
	Experiments
	Error analysis
	Extension: Gibbs RPCholesky
	Connection to determinantal point processes

	Kernels and Gaussian processes
	Reproducing kernel Hilbert spaces
	Kernel interpolation
	Gaussian processes
	Kernel ridge regression and Gaussian process regression

	Accelerating kernel and Gaussian process methods by subset selection and column Nyström approximation
	Column Nyström preconditioning
	Restricted kernel ridge regression
	Active learning for kernel interpolation and ridge regression

	To infinite dimensions
	Mathematical setting
	Infinite-dimensional psd low-rank approximation and RPCholesky
	Implementing RPCholesky using rejection sampling
	Application: Active kernel interpolation
	Application: Kernel quadrature

	Blocked algorithms
	Why blocking?
	Algorithm 1: Block RPCholesky
	Algorithm 2: RBRP Cholesky
	Algorithm 3: Accelerated RPCholesky
	Experiments
	Comparison of three algorithms

	Randomly pivoted QR: Low-rank approximation of general matrices
	Low-rank approximation via column selection
	Randomly pivoted QR
	Accelerated randomly pivoted QR
	Related work: Sketchy pivoting
	Experiments
	RPCholesky and RPQR: History

	CUR decompositions
	Two-sided and CUR projection approximation
	Generalized Nyström approximation and CUR cross approximation
	Numerically stable representations
	Algorithms
	Related work: Mahoney and Drineas' algorithm
	Experiments

	Random pivoting: Open problems
	Open problem: RPCholesky error bounds
	Open problem: Frobenius-norm psd low-rank approximation

	Leave-one-out randomized matrix algorithms
	Matrix attribute estimation problems
	Matrix attribute estimation and the matvec model
	Examples of matrix attribute estimation problems: Trace, diagonal, and row-norm estimation

	Fundamental tools: Low-rank and Monte Carlo approximations
	Monte Carlo approximation
	Low-rank approximation
	Combining Monte Carlo and low-rank approximation

	The leave-one-out approach and application to trace estimation
	XTrace: The leave-one-out approach
	Leave-one-out formula for the randomized SVD
	Implementing XTrace efficiently
	XNysTrace: Trace estimation for psd matrices
	Leave-one-out formula for randomized Nyström approximation
	Implementing XNysTrace efficiently
	Synthetic Experiments
	Resphering XTrace and XNysTrace
	Application: Estrada index
	The leave-one-out approach: Summary

	More on trace estimation
	A priori error bounds
	How to interpret the Hutch++ and XTrace error bounds
	Posterior error estimation
	Adaptivity
	Alternatives to XTrace and XNysTrace

	Diagonal estimation
	The BKS and Diag++ diagonal estimators
	XDiag: A leave-one-out diagonal estimator for general matrices
	XNysDiag: A leave-one-out diagonal estimator for psd matrices
	Synthetic Experiments
	Application: Subgraph centralities
	Another view: Unbiased low-rank approximation

	Row-norm estimation
	Is row-norm estimation just diagonal estimation?
	The square-root trick: Diagonal estimation via row-norm estimation
	Variance-reduced row-norm estimators
	XRowNorm: A leave-one-out row-norm estimator
	XSymRowNorm: Improved Hermitian row-norm estimation
	Synthetic Experiments
	Application: Subgraph centralities, again

	Posterior error estimates for low-rank approximation
	Leave-one-out error estimation: General approach
	Randomized SVD error estimation
	Experiments

	Matrix jackknife variance estimation
	Bias–variance decomposition
	Matrix jackknife variance estimation
	Using matrix jackknife variance estimation
	Example: Spectral transformations of Nyström approximations

	Leave-one-out randomized matrix algorithms: Open problems
	Open problem: Error analysis
	Open problem: Hermitian indefinite matrices
	Open problem: Numerically stable downdating for subspace iteration

	Sketching, solvers, and stability
	Algorithms for least squares, a brief history
	The overdetermined linear least-squares problem
	Numerical instabilities of the normal equations
	Numerically stable algorithms by QR factorization
	Perturbation theory for least-squares
	Forward and backward stability
	Krylov iterative methods: CGNE, CGLS, and LSQR
	Randomization enters: The sketch-and-solve method
	Which sketch should I use? The subspace embedding property
	Making randomized least-squares accurate: Sketch-and-precondition
	Implementation and analysis of sketch-and-precondition
	Is sketch-and-precondition numerically unstable?

	Fast, stable randomized least-squares solvers
	Notation
	Sketch-and-descend: A strongly forward stable least-squares solver
	Intermezzo: Lanczos, conjugate gradient, and LSQR
	Sketch-and-precondition with sketch-and-solve initialization
	Sketch-and-precondition with iterative refinement
	Experiments
	The backward error and its estimation

	Proofs of stability
	Standing assumptions and more notation
	Sketching and QR factorizing
	The sketch-and-solve solution
	Stability of multiplication and triangular solves
	Stability of interleaved multiplications
	Accuracy of Lanczos linear solves
	The error formula
	Forward stability of sketch-and-precondition
	Backward stability of SPIR

	Sketching, solvers, and stability: Open problems
	From Lanczos to conjugate gradient to LSQR
	Numerical stability of Krylov methods
	From least squares to linear systems

	Incremental QR decomposition
	Which sketch should I use?
	What properties do we want sketching matrices to have?
	Gaussian embeddings
	IID embeddings
	Subsampled trigonometric transforms
	IID sparse embeddings
	Sparse sign embeddings
	Conclusions
	Postscript: Recent developments

	Analysis of Sketch-and-Solve
	Deferred proofs
	Proof of Theorem 3.12
	Proof of Theorem 10.8

	Implementation of sparse random embeddings
	Helpful MATLAB subroutines
	Bibliography

