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Abstract

Demixing is the task of identifying multiple signals given only their sum and prior

information about their structures. Examples of demixing problems include (i) sepa-

rating a signal that is sparse with respect to one basis from a signal that is sparse with

respect to a second basis; (ii) decomposing an observed matrix into low-rank and sparse

components; and (iii) identifying a binary codeword with impulsive corruptions. This

thesis describes and analyzes a convex optimization framework for solving an array of

demixing problems.

Our framework includes a random orientation model for the constituent signals

that ensures the structures are incoherent. This work introduces a summary parameter,

the statistical dimension, that reflects the intrinsic complexity of a signal. The main

result indicates that the difficulty of demixing under this random model depends only

on the total complexity of the constituent signals involved: demixing succeeds with

high probability when the sum of the complexities is less than the ambient dimension;

otherwise, it fails with high probability.

The fact that a phase transition between success and failure occurs in demixing is

a consequence of a new inequality in conic integral geometry. Roughly speaking, this

inequality asserts that a convex cone behaves like a subspace whose dimension is equal

to the statistical dimension of the cone. When combined with a geometric optimality

condition for demixing, this inequality provides precise quantitative information about

the phase transition, including the location and width of the transition region.
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Chapter 1

Introduction

Demixing is the problem of identifying multiple informative signals from a single observa-

tion of their superposition. Demixing problems arise frequently in scientific applications,

including fields as diverse as geophysics [TBM79], astrophysics [SDC03], image seg-

mentation [ESQD05], machine learning [CSPW11], robust statistics [CLMW11], and

audio processing [AEJ+12]. The underlying observation in each of these examples is

typically high-dimensional—often with millions or even billions of variables—so that

effective demixing procedures require efficient computational methods.

This thesis proposes a generic computational framework for demixing based on

convex optimization. By applying methods from integral geometry, we develop a

general theory that characterizes the performance of our demixing approach under

a probabilistic model. These results apply to a number of particular cases where the

general theory predicts the outcome of numerical experiments with a high level of

precision. We begin with a concrete example that illustrates the theoretical guarantees

developed in this thesis.

1.1 A demixing archetype: Morphological component

analysis

We introduce demixing by discussing a computational approach, called morphological

component analysis (MCA), for identifying features in images [SDC03, ESQD05, SED05,
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+

Figure 1.1: Morphological component analysis signal model. The top line shows a
superposition of two signals, one consisting of a small number of tones (blue, left) and the
other an impulsive signal (green, right). The goal of MCA is to identify the constituents from
their superposition using knowledge about the structure in the underlying signals.

BMS06, BSFM07]. The MCA method provides a principled approach for turning prior

information about the content of an image into a computational procedure that identifies

its features.

The original application of MCA involves finding stars and galaxies in an astronomical

image [SDC03]. There are two characteristics of stars and galaxies that make it possible

to distinguish them from one another in an image of the night sky. First, stars and

galaxies do not look like one another, but rather have distinct shapes or morphologies.

For example, stars typically appear as localized bright points, while galaxies exhibit

filamentary structure. We therefore say that stars and galaxies appear incoherent. The

second crucial feature of stars and galaxies is their sparsity: there are not so many

stars or galaxies in the image that they completely obscure one another. The notions of

sparsity and incoherence are central to the theoretical understanding of MCA.

1.1.1 A mixed signal model

We now describe a mathematical model for signals that arise in MCA. Suppose we

observe a vector z0 ∈ Rd that consists of the superposition of two structured signals:

z0 = Ax \+ By \ ∈ Rd . (1.1)
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We assume that the matrices A and B are known, and the columns of each one encode

a different type of the feature we expect to see in our image. The natural symbol \

indicates that the unknown vectors x \ and y \ encode the “natural structure” we seek,

while the subscripted zero reminds us that the observation z0 is the only signal to which

we have access. The constituents x \ and y \ determine the content of the signal by

selecting the columns of A and B that appear in z0. We say that A and B are incoherent

when the columns of A are weakly correlated with the columns of B, while the structures

are sparse when x \ and y \ have few nonzero components.

The MCA model (1.1) appears frequently in applications. In astronomical imaging,

the elements of the vector z0 correspond to pixels in an image. The columns of A may

consist of localized bright spots, while the columns of B have wispy structures. Then

the nonzero elements of x \ determine the location of stars, while the nonzero elements

of y \ encode features of galaxies [SDC03].

Another example occurs where the signal is the sum of a small number of pure tones

and impulsive noise (Figure 1.1), which models the pops and clicks that occur during

the playback of music from phonograph records [SKPB12]. In this case, the columns of

A consist of sinusoids, while the columns of B are impulse functions with very localized

support. The nonzero elements of x \ determine the frequency content of the signal,

while the elements of y \ determine the location of the pops.

Let us make a few simplifying assumptions. First, we take A and B to be orthonormal

matrices. By a change of basis, it engenders no further loss to assume that A = I, the

identity matrix. Then the observation takes the form

z0 = x \+Qy \ (1.2)

for a known orthogonal matrix Q. The restriction to orthogonal matrices is a common

modeling assumption [DH01, ESQD05, SED05, HB12].

Rather than considering specific choices of Q, we model incoherence by drawing Q

uniformly at random from the Stiefel manifold Od of d × d orthogonal matrices. This

assumption ensures incoherence because the two signals are oriented generically relative



4

to one another, and it appears fairly often in the context of MCA [DH01, ESQD05].

We quantify the complexity of the constituent signals in terms of their sparsity:

sx := nnz(x \) and sy := nnz(y \),

where the operator nnz(·) returns the number of nonzero elements of a vector. In

incoherent MCA, the sparsity parameters sx and sy turn out to be the controlling factor

that determine the identifiability of x \ and y \ from the observation z0.

1.1.2 Constrained MCA demixing procedure

Morphological component analysis provides a computationally attractive method for

determining the pair (x \, y \) given the superimposed observation z0 and the basis Q

defined by (1.2). This technique makes use of the heuristic that the `1 norm ‖x‖`1
:=

∑d
i=1 |x i| reflects the number of nonzero elements in the vector x [DS89].

Assume that we have access to the side information α := ‖y \‖`1
. A natural approach

to recovering solving the demixing problem is to solve the convex program

minimize ‖x‖`1
subject to ‖y‖`1

≤ α and x +Qy = z0, (1.3)

where the decision variables are x , y ∈ Rd . We call this approach constrained MCA,

and we say that it succeeds if the pair (x \, y \) forms the unique optimal point of (1.3).

Because the constrained MCA approach is a convex optimization program—indeed, it

can even be framed as a linear program—it offers a computationally tractable approach

for demixing the superimposed observation (1.2).

1.1.3 A probabilistic characterization of MCA

The analysis in this thesis provides a statistical characterization of the performance of

MCA in terms of the sparsity levels sx and sy of the constituent signals x \ and y \.
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Theorem 1.1 (Success and failure of MCA). There is a function ψ`1
: (0, 1)→ (0, 1) that

generates a threshold curve Ω⊂ (0, 1)2 given by

Ω :=
�

(ρx ,ρy) :ψ`1
(ρx) +ψ`1

(ρy) = 1
	

.

The curve Ω partitions the unit square into a success and failure region for MCA:

�sx

d
,
sy

d

�

lies strictly below Ω =⇒ (1.3) succeeds with probability → 1
�sx

d
,
sy

d

�

lies strictly above Ω =⇒ (1.3) succeeds with probability → 0,

where the limits are taken as the ambient dimension d →∞. At this point, the dependence

of sx and sy on the ambient dimension d should be interpreted heuristically.

The proof appears in Section 10.1, where we restate Theorem 1.1 and state the growth

regime rigorously. The function ψ`1
is defined in Proposition 6.14, and it is computable

with standard numerical techniques (Appendix C.1).

When the ambient dimension d is large, Theorem 1.1 suggests that the probability of

success of MCA (1.3) shifts from high to low near the region where the sparsity (sx , sy)

satisfies

ψ`1
(sx/d) +ψ`1

(sy/d) = 1. (1.4)

In other words, Theorem 1.1 indicates that there is a phase transition between the

success and failure of demixing (1.3) as the sparsity pair (sx , sy) passes through some

critical point.

Figure 1.2 presents the results of a numerical experiment designed to estimate the

probability that constrained MCA succeeds. The experiment is conducted in dimension

d = 100. For each sparsity level sx , sy ∈ {1, . . . , d − 1d}, we compute the empirical

probability of success of (1.3) over 25 independent trials. The yellow curve, defined

by (1.4), accurately predicts the empirical 50% success region for this experiment.

(Further numerical details are available in Appendix C.1.)
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Figure 1.2: Empirical probability of success for constrained MCA. The ambient dimen-
sion is d = 100, and the sparsity levels vary from 1 to 100. The colormap presents the
empirical probability that constrained MCA (1.3) succeeds over 25 trials. White pixels
signify complete success, the black pixels represent total failures, and the gray transition
region indicates a mix of successes and failures. The figure also displays the 95%, 50% and
5% success isoclines. Our theory tells us that the location of the transition region occurs
(asymptotically) at the yellow curve (1.4) that lies under the 50% isocline. The details for
this experiment appear in Appendix C.3.

1.2 A recipe for demixing

In this section, we present a general framework for constructing convex demixing

methods. This approach develops demixing procedures arise by combining structure-

inducing convex regularizers in a sensible way. Before describing the generic recipe

in Section 1.2.2, we introduce the building blocks of demixing procedures, the atomic

gauges.

1.2.1 Structured signals and atomic gauges

Natural signals often lie in a structured family whose degrees of freedom are much

smaller than the ambient dimension of the signal. An image of the night sky, for example,

consists of a relatively small number of points over a black background. The degrees of
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freedom in such astronomical images are roughly proportional to the number of stars in

the field of view, not the total number of pixels in the image.

To turn this intuition into a mathematical model, we consider natural signals that

are formed by the positive sum of a few members of a known atomic setA ⊂ Rd . In the

case of sparse vectors, the atomic setA = {±ei ∈ Rd : i = 1, . . . , d − 1, d}, where ei is

the ith standard basis vector. A sparse vector x takes the form

x =
∑d

i=1
±aiei.

where ai = 0 for most indices i. The atomic set of one-sparse vectors comes with a

natural convex function that approximates sparsity of x :

‖x‖`1
=
∑d

i=1
|ai| .

When the magnitude of the nonzero ai are all comparable in magnitude, the `1 norm

is proportional to the total sparsity of x0. This well-established heuristic [CDS99,

CT05, Don06a] is but one of a large number of convex penalty functions known as

atomic gauges that measure the complexity of vectors with respect to other atomic

sets [DT96, Tem03, CRPW12].

Definition 1.2 (Atomic gauge). The atomic gauge fA (x ) of a vector x ∈ Rd with respect

to a setA ⊂ Rd is defined by

fA (x ) := inf{λ > 0 : x ∈ conv(A )},

where conv(A ) is the closure of the convex hull of the atomic setA . We illustrate this

definition in Figure 1.3.

Atomic gauges have a natural interpretation as complexity measures of atomic signals.

Indeed, the atomic gauge fA is the largest Minkowski gauge1 such that fA (a)≤ 1 for all

atoms a ∈A . In other words, an atomic gauge returns the maximum possible penalty

1A Minkowski gauge is a nonnegative, positively homogeneous proper convex function.
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fA(x) = 1

fA(x) < 1

fA(x) > 1

Figure 1.3: An atomic gauge. [Left] Our atomic setA consists of five atoms (stars). The
“unit ball” of the atomic gauge fA is the closed convex hull ofA (heavy line). Other level
sets (dashed lines) of the gauge are dilations of the unit ball. [Right] At an atom (star),
the unit ball of fA tends to have sharp corners. Most perturbations away from this atom
increase the value of fA , so the atomic gauge tends to penalize complex atomic signals.

for deviation away from an atomic set while maintaining convexity and homogeneity,

features that are important for computational efficiency and scale-invariance.

Atomic gauges are ubiquitous in the literature on inverse problems. Some common

examples include

• The `1 norm. The `1 norm ‖x‖`1
:=
∑d

i=1 |x i| is the atomic gauge associated

with the set {±ei} ⊂ Rd of signed standard basis vectors, and is widely used to

promote sparsity [CDS99, CRT06a, Don06a]. The `1 norm extends to matrices

as ‖X‖`1
=
∑

i, j |X i j| and reflects the entrywise sparsity of a matrix [CSPW09,

CPW10, CSPW11].

• The `∞ norm. The `∞ norm ‖x‖`∞ := maxi=1,...,d |x i| is the atomic gauge associ-

ated with the set {±1}d of sign vectors. We can use this norm to demix binary

codewords (Section 10.2); see also [DT10a, CRPW12, MR11]. The `∞ norm has

a natural extension to matrices: ‖X‖`∞ :=
∑

i, j |X i j|, which is the atomic gauge

generated by sign matrices. values of a matrix. It is the gauge associated to the set

of rank-one matrices, and it tends to penalize the rank of a matrix [Faz02, RFP10].
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Note that the Schatten 1-norm does not have a finite atomic set.

• The operator norm. The matrix operator norm is the maximum singular value

of a matrix. On the space Rn×n of square matrices, the operator norm is the

atomic gauge associated with matrices with orthogonal rows or columns, and so

it is suited for situations involving a search for orthogonal matrices [CRPW12,

Prop. 3.13]. Like the Schatten 1-norm, the operator norm does not have a finite

atomic set.

This list is certainly not comprehensive. A number of additional atomic gauges are

discussed in [CRPW12, Sec. 2.2].

1.2.2 Formulating convex demixing methods

Atomic norms offer a principled approach for constructing structure-inducing convex

functions. In this section, we describe a generic method for combining these functions

into a convex program that is useful for demixing a superposition of signals. Our method

generalizes an approach to demixing that appears in a number of works. For some

representative examples, see [ESQD05, BSFM07, JRSR10, CSPW11].

The basic signal model mirrors that of MCA. We assume that we are given an

observation consisting of the superposition of two structured signals:

z0 = x \+U y \, (1.5)

where U is a known orthogonal matrix but the pair (x \, y \) is unknown. The basis U

is included to model the relative orientation of the structures, and it also provides a

convenient proxy for incoherence. We seek a method to demix the constituent pair

(x \, y \) from the observation z0.

Let f and g be convex complexity measures—such as atomic gauges—associated

with the structures we expect to find in x \ and y \. Assume further that we have access

to the side information α := g(y \). We combine these ingredients into the following
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convex demixing method:

minimize f (x ) subject to g(y)≤ α and x +U y = z0, (1.6)

where the optimization variables are x , y ∈ Rd . Equation (1.6) is a convex optimization

program because f and g are convex functions and the consistency constraint x +U y =

z0 is affine. We say that the demixing method (1.6) succeeds when (x \, y \) is the unique

optimal point of (1.6); otherwise it fails.

1.2.2.1 Multiple demixing

Our basic signal model involves the superposition of just two signals. A natural extension

involves an observation that consists of a superposition of n signals:

z0 =
∑n

i=1
Ui x

\
i , (1.7)

where Ui are known orthogonal matrices that encode the relative orientation of the

constituent vectors x \i . Given convex regularizers fi for each i ∈ {1, . . . , n− 1, n} and

the side information αi := fi(x \i ) for every i ∈ {2, . . . , n− 1, n}, we may extend the

method (1.6) to

minimize f1(x1)

subject to fi(x i)≤ αi for i ∈ {2, . . . , n− 1, n} and z0 =
∑n

i=1
Ui x i,

(1.8)

where our decision variables are now x i ∈ Rd for i ∈ {1, . . . , n− 1, n}. We analyze this

model in Section 4.2.

1.2.2.2 Compressed demixing

We may further extend multiple demixing to the undersampled observation of superim-

posed signals [WGMM12]. In this setup, the observation is given by

z0 = A
�
∑n

i=1
Ui x

\
i

�

∈ Rm, (1.9)



11

where the constituents x \i and rotations Ui are as in the multiple demixing model (1.7)

and the matrix A ∈ Rm×d only reveals a linear image of the superposition.

Given structure-inducing convex functions fi and the side information αi as in

multiple demixing, we solve the compressive demixing procedure

minimize f1(x1)

subject to fi(x i)≤ αi for i ∈ {2, . . . , n− 1, n} and A(x +U y) = z0.
(1.10)

The undersampled model (1.9) provides an interesting description of a number of real-

istic situations, and it is a generalization of multiple demixing because we recover (1.7)

with the choice A= I. Happily, the addition of a slack variable reduces the analysis of

compressive demixing (1.10) to a special case of the multiple demixing approach (1.8).

See Section 4.3 for this reduction.

1.2.2.3 Lagrangian counterparts

In many practical settings, we do not have access to the side information α := g(y \). In

this case, the Lagrangian form of (1.6) is more appropriate:

minimize f (x ) +λg(y) subject to x +U y = z0, (1.11)

where λ > 0 is a parameter that negotiates a tradeoff between the relative importance

of the regularizers. The theory of Lagrange duality reveals a close connection between

the penalty formulation (1.11) and its constrained cousin (1.6). Roughly speaking,

knowledge of the side information is as powerful as knowing the best possible choice

of λ. We leverage our geometric analysis of demixing to demonstrate this equivalence

in Section 4.5. Cross validation provides a principled approach to search for the best

possible λ [BDB07], but this may be computationally expensive to implement.
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1.2.3 The random alignement model of incoherence

In this section, we introduce a random model that ensures that the structures we are

attempting to demix are incoherent with one another. Incoherence captures the idea

that signals are uncorrelated with one another. Indeed, demixing is impossible when the

structures in the constituent signals look alike. If, for example, we observe z0 = x \+ y \,

where both x \ and y \ are sparse, it is impossible consistently assign the nonzero elements

of z0 to the constituents x \ and y \. On the other hand, if one constituent is sparse in

time and the other is sparse in frequency (Figure 1.1), then the components are typically

identifiable [Tro08c].

In this work, we model incoherence by assuming that the rotation U = Q, where Q

is drawn randomly from the invariant Haar measure on Od . The observed signal z0 then

takes the form

z0 = x \+Qy \. (1.12)

We call this the random alignment model. We expect that this model also captures much

of the qualitative behavior we seen in highly incoherent situations such as time-frequency

alignements.

In the case of multiple demixing, we enforce incoherence by applying an independent

random rotation to each component of the signal:

z0 =
∑n

i=1
Qi x

\
i (1.13)

where each member of the tuple (Q1, . . . ,Qn) is a Haar-distributed rotation independent

of all the others. Again, this model ensures that the constituent signals are generically

oriented relative to one another, and we expect that it sheds light on highly incoherent

special cases such as mutually unbiased bases [Sch60].
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1.3 Contributions

This work characterizes the success and failure regimes for the demixing method (1.6),

multiple demixing (1.8), and compressed demixing (1.10) under the random inco-

herence model of Section 1.2.3. The ultimate outcome of this research is a new

understanding of the capabilities of demixing methods that we summarize as follows:

The pairs (x \, f ) and (y \, g) possess intrinsic dimensionality parameters δx

and δy . The demixing method (1.6) succeeds with high probability if the sum

δx + δy is slightly less than the ambient dimension d of the observation z0.

On the other hand, the demixing method (1.6) fails with high probability if

δx +δy is slightly larger than the ambient dimension of the observation z0.

The rigorous statement of this result forms the topic of Chapter 9, where we also find a

similar characterization of multiple demixing (1.8) and compressed demixing (1.10).

En route to this result, we develop a number of new ideas and results. Let us summarize

these developments.

• We codify a framework for solving a number of demixing problems (Section 1.2,

above) and provide a characterization of the success of demixing in terms of a

configuration of convex cones (Section 3).

• We introduce a summary parameter for convex cones, the statistical dimension, that

shares many properties with the usual affine dimension (Section 6.1). Simplifying

known techniques, we provide sharp calculations of several nontrivial statistical

dimensions (Section 6.2).

• We prove an inequality in conic geometry that demonstrates that geometric

parameters of convex cones known as intrinsic volumes concentrate sharply about

the statistical dimension (Theorem 7.1). This result parallels classical inequalities

of Euclidean convex geometry (Section 7.1).

• As a consequence of this concentration inequality, we find an approximate kine-

matic formula that characterizes the probability that cones strike in terms of the

sum of their statistical dimensions (Theorems 8.1 and 8.2).
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• We leverage this kinematic formula to provide precise regions of success and failure

for demixing (1.6), multiple demixing (1.8), and compressed demixing (1.10)

under random alignment models (Theorems 9.1 and 9.2).

• These theoretical results are applied to a number of specific demixing methods.

We provide experiments to demonstrate the accuracy of our theory for these

examples in a number of settings (Section 10).

Many of these ideas first appear in the joint works [MT12, ALMT13], although the

results on multiple and compressive demixing appear here for the first time. Results

that are primarily due to coauthors are indicated as such when they are introduced.

1.4 Outline

Chapter 2 traces the intellectual development of demixing through the literature. In

Chapter 3, we introduce the mathematical preliminaries required for our demixing

analysis. Many of these facts are staples of convex analysis, although Section 3.3

introduces a topology on convex cones that does not appear in standard texts.

The mathematical exposition of this thesis begins in earnest with a geometric

analysis of demixing in Chapter 4. The most important outcome of this chapter is

a characterization the success of demixing in terms of the configuration of convex cones.

Motivated by this conic optimality condition for demixing, Chapter 5 recalls some

key results from the field of conic integral geometry. There, we introduce geometric

invariants of cones known as intrinsic volumes. We describe kinematic formulas that

provide the precise probability that randomly oriented cones intersect, expressed in

terms of the intrinsic volumes. Along the way, we dispense with some finer points—such

as the probability that the intersection of two cones is a subspace—that are necessary

for bringing conic integral geometry to bear on our demixing models.

In Chapter 6, we introduce a new summary parameter, the statistical dimension, that

measures the size of a convex cone. This parameter shares many formal similarities

with the usual dimension of a linear subspace. We provide explicit calculations for the
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statistical dimension of a number of cones in Section 6.2.

A new general fact about convex cones is identified in Chapter 7. There, we find

that the sequence of intrinsic volumes of a convex cone concentrates sharply about the

statistical dimension. Chapter 8 applies these results to bound the probability that two

randomly oriented cones strike in terms of the statistical dimension.

We return to demixing in Chapter 9, where we leverage the approximate kinematic

formulas to characterize demixing. These results form the capstone of this work.

Chapter 10 provides some numerical illustrations of the accuracy of our demixing

theory.

Two appendices contain details that are somewhat tangential to the presentation.

Appendix A demonstrates a new general formula in conic integral geometry. Appendix C

provides the details of our numerical experiments.
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Chapter 2

A survey of the literature

This section traces the development of demixing from its origins in sparse approximation

to the current state of the art. We break this discussion into three broad themes: models,

methods, and analyses. The discussion of models describes where superimposed signals

find practical application. The methods section focuses on how demixing problems

are solved. The analysis section summarizes prior results that ascertain when and why

demixing is possible. This thesis focuses on a new analysis of demixing, so Sections 2.1

and 2.2 below discuss only previous work. Section 2.3 describes the antecedents to

our analysis and provides direct comparisons between our results and those from the

literature.

2.1 Mixed signal models

The modern history of demixing can be traced to the geophysics literature of the 1970s.

Taylor, Banks & McCoy [TBM79], building on earlier work1 of Claerbout & Muir [CM73],

model an observed signal z0 as the sum

z0 = W x \+ y \, (2.1)

1Claerbout & Muir trace the genesis of their approach to the work of Boscovich on line fitting in the
1750s; see Plackett [Pla72]. Sheynin [She73, Sec. 1.3] traces Boscovich’s method back farther still to
work of Bernoulli in 1734.
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where x \ is a sparse spike train, the matrix W is a convolutional operator, and y \ is some

unknown noise. The sparsity pattern of x \ encodes subsurface geological structure, but

no structural assumptions are imposed on the noise y \.

Sums of multiple structured signals began appearing in the signal processing com-

munity in the late 1980s. The M.S. thesis of Safar [Saf88] and the independent work of

Mikhael & Spanias [MS89] both advocate representing a signal as the sum of signals

that are sparse in different bases. The application these authors have in mind is efficient

source coding of speech and audio signals. Typical bases that arise in this field include

the standard Dirac basis, as well as fast transform bases such as the FFT, DCT, Walsh–

Hadamard and (later) wavelet bases. See [BM99] for a survey of this fruitful line of

inquiry.

Wavelet theory in the 1990s provided a significant boost to sparse modeling. A key

result of this field is that regularity of signals implies (near) sparse representations

of those signals in wavelet bases (cf. [Mal09, Sec. 9]). Mallat & Zhang argued that

even more succinct representations of signals become available by combining multiple

wavelet bases [MZ93].

Donoho & Huo [DH01] continued this inquiry into sparse-in-multiple-bases models,

and they include a random rotation as a model for structural incoherence. Applications

for this random rotation model appear in their work, including a robust encryption

scheme and a multiple-access communications protocol.

The mixed-sparsity template found further applications in image processing under

the name of morphological component analysis [SDC03, ESQD05, SED05]. This method,

described in detail in Section 1.1, treats an image as the superposition of a small number

of simple constituent elements—such as stars and galaxies in an image of the night

sky—and provides a computational procedure for distinguishing them.

Research on sparse demixing models continues up to this day. The work [SKPB12]

describes a number of additional applications for this model, including clipped audio

signals, faulty computer memory, superresolution, and signal separation. We refer to this

recent work for an impressive list of applications that involve demixing sparse signals.
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2.1.1 Moving beyond sparsity

Motivated largely by the success of sparse models (including, of course, the compressed

sensing model [CT05, Don06a]), a cadre of researchers started to investigate other

types of structures amenable to demixing. An exemplary approach is the rank–sparsity

decomposition of Chandrasekaran et al. [CSPW09, CSPW11], which models a matrix

observation M0 ∈ Rm×n as the sum

M0 = L\+ S\, (2.2)

where L\ has low rank and S\ is sparse. In machine learning, the model (2.2) nat-

urally appears in latent variable model selection [CPW10], alignment of occluded

images [PGW+12], and scene triangulation [ZLGM11]. The rank–sparsity model also

has deep links to problems in theoretical computer science—see the discussion [CS12,

p. 2002] for further details.

The rank-sparsity model spurred additional interest in matrix demixing models,

especially methods for robust principal component analysis [CLMW11, XCS10a, XCS10b,

MT11]. Recent work includes investigations of undersampled mixed signals, with

applications to partially observed graph clustering [CJSC11a] and compressed robust

principal component analysis [WGMM12, CJSC13].

2.2 Methods for demixing signals

The techniques for demixing sums of structured signals fall into two categories: convex

and greedy. Convex methods, which are the focus of this thesis, pose demixing as an

optimization problem whose optimal point determines the demixed constituents. Greedy

methods are iterative procedures that build up the constituent signals in a piecemeal

fashion.
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2.2.1 Convex demixing methods

Historically, convex methods were the first2 computational approaches to demixing.

Taylor, Banks & McCoy [TBM79] demix the signal (2.1) by solving

minimize ‖x‖`1
+λ‖y‖`1

subject to W x + y = z0, (2.3)

where λ > 0 is a tradeoff parameter whose value is to be tuned. This approach coincides

precisely with the Lagrange formulation of the MCA procedure (1.3). This basic schema

proved enduring, and it remains popular today in an essentially unchanged form,

cf. [DH01, ESQD05, BSFM07, WM09, SKPB12, PBS13].

Naturally, new convex regularizers led to new demixing methods. The Schatten

1-norm ‖·‖S1
gained prominence in control theory for its ability to identify low-rank matri-

ces [MP97, Faz02]. Extending the basic schema (2.3), Chandrasekaran et al. [CSPW11],

demix the rank–sparsity model (2.2) with the convex program

minimize ‖L‖S1
+λ‖S‖`1

subject to L+ S = M0. (2.4)

The works [XCS10a, XCS10b, MT11] further extend (2.4) by replacing the matrix `1

norm with a norm that returns the sum of the Euclidean norm of the rows of S in an

effort to promote row-sparsity [RKD98, RKD02]. A common modification for a partially

observed model replaces the equality constraint in (2.4) by an undersampled equality

constraintA (L+ S) =A (M0), whereA is a linear operator on the space of matrices

that maps to a lower-dimensional vector space. See, for example, [CJSC11b, CJSC11c,

WGMM12].

Numerical aspects. Off-the-shelf convex optimization software, such as the CVX fron-

tend for SeDuMi and SDPT3 [Stu99, TTT99, GB08, GB10, TTT12], provides a conve-

nient and quick way to prototype convex demixing methods. Such general-purpose

software typically use primal-dual interior-point methods that possess strong theoretical

2Indeed, the line-fitting method of Boscovich/Bernoulli is a linear program! (See footnote on page 16.)
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Recipe 2.1: The alternating direction method of multipliers for (2.7). This basic scheme
proves highly effective for minimizing problems involving several nondifferentiable regular-
izers such as the demixing problem (2.7). Choices for the tuning parameter µ and stopping
criteria, as well as numerous other details that arise in practical implementations of ADMM,
are discussed in the review article [BPC+10].

Given: The augmented Lagrangian Lµ (2.8); a tuning parameter µ > 0; a
stopping criterion.

1. Set the initial points x 0← y0← w 0← 0 and the counter k← 0.
2. While the stopping criterion is not satisfied, do:

(a) Update the estimate for x∗:

x k+1← arg min
x

Lµ(x , y k, w k) (2.5)

(b) Update the estimate for y∗:

y k+1← arg min
y

Lµ(x
k+1, y , w k) (2.6)

(c) Update the multiplier: w k+1← w k +µ(x k+1+U y k+1− z0).
(d) Increment k← k+ 1.

Return: Final estimates x k, y k.

guarantees of computational efficiency [NN94]. These interior-point methods are ef-

fective for small- to moderate-scale numerical investigations, and so we use CVX for all

numerical experiments in this work.

For large-scale problems, however, the computational requirements of interior-

point methods can still overwhelm the available resources. In these situations, iter-

ative methods may still be able to provide low-accuracy solutions in an acceptable

amount of time. For reasons explained below, the most popular iterative algorithm

for solving convex demixing problems is the alternating direction method of multipliers

(ADMM) [GM75, GM76].

To make our discussion concrete, we consider an ADMM algorithm for solving the

Lagrange version of the demixing method:

minimize f (x ) + g(y) subject to x +U y = z0, (2.7)

where the decision variables are x , y ∈ Rd and U is an orthogonal matrix. We may write
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the constrained demixing program (1.6) in the form (2.7) using the convex indicator

function defined in (3.2), so this discussion covers all two-signal demixing methods that

we study in this work. The basic ingredient in the ADMM method is the augmented

Lagrangian

Lµ(x , y , w ) := f (x ) + g(y) + 〈w , x +U y − z0〉+
µ

2
‖x +U y − z0‖

2 , (2.8)

where x , y , w ∈ Rd and µ > 0 is a tuning parameter. In each iteration, the ADMM

scheme minimizes the augmented Lagrangian first over x and then over y , holding all

other parameters fixed. It then updates the multiplier w and repeats the process. See

Recipe 2.1 for the full procedure.

The advantage of ADMM derives chiefly from efficient formulas for the inner mini-

mization steps (2.5) and (2.6). After some simplifications, these subproblems reduce to

computing proximity operators of the form

prox f (u) = arg min
x

f (x ) +
1

2
‖x − u‖2 .

Proximity operators frequently possess closed form, or easily computable, solutions that

make each iteration of an ADMM algorithm relatively inexpensive. For example, when

f is a convex indicator function (3.2) on a closed convex set K , the proximity operator

prox f is simply the Euclidean projection onto K. A number of formulas for proximity

operators are collected in [CW05, Sec. 2.6].

ADMM algorithms possess a number of additional theoretical and practical benefits.

The iterates x k and y k converge to minimizers of (2.7) even when the subproblems (2.5)

and (2.6) are solved inexactly [EB92]. Moreover, a straightforward extension of this

method to the multiple demixing scheme (1.8) also succeeds under some mild technical

conditions [HL13]. As a practical matter, many ADMM algorithms parallelize to massive-

scale distributed computations [BPC+10]. It is no surprise that this approach is nearly

ubiquitous in the demixing literature [XCS10b, CSPW11, CLMW11, PGW+12, CJSC13].

Other numerical approaches. Other iterative methods for solving demixing problems
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include fast proximal gradient methods. These approaches are often effective for solving

linear inverse problems (the n = 1 case of (1.10)) [BT09, BT12]. However, applying

the usual proximal gradient methods to (2.7) requires the computation of a projection

or proximal operator that may not have an analytic expression. Thus, the proximal

gradient approaches often require solving an additional convex subproblem at each

step. The ADMM approach sidesteps this difficulty by computing two independent

minimizations in (2.5) and (2.6).

2.2.2 Greedy demixing methods

In real-time systems, solving convex optimization programs may not be feasible regard-

less of the implementation. For this reason, greedy iterative methods may be the only

option for demixing when speed is paramount.

An early greedy method explicitly for the demixing problem is the recursive residual

projection method of Safar [Saf88, Sec. 4.3.2]. This approach, described in Recipe 2.2,

foreshadows later work on matching-pursuit and its numerous variants in the field of

computational harmonic analysis [MZ93, PRK93, DMA97]. The more recent CoSaMP

method [NT09] was a significant breakthrough in matching-pursuit methods. CoSaMP

builds a greedy representation in batches instead of one element at a time as in

Recipe 2.2, which provides both practical and theoretical improvements over earlier

greedy methods. Note that all of these matching-pursuit approaches are applicable

for models beyond demixing signals that are sparse in different bases, but this topic is

tangential to our present discussion.

There is some work on greedy demixing algorithms beyond sparse models. A notable

example is the SpaRCS method for low-rank and sparse matrix identification [WSB11]

which draws inspiration from both the CoSaMP method for sparse approximation and

the ADMiRa greedy approach to matrix completion [LB10]. This greedy method is

orders of magnitude faster than interior-point methods for the rank–sparsity demixing

program (2.4), and it only performs slightly worse than the full convex solution in

practice.
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Recipe 2.2: The recursive residual projection method of Safar [Saf88]. The main idea
in this method is to compute, at each stage, a “best” atom to add to the representation of
the signal and update the representation. This approach is identical to the widely known
matching-pursuit method of Mallat & Zhang [MZ93]. While matching-pursuit is applicable
to sparse approximation problems beyond demixing, we discuss this particular method
because it was developed by Safar explicitly for mixed signal models.

Given: An observation z0; two orthogonal bases U , V; an integer m≥ 1.

1. Set the current residual r (0)← z0 and current coefficients c(0)← 0 ∈ R2d .
2. For i = 1, . . . , m− 1, m, do:

(a) Compute the basis expansions:

e← [U V]t r (i) ∈ R2d .

(b) Determine the index of the dominant component:

j∗← arg max
j=1,...,2d−1,2d

|e j|.

(c) Update the coefficients:

c(i+1)
j∗
← c(i)j∗

+ e j∗ .

(d) Update the residual:

r (i+1)← z0− [U V]c(i+1).

Return the coefficients c.

Hegde & Baraniuk [HB12] recently developed a greedy algorithm for demixing

signals of the form (1.9). They assume that the constituent signals come from known

manifolds such as manifold of sparse vectors or low-rank matrices. Their algorithm

recovers the constituents by iterative projections onto these manifolds, and possesses

provable recovery guarantees.

2.3 Analyses of demixing

The analysis of this thesis is related to a large amount of prior work. We start by review-

ing previous results for demixing methods, first for the sparse + sparse model (1.1) and

then for analyses that incorporate structures beyond sparse vectors such as low-rank

matrices. In Section 2.3.3.1, we trace the provenance of the geometric probability tools
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that form the technical core of this work, and we describe some prior applications of

these concepts to the analysis of convex optimization. Section 2.3.3.2 describes an ap-

proach to understanding linear inverse problems based on Gaussian process inequalities

of Gordon [Gor85, Gor87, Gor88]. We conclude each subsection with a comparison of

our results in relation to the prior art.

2.3.1 Sparse + sparse demixing

The work of Donoho & Huo [DH01] provided an important analysis of a sparse demixing

program of the form (2.3). They defined the mutual coherence µ(U , V) between two

orthogonal bases U , V ∈Od by

µ(U , V) := ‖U t V‖`∞ = sup
i, j=1,...,d

|〈ui, v j〉|,

where ui and v j range over the columns of U and V . The bases are incoherent when the

columns of U are not strongly correlated with any column of V, i.e., when µ(U , V) is

small. Refining the uncertainty principle analysis of [DS89], Donoho & Huo prove that

an observation z0 = Ux \+ Vy \ can be demixed using `1 minimization of the form (2.3),

provided that

nnz(x \) + nnz(y \)<
1

2

�

1+
1

µ(U , V)

�

≤
1

2

�

1+
p

d
�

, (2.9)

where nnz(·) returns the number of nonzero entries of a vector [DH01, Thm. VII.1].

This result was improved slightly by Elad & Bruckstein [EB02] using similar methods.

In the case where one of the bases is a random orthogonal matrix, this result operates in

the regime where the total sparsity satisfies nnz(x \) + nnz(y \) = O
�p

d/ log(d)
�

. In

other words, the total degrees of freedom allowed in the vectors x \ and y \ is on the

order of the square-root of the ambient dimension in every case, and is somewhat more

restricted when the sparsity bases are random.

Tropp [Tro04] demonstrated that a variant of the greedy matching-pursuit algorithm

recovers sparse vectors under condition (2.9). Further results of Tropp & Gilbert [TG07],
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Tropp, Gilbert & Strauss [TGS06], and Needell & Tropp [NT09] demonstrated that it is

possible to construct greedy demixing and sparse approximation algorithms that possess

theoretical guarantees qualitatively similar to those available for convex methods.

Two recent works use incoherence parameters to study convex demixing methods

for sparse signals when the support sets of the constituent signals are partially known.

Studer et al. [SKPB12] provided incoherence guarantees for sparse + sparse demixing

with recovery bounds similar to those obtained by Donoho & Huo (2.9). Pope, Bracher,

& Studer [PBS13], building of the work of Tropp [Tro08a, Tro08b], improve these

incoherence-based results considerably by considering sparse signals are drawn from

random models. In this case, the degrees of freedom in the observations need only be

smaller than the ambient dimension by a logarithmic factor.

In 2009, Wright & Ma [WM09] developed recovery conditions for the sparse demix-

ing program (2.3) under a unique set of assumptions. They assumed that the matrix W

has highly correlated columns and required that the signs of the nonzero elements of the

constituent signals are random. Their results show that demixing succeeds even when

one of the constituents is near completely dense, provided the other is near completely

sparse. While this result allows both constituents to possess sparsity levels that are

proportional to the ambient dimension, the constants are far from optimal. Nguyen &

Tran recently extended these results to a more standard model [NT13].

Finally, we mention that Hegde & Baraniuk consider demixing signals from incoher-

ent manifolds via a nonconvex iterative algorithm [HB12]. In the case of two sparse

signals, their success conditions closely resemble (2.9), but their methods are applicable

to a wider class of signals than have been considered in the convex framework.

Comparison with this work. In Section 10.1, we analyze a specific model for demix-

ing the sum of two sparse vectors. Our results rigorously characterize the precise

recovery threshold for the program (1.3) under the random alignment model. In par-

ticular, we show that a phase transition between success and failure of (1.3) exists,

and that it is possible to demix sparse vectors when the total sparsity is proportional

to the dimension. This significantly improves on the previous best bounds of [WM09]
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and [PBS13].

We also demonstrate a phenomenon that appears to be unheard of in the literature,

a strong bound for demixing when the total sparsity is proportional to the dimension.

Our results indicate the existence of a number τ > 0 such that, with high probability in

the random rotation Q, the program (1.3) will succeed at demixing

z0 = x \+Qy \

for all sufficiently sparse vectors x \ and y \ such that nnz(x \) < τd and nnz(y \) ≤ τd.

To put this result another way, we draw the matrix Q once and fix it for all time. Then

with high probability, the program (1.3) will demix every possible observation z0 of the

form above, so long as the sparsity in x \ and y \ is sufficiently small, but still proportional

to the ambient dimension.

While the bound (2.9) of Donoho & Huo also provides such strong guarantees, it

inherently limits the total sparsity to order
p

d. Indeed, a small incoherence parameter

µ(U , V) can never guarantee strong demixing bounds where the sparsity is proportional

to the dimension. For example, the coherence µ(I,F) = d−1/2 between the identity

matrix I and the Fourier transform matrix F is minimal. However, equispaced spike

trains have representations with O(
p

d) nonzeros in both the identity and Fourier bases,

which creates a fundamental identifiability problem [DS89, Sec. 7.2]. We expect that

similar counterexamples are available for real case by replacing the Fourier transform

with the Walsh–Hadamard basis

H :=
1

2k/2





1 1

1 −1





⊗k

where the exponent ⊗k denotes the kth order Kronecker product. (The existence of an

example of spike trains that are highly sparse in the Walsh–Hadamard basis is attributed

to [EB02] by Donoho & Elad [DE03, pp. 2198], but we were unable to locate the

demonstration in [EB02].) Our strong bound shows that, under generic assumptions, a

convex program is capable of recovering the sum of two sparse signals in different bases
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even when the sparsity is proportional to the ambient dimension. See Theorem 10.3 for

the details.

2.3.2 Demixing beyond sparsity

Chandrasekaran et al. [CSPW11] provided an influential analysis of the rank-sparsity

demixing model (2.2). Their approach is based on the concept of incoherent manifolds;

let us sketch the key ideas. A rank-r matrix L\ lies on a manifold L of all rank-r

matrices, and the local behavior of the Schatten 1-norm in a neighborhood of L\ can

be understood in terms of the tangent space TL (L\) of the manifold L at the matrix L\.

Similarly, the `1 norm of a sparse matrix S\ can be locally characterized by the tangent

space TS (S\) of a manifold S of sparse matrices at S\.

When the tangent spaces TL (L\) and TS (S\) satisfy an incoherence property that

ensures that they are transverse to one another, Chandrasekaran et al. show that (2.4)

successfully demixes L\ and S\ from the observation (2.2). For typical L\ ∈ Rn×n with

rank r and S\ ∈ Rn×n with s nonzeros, the incoherence conditions are in force so long as

r1/2s = O
�

n3/2

log(n)

�

. (2.10)

This result implies that (2.4) succeeds in the regime where the rank r approaches n so

long as the sparsity s is polynomially small in the sidelength n.

Using the “golfing” scheme developed by Gross (cf. [GLF+10, Gro11]), Candès et al.

provide a complementary rank–sparsity analysis [CLMW11]. Their results are somewhat

weaker than the approach of Chandrasekaran et al. In particular, their results do not

allow the rank r to approach n no matter how small the sparsity s. Other golfing-based

analyses for modified versions of rank–sparsity model (2.2) include [JRSR10, XCS10b,

CJSC13]. In each case, the bounds are modestly suboptimal.

Ma & Wright [WGMM12] proposed a general method called “certificate upgrade”

that demonstrates that demixing compressed measurements of the form (1.10) is

possible when sufficiently strong guarantees for the uncompressed model (1.7) are

available. They apply their results to show that a low-rank + sparse signal (2.2) can be
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demixed even when only a few random linear measurements of the sum is available.

This approach results in similar guarantees to those of [CJSC13], but the analysis applies

to a much wider variety of situations.

Finally, we mention that Hegde & Baraniuk provided a rigorous analysis of their

SPIN algorithm in several specific settings [HB12]. Their approach is based on a generic

incoherent manifold model that shares some similarities to the analysis of [CSPW11].

Although their analysis provides general guarantees, it does not extend to demixing

low-rank matrices from sparse vectors.

Comparison with this work. In Section 10.3, we consider demixing a low-rank

matrix from a matrix that is sparse a random basis. Our analysis provides a precise

characterization of success and failure for a standard convex demixing method under this

model. This result is unique in the literature because it provides optimal bounds, but our

assumption that the sparse matrix is randomly rotated is novel, and somewhat unusual,

for this literature. Small-scale numerical experiments, while not conclusive, seem

to indicate that the phase transition for the random models considered in [CSPW11,

CLMW11] are not accurately predicted by the theory in our work. It would be interesting

to understand this discrepancy.

2.3.3 Linear inverse problems

A linear inverse problem is the task of determining a vector x \ from a linearly undersam-

pled observation z0 = Ax \. This section describes some of the tools and ideas from linear

inverse problems that are related to the analysis provided by this work. We start with a

discussion of the geometric tools that have found applications to linear inverse problems,

and describe how these tools are related to the analysis of this work. We then describe

another approach for understanding linear inverse problems based on the Gaussian

process inequalities of Gordon [Gor85, Gor87, Gor88]. Our work reveals a connection

between these two superficially distinct approaches to linear inverse problems.
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2.3.3.1 Asymptotic polytope angle computations

The geometric theory of polytope angles has proved a highly effective tool for the analysis

of linear programs with random constraints. The study of polytope angles has its roots

in the work Schäfli in the mid-19th century [Sch50], but made its first appearance in

the analysis of optimization programs in the work of Vershik & Sporyshev [VS86] who

analyzed the efficiency of the simplex method under random affine constraints. This

work led to mathematical research on the neighborliness of random polytopes [VS92,

AS92, BH99].

Donoho [Don04, Don06b] and Donoho & Tanner [DT05, DT09, DT10c, DT10a,

DT10b] applied these earlier developments to study the behavior of several linear

programs with sparsity constraints. To be precise, they considered the case where

x \ ∈ Rd is sparse and the measurement operator A = G ∈ Rm×d has independent

standard Gaussian entries. To recover the data x \ from the observation z0 = Gx \, these

authors considered the `1 minimization program

minimize ‖x‖`1
subject to Gx = z0 (2.11)

where the decision x ∈ Rd . We say that (2.11) succeeds if x \ is the unique optimal

solution to (2.11).

Donoho [Don06b] considered the asymptotic regime where d →∞ and the mea-

surements m = [δd] and sparsity nnz(x \) = [ρd] grows proportionally with d (ρ

may depend on δ). Donoho demonstrated the existence of a function Ψ: (0,1)2→ R

such that, if Ψ(ρ,δ) < 0, the method (2.11) succeeds with probability approaching

one as the dimension d goes to infinity. This condition provided an empirically sharp

lower bound on the number of measurements required for the success of (2.11) (the

weak bound). Donoho also provided a lower bound on the number of measurements

required to recover all sufficiently sparse vectors with a single Gaussian matrix (the

strong bound).

In later work, Donoho & Tanner verified that if Ψ(ρ,δ)> 0 and δ > 0 is sufficiently

small, then the success probability does not go to one as the dimension d →∞ [DT09].
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However, it was not shown that the probability of success goes to zero when Ψ(ρ)> 0.

Similar nonasymptotic guarantees appeared in [DT10b].

This polytope angle approach to analyzing (2.11) was extended by several other

authors. Xu & Hassibi [XH08, XH11] used the framework to provide stability guarantees

for (2.11) for all sparsity levels where Ψ(ρ) < 0. Khajehnejad et al. [KX09, XKAH10,

KXAH10, KXAH11] consider weighted versions of (2.11), and they demonstrate that

reweighting will outperform (2.11) under additional assumptions on the constituent

signals.

While polytope angle methods have provided a number impressive results, the theory

is inherently restricted to polyhedral settings. For more general convex programs, the

theory of conic intrinsic volumes provides an appropriate generalization of polytope

angles. This more modern theory has its roots in the integral-geometric investigations of

Santaló [San76], and reached its current development in the thesis of Glasauer [Gla95,

Gla96]. Our work appears to be the first to use this more modern theory in the context

of signal processing. However, Amelunxen [Ame11] and Amelunxen & Bürgisser [AB11,

AB12a, AB12b] have applied these ideas to study the condition numbers of random

convex programs.

2.3.3.2 Gaussian width analyses

Finally, we discuss an apparently very different technique for analyzing convex linear

inverse methods that uses a comparison principle for Gaussian processes due to Gor-

don [Gor85, Gor87, Gor88]. Gordon’s comparison principle provides an inequality for

the probability that a randomly oriented subspace strikes a cone in terms of a geometric

parameter called the Gaussian width (see Section 6.3). Rudelson & Vershynin [RV08]

were the first to recognize that this inequality provides success guarantees for (2.11).

Stojnic [Sto09] subsequently refined this approach to provide recovery guarantees

for (2.11) that matched the weak bound of Donoho. Moreover, Stojnic’s work improved

Donoho’s strong bound in certain sparsity regimes. Oymak & Hassibi [OH10] used a

similar approach to provide empirically sharp bounds on the number of measurements

required to recover a low-rank matrix from Gaussian measurements. They also provide
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a strong bound on the number of measurements required to find all low-rank matrices,

a feat that appears unmatched in the literature.

This method was further generalized and greatly simplified by Chandrasekaran et

al. [CRPW12]. These authors demonstrated that the Gaussian width method applies to

regularized linear inverse problems involving all types of atomic gauges mentioned in

Section 1.2.1, and they developed a general geometric framework for understanding

these problems. Moreover, they showed that Gordon’s Gaussian process inequalities

provide a natural stability guarantee for convex linear inverse programs.

Comparison with this work: The missing link? The fact that the Gaussian width

and the asymptotic polytope angle analyses for linear inverse problems yield the same

success boundary for linear inverse problems indicated that a connection between

these two approaches was waiting to be explored [XH12, p. 312]. The results of this

work provide one such link between these two methods through the new geometric

inequality of Theorem 7.1 and the inequality (6.38) that links the Gaussian width to a

dimensionality parameter for convex cones.

Our work does more than simply link these two approaches, however. Despite the

fact that both of these approaches lead to empirically correct phase transition locations

in the case of linear inverse problems, a rigorous justification of this fact was lacking.

Our theory indicates that a phase transition for linear inverse problems must occur when

the number of measurements m exceeds a computable threshold that depends on the

problem parameters. In the case of `1 minimization with Gaussian measurements (2.11),

the location of this threshold agrees with both the polytope angle and the Gaussian

width threshold. Our result, however, comes with additional guarantees:

• This threshold provides a phase transition between near-certain success and

near-certain failure as the dimension d →∞.

• In the nonasymptotic regime, our theory provides bounds on the width of the

transition regime between success and failure.

Moreover, our approach is capable of providing strong bounds with much less effort
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than these earlier techniques, although our simple approach sacrifices some precision.



33

Chapter 3

Mathematical preliminaries

This chapter introduces some of the basic notions from convex analysis that we use

throughout this work. These facts span from basic definitions and conventions to

technical results on the metric topology of convex cones. Along the way, we cover results

from conic duality theory and polyhedral geometry. Most, if not all, of these facts are

available in the literature, but no single reference is available that contains all of this

material. In order to lay a strong foundation for the work that follows, we compile these

facts into a number of omnibus propositions, and we provide complete proofs or explicit

references to standard texts.

Section 3.1 introduces our notation and conventions. While most of our notation is

standard, note that we use special notation for particular random vectors and matrices.

In Section 3.2, we present a number of facts about convex cones, and we introduce the

descent cone that plays an important role in the rest of our work. Section 3.3 contains a

technical discussion of the topology of closed, convex cones, and it may be skipped on a

first reading.

3.1 Conventions

Vectors and matrices. Bold lowercase letters denote vectors, while bold uppercase

letters are reserved for matrices, so x is a vector while X is a matrix. We denote the

transpose of X by X t . The letter I is an identity matrix, and 0 is the zero vector.

The inner product between two vectors is written 〈x , y〉, and the inner product
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between two matrices is 〈X , Y 〉 := tr(X t Y ), where tr(·) denotes the trace operator. The

vector inner product induces the Euclidean norm ‖x‖2 := 〈x , x 〉. The matrix inner

product induces the Frobenius norm 〈X , X〉= ‖X‖2
F that provides a Euclidean structure

to the space of matrices.

The vectorization operator vec(·) maps a matrix X ∈ Rm×n to a vector vec(X) ∈ Rmn

by stacking the columns of X from left to right into a tall vector. For two vectors x ∈ Rd

and y ∈ Rd ′ , we form the tall vector (x ; y) ∈ Rd+d ′ by stacking x on top of y . The

support supp(x ) of a vector x ∈ Rd is the set of indices of all nonzero elements of x :

supp(x ) := {i : x i 6= 0}.

Set operations. For two sets S, S′ ⊂ Rd , the Minkowski sum S + S′ is the set of all

summands formed by elements of S and S′:

S+ S′ := {x + x ′ : x ∈ S, x ′ ∈ S′}.

For a tuple (Si)ni=1 of subsets of Rd , we write the iterated Minkowski sum as

∑n

i=1
Si :=

§

∑n

i=1
x i : x i ∈ Si for all i = 1, . . . , n− 1, n

ª

.

We denote the closure of S by S, the linear hull of S by lin(S), and the convex hull of

S by conv(S). For any number λ ∈ R, we define λS := {λx : x ∈ S}. This notation

extends to the image of set S under a linear map A ∈ Rm×d:

AS := {Ax : x ∈ S}.

The indicator function 1S on S is

1S(x ) :=







1, x ∈ S,

0, otherwise.
(3.1)
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The related function iS defined by

iS(x ) :=− log(1S(x )) =







0, x ∈ S,

+∞, otherwise,
(3.2)

is also commonly referred to as an indicator function in the convex analysis literature

because iS is convex if and only if S is convex. To make the distinction between (3.1)

and (3.2), we call iS the convex indicator function.

Special sets. The unit Euclidean ball and unit sphere are given by

Bd := {x ∈ Rd : ‖x‖ ≤ 1} and Sd−1 := {x ∈ Rd : ‖x‖= 1}.

The Stiefel manifold Od of d × d orthogonal matrices is

Od := {U ∈ Rd×d : UU t = I}.

An orthogonal basis for Rd is an element of Od . An orthogonal basis for a space of

matrices is written in script, e.g., U . For a matrix X ∈ Rm×n, an orthogonal basis U for

Rm×n can be canonically identified with a matrix U ∈Omn via the identity

U (X) = vec−1
�

U vec(X)
�

.

The measure σd−1 on the sphere Sd−1 is induced by the usual Lebesgue measure on Rd .

In particular, the spherical measure σd−1 is not normalized, so that the total measure of

the sphere is [SW08, p. 13]

σd−1(Sd−1) =
2πd/2

Γ
�

d
2

�
. (3.3)

Convexity. A set K ⊂ Rd is convex if it contains the line segment connecting each pair

of its points. A convex set is a polyhedron if it is the intersection of a finite number of

closed halfspaces. A function f : Rd → R∪ {±∞} over the extended real line is convex
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if its epigraph

epi( f ) := {(x , t) ∈ Rd ×R : f (x )≤ t}

is convex. A convex function f is proper if its epigraph is nonempty and f (x )>−∞ for

all x , and a convex function f is closed if its epigraph is closed. The subgradient ∂ f (x )

of a convex function f at x ∈ Rd is the set

∂ f (x ) := {y ∈ Rd : f (z)≥ f (x ) + 〈y , z− x 〉 for all z ∈ Rd}.

The domain dom( f ) of a convex function f on Rd is given by

dom( f ) := {x ∈ Rd : f (x )<∞}.

Probability. Probability plays a central role in our analysis of demixing. The symbol

P denotes the probability of an event, while E returns the expectation of a random

variable. The abbreviation i.i.d. stands for “independent and identically distributed”,

while the tilde “∼” indicates equality in distribution, and should be read “is distributed

as.” We denote standard Gaussian vectors with the letter g ∼ NORMAL(0, I), while the

letter G represents a matrix with independent standard normal entries. We reserve the

letter θ for a uniform random variable on the Euclidean sphere Sd−1.

The set of orthogonal matrices Od is a compact Lie group, and hence it has a unique

invariant (Haar) probability measure. We denote elements drawn from this probability

measure by Q, and refer to Q as a random orthogonal basis or a random rotation, with

the understanding that reflections are allowed. Invariant measures have a convenient

forgetting property.

Fact 3.1 (Forgetting property of the invariant measure.). Let (Q1, . . . ,Qn−1,Qn) be i.i.d.

random rotations in Od . Suppose that f : On
d → R is a measurable function that satisfies

E
�

E[| f (Q1, . . . ,Qn−1,Qn)| | Q1]
�

<∞, (3.4)

where the outer expectation is over Q1, and the inner expectation is over Qi for i ≥ 2. In
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particular, condition (3.4) holds when | f | is bounded. Then

E[ f (Q1,Q2, . . . ,Qn−1,Qn)] = E[ f (Q1,Q1Q2, . . . ,Q1Qn−1,Q1Qn)]. (3.5)

We are not aware of any elementary reference for this fact as stated, and so we provide

the basic proof.

Proof. The integrability condition (3.4) on f ensures that Fubini’s theorem [Kal02,

Thm. 1.27] applies:

E[ f (Q1,Q2, . . . ,Qn−1,Qn)] = E
�

E[ f (Q1,Q2, . . . ,Qn−1,Qn) | Q1]
�

where the outer expectation is over Q1, and the inner expectation is over Qi for i ≥ 2.

The invariance of the measures of Qi implies that may rotate the Qi for i ≥ 2 by an

arbitrary fixed matrix without changing the inner expectation. Because Q1 is fixed

relative to the inner expectation above, we have

E
�

E[ f (Q1,Q2, . . . ,Qn−1,Qn) | Q1]
�

= E
�

E[ f (Q1,Q1Q2, . . . ,Qn) | Q1]
�

= E[ f (Q1,Q1Q2, . . . ,Q1Qn−1,Q1Qn)],

where the second inequality is justified by another application of Fubini’s theorem.

3.2 Convex cones

A convex cone C ⊂ Rd is a convex set that is positive homogeneous, so that C is a cone if

and only if

C = λC := {λx : x ∈ C} for all λ > 0.

We define Cd as the set of all nonempty closed convex cones in Rd . A (closed) ray

Rx ∈ Cd generated by a nonzero point x ∈ Rd is the one-dimensional cone

Rx :=
⋃

λ≥0

{x}= {λx : λ≥ 0}. (3.6)
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The polar C◦ of a cone C is the set of all outward-pointing normals to C:

C◦ := {y ∈ Rd : 〈y , x 〉 ≤ 0 for all x ∈ C}.

A halfspace Hx with a nonzero normal x ∈ Rd is the set Hx := {y ∈ Rd : 〈y , x 〉 ≤ 0}. In

particular, the Hx = R◦x , where Rx is the ray generated by x defined above. The product

of two cones C ⊂ Rd , C ′ ⊂ Rd ′ is the set

C × C ′ := {(x ; y) : x ∈ C , y ∈ C ′} ⊂ Rd+d ′ .

Convex cones enjoy a rich structure and duality theory that goes well beyond the

relations enjoyed by simple convex sets. For future reference, we collect a number of

these standard properties in the following proposition.

Proposition 3.2 (The algebra of convex cones). Let C , D ⊂ Rd be convex cones.

1. Decomposition. The cone C has the unique orthogonal decomposition

C = C∗+ LC , (3.7)

where C∗ is a pointed cone and LC is a linear subspace.

2. Summation. The Minkowski sum satisfies

C + D = conv{C ∪ D}; (3.8)

3. Bipolar. The polar C◦ is a closed convex cone and C◦◦ = C;

4. Sums. The polar of a sum is the intersection of the polars:

(C + D)◦ = C◦ ∩ D◦ and (C ∩ D)◦ = C◦+ D◦; (3.9)
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5. Rotational covariance. For any orthogonal matrix U ∈Od ,

(UC)◦ = UC◦; (3.10)

6. Polars of products. For any cone C ′ ⊂ Rd ′ , the polar of the product cone is the

product of the polars:

(C × C ′)◦ = C◦× (C ′)◦. (3.11)

Proof. The first four properties are available in [Roc70]. For the decomposition rela-

tion (#1), we refer to p. 65, the summation property (#2) is available on p. 22, and

the bipolar relation (#3) appears on p. 121, and the sum relation (#4) appears as

Corollary 16.4.2.

For the rotational covariance property (#5), we have the following string of equiva-

lences:

〈x , y〉 ≤ 0 ∀x ∈ UC ⇐⇒ 〈Ux , y〉 ≤ 0 ∀x ∈ C

⇐⇒ 〈x ,U t y〉 ≤ 0 ∀x ∈ C ⇐⇒ U t y ∈ C◦.

The first equivalence is the definition of UC , the second is the characterization of the

transpose, and the final equivalence follows by definition of the polar cone C◦. The

claim (3.10) then follows from the fact that U = (U t)−1 because U is orthogonal.

The final property (#6) is a standard exercise; we repeat the details for completeness.

Suppose that (w ; z) ∈ (C × C ′)◦. Then for all λ,λ′ > 0 and any x ∈ C , y ∈ C ′, we have

0≥ 〈(λx ;λ′y), (w ; z)〉= λ〈x , w 〉+λ′〈y , z〉,

by definition of the polar cone and homogeneity of C , C ′. Taking λ or λ′ to zero shows

that each of the terms of the right-hand side above must be nonpositive, and hence

(w ; z) ∈ C◦× (C ′)◦. On the other hand, for any w ∈ C◦, z ∈ (C ′)◦ and all x ∈ C , y ∈ C ′,

we have

0≥ 〈x , w 〉+ 〈y , z〉= 〈(x ; y), (w ; z)〉
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by definition of the polar cone. Hence (w ; z) ∈ (C × C ′)◦, and so (3.11) holds.

Another useful fact is the following separating hyperplane theorem for convex cones

due to Klee [Kle55, Thm. 2.5].

Fact 3.3 (Separating hyperplane theorem for convex cones). Suppose C , C ′ are two

closed convex cones in a finite-dimensional vector space E isomorphic to Rn for some integer

n≥ 1. If C ∩ C ′ = {0}, then there exists a nonzero z ∈ E such that z ∈ C◦ and −z ∈ (C ′)◦.

We use the notation E and not Rn because an application of Fact 3.3 in Section 5.4.1

requires that E be some arbitrary linear subspace of Rn, as opposed to a coordinate

subspace that might be inferred by writing Rn.

In the finite-dimensional setting, Fact 3.3 is readily deduced from the usual separating

hyperplane theorem for convex sets by considering the hyperplane that separates the

interior of C from C ′. Klee’s original result is much more general, and states that the

statement of Fact 3.3 holds when E is any locally convex topological vector space.

3.2.1 Projections and distances

Projections onto and distances from convex cones possess a significant amount of

algebraic structure. This section describes some of these remarkable properties.

Definition 3.4 (Projection and distance). For each closed cone C ∈ Cd and all x ∈ Rd ,

we define the projection ΠC(x ) of x onto C by

ΠC(x ) := arg min
y∈C

‖x − y‖2 . (3.12)

The distance dist(x , C) from x to C is given by

dist(x , C) := inf
y∈C
‖x − y‖ . (3.13)

Both the projection operator and the distance function are well defined because the

squared Euclidean norm is strongly convex and coercive, and hence it achieves its

minimum at a unique point in every closed convex set.
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We require a number of important and (mostly) well-known properties of the

distance and projection functionals.

Proposition 3.5 (Projections and distances). Let C ∈ Cd be a closed, convex cone, and

let x ∈ Rd .

1. Orthogonality characterization. The points y , z ∈ Rd satisfy

x = y + z, y ∈ C , z ∈ C◦, and y ⊥ z (3.14)

if and only if y = ΠC(x ) and z = ΠC◦(x ). In particular, x has an orthogonal

decomposition over C and C◦ given by

x = ΠC(x ) +ΠC◦(x ). (3.15)

2. Pythagorean identity. The norm of x satisfies

‖x‖2 = ‖ΠC(x )‖
2+ ‖ΠC◦(x )‖

2 . (3.16)

3. Distance as a projection. The distance from x to C satisfies

dist(x , C) = ‖ΠC◦(x )‖ . (3.17)

4. Product rule. For C ′ ∈ Cd ′ and any (x ; x ′) ∈ Rd+d ′ , the projection onto C × C ′ is

given by

ΠC×C ′((x ; x ′)) =
�

ΠC(x ); ΠC(x
′)
�

. (3.18)

5. Gradient. The map x 7→ ‖ΠC(x )‖
2 is everywhere differentiable with gradient given

by

∇‖ΠC(x )‖
2 =∇dist2(x , C◦) = 2ΠC(x ). (3.19)

Proof. We provide a complete demonstration of each point.
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(Orthogonality characterization) A necessary and sufficient condition for a point y ∈ C

to minimize the strongly convex, differentiable function f (y) := ‖x − y‖2 over C set is

that the gradient of f at y supports C at y [Roc70, p. 271]. As ∇ f (y) = 2(y − x ), a

necessary and sufficient condition for the equality y = ΠC(x ) is

y ∈ C and 〈y − x , x ′− y〉 ≤ 0 for all x ′ ∈ C . (3.20)

We will show that (3.20) is equivalent to the conditions

y ∈ C , y − x ∈ C◦, and y ⊥ y − x . (3.21)

Indeed, if the condition (3.21) holds, then for any x ′ ∈ C we have

〈y − x , x ′− y〉= 〈y − x , x ′〉 ≤ 0 for any x ′ ∈ C

and so (3.20) holds. On the other hand, suppose (3.20) holds. Then homogeneity of

the cone C readily implies y − x ∈ C◦ because, if 〈y − x , x ′〉> 0 for some x ′ ∈ C , then

we may force 〈y − x , M x ′ − y〉 > 0 by taking M large enough. Hence (3.20) implies

y − x ∈ C◦. But taking x ′ = 0 in (3.20) yields

〈y − x , y〉 ≥ 0.

As we have already established y− x ∈ C◦, and the relation y ∈ C holds by construction,

we must have 〈y − x , y〉 = 0. Thus, (3.20) and (3.21) are equivalent, and so y = ΠC(x )

if and only if (3.21) holds. Applying the same argument to the polar cone reveals that

z = ΠC◦(x ) if and only if

z ∈ C◦, z− x ∈ C , and z ⊥ z− x , (3.22)

where we have used the fact that C◦◦ = C because C is closed (see Proposition 3.2.3).

Now note that y satisfies (3.21) if and only if z := x−y satisfies (3.22). Since (3.21)



43

and (3.22) hold if and only if y = ΠC(x ) and z = ΠC◦(x ), the conclusion follows.

(Pythagorean identity) For the Pythagorean identity (3.16), we apply the decomposi-

tion (3.15) and expand the Euclidean norm:

‖x‖2 = ‖ΠC(x ) +ΠC◦(x )‖
2 = ‖ΠC(x )‖

2+ 2〈ΠC(x ),ΠC◦(x )〉+ ‖ΠC◦(x )‖
2 .

By orthogonality the decomposition (3.15), the inner product above is equal to zero,

and hence the Pythagorean formula (3.16) holds.

(Distance as a projection) Comparing the definition (3.12) of the projection map to

the definition (3.13) of the distance map, we see

dist(x , C) = ‖x −ΠC(x )‖= ‖ΠC◦(x )‖

where the second equality is (3.15). This is the claimed distance formula (3.17).

(Product rule.) For the product rule, we define y , z ∈ Rd+d ′ by

y :=
�

ΠC(x ); ΠC ′(x
′)
�

and z :=
�

ΠC◦(x ); Π(C ′)◦(x
′)
�

. (3.23)

From the orthogonal decomposition (3.15), we find the equality (x , x ′) = y + z. By

virtue of the orthogonality of (3.15), the vectors y and z are perpendicular:

〈y , z〉= 〈ΠC(x ),ΠC◦(x )〉+ 〈ΠC ′(x ),Π(C ′)◦(x
′)〉= 0

Moreover, y ∈ C × C ′ by definition. The fact that z ∈ (C × C ′)◦ is easy to verify directly.

For any (q ; q ′) ∈ C × C ′, we have

〈(q ; q ′), z〉= 〈q ,ΠC(x )〉+ 〈q ′,ΠC ′(x
′)〉 ≤ 0

because q ∈ C and q ′ ∈ C ′. Since y and z satisfy (3.14), we must have y = ΠC×C ′(x ).

The claim follows upon recalling the definition (3.23) of y .
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(Gradient.) The first equality in (3.19) follows immediately from (3.17) whenever

either gradient is well defined. To show the second gradient exists and that the second

equality holds, we follow the proof of [RW98, Thm. 2.26]. By linearity of the gradient,

we only need to demonstrate that the function

h(u) := dist2(x + u, C◦)− dist2(x , C◦)− 2〈ΠC(x ), u〉

is differentiable at u = 0 and that ∇h(0) = 0. Because x −ΠC(x ) ∈ C◦ by (3.14), we

find

dist2(x + u, C◦)≤ ‖x + u −ΠC◦(x )‖
2 = ‖ΠC(x ) + u‖2 ,

where the inequality follows by definition of the distance and the second equality

is (3.15). After we expand the square, we find

h(u)≤ ‖ΠC(x )‖
2− dist2(x , C◦) + ‖u‖2 = ‖u‖2 for every u ∈ Rd ,

where the second inequality follows from (3.17). Because h is the sum of convex

functions, the function h is itself convex, and so it lies below its chord:

1

2
(h(u) + h(−u))≥ h(0) = 0.

Combining this result with the preceding display, we see that h(u)≥−h(−u)≥−‖u‖2,

and so we conclude that |h(u)| ≤ ‖u‖2. Therefore,

lim
u→0

|h(u)|
‖u‖

= 0.

By definition of the gradient, we have ∇h(0) = 0. This completes the proof.

3.2.2 Descent cones

For convex functions, local behavior determines a significant amount of global structure.

The following definition encodes detailed local information about convex functions in
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Figure 3.1: Descent and normal cones. [Left] The sublevel set S (shaded) of a convex
function f (level lines) at a point x . [Right] The descent cone D( f , x ) (light shade) is
the cone generated by the sublevel set S at x (cf. (3.26)). The normal cone N (S, x ) (dark
shade) is polar to the descent cone.

the form of cones.

Definition 3.6 (Descent and normal cones). The descent cone D( f , x ) of a function

f : Rd → R∪ {+∞} at a point x ∈ Rd is the cone generated by the perturbations of f at

x that do not increase f :

D( f , x ) :=
⋃

λ>0

{y : f (x +λy)≤ f (x )}. (3.24)

The normal cone N (S, x ) of a set S at x is the set of supporting hyperplanes to S at x :

N (S, x ) := {y : 〈y , s − x 〉 ≤ 0 for all s ∈ S}. (3.25)

In this definition, we allow f to take values on the extended real line. In particular,

when f (x ) = +∞, we have D( f , x ) = Rd .

The normal cone has a close relationship to the descent cone.

Proposition 3.7 (Properties of descent and normal cones). Let f : Rd → R∪ {+∞} be

a proper convex function. For any point x ∈ Rd , define the sublevel set S := {z : f (z) ≤

f (x )} of f at x . Then
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1. Sublevels. The descent cone is generated by the sublevel set:

D( f , x ) =
⋃

λ>0

λ · (S+ {−x}). (3.26)

2. Convexity. The descent cone is a convex cone that contains its apex 0.

3. Polarity. The normal cone is polar to the descent cone:

N (S, x ) = D( f , x )◦. (3.27)

In particular, the normal cone is a closed, convex cone.

4. Minima. The point x is the unique global minimum of f if and only if

D( f , x ) = {0}, or equivalently, if and only if N (S, x ) = Rd . (3.28)

If in addition, x is in the interior of dom( f ), the subgradient ∂ f (x ) is not empty, and

0 /∈ ∂ f (x ), then

5. Subgradient. The normal cone is generated by the subgradient:

N (S, x ) =
⋃

λ≥0
λ · ∂ f (x ). (3.29)

Proof. Again, we organize the demonstration according to the headings.

(Sublevels) We have f (x +λy)≤ f (x ) for some λ > 0 if and only if λy ∈ S+ {−x}.

This is of course equivalent to y ∈ λ−1(S+{−x}). The conclusion follows by noting that

λ > 0 if and only if λ−1 > 0 and comparing the definition (3.24) with the claim (3.26).

(Convexity) Since the sublevel sets of a convex function are convex, the set S+ {−x}

is convex. Convexity of D( f , x ) then follows from the fact that the cone generated by a

convex set is convex [Roc70, Cor. 2.6.3] and (3.26). The fact that 0 ∈ D( f , x ) follows

from the fact that x ∈ S, and hence 0 ∈ S+ {−x}.

(Polarity) This follows readily from the definition (3.25) of the normal cone and the
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characterization (3.26) of the descent cone in terms of the sublevel set S.

(Minima) Suppose D( f , x ) = {0}. Then for each perturbation y 6= 0 about x , we have

f (x + y)> f (x ) by definition (3.24) of the descent cone. Hence x is the unique global

minimum of f .

On the other hand, suppose that x is the unique global minimum of f . Then for

each y 6= 0, we have f (x + y) > f (x ), and hence y /∈ D( f , x ) by definition. Because

0 ∈ D( f , x ) by the convexity properties (#2) of the descent cone, we see that in fact

D( f , x ) = {0}.

We have shown D( f , x ) = {0} if and only if x is the unique global minimizer of x .

But D( f , x ) = {0} if and only if N (S, x ) = Rd by the polarity relation (3.27) and the

fact that 0 ∈ D( f , x ). Hence (3.28) holds.

(Subgradient.) This follows from [Roc70, Cor. 23.7.1] under our assumptions on

∂ f (x ).

3.3 The topology of convex cones

By identifying a cone containing the origin with its restriction to the unit sphere, we

obtain a one-to-one correspondence between the set Cd of nonempty closed convex

cones and the set of closed geodesically connected subsets of the unit sphere (the

spherically convex bodies). The goal of this section is to introduce the conic Hausdorff

metric on Cd that is obtained by this identification, and to show that the Euclidean

projection is continuous under this metric.

The conic Hausdorff metric appears briefly in connection with the integral-geometric

development of Section 5. The continuity result (Proposition 3.8) is important for a

new integral-geometric formula that we develop in Appendix A. Beyond these two fine

points, this section may be skipped without much loss for what follows.

Our first priority is to describe a metric on the set Cd of closed convex cones that

agrees with the commonly used metric on the sphere Sd−1. For this task, we must

introduce a few pieces of notation. The arclength distance dists(x , y) between two unit
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vectors x , y ∈ Sd−1 is given by

dists(x , y) := cos−1 (〈x , y〉) .

We extend the arclength distance to pairs of cones C , D in the usual manner:

dists(C , D) = inf
x∈C∩Sd−1

y∈D∩Sd−1

dists(x , y).

By convention, the distance is zero if C = D = {0} and infinite if precisely one of C = {0}

or D = {0}. The angular extension Ts(C ,α) of angle α > 0 around a cone C ∈ Cd is the

union of all rays within an arclength distance of α to C:

Ts(C ,α) := {x ∈ Rd : x 6= 0 and dists(x/‖x‖ , C)≤ α} ∪ {0}.

Note that even if a cone C is convex, its extension Ts(C ,α) may not be convex for any

α > 0. The tube around a nontrivial subspace, for example, is never convex.

The angular tube induces the conic Hausdorff metric distH (C , D) between any two

cones C , D ∈ Cd via

distH (C , D) := inf{α≥ 0 : Ts(C ,α)⊃ D and Ts(D,α)⊃ C}.

Throughout this work, the topology on Cd is the one induced by the conic Hausdorff

metric.

From the correspondence between Cd and the set of spherically convex bodies, it

follows that the set of polyhedral cones forms a dense subset of all closed convex cones

under the conic Hausdorff metric (see [SW08, p. 252]). This fact allows us to evaluate

continuous functions on all cones in Cd by determining its value on a sequence of

polyhedral cones and taking a limit. To apply this procedure, we must first ensure that

the function is continuous in the conic Hausdorff metric. The next proposition verifies

that the Euclidean projection onto a cone is continuous in the conic Hausdorff metric.
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Proposition 3.8 (Continuity of the projection). Consider a sequence (Ci)i∈N of cones in

Cd such that Ci → C ∈ Cd as i →∞. For every x ∈ Rd , the projection ΠCi
(x )→ ΠC(x )

as i→∞.

Proof. We first dispense with a trivial case. If C = {0}, then Ci = {0} for all i sufficiently

large by our convention about the spherical distance to the trivial cone. Therefore

ΠCi
(x ) = 0 for all i large enough, and the claim trivially holds.

For the remainder of the proof, we assume that C 6= {0}. Then the convergence

Ci → C implies that Ci 6= {0} for all sufficiently large i. By restricting to sufficiently

large indices i, we may assume without further loss that Ci 6= {0} for every i.

Define yi := ΠCi
(x ). We claim that the sequence (yi)i∈N has a limit point y∗ ∈ C . To

see that a limit point exists, note that the sequence is bounded by ‖yi‖ ≤ ‖x‖ owing to

the Pythagorean identity (3.16). The Euclidean ball of radius ‖x‖ is compact, so there

exists a convergent subsequence yi j
→ y∗ as j→∞.

Next, we argue that the limit point y∗ ∈ C . Suppose, for a contradiction, that the

limit point y∗ /∈ C . Then, for all j large enough, we have dist(yi j
, C) > ε > 0 from the

fact that yi j
→ y∗ and continuity of the distance to a cone in the Euclidean metric. But

yi j
∈ Ci j

and ‖yi j
‖ is uniformly bounded by ‖x‖, so that this inequality contradicts the

fact that Ci j
→ C in the conic Hausdorff metric. Hence y∗ ∈ C , as claimed.

For the next step, we show that y∗ = ΠC(x ). For any ε > 0 and all sufficiently large

j (how large depends on ε), we have

dist(x , C)≤ ‖x − y∗‖ ≤ ‖x − yi j
‖+ ‖yi j

− y∗‖ ≤ dist(x , Ci j
) + ε. (3.30)

The first inequality follows because y∗ ∈ C . The second is the triangle inequality, and

the third arises from the definition (3.13) of the distance and the fact that yi j
→ y∗.

Taking ε→ 0, we see

lim inf
j→∞

dist(x , Ci j
)≥ dist(x , C). (3.31)

For the reverse inequality, define the true projection z := ΠC(x ) with norm β := ‖z‖.

By definition of convergence in the conic Hausdorff metric, for any ε > 0 there exists a
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unit norm zεi ∈ Ci such that 〈zεi , z〉 ≥ (1− ε)β for all i large enough. (The fact that zεi

has unit norm requires the restriction that Ci 6= {0} which, as discussed above, incurs

no loss.)

By expanding the squared norm, we find that the inequality

‖z− β zεi ‖
2 = 2β(β − 〈z, zεi 〉)≤ 2εβ2 ≤ 2ε ‖x‖2

holds for all i sufficiently large. The equality follows from the definition of β . The

second inequality above follows from the Pythagorean identity (3.16). In the same

manner as (3.30), we find

dist(x , Ci)≤ ‖x − β zεi ‖ ≤ ‖x − z‖+ ‖β zεi − z‖ ≤ dist(x , C) +
p

2ε ‖x‖

for all i large enough. Taking ε→ 0, we find the inequality

lim sup
i→∞

dist(x , Ci)≤ dist(x , C).

Since the limit superior of a subsequence is no larger than the limit superior of the entire

sequence, the inequality above combined with (3.31) implies that we have the equality

lim
j→∞

dist(x , Ci j
) = dist(x , C).

Taking the limit as ε→ 0 and j→∞ in (3.30), we conclude that ‖x − y∗‖= dist(x , C).

By uniqueness of the projection, we see that the limit point y∗ = ΠC(x ). This same

argument works for any limit point of the sequence (yi)i∈N, so we conclude that the

limit point is unique. Therefore, the limit yi → ΠC(x ), as claimed.

Remark 3.9. Amelunxen & Bürgisser [AB12a, App. A] have also considered the conic

Hausdorff metric, but they did not verify the continuity of the Euclidean projection of a

point. This makes Proposition 3.8 a (minor) novel contribution of this thesis.
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Chapter 4

The geometry of demixing

This chapter develops a characterization of success for the convex demixing method (1.6)

in terms of a configuration of cones. The basic result, Theorem 4.1, states that con-

strained demixing succeeds if and only if the intersection of two appropriate descent

cones is trivial. This result is a corollary of a more intricate geometric characterization

of multiple demixing, as discussed in Section 4.2.

We look at compressed demixing in Section 4.3, and we find that it can be cast into

the framework of multiple demixing. As a corollary, we recover well-known optimality

conditions for regularized linear inverse problems from the optimality conditions for

demixing. In Section 4.5, we describe how the constrained formulation of demixing

relates to the Lagrangian formulation often used in practice. While this result is well

known in the theory of convex optimization, our proof technique is based on the

geometric characterization of success we develop in this section.

The optimality condition of Theorem 4.1 appears in the joint work [MT12, Lem. 2.3]

with a different proof. The rest of this section is novel, with the exception of the well-

known equivalence between the Lagrange and constrained demixing programs that we

discuss Section 4.5.



52

4.1 Optimality conditions for constrained demixing

Let us briefly recall the constrained demixing formulation from Section 1.2.2. We model

an observed signal z0 ∈ Rd as the sum of two unknown signals

z0 = x \+U y \, (4.1)

where U ∈Od is a known orthogonal matrix that models the relative orientation of the

signals. We are also given two convex functions f and g, perhaps atomic norms from

Section 1.2.1, that promote the structures we expect to see in x \ and y \. Given the

additional side information α := g(y \), we attempt to recover the unknown vectors x \

and y \ by solving the constrained demixing program

minimize f (x ) subject to g(y)≤ α and x +U y = z0, (4.2)

with decision variables x , y ∈ Rd . We say that (4.2) succeeds if (x \, y \) is the unique

optimal point (4.2); otherwise, the method fails. It turns out that there is a simple

characterization of success and failure in terms of a configuration of descent cones.

Theorem 4.1 (Demixing optimality conditions). The demixing method (4.2) succeeds if

and only if

D( f , x \)∩
�

−UD(g, y \)
�

= {0}. (4.3)

The intersection of descent cones always contains the zero vector by Proposition 3.6.2, so

this result tells us that demixing succeeds if and only if the corresponding descent cones

do not share a ray. See Figure 4.1 for an illustration of the optimality condition (4.3).

4.2 Multiple demixing

Our multiple demixing approach is a natural extension from our method (4.2) for

demixing two signals to demixing the superposition of an arbitrary number of signals.
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x \

{x : g(U t(z0− x ))≤ g(y \)}

{x : f (x )≤ f (x \)}

x \+D( f , x \)

x \−UD(g, y \)

x \

{x : g(U t(z0− x ))≤ g(y \)}

{x : f (x )≤ f (x \)}

x \+D( f , x \)

x \−UD(g, y \)

Figure 4.1: Geometry of optimality conditions. [Left] The success condition for the
convex demixing method (4.3) states that the descent cone of f at x\ has a trivial intersection
with a rotated copy of the descent cone of g at y\. [Right]When the descent cones share a
ray, the demixing method (4.2) is guaranteed to fail. This figure is drawn from the joint
work [ALMT13].

In this situation, we observe a superposition of n signals:

z0 =
∑n

i=1
Ui x

\
i , (4.4)

where Ui ∈ Od are known orthogonal matrices. We choose convex functions fi that

reflect the structure we expect to find in the constituents x \i for each i = 1, . . . , n− 1, n.

Given the additional side information αi := fi(x \i ), we pose the following convex

demixing method:

minimize f1(x1)

subject to fi(x i)≤ αi for i = 2, . . . , n− 1, n and z0 =
∑n

i=1
Ui x i,

(4.5)

where the optimization variable is the tuple (x1, . . . , xn−1, xn). As in the case of basic

demixing (4.2), the multiple demixing method (4.5) succeeds if and only if the tuple

(x \1, . . . , x \n−1, x \n) is the unique optimal point of (4.5). Again, we obtain a characteriza-

tion of success and failure in terms of descent cone configurations.

Theorem 4.2 (Multiple demixing optimality conditions). The demixing method (4.5)
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succeeds if and only if

UiD( fi, x \i )∩−
�
∑

j 6=i
U jD( f j, x \j)

�

= {0} for each i = 1, . . . , n− 1, n. (4.6)

In other words, multiple demixing succeeds if and only if no descent cone shares a ray with

the (negative) Minkowski sum of all the others.

The proof is deferred until Section 4.4. For now, we show how the optimality conditions

of basic demixing (4.2) are a special case of the multiple demixing optimality conditions.

Proof of Theorem 4.1 from Theorem 4.2. Make the identifications

( f1, f2,U1,U2, x \1, x \2)↔ ( f , g, I,U , x \, y \).

The n= 2 case of Theorem 4.2 then shows that (4.2) succeeds if and only if

D( f , x \)∩−UD(g, y \) = {0} and UD(g, y \)∩−D( f , x \) = {0}.

The equations above are equivalent, so Theorem 4.1 follows immediately.

4.3 Compressed demixing

Another variation on the demixing theme is a compressed version of demixing. In this

setup, the observation z0 ∈ Rm is an undersampled version of the superimposed signal:

z0 = A
�
∑n

i=1
Ui x

\
i

�

, (4.7)

where A ∈ Rm×d is an undersampling operator (that is, m < d) and the Ui are known

orthogonal matrices. As usual, the goal is to recover the unknown natural signals x \i

from the superimposed and undersampled observation z0.

Given a convex function fi that promotes the structure of x \i and the side information

αi := fi(x \i ) for each i = 1, . . . , n− 1, n, we pose the following compressed demixing
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program

minimize f1(x1)

subject to fi(x i)≤ αi for i = 2, . . . , n− 1, n, and z0 = A
�
∑n

i=1
Ui x i

�

,
(4.8)

where the optimization variable is the tuple (x1, . . . , xn−1, xn). The compressed demixing

program succeeds if the tuple (x \1, . . . , x \n−1, x \n) is the unique optimal point of (4.8).

We can characterize the undersampled version of demixing in terms of the con-

figuration of convex cones. To simplify the statement of the theorem, we define the

cones Ci := UiD( fi, x \i ) for i = 1, . . . , n− 1, n and Cn+1 := null(A), the nullspace of the

measurement operator A.

Theorem 4.3 (Compressed demixing optimality conditions). For each i = 1, . . . , n, n+1,

define the cones Ci as in the prior paragraph. The compressed demixing method (4.8)

succeeds if and only if

Ci ∩−
�
∑

j 6=i
C j

�

= {0} for each i = 1, . . . , n, n+ 1. (4.9)

There is a strong structural similarity between the optimality condition (4.9) for

compressed demixing and the condition (4.5) for multiple demixing. This is no co-

incidence. The entirety of the proof of Theorem 4.3 consists of a reduction from the

compressed demixing scheme (4.8) to a special case of multiple demixing (4.5).

Proof. We start with a few definitions. Let ẑ0 :=
∑n

i=1 Ui x
\
i be the uncompressed

observation and define fn+1(x ) := inull(A)(x ), the convex indicator (3.2) of the nullspace

of A. Fix the rotation Un+1 := I ∈ Od and the side information αn+1 := 0. We claim that

the compressed demixing problem (4.8) succeeds at demixing (x \1, . . . , x \n) if and only if

the multiple demixing problem

minimize f1(x̂1)

subject to fi(x̂ i)≤ αi for i = 2, . . . , n, n+ 1 and ẑ0 =
∑n+1

i=1
Ui x̂ i

(4.10)

succeeds at demixing (x \1, . . . , x \n,0), where the decision variables are x̂ i ∈ Rd .
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To show the equivalence of the programs (4.8) and (4.10), we demonstrate that

there is a bijection between the feasible points of (4.8) and (4.10) that preserves the

objective values and maps (x \1, . . . , x \n) to (x \1, . . . , x \n,0). We show that the map defined

by

(x1, x2, . . . , xn) 7→
�

x1, x2, . . . , xn, ẑ0−
∑n

i=1
Ui x i

�

=: (x̂1, x̂2, . . . , x̂n, x̂n+1) (4.11)

has this property.

Indeed, suppose that the tuple (x1, . . . , xn) is feasible for the compressed demix-

ing problem (4.8). Then the objective value is unchanged; that is, f1(x̂1) = f1(x1).

Moreover,

fi(x̂ i) = fi(x i)≤ αi for all i = 2, . . . , n− 1, n.

We now verify that fn+1(x̂n+1)≤ αn+1. Our definition of ẑ0 ensures

A
�

ẑ0−
∑n

i=1
Ui x i

�

= z0− A
�
∑n

i=1
Ui x i

�

= 0

by feasibility of (x1, . . . , xn). Hence,

fn+1(x̂n+1) = inull(A)

�

ẑ0−
∑n

i=1
Ui x i

�

= 0≤ αn+1,

where the inequality follows by our definition αn+1 := 0. Thus, all inequality constraints

in (4.10) are satisfied by the image point. The equality constraint is trivially satisfied by

definition of x̂n+1, and hence the map (4.10) takes feasible points of (4.8) to feasible

points of (4.10) with the same objective value.

The other direction requires similar considerations. Let (x̂1, . . . , x̂n+1) be feasible

for (4.10). Then the preimage (x1, . . . , xn) = (x̂1, . . . , x̂n) under the map (4.11) clearly

has the same objective value and satisfies all of the inequality constraints in (4.8).

Moreover, the constraint

fn+1(x̂n+1) = inull(A)(x̂n+1)≤ αn+1 = 0
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x \+ null(A)

{x : f (x )≤ f (x \)}

x \

x \+D( f , x \)

Figure 4.2: Optimality conditions for linear inverse problems. Linear inverse prob-
lems (4.13) are a special case of compressed demixing. The optimality condition for this
linear inverse problems involves only the configuration of a nullspace (line) and a de-
scent cone (shaded). The figure above is a fixture in the literature of compressed sensing;
cf. [CRT06b, Fig. 2.1].

implies that Ax̂n+1 = 0 by the definition (3.2) of the convex indicator function, and

hence

A
�
∑n

i=1
Ui x i

�

= A(ẑ0− x̂n+1) = z0,

where the final inequality uses the definition of ẑ0. Therefore the map (4.11) provides

a bijection between the feasible points and objective values of the programs (4.8)

and (4.10). Since (4.11) trivially takes (x \1, . . . , x \n) to (x \1, . . . , x \n,0) by definition of ẑ0,

we conclude that (4.8) succeeds if and only if (4.10) succeeds at demixing (x \1, . . . , x \n,0).

The claim now follows immediately from this equivalence by the optimality condi-

tions for multiple demixing (4.6) given by Theorem 4.2 and the fact that D(inull(A),0) =

null(A). This completes the proof.

4.3.1 Linear inverse problems

The n = 1 case of the compressed demixing problem (4.8) deserves a special remark. In

this case, the observation z0 consists simply of an undersampled structured vector:

z0 = Ax \. (4.12)
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This is the setup of the generic linear inverse problem studied in [CRPW12]. With a

convex regularizer f associated with the structure of x \, the corresponding demixing

method reduces to

minimize f (x ) subject to Ax = z0. (4.13)

By Theorem 4.3, the linear inverse program succeeds if and only if

D( f , x \)∩ null(A) = {0},

where we use the fact that null(A) =−null(A) by linearity. This condition is precisely

that given in [CRPW12, Prop. 2.1]. We provide the obligatory illustration of this

condition in Figure 4.2.

4.4 Proof of Theorem 4.2

Before diving into the proof, we develop two facts about descent cones. The first

result formalizes a basic but fundamental observation: if a convex function eventually

decreases in some direction, then it locally decreases in that direction.

Proposition 4.4 (Local descent). Let f be a convex function. Then y ∈ D( f , x ) if and

only if there exists a λ0 > 0 such that f (x +λy)≤ f (x ) for all λ ∈ [0,λ0].

Proof. The “if” part is immediate. Given any λ0 > 0 such that f (x +λ0y)≤ f (x ), we

have y ∈ D( f , x ) by definition (3.24).

For the other direction, suppose y ∈ D( f , x ). Then the definition of a feasible cone

ensures that there exists a number λ0 > 0 for which f (x + λ0y) ≤ f (x ). Suppose

λ ∈ [0,λ0]. By the convexity of f , we have

f (x +λy) = f
��

1−
λ

λ0

�

x +
λ

λ0
(x +λ0y)

�

≤
�

1−
λ

λ0

�

f (x ) +
λ

λ0
f (x +λ0y)

Applying the inequality f (x + λ0y) ≤ f (x ), we find that the last expression above is
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less than f (x ). This completes the demonstration.

Our next result is a transformation rule for descent cones under linear maps. The

result shares some similarities with common subgradient transformation rules for convex

functions [Roc70, Sec. 23], but it has a slightly different flavor because the descent cone

is a primal object while the subgradient is a dual object.

Proposition 4.5 (Descent cones and linear transformations.). Let g be any convex

function and define h(x ) := g(Ax ) for some matrix A. Then AD(h, x ) = D(g, Ax ).

Proof. The inclusion y ∈ D(h, x ) occurs if and only if there exists a λ > 0 such that

h(x +λy)≤ h(x ).

Expanding the definition of h, this inequality is equivalent to

g(A(x +λy))≤ g(Ax )

which occurs if and only if λAy ∈ D(g, Ax ) by linearity of A. Since λ > 0 and cones

are positive homogeneous, the final inclusion holds if and only if Ay ∈ D(g, Ax ). This

string of equivalences establishes the claim.

Proof of Theorem 4.2. To avoid notational clutter, we prove the result when Ui = I for

every i = 1, . . . , n− 1, n. This special case easily implies the general case Ui 6= I via the

linear transformation rule for descent cones given by Proposition 4.5. The details of this

reduction are given at the end of the proof.

(⇒) Suppose first that the tuple (x \1, . . . , x \n−1, x \n) is the unique optimal point for the

multiple demixing method (4.5). We must show that the intersection relations (4.6)

hold. To this end, let i ∈ {1, . . . , n− 1, n} and suppose that

yi ∈ D( fi, x \i )∩−
�
∑

j 6=i
D( f j, x \j)

�

.

We will show that yi = 0. By the definition of a Minkowski sum, there exist vectors
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y j ∈ D( f j, x \j) such that

yi =−
∑

j 6=i
y j. (4.14)

Because each of the summands lies in a descent cone, Proposition 4.4 ensures the

existence of a λ > 0 such that

f j(x
\
j +λy j)≤ f j(x

\
j) for all j = 1, . . . , n− 1, n.

Moreover, we have
∑n

j=1
x \j +λy j =

∑n

j=1
x \j = z0

by equation (4.14) and the definition (4.4) of z0. By combining the last two displays, we

see that the tuple (x \1+λy1, . . . , x \n+λyn) is feasible for (4.5) and has an objective value

no larger than the minimal objective value. Since (x \1, . . . , x \n) is the unique minimizer

of (4.5) by assumption, we deduce in particular that yi = 0. Because the index i was

arbitrary, we conclude that condition (4.6) holds.

(⇒) Suppose now that (x \1, . . . , x \n−1, x \n) is not the unique optimal point of (4.5).

Then there exists a distinct tuple (x [1, . . . , x [n−1, x [n) that is optimal for (4.5). Define the

perturbations yi := x [i − x \i for all i = 1, . . . , n− 1, n. Optimality and feasibility of the

[-tuple leads to the inequalities

fi(x
\
i + yi) = fi(x

[
i )≤ f (x \) for all i = 1, . . . , n− 1, n.

These inequalities imply the inclusion yi ∈ D( fi, x \i ) for each i by the definition (3.24)

of descent cones. Since the [-tuple is feasible for (4.5), we also find

∑n

i=1
yi =

∑n

i=1
x [i − x \i = z0− z0 = 0.

The first equality is the definition of yi, while the second follows from feasibility of \ and

[ tuples. Because the [-tuple is distinct from the \-tuple, we have yi∗ 6= 0 for at least one

index i∗. Rearranging the display above, we see that yi∗ =−
∑

j 6=i∗
y j ∈ −

∑

j 6=i∗
D( f j, x \j ).



61

In particular,

D( fi∗ , x \i∗)∩−
�
∑

j 6=i∗
D( fi, x \i )

�

6= {0}.

In other words, the condition (4.6) does not hold. This completes the demonstration

when Ui = I for each i = 1, . . . , n− 1, n.

(Extension to general rotations) A simple change of variables extends this proof to the

setting of arbitrary Ui ∈ Od . For every i = 1, . . . , n−1, n, define x̂ \i := Ui x
\
i and hi(x̂ ) :=

f (U t x̂ ). Then the demixing program (4.5) succeeds at identifying (x \1, . . . , x \n−1, x \n) if

and only if the program

minimize h1(x̂1)

subject to hi(x̂ i)≤ αi for i = 2, . . . , n− 1, n and z0 =
∑n

i=1
x̂ i,

has (x̂ \1, . . . , x̂ \n−1, x̂ \n) as its unique optimal point. By our result above, this occurs if and

only if

D(gi, x̂ \i )∩−
�
∑

j 6=i
D(g j, x̂ \j)

�

= {0} for all i = 1, . . . , n− 1, n.

Since U t = U−1 by orthogonality, Proposition 4.5 shows that D(g j, x̂ \j) = U jD( f j, x \j).

Applying this observation to the display above gives the claim (4.6).

4.5 The Lagrangian formulation

The results in this section allow us to interpret our conditions for the success of the

constrained demixing method (4.2) as limits on, and opportunities for, its Lagrangian

relative

minimize f (x ) +λ · g(y) subject to and x +U y = z0. (4.15)

As usual, we say that the Lagrange penalized formulation (4.15) succeeds if (x \, y \) is

the unique optimal solution to (4.15).
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Extensions of the results in this section to the multiple demixing method (4.5) follow

along the same lines, but we restrict our attention to the basic demixing model to get

the key ideas across. We begin with the following well-known result; it holds without

any technical restrictions.

Proposition 4.6. Suppose the Lagrange problem (4.15) succeeds for some value λ > 0.

Then the constrained formulation (4.2) also succeeds.

Proof. We check the contrapositive. Suppose that the constrained formulation (4.2)

does not succeed. Then there exists a pair (x [, y [) that is an optimal point for the

constrained program (4.2) but is distinct from (x \, y \). Because (x \, y \) is feasible for

the constrained method (4.2), we have the inequality f (x [) ≤ f (x \) by optimality of

(x [, y [). Feasibility of (x [, y [) also implies the inequality g(y [)≤ α := g(y \). Combining

these observations, we see

f (x [) +λ · g(y [)≤ f (x \) +λ · g(y \).

Hence, (x \, y \) is not the unique optimal point of (4.15), so (4.15) does not succeed.

We have the following partial converse to Proposition 4.6 under some technical

restrictions.

Proposition 4.7. Suppose that x \ is in the interior of dom( f ) and that y \ is in the interior

of dom(g). Suppose further that the subgradients ∂ f (x \) and ∂g(y \) are both nonempty

and do not contain zero. If the constrained method (4.2) succeeds, then there exists a

parameter λ > 0 such that (x \, y \) is a solution to the Lagrange method (4.15).

We remark that the conclusion of Proposition 4.7 provides something slightly less than a

guarantee of success for the Lagrange problem because it does not guarantee that the

solution to the Lagrange problem is unique. Nevertheless, it provides a near equivalence

between the Lagrange problem and constrained problem that we analyze.

Proof. The key idea is the construction of a subgradient that certifies the optimality of

the pair (x \, y \) for the Lagrange penalized problem (4.15) for an appropriate choice of
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parameter λ. As with many results in convex analysis, a separating hyperplane plays an

important role.

By Theorem 4.1, the constrained problem (4.2) succeeds if and only if

D( f , x \)∩−UD(g, y \) = {0}.

This trivial intersection implies that there exists a hyperplane that separates these cones

(Fact 3.3). In other words, there exists some vector w 6= 0 such that

〈w , x 〉 ≤ 0 for all x ∈ D( f , x \),

and moreover

〈w , y〉 ≥ 0 for all y ∈ −UD(g, y \).

In the language of polar cones, the first separation inequality is simply the statement

that w ∈ D( f , x \)◦, while the second inequality is equivalent to U t w ∈ D(g, y \)◦.

We will now show that w generates a subgradient optimality certificate for the point

(x \, y \) in problem (4.15) for an appropriate choice of parameter λ > 0. At this point,

we invoke our technical assumption. Since f is typical at x \, the polar to the feasible

cone is generated by the subgradient of f at x \ (cf. (3.29)). In particular, there exists

a number λ f ≥ 0 such that w ∈ λ f ∂ f (x \). In fact, the stronger inequality λ f > 0

holds because w 6= 0. For the same reason, there exists a number λg > 0 such that

U t w ∈ λg∂g(y \).

Define h(x ) := λ f f (x ) + λg g(U t(z0 − x )). By standard transformation rules for

subgradients [Roc70, Thms. 23.8, 23.9], we have

∂h(x \)⊃ λ f ∂ f (x \)−λgU∂g(y \),

where A−B := A+(−B) is the Minkowski sum of the sets A and−B. Since w ∈ λ f ∂ f (x \)

and w ∈ λgU∂g(y \), we see 0 ∈ ∂h(x \). By the definition of subgradients, x \ is a global

minimizer of h. Introducing the variable y = U t(z0 − x ), it follows that (x \, y \) is a
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global minimizer of

minimize f (x ) +
λg

λ f
g(y) subject to x +U y = z0.

This is Lagrange problem (4.15) with the parameter λ = λg/λ f > 0, so we have the

result.
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Chapter 5

Conic integral geometry

Convex cones characterize the optimality conditions (4.3) of demixing, so it is no

surprise that a detailed study of the theory of convex cones is a central element of this

thesis. The goal of this section is to introduce the theory of conic integral geometry

that studies the invariant geometric features of convex cones and the interplay among

randomly oriented convex cones.

We begin by introducing the basic geometric parameters of interest in Section 5.1

known as conic intrinsic volumes. We continue in Sections 5.2 and 5.3 with the more

advanced formulas of conic integral geometry known as the Steiner and kinematic

formulas. Section 5.4 considers unlikely events.

Most of the results presented in this section are standard. Minor novelties include the

iterated kinematic formulas of Section 5.3.1—although the analogy with the Euclidean

integral geometry makes these formulas obvious to those familiar with integral geometry.

The results of Section 5.4 fill in other small gaps in the literature, and in particular,

suggest that the closure assumptions usually assumed in the literature are extraneous

for parts of the kinematic theory of convex cones.

5.1 Conic intrinsic volumes

Much like a convex body in Euclidean space has a volume, surface area, mean width,

Euler characteristic, etc. [KR97], each convex cone has have a number of dimensionality

parameters known as intrinsic volumes.
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Definition 5.1. Let C ∈ Cd be a polyhedral cone. For each i = 0, 1, . . . , d, we define the

ith (conic) intrinsic volume vi(C) of C by the probability that a Gaussian random vector

projects into an i-dimensional face of C , that is

vi(C) := P
¦

ΠC(g ) ∈ relint(Fi) : Fi is an i-dimensional face of C
©

. (5.1)

The uniqueness of the projection map ensures that the intrinsic volumes of polyhedral

cones are well defined. The intrinsic volumes are continuous under the conic Hausdorff

metric [SW08, Thm. 6.5.2], so we extend this definition to all cones via approximation.

The proof of continuity seems to be due to Glasauer [Gla95, Gla96]. Although the

extension of the intrinsic volumes to nonpolyhedral cones by polyhedral approximation

allows us to prove results about the intrinsic volumes via probabilistic methods, this

approach has limited practical use for computing intrinsic volumes of nonpolyhedral

cones. The Steiner formulas of Section 5.2 provide an alternate method for computing

intrinsic volumes, and in fact the Steiner formula is frequently used to define conic

intrinsic volumes. For simple examples, however, the probabilistic definition proves

immanently useful.

Example 5.2 (Intrinsic volumes of subspaces). A subspace L ⊂ Rd of dimension k is a

cone with precisely one face, so projections onto the subspace always lie in the relative

interior of L. Therefore the intrinsic volumes of L form a Dirac sequence:

vk(L) =







1, k = dim(L),

0, otherwise
for k = 0, . . . , d − 1, d. (5.2)

Example 5.3 (Intrinsic volumes of the orthant [Ame11, Ex. 4.4.7]). The projection

onto the nonnegative orthant Rd
+ := {x : x i ≥ 0, i = 1, . . . , d − 1, d} is given by

[ΠRd
+
(x )]i =max{x i, 0},

and so ΠRd
+
(g ) lies in the relative interior k-dimensional face of Rd

+ if and only if g has
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Figure 5.1: Intrinsic volumes of the nonnegative orthant. The intrinsic volumes of the
nonnegative orthant are given by the normalized binomial sequence (5.3). The x-axis is
the normalized index θ = i/d, and in each case most of the mass of the intrinsic volumes is
concentrated about θ = 1

2
. The results of Section 7 show that this concentration behavior is

generic.

exactly k positive values. Since the signs sgn (gi) of the elements of a Gaussian random

vector are (almost surely) independent Bernoulli random variables, distribution of the

number of positive entries of g is given by the binomial formula. In other words,

vk(Rd
+) = 2−d

�

d

k

�

for k = 0, . . . , d − 1, d. (5.3)

See Figure 5.1 for an illustration.

The probabilistic definition of the intrinsic volumes reveals a number of fundamental

properties of the intrinsic volumes.

Proposition 5.4 (Properties of the intrinsic volumes). Let C ∈ Cd be a closed, convex

cone. Then

1. Distribution. The intrinsic volumes form a probability distribution on {0, . . . , d −
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1, d}:

∑d

k=0
vk(C) = 1 and vk(C)≥ 0 for all k = 0, . . . , d − 1, d. (5.4)

2. Rotation invariance. For any orthogonal matrix U ∈ Od and all i = 0, . . . , d−1, d,

we have

vk(C) = vk(UC). (5.5)

3. Polarity reversal. The intrinsic volumes reverse under polarity:

vk(C) = vd−k(C
◦). (5.6)

4. Product. For any C ′ ∈ Cd ′ , the intrinsic volumes of the direct product C × C ′ are

given by

vk(C × C ′) =
∑

i+ j=k
vi(C)v j(C

′). (5.7)

5. Gauss–Bonnet. If C is not a subspace, then

d
∑

k=0
k even

vk(C) =
d
∑

k=1
k odd

vk(C) =
1

2
. (5.8)

Proof. Suppose first that C is a polyhedral cone. Positivity of the intrinsic volume follows

from positivity of probability, while the fact that the intrinsic volumes sum to one reflects

the fact that the projection ΠC(x ) lies in the relative interior of a unique face of C . This

shows the first point (5.4). Rotation invariance (5.5) follows immediately from the

rotation invariance of the Gaussian measure. These two results extend to all cones by

approximation with polyhedral cones owing to the continuity of intrinsic volumes under

the conic Hausdorff metric.

The polarity law (5.6) appears in [SW08, Eq. (6.51)], but let us describe the basic

idea. The projection ΠC(x ) lies in a k-dimensional face of a polyhedral cone C if and
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only if1 the projection ΠC◦(x ) lies in an (d − k)-dimensional face of C◦. This bijective

correspondence leads to the polarity reversal property (5.6) for polyhedral cones, and it

extends to nonpolyhedral cones via approximation.

The product rule is Corollary A.6 in Appendix A.1.1. A proof of the Gauss–Bonnet

relation (5.8) is beyond the scope of this thesis; a combinatorial proof of this fact avail-

able in McMullen’s classic work on angle-sum relations for polyhedral cones [McM75].

For a geometric account of the Gauss–Bonnet relation, see [SW08, Thm. 6.5.5].

The Gauss–Bonnet formula (5.8) implies a number of important results that involve

alternating sums of intrinsic volumes. The following definition anticipate these results.

Definition 5.5 (Tail functionals). For a cone C ∈ Cd and index k ∈ {0, . . . , d − 1, d}, we

define the kth tail functional

tk(C) := vk(C) + vk+1(C) + · · ·=
∑d

j=k
vk(C) (5.9)

and the kth half-tail functional

hk(C) := vk(C) + vk+2(C) + · · ·=
d
∑

j=k
j−k even

v j(C). (5.10)

5.2 Steiner formulas

The classical Steiner formula gives the volume of the region around a convex body in

terms of the Euclidean intrinsic volumes of the body. For most cones, the volume of

the cone is infinite. However, we find a parallel to the classical case when we consider

the Gaussian, rather than Lebesgue, measure of the expansion of a convex cone. Our

result is stated in terms of the distance to the polar cone, because this is the claim that

is relevant for our later work.
1The bijection between k faces of C and (d − k) faces of C◦ follows from the fact that each face F

of a cone C has corresponding dual face NF of C◦ such that ΠC(x ) ∈ F if and only if ΠC◦(x ) ∈ NF ; cf.
Appendix A.2.1. It is a well-known fact (see, e.g., [Pat00, p. 34]) that lin(F + NF ) = Rd for each face
F of a polyhedral cone. For nonpolyhedral cones, it may be that lin(F + NF ) ( Rd , in which case the
probabilistic definition (5.1) of the intrinsic volumes breaks down.



70

Proposition 5.6 (Gaussian Steiner formula). For any closed convex cone C and any

ε ≥ 0,

P{dist2(g , C◦)≤ ε}= P{‖ΠC(g )‖
2 ≤ ε}=

∑d

k=0
χ2

k (ε)vk(C). (5.11)

The function χ2
k is the cumulative distribution function of a chi-square random variable

with k degrees of freedom:

χ2
k (ε) := P

n
∑k

i=1
g2

i ≤ ε
o

, (5.12)

where gi ∼ NORMAL(0, 1) are i.i.d. standard Gaussian random variables for i = 1, . . . , k−

1, k.

While we have not seen Proposition 5.6 stated as such in the literature, this result

is likely known to experts. For completeness, we provide a proof in Appendix A.1 as a

corollary of a more general Steiner formula for convex cones.

Remark 5.7. Taylor [Tay06, Cor. 3.4] provides much more sophisticated formula for

Gaussian measure of the expansion of a set. The formula (5.11) above is not easily

reconciled with the formula of Taylor. In particular, Taylor’s Gaussian tube formula

involves an infinite series of functionals that have no clear connection to the conic

intrinsic volumes. Moreover, we achieve our formula via elementary means—which is

to say, we do not require any advanced tools from differential geometry.

A closely related result is the following Steiner formula for spherically distributed

random variables. This result is a special case of [SW08, Thm. 6.5.1].

Proposition 5.8 (Spherical Steiner formula). Let C ⊂ Rd be a closed convex cone, and

let θ be uniformly distributed over the sphere Sd−1. For any ε ∈ [0, 1],

P{‖ΠC(θ )‖
2 ≤ ε}=

∑d

k=0
Bd

k(ε)vk(C).

The function Bd
k(ε) is the cumulative distribution function of a Beta

�

k/2, (d − k)/2
�

random variable:

Bd
k(ε) := P{‖ΠLk

(θ )‖2 ≤ ε}, (5.13)
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where θ ∼ UNIFORM(Sd−1) and Lk is a k-dimensional linear subspace of Rd .

The proof of Proposition 5.8 also appears in Appendix A.1, where we derive both

Proposition 5.8 and 5.6 from a more general result on mean values of sufficiently nice

functions of the norms of projections ‖ΠC(g )‖ and ‖ΠC◦(g )‖ of a Gaussian vector onto

a cone. Our proof technique involves a tiling argument coupled with approximation by

polyhedral cones. This schema appears many times in the literature, including [SW08,

pp. 251–252] and [San80, p. 242].

5.3 Kinematic formulas

Kinematic formulas are a crowning achievement of the theory of integral geometry.

These results answer questions such as “what is the probability that a random geometric

object strikes a fixed object?” Given the characterization (4.3) of demixing in terms of

the intersection of convex cones, the answer to this question clearly has a bearing on

our understanding of demixing problems. The most basic kinematic formula for convex

cones is a formula for the mean intrinsic volume of the intersection of two convex cones.

Fact 5.9 (The conic kinematic formula). Let Q ∈ Od be a Haar-distributed orthogonal

matrix. Then for any closed convex cones C , D ∈ Cd and all k = 1, . . . , d − 1, d,

E[vk(C ∩QD)] =
∑d

j=k
v j(C)vd− j+k(D) = vd+k(C × D). (5.14)

For k = 0, we have

E[v0(C ∩QD)] =
∑d

j=0
v j(C × D) = 1− td+1(C × D). (5.15)

An antecedent of this result appears in the classic book of Santaló [San76, Sec. IV.18.3],

where it is proved via differential-geometric methods. For a proof of the result above

that aligns with the spirit of our development, see [SW08, pp. 258–261]. The second

formula (5.15) follows readily from the first by the fact (5.4) that the intrinsic volumes

always sum to one.
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By combining the conic kinematic formula with the Gauss–Bonnet theorem (5.8) we

obtain the Crofton formula for randomly oriented convex cones.

Theorem 5.10 (Conic Crofton formula). Suppose that C , D ∈ Cd are two closed, convex

cones, at least one of which is not a subspace. Then

P{C ∩QD 6= {0}}= 2
2d
∑

k=d+1
k odd

vk(C × D) = 2hd+1(C × D), (5.16)

where the half-tail functional hd+1(C × D) is defined in (5.10). In particular, when C is

not a subspace and D = Ld−m is a (d −m)-dimensional subspace of Rd ,

P{C ∩QLd−m 6= {0}}= 2
d
∑

k=m+1
k odd

vk(C) = 2hm+1(C). (5.17)

We provide a proof of this result because there is no detailed reference for the

probabilistic interpretation given above. The only technical point missing from the

standard literature is a detailed proof that the intersection between the two cones is

almost surely not a subspace, a fact that is contingent upon at least one of the cones not

being a subspace. We state this point as a lemma to separate the present novelty from

techniques in the prior literature.

Lemma 5.11 (The intersection of cones is rarely a subspace). Let C , D ∈ Cd be closed

convex cones, at least one of which is not a subspace. Then the intersection C ∩ QD is

almost surely not a subspace of dimension greater than zero.

The proof is deferred until Section 5.4.1, where we collect some fine points about

unlikely configurations of cones. With this result in hand, we are in a position to prove

the Crofton formula.

Proof of Theorem 5.10. The Gauss–Bonnet theorem (5.8) and the expression for the
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intrinsic volumes of subspaces computed in Example 5.2 reveals

2
d
∑

k=1
k odd

vk(C ∩QD) =















0, C ∩QD an even dim. subspace

2, C ∩QD an odd dim. subspace

1, otherwise.

(5.18)

Because the probability that C∩QD is an odd dimensional subspace is zero by Lemma 5.11,

the sum on the left-hand side above is almost surely equal to an indicator function on

the event C ∩QD 6= {0}. Upon averaging (5.18) over Q, we arrive at

P{C ∩QD 6= {0}}= E[1C∩QD 6={0}(Q)] = 2E
d
∑

k=1
k odd

vk(C ∩QD) = 2
d
∑

k=1
k odd

vd+k(C × D).

where the final equality holds by linearity of expectation and the kinematic formula (5.14).

The right-hand side above is equal to 2hd+1(C × D) by the definition (5.10). This com-

pletes the demonstration of (5.16).

The specialization (5.17) of (5.16) follows from the expression for the intrinsic

volumes of Ld−m given by Example 5.2. Indeed, the product rule (5.7) shows

vk(C × Ld−m) =
∑

i+ j=k
vi(C)v j(Ld−m) = vk+m−d(C).

Applying this formula to (5.16), we find

P{C ∩QLd−m 6= {0}}= 2
d
∑

k=1
k odd

vk+m(C) = 2hm+1(C),

which completes the claim.

5.3.1 Iterated kinematics

We now extend the kinematic formula to intersections of multiple randomly oriented

cones.

Proposition 5.12 (Iterated kinematic formula). Let C1, . . . , Cn−1, Cn ∈ Cd and suppose
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Q1, . . . ,Qn−1,Qn ∈ Rn×n are i.i.d. random rotations. Then for all k = 1, . . . , d − 1, d, we

have

E[vk(Q1C1 ∩Q2C2 ∩ · · · ∩QnCn)] = v(n−1)d+k(C1× C2× · · · × Cn). (5.19)

For k = 0, we have

E[v0(Q1C1 ∩Q2C2 ∩ · · · ∩QnCn)] = 1− t(n−1)d+1(C1× C2× · · · × Cn). (5.20)

Proof. Suppose first k ≥ 1. We use induction on n. For the base case n= 2, we use the

orthogonal invariance of the intrinsic volumes and conditional expectation to see

E[vk(Q1C1 ∩Q2C2)] = E[vk(Q1(C1 ∩Q2C2))] = E[vk(C1 ∩Q2)] = vd+k(C1× C2)

where the first equality follows from the forgetting property (3.5) and the second

by rotation invariance of the intrinsic volumes. The final equality is (5.14), which

completes the base case.

Suppose now that n > 2 and the claim holds for n− 1 cones. From the forgetting

property (3.5) of the Haar measure and rotation invariance of intrinsic volumes, we

find as above

E[vk(Q1C1∩Q2C2∩Q3C3∩· · ·∩QnCn)] = E
�

vk

�

C1∩Q2(C2∩Q3C3∩· · ·∩QnCn)
��

. (5.21)

Conditioning on Q3,Q4, . . . ,Qn, the conic kinematic formula (5.14) gives

E
�

vk

�

C1 ∩Q2(C2 ∩Q3C3∩· · · ∩QnCn)
��

= E
�

E
�

vk

�

C1 ∩Q2(C2 ∩Q3C3 ∩ · · · ∩QnCn)
�

| Q3, . . . ,Qn

��

=
∑d

j=k
E[v j(C2 ∩Q3C3 ∩ · · · ∩QnCn)]vd− j+k(C1)

=
∑d

j=k
v(n−2)d+ j(C2× C3× · · · × Cn)vd− j+k(C1)

The final relation follows from the forgetting property (3.5), rotation invariance of the
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intrinsic volumes, and the induction hypothesis. We recognize the final sum above:

∑d

j=k
v(n−2)d+ j(C2× C3× · · · × Cn)vd− j+k(C1) = v(n−1)d+k(C1× · · · × Cn−1× Cn)

by the product rule (5.7) for intrinsic volumes.

A slight refinement of the proof of Theorem 5.10 provides an iterated Crofton

formula.

Corollary 5.13 (Iterated Crofton formula). Let C1, . . . , Cn−1Cn ∈ Cd be closed, convex

cones, at least one of which is not a subspace. Suppose Q1, . . . ,Qn−1,Qn ∈ Od are indepen-

dent random rotations. Then

P
¦

Q1C1 ∩ · · · ∩Qn−1Cn−1 ∩QnCn 6= {0}
©

= 2h(n−1)d+1(C1× · · · × Cn−1× Cn). (5.22)

Again, the heavy lifting required to prove the Crofton formula involves a demonstra-

tion that the probability that the intersection in braces in (5.22) is rarely a subspace.

Lemma 5.14. Let C1, . . . , Cn−1, Cn ∈ Cd and Q1, . . . ,Qn−1,Qn ∈ Rn×n be as in Corol-

lary 5.13. Then the intersection Q1C1 ∩ · · · ∩ Qn−1Cn−1 ∩ QnCn is almost surely not a

subspace of positive dimension.

The proof reduces the intersection of multiple cones to the intersection of two cones

and applies Lemma 5.11. The details appear in Section 5.4.1 below.

Proof of Corollary 5.13. As in the proof of Theorem 5.10, we combine the Gauss–Bonnet

relation and Lemma 5.14 to find

P
¦

Q1C1 ∩ · · · ∩Qn−1Cn−1 ∩QnCn 6= {0}
©

= 2
d
∑

k=1
k odd

E[vk(Q1C1 ∩ · · · ∩Qn−1Cn−1 ∩QnCn)]

= 2
d
∑

k=1
k odd

v(n−1)d+k(C1× · · · × Cn−1× Cn),
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where the final equality follows from the iterated kinematic formula (5.19). We rec-

ognize the latter sum as the half-tail functional h(n−1)d+1(C1× · · · × Cn−1× Cn), which

completes the proof.

5.4 Rare events and other fine points

We now fill in a much needed gap in the literature related to probability zero events.

In Section 5.4.1, we provide the proof of Lemmas 5.11 and 5.14 that show that the

intersection of cones is not likely to be a subspace. Afterward, Section 5.4.2 discusses

touching probabilities and some implications for extending the kinematic theory of

Section 5.3 to nonclosed cones that frequently appear in demixing applications.

5.4.1 The intersections of cones are almost never subspaces

This section provides the proof of Lemmas 5.11 and 5.14, which assert that the intersec-

tion of randomly rotated cones are almost never subspaces, so long as at least one of

the cones involved is not a subspace. We start with a definition.

Definition 5.15. Two linear subspaces L, L′ ⊂ Rd are said to be in special position when

dim(L ∩ L′)> 0 and lin(L ∪ L′) 6= Rd . (5.23)

A result on null sets from the theory of the Haar measure on Od asserts that subspaces

in special position are highly unusual [SW08, Lem. 13.2.1].

Fact 5.16 (Special position is special). Let L, L′ ⊂ Rd be two linear subspaces and Q ∈ Od

a random rotation. Then

P{L and QL′ are in special position}= 0.

With this fact, we are able to show that cones are highly unlikely to intersect only at

a subspace.
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Proof of Lemma 5.11. Suppose that C ∩QD = L for some linear subspace L with dimen-

sion k > 0. From (3.7), we have the unique orthogonal decompositions C = LC+C∗ and

D = LD+D∗, where LC and LD are subspaces and C∗, D∗ are pointed cones perpendicular

to these subspaces. We will show that

dim(LC ∩QLD)> 0 and lin(LC ∪QLD) 6= Rd , (5.24)

that is, LC and LD are in special position.

Since L is a linear subspace, for any x ∈ L we also have −x ∈ L, so that ±x ∈ C

and ±x ∈ QD by definition of L. Because the pointed components C∗ and D∗ are

perpendicular to the linear components LC and LD, we must have x ∈ LC ∩QLD. In

other words, L ⊂ LC ∩QLD, so in particular

dim(LC ∩QLD)≥ dim(L) = k > 0.

Thus LC and QLD satisfy the first condition in (5.24).

To show that LC ∪ LD 6= Rd , we appeal to the separating hyperplane theorem for

convex cones (Fact 3.3). In the present situation, the intersection C ∩ D = L 6= {0},

so we cannot apply Fact 3.3 directly. Instead, we will apply it to the quotient cones

ΠL⊥(C) and ΠL⊥(QD), which we claim only intersect at 0. To see this claim, note that

if ΠL⊥(x ) = ΠL⊥(x ′) for x ∈ C and x ′ ∈ D, then the difference x ′ − x ∈ L by linearity

of the projection onto a subspace. Since L ⊂ C and C is a convex cone, the vector

x ′ = x + (x ′− x ) ∈ C . In other words, x ′ ∈ C ∩ D = L, and so ΠL⊥(x ′) = 0, proving the

claim.

The subspace L⊥ is isomorphic to Rd−k and ΠL⊥(C)∩ΠL⊥(D) = {0}, so that Fact 3.3

provides a z 6= 0 such that

z ∈ L⊥, z ∈ ΠL⊥(C)
◦, and − z ∈ ΠL⊥(QD)◦,

where the polars above are with respect to L⊥. The first two relations imply that for any
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x ∈ LC

〈z, x 〉= 〈z,ΠL⊥(x )〉 ≤ 0.

Since LC is a linear subspace, the same argument applied to −x gives the reverse

inequality, and hence 〈z, x 〉 = 0 for all x ∈ LC , which is to say z ∈ L⊥C . Similarly, we

have z ∈ (QLD)⊥, and so we find that there is a nonzero vector z ∈ L⊥C ∩ (−QLD)⊥. By

taking the polar of this inclusion, we find

Rd 6= LC + (−QLD) = lin(LC ∪QLD).

by the polarity relationship (3.9). The final equality above is a standard fact from linear

algebra. We conclude that LC and QLD are in special position. As the set of rotations that

brings LC and LD into special position has measure zero (Fact 5.16), we conclude that

there is zero probability that C ∩QD is a subspace of dimension greater than zero.

The multiple-cone extension of this result uses induction with the work above as a

base case.

Proof of Lemma 5.14. Without loss of generality, we reorder the cones so that C1 not a

subspace. Define the random cone D := C2 ∩Q3C3 ∩ · · · ∩QnCn. From the forgetting

property (3.5), we have

P{Q1C1 ∩Q2C2 ∩ . . .∩QnCn is not a subspace}= P{Q1C1 ∩Q2D is not a subspace}

= E
�

PQ1
{Q1C1 ∩Q2D is not a subspace} | Q2, . . . ,Qn

�

where the second equality follows from the law of total probability. Since C1 is itself not

a subspace, Lemma 5.11 implies that the inner probability above is equal to zero for all

Q2, . . . ,Qn. The conclusion follows immediately.

5.4.2 Removing closure restrictions

In our demixing application, the cones we encounter are often not closed, while the

theory of conic integral geometry typically includes closure assumptions. In this section,
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we show that closure assumptions do not pose an obstacle to the kinematic theory of

convex cones.

Relaxing the closure assumptions requires a surprisingly deep fact about touching

probabilities. Two closed convex cones touch if their intersection contains a ray but they

may still be weakly separated by a hyperplane. In the course of a proof of the kinematic

formula, Schneider & Weil prove the following result [SW08, pp. 258–260].

Fact 5.17 (Touching is not allowed). Let C , D ∈ Cd be closed, convex cones such that both

C , D 6= {0}. Then

P{C touches QD}= 0.

The following result anticipates the needs of Section 9. The intersection of a cone

and the negative image of a randomly oriented cone is related to the multiple demixing

optimality condition (4.6). Moreover, all descent cones contain zero (Proposition 3.6.2),

so we restrict ourselves to cones that contain zero for notational simplicity.

Proposition 5.18. Let C , D ⊂ Rd be convex cones that contain zero but are not necessarily

closed. Let Q ∈Od be independent random rotations. If both C , D 6= {0}, then the sets

¦

Q : C ∩−QD = {0}
©

and
¦

Q : C◦ ∩Qt D◦ 6= {0}
©

coincide up to a set of Haar measure zero on Q ∈Od . In particular,

P
¦

C ∩−QD = {0}
©

= P
¦

C◦ ∩Qt D◦ 6= {0}
©

.

Proof. Fix U := Q for the moment and suppose C ∩ −UD = {0}. By the separating

hyperplane theorem for convex cones (Fact 3.3), there exists a nonzero vector w ∈ Rd

such that

〈w , x 〉 ≤ 0 for all x ∈ C and 〈w ,−U y〉 ≥ 0 for all y ∈ C , (5.25)
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which is equivalent to the statement w ∈ C◦ ∩U t D◦. Therefore, we have the inclusion

¦

Q : C ∩−QD = {0}
©

⊂
¦

Q : C◦ ∩Qt D◦ 6= {0}
©

.

For the other direction, suppose that C◦∩U t D◦ 6= {0} for some U ∈ Od , so that there

exists a nonzero w satisfying (5.25). In this case, we either have C ∩−UD = {0}, or C

and −UD touch, which implies

¦

Q : C◦ ∩U t D◦ 6= {0}
©

⊂
¦

Q : C ∩−QD = {0}
©

∪
¦

Q : C touches Qt D
©

.

This second set in the union has Haar measure zero by Fact 5.17. The conclusion follows

by comparing the final two displayed equations above.
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Chapter 6

The statistical dimension

In light of the Steiner and kinematic formulas of the previous section, the intrinsic

volumes carry a significant amount of information about a convex cone. Unfortunately,

these quantities can be vexingly difficult to calculate in situations relevant to applications.

In this section, we discuss two closely related summary parameters that measure the

size of convex cones, explore their interpretation as dimensionality parameters, and

discuss their relationship to one another. The results in this section consists of largely of

joint work that appears in [ALMT13, Sec. 4].

6.1 Basic properties

The (linear) dimension of a convex set is defined as the dimension of its linear hull.

Dimension is certainly a measure of the size of a cone because it is monotonic under

inclusion, and it is intrinsic in the sense that the dimension of a set is independent of

the embedding dimension. Yet dimension is brittle under small changes to a set: a

full dimensional cone can be very close to a ray in the Hausdorff metric, for instance.

Moreover, the standard linear dimension provides no distinction between, say, the

positive orthant and a halfspace.

In this section, we introduce a parameter associated with cones called the statistical

dimension. We will find that this quantity shares a number of remarkable properties

with the linear dimension of a subspace, but it possesses a key property that the linear

dimension does not: continuity.
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Definition 6.1. The statistical dimension δ(C) of a closed, convex cone C ⊂ Rd is given

by

δ(C) := E
�

‖ΠC(g )‖
2� . (6.1)

The next proposition highlights the many analogies between the statistical dimension

and the usual linear dimension of a subspace. The only property unique to the statistical

dimension is continuity.

Proposition 6.2 (Properties of the statistical dimension). For any closed convex cones

C , D ⊂ Rd and C ′ ⊂ Rn, we have the following properties.

1. Continuity. The statistical dimension δ is continuous in the conic Hausdorff metric.

2. Monotonicity. The containment C ⊂ D implies the inequality δ(C)≤ δ(D).

3. Rotational invariance. For any orthogonal matrix U ∈ Od , the statistical dimension

satisfies δ(UC) = δ(C).

4. Polarity. The polar cone satisfies δ(C◦) = d −δ(C).

5. Direct sum. Direct sums split as δ(C × C ′) = δ(C) +δ(C ′).

6. Embedding. The statistical dimension is independent of the embedding dimension

of the cone.

Proof. (Continuity.) Suppose a sequence (Ci)i∈N of cones in Cd has a limit Ci → C as

i→∞. By Proposition 3.8 and continuity of the Euclidean norm, ‖ΠCi
(x )‖2→ ‖ΠC(x )‖

2

for every x ∈ Rd . The bound ‖ΠCi
(x )‖2 ≤ ‖x‖2 holds for all i by the Pythagorean

formula (3.16), and moreover the average value E[‖g‖2] = d <∞. Therefore, we may

apply the dominated convergence theorem [Fol99, (2.24)]:

E
�

‖ΠCi
(g )‖2

�

→ E
�

‖ΠC(g )‖
2
�

.

This is the desired conclusion.

(Monotonicity.) Suppose C ⊂ C ′. Because inclusion reverses under polarity, we see

‖ΠC(x )‖
2 = dist2(x , C◦)≤ dist2(x , D◦) = ‖ΠD(x )‖

2 .
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(Rotational invariance.) A direct calculation shows that ΠUC(x ) = UΠC(U t x ) for every

orthogonal matrix U , rotational invariance of the statistical dimension follows from the

rotational invariance of standard Gaussian vectors.

(Polarity.) The polarity relationship is just the Pythagorean identity (3.16) averaged

over all Gaussian vectors:

δ(C) +δ(C◦) = E[‖ΠC(g )‖
2+ ‖ΠC◦(g )‖

2] = E[‖g‖2] = d.

(Direct sum.) Let g = (gd; gn) ∈ Rd ×Rn be a standard Gaussian vector. By (3.18),

the projection over the product of cones C × C ′ splits as ΠC×C ′(g ) = (ΠC(gd);ΠC ′(gn)).

Therefore,

δ(C × C ′) = E
�

‖(ΠC(gd),ΠC ′(gn))‖
2�

= E[‖ΠC(gd)‖
2] +E[‖ΠC ′(gn)‖

2] = δ(C) +δ(C ′),

as claimed.

(Embedding.) Suppose a closed, convex cone C ⊂ Rd is embedded as a cone D ⊂ Rn in

some higher dimensional space. Then there is an orthogonal matrix U ∈On such that

D = U(C × {0} × · · · × {0}
︸ ︷︷ ︸

n−d times

).

By points 3 and 5 above,

δ(D) = δ(C × {0} × · · · × {0}) = δ(C) + (n− d)δ({0}) = δ(C),

which completes the claim.

The statistical dimension has a number of equivalent characterizations.

Proposition 6.3 (Chameleon). For any closed convex cone C ⊂ Rd , we have the following

alternative characterizations of the statistical dimension:
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1. Gaussian formulation. The statistical dimension is defined as

δ(C) := E
�

‖ΠC(g )‖
2� , where g ∼ NORMAL(0, Id×d). (6.2)

2. Spherical formulation. An equivalent definition involving spherical random vari-

ables is

δ(C) = d E
�

‖ΠC(θ )‖
2� , where θ ∼ UNIFORM(Sd−1). (6.3)

3. Distance formulation. Alternatively, we may compute the mean distance

δ(C) = E
�

dist2(g , C◦)
�

. (6.4)

4. Supremum formulation. Another characterization involves a supremum:

δ(C) = E
�

supx∈C∩Bd
|〈x , g 〉|2

�

. (6.5)

5. Intrinsic volume formulation. Finally, the statistical dimension is the mean of the

distribution of intrinsic volumes:

δ(C) =
∑d

k=0
k vk(C). (6.6)

Proof. (Gaussian formulation) This repeats the definition (6.1).

(Spherical formulation) A Gaussian vector g ∈ Rd may be written as the product g = rθ

of a chi-square random variable r with d degrees of freedom and an independent vector

θ uniformly distributed over Sd−1. By homogeneity of the projection and independence

of r and θ , we have

δ(C) = E[‖ΠC(rθ )‖
2] = E[r2]E[‖ΠC(θ )‖

2] = d E[‖ΠC(θ )‖
2].

This is equation (6.3).
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(Distance formulation) Equation (6.4) equality follows immediately from (3.17) and

the Gaussian formulation (6.2) of the statistical dimension.

(Supremum formulation) For each x ∈ Rd , the definition (3.13) of the distance to a

convex cone gives

dist2(x , C◦) = infy∈C◦ ‖y − x‖2 =
�

infy∈C◦ ‖y − x‖
�2 , (6.7)

where the second equation follows by homogeneity. We manipulate the right-hand

infimum using tools from convex duality theory. The Fenchel conjugate of the Euclidean

norm is the convex indicator iBd
on the Euclidean ball [Roc70, Thm. 13.2]. Therefore,

the conjugate of the function inside the infimum above is given by

sup
y∈Rd
〈y , z〉 − ‖y − x‖= iBd

(z) + 〈x , z〉.

Then the result [Roc70, Thm. 31.4], a consequence of Fenchel’s duality theorem, imme-

diately implies the equality

infy∈C◦ ‖y − x‖= supz∈C 〈x , z〉 − i‖z‖≤1(z) = sup
z∈C∩Bd

〈x , z〉= sup
z∈C∩Bd

|〈x , z〉| . (6.8)

The second equality above follows because the maximal inner product is at least zero

because 0 ∈ C ∩Bd . Combining the display above with (6.7), we see that

dist2(x , C◦) = sup
z∈C∩Bd

|〈x , z〉|2 .

The claim (6.5) then follows immediately from the distance characterization (6.4) of

the statistical dimension.

(Intrinsic volume formulation.) By the integration-by-parts formula for the expectation,

δ(C) = E[‖ΠC(g )‖
2] =

∫ ∞

0

P{‖ΠC(g )‖
2 > ε}dε.

By the Gaussian Steiner formula of Proposition 5.6, the probability inside the integral is
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given by the sum

δ(C) =
∑d

k=0
vk(C)

∫ ∞

0

P{




ΠLk
(g )






2 ≥ ε}dε =
∑d

k=0
vk(C)E

�

‖ΠLk
(g )‖2

�

,

where Lk ⊂ Rd is a subspace of dimension k. The equality (6.6) follows because the

mean value E[‖ΠLk
(g )‖2] = k.

Corollary 6.4. For any cone C ∈ Cd \
¦

{0},Rd
©

, we have

1

2
≤ δ(C)≤ d −

1

2
.

Proof. Assume first C is not a subspace. Because the intrinsic volumes are nonnegative,

we have

δ(C) =
d
∑

k=0

k · vk(C)≥
d
∑

k=1
k even

vk(C) =
1

2
,

where the final equality follows by the Gauss–Bonnet relationship (5.8). The upper

inequality follows when we apply the first relationship to the polar cone:

δ(C) = d −δ(C◦)≤ d −
1

2
,

where the first equality above is the polarity relationship, Proposition 6.2.4. When C = L

is a subspace other than {0} or Rd , the inequality follows from the fact that δ(L) =

dim(L) by (6.6) and the computation (5.2) of the intrinsic volumes of a subspace.

Remark 6.5. The intrinsic volumes, and hence the statistical dimension, are valuations

on the set of closed convex cones in Rd . That is, they satisfy the additivity properties

vk(C ∪ D) = vk(C) + vk(D)− vk(C ∩ D) and vk({0}) = 0

whenever C , D and C∪D are closed, convex cones. The long-standing spherical Hadwiger

conjecture posits that all continuous, rotationally invariant valuations on the set of closed

convex cones are linear combinations of intrinsic volumes. If this conjecture holds, then
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Table 6.1: Statistical dimension computations. A summary of the statistical dimension
calculations in Section 6.2.

Cone Notation Statistical dimension Location

Subspace L ⊂ Rd dim(L) Sec. 6.2.1

The nonnegative orthant Rd
+

1
2
d Sec. 6.2.2

The second-order cone Ld+1 1
2
(d + 1) Sec. 6.2.2

Symmetric positive-
semidefinite matrices

Sn×n
+

1
4
n(n+ 1) Sec. 6.2.2

all such valuations are characterized by the value they take on linear subspaces. The

spherical Hadwiger conjecture thus implies yet another characterization of the statistical

dimension that expands on the analogy with the linear dimension:

If the spherical Hadwiger conjecture holds, then the statistical dimension is the

unique continuous, rotationally invariant valuation on the closed convex cones

such that δ(L) = dim(L) for all linear subspaces L ⊂ Rd .

The spherical Hadwiger conjecture is discussed in a number of works, including [McM93,

p. 976], [KR97, Sec. 11.5], and [SW08, p. 263]. This conjecture is currently open for

d ≥ 4.

6.2 Explicit computations

We now turn to the important question of computing the statistical dimension in some

special cases. In some highly symmetric cases, we obtain exact expressions for the

statistical dimension, while in others we turn to an approximation technique pioneered

by Stojnic [Sto09] and refined by Chandrasekaran et al. [CRPW12]. We summarize the

results of this section in Table 6.1.

6.2.1 Subspaces

We first verify that the statistical dimension agrees with the usual affine dimension on a

linear subspace.
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Proposition 6.6 (Statistical dimension of subspaces). The statistical dimension of a

subspace L ⊂ Rd is

δ(L) = dim(L). (6.9)

Proof. For a k-dimensional subspace Lk ⊂ Rd , the projection gk := ΠLk
(g ) is a k-

dimensional standard Gaussian random variable by the marginal property of Gaussian

vectors. Therefore,

δ(Lk) = E
�

‖gk‖
2
�

= k. (6.10)

We see that the statistical dimension of a subspace indeed agrees with its linear dimen-

sion.

See Remark 6.5 for an alternative approach to this calculation based on deeper consid-

erations.

6.2.2 Self-dual cones

A cone C is self-dual if C◦ =−C . The theory of self-dual cones underlies three common

classes of convex optimization problems.

• The nonnegative orthant. The nonnegative orthant Rd
+ := {x ∈ Rd : x i ≥

0 for i = 1, . . . , d − 1, d} is a self-dual cone intimately connected to the theory of

linear programming.

• The Lorentz cone. The Lorentz cone Ld+1 := {(x , t) ∈ Rd+1 : ‖x‖ ≤ t} is self

dual. It is also known as the second-order cone or the ice-cream cone, and it is the

fundamental object in second-order cone programs [LVBL98].

• The positive-semidefinite cone. The cone Sn×n := {X ∈ Rn×n
sym : X � 0} of sym-

metric positive-semidefinite matrices is a self-dual cone in the space of symmetric

matrices. The notation A � B indicates that the difference A − B is positive

semidefinite, and Rn×n
sym denotes the 1

2
n(n− 1)-dimensional space of symmetric

n× n matrices. The positive-semidefinite cone appears in semidefinite programs

written in standard form [VB96].
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The statistical dimension of a self-dual cone is particularly simple to calculate;

cf. [CRPW12, Cor. 3.8].

Proposition 6.7 (Self-dual cones). Suppose C ∈ Cd is self-dual. Then the statistical

dimension of C is given by

δ(C) =
d

2
.

Proof. By the polarity law and unitary invariance laws of Proposition 6.2, we have

d = δ(C) +δ(C◦) = 2δ(C).

The entries for the nonnegative orthant, Lorentz cone, and the positive-semidefinite

cone in Table 6.1 follow immediately from this result.

6.2.3 Circular cones

The circular cone Circd(α) in Rd with angle 0≤ α≤ π

2
is given by

Circd(α) := {x ∈ Rd : x1 ≥ ‖x‖ cos(α)}.

In particular, the circular cone Circd(
π

4
) is isometric to the Lorentz-cone Ld . We have a

rather precise approximation for the statistical dimension of a circular cone.

Proposition 6.8. The statistical dimension of a circular cone satisfies

δ(Circd(α)) = d sin2(α) + Rd(α), (6.11)

where the remainder term |Rd(α)| ≤
π2

2
< 5.

We remark that the remainder can be improved slightly via a combinatorial argument

due to D. Amelunxen (personal communication, 2012). See the remarks [ALMT13,

pp. 36–37] for a sketch of the argument.

To perform our computation, we need to integrate in spherical coordinates. The

following result, from [SW08, Lem. 6.5.1], gives a convenient way of parameterizing

integration over the unit sphere Sd−1 by integration over orthogonal subspheres. See

Figure 6.1 for an illustration.
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Figure 6.1: Orthogonal decomposition of the sphere into subspheres. [Left] The
subspace L (light blue) intersects the sphere S2 (green) at the equator S (blue). The
perpendicular subsphere S∗ (black points) is the intersection of the perpendicular subspace
L⊥ (black line) with the sphere. The lune H(w ) (pink) connects the points of S∗ through
a point w ∈ S. This decomposition is useful for integration over the sphere (Fact 6.1).
[Right]With the roles of L and L⊥ reversed, the lune H(w ) becomes a hemisphere (pink)
that connects S∗ (blue) to a point w (red) in S. (Fact 6.9).

Fact 6.9. Let f : Sd−1 → R be a nonnegative measurable function, and let L be a k-

dimensional subspace of Rd . Define S := Sd−1 ∩ L and S∗ = Sd−1 ∩ L⊥ perpendicular

subspheres of Sd−1. Then

∫

Sd−1

f (θ )dσd−1(θ ) =

∫

S

∫

H(w )

sink−1(dists(S
∗, u)) f (u)dσd−k(u)dσk−1(w ). (6.12)

where H(w ) := cone(L⊥+ {w})∩ Sd−1.

Recall that the measure σd−1 on Sd−1 is not normalized; cf. (3.3).

Proof of Proposition 6.8. We begin with an exact integral expression for the statistical

dimension of the circular cone C = Circd(α). By the spherical formulation (6.3) of

the statistical dimension, we express the statistical dimension as the average δ(C) =

d E[‖ΠC(θ )‖
2], where θ is uniformly random on Sd−1. Define the angle ϕ := ϕ(θ ) :=

arccos(θ1) between θ and the standard basis vector e1 := (1; 0; . . . ; 0). Basic trigonome-



91

try shows that the projected norm of θ is given by

F(ϕ) := ‖ΠC(θ )‖
2 =















1, 0≤ ϕ < α,

cos2(ϕ−α), α≤ ϕ < π

2
+α,

0, π

2
+α≤ ϕ ≤ π.

To obtain the exact statistical dimension δ(C) from (6.3), we integrate F(ϕ) in polar

coordinates:

δ(C) = d E[‖ΠC(θ )‖
2] =

d

σd−1(Sd−1)

∫

Sd−1

F(ϕ(θ ))dσd−1(θ )

where σd−1(Sd−1) is the surface area of Sd−1 (3.3). We now apply Fact 6.9 with

L = {x ∈ Rd : x1 = 0}, the subspace perpendicular to e1, to find

∫

Sd−1

F(ϕ(θ ))dσd−1(θ )

=

∫

L∩Sd−1

∫

H(w )

sind−2(dists({±e1}, u))F(ϕ(u))dσ1(u)dσd−2(w ),

where H(w ) := cone({±e1, w}) is the arc from e1 to −e1 passing through w ∈ S. (See

Figure 6.1, left panel.) Since w is orthogonal to e1, we may express u ∈ H(w ) by

u = sin(ϕ)w + cos(ϕ)e1. Parameterizing H(w ) by ϕ, we find

∫

Sd−1

F(ϕ(θ ))dσd−1(θ ) =

∫

Sd−2

∫ π

0

sind−2(ϕ)F(ϕ)dϕ dσd−2(w )

= σd−2(Sd−2)

∫ π

0

sind−2(ϕ)F(ϕ)dϕ.

The first equality also relies on the fact that dists({±e1}, sin(ϕ)w+cos(ϕ)e1) = ϕ, while

the second follows from Fubini. Putting this all together, we have the exact formula for

the statistical dimension

δ(C) = d ·
σd−2(Sd−2)
σd−1(Sd−1)

∫ π

0

sind−2(ϕ) F(ϕ)dϕ. (6.13)
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The sinusoidal kernel in (6.13) above peaks sharply near ϕ = π/2. Since F is smooth,

this observation suggests replacing the function F by the constant value F(π/2) = sin(α).

Applying this procedure, we find

δ(C) = d sin2(α) + d ·
σd−2(Sd−2)
σd−1(Sd−1)

∫ π

0

sind−2(ϕ)[F(ϕ)− sin2(α)]dϕ
︸ ︷︷ ︸

=:Rd (α)

,

where we have used the equality
∫ π

0
sind−2(ϕ)dϕ = σd−1(Sd−1)

σd−2(Sd−2)
. The final step requires a

bound on the remainder Rd(α). For this purpose, we use the following lemma that gives

an exact remainder Taylor expansion for functions with Lipschitz derivative.

Lemma 6.10. Suppose f : R→ R has an L-Lipschitz derivative f ′. Then there exists a

function ρ : R→ R such that, for every x ∈ R, we have |ρ(x)| ≤ L and

f (x) = f (0) + f ′(0)x +
ρ(x)

2
x2.

The proof, which is an easy extension of the usual Taylor formula with remainder, is

included at the end of this demonstration. The function f (x) := F(x + π

2
)− sin2(α)

satisfies

f (0) = 0, f ′(0) = 2 cos(α) sin(α), and | f ′′(x)| ≤ 4.

Applying Lemma 6.10 to the integrand in the definition of Rd(α) and applying the

change of variables x = ϕ−π/2, there exists a function ρ such that |ρ(x)| ≤ 4 and

�

d ·
σd−2(Sd−2)
σd−1(Sd−1)

�−1

|Rd(α)|=

�

�

�

�

�

∫ π/2

−π/2
cosd−2(x)

�

f ′(0)x +
ρ(x)

2
x2
�

dx

�

�

�

�

�

≤
supx |ρ(x)|

2

∫ π/2

−π/2
cosd−2(x)x2 dx

≤
π2

2

∫ π/2

−π/2
cosd−2(x) sin2(x)dx

=
π2

2

�

d ·
σd−2(Sd−2)
σd−1(Sd−1)

�−1

(6.14)
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The first inequality above follows by noting that the linear term cancels because cosine

is even, while the second follows by our bound on ρ and the basic inequality

x2 ≤
π2

4
sin2(x) for −

π

2
≤ x ≤

π

2
.

The final equality (6.14) can be verified with the aid of a computer algebra system. This

is the claimed bound.

The only thing that remains is the proof of the Taylor expansion for Lipschitz

functions.

Proof of Lemma 6.10. Define ρ(0) = 0. For x 6= 0, we set

ρ(x) :=
2

x2 ( f (x)− f (0)− f ′(0)x) .

By construction, f (x) = f (0)+ f ′(0)x + ρ(x)
2

x2. To find a bound on the magnitude of ρ,

we compute

�

�

�

�

x2

2
ρ(x)

�

�

�

�

= | f (x)− f (0)− f ′(0)x |=
�

�

�

�

∫ x

0

( f ′(y)− f ′(0))dy

�

�

�

�

≤ L

∫ x

0

y dy = L
x2

2
.

The first equality follows by definition, while the second is the fundamental theorem of

calculus. The inequality follows by the triangle inequality and the Lipschitz bound on

f ′. The final equality is elementary. We conclude |ρ(x)| ≤ L by comparing the left and

right sides above.

6.2.4 Descent cones of the `∞ norm

The `∞ norm is simple enough to allow for a direct computation of the statistical

dimension of its descent cones.

Proposition 6.11. Let I ⊂ {1, . . . , d−1, d} be a finite index set with s = |I | elements, and

suppose that x ∈ Rd satisfies

|x i|= ‖x‖`∞ for i ∈ I while |x j|< ‖x‖`∞ for j ∈ {1, . . . , d − 1, d} \ I .



94

If x 6= 0, then the statistical dimension of the descent cone of the `∞ norm at x is given by

δ(D(‖·‖`∞ , x )) = d −
s

2
. (6.15)

Proof. By homogeneity and signed permutation invariance of the `∞ norm, we may

assume that x i =−1 for i = 1, . . . , s− 1, s and that −1< x j < 1 for all indices j > s. We

claim that

D(‖·‖`∞ , x ) = Rs
+×R

d−s. (6.16)

This fact implies the claim (6.15) because

δ(Rs
+×R

d−s) = δ(Rs
+) +δ(R

d−s) =
s

2
+ (d − s) = d −

s

2
,

where the first equality is the direct sum property from Proposition 6.2 and the second

follows from our calculation for the statistical dimension of subspaces and orthants

(Secs. 6.2.1 and 6.2.2).

It remains to argue that (6.16) holds. Suppose first that y ∈ Rs
+×R

d−s. Then there

exists a λ > 0 that satisfies the following inequalities:

0≤ λyi ≤ 1 for i = 1, . . . , s− 1, s and

λ|y j| ≤ 1− |x j| for j = s+ 1, . . . , d − 1, d.
(6.17)

For i = 1, . . . , s − 1, s, positivity λyi ≥ 0 is satisfied by all λ > 0 because yi ≥ 0

for these indices. The relation λyi ≤ 1 for i = 1, . . . , s − 1, s is satisfied whenever

λ−1 ≥ maxi=1,...,s yi. As |x j| < 1 for j > s, the final inequality in (6.17) requires

λ−1 ≥min j=s+1,...,d |y j|/(1− |x j|). Hence the condition (6.17) is satisfied whenever λ−1

is sufficiently large.

Two basic consequences of the inequalities (6.17) are

|x i +λyi|= |λyi − 1| ≤ 1 for i = 1, . . . , s− 1, s, and

|x j +λy j| ≤ |x j|+λ|y j| ≤ 1 for j = s+ 1, . . . , d − 1, d.
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Figure 6.2: Summary of statistical dimension computations. The statistical dimension
computations of Sections 6.2.3, 6.2.6, and 6.2.7 in the limit as the dimension goes to infinity.
[Left] Circular cones. The statistical dimension δ(·)/d of the circular cone Circd(α) is
given by sin2(α) as d →∞. [Center] `1 norm descent cones. The normalized statistical
dimension δ(·)/d of the descent cone of the `1 norm at a [ρd]-sparse vector in Rd as the
d → ∞. The precise formula is given by Proposition 6.14. [Right] Schatten 1-norm
descent cones. The normalized statistical dimension δ(·)/(mn) of the descent cone of the
S1 norm on Rm×n at a matrix with rank [ρm] for several fixed aspect ratios ν = m/n. Since
the aspect ratio ν → 0, the limiting curve is ρ 7→ 2ρ−ρ2.

By taking a maximum over all coordinate indices, we find ‖x +λy‖`∞ ≤ 1 = ‖x‖`∞ , and

so y ∈ D(‖·‖`∞ , x ) by definition. We conclude Rs
+×R

d−s ⊂ D(‖·‖`∞ , x ).

For the other inclusion, suppose y /∈ Rs
+×R

d−s or equivalently, that yi∗ < 0 for some

i∗ ∈ 1, . . . , s− 1, s. Then for any λ > 0, we have |x i∗ + λyi∗ | = 1− λyi∗ > 1, and so in

particular ‖x +λy‖`∞ > 1= ‖x‖`∞ . Therefore, y /∈ D(‖·‖ , x ), and so we conclude that

Rs
+×R

d−s ⊃ D(‖·‖ , x ). Hence the equality (6.16) holds, which completes the proof.

6.2.5 A recipe for general descent cones

Descent cones are an important object in this work because they link optimality con-

ditions of convex programs to conic geometry. This section describes a technique

developed by Stojnic [Sto09], and refined by Chandrasekaran et al. [CRPW12], that

lets us approximate the statistical dimension of descent cones (Section 6.2.5). This tech-

nique is then applied to computing the statistical dimension of descent cones associated

to the `1 norm and the Schatten 1-norm.

The following result provides a rather general technique for developing an upper

bound on the statistical dimension.
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Fact 6.12 (The statistical dimension of a descent cone). Let f be a proper convex function

and x ∈ Rd be a point such that ∂ f (x ) is nonempty, compact, and does not contain the

origin. Define the map F : R+→ R+ by

F : τ 7→ E [dist2 (g ,τ · ∂ f (x ))] for τ≥ 0. (6.18)

Then we have the upper bound

δ(D( f , x ))≤ inf
τ≥0

F(τ). (6.19)

The map F is strictly convex, continuous at τ= 0, and differentiable for τ > 0. It achieves

its minimum at a unique point.

The inequality (6.19) was first observed by Stojnic [Sto09] and later extended by

Chandrasekaran et al. [CRPW12]. The remaining claims are primarily the work of

J. Tropp. The complete argument is available in our joint work [ALMT13, Prop. 4.4].

Fact 6.12 indicates that the best possible bound can be found simply by taking a

derivative and setting it equal to zero. To make this observation formal, we write the

computational procedure as Recipe 6.1. It turns out that the recipe yields surprisingly

good results in a number of interesting cases.

Fact 6.13 (Error bound for recipe). Let f be a norm on Rd , and suppose x 6= 0. Then

�

�

�δ(D( f , x ))− inf
τ≥0

F(τ)
�

�

�≤
2 sup {‖s‖ : s ∈ ∂ f (x )}

f (x/‖x‖)
, (6.20)

where the function F is defined in (6.18).

The proof of Fact 6.13 is also due primarily to J. Tropp, and hence we refer

to [ALMT13, Thm. 4.5] for the details.

6.2.6 Descent cones of the `1 norm

The `1 norm commonly appears in demixing methods where one of the underlying

signals is sparse; morphological component analysis (1.3) is one particular example.
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Recipe 6.1: Bounding the statistical dimension of a descent cone. This recipe is justified
by Fact 6.12, which states that the minimal value of F(τ) is an upper bound on the statistical
dimension of the descent cone δ(D( f , x )). When f is a norm, Fact 6.13 provides an explicit
error bound on the quality of the approximation obtained in this manner.

Assume that f is a proper convex function on Rd

Assume that the subdifferential ∂ f (x ) is nonempty, compact, and does not
contain the origin

1. Compute the subdifferential S = ∂ f (x ).

2. Find an expression for F(τ) := E [dist2(g ,τS)].

3. Determine the unique solution, if it exists, to the stationary equation
F ′(τ) = 0.

4. If a stationary point τ? exists, then δ(D( f , x ))≤ F(τ?) = infτ≥0 F(τ).

5. Otherwise, the bound is vacuous: δ(D( f , x ))≤ F(0) = d.

The next result applies Recipe 6.1 and Fact 6.13 to generate an approximation to the

statistical dimension of the `1 norm at sparse vectors with an explicit error bound. See

Figure 6.2[center] for an illustration of this result.

Proposition 6.14 (Descent cones of the `1 norm). Let x be a vector in Rd with s ≥ 1

nonzero entries. Then the normalized statistical dimension of the descent cone of the `1

norm at x satisfies the bounds

ψ`1
(s/d)−

2
p

sd
≤
δ(D(‖·‖1 , x ))

d
≤ψ`1

(s/d). (6.21)

The function ψ`1
: (0,1]→ [0,1] is a weakly increasing function given by

ψ`1
(ρ) := (1−ρ)

r

2

π

e−τ
2
∗/2

τ∗
, 0< ρ < 1 and ψ(1) = 1, (6.22)

where τ∗ = τ∗(ρ) is the unique solution to the stationary equation

∫ ∞

τ∗

e−u2/2

u2 du=
Ç

π

2
·
ρ

1−ρ
. (6.23)

Proof. Because the `1 norm is invariant under signed permutations, we may assume
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that x = (x1, . . . , xs−1, xs, 0, . . . , 0)t and moreover x i > 0 for all i = 1, . . . , s− 1, s. The

subgradient of the `1 norm at x is given by

∂ ‖x‖`1
=
¦

u ∈ Rd : ui = 1 for 1≤ i ≤ s and |ui| ≤ 1 for s+ 1≤ i ≤ d
©

. (6.24)

A direct computation shows that the distance between a Gaussian vector g and the

subgradient ∂ ‖x‖`1
is given by

dist2(g ,τ · ∂ ‖x‖`1
) =
∑s

i=1
(gi −τ)2+

∑d

i=s+1
Pos2(|gi| −τ),

where Pos(t) := 0 ∨ t returns the positive part of a real number t ∈ R. Since each

summand above depends only on a single component of g , we can compute the mean

distance to the subgradient exactly:

F(τ) := E[dist2(g ,τ · ∂ ‖x‖`1
)]

= s(1+τ2) + (d − s)

r

2

π

�

(1+τ2)

∫ ∞

τ

e−u2/2 du−τe−τ
2/2

�

. (6.25)

By (6.19), we have F(τ) ≥ δ(D(‖·‖`1
, x )) for all τ ≥ 0. By virtue of Fact 6.12, the

function F(τ) is also strictly convex and differentiable.

When s = d, it is trivial to compute that infτ≥0 F(τ) = F(0) = d. For s < d, we

differentiate the expression (6.25), we find that τ∗ is the unique stationary point of

F(τ) if and only if τ∗ satisfies the stationary equation

(d − s)

�

1

τ∗
e−τ

2
∗/2−

∫ ∞

τ∗

e−u2/2 du

�

=
Ç

π

2
s

A simple application of integration-by-parts shows that the stationary equation above is

equivalent to (6.23). Moreover, we may simplify our expression for F(τ∗) by solving for

the integral in the display above. With this substitution and some basic algebra, we find

dψ`1
(s/d) := inf

τ≥0
F(τ) = F(τ∗) = (d − s)

r

2

π

e−τ
2
∗/2

τ∗
,
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This proves the upper bound in (6.21) upon normalizing by the dimension d.

It is easy to show that ψ`1
(ρ) ∈ [0,1] for ρ ∈ (0,1]. Indeed, F(τ) ≥ 0 by its

definition (6.25) as the average of a positive quantity. But we also have dψ`1
(ρ) ≤

F(0) = d because ψ`1
is defined as the infimal value of F over τ≥ 0. This shows that

0≤ψ`1
(ρ)≤ 1.

We now argue that ψ`1
is increasing due to a geometric fact: the subgradients of

the `1 norm satisfy an inclusion property. Suppose x ′ = (x ′1, . . . , x ′s′ , 0, . . . , 0)t ∈ Rd
+ has

s′ > s nonzeros. Then by the subgradient calculation (6.24), we see

∂ ‖x‖`1
⊃ ∂ ‖x ′‖`1

,

and hence dist(g ,∂ ‖x‖`1
) ≤ dist(g ,∂ ‖x ′‖`1

). Therefore F(τ) is weakly increasing in

the sparsity level s = [ρd] for each τ, and so ψ`1
(ρ) is also increasing. (In Lemma 6.15

below, we will find that ψ`1
is actually strictly increasing.)

The lower bound on ψ`1
follows from Fact 6.13 after some reductions. First, note

that while the `1 norm depends on the value of the nonzero elements of x , while the

subgradient, and hence the descent cone D(‖·‖`1
, x ), depends only on the number of

nonzero elements. Therefore, we may choose the s-sparse vector x that yields the most

favorable bound in (6.20). Taking x = (1, . . . , 1, 0, . . . , 0)t , we have ‖x/‖x‖‖`1
=
p

s. In

addition,

sup{‖u‖ : u ∈ ∂ ‖x‖`1
}=
p

d,

so that the error in our approximation is no larger than

�

�

�

�

δ(D(‖·‖`1
, x ))

d
−ψ`1

(ρ)

�

�

�

�

≤
1
p

sd
.

This gives the claim (6.21).

The next result lists some technical facts that are important for rigorously demonstrat-

ing several interesting features of demixing problems involving the `1 norm discussed in

Section 10.
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Lemma 6.15. The function ψ`1
defined in Proposition 6.14 is analytic on (0,1), strictly

increasing, and satisfies

ψ`1
(ρ)> ρ for 0< ρ < 1 and limρ→0ψ`1

(ρ) = 0. (6.26)

Moreover,

ψ`1
(ρ)< 1 for 0< ρ < 1 and limρ→1ψ`1

(ρ) = 1. (6.27)

Proof. We begin by demonstrating the properties in (6.26). We achieve the inequality

by approximating an integral:

e−τ
2
∗/2

τ∗
= e−τ

2
∗/2

∫ ∞

τ∗

1

u2 du>

∫ ∞

τ∗

e−u2/2

u2 du=
Ç

π

2
·
ρ

1−ρ
.

The first relation is basic calculus, the inequality follows from the fact that e−u2/2 is a

strictly decreasing function, and the final equality is the definition (6.23) of τ∗. The

claim ψ`1
(ρ) > ρ follows by applying the inequality above to the definition (6.21)

of ψ`1
.

We now consider the limit in (6.26). As ρ goes to 0, the right-hand side of the

stationary equation (6.23) also tends to zero, which implies in particular that τ∗→∞

as ρ→ 0. Therefore

lim
ρ→0
ψ`1
(ρ) =

r

2

π
lim
ρ→0

�

(1−ρ)
e−τ

2
∗/2

τ∗

�

= 0,

as claimed.

The analytic implicit function theorem [KP13, Thm. 6.1.2] implies that the τ∗ =

τ∗(ρ) defined implicitly by (6.23) is an analytic function for ρ ∈ (0, 1). The analyticity of

ψ`1
then follows from its definition (6.22) because the composition of analytic functions

is analytic.

The properties of ψ`1
listed in (6.26) imply that ψ`1

(ρ) is not constant in a neigh-

borhood of ρ = 0. Because ψ`1
(ρ) is analytic over (0,1), the fact that it is not a

constant function means that it is not constant in any neighborhood of its domain [AF03,
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Thm. 3.2.6], i.e., ψ`1
is not flat on any open subset of (0, 1). Since ψ`1

is an increasing

of ρ by Proposition 6.14, it must in fact be strictly increasing.

Finally, we consider the claim (6.27). The fact that ψ`1
is strictly increasing lets

us easily deduce that ψ`1
(ρ) < 1 for ρ ∈ (0,1). Indeed, we know that ψ`1

(ρ) ≤ 1 for

all ρ ∈ (0,1) by Proposition 6.14. Since ψ`1
is strictly increasing, it cannot achieve

ψ`1
(ρ) = 1 for any ρ < 1. But ψ`1

(ρ) ≥ ρ, so we also have limρ→1ψ`1
(ρ) = 1. This

completes the final claim.

6.2.7 Descent cones of the Schatten 1-norm

Demixing problems involving low-rank matrices often take the Schatten 1-norm as

a regularizer. The next result provides an asymptotically sharp computation for the

statistical dimension of the Schatten 1-norm at a low-rank matrix.

Proposition 6.16 (Descent cones of the S1 norm). Let (X(r, m, n))n∈N be a sequence of

matrices X(r, m, n) ∈ Rm×n with rank r. Suppose that r, m, n→∞ with limiting ratios

r/m→ ρ ∈ (0,1) and m/n→ ν ∈ (0, 1]. Then

δ
�

D(‖·‖S1
, X(r, m, n))

�

mn
→ψS1

(ρ,ν). (6.28)

The function ψS1
: (0, 1)× (0,1]→ [0,1] is defined as

ψS1
(ρ,ν) := ρν+(1−ρν)

�

ρ(1+τ2
∗) + (1−ρ)

∫ a+

a−∨τ2
∗

(
p

x −τ∗)2 ·ϕ(x)dx

�

, (6.29)

The integration limits are a± := 1±py, and the kernel ϕ is a probability density given by

ϕ(x) :=
1

2πy x

p

(x − a−)(a+− x) for x ∈ [a−, a+],

where the constant y := (ν −ρν)/(1−ρν). The parameter τ∗ in (6.29) is the unique

solution to equation
∫ a+

a−∨τ2
∗

�
p

x

τ∗
− 1
�

·ϕ(x)dx =
ρ

1−ρ
. (6.30)
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See Figure 6.2[right] for a visualization of the curve (6.29) as a function of ρ for

several choices of aspect ratio ν .

Proof of Proposition 6.16. For convenience, we abbreviate X = X(r, m, n) with the un-

derstanding that r, m, n are parameters associated with X . Because the Schatten 1-norm

is unitarily invariant, we may assume that

X =

�

Σ 0
0 0

�

(6.31)

where Σ ∈ Rr×r is a diagonal matrix consisting of the singular values X . The subgradient

of the Schatten 1-norm at X is then given by [Wat92, Ex. 2]

∂ ‖X‖S1
=

¨�

I 0
0 W

�

: σ1(W)≤ 1

«

,

where σ1(W) returns the maximum singular value of W and the block decomposition

corresponds to the decomposition (6.31) of X . Let G ∈ Rm×n be a Gaussian matrix

whose entries are independent NORMAL(0,1) random variables. Then

dist2(G,τ∂ ‖X‖S1
) = inf

τ≥0
σ1(W)≤1

(















�

G11−τI G12

G21 0

�
















2

F

+ ‖G22−τW‖2
F

)

.

A standard argument in matrix analysis shows that the minimum over W above occurs

when G22 and W share the same spectrum (cf. [Bha97, Prob. III.16.13]). This reduces

the minimization to a series of one-parameter minimizations that we solve explicitly:

inf
σ1(W)≤1

‖G22−τW‖2
F =
∑m−r

i=1
inf

0≤wi≤1
(σi(G22)−τwi)

2 =
∑m−r

i=1
Pos(σi(G22)−τ)2,

(6.32)

where σi(G22) is the ith singular value of G22 and Pos(t) = 0∨ t returns the positive
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part of a number t ∈ R. We also compute the average value

E




















�

G11−τI G12

G21 0

�
















2

F



= E[‖G11−τI‖2
F] +E[‖G12‖

2
F] +E[‖G21‖

2
F]

= r(m+ n− r +τ2). (6.33)

By Fact 6.12, we have the upper bound δ(D(‖·‖S1
, X)) ≤ infτ≥0 F(τ), where F(τ) is

given by

F(τ) := E
�

dist2(G,τ∂ ‖X‖S1
)
�

= r(m+ n− r +τ2) +E
h
∑m−r

i=1
Pos(σi(G22)−τ)2

i

. (6.34)

The second equality is derived from (6.32) and (6.33). In principle it is possible to

evaluate (6.34) using the exact singular value density of Gaussian matrices [And84,

p. 534]. Instead of pursuing this technically daunting task, we turn to a classical result

from random matrix theory.

Fact 6.17 (Marčenko–Pastur [MP67]). Let Z ∈ Rp×q be a standard Gaussian matrix and

suppose f : R→ R is continuous. Let S := q−1ZZ t be the sample covariance matrix, and

suppose that the aspect ratio p/q→ y ∈ (0,1] as q→∞. Then

E
�1

p

∑p

i=1
f (λi(S))

�

→
∫ a+

a−

f (x)ϕ(x)dx as q→∞, (6.35)

where λi(S) denotes the ith eigenvalue of S. The kernel ϕ is defined by

ϕ(x) :=
1

2πy x

p

(x − a−)(a+− x) for x ∈ [a−, a+],

and the integration limits are a± := (1±py)2.

In the literature, the Marčenko–Pastur result often is stated with a boundedness

condition on the function f . The result above follows easily from the classical result

by the almost sure convergence of the extreme eigenvalues of the sample covariance
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matrix [Gem80, Sil85] and the almost sure weak convergence of the spectral density to

the Marčenko–Pastur distribution [BS10, Thm. 5.8].

In order to apply (6.35) to the expectation in the definition (6.34) of F , we must

make the appropriate renormalization. Since the squared singular values of a matrix

are the eigenvalues of its Gram matrix, we have

1
p

n− r
σi(G22) =

p

λi(S) where S :=
1

(n− r)
G22G t

22.

With this identification, Fact 6.17 implies

1

mn
E
h
∑m−r

i=1
Pos
�

σi(G22)− (n− r)1/2τ
�2i

→ (1−ρ)(1−ρν)
∫ a+

a−

Pos
�p

x −τ
�2
ϕ(x)dx as n→∞.

Combining this limit with the definition (6.34) of F(τ), we find

F(
p

n− rτ)
mn

→ ρν + (1 − ρν)
�

ρ(1+τ2) + (1−ρ)
∫ a+

a−∨τ2

�p
x −τ

�2
ϕ(x)dx

�

as n→∞. The second derivative test shows that the limiting expression above is strictly

convex in τ, and so the minimal value of the expression on the right above is achieved

for the unique τ∗ that satisfies the stationary equation

∫ a+

a−∨τ2
∗

�
p

x

τ∗
− 1
�

ϕ(x)dx =
ρ

1−ρ
.

This stationary equation corresponds to (6.30). Applying the formula for the limiting

value of F(τ), we see

lim
n→∞

δ(D(‖·‖S1
, X))

mn
≤ lim

n→∞
inf
τ≥0

F(
p

n− rτ)
mn

= ρν + (1−ρν)
�

ρ(1+τ2
∗) + (1−ρ)

∫ a+

a−∨τ2
∗

�p
x −τ∗

�2
ϕ(x)dx

�

, (6.36)
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where the inequality follows from Fact 6.2. The equality follows because we are

taking the limit of convex functions, so that pointwise convergence ensures epigraphical

convergence [RW98, Thm. 7.17], which in turn implies convergence of the infimal

values [RW98, Thm. 7.33].

For the lower bound, we will make use of the error estimate (6.20). First note that
















�

I 0
0 W

�
















2

F

≤ m for all σ1(W)≤ 1,

where the decomposition aligns with the decomposition (6.31) of X above. Therefore,

the numerator of (6.20) is no larger than 2
p

m. For the denominator, note that the

subgradient ∂ ‖X‖S1
depends only on the rank of X , and not the particulars of the

singular values. Hence, we may chose the most favorable X , which in this case amounts

to taking X =
�

I 0
0 0

�

, a truncated identity matrix. This leads to the bound










X

‖X‖










S1

=
1
p

r
















�

I 0
0 0

�
















S1

=
p

r.

Our error bound (6.20) delivers the inequality

1

mn

�

�

�δ(D(‖·‖S1
, X))− inf

τ≥0
F(τ)

�

�

�≤ 2

r

1

mrn2 → 0 as n→∞

This estimate, combined with (6.36), gives the claim.

6.3 Relationship to the Gaussian width

A summary parameter closely associated with the statistical dimension is the Gaussian

width of a set. The Gaussian width is the central geometric parameter in the Gaussian

process inequalities of Gordon [Gor85, Gor87, Gor88]. These inequalities were first

applied to the analysis of convex optimization programs in [RV08], which inspired a

number of other works in the same vein [Sto09, OH10, CRPW12]. This section describes

the close relationship between the Gaussian width and the statistical dimension and
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argues that these parameters are essentially interchangeable.

Definition 6.18. The Gaussian width w(S) of a set S ⊂ Rd is given by

w(S) := E[supx∈S〈g , x 〉]. (6.37)

As noted in [CRPW12, Sec. 3.2], the Gaussian width is proportional to the classical

mean width of a set, making is a common fixture in the geometric analysis of convex

bodies. However, for unbounded sets, and cones in particular, the Gaussian width takes

an infinite value. There are two natural ways to extend the Gaussian width to cones.

The first, more common, approach is to restrict the cone to the unit sphere, while the

second is the restriction to the solid unit ball.

It turns out that it makes rather little difference which convention we use to define

the Gaussian width of a cone. Moreover, for most purposes, the statistical dimension

δ(C) is a sufficiently accurate estimate of the (squared) Gaussian width.

Theorem 6.19. For any convex cone C ⊂ Rd , we have the string of inequalities

w2(C ∩ Sd−1)≤ w2(C ∩Bd)≤ δ(C)≤ w2(C ∩ Sd−1) + 1. (6.38)

We note that the first two inequalities follow immediately from [CRPW12, (30) and

(33)], but we provide a full proof for completeness. We require the following bound on

Lipschitz functions of Gaussian random variables.

Fact 6.20 (Variance of a Lipschitz function). Let H : Rd → R be a function that is L-

Lipschitz with respect to the Euclidean norm. Then Var (H(g ))≤ L2, where g is a standard

normal vector.

This fact follows immediately from the Gaussian Poincaré inequality [Bec89, Eq. (3)]

with p = 1.

Proof of Theorem 6.19. The first inequality follows immediately from the containment

C ∩ Sd−1 ⊂ C ∩ Bd and the definition (6.37) of the Gaussian width. For the second
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relation in (6.38), we have the string of relations

w2(C ∩Bd−1) = E
�

supx∈C∩Bd
〈x , g 〉

�2
= E [infx∈C◦ ‖x − g‖]2 ≤ E

�

dist2(g , C◦)
�

The first equality is the definition (6.37) of the Gaussian width, while the second

relation is (6.8) from the proof of Proposition 6.3.4. The final relation combines

Jensen’s inequality with the definition (3.13) of the distance to a cone. We recognize

the right-hand side as δ(C) by the distance characterization (6.4) of the statistical

dimension, which demonstrates the second inequality in (6.38).

The final bound in (6.38) requires slightly more effort. Define the random variable

Z := supx∈C∩Sd−1〈x , g 〉. We claim Z is a 1-Lipschitz function of g with mean E[Z] =

w(C ∩ Sd−1). To see this, consider y , z ∈ Rd . We may assume without loss that C is

closed because the closure operation does not affect the supremum. Then there exists

an x∗ ∈ C ∩ Sd−1 such that

sup
x∈C∩Sd−1

〈x , y〉 − sup
x∈C∩Sd−1

〈x , z〉= 〈x∗, y〉 − sup
x∈C∩Sd−1

〈x , z〉 ≤ 〈x∗, y − z〉 ≤ ‖y − z‖ ,

where we used the fact that x∗ is unit norm for the last inequality. The same argument

yields the analogous bound for the negative difference, and the 1-Lipschitz property

follows immediately. We bound the variance of Z using Gaussian concentration:

E[Z2]−w(C ∩ Sd−1)2 = E[(Z −E[Z])2]≤ 1, (6.39)

where the inequality follows from the bound on the variance of a Lipschitz function of a

Gaussian, Fact 6.20.

The claim follows immediately after we demonstrate that E[Z2]≥ δ(C). To verify

this inequality, note that positivity of Z2 implies

E[Z2]≥ E
�

(supx∈C∩Sd−1〈x , g 〉)2 · 1(g /∈ C◦)
�

.

We claim the right-hand side above is in fact equal to δ(C). Indeed, for any y /∈
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C◦, we have the equality supx∈C∩Sd−1〈x , y〉 = supx∈C∩Bd
〈x , y〉 by a basic homogeneity

argument. Moreover, when y ∈ C◦, we have supx∈C∩Bd
〈x , y〉= 0. By combining these

two observations, we see that

E
�

(supx∈C∩Sd−1〈x , g 〉)2 · 1(g /∈ C◦)
�

= E
h

�

supx∈C∩Bd
〈x , g 〉

�2
i

= δ(C),

where the final equality follows from the supremum characterization (6.5) of the

statistical dimension. We conclude that E[Z2] ≥ δ(C). Applying this result to (6.39),

we arrive at the upper inequality of (6.38).
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Chapter 7

Concentration of intrinsic volumes

In this section, we prove a new concentration inequality involving the intrinsic volumes

of convex cones. The results of this section are joint work with collaborators, which

appear in [ALMT13, Thm. 6.1]. Before stating the result, we introduce some summary

parameters that simplify the exposition of our main result. For any cone C ∈ Cd , we

define the transition width

ω(C) :=
p

δ(C)∧δ(C◦), (7.1)

where the wedge ∧ returns the minimum of two numbers. Further, introduce the

concentration function pC(λ) which is defined by

pC(λ) := 4 exp
�

−
λ2/8

ω(C)2+λ

�

. (7.2)

Then we have the following result.

Theorem 7.1 (Concentration of intrinsic volumes). Let C ∈ Cd and fix any λ ≥ 0. Let

k+, k− be indices such that

k− ≤ δ(C)−λ+ 1 and k+ ≥ δ(C) +λ.

Then we have the tail bounds

tk−(C)≥ 1− pC(λ) and tk+(C)≤ pC(λ). (7.3)
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The schema of this proof is due essentially to M. Lotz, but each of the coauthors

of [ALMT13] played a substantial role in developing the current result.1

The bound (7.3) demonstrates that the tail functionals tk(C) change from near one

to near zero over a range of O(ω(C)) indices, and that this transition region occurs

near the statistical dimension δ(C). The width ω(C)≤
p

d/2 for any cone C ∈ Cd by

the polarity rule of Proposition 6.2.4, which implies that essentially all of the intrinsic

volumes are negligible in high dimensions. Given the important role of intrinsic volumes

in determining the geometric properties of convex cones, the concentration property

provides a rigorous justification for the qualitative observation that a convex cone C

with statistical dimension δ(C) sometimes behaves like a subspace of dimension [δ(C)].

In the next section, we discuss some of the parallels between the bound (7.3) and

classical inequalities in Euclidean integral geometry. The full proof of Theorem 7.1

appears in Section 7.2.

7.1 Parallels with Euclidean integral geometry

Because of analogies between conic and Euclidean integral geometry, Schneider &

Weil [SW08, p. 263] express interest in inequalities among the conic intrinsic volumes

vk and the tail functionals tk and hk. To the best of our knowledge, there are only two

other nontrivial inequalities relating these quantities. The first is a direct consequence

of the classical spherical isoperimetric inequality, which provides that, among all cones

with some fixed value of vd(C), the smallest value of vd−1(C) is attained precisely when

C is a circular cone. The other inequality2 between conic intrinsic volumes asserts that

circular cones maximize v0(C) over all cones with vd(C) fixed [GHS03].

Theorem 7.1, coupled with the interlacing inequalities of Lemma 8.3, provides a rich

family of inequalities relating the conic intrinsic volumes to the tail functionals. Let us

1This author independently proved a very similar result by means of a Gaussian width inequality of
Gordon [Gor85, Gor87, Gor88], but the approach we present here is more intrinsic to the theory of conic
integral geometry. One novelty in our current presentation is the use of the Gaussian Steiner formula
(Proposition 5.6).

2This second inequality can also be derived as a straightforward consequence of spherical isoperimetry,
at least for the case of convex cones.
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highlight one intriguing analogy between our inequalities and the classical inequalities

for convex bodies Euclidean space.

Corollary 7.2. For any closed cone C ∈ Cd , we have the upper bound

vk(C)≤ sk(C) := 2exp
�

−
(k−δ(C))2/8

ω(C)2+ |k−δ(C)|

�

for every k = 0, . . . , d−1, d. (7.4)

If C /∈
¦

{0},Rd
©

, then the sequence (sk(C))dk=0 is strictly log-concave:

sk(C)
2 > sk−1(C) sk+1(C) for every k = 1, . . . , d − 2, d − 1.

Proof. For k > δ(C), we set λ= k− 1−δ(C) and apply the first bound of (7.3) to find

vk(C)≤ hk(C)≤
1

2
tk−1(C)≤

1

2
pC(λ),

where the first inequality follows by the definition (5.10) of tail functionals, the second

is the interlacing inequality of Lemma 8.3, and the final inequality is Theorem 7.1.

When k ≤ δ(C), we set λ= δ(C)− k and use the polarity relationship (5.6) to find

vk(C) = vd−k(C
◦)≤

1

2
td−k−1(C

◦)≤
1

2
pC◦(λ),

where the inequalities follow as above. The claim (7.4) follows from the definition (7.2)

of pC(λ) and the fact that ω(C◦) =ω(C).

It remains to argue the log-concavity of the bound. Corollary 6.4 immediately implies

ω2(C) ≥ 1
2

when C is a nontrivial cone, so the map u 7→ u2/(ω2(C) + |u|) is strictly

log-concave. The concavity of the exponent implies that the sequence k 7→ sk(C) is

log-concave.

Corollary (7.4) implies that the sequence of conic intrinsic volumes behaves like

a log-concave sequence as conjectured in [Ame11, Conj. 4.4.16]. The corresponding

log-concave behavior of the Euclidean intrinsic volumes is an important consequence of

the deep Alexandrov–Fenchel inequalities. Notable special cases of this classical result
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include the usual isoperimetric inequality for convex bodies, Minkowski’s inequality,

and Urysohn’s inequality [Sch93, Ch. 6]. Theorem 7.1 provides a system of inequalities

for conic intrinsic volumes that parallel these deep classical results.

7.2 Proof of Theorem 7.1

The proof of inequality (7.3) requires two auxiliary propositions. The proofs are

technical and have little geometric content, and hence are postponed until Section 7.3.

Proposition 7.3 (Bounds on the chi-square cdf). For every integer k ≥ 1,

1

2
≤ χ2

k (k)≤ χ
2
1 (1)< 0.683, (7.5)

where χ2
k (·) is the cumulative distribution function of a chi-square random variable with

k degrees of freedom (5.12). The lower bound also holds for k = 0. Moreover, χ2
j (k) is

decreasing in j for each fixed argument k.

The proof, available in Section 7.3.2, depends on an integral approximation argu-

ment. The second result is a concentration inequality for the projection of a Gaussian

vector onto a convex cone.

Proposition 7.4 (Deviation of conic projections). For any C ∈ Cd and λ ≥ 0, we have

the bounds

P
�

‖ΠC(g )‖
2 ≥ δ(C) +λ

	

≤ qC(λ) and P
�

‖ΠC(g )‖
2 ≤ δ(C)−λ

	

≤ qC(λ)

where

qC(λ) := exp
�

−
λ2/8

δ(C) +λ

�

.

The proof uses a standard moment comparison approach. See Section 7.3.1 for the

details. We are now ready for the proof of our main result.
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Proof of Theorem 7.1. Suppose k+ ≥ δ(C) +λ. We have the estimate

tk+(C) =
∑d

j=k+
v j(C)

�

[1−χ2
j (k+)] +χ

2
j (k+)

�

≤
∑d

j=0
v j(C)

�

1−χ2
j (k+)

�

+χ2
k+
(k+)

∑d

j=k+
v j(C)

≤ P
�

‖ΠC(g )‖
2 > k+

	

+ 0.7
∑d

j=k+
v j(C),

where the first inequality follows from the positivity of intrinsic volumes and monotonic-

ity of χ2
j (k) given by Proposition 7.3. The final inequality follows from the Gaussian

Steiner formula (5.11) and the upper bound (7.5). We recognize the final sum as tk+(C).

By subtracting 0.7tk+(C) from both sides above and applying the fact that k+ ≥ δ(C)+λ,

we have

tk+(C)≤
1

0.3
P
�

‖ΠC(g )‖
2 > δ(C) +λ

	

≤ 4qC(λ)

by Proposition 7.4.

The bound qC(λ) is best when δ(C) is small. However, when δ(C)≈ d, the polarity

rule of Proposition 6.2.4 implies δ(C◦)� d. A dual version of the same argument above

provides a bound on the tail functional tk+(C) in terms of qC◦(λ):

tk+(C) =
∑d

j=k+
v j(C)

�

χ2
d− j(d − k+) + [1−χ2

d− j(d − k+)]
�

≤
∑d

j=0
v j(C)χ

2
d− j(d − k+) +

�

1−χ2
d−k+
(k+)

�
∑d

j=k+
v j(C)

≤
∑d

j=0
v j(C

◦)χ2
j (d − k+) + 0.5

∑d

j=k+
v j(C).

The final inequality requires the fact that v j(C) = vd− j(C◦), owing to the polarity

property of intrinsic volumes (5.6), and it also uses the lower bound on the chi-square

cumulant from Proposition 7.3. The final sum is equal to tk+(C), and so by rearranging

the inequality and applying the Gaussian Steiner formula again we obtain the bound

∑d

j=k+
v j(C)≤ 2P

�

‖ΠC◦(g )‖
2 ≤ d −δ(C)−λ

	

≤ 2qC◦(λ).
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The final inequality above requires the polarity property δ(C◦) = d−δ(C) from Proposi-

tion 6.2 and the lower deviation inequality of Proposition 7.4. Combining this estimate

with our previous bound, we find

tk+(C)≤ 4 [qC(λ)∧ qC◦(λ)] = pC(λ). (7.6)

This is the first bound of (7.3). The second inequality follows from the first by duality.

Indeed, we have v j(C) = vd− j(C◦) by (5.6), so that

1− tk−(C) =
∑k−

j=0
v j(C) =

∑d

j=d−k−
v j(C

◦) = td−k−(C
◦)

Applying the polarity relation δ(C) = d −δ(C◦) of Proposition 6.2 and our assumption

on k−, we see that

d − k− ≥ d −δ(C) +λ= δ(C◦) +λ.

Combining our last two displays yields the result

1− tk−(C) = td−k−(C
◦)≤ pC◦(λ) = pC(λ),

where the inequality follows from the bound (7.6) developed earlier.

7.3 Proof of technical propositions

The rest of this section is devoted to the proof of our technical lemmas.

7.3.1 Concentration of projections onto cones

The concentration inequality for conic projections is our next task. The proof below is

due to J. Tropp, and appears in the joint work [ALMT13].

Proof of Proposition 7.4. We prove the upper deviation inequality first. By exponentiat-
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ing and applying Markov’s inequality, the Laplace transform methods provides

P
�

‖ΠC(g )‖
2 ≥ δ(C) +λ

	

≤ e−ξλEeξ(‖ΠC (g )‖
2−δ(C)), (7.7)

valid for all ξ > 0. We wish to apply a moment bound from [Bog98, Cor. 1.7.9].

Fact 7.5. Let F : Rd → R be a weakly differentiable function such that E[F(g )] = 0 and

E
�

|F(g )|2+ ‖∇F(g )‖2�<∞.

Then the moment bound

EeξF(g ) ≤
�

Ee(ξ/4)‖∇F(g )‖2
�2ξ/(1−2ξ)

holds for all 0< ξ <
1

2
. (7.8)

To apply this result to our present situation, we first verify that the regularity

conditions of Fact 7.5 hold for the exponent appearing in (7.7). Writing F(x ) :=

‖ΠC(x )‖
2−δ(C), we see that F(g ) is a zero-mean random variable bounded by

|F(x )|2 ≤ 2‖ΠC(x )‖
4+ 2δ2(C)≤ 2‖x‖4+ 2δ2(C).

Moreover, by virtue of (3.19), F is differentiable and ‖∇F(x )‖2 = 4‖ΠC(x )‖
2 ≤ 4‖x‖2.

Because all moments of a chi-square random variable are finite, we see

E
�

|F(g )|2+ ‖∇F(g )‖2�≤ 2δ(C) + 2E[‖g‖4] + 4E
�

‖g‖2�<∞.

With the regularity conditions out of the way, we may apply Fact 7.5 to the expectation

in (7.7) to find

EeξF(g ) ≤
�

Ee(ξ/4)‖∇F(g )‖2
�2ξ/(1−2ξ)

whenever 0< ξ <
1

2
.

The formula ‖∇F(x )‖2 = 4(F(x ) + δ(C)) follows from the formula (3.19) for the
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gradient of the projection onto a cone, so we have

EeξF(g ) ≤ exp
�

2ξ2δ(C)
1− 2ξ

�

�

EeξF(g )�2ξ/(1−2ξ)
.

Since 2ξ/(1− 2ξ)< 1 for 0< ξ < 1
4
, the inequality above implies

EeξF(g) ≤ exp
�

2ξ2δ(C)
1− 4ξ

�

for 0< ξ <
1

4
.

Applying this bound to our Laplace transform inequality (7.7) yields our deviation

inequality for the upper tail:

P{‖ΠC(g )‖
2 ≥ δ(C) +λ} ≤ inf

0<ξ≤1/4
exp
�

−ξλ+
2ξ2δ(C)
1− 4ξ

�

≤ exp
� −λ2/8

δ(C) +λ

�

,

where the final bound follows by the specific choice ξ= (λ/4)/(δ(C) +λ).

The lower tail requires a similar, but slightly more intricate, argument. In the same

manner as above, our first step is an application of the Laplace transform method:

P{‖ΠC(g )‖
2 ≤ δ(C)−λ}= P{δ(C)−‖ΠC(g )‖

2 ≥ λ} ≤ e−ξλEe−ξF(g ),

valid for all ξ > 0, where the function F is as defined above. Fact 7.5 yields the moment

bound

Ee−ξF(g ) ≤
�

Eeξ‖ΠC (g )‖
2�2ξ/(1−2ξ)

whenever 0< ξ <
1

2
. (7.9)

Due to the negative exponent on the left-hand side above, the upper and lower portions

of this inequality are not comparable. To get a handle on the right-hand side, we apply

Fact 7.5 to the term in parenthesis to find

Eeξ‖ΠC (g )‖
2
= eξδ(C)EeξF(g ) ≤ eξδ(C)

�

Eeξ‖ΠC (g )‖
2�2ξ/(1−2ξ)

for all 0< ξ < 1
2
. Solving this relation reveals

Eeξ‖ΠC (g )‖
2
≤ exp

�ξ(1− 2ξ)
1− 4ξ

δ(C)
�

for 0< ξ <
1

4
.
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By combining this inequality with (7.9), we find the same upper bound as before:

P
�

‖ΠC(g )‖
2 ≤ δ(C)−λ

	

≤ exp
�

−ξλ+
2ξ2

1− 4ξ
δ(C)

�

whenever 0< ξ <
1

4
.

The specific choice ξ= (λ/4)/(δ(C) +λ) completes the proof.

7.3.2 An inequality for chi-square random variables

Recall that a chi-square random variables with k degrees of freedom has the cumulative

distribution given by

χ2
k (ε) := P

�

‖gk‖
2 ≤ ε

	

=
1

2k/2Γ( k
2
)

∫ ε

0

x k/2−1e−x/2 dx for all k ≥ 1, (7.10)

where gk is a k-dimensional Gaussian vector and ε ≥ 0. It is consistent with this

definition to set χ2
0 (ε) := 1 for all ε ≥ 0.

Proof of Proposition 7.3. The lower bound in (7.5) is an immediate consequence of the

mean–median–mode inequality for the gamma distribution [GM77, Sec. 3(a)] when

k ≥ 1. When k = 0, the lower bound holds trivially by our definition.

The upper bound requires more work. For k = 1, the inequality is trivial. For integers

2 ≤ k ≤ 8, the bound (7.5) may be verified numerically. For k ≥ 9, our strategy is to

apply a second-order approximation to the exponent in the integral

1−χ2
k (k) =

1

2k/2Γ
�

k
2

�

∫ ∞

k

exp
��

k
2
− 1
�

log(x)− x
2

�

dx (7.11)

and combine the resulting expression with Stirling’s formula. For this purpose, we

develop a quadratic lower bound for the logarithm. For x ≥ 0, we compute

d

dx

�

log(1+ x)− x +
x2

2

�

=
x2

x + 1
≥ 0.

Integrating this relationship yields the inequality log(1+ x)− x + x2

2
≥ log(1) = 0 for



118

all x ≥ 0. We bootstrap this simple inequality to find the more elaborate relation

log(x + k) = log(k) + log
�

1+
x − k

k

�

≥ log(k) +
x − k

k
−
(x − k)2

2k2

which holds for all x ≥ k > 0. Since k/2> 1 for k ≥ 9, we may apply this inequality to

the exponent of the integrand in (7.11):

∫ ∞

k

x k/2−1e−x/2 dx ≥ kk/2−1

∫ ∞

k

exp
�

�k

2
− 1
�

�

x − k

k
−
(x − k)2

2k2

�

−
x

2

�

dx

= kk/2−1e−k/2

∫ ∞

0

exp
�

� 1

2k2 −
1

4k

�

y2−
y

k

�

dy.

The equality follows by the change of variables y = x − k and algebraic simplification.

Dropping the nonnegative term y2/(2k2) in the exponent of the integrand above, we

continue our estimate

∫ ∞

k

x k/2−1e−x/2 dx ≥ kk/2−1e−k/2

∫ ∞

0

exp
�

−
y

k
−

1

4k
y2

�

dy

=
p
πk(k−1)/2e1/k−k/2 erfc

�
r

1

k

�

. (7.12)

The final relation (7.12) can be verified with the aid of a computer algebra system.

An inequality form of Stirling’s formula [DLMF, OLBC10, 5.6.1] provides a bound

on the normalization constant appearing in (7.11):

2k/2Γ
�k

2

�

< 2
p
πk(k−1)/2e1/(6k)−k/2. (7.13)

Applying the estimates (7.12) and (7.13) to the expression (7.11), we find

1−χ2
k (k)>

e5/(6k)

2
erfc

�
r

1

k

�

>
1

2
erfc

�1

3

�

> 1−χ2
1 (1),

where the second inequality follows from e5/(6k) > 1 and the fact that k ≥ 9. The final

inequality can be verified numerically, which completes the proof of the upper bound
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in (7.5).

Finally, we argue that χ2
j (k)≥ χ

2
j+1(k). Let g ∈ R j+1 be a Gaussian vector. Then

χ2
j (k) = P

n
∑ j

i=1
g2

i ≤ k
o

= P
¦

‖g‖2− g2
j+1 ≤ k

©

≥ P
�

‖g‖2 ≤ k
	

= χ2
j+1(k),

where the inequality follows from the fact that g2
j+1 ≥ 0. This completes the proof.
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Chapter 8

Kinematic consequences

This chapter develops the consequence of Theorem 7.1 most important for demixing:

the sum of statistical dimensions controls the probability that cones strike. Many of the

ideas in this section are drawn from joint work [ALMT13], but the iterated approximate

kinematic formula (Theorem 8.2) appears here for the first time.

Theorem 8.1 (Approximate kinematics). Let C , C ′ ∈ Cd be two closed, convex cones, and

let Q ∈Od be a random rotation. For any λ > 0, the following implications hold:

δ(C) +δ(C ′)≤ d − 2λ =⇒ P{C ∩QC ′ 6= {0}} ≤ pC(λ) + pC ′(λ);

δ(C) +δ(C ′)≥ d + 2λ =⇒ P{C ∩QC ′ 6= {0}} ≥ 1− pC(λ)− pC ′(λ).

The function pC(λ) is defined in (7.2).

This bound is a corollary of a more intricate bound presented in Section 8.1. See

Section 8.1 for the proof of this theorem from our more sophisticated result.

The interpretation of Theorem 8.1 is simple. When the total statistical dimension of

two cones is slightly less than the ambient dimension, there are very few rotations that

bring the cones into contact. On the other hand, when the total statistical dimension

is a bit larger than the ambient dimension, almost every rotation brings the cones

into contact. This interpretation mirrors the familiar fact about generically oriented

subspaces in linear algebra.

Section 8.1 below presents a more general version of 8.1 involving an arbitrary

number of cones and proves Theorem 8.1 as a consequence. The rest of the chapter
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is devoted to the proof of our general result. We wait until Chapter 9 to explore the

implications of these bounds for demixing problems.

8.1 Iterated approximate kinematics

The iterated kinematic formulas of Section 5.3.1 allow us to prove an approximate kine-

matic formula for an arbitrary number of cones. This result, while complicated at first

sight, is a straightforward generalization of Theorem 8.1. Moreover, as a consequence of

the geometric optimality conditions for multiple demixing (Theorem 4.2), intersection

probabilities involving multiple cones are crucial for applications.

Theorem 8.2. Let C1, . . . , Cn−1, Cn ∈ Cd be closed, convex cones, and let L be an arbitrary

m-dimensional subspace of Rd . Define the total statistical dimension of the cones ∆ :=
∑n

i=1δ(Ci), and suppose Q1, . . . ,Qn−1,Qn ∈Od are i.i.d. random rotations. Then, for any

λ > 0, the following implications hold:

∆+m≤ n(d −λ) =⇒ P
¦

Q1C1 ∩ . . .∩QnCn ∩ L 6= {0}
©

≤
∑n

i=1
pCi
(λ); (8.1)

∆+m≥ n(d +λ) =⇒ P
¦

Q1C1 ∩ . . .∩QnCn ∩ L 6= {0}
©

≥ 1−
∑n

i=1
pCi
(λ). (8.2)

The function pC(λ) is defined in (7.2).

The proof of this result is the topic of Section 8.2. For now, let us demonstrate how

Theorem 8.2 follows readily from this new result.

Proof of Theorem 8.1. An application of the forgetting property (3.5) shows that

P{C ∩QC ′ 6= {0}}= P{Q1C ∩Q2C ′ 6= {0}}

for i.i.d. random rotations Q1 and Q2. Make the identifications

(C1, C2, L)↔ (C , C ′,Rd).
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The implications (8.1) and (8.2) of Theorem 8.2 are then equivalent to the claims of

Theorem 8.1.

8.2 Proof of Theorem 8.2

The proof requires two lemmas. The first is an interlacing inequality for the tail

functionals of the intrinsic volumes.

Lemma 8.3 (Interlacing). For every convex cone C ∈ Cd that is not a subspace, the

inequalities

hk(C)≥
1

2
tk(C)≥ hk+1(C) (8.3)

hold for every k = 0, . . . , d − 1, d.

While the proof of Lemma 8.3, which appears in Section 8.2.1, requires only the

Crofton formula and a basic geometric observation, the interlacing inequality is rather

deep. Indeed, it was observed by Dennis Amelunxen (personal communication) that

taking k = 0 readily yields the Gauss–Bonnet relationship (5.8). The second lemma lets

us control the size of the tails of the intrinsic volumes of the product of cones by the

tails of the constituent cones.

Lemma 8.4 (Tail functional bound). With notation as in Theorem 8.2, we have

td∆+m+nλe(C1× · · · × Cn−1× Cn× L)≤
∑n

i=1
tdδ(Ci)+λe(Ci). (8.4)

The proof utilizes a simple probabilistic argument; see Section 8.2.1. With these two

results in hand, we are now in a position to prove the approximate kinematic formula.

Proof of Theorem 8.2. We assume that at least one of the cones Ci is not a subspace so

that an application of the Crofton formula (5.22) is justified. At the end, we dispense

with the trivial case where all Ci are subspaces.

Suppose ∆+m≤ n(d−λ). By the forgetting property (3.5), the probability in (8.1)

is unchanged if we replace L with the randomly oriented subspace QL. The iterated
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Crofton formula (5.22) gives the probability

P
¦

Q1C1 ∩ . . .∩Qn−1Cn−1 ∩QnCn ∩QL 6= {0}
©

= 2 hnd+1(C1× · · · × Cn× L)

≤ tnd(C1× · · · × Cn× L),

where the upper bound follows from the interlacing inequality (8.3). By our assumption

on the total statistical dimension ∆, we have nd ≥ d∆+m+ nλe, and so

tnd(C1× · · · × Cn× L)≤ td∆+m+nλe(C1× · · · × Cn× L)≤
∑n

i=0
tdδ(C)+λe(Ci),

where the first inequality follows by positivity of the intrinsic volumes and the second

follows from Lemma 8.4. We complete the proof of the implication (8.1) with an

application of Theorem 7.1:

tdδ(C)+λe(Ci)≤ pCi
(λ) for each i = 1, . . . , n− 1, n.

The second implication (8.2) involves a dual version of the preceding argument.

Suppose ∆+m ≥ n(d + λ). As above, we replace L with QL, where Q is a random

rotation independent of everything else. Then the conic Crofton formula (5.17) gives

P
¦

C1 ∩Q2C2 ∩ . . .∩QnCn ∩QL 6= {0}
©

= 2 hnd+1(C1× · · · × Cn× L)

≥ tnd+1(C1× · · · × Cn× L),

where the final inequality is the interlacing result (8.3). Since the intrinsic volumes sum

to one (5.4), we have

tnd+1(C1× · · · × Cn× L) = 1−
∑nd

k=0
v(n+1)d−k(C1× · · · × Cn× L)

= 1−
∑(n+1)d

k=d
vk(C

◦
1 × · · · × C◦n × L⊥) = 1− td(C

◦
1 × · · · × C◦n × L⊥)

where the second equality follows from the polarity rule (5.6) and the last relation is the

definition (5.9) of the tail functional. Since dnd−∆+d−m+λe ≥ d by the assumption
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on ∆+m, we have the following lower bound for the final term above:

1− td(C
◦
1 × · · · × C◦n × L⊥)≥ 1− tdnd−∆+d−m+nλe(C

◦
1 × · · · × C◦n × L⊥). (8.5)

The statistical dimension adds under direct products (Proposition 6.2.5), so we may

express the statistical dimension of the product cone in terms of ∆:

δ(C◦1 × · · · × C◦n × L⊥) =
∑n

i=1
δ(C◦i ) +δ(L) = (nd −∆)+ (d −m),

where the second inequality follows by the polarity law (Proposition 6.2.4). Applying

Lemma 8.4, we reach the bound

tdnd−∆+(d−m)+nλe(C
◦
1 × · · · × C◦n × L⊥)≤

∑n

i=1
tdδ(C◦i )+λe(C

◦
i )≤

∑n

i=1
pC◦i
(λ).

The first inequality follows from the tail bound of Lemma 8.4. The final bound is a

consequence of the concentration of the intrinsic volumes, Theorem 7.1. Combining

this inequality with (8.5) and the fact that pC◦(λ) = pC(λ) yields the second implica-

tion (8.2).

(Degenerate case.) We now return to the outstanding case where all of the cones Ci

are linear subspaces, then the claim is a consequence of the fact that the intersection

of randomly oriented subspaces L, L′ has dimension dim(L ∩QL′) =max{0,dim(L) +

dim(L′)− d} almost surely. Therefore, if ∆+m ≤ nd, the probability in (8.1) is zero;

otherwise, it is equal to one.

8.2.1 Proof of technical lemmas

We now establish the technical lemmas required for the approximate kinematic formulas

of Theorem 8.1.

Proof of Lemma 8.3. Assume first that k < d. Let Ld−k ⊂ Rd be a (d−k−1)-dimensional

subspace and let Ld−k−1 be a (d − k− 1)-dimensional subspace contained in Ld−k. By
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the Crofton formula (5.17), we have

hk(C) = P{C ∩QLd−k−1 6= {0}}

≥ P{C ∩QLd−k 6= {0}}= hk+1(C),

which shows that the left-hand side of (8.3) is greater than the right-hand side. The tail

function tk(C) is the average of half-tail functionals:

1

2
tk(C) =

1

2
[hk(C) + hk+1(C)].

Since a midpoint lies between its endpoints, we see hk(C)≥
1
2
tk(C)≥ hk+1(C). There-

fore (8.3) holds for all k < d. For k = d, relation (8.3) is equivalent to the string

vd(C)≥
1
2
vd(C)≥ 0, which holds by positivity of the intrinsic volumes.

The second lemma provides a bound on the tail functionals of a product cones by

the sum of bounds of the constituent cones.

Proof of Lemma 8.4. Let L be an m-dimensional subspace of Rd . For any C ∈ Cd ′ and

index k = 0, . . . , d ′− 1, d ′, we have the equality

vk+m(C × L) =
∑

i+ j=k+m
vi(C)v j(L) = vk(C)

by the product formula (5.7) and the expression (5.2) for the intrinsic volumes of

subspaces. Since m is an integer, we find

td∆+m+nλe(C1× · · · × Cn× L) = td∆+nλe(C1× · · · × Cn) (8.6)

We use a probabilistic method to bound the second tail functional above. Let {X i}ni=1

be independent integer-valued random variables with probability distribution defined

by the sequence of intrinsic volumes:

P{X i = k}= vk(Ci).
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The probability distribution of the sum Y :=
∑n

i=1 X i is the convolution of the distribu-

tions of the set of random variables {X i}ni=1. Since the convolution of intrinsic volume

sequences is equal to the intrinsic volume sequence of the product cone (5.7), we see

P{Y = k}= vk(C1× · · · × Cn−1× Cn).

Therefore

P{Y ≥∆+ nλ} ≤ P
¦

X i ≥ δ(Ci) +λ for some i
©

≤
∑n

i=1
P{X i ≥ δ(Ci) +λ}.

The first inequality holds because the first event implies the second, while the second

inequality is the union bound. Writing the inequality above in terms of the distributions

of Y and X i yields

td∆+nλe(C1× · · · × Cn)≤
∑n

i=1
tdδ(Ci)+λe(Ci).

The result follows upon combining this bound with (8.6).



127

Chapter 9

Success and failure of demixing

This chapter demonstrates that recovery bounds for the demixing method are controlled

by the total statistical dimension of all descent cones under the random alignment model.

We introduce our result in the context of the two-signal demixing framework introduced

in Section 1.2.2 under the random model for incoherence given in Section 1.2.3. Let us

review the setup. We observe the superposition

z0 = x \+Qy \, (9.1)

where Q is a random, but known, matrix that models the incoherence between x \

and y \. Given structure-inducing convex functions f and g and the side information

α := g(y \), we demix the observation by solving

minimize f (x ) subject to g(y)≤ α and x +Qy = z0. (9.2)

This approach succeeds if and only if the pair (x \, y \) is the unique optimal solution

to (9.2). For this simple demixing model, our main result tells us that demixing succeeds

with high probability, so long as the ambient dimension exceeds the total statistical

dimension of the corresponding descent cones by a small amount. (A similar result is

available in the joint work [ALMT13, Thm. III].)

Theorem 9.1 (Recovery bounds for standard demixing). Fix a probability tolerance

η ∈ (0, 1), and suppose the observation z0 is drawn from the random alignment model (9.1).
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Define the maximum transition width

ω∨ :=ω
�

D( f , x \)
�

∨ω
�

D(g, y \)
�

, (9.3)

where the transition width ω(·) is defined in (7.1). Define the constant Rη := log(8/η)

and the bandwidth

β := 16Rη+
p

8Rηω∨.

Then

δ(D( f , x \)) +δ(D(g, y \))≤ d − β =⇒ (1.6) succeeds with probability≥ 1−η;

δ(D( f , x \)) +δ(D(g, y \))≥ d + β =⇒ (1.6) succeeds with probability≤ η.

The proof of Theorem 9.1 appears in Section 9.1, where it is derived as a corollary of

a general result for multiple demixing. Theorem 9.1 explains a number of qualitative

features of demixing problems, including the width and taper of the transition region

between success and failure (cf. Figure 1.1). We now discuss some general features of

this result; applications to specific demixing models appear in concert with numerical

experiments in Section 10.

The most important parameter that appears in the theorem above is the sum of the

statistical dimensions. When the total statistical dimension of the descent cones is a

little less than the ambient dimension, demixing succeeds. On the other hand, if the

sum of the statistical dimensions is a little larger than the ambient dimension, demixing

fails.

The definition of “a little” is encoded in the bandwidth parameter β . The bandwidth

β depends logarithmically on the probability tolerance η and linearly on the maximum

transition width ω∨. Because the transition width is no larger than
p

d/2, the transition

width grows no faster than

β = O
�

log
�

1
η

�

p

d
�

as η→ 0, d →∞.
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Thus, for moderate values of η, the bandwidth is much smaller than the ambient

dimension d. This is sufficient to explain the phase transition observed in many demixing

problems.

In some cases, however, the approximation ω∨ = O(
p

d) is too coarse because the

maximum transition width is much smaller than
p

d. This occurs in particular when

statistical dimension is very small or very close to the ambient dimension d. In these

cases, the phase transition between a high probability of success and failure occurs over

a very narrow region. This observation explains the taper seen in the experiment where

we demix sparse vectors (Figure 1.2).

Finally, we note that extraordinarily small values of η are useful for achieving

stronger guarantees for demixing. See Sections 10.1 and 10.2 for examples.

9.1 Transition for extended demixing

The result mentioned above for the demixing of two signals is a consequence of a

more general result that addresses the multiple demixing scenario (1.7) as well as the

compressed demixing model (1.10). In this scenario, we assume that the observation

z0 ∈ Rm is given by the sum

z0 = A
�
∑n

i=1
Qi x

\
i

�

, (9.4)

where A ∈ Rm×d is a measurement matrix with full row rank1 and the Qi are i.i.d. random

rotations. Given convex functions fi for i = 1, . . . , d − 1, d and the side information

αi := fi(x \i ), we may demix the observation (9.4) by solving the problem

minimize f1(x1)

subject to fi(x i)≤ αi for i = 2, . . . , n− 1, n, and z0 = A
�
∑n

i=1
Qi x i

�

.
(9.5)

Section 4.3 outlines the geometric optimality conditions for this model when the

matrices Qi are fixed. Our goal now is to understand the statistical properties of

1We may reduce an arbitrary A ∈ Rm×d to one with full row rank by eliminating redundant rows. In
this scenario, Theorem 9.2 still holds if we interpret m as the row rank of the measurement operator.
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the compressed demixing model under the random incoherence model (9.4). The

following result shows that the probability that the demixing method (9.5) succeeds is

characterized by the statistical dimension certain descent cones.

Theorem 9.2. Fix a probability tolerance η ∈ (0,1). With the same notation as above,

define the width parameter

ω∨ := max
i=1,...,n−1,n

¦

ω
�

D( fi, x \i )
�©

,

the total statistical dimension ∆ :=
∑n

i=1δ(D( fi, x \i )), and the parameter R := log(4n/η).

Then

m≥∆+ n(8R+
p

2Rω∨) =⇒ (9.5) succeeds with probability≥ 1−η; (9.6)

m≤∆− n(8R+
p

2Rω∨) =⇒ (9.5) succeeds with probability≤ η. (9.7)

In other words, when the number of measurements slightly exceeds the statistical

dimension, the demixing procedure (9.5) succeeds with high probability, while when

the number of measurements is slightly less than the total statistical dimension, the

demixing method (9.5) fails with high probability. Thus, a phase transition between

success and failure exists for compressed demixing problems.

Let us discuss the width phase transition given by Theorem 9.2. The parameter R

grows logarithmically in the number of cones n and the probability tolerance η−1, so

the width of the transition between success and failure is not much larger than nω∨ for

moderate values of η and n:

n(8R+
p

2Rω∨) = O
�

nω∨ log(nη−1)
�

as n→∞, η→ 0.

The linear dependence of the transition width and the number of cones is suboptimal.

Variance bounds suggest that the transition width should be controlled by the root-mean-

square
�
∑

ω2(D( fi, x \i ))
�1/2. We expect that a refined bound is available that shows

that the transition width is on the order of
p

nω∨. In most applications, however, the
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number of constituents n is relatively small, so such a refinement does not give much

practical advantage.

Most of the hard work involved in proving Theorem 9.2 has already been completed.

Let us sketch the remaining argument in a few sentences. We start with the basic

optimality condition (4.9) for compressed demixing. While this condition involves

n+ 1 independent conditions, dualizing the optimality conditions yields—up to a set

of measure zero—a single condition for the intersection of randomly rotated convex

cones (Proposition 5.18). Then it is just a matter of applying the iterated approximate

kinematic formula of Section 8.1 and checking that our transition width parameter ω∨

results in the claimed probability estimates.

The full details of this reduction are in Section 9.2. Let us first show how Theorem 9.2

implies Theorem 9.1.

Proof of Theorem 9.1 from Theorem 9.2. Theorem 9.1 is essentially the n = 2 and m = d

case of Theorem 9.2. Let us describe how the statistics of the demixing method (9.2)

can be recast to match this case.

Define the rotated observation ẑ0 := Q∗z0, where Q∗ is a random orthogonal matrix

independent of Q. Then (9.2) succeeds for a given Q if and only if

minimize f (x ) subject to g(y)≤ α and Q∗(x +Qy) = ẑ0 (9.8)

succeeds for every possible Q∗ ∈ Od because the equality constraints are equivalent.

Applying independence of Q and Q∗, we see

P{(9.2) succeeds at demixing x \+Qy \}

= P{(9.8) succeeds at demixing Q∗(x
\+Qy \)}.

By the forgetting property (3.5), the probability on the right-hand side above is equal to

the probability that

minimize f (x ) subject to g(y)≤ α and Q1x +Q2y = ˆ̂z0,
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where ˆ̂z0 := Q1x \+Q2y \ for two i.i.d. random rotations Q1 and Q2. With the identifica-

tions

( f , g, I)↔ ( f1, f2, A),

the program above is a special case of (9.5) with n = 2 constituents and m = d

measurements. The conclusion follows immediately from Theorem 9.2.

A final remark is in order before we move on to the proof of Theorem 9.2.

Remark 9.3. While our signal model (9.4) assumes a fixed matrix A, the proof of

Theorem 9.2 reveals that the only relevant modeling assumption is that the constituents

x \ and the nullspace null(A) are oriented randomly relative to one another before being

combined into the observation z0. Theorem 9.2 holds just as well when we fix Q1 = I

but take A = G ∈ Rm×d where G is a Gaussian matrix. In other words, our demixing

results hold for the observation model

z0 = G
�

x \1+
∑n

i=2
Qi x

\
i

�

,

so long as the equality restriction in (9.5) is updated to reflect this modified observation

model.

9.2 Proof of Theorem 9.2

We start by setting up some notation. Define the cones Ci := D( fi, x \i ) for i = 1, . . . , n−

1, n and Cn+1 := null(A), and let Qn+1 be another rotation independent of all the others.

Define the total statistical dimension of the polars

∆◦ :=
∑n

i=1
δ(C◦i ) = nd −∆, (9.9)

where the second equality follows from the polarity relation for the statistical dimension

(Proposition 6.2.4) and our definition of Ci. Throughout most of the proof, we assume

that Ci 6= {0} for at least two indices i ∈ {1, . . . , n, n+ 1}. This restriction arises from



133

our desire to apply Proposition 5.18, whose assumptions require two nonzero cones.

We deal with the degenerate case where all but one of the cones is trivial at the end.

By Theorem 4.3, compressed demixing succeeds with the same probability that

QiCi ∩−
�
∑

j 6=i
Q jC j

�

= {0} for all i = 1, . . . , n, n+ 1 (9.10)

where we are justified in applying an independent random rotation Qn+1 to the cone

Cn+1 by the forgetting property (3.5) and rotational invariance of the condition (9.10).

For any i such that Ci = {0}, the intersection in (9.10) is always equal to {0}, so that

we can eliminate these cases from consideration. Our assumption that at least two of

the cones do not equal {0} ensures that

∑

j 6=i
Q jC j 6= {0} for all i = 1, . . . , n, n+ 1.

Thus, for every i such that Ci 6= {0}, we may apply Proposition 5.18 to find that the

events

�

QiCi ∩−
�
∑

j 6=i
Q jC j

�

= {0}
�

and
¦

Qt
1C◦1 ∩ · · · ∩Qt

nC◦n 6= {0}
©

(9.11)

coincide except on a set of measure zero. Because a finite union of sets of measure zero

still has measure zero, we have

P{(9.5) succeeds}= P
n

QiCi ∩−
�
∑

j 6=i
Q jC j

�

= {0} for all i such that Ci 6= {0}
o

= P
¦

Qt
1C◦1 ∩ · · · ∩Qt

n+1C◦n+1 6= {0}
©

= P
¦

Qt
1C◦1 ∩ · · · ∩Qt

nC◦n ∩ C◦n+1 6= {0}
©

, (9.12)

where the final inequality follows, as usual, from the forgetting property (3.5). This

equality is ripe for an application of the approximate kinematic formula developed in

Section 8.1.

Consider the case (9.6) where m≥∆+ 8R+
p

2Rω∨. By our definition (9.9) of ∆◦,

we have

∆◦+m≥ n(d +λ∗),



134

where the parameter λ∗ is given by

λ∗ := 8R+
p

2Rω∨ (9.13)

The cone C◦n+1 = null(A)⊥ is a subspace of dimension m, so the approximate kinematic

formula (8.2) gives the lower bound

P
¦

Qt
1C◦1∩· · ·∩QnC◦n∩C◦n+1 6= {0}

©

≥ 1−
∑n

i=1
pCi
(λ∗)≥ 1−n max

i=1,...,n−1,n
pCi
(λ∗). (9.14)

The following lemma provides a bound on the maximum in (9.14).

Lemma 9.4. With the notation from Theorem 9.2 and with λ∗ defined in (9.13), we have

max
i=1,...,n−1,n

pCi
(λ∗)≤

η

n
for each i = 1, . . . , n− 1, n.

This lemma requires only a straightforward concavity bound; the proof appears at the

end of this section.

By Lemma 9.4, we see that the right-hand side of (9.14) is no smaller than 1−η,

and hence the probability that (9.5) succeeds is at least 1− η by (9.12). This proves

the first implication (9.6).

For the second claim (9.7), suppose that m≤∆− (8R+
p

2Rω∨). Then

∆◦+m≤ n(d −λ∗),

so applying the upper bound (8.1) from the approximate kinematic formula yields the

inequality

P
¦

Qt
1C◦1 ∩ · · · ∩QnC◦n ∩ C◦n+1

©

≤
∑n

i=1
pCi
(λ∗)≤ n max

i=1,...,n−1,n
pCi
(λ∗)≤ η.

The final inequality follows from Lemma 9.4. The conclusion (9.7) follows when we

combine the estimate above with the expression (9.12) for the probability that demixing

succeeds.
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(The degenerate case) In the degenerate case, all but one of the cones Ci is equal to

the trivial cone {0}. In other words, there is an index i∗ ∈ {1, . . . , n, n− 1} such that

Ci = {0} for all i 6= i∗.

This implies that

QiCi = {0} or
∑

j 6=i
Q jC j = {0}

for every i = 1, . . . , n, n+ 1. In particular, the optimality condition (9.10) always holds,

so that the demixing method (9.5) always succeeds.

Since demixing succeeds with probability one when in this degenerate setting, we

only need to check that the left-hand side of the implication (9.7) never holds. If

i∗ = n+ 1, then we must have Ci = {0} for all i = 1, . . . , n− 1, n. In particular, the total

statistical dimension ∆= 0. Since the integer m≥ 0, we have m>∆− n(8R+
p

2Rω∨),

so the left-hand side of the implication (9.7) does not hold.

On the other hand, if i∗ 6= n+ 1, then Cn+1 = null(A) = {0}. Since A ∈ Rm×d has full

row rank by assumption, a trivial nullspace implies that m= d. But we also have

∆=
∑n

i=
δ(Ci) = max

i=1,...,n−1,n
δ(Ci) = δ(Ci∗)≤ d.

Combining these observations, we find the inequality

m= d >∆− n(8R+
p

2Rω∨),

and so again the left-hand side of the implication (9.7) does not hold.

Proof of Lemma 9.4. By solving a quadratic equation, we see that

pCi
(λi) := 4exp

�

−
λ2

i /8

ω(Ci)2+λi

�

=
η

n
⇐⇒ λi := 4R+

p

16R2+ 2Rω2(Ci),

Since pCi
(·) is a decreasing function of λ ≥ 0, we only need argue λi ≤ λ∗ for each

i = 1, . . . , n− 1, n. This follows immediately from the fact that
p

a+ b ≤
p

a+
p

b for
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a, b ≥ 0:

λi ≤ 8R+
p

2Rω2(Ci)≤ 8R+
p

2Rω∨ = λ∗

The final inequality follows from the fact that ω(Ci)≤ω∨.
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Chapter 10

Applications and numerical examples

This chapter provides concrete applications of the theory developed earlier. We first

tackle the most classical problem, demixing two sparse signals, in Section 10.1. We

consider strong guarantees for this sparse + sparse model in Section 10.1.1 and an

undersampled variant in Section 10.1.2. We discuss demixing sparse and sign vectors in

Section 10.2 as a model for a secure communications protocol that is robust to sparse

errors. Section 10.3 describes demixing a low-rank matrix from a matrix that is sparse

in a random basis; this is a stylized model for data that appears in the fields of machine

learning and robust statistics. We close by considering an application of our theory to

regularized linear inverse problems in Section 10.4. In every case, we find that the

statistical dimension accurately predicts the phase transition observed in our numerical

experiments.

10.1 Sparse + sparse

Demixing two sparse vectors is the foundational problem in demixing. As described

in the introduction, this model appears in morphological component analysis (MCA),

where the nonzero components in the vectors indicate the presence of certain features in

the signal. Numerous other applications for demixing two sparse signals are described

in [SKPB12].

Assume that our observation z0 = x \+Qy \ ∈ Rd is the sum of a sparse signal x \ and



138

a randomly rotated sparse signal Qy \. For concreteness, we define the sparsity levels

sx := nnz(x \) and sy := nnz(y \),

where nnz(·) returns the number of nonzero elements of a vector. The atomic gauge

associated to a sparse signal is the `1 norm, so we demix the observation to the convex

program

minimize ‖x‖`1
subject to ‖y‖`1

≤ α and x +Qy = z0, (10.1)

where α := ‖y \‖`1
is known side information.

Let us discuss how our theory provides a way to compute the location of the

phase transition of the demixing method (10.1) under the random orientation model.

Theorem 9.1 indicates that (10.1) succeeds with high probability when

δ(D(‖·‖`1
, x \)) +δ(D(‖·‖`1

, y \))® d,

while if fails with high probability when the inequality above is reversed. Proposi-

tion 6.14 provides an approximate formula for the statistical dimension of the descent

cones by the identification dψ`1
(sx/d)≈ δ(D(‖·‖`1

, x \)). Hence, we expect that a phase

transition between success and failure of (10.1) occurs in the region where the sparsity

levels sx and sy satisfy

ψ`1

�sx

d

�

+ψ`1

�sy

d

�

= 1. (10.2)

The following result provides a rigorous statement of this intuitive argument.

Theorem 10.1 (Phase transitions in sparse + sparse demixing). Consider the implicit

equation

ψ`1
(ρx) +ψ`1

(ρy) = 1 (10.3)

where ψ`1
is defined in Proposition 6.14. Then:

1. (Well-defined curve) For each ρx ∈ (0,1), there exists a unique ρy ∈ (0,1) that
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satisfies (10.3). This value of ρy is a continuous function of ρx , and moreover

ρy → 1 as ρx → 0 and ρy → 0 as ρx → 1. (10.4)

2. (Phase transition) Fix a probability tolerance η ∈ (0,1). For each pair (ρx ,ρy)

satisfying (10.3), there exist parameters Cx , Cy > 0 and an integer d0 ∈ N such that

the following implications hold whenever d ≥ d0:

(a) If
sx

d
≤ ρx −

Cxp
d

and
sy

d
≤ ρy −

Cyp
d

, (10.5)

then (10.1) succeeds with probability at least 1−η.

(b) On the other hand, if

sx

d
≥ ρx +

Cxp
d

and
sy

d
≥ ρy +

Cyp
d

, (10.6)

then (10.1) succeeds with probability at most η.

The triple (Cx , Cy , d0) depends only ρx , ρy , and η.

The proof of this result appears in Appendix B.1 below, and it requires little more

than a Taylor series expansion of ψ`1
coupled with Theorem 9.1. The statement above

may appear pedantic, it rigorously demonstrates two important points.

1. The phase transition occurs as a function of the sparsity levels, not just as a function

of the statistical dimensions.

2. Since ρy → 1 as ρx → 0 (10.4), the demixing method (10.1) will succeed even

when one of the constituents is nearly completely dense, so long as the other is

sufficiently sparse. This result holds in the proportional growth regime, meaning

that the sparsity of each constituents can be a nonnegligible fraction of the ambient

dimension d.

The first point is completely new to the literature on demixing, although the

joint work [MT12] provided strong numeric evidence that suggested that a sparsity-
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parameterized phase transition occurs along the curve Ω. The second point was demon-

strated under an alternative model by Wright & Ma [WM09], and confirmed under a

model similar to our own random orientation model more recently by [NT13]. Neither

of these works identifies a sharp boundary where this phenomenon occurs.

We demonstrate the accuracy of our theory with a numerical experiment. Figure 10.1

shows1 the results of a numeric experiment for demixing sparse vectors in dimension

d = 100. Further experimental details are in Appendix C.3. The black region denotes a

high empirical probability of failure, while the light region indicates near-certain success.

Three curves mark the empirical 95%, 50% and 5% success regions. Underneath these

empirical curves, we plot the level set determined by the implicit equation (10.2). See

Appendix C.1 for details on how we compute ψ`1
. The correspondence between the

50% empirical success curves and the theoretical level curve that determines the phase

transition is remarkable.

Finally, we provide the promised proof of the Theorem 1.1 from Section 1.1.3. We

first restate our claim in a rigorous asymptotic growth setting.

Theorem 10.2 (Success and failure of MCA). There is a function ψ`1
: (0,1)→ (0,1)

that generates a threshold curve Ω⊂ (0, 1)2 given by

Ω :=
�

(ρx ,ρy) :ψ`1
(ρx) +ψ`1

(ρy) = 1
	

.

Suppose the sparsity levels sx and sy grow with d in such a way that sx/d → ρ∗x ∈ [0,1)

and sy/d → ρ∗y ∈ [0,1) as d →∞. The curve Ω partitions the unit square into a success

and failure region for MCA:

�

ρ∗x ,ρ∗y
�

lies strictly below Ω =⇒ (1.3) succeeds with probability → 1; and
�

ρ∗x ,ρ∗y
�

lies strictly above Ω =⇒ (1.3) succeeds with probability → 0,

where the limits are taken as the ambient dimension d →∞.
1This figure reproduces Figure 1.1 from the introduction. Similar figures also appear in the joint

works [MT12, ALMT13].
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Figure 10.1: Empirical probability of success for demixing two sparse vectors. The
ambient dimension is d = 100, and the sparsity levels vary from 1 to 100. The colormap
presents the empirical probability that (10.1) succeeds over 25 trials. White pixels indicate
complete success, the black region consists of total failures, and the gray transition region
displays a mix of successes and failures. The figure also displays the 95%, 50% and 5%
success isoclines. Our theory tells us that the location of the transition region occurs at the
yellow curve that lies under the 50% isocline. (This figure also appears in Section 1.1.) See
Appendix C.3 for the experimental details.

Proof of Theorem 10.2 from Theorem 10.1. Suppose that ρ∗x and ρ∗y lie strictly below

the curve Ω := {(ρx ,ρy) :ψ`1
(ρx)+ψ`1

(ρy) = 1}. Then there exists a (ρx ,ρy) ∈ Ω and

an ε > 0 such that
sx

d
≤ ρx − ε and

sy

d
≤ ρy − ε

for all d large enough. Hence, for any η > 0, the relation (10.5) holds for all large

enough d. Therefore, Theorem 10.1 implies that (1.3) succeeds with probability at least

1−η for all large enough d. The first limit then follows by taking η→ 0. The second

limit is proved in the same manner.
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10.1.1 Strong bounds

Let us address another situation considered in the literature on demixing. Suppose that

we draw the rotation Q at random, but fix it for all time. Is it possible to guarantee that,

for every sufficiently sparse pair (x \, y \), the demixing method (10.1) succeeds given

the observation z0 = x \+Qy \? Answers to such questions are known as strong bounds

in the compressed sensing literature [Don04, Don06b, DT09, XH12]. It turns out that

our theory is capable of providing an affirmative answer.

Theorem 10.3 (Strong bounds for sparse + sparse demixing). Choose a probability

tolerance η ∈ (0, 1) and draw a random rotation Q ∈ Od . There exists a parameter ρS > 0

and integer d0, each depending only on η, such that for each d ≥ d0, the following holds

with probability at least (1−η):

The demixing program (10.1) with observation z0 = x \ +Qy \ succeeds for

every pair of vectors x \, y \ ∈ Rd with nnz(x \)≤ ρSd and nnz(y \)≤ ρSd.

The proof of the strong bound relies on a union bound over a large number of success

characterizations of the form 4.1. The demonstration appears in Appendix B.1. At this

point we make two remarks.

1. Our proof technique, coupled with a numerical computation of the bound (B.10),

yields the value ρS ≈ 0.0036 for very large d and fixed η. This value appears

to be suboptimal by at least a factor of 10. In joint work [MT12], we showed

numerically that this bound can be improved to approximately ρS ≈ 0.037 for

large d. Our prior work requires a detailed asymptotic analysis of the sequence

{vi(D(‖·‖`1
, x \))} of intrinsic volumes in high dimensions. Even with this heavy

lifting, this earlier work did not prove that the strong bound exists, but rather

provided strong numerical evidence for its existence. The present work provides a

more authoritative result, at the expense of a weaker estimate on the value of ρS.

2. Our proof technique does not inherently require that the probability of success

η remain fixed as the dimension grows. A more careful analysis reveals that

the probability tolerance can grow at any rate such that log(1/η) = o(d) as
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d →∞. (This alternative assumption preserves asymptotic limit of the crucial

estimate (B.7).)

10.1.2 Undersampled sparse + sparse

In a refinement of the sparse + sparse model considered above, we consider when it is

possible to demix two sparse constituents x \ and y \ given an undersampled observation

of their superposition:

z0 := G(x \+Qy \).

With the side information α := ‖y0‖`1
, we solve the compressed demixing program

minimize ‖x‖`1
subject to ‖y‖`1

≤ α and G(x +Qy) = z0. (10.7)

This approach succeeds if (x \, y \) is the unique optimal point of (10.7).

Before stating a rigorous guarantee for this method, we provide an informal discus-

sion that shows how to compute the location of the phase transition for this problem.

Denote the total statistical dimension ∆ := δ(D(‖·‖`1
, x \)) + δ(D(‖·‖`1

, y \)), and let

sx := nnz(x \) and sy := nnz(y \) be the sparsity levels of the constituent signals. By

Theorem 9.2 (cf. Remark 9.3), we have the implications

∆≤ m− C
p

d =⇒ (10.7) succeeds with high probability, while

∆≥ m+ C
p

d =⇒ (10.7) fails with high probability.
(10.8)

Proposition 6.14 guarantees that we have the formula

1

d
∆=ψ`1

�sx

d

�

+ψ`1

�sy

d

�

+O
� 1
p

d

�

,

where ψ`1
is defined in (6.22). Combining this approximation with (10.8), we find that

a phase transition between success and failure of (10.7) occurs in the neighborhood of

(sx , sy) satisfying

ψ`1

�sx

d

�

+ψ`1

�sy

d

�

=
m

d
. (10.9)



144

This heuristic discussion encompasses most of the key features of the following rigorous

result.

Theorem 10.4 (Phase transition for undersampled sparse + sparse). For any µ ∈ (0, 1],

there exist parameters ρx ,ρy ∈ (0,1) that solve the implicit equation

ψ`1
(ρx) +ψ`1

(ρy) = µ. (10.10)

Fix a probability tolerance η > 0. Let the number of measurements m = [µd] for some

µ ∈ (0, 1]. For each pair (ρx ,ρy) that satisfies (10.10), there exist parameters Cx , Cy > 0

and an integer d0 ∈ N such the following implications hold whenever d ≥ d0:

1. If
sx

d
≤ ρx −

Cxp
d

and
sy

d
≤ ρy −

Cyp
d

(10.11)

then (10.7) succeeds with probability at least 1−η.

2. On the other hand, if

sx

d
≥ ρx +

Cxp
d

and
sy

d
≥ ρy +

Cyp
d

(10.12)

then (10.7) succeeds with probability at most η.

The triple (Cx , Cy , d0) depends only on ρx , ρy and η.

The proof appears in Appendix B.1 below; the argument closely parallells the proof

of Theorem 10.1. Again, we find that there is a phase transition in the success of

undersampled demixing parameterized by the sparsity.

We illustrate the accuracy of this claim with a numerical experiment in dimension

d = 200 (Figure 10.2). The colormaps display the empirical probability that (10.7)

succeeds at demixing two sparse vectors for various numbers of measurements. The

yellow curve marks the sparsity pairs (sx , sy) satisfying (10.9). The agreement with

the 50% success contour (red) is very good even for the moderate dimensional value

d = 200. A full description of the experiment is available in Appendix C.3.1.
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Figure 10.2: Empirical success of undersampled sparse + sparse demixing. The
ambient dimension d = 200, and we demix two sparse signals x \ and y \ after taking
m = 25,50,75,100 random measurements with the demixing program (10.7). The light
region denotes a high empirical probability of success, while the dark region denotes high
empirical probability of failure. The red contour is the empirical 50% success line, which
falls on top of the line ψ`1

(sx/d) +ψ`1
(sy/d) = m/d, where sx and sy are the number of

nonzero elements of x \ and y \. Further experimental details are available in Appendix C.3.1.

10.2 Sparse + sign

We now consider a demixing method that serves as a stylized protocol for a secure and

robust communications scheme. Suppose we wish to securely transmit a d-bit message

y \ ∈ {±1}d over a communications channel in the presence of sparse noise x \.

Wyner [Wyn79a, Wyn79b] proposed an intriguing transmission scheme that offers

essentially perfect security. The transmitted signal is a random rotation Qy \ of the

message y \. Without the presence of noise, we may simply reconstruct the original
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Figure 10.3: Demixing sparse + sign. The markers show the empirical probability of
success for demixing a sparse vector from a sign vector. Circles are for dimension d = 100,
while triangles denote dimension d = 300. The gray curves are the corresponding logistic
fits. The horizontal axis gives the normalized sparsity s/d of x \. The dashed line occurs the
point where ψ`1

(s/d) = 1
2
, where ψ`1

is defined by (6.22).

message via the “matched filter” inversion ŷ = Qt(Qy \). However, the presence of

corruptions eliminates the prospect of perfect reconstruction with this method.

If we know that the noise is sparse, however, demixing methods offer a way around

this predicament. Model the corrupted observation z0 = x \ + Qy \, where x \ is an

unknown sparse vector and y \ ∈ {±1}d . We demix this observation by solving

minimize ‖x‖`1
subject to ‖y‖`∞ ≤ 1 and x +Qy = z0 (10.13)

and declare success if (x \, y \) forms the unique optimal point to (10.13).

Since we know a priori that ‖y \‖`∞ = 1, this situation is ideally suited for an

application of Theorem 9.1. The statistical dimension of the descent cone of the `∞

norm at y \ is

δ(D(‖·‖`∞ , y \)) =
d

2

by Proposition 6.11. By Proposition 6.14, the statistical dimension of the `1 norm at x \
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is given by

δ(D(‖·‖`1
, x \)) = dψ`1

� s

d

�

+O(
p

d) as d →∞,

where s = nnz(x \) is the sparsity of the corruption x \. Thus Theorem 9.1 suggests that

demixing succeeds so long as

ψ`1

� s

d

�

≤
1

2
−

C
p

d

and fails when

ψ`1

� s

d

�

≥
1

2
+

C
p

d
,

where C > 0 is some universal constant. Again, we are able to make this heuristic

argument completely rigorous.

Theorem 10.5 (Phase transition for sparse + sign demixing). There exists a unique

ρ∗ > 0 that satisfies the stationary equation

ψ`1
(ρ∗) =

1

2
. (10.14)

Fix a probability tolerance η ∈ (0, 1). Then there is a parameter C > 0 and integer d0 ∈ N

such that for each d ≥ d0, the following implications hold:

1. If
nnz(x \)

d
≤ ρ∗−

C
p

d
, (10.15)

then (10.13) succeeds with probability at least 1−η.

2. On the other hand, if
nnz(x \)

d
≥ ρ∗+

C
p

d
,

then (10.13) succeeds with probability at most η.

The parameters C is a universal constant, and d0 depends only on η.

The proof is very similar to the proof of the theorems in Section 10.1. The details

appear in Appendix B.2.



148

Figure 10.3 displays the results of a numerical experiment that illustrates the accu-

racy of our theory in ambient dimension d = 100 and d = 300. Numerical details are

available in Appendix C.4.

10.2.1 Strong bounds

We now describe how it is possible to achieve strong bounds for the sparse + sign

demixing program of the form given in Section 10.1.1. In this case we ask the question:

Is it possible to recover a binary codeword y \ ∈ {±1}d from the observation z0 = x \+Qy \

for every sufficiently sparse corruption x \? This question arises when the sparse noise

depends on the matrix Q including adversarial corruptions and nonlinear phenomena

such as clipped signals [AEJ+12]. Our theory is able to provide a rigorous guarantee

even for this more restrictive setting.

Theorem 10.6 (Strong transition for sparse + sign demixing). Choose a probability

tolerance η ∈ (0, 1) and draw a random rotation Q ∈ Od . There exists a parameter ρS > 0

and integer d0 ∈ N such that, for any d ≥ d0, the following holds with probability at least

(1−η):

Fix y \ ∈ {±1}d . The demixing program (10.13) with observation z0 = x \ +

Qy \ succeeds for every sparse vector x \ with nnz(x \)≤ ρsd.

The proof again is very similar to the strong bound for sparse + sparse demixing from

Section 10.1.1 above. The details appear in Appendix B.2. Numerical computations

based on our proof technique indicate that the parameter ρS ≈ 0.0034 for fixed η

and very large d. Again, this bound appears suboptimal when compared against the

numerical calculation in the joint work [MT12], where it was found that ρS ≈ 0.018.

However, our current result provides a rigorous guarantee that the previous work was

unable to achieve.
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10.2.2 Sparse + sparse + sign

What if we add another sparse vector into the mix? That is, suppose our observation is

given by

z0 = x \+Q y y \+Qw w \,

where x \ and y \ are sparse vectors and w \ ∈ {±1}d is a sign vector. Given the side

information α := ‖y \‖`1
, we demix our observation by solving the multiple demixing

problem

minimize ‖x‖`1

subject to















‖y‖`1
≤ α,

‖w‖`∞ ≤ 1, and

x +Q y y +Qw w = z0.

(10.16)

In our usual manner, we say that this approach succeeds if the tuple (x \, y \, w \) is the

unique optimal point of (10.16).

Let sx := nnz(x \) and sy := nnz(y \) be the sparsity levels of x \ and y \. By applying

the multiple demixing result of Theorem 9.2 as in the previous section, we find that a

phase transition between the success and failure of (10.16) occurs around the region of

sparsity pairs (sx , sy) such that

ψ`1

�sx

d

�

+ψ`1

�sy

d

�

=
1

2
. (10.17)

Figure 10.4 illustrates this prediction with a numerical experiment in dimension

d = 100. Continuing the theme, we see that the values of (sx , sy) satisfying the

equality (10.17) closely align with the empirical 50% success contour. The experimental

details are available in Appendix C.4.1. A rigorous result similar to the theorems in

Section 10.1 is readily accessible to our methods. We omit the statement because it

reflects our heuristic discussion above but offers no further surprises.
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Figure 10.4: Empirical probability of demixing sparse+ sparse+ sign. This experiment
tests the demixing method (10.16). The ambient dimension d = 100, and the sparsity levels
of the constituents x \ and y \ are varied between one and 30. The colormap illustrates the
empirical probability of success. The 95%, 50%, and 5% empirical success contours are
shown, as is the smooth curve is the line where ψ`1

(sx/d) +ψ`1
(sy/d) =

1
2
, where sx and

sy denote the sparsities of x \ and y \ and ψ`1
is defined in (6.22) . See Appendix C.4.1 for

numerical details, and Section 10.2.2 for a discussion.

10.3 Sparse + low-rank

We now consider a more sophisticated example where we are given a matrix observation

Z0 = X \ +Q(Y \) ∈ Rd×d where X \ has low rank, Y \ is sparse and Q is a random

rotation on the matrix space Rd×d . Such an observation provides a stylized model

for applications in latent variable selection [CSPW09, CPW10, CSPW11] and robust

principal component analysis [CLMW11]. In the first setting, the low-rank structure

of X \ models the confounding effect of latent variables, while Y \ represents a sparse

dependency structure suitable for sparse graphical models. In the context of principal

component analysis, X \ encodes a linear model with a few degrees of freedom, while Y \

represents a corruption that is sparse in a random basis. We seek to recover the pair
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Figure 10.5: Empirical probability of success for demixing sparse + low-rank. We fix
the sidelength n = 35, and explore sparsity levels s = 1, n, 2n, . . . , n2 and ranks r = 1, 2, . . . , n
with the sparse + low-rank model described in Section 10.3. The colormap denotes the
empirical probability of success over 25 trials. Overlaid on the colormap are the empirical
95%, 50% and 5% success curves. The smooth yellow curve gives the asymptotic location of
the phase transition; its accuracy at predicting the location of the transition is quite good.

(X \, Y \) from the observation Z0 and the basis Q.

Following the demixing recipe of Section 1.2, we attempt to demix the observation

by solving the convex program

minimize ‖X‖S1
subject to ‖Y‖`1

≤ α and X +Q(Y ) = Z0, (10.18)

where α := ‖Y \‖`1
is known side information. Theorem 9.1 suggests that demixing will

succeed when

∆ := δ(D(‖·‖S1
, X \)) +δ(D(‖·‖`1

, Y \))≤ d − C
p

d,

but will fail when the total statistical dimension ∆≥ d + C
p

d.
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We test this prediction with a numerical experiment. We fix the sidelength n = 35 and

consider observations Z0 ∈ Rn×n generated from the model described above. Figure 10.5

shows the empirical probability of success for a range of ranks r and sparsity levels s.

(See Appendix C.4 for the full details.) The yellow curve gives the values of (r, s) such

that

ψ`1

� s

n2

�

+ψS1

� r

n2

�

= 1,

where ψ`1
(sn−2)→ n−2δ(D(‖·‖`1

, Y \)) and ψS1
(rn−2)→ n−2δ(D(‖·‖S1

, X \)) as n→∞

by Propositions 6.14 and 6.16. By Theorem 9.1, we expect a phase transition to occur,

asymptotically as n → ∞, near the yellow curve. As in previous sections, we find

that this prediction is quite accurate even for the moderate value n = 35 used in this

experiment.

10.4 Linear inverse problems

Demixing problems where the observation z0 = Gx \ consists of a single constituent

are known as linear inverse problems. In this section, we describe how Theorem (9.5)

with n = 1 implies that a phase transition for this model occurs as the number of

measurements passes through a critical point. We focus here on two specific constituents,

namely sparse vectors and low-rank matrices.

10.4.1 The sparse inverse problem

Suppose that our constituent signal x \ ∈ Rd is sparse and the observation is given by

z0 = Gx \ for some Gaussian matrix G ∈ Rm×d . We solve for x \ using the convex program

minimize ‖x‖`1
subject to Gx = z0. (10.19)

Theorem 9.2 with n = 1 implies (cf. Remark 9.3) that this approach succeeds with

high probability when δ(D(‖·‖`1
, x \))≤ m−O(

p
d) and fails with high probability for

δ(D(‖·‖`1
, x \))≥ m+O(

p
d). By our approximation bound (6.21), the phase transition
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Figure 10.6: Empirical success of a sparse linear inverse problem. We fix the dimension
d = 100 and test the linear inverse method (10.19) for sparsity s = 1, 2, . . . , d and number of
measurements m = 1, 2, . . . , d. The colormap gives the empirical probability of success over
50 trials. The yellow curve is the theoretical (asymptotic) phase transition given by (10.20).

occurs in the region where

ψ`1

�sx

d

�

=
m

d
. (10.20)

Figure 10.6 compares this prediction to a numerical experiment where the ambient

dimension d = 100. We test (10.19) for each sparsity level sx = 1, . . . , d − 1, d. The

colormap displays the empirical probability of success, along with the 95%, 50% and

5% empirical success curves. We also show the numerically computed sparsity levels

satisfying (10.20). Once again, the correspondence between our theory and the 50%

success curve is quite good.
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The low-rank inverse problem We now consider the observation model z0 = G (X \) ∈

Rm where X ∈ Rn×n is a low-rank matrix and G : Rn×n→ Rm is a Gaussian2 measurement

operator. Since the Schatten 1-norm is naturally associated with the variety of low-rank

matrices, we solve for X \ with the program

minimize ‖X‖S1
subject to G (X) = z0. (10.21)

In the same manner as above, Theorem 9.2 with n = 1 implies that this method

undergoes a phase transition from success to failure as the number of measurements goes

through the region m ≈ δ(D(‖·‖S1
, x \)). Proposition (6.28) shows that the statistical

dimension δ(D(‖·‖S1
, x \)) ≈ n2ψS1

(ρ) for large n, which indicates that the phase

transition region occurs for measurement levels that satisfy

ψS1

� r

n
, 1
�

=
m

n2 . (10.22)

Figure 10.7 shows the results of a numerical experiment where we fix the side length

n = 30 and vary the rank of X \ and the number of measurement m. The colormap

indicates the empirical probability of success for this program, and we plot the 95%,

50% and 5% empirical success curves. Underneath these curves, we plot the values of

(r, m) that satisfy the implicit equation (10.22). The theoretical curves again provide a

very good prediction for the location of the empirical 50% success probability curve.

2We define a Gaussian operator on the matrix space Rn×n→ Rm via the identification G (X) := G vec(X)
for a standard Gaussian matrix G ∈ Rm×n2

.
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Figure 10.7: Empirical success of a low-rank inverse problem. We set the matrix
sidelength n= 30. We test the capability of (10.21) to recover an n× n rank-r matrix from
m Gaussian measurements. We repeat the experiment 50 times for each rank r = 1, 2, . . . , n
and number of measurements m= 1, n− 1, 2n− 2, . . . , n2. The yellow curve is determined
by (10.22). Further details for both of these experiments are available in Appendix C.6.
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Appendix A

A general Steiner formula

This section contains a general Steiner formula for convex cones. As a special case, we

recover both the Gaussian Steiner formula (Proposition 5.6) and the classical spherical

Steiner formula (Proposition 5.8). In short, we show that the mean value of a suffi-

ciently nice function of the projected norm of a Gaussian vector onto a cone is a linear

combination of the intrinsic volumes of the cone.

Let us take a moment to introduce some notation. Given a function f : R2→ R, we

define the average value

ϕ f (C) := E [ f (‖ΠC(g )‖ ,‖ΠC◦(g )‖)] . (A.1)

The rotational invariance of the Gaussian measure implies that ϕ f is rotation-invariant,

but in fact much more is true under some mild integrability conditions on f .

Theorem A.1 (General Steiner formula). Let C ∈ Cd be a polyhedral cone, and suppose

the function f : R2
+→ R satisfies E [| f (‖ΠC(g )‖ ,‖ΠC◦(g )‖)|]<∞. Then the function ϕ f

defined in (A.1) has the decomposition

ϕ f (C) =
∑d

k=0
ϕ f (Lk) vk(C) (A.2)

where Lk is a k-dimensional subspace of Rd and vk(C) are the intrinsic volumes (5.1) of C.

If C ∈ Cd is an arbitrary closed convex cone, f is bounded, and the map

x 7→ f (‖ΠC(x )‖ ,‖ΠC◦(x )‖)
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is almost everywhere continuous on Rd , then (A.2) also holds for this C.

While this result does not seem to be available in the literature, our proof is based

on standard arguments that will certainly be familiar to experts. Indeed, a similar proof

was used in the context of two-dimensional hyperbolic integral geometry in [San80,

p. 242], but with fewer integrability considerations.

We demonstrate in Section A.1 that the Gaussian and spherical Steiner formulas

follow from Theorem A.1. A new conic analog of the classical Euclidean Wills functional

appears in Section A.1.1. The proof of Theorem A.1 appears in Section A.2.

A.1 Consequences of Theorem A.1

A number of results follow from the Theorem A.1. As a first application, we recover the

Gaussian Steiner formula, Proposition 5.6. For convenience, we restate the claim here.

Proposition A.2 (Gaussian Steiner formula). For an arbitrary closed convex cone C ∈ Cd

and any ε ≥ 0,

P
�

‖ΠC(g )‖
2 ≤ ε

	

=
∑d

k=0
χ2

k (ε) vk(C). (A.3)

where χ2
k (ε) is the cumulative distribution function (5.12) of a chi-squared random

variable.

Proof. When ε = 0, we have ‖ΠC(g )‖
2 ≤ ε = 0 if and only if g ∈ C◦, and hence the

left-hand side of (A.3) is equal to v0(C). On the other hand, χ2
0 (0) = 1 but χ2

k (0) = 0

for all k ≥ 1, so the right-hand side of (A.3) is also equal to v0(C), verifying this special

case.

For ε > 0, we define the function f : R2
+→ R by

f (a, b) :=







1, a2 ≤ ε,

0, otherwise.

We now verify that the conditions of Theorem A.1 hold for this f . By definition, f is
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bounded, and moreover

P
�

‖ΠC(g )‖
2 ≤ ε

	

= E [ f (‖ΠC(g )‖ ,‖ΠC◦(g )‖)] .

We must demonstrate that the map

h(x ) := f (‖ΠC(g )‖ ,‖ΠC◦(g )‖)

is continuous almost everywhere. Since the function f (a, b) is continuous except where

a2 = ε, the set of (potential) discontinuities of h is given by

discont(h) :=
�

x : ‖ΠC(x )‖
2 = ε

	

=
�

x : dist2(x , C◦) = ε
	

where the second equality follows from the formula (3.17) for the distance to a convex

cone. Since ε > 0, the set discont(h) is given by the boundary of a convex set:

discont(h) = bdy
�

C◦+
p
εBd
�

,

where bdy(·) denotes the boundary map. (The equality above fails for ε = 0, which

explains why we treat the ε = 0 as a special case above.) A consequence of the separating

hyperplane theorem and the Lebesgue density theorem implies that the boundary of

every convex set has Lebesgue measure zero [Lan86]. We conclude that h is continuous

almost everywhere. By Theorem A.1, we have the representation

P
�

‖ΠC(g )‖
2 ≤ ε

	

=
∑d

k=0
vk(C)E[ f (‖ΠLk

(g )‖ ,‖ΠL⊥k
(g )‖)] =

∑d

k=0
vk(C)χ

2
k (ε),

where the last equality follows immediately from the definition of f and χ2
k . This

completes the proof.

A natural variant of Proposition A.2 replaces the Gaussian vector g with a spherically

distributed random variable θ .

Proposition A.3 (Spherical Steiner formula). Let C ∈ Cd be a closed, convex cone, and
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let θ be uniformly distributed over the sphere Sd−1. For any ε ∈ [0, 1],

P{‖ΠC(θ )‖
2 ≤ ε}=

∑d

k=0
vk(C)B

d
k(ε) (A.4)

where Bd
k(ε) is the cumulative distribution function (5.13) of a Beta(k/2, (d − k)/2)

random variable.

The proof, while very similar to the Gaussian case, contains enough additional

technical wrinkles that we present it in full.

Proof. We first consider the boundary cases where ε ∈ {0,1}. When ε = 0, we have

‖ΠC(θ )‖
2 ≤ ε = 0 if and only if θ ∈ C◦, so that the left-hand side of (A.4) is equal to

v0(C). For the same reason, Bd
k(0) is equal to zero if and only if k = 0, so the left- and

right-hand sides of (A.4) indeed agree.

In the case where ε = 1, the left-hand side of (A.4) is equal to one. Since Bd
k(0) = 1

for all k, the right-hand side of (A.4) is given by
∑d−1

k=0 vk(C) = 1 by the fact (5.4) that

the intrinsic volumes sum to one. Therefore, the equality in (A.4) also holds for ε = 0.

We have now reached the interesting case where 0 < ε < 1. Define f : R2→ R by

the indicator function

f (a, b) =







1, a2 ≤
ε

1− ε
b2,

0, otherwise.

A uniformly distributed variable θ is equal in distribution to g/‖g‖ for a standard

Gaussian vector g , so that

P{‖ΠC(θ )‖
2 ≥ ε}= P{‖ΠC(g )‖

2 ≥ ε ‖g‖2}= P
n

‖ΠC(g )‖
2 ≥

ε

1− ε
‖ΠC◦(g )‖

2
o

(A.5)

= E[ f (‖ΠC(g )‖ ,‖ΠC◦(g )‖)]

where the second equality follows from the Pythagorean identity (3.16).

We now verify the hypothesis of Theorem A.1. First, we note that f is bounded in

magnitude by definition. In order to verify that (A.4) holds for all closed convex cones,
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we must only verify that the map h defined by

h(x ) := f (‖ΠC(x )‖ ,‖ΠC◦(x )‖)

is continuous almost everywhere. This demonstration, while not difficult, requires some

enterprise.

The function f (a, b) is continuous except where a(1− ε) = εb and the projection

map ΠC is continuous everywhere, so the set of (potential) discontinuities of h is given

by

discont(h) := {x : ‖ΠC(x )‖
2 (1− ε) = ε ‖ΠC◦(x )‖

2}.

The set discont(h) is a (nonconvex) cone, so we may verify that the Lesbesgue measure

of discont(h) is zero by checking that the spherical Lesbesgue measure of the restriction

discont(h)∩ Sd−1 is zero. This restricted set is of the form

discont(h)∩ Sd−1 = {θ ∈ Sd−1 : ‖ΠC(θ )‖
2 = ε},

which is seen by reversing the homogeneity argument (A.5) above. But the norm of the

projection satisfies ‖ΠC(θ )‖
2 = dist2(θ , C◦), so that the set of restricted discontinuities

can be written as the boundary of a convex set restricted to the sphere:

discont(h)∩ Sd−1 = {x : dist2(x , C◦) = ε} ∩ Sd−1 = bdy ({x : dist(x , C◦)≤ ε})∩ Sd−1,

where bdy(·) denotes the boundary map. Note that the boundary interpretation re-

quires the assumption ε > 0. The boundary of a convex set has Lesbesgue measure

zero [Lan86], so the set discont(h)∩ Sd−1 also has measure zero, and by homogeneity

the set discont(h) has measure zero.

Because f is bounded and h is continuous almost everywhere, Theorem A.1 implies

that (A.4) holds for any closed cone C and all 0 < ε < 1. Since we checked the case

ε ∈ {0,1} previously, we are done.
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A.1.1 The conic Wills functional

This section introduces a conic analog of the classical Wills functional from Euclidean

geometry. For a compact convex set K ⊂ Rd , the Euclidean Wills functional is given by

W (K) :=

∫

Rd

e−πdist2(x ,K) dx .

The Wills functional gained some attention in the mid-20th century due to Wills’

conjecture that the valueW (K) provides an upper bound on the number of integer lattice

points contained in the convex body K [Wil73]. The conjecture holds in dimensions two

and three [Nos48, Ove75] and in some other special cases [HW74]. Wills’ conjecture

was ultimately disproved by Hadwiger, who provided a counterexample in dimension

d = 441 [Had75]. Betke & Henk [BH93] showed that the crosspolytope provides a

counterexample1 in dimension 207. Despite these counterexamples, the Wills functional

continues to have intrinsic geometric interest. For example, Vitale [Vit96] demonstrated

a deep connection between the Wills functional and Gaussian processes.

In this section, we define a new conic analog of the Wills functional, and we use our

general Steiner formula to give an expression for its value as a polynomial in the conic

intrinsic volumes. As a corollary, we obtain an elegant proof of the product rule (5.7)

for conic intrinsic volumes.

Definition A.4. For any C ∈ Cd , we define the conic Wills functional WC(λ) by

WC(λ) := λd Eexp
�

−
λ2− 1

2
dist2(g , C)

�

. (A.6)

The awkward exponent and leading polynomial are justified by the simple expression

for the conic Wills functional given by the following theorem.

Theorem A.5 (Conic Wills functional). For any C ∈ Cd and λ > 0, the conic Wills

1Betke & Henk’s work is also notable because it provided formulas for the internal and external angles
of the crosspolytope (see Section A.2.2 below) based on work of Ruben [Rub60]. Later work on this
subject led to precise neighborliness investigations that eventually brought Donoho to phase transition
calculations for `1 minimization.
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functional is given by

WC(λ) =
∑d

k=0
λkvk(C). (A.7)

Proof. Assume first that λ ≥ 1. We will extend the formula to all λ > 0 by a standard

analytic continuation argument at the end of the proof. Define the function fλ : R2
+→ R

by

fλ(a, b) := exp
�

−
λ2− 1

2
b2

�

For each λ≥ 1, the function fλ is bounded by one over R2
+. Moreover, fλ is continuous,

and hence the map x 7→ fλ(‖ΠC(x )‖ ,‖ΠC◦(x )‖) is continuous on Rd . By Theorem A.1

and the fact (3.17) that dist2(x , C) = ‖ΠC◦(x )‖
2, we find the expression

λ−dWC(λ) = E
�

f
�

‖ΠC(g )‖ ,‖ΠC◦(g )‖
��

=
∑d

k=0
vk(C)E

�

f
�

‖ΠLk
(g )‖ ,‖ΠL⊥k

(g )‖
��

(A.8)

The coefficients in this final expression can be computed exactly. By rotational invariance

of the Gaussian measure, we have

E
�

f
�

‖ΠLk
(g )‖ ,‖ΠL⊥k

(g )‖
��

= Eexp
�

−
λ2− 1

2
‖ΠLd−k

(g )‖2
�

= Eexp
�

−
λ2− 1

2

∑d−k

i=0
g2

i

�

where the last equality follows from the fact that the projection of a Gaussian vector

onto a (d − k)-dimensional subspace is standard Gaussian vector on that subspace. But

the coordinates gi of a standard Gaussian vector are independent, so

Eexp
�

−
λ2− 1

2

∑d−k

i=0
g2

i

�

=
�

Eexp
�

−
λ2− 1

2
g2

��d−k

,

where g ∈ R is a standard one-dimensional Gaussian random variable. The inner

moment generating function then given by

Eexp
�

−
λ2− 1

2
g2

�

=
1
p

2π

∫ ∞

−∞
e−λ

2 g2/2 dg =
1

λ
.
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To summarize, our calculation shows that

E
�

f
�

‖ΠLk
(g )‖ ,‖ΠL⊥k

(g )‖
��

= λk−d .

Expression (A.7) follows upon applying this expression to (A.8), which shows the claim

for all λ≥ 1.

(Analytic continuation) We will show that the expectation in the definition (A.6) of

the conic Wills functional is finite for all λ > 0. This fact immediately implies that

the formula (A.7) holds for all λ > 0 by a standard analytic continuation argument,

cf. [AF03, pp. 124–125].

The integrability condition is easy to check. For any λ > 0, we apply the Pythagorean

theorem (3.16) and the distance formula (3.17) to find

λ2− 1

2
dist2(g , C) +

1

2
‖g‖2 =

λ2

2
‖ΠC◦(g )‖

2+ ‖ΠC(g )‖
2 ≥

λ2

2
‖g‖2 . (A.9)

Therefore,

Eexp
�

−
λ2− 1

2
dist2(g , C)

�

≤
1

(2π)d/2

∫

Rd

exp
�

−
λ

2
‖g‖2

�

dg =
1

λd ,

where the inequality follows by the definition of the Gaussian measure and (A.9). This

expression above evidently finite for λ > 0.

As a corollary, we obtain an elegant proof of the product rule (5.7).

Corollary A.6. For any C ∈ Cd and C ′ ∈ Cd ′ , the intrinsic volumes of the product

C × C ′ ∈ Cd+d ′ are given by

vk(C × C ′) =
∑

i+ j=k
vi(C)v j(C

′).

Proof. Let g ∈ Rd and g ′ ∈ Rd ′ be independent standard Gaussian vectors so that the

concatenation (g ; g ′) is a standard Gaussian vector in Rd+d ′ . Then by definition of the
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Wills functional,

WC×C ′(λ) = λ
d+d ′ Eexp

�

−
λ2− 1

2
dist2

�

(g ; g ′), C × C ′
�

�

= λd Eexp
�

−
λ2− 1

2
dist2(g , C)

�

×λd ′ Eexp
�

−
λ2− 1

2
dist2(g ′, C ′)

�

=WC(λ)×WC ′(λ).

The second equality follows by Fubini’s theorem; we may justify this application by not-

ing that the exponential is dominated by a constant for all λ≥ 1. Applying Theorem A.5

and the multiplication rule for polynomial coefficients, we have

WC(λ)×WC ′(λ) =
∑d+d ′

k=0
λk
∑

i+ j=k
vi(C)v j(C

′).

Comparing the coefficients of λk above to those in the expression

WC×C ′(λ) =
∑d

k=0
λkvk(C × C ′)

yields the claim.

Remark A.7. In the Euclidean case, Schneider & Weil [SW08, pp. 610] attribute the

schema of the proof above to Hadwiger [Had75].

A.2 Proof of the general Steiner formula

Before the diving into the proof of Theorem A.1, we develop a fundamental decompo-

sition of Rd induced by the facial structure of a cone (Section A.2.1) and the polytope

angle characterization of conic intrinsic volumes (Section A.2.2).
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A.2.1 A tiling induced by a cone

Recall that a face F of a closed cone C is a set consisting of the maximizers of some

linear function over C . In other words, a face is of the form

F = {x ∈ C : 〈x , y〉= supz∈C〈z, y〉}.

In this case, we say y is an outward normal to C that supports F . Note that the face

F above is nonempty if and only if y ∈ C◦ because the supremum is +∞ for y /∈ C◦.

Given a face F of a cone C , the normal face

NF := lin(F)⊥ ∩ C◦ (A.10)

is the face of the polar cone C◦ consisting of all the outward normals to C that support the

face F . The following result, an amplification of an observation of McMullen [McM75,

Lem. 3], provides a tiling of Rd as an orthogonal sum of the faces and normal faces of

C .

Proposition A.8. Suppose C is a closed convex cone. Then we have the orthogonal

decomposition Π−1
C (relint(F)) = relint(F) + NF , and moreover Rd can be written as the

disjoint union

Rd =
⊔

F a face of C

(relint(F) + NF). (A.11)

Proof. Equation (3.15) gives a unique orthogonal decomposition of x over C and C◦,

so that in particular

Π−1
C (relint(F))⊃ relint(F) + NF .

We now show the reverse inclusion. Let F be any face of C . For x ∈ Π−1
C (relint(F)), we

have the orthogonal decomposition (3.15)

x = ΠC(x ) +ΠC◦(x ).

Since ΠC(x ) ∈ relint(F) by assumption and ΠC◦(x ) ∈ C◦, we only need argue that
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ΠC◦(x ) ∈ lin(F)⊥ by definition of NF .

We take a perturbative approach. Let h ∈ lin(F). Because ΠC(x ) is in the relative

interior of F , there is an ε > 0 such that both ΠC(x ) + εh and ΠC(x )− εh lie in F . By

the orthogonality of the decomposition (3.15), we see

〈ΠC◦(x ),±εh〉= 〈ΠC◦(x ),ΠC(x )± εh〉 ≤ 0

where the inequality holds by the definition of a polar cone. In other words, ΠC◦(x )

must be orthogonal to h. Since h was an arbitrary member of lin(F), we have ΠC◦(x ) ∈

lin(F)⊥, and hence ΠC◦(x ) ∈ NF . Therefore x = ΠC(x )+ΠC◦(x ) ∈ relint(F)+NF , which

shows the second claimed inclusion. Hence Π−1
C (relint(F)) = relint(F) + NF , as claimed.

To finish the proof, note that the uniqueness of the projection map implies that every

point x ∈ Rd maps to some unique face of C . Therefore, the entire space Rd is given by

the disjoint union

Rd =
⊔

F a face of C

Π−1
C (relint(F)) =

⊔

F a face of C

(relint(F) + NF),

where the second equality follows from the demonstration above.

A.2.2 Polytope angles & intrinsic volumes

The solid angle of a cone C is defined by

∠(C) :=

∫

C

e−π‖y‖
2
dy , (A.12)

where the integral is taken with respect to the Lesbesgue measure on the linear hull of

C . By requiring integration over the linear hull of the cone, we ensure that the solid

angle is an intrinsic measure of the size of a cone, that is, ∠(C) does not depend on the

dimension of the space that C is embedded in, but only on the intrinsic dimensionality

of C . When C is full dimensional (that is lin(C) = Rd say) the change of variables
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x =
p

2πy shows that we may interpret the solid angle probabilistically:

∠(C) =
1

(2π)d/2

∫

C

e−‖x‖
2/2 dx = P{g ∈ C}= P{θ ∈ C ∩ Sd−1}, (A.13)

where g is a standard Gaussian vector in Rd and θ is uniform on the sphere Sd−1. Both

interpretations of the solid angle ∠(C) prove useful below.

The intrinsic volumes of polyhedral cones have an important representation in terms

of polytope angles, defined as follows. For a face F of a polyhedral cone C , the internal

and external angles of F at C are simply the solid angles of the cones F and NF . For

comparison with the classical literature, we note that the internal angle is often denoted

by β(0, F), while the external angle is γ(F, C); however, we will not use this notation in

this work.

Fact A.9 (Polytope angles). Let C ∈ Cd be a polyhedral cone. Then

vk(C) =
∑

F a k-dim
face of C

∠(F)∠(NF) (A.14)

This result is classical [McM75], be we repeat the easy demonstration because it illus-

trates an important technique that appears below.

Proof. By the definition (5.1) of the intrinsic volumes we have the formula and the

tiling of Rd given in Proposition (A.11),

vk(C) = P{ΠC(x ) ∈ a k-dim. face of C}=
∑

F a k-dim
face of C

1

(2π)d/2

∫

Π−1
C (relint(F))

e−‖x‖
2/2 dx ,

where we have used the fact that polyhedral cones have only a finite number of faces.

The orthogonal decomposition of the tiles in (A.11) and an application of Fubini’s

theorem lets us write the integral above as a product:

1

(2π)d/2

∫

Π−1
C (relint(F))

e−‖x‖
2/2 dx =

∫

relint(F)

∫

NF

e−π(‖w‖
2+‖u‖2) dw du = ∠(F)∠(NF),

where we used the change of variables x = 2π(u + w ) ∈ Π−1
F (C) for some (uniquely
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determined) u ∈ relint(F) and w ∈ NF . The second equality follows from the defini-

tion (A.12) of the solid angle and the fact that the boundary of a convex set has measure

zero [Lan86]. The claim (A.14) follows from the two displayed equations above.

A.2.3 Proof of Theorem A.1

Suppose that C is a polyhedral cone and that the expectation

E [| f (‖ΠC(g )‖ ,‖ΠC◦(g )‖)|]<∞.

Define the random variables u := ΠC(g ) and w := ΠC◦(g ). Although u and w are

dependent random variables, we will find that they behave like independent Gaussian

vectors when we restrict g to a single tile from Proposition A.8. This fact is the heart of

the proof.

Since C is a polyhedral cone, the tiling (A.11) given by Proposition A.8 contains only

a finite number of terms. The boundary F \ relint(F) of a convex cone has Lesbesgue

measure zero [Lan86, Thm. 1], so that

ϕ f (C) = E [ f (‖u‖ ,‖w‖)] =
∑d

k=0

∑

F a k-dim
face of C

E[ f (‖u‖ ,‖w‖) · 1F(u)], (A.15)

where 1F is the indicator function (3.1) on the face F . The orthogonality of the tiles

in (A.11) implies that we may integrate over F and NF independently:

E[ f (‖u‖ ,‖w‖) · 1F(u)] =
1

(2π)d/2

∫

F

∫

NF

f (‖u‖ ,‖w‖)e−(‖u‖
2+‖w‖2)/2 dw du,

where our integrability assumption justifies the application of Fubini’s theorem [Fol99,

Thm. 2.37]. Note that the integrals above are taken with respect to the Lebesgue measure

on the linear hulls of F and NF . It turns out that the integral above is proportional to

the product of the solid angles of the face F and the normal face NF .

Let k denote the dimension of the linear hull of F . Integration in polar coordi-
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nates [Fol99, Thm. 2.49] yields

E[ f (‖u‖ ,‖w‖) · 1F(u)] =

∫

F∩Sk−1

dσk−1

∫

NF∩Sd−k−1

dσd−k−1

×
1

(2π)d/2

∫ ∞

0

∫ ∞

0

f (s, t) sk−1 td−k−1e−(s
2+t2)/2 ds dt.

Because the solid angle of a cone is equal to the probability that a spherically distributed

random variable lands in the cone (A.13), the first two integrals above are proportional

to the solid angle of the faces:

∫

F∩Sk−1

dσk−1 = σk−1(Sk−1)∠(F) and

∫

NF∩Sd−k−1

dσd−k−1 = σd−k−1(Sd−k−1)∠(NF).

But the same argument as before, with F replaced by lin(F) and NF replaced by lin(F)⊥,

delivers the identity

σk−1(Sk−1)σd−k−1(Sd−k−1)

(2π)d/2

∫ ∞

0

∫ ∞

0

f (s, t)sk−1 td−k−1e−(s
2+t2)/2 ds dt

= E [ f (‖Πlin(F)(g )‖ ,‖Πlin(F)⊥(g )‖)] .

The expression expectation is invariant under rotations, so it depends only on the

dimension k of the face F . Therefore,

E[ f (‖u‖ ,‖w‖) · 1F(u)] = ∠(F)∠(NF)E[ f (‖ΠLk
(g )‖ ,‖ΠL⊥k

(g )‖)] = ∠(F)∠(NF)ϕ f (Lk)

for some k-dimensional subspace Lk. Applying this relation to (A.15) reveals

ϕ f (C) =
∑d

k=0
ϕ f (Lk)

∑

F a k-dim
face of C

∠(F)∠(NF) =
∑d

k=0
ϕ f (Lk) vk(C),

where the final equality follows by (A.14). This completes the claim when C is polyhe-

dral.

For a general closed convex C , the proof proceeds by approximation with polyhedral

cones. Assume f is bounded and that the map x 7→ f (‖ΠC(x )‖ ,‖ΠC◦(x )‖) is continuous
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Lebesgue almost everywhere. Let (Ci)i∈N be a sequence of polyhedral cones converging

to C in the conic Hausdorff metric. For each x , continuity of the projection map under

the conic Hausdorff metric (Proposition 3.8) implies the convergence of the projected

norms:

lim
i→∞
‖ΠCi
(x )‖= ‖ΠC(x )‖ and lim

i→∞
‖ΠC◦i

(x )‖= ‖ΠC◦(x )‖ .

Since f is bounded, the map x 7→ f (‖ΠC(x )‖ ,‖ΠC◦(x )‖) is integrable with respect to

the Gaussian measure. The convergence of the norms, together with the integrability

and almost everywhere continuity of the map, imply that

f (‖ΠCi
(g )‖ ,‖ΠC◦i

(g )‖)→ f (‖ΠC(g )‖ ,‖ΠC◦(g )‖) in probability as i→∞

by the continuous mapping theorem [Kal02, Lem. 4.3]. But convergence in probability

implies convergence in distribution, so for i→∞, we have

ϕ f (Ci) = E [ f (‖ΠCi
(g )‖ ,‖ΠC◦i

(g )‖)]→ E [ f (‖ΠC(g )‖ ,‖ΠC◦(g )‖)] = ϕ f (C).

The boundedness of f implies that the map x 7→ f (‖ΠCi
(x )‖ ,‖ΠC◦i

(x )‖) corresponding

to the polyhedral cone Ci is also integrable with respect to the Gaussian measure on Rd .

Therefore, we may apply the first part of Theorem A.1 to the polyhedral cones (Ci)i∈N to

find

lim
i→∞

ϕ f (Ci) = lim
i→∞

∑d

k=0
ϕ f (Lk) vk(Ci) =

∑d

k=0
ϕ f (Lk) vk(C)

where the second equality follows by the continuity of intrinsic volumes. Thus (A.2)

holds, completing the proof.

Remark A.10. The boundedness condition on f is only used to ensure that the integral

ϕ f (C) is well defined for every convex cone C . Any other condition on f that ensures

integrability for all polyhedral cones will lead the same conclusion.
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Appendix B

Proofs of results in Chapter 10

We collect the proof of the rigorous results from Chapter 10 below. The proofs simply

combine our general results on phase transitions in demixing programs from Section 9

with the estimates for the statistical dimensions of descent cones in Section 6.2.

B.1 Sparse + sparse demixing

This section presents the proof of the results presented in Section 10.1. We first prove

that a phase transition occurs in sparse + sparse demixing (Theorem 10.1), then provide

a proof of Theorem 10.3 concerning strong guarantees for sparse + sparse demixing.

Finally, we prove Theorem 10.4 which shows that a phase transition occurs sparse +

sparse undersampled demixing.

B.1.1 Phase transition

We now rigorously establish the existence of a sparsity-parameterized phase transition

in sparse + sparse demixing.

Proof of Theorem 10.1. We split the demonstration according to the headings.

(Well-defined curve) The fact that ρy is well-defined for each ρx ∈ (0, 1) follows easily

from the properties of ψ`1
listed in Lemma 6.15. Since ψ`1

(ρ) is an analytic, strictly

increasing function of ρ that maps (0,1) to (0,1), the inverse ψ−1
`1

: (0,1)→ (0,1) is a
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well-defined analytic function [AF03, Thm. 5.3.3]. Hence, the parameter ρy defined by

ρy :=ψ−1
`1

�

1−ψ`1
(ρx)

�

is a continuous function of ρx over the interval (0,1). By definition, the pair (ρx ,ρy)

satisfies the implicit equation (10.3).

It only remains to show that the limiting values (10.4) hold. When ρx → 0, we have

ψ`1
(ρx)→ 0 by (6.26). This implies that ψ−1

`1
(1−ψ`1

(ρx))→ 1 by (6.27). The same

properties imply that as ρx → 1, the function ψ`1
(ρx)→ 1, and so ψ−1

`1
(1−ψ`1

(ρx))→

0.

(Phase transition) With the notation Rη from Theorem 9.1, we define the parameter

C(ρ) :=

p

8Rη+ 2

ψ′`1
(ρ)

(B.1)

The parameter C(ρ) is well defined and C(ρ) > 0 because ψ`1
is a strictly increasing

analytic function by Lemma 6.15. Moreover, the definition depends only on ρ and η.

Now we define Cx := C(ρx) and Cy := C(ρy), and suppose that sx and sy satisfy

(10.5). From our error estimate (6.21) and the monotonicity of ψ`1
, we see

δ(D(‖·‖`1
, x \)) +δ(D(‖·‖`1

, y \))≤ d
�

ψ`1

�

ρx −
Cxp

d

�

+ψ`1

�

ρy −
Cyp

d

�

+
2
p

d

�

= d −
p

d
�

Cxψ
′
`1
(ρx) + Cyψ

′
`1
(ρy)− 2

�

+O (1)

= d − 2
p

8Rηd − 2
p

d +O(1). (B.2)

The second equality follows by a Taylor series expansion of the analytic function ψ`1
,

while the final equality is the definition of Cx and Cy .

For all d sufficiently large, we have the inequality

2
p

8Rηd ≥ 16Rη+
p

8Rηd ≥ β ,

where β is the bandwidth parameter from Theorem 9.1, and the final inequality also



173

requires the observation that d >ω2
∨, where ω∨ is defined in (9.3).

Applying this inequality to the bound (B.2) on the statistical dimension, we find the

inequality

δ(D(‖·‖`1
, x \)) +δ(D(‖·‖`1

, y \))≤ d − β

whenever d is sufficiently large. The success condition of Theorem 9.1 implies that

method (10.1) succeeds with probability at least 1−η so long as d is large enough.

For sx and sy satisfying (10.6), the same argument as above shows that

δ(D(‖·‖`1
, x \)) +δ(D(‖·‖`1

, y \))≥ d + β

for all d sufficiently large. The failure condition of Theorem 9.1 then implies that (10.1)

succeeds with probability at most η.

B.1.2 Strong bound

This section provides strong guarantees for the demixing method (10.1) under the

random alignement model.

Proof of Theorem 10.3. For any ρ, we define the sparse family

S (ρ) := {x ∈ Rd : nnz(x )≤ ρd}.

By the optimality condition (4.3), the method (10.1) succeeds for every two constituent

vectors x \, y \ ∈ S (ρ) if and only if

D(‖·‖`1
, x \)∩−QD(‖·‖`1

, y \) = {0} for all x \, y \ ∈ S (ρ). (B.3)

A priori, this condition appears to involve an infinite number of intersections. The

following lemma reduces (B.3) to a manageably finite number of intersections.
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Lemma B.1. Suppose two vectors x \, x ] ∈ Rd satisfy

supp(x \)⊂ supp(x ]) and sgn (x \i ) = sgn (x ]i ) for all i = 1, . . . , d − 1, d.

Then D(‖·‖`1
, x \)⊂ D(‖·‖`1

, x ]).

The proof of this lemma appears after we complete the current demonstration.

Lemma B.1 implies that we only need to check the intersection of the minimally sparse

vectors in our family S (ρ) in (B.3). In other words, condition (B.3) is equivalent to the

statement

D(‖·‖`1
, x \)∩−QD(‖·‖`1

, y \) = {0} for all x \, y \ ∈ S0(ρ), (B.4)

where S0(ρ) is the reduced sparse family

S0(ρ) := {x : nnz(x ) = bρdc and x i ∈ {0,±1}} . (B.5)

By applying the union bound, we find an inequality for the failure probability:

P{(B.4) does not hold}

≤ |S0(ρ)|2× max
x \,y \∈S0(ρ)

P
�

D(‖·‖`1
, x \)∩−QD(‖·‖`1

, y \) 6= {0}
	

. (B.6)

The remainder of the proof demonstrates that we can drive the upper bound (B.6) to η

by choosing ρ > 0 sufficiently small and d sufficiently large.

Define the strong probability ηS := η |S0|
−2. The number of elements in S0 is

precisely equal to the number of number of ways to choose bρdc nonzero locations

from d indices and then assign all bρdc sign patterns to these nonzero locations:

|S0|= 2bρdc
�

d

bρdc

�

.

A sharp-remainder form of Stirling’s formula [DLMF, OLBC10, Sec. 5.6.1] provides a
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bound for ηS, valid uniformly over ρ ∈ (0, 1):

1

d
log (ηS) =

1

d
log(η)− 2

�

ρ log(2) +H(ρ)
�

+O
� log(d)

d

�

as d →∞, (B.7)

where H(ρ) is the base-e bit-entropy given by

H(ρ) := ρ log
� 1

ρ

�

+ (1−ρ) log
� 1

1−ρ

�

. (B.8)

By symmetry of the `1 norm, we have δ(D(‖·‖`1
, x \)) = δ(D(‖·‖`1

, y \)) for any

x \, y \ ∈ S0(ρ). By Proposition 6.14, we have

δ(D(‖·‖`1
, x \)) +δ(D(‖·‖`1

, y \))≤ 2dψ`1
(ρ). (B.9)

Each probability appearing in (B.6) is precisely equal to the probability that the demixing

method (10.1) succeeds for a single pair of bρdc sparse vectors x \ and y \ by the

optimality condition (4.3). By combining Theorem 9.1 with the estimate (B.9), we find

that P
�

D(‖·‖`1
, x \)∩−QD(‖·‖`1

, y \) 6= {0}
	

≤ ηS whenever

2ψ`1
(ρ) +

1

d

�

16RηS
+
p

8RηS
ω∨
�

≤ 1 (B.10)

where the parameters RηS
:= log(8/ηS) and ω∨ := δ(D(‖·‖`1

, x \))∨δ(D(‖·‖`1
, y \)) are

drawn from the statement of Theorem 9.1.

The expression (B.7) for the strong probability ηS shows that

1

d
Rηs
= O

�

ρ+H(ρ) +
1

d
log
�1

η

�

+
log(d)

d

�

as d →∞.

Basic calculus shows that H(ρ)→ 0 as d →∞, so we can force Rηs
arbitrarily close to

zero by taking d sufficiently large and ρ sufficiently small.

Upon applying Proposition 6.14 to the definition (9.3) of ω∨, we find that ω∨ ≤
p

dψ`1
(ρ). Since ψ`1

(ρ) → 0 as ρ → 0 by Lemma 6.15, we find that every term

in (B.10) can be made arbitrarily small for sufficiently small ρ and large d. Theorem 9.1
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then implies that for any x \, y \ ∈ S0(ρ), we have

|S0|2× P
�

D(‖·‖`1
, x \)∩−QD(‖·‖`1

, y \) 6= {0}
	

≤ |S0|2ηS = η

when ρ > 0 is small enough and d is large enough. Since the quantity above is an upper

bound on the failure probability (B.6), the proof is complete.

Proof of Lemma B.1. By the invariance of the `1 norm under signed permutations, we

may assume that x \, x ] ∈ Rd
+ and that the support sets are given by

supp(x \) = {1, . . . , i− 1, i} ⊂ {1, . . . , j− 1, j}= supp(x ])

for some integers i ≤ j. From the expression (6.24) for the subgradient of the `1 norm

at these sparse vectors, we have the subgradient inclusion

∂ ‖x \‖`1
⊃ ∂ ‖x ]‖`1

.

By (3.29), the normal cones inherit this inclusion property:

N (S\, x \)⊃N (S], x ]),

where S\ := {y : ‖y‖`1
≤ ‖x \‖`1

} and S] := {y : ‖y‖`1
≤ ‖x ]‖`1

} are the sublevel sets of

the `1 norm at x \ and x ]. Since a normal cone is polar to a descent cone (3.27), we

have

D(‖·‖`1
, x \)⊂ D(‖·‖`1

, x ]),

where we have applied the bipolar property (Proposition 3.2.3) and the fact that

inclusion reverses under polarity. But the `1 norm is a polyhedral function, so the

descent cones above are generated by a polyhedral set (3.26), and in particular, both

descent cones are closed. Hence, the displayed equation above is equivalent to the

statement D(‖·‖`1
, x \)⊂ D(‖·‖`1

, x ]).
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B.1.3 Undersampled bounds

Finally, we provide a proof that a phase transition occurs in the undersampled sparse +

sparse demixing model of Section 10.1.2.

Proof of Theorem 10.4. The proof follows the schema of the proof of Theorem 10.1

above, so we move briskly. The fact that there always exist solutions to (10.10) follows

from the fact that ψ`1
(ρ)→ 0 as ρ→ 0.

Let ρx ,ρy > 0 satisfy (10.10), and suppose that the sparsity levels sx and sy satisfy

the (10.11). With C(ρ) defined as in (B.1), we follow the approach leading up to (B.2)

to find

δ(D(‖·‖`1
, x \)) +δ(D(‖·‖`1

, y \))≤ m− 2
p

8Rηd − 2
p

d +O(1).

As above, we find that for sufficiently large d

2
p

8Rηd ≥ 16Rη+
p

8Rηd ≥ 16Rη+
p

8Rηω∨,

where ω2
∨ = max

�

δ(D(‖·‖`1
, x \)),δ(D(‖·‖`1

, y \))
	

< d. Hence, when d is sufficiently

large, the total statistical dimension satisfies the conditions of Theorem 9.2 with n= 2.

This is the first implication. The second implication follows in the same manner as the

first. We do not repeat the details.

B.2 Sparse + sign demixing

This section provides the proofs of Theorems 10.5 and 10.6 that establish rigorous

guarantees for sparse + sign demixing.

B.2.1 Phase transition

The proof below establishes that sparsity-parameterized phase transition occurs in sparse

+ sign demixing.
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Proof of Theorem 10.5. The proof follows along the lines of the proof of Theorem 10.1.

The equation ψ`1
(ρ∗) =

1
2

uniquely determines ρ∗ because Lemma 6.15 implies that

ψ`1
(ρ) is a bijection from (0,1) to (0,1). Let C(ρ) be as defined in (B.1), and set the

parameter C := C(ρ∗). Because ρ∗ is determined uniquely regardless of the problem

parameters, C is a universal constant independent of everything else.

Suppose s := nnz(x \) satisfies (10.15). Following the same steps that lead to (B.2),

we find

δ(D(‖·‖`1
, x \))≤

d

2
−
p

d(Cψ`1
(ρ∗)− 1) +O(1)

=
d

2
− 2
p

8Rηd − 2
p

d +O(1).

As above, we find the that the inequality 2
p

8Rηd ≥ 16Rη +
p

8Rηω∨ holds for all

sufficiently large d. From the fact that δ(D(‖·‖`∞ , y \)) = d/2 (Proposition 6.11),

Theorem 9.1 implies that (10.13) succeeds with probability at least (1−η) for sufficiently

large d. This completes the demonstration of the first point. The second point follows

in a completely analogous manner, so we omit the details.

B.2.2 Strong bounds

The next argument establishes strong guarantees for sparse + sign demixing.

Proof of Theorem 10.6. We follow the approach of the proof of the sparse + sparse

strong bound in Section B.1 above. Define the sparse family

S (ρ) := {x ∈ Rd : nnz(x )≤ ρd}.

Then (10.13) succeeds for all x \ ∈ S (ρ) if and only if

D(‖·‖`1
, x \)∩−QD(‖·‖`∞ , y \) = {0} for all x \ ∈ S (ρ).
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It follows from Lemma B.1 that this is equivalent to

D(‖·‖`1
, x \)∩−QD(‖·‖`∞ , y \) = {0} for all x \ ∈ S0(ρ). (B.11)

where S0(ρ) is the reduced sparse family defined in (B.5). The union bound shows that

the probability that the equation above does not hold is bounded above by

P{(B.11) does not hold} ≤ |S0(ρ)| × max
x \∈S0(ρ)

P
�

D(‖·‖`1
, x \)∩−QD(‖·‖`∞ , y \)

	

.

We can force the bound above to be less than η for some ρ > 0 and all sufficiently large

d in precisely the same manner as in the proof of Theorem 10.3. We omit the repetitive

details.
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Appendix C

Numerical details

In this chapter, we describe the details of our numerical procedures for computing the

approximate statistical dimensions ψ`1
and ψS1

of Sections 6.2.6 and 6.2.7, as well

as the numerical experiments from Chapter 10. All code and experiments utilize the

MATLAB environment for scientific computing.

C.1 Statistical dimension calculations

Propositions 6.14 and 6.16 define two functions ψ`1
and ψS1

implicitly. We determine

the value of these functions numerically using a two-step procedure. First, we solve

the stationary equations (6.23) and (6.30) using the numerical root finding procedure

fzero. The function erfc is used to compute the value of the exponential integral

in (6.23), while we use quadgk for the integral appearing in (6.30).

With the stationary points in hand, we compute (6.22) and (6.29) using the erfc

function or the numeric quadrature function quadgk. This procedure appears highly

stable for values of ρ in the region 10−5 < ρ < 1− 10−5.

C.2 Experimental generalities

All of the actual optimization is performed with the MATLAB package CVX [GB08, GB10]

with the default settings. When drawing random rotations from Od , we follow the simple,

stable approach described in [Mez07]. All random variables are drawn independently
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of all others.

The colormaps in our figures indicate the empirical probability of success of the

experiments. In each case, black indicates total failure, while white indicates complete

success. The varying shades of gray indicate mixtures of success and failures. We use

the contour function to generate all empirical success contour lines.

We generate the phase transition curves using the method described in the previous

section for computing ψ`1
and ψS1

. The formulas for these curves accompany the

corresponding discussion in Section 10.

C.3 Sparse + sparse

This section describes the experiment shown in Figures 1.1 and 10.1 for demixing two

sparse vectors. We fix the ambient dimension d = 100, and for each sparsity pair

(sx , sy) ∈ {0, . . . , 99, 100}2, we perform the following steps 25 times:

1. Draw x \, y \ ∈ R100 with sx and sy nonzero elements. The locations and signs of

the nonzero elements are random, but their magnitude is fixed to one.

2. Draw a random rotation Q ∈Od .

3. Solve the convex optimization program (10.1) with z0 = x \ +Qy \. Denote the

optimal pair x∗, y∗.

4. Declare success if ‖x∗− x \‖`∞ < 10−4.

C.3.1 Undersampled sparse + sparse

In the case of Figure 10.2, we set the ambient dimension d = 200. For each number

of measurements m ∈ {25,50,75,100} and sparsity levels sx , sy ∈ {1, . . . , d − 1, d}, we

repeat the following procedure 35 times:

1. If sx + sy > m, declare failure because the number of degrees of freedom in the

signal outstrips the number of measurements.

2. Otherwise, draw x \, y \ ∈ Rd as above.
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3. Draw a random rotation Q ∈Od and a Gaussian matrix G ∈ Rm×d .

4. Solve (10.7) with z0 := G(x \+Qy \) for an optimal pair (x∗, y∗).

5. Declare success if ‖x \− x∗‖`∞ < 10−5.

C.4 Sparse + sign

We now relate the details of the experiment shown in Figure 10.1. For each dimension

d = 100 and d = 300, we take 70 equally spaced sparsity values s ∈ [0, 0.35d], and we

repeat the following procedure 200 times:

1. Draw a sparse vector x \ with s nonzero elements that have magnitude one but

have random locations and signs.

2. Choose a sign vector y \ ∈ {±1}d uniformly at random.

3. Generate a random rotation Q ∈Od independently from all of the others.

4. Solve (10.13) for the optimal pair (x∗, y∗).

5. Declare success if ‖y∗− y \‖`∞ < 10−4.

C.4.1 Sparse + sparse + sign

The experiment of Figure 10.4 involves demixing three vectors. The dimension d = 100,

and for each s1, s2 ∈ {1, . . . , d − 1, d}, we repeat the following procedure 35 times:

1. Generate sparse vectors x \ and y \ with s1 and s2 nonzero elements, in the same

manner as described in Section C.3, and choose w ∈ {±1}d uniformly at random.

2. Draw two random rotations Q y and Qw and generate the observation z0 = x \+

Q y y \+Qw w \ and the side information α := ‖y‖`1
.

3. Solve (10.16) for the optimal tuple (x ∗1 , x ∗2 , x ∗3).

4. Declare success if




x ∗1 − x \1






`∞
< 10−5 and





x ∗2 − x \2






`∞
< 10−5.
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C.5 Sparse + low-rank

We now describe the experiment that leads to Figure 10.5. We fix the sidelength n = 35,

and for each rank r = 1, . . . , n− 1, n and sparsity level s = 1, n, . . . , n2 − n+ 1, n2, we

repeat the following procedure 25 times:

1. Draw a low-rank matrix X \ = QLΛQR ∈ Rn×n with rank r, where Λ is a diagonal

matrix that satisfies Λii = 1 for i = 1, . . . , r − 1, r and Λii = 0 otherwise. The left

and right operators QL and QR are random rotations in Od that determine the

singular vectors of X \.

2. Generate a sparse matrix Y \ with s nonzero entries with random signs at random

locations. The magnitude of the nonzero entries is equal to one.

3. Generate a random rotation Q for the matrix space Rd×d and set the observation

Z0 = X0+Q(Y0).

4. Solve (10.18) for the optimal points (X∗, Y∗).

5. Declare success if ‖X∗− X \‖`∞ < 10−4.

C.6 Linear inverse problems

This section describes the two linear inverse problems from Figures10.6 and 10.7. Both

figures appear in the joint work [ALMT13]. In the compressed sensing example (left

panel), the ambient dimension is fixed at d = 100. For each number of measurements

m = 1, . . . , d−2, d−1 and each s = 1, . . . , d−2, d−1, we repeat the following 50 times:

1. Draw a sparse vector x \ with s nonzero entries whose locations and signs are

random, but whose magnitudes are all equal to one.

2. Generate a standard Gaussian matrix G ∈ Rm×d independently of x \ and set

z0 = Gx0.

3. Solve (10.19) for the optimal point x∗.

4. Declare success if ‖x∗− x \‖< 10−5.
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Figure 10.6 shows the empirical probability that this method succeeds.

For the experiment of Figure 10.7, we fix the sidelength n = 30. For each rank

r = 1, . . . , 29,30 and each number of measurements m = 1,29, . . . , n2 − n+ 1, n2, we

repeat the following procedure 50 times:

1. If r ≥ d
p

me+ 1, we declare failure and move on to the next case.

2. Draw a rank-r matrix X \ = QLQ
t
R, where the matrices QL and QR are drawn from

the Haar measure on the Stiefel manifold on the set of n× r orthogonal matrices.

3. Draw a Gaussian measurement matrix G ∈ Rm×n2
and set z0 = G vec(X \).

4. Solve (10.21) for the optimal point X∗.

5. Declare success if ‖X∗− X \‖< 10−5.
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