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Abstract

The connections between convexity and submodularity are explored, for purposes of mini-

mizing and learning submodular set functions.

First, we develop a novel method for minimizing a particular class of submodular functions,

which can be expressed as a sum of concave functions composed with modular functions.

The basic algorithm uses an accelerated first order method applied to a smoothed version of

its convex extension. The smoothing algorithm is particularly novel as it allows us to treat

general concave potentials without needing to construct a piecewise linear approximation as

with graph-based techniques.

Second, we derive the general conditions under which it is possible to find a minimizer of

a submodular function via a convex problem. This provides a framework for developing sub-

modular minimization algorithms. The framework is then used to develop several algorithms

that can be run in a distributed fashion. This is particularly useful for applications where the

submodular objective function consists of a sum of many terms, each term dependent on a

small part of a large data set.

Lastly, we approach the problem of learning set functions from an unorthodox perspective—

sparse reconstruction. We demonstrate an explicit connection between the problem of

learning set functions from random evaluations and that of sparse signals. Based on the

observation that the Fourier transform for set functions satisfies exactly the conditions needed

for sparse reconstruction algorithms to work, we examine some different function classes

under which uniform reconstruction is possible.
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Chapter 1

Introduction

There is no doubt that convex optimization has proven to be an invaluable tool throughout all

of the applied sciences and engineering. Consider though: the formal definition of convexity

is a completely abstract concept, yet somehow has proven to be key in the development

of numerical algorithms for countless real-world applications. Given the tremendous track

record of such a powerful abstract idea, the mandate of the applied mathematics community

must be then to attempt to answer the question: “Can convexity be generalized? Can we

discover similar abstract concepts that hold the key for solving new, important problems?” And

while one search direction of this quest is to look into the realm of continuous functions for

quasiconvex or invex functions as generalizations, the other is to look for discrete analogues

of convexity. Indeed, many different such discrete generalizations have been discovered

[Mur03], yet none of them could accurately be described as a perfect mirror image of

convexity. But we would claim that there is one such concept from discrete optimization that

in recent years has proven to be the most similar to convexity, not only in terms of its salient

abstract features, but also its empirical problem solving utility: submodularity.

Submodularity is a property of set functions—meaning functions of some subset of a

finite set of objects. It has numerous equivalent definitions, but perhaps the easiest to parse

is the following inequality. It says that the change in value of the set function when adding a

particular element must be smaller when adding it to a larger1 set:

f (A∪ {e})− f (A)≥ f (B ∪ {e})− f (B), for all elements e and sets A, B such that e /∈ B ⊇ A.

One amazing property of submodularity is that there are powerful algorithms for both maxi-

1By “larger” we mean a superset, not just any set of greater cardinality!
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mization and minimization with provable guarantees. While both are important, we focus

on the latter, as it is in this domain that the connections with convexity are most pronounced.

The exact minimum of a submodular function can be found in strongly polynomial time

[IFF01]. This is similar to the fact that convex functions are hard to maximize, but easy to

minimize (assuming the convex sets which characterize the problem are not too esoteric).

This similarity is is not just a coincidence—the connection between submodularity and

convexity goes beyond mere analogy. In fact, submodular functions give rise to a convex

interpolant (the Lovász extension) that can be used to minimize the submodular function

itself. That is, submodular minimization can be cast as a special type of convex minimization.

From a dual perspective, every submodular function corresponds to a convex set, called

the base polytope, with a very unique and subtle property. The base polytope is defined by

exponentially many inequalities, and yet despite that, one can can find the set of maximizing

vertices with respect to any linear function without having to compute any inner products.

The resulting exposed face of the base polytope depends only on the order of the components

of the linear function.

Clearly, the connections between submodularity and convexity run deep, and have been

known for some time, dating back to at least 1981 with the work of Grötschel, Lovász, and

Schrijver [GLS81, Lov83]. Base polytopes (the union of the faces of a polymatroid) were

discovered by Edmonds even earlier [Edm70]. Our main goal in this thesis is to explore these

connections, but with insight gained from recent advances in convex analysis and sparse

reconstruction.

The specific problem that we address, for most of the thesis, is submodular minimization.

Despite the known existence of polynomial-time submodular minimization algorithms, the

best known exact techniques require a number of function evaluations on the order of n5

[IO09], where n is the number of variables in the problem. This renders these algorithms

impractical for many real-world problems. However, there are various special cases of

submodular functions which admit extremely efficient minimization algorithms. One of

our objectives in this work has been to bridge the gap between these two extremes of

submodular functions. As such, much of our work presented in this thesis has been aimed at

developing minimization algorithms for submodular functions which have enough structure

to be amenable to optimization, but are not so restrictive that they have little modeling

power. That is, we explore the trade-off between specificity and generality of algorithms



3

and submodular function classes, not unlike the trade-off of generalization in statistics and

learning. So in this way, the last major part of the thesis is related to what precedes it. Therein

we examine a learning problem, that of set functions. We consider submodular functions in

particular as a class of objects to learn, but what sets this work apart from classical research

on learning set functions is that we use the tools of convex analysis and sparse recovery.

1.1 Main Contributions

In Chapter 4, we develop a novel method for minimizing a particular class of submodular

functions, which can be expressed as a sum of concave functions composed with modular

functions. The basic algorithm uses an accelerated first order method applied to a smoothed

version of the Lovász extension. The smoothing algorithm is particularly novel as it allows us

to treat general concave potentials without needing to construct a piecewise linear approxi-

mation as with graph-based techniques. This is a fully expanded version of work presented

previously [SK10], which did not originally contain the fast method of smoothing.

In Chapter 5, our main technical contribution is elucidating the conditions under which

it is possible to find a minimizer of a submodular function via a convex problem. In general

one minimizes the Lovász extension together with a separable barrier function, and our

Theorem 5.4 gives the weakest conditions yet presented in the literature to guarantee that the

convex problem gives a minimizer of the submodular problem; we demonstrate why these

conditions are necessary, given some mild assumptions. This provides a general framework

for developing submodular minimization algorithms. The framework is then used to develop

several algorithms that can be run in a distributed fashion. This is particularly useful for

applications where the submodular objective function consists of a sum of many terms, each

term dependent on a small part of a large data set.

In Chapter 6 we approach the problem of learning set functions from an unorthodox

perspective—sparse reconstruction. We demonstrate an explicit connection between the

problem of learning set functions from random evaluations and that of sparse signals. Based

on the observation that the Fourier transform for set functions satisfies exactly the conditions

needed for sparse reconstruction algorithms to work, we examine some different function

classes under which uniform reconstruction is possible. In particular, given the values of the

cut function of a graph, we show the graph can be reconstructed. Furthermore, we show
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how the assumption of submodularity can be encoded as a constraint of a third order set

function and its utility in the reconstruction of a set function.

1.2 Outline of Thesis

• In Chapter 2 we review some concepts from convex analysis and introduce the notation

relevant to convex functions and sets.

• Chapter 3 is dedicated to the background material on submodular set functions. Sec-

tion 3.2 is devoted to the theory of general set functions, whereas in Section 3.3, we

review properties of submodular set functions, deriving several of the main relations to

convexity. In Section 3.4 we discuss submodular minimization.

• In Chapter 4 we describe our Smoothed Lovász Gradient algorithm for the minimization

of decomposable submodular functions. Section 4.4 is dedicated to the classification

and representation of decomposable functions. This was originally presented in [SK10].

• In Chapter 5, we develop consensus algorithms for distributed submodular minimiza-

tion. In Section 5.2, we detail the relationship between convex optimization problems

and the minimizers of a submodular function.

• In Chapter 6, we apply the tools of convex analysis and sparse approximation to the

problem of learning set functions. This was originally presented in [SK12].
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Chapter 2

Background of Convex Analysis

2.1 Basic Concepts

Throughout this thesis, we will use the convention of convex analysis [Roc70, HUL93, AT03]

that functions are defined everywhere in Rn, but functions can equal +∞. When we refer to

the domain of a function, we mean the set of points where it is finite valued:

dom( f ) := {x ∈ Rn | f (x)< +∞}

We define the indicator function of a set to be the function that has that set as its domain,

and equals zero there:

δC(x) :=











0 x ∈ C

+∞ x /∈ C
(2.1.1)

This means that there is no loss of generality in treating constrained optimization problems as

unconstrained and vice-versa. When we discuss solving minx∈C f (x), where C is some subset

of Rn, it is equivalent to solving the unconstrained problem minx f (x) +δC(x). (Clearly we

can treat an unconstrained problem as a constrained one with empty constraints.) Convex

sets are those which contain every line segment connecting any pair of points in the set.

The convex hull of a set is defined as the intersection of all convex sets containing it:

conv S :=
⋂

C⊆S,
C convex

C .

We can define convex functions in terms of convex sets. The epigraph of a func-

tion f on Rn is the set of points in Rn+1 that lie above its graph epi f = { (x, t) ∈ Rn+1 |

x ∈ dom f , f (x)≤ t }. Convex functions are defined as those with a convex epigraph. Con-
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vex functions are not necessarily differentiable, but instead have subgradients. For convex

f , we define the subdifferential to be the set valued map ∂ f : Rn→ 2R
n

which is the set of

subgradients: linear functionals which bound the function from below.

∂ f (x) := {λ ∈ Rn | f (y)≥ f (x) + 〈y− x,λ〉 for all y ∈ Rn }

Since it is an intersection of half-spaces, the subdifferential is always closed and convex, but

it might be empty, even if the function is convex and finite-valued at that point. At any point

where a convex function is differentiable, the gradient at that point is the unique subgradient:

∂ f (x) = {∇ f (x)}. Subdifferentials are linear and positive homogenous, where addition is in

the sense of a Minkowski sum:

∂( f1 +α f2) = ∂ f1 +α∂ f2, α≥ 0

A key tool in analyzing the dual of a convex program is the convex conjugate, also known as

the Legendre-Fenchel transform of a function. It is defined as:

f ∗(λ) := sup
x∈Rn
〈x,λ〉 − f (x)

This is always convex even if f is not. It is immediate from the definition that:

f (x) + f ∗(λ)≥ 〈x,λ〉 for all x,λ ∈ Rn (2.1.2)

Furthermore, note that if λ is a subgradient of f at x, then 〈y,λ〉 − f (y)≥ 〈x,λ〉 − f (x) for

all y ∈ Rn. So Equation 2.1.2 holds with equality if and only if λ ∈ ∂ f (x).

We denote the set of convex, proper, lower semi-continuous functions as Conv. These

functions obey the useful property that they are equal to their biconjugate.

f ∈ Conv⇔ f ∗∗ = f (2.1.3)

So, for f ∈ Conv, we can make a stronger statement about when Equation 2.1.2 holds with

equality:

f (x) + f ∗(λ) = 〈x,λ〉 ⇔ x ∈ ∂ f ∗(λ) ⇔ λ ∈ ∂ f (x)
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One interpretation of Equation 2.1.3 is that all f ∈ Conv admit the following sort of self-

description:

f (x) = sup
y,λ

f (y) + 〈x− y,λ〉

s.t. λ ∈ ∂ f (y)

In Section 3.3, we show that submodular functions enjoy an analogous property.

The fundamental result for expressing the conjugate of a sum of functions is Fenchel’s

theorem.

Theorem 2.1 (Fenchel Duality). Suppose the functions fi ∈ Conv satisfy
⋂

i relint dom fi 6= ;.

min
x∈Rn

∑

i
fi(x) = max

λi∈Rn
−
∑

i
f ∗(λi)

s.t.
∑

i
λi = 0

(2.1.4)

Furthermore, the arguments (x∗,λ∗i ) are optimal for the above problems if and only if:

λ∗i ∈ ∂ f (x∗), x∗ ∈ ∂ f ∗i (λ
∗
i ). (2.1.5)

Relation with Lagrangian Duality. We reformulate as a constrained problem, form the

Lagrangian of the constrained problem, and then minimize the Lagrangian to obtain a bound

valid for all λi ∈ Rn:

min
x∈Rn

∑

i

fi(x)≥ min
x,xi∈Rn

∑

i

fi(xi) + 〈x− xi,λi〉=











−
∑

i f ∗i (λi) if
∑

i λi = 0

−∞ if
∑

i λi 6= 0

Note that by assumption, the dual problem is feasible, so the bound involves finite numbers.

Likewise, for all x ∈ Rn, we have:

max
∑

λi=0
−
∑

i

f ∗(λi)≤ max
λi∈Rn

∑

i

〈x,λi〉 −
∑

i

f ∗(λi) =
∑

i

f ∗∗i (x)

Since f ∗∗i = fi, this means that the theorem gives conditions under which strong duality

holds, and a mechanical formula for deriving the dual program.

Another way to state Fenchel’s theorem is through infimal convolutions. We denote the
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infimal convolution of functions with the symbol � and define it by the following formula:

f � g(x) := inf
y∈Rn

f (x− y) + g(y)

If f and g satisfy conditions sufficient for Fenchel’s duality theorem to hold, then infimal

convolution is essentially the operation which is dual to addition under the Legendre-Fenchel

transform: ( f � g)∗ = f ∗ + g∗ and ( f + g)∗ = f ∗ � g∗.

2.2 Proximal Operators

A key step in many convex minimization algorithms is solving for the infimal convolution

of an objective function with a quadratic function at the current iterate. For any function

f ∈ Conv, we define its proximal operator or ‘prox’ as:

prox f (x) := arg min
y∈Rn

f (y) +
1

2
‖x− y‖2 (2.2.1)

For a thorough explanation of the proximal operator, see [CP11]. We review a few important

ideas and identities.

By strong convexity of the quadratic term, the minimum is a unique point so the prox

is well-defined. (In its most general form, one can use any Bregman distance [Brè67] in

place of the quadratic, but the present definition is sufficient for our purposes.) The point

p= prox f (x) is uniquely determined by the optimality conditions given by subgradients:

p ∈ x− ∂ f (p) (2.2.2)

One way to interpret this equation is that the proximal operator performs an implicit gradient

descent step. That is, a basic gradient descent method for convex minimization might use

an explicit update rule such as: xk+1 = xk − ε∇ f (xk), where f is a convex differentiable

objective function, xk is the iterate at step k, and ε is some step size. Suppose instead we

use an implicit update rule: xk+1 = xk − ε∇ f (xk+1). This update rule is actually a proximal

operator—by Equation 2.2.2, it is equivalent to xk+1 = proxε f (x
k). So in this sense, the prox

is a form of implicit numerical integration of the dynamical system ẋ= −∇ f , but it can be

applied to nondifferentiable convex functions.



9

From another point of view, the proximal operator is a generalization of projection onto

a convex set. When the function f in Equation 2.2.1 is the indicator function of a closed

convex set (as defined in Equation 2.1.1), then the prox is exactly the projection operator,

which we denote with the letter Π.

ΠC(x) := arg min
y∈C

‖x− y‖

That is, proxδC
(x) = ΠC(x).

If we apply Fenchel’s theorem to the proximal problem, we get an important identity

relating the prox of a function with the prox of its conjugate. By Equation 2.1.4, we have for

all f ∈ Conv:

min
y∈Rn

1

2
‖x− y‖2 + f (y) =max

λ∈Rn
−

1

2
‖λx‖2 − 〈x,λ〉 − f ∗(−λ)

Furthermore, by Equation 2.1.5, the optimal arguments satisfy λ∗ = y∗ − x, y∗ ∈ ∂ f ∗(−λ∗),

−λ∗ ∈ ∂ f (y∗), so by Equation 2.2.2, we have y∗ = prox f (x) and −λ∗ = prox f ∗(x). We

conclude that:

prox f (x) + prox f ∗(x) = x (2.2.3)

The practical implication of this, from a computational standpoint, is that computing the

prox of a function is of the same complexity as computing the prox of its conjugate function.

In particular, consider convex indicator functions and their conjugates, which we denote

with the letter σ. These are called the support functions of a set:

σC(x) := sup
λ∈C
〈x,λ〉

We assume C is a closed convex set, so δ∗∗C = σ
∗
C = δC . By Equation 2.2.3, we can compute

the prox for σC by projecting onto C .

proxσC
(x) = x−ΠC(x)

It is clear by definition that support functions are positive homogenous: βσC(x) = σC(βx)

for β > 0. This means that the proximal operators of σC obey a scaling property that other

convex functions do not: proxβσC
(x) = β proxσC

(x/β) = x− βΠC(x/β).
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An important special case of a support function is when C is symmetric about the origin

and has nonempty interior; if this is true, then σC is a norm and C is the unit ball of the

corresponding dual norm. For example, in the context of sparse approximation, one often

minimizes the `1 norm to promote sparsity of a vector. The proximal step thus involves

subtracting off a projection onto the `∞ ball, which is equivalent to soft thresholding the

components of a vector.

Another interesting case is when the support function of a convex set is itself an indicator

function of another convex set. It is not hard to see that this is true if and only if the sets are

cones. A set K is a cone if it contains all positive multiples of itself: βK ⊆ K for any β > 0. The

corresponding polar cone K◦ is defined as the set of the dual vectors which have nonpositive

inner product for all points in the cone: K◦ := {λ ∈ Rn | 〈x,λ〉 ≤ 0 for all x ∈ K }. If K is

also closed and convex, then δK ∈ Conv, and we have δ∗K = σK = δK◦ . So by Equation 2.2.3,

we can rederive a basic result in conic analysis—for any closed convex cone, every point in

Rn is uniquely decomposed as a sum of a point in the cone and a point in the polar cone:

x= ΠK(x) +ΠK◦(x).

Prox of a Sum. In general, there is no way to combine and simplify expressions for proximal

operators in closed form. However, we can get an implicit characterization of the proximal

operator of a sum of functions.

Proposition 2.2. Suppose g is a positive combination of convex functions. Specifically, let

g :=
∑

iωi fi where
∑

iωi = Ω, ωi > 0, and fi ∈ Conv. Then x = proxg(y) if and only if there

are dual vectors λi such that:
∑

i

ωiλi = 0 (2.2.4)

x= proxΩ fi
(y+λi) for all i (2.2.5)

Proof. To show the forward direction, note that if x= proxg(y), optimality implies:

0 ∈ x− y+ ∂g(x) =
1

Ω

∑

i

ωi

�

x− y+Ω∂ fi(x)
�

By linearity of subgradients, there must exist λi satisfying Equation 2.2.4 such that

λi ∈ x− y+Ω∂ fi(x) for all i
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By Equation 2.2.2, this is exactly the optimality condition needed to imply x = proxΩ fi
(y+λi).

To show the backward direction, note that if x and λi satisfy Equation 2.2.4 and Equa-

tion 2.2.5, then

x= arg min
z∈Rn

1

2Ω
‖z− (y+λi)‖2 + fi(z) for all i (2.2.6)

= arg min
z∈Rn

∑

i

ωi

� 1

2Ω
‖z− (y+λi)‖2 + fi(z)

�

= arg min
z∈Rn

1

2
‖z− y‖2 + g(z) = proxg(y)

Hence, x minimizes each individual term of the sum on the right hand side of Equation 2.2.6,

so therefore x must minimize the sum of those terms. Within the sum, the dual variables λi

cancel each other out.
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Chapter 3

Set Functions and Submodularity

3.1 Overview

In Section 3.2, we review some basic concepts from the study of general set functions (not

necessarily submodular). We also introduce notation related to set functions that we use

throughout the thesis. In subsection 3.2.1, we define the set function derivative in a way

that emphasizes the symmetric shift operator. In subsection 3.2.2, we define and discuss

monotonic functions of general order; this is the natural generalization of submodular to

higher order differences. In subsection 3.2.3, we define the Fourier transform for set functions,

a key tool in learning theory of set functions. In subsection 3.2.4, we define other linear

tranforms of variables and show the common connection between them in terms of tensor

products.

Finally in Section 3.3, we focus on submodularity in detail. As this material may not

be nearly as well-known outside of specialists in combinatorial optimization, we attempt

to be more thorough by proving some of the key relationships between submodularity and

convexity.

In Section 3.4, we specifically review the problem of submodular minimization, which is

the primary subject of the Chapter 4 and Chapter 5. We derive equivalent of a duality gap,

and then review some of the existing algorithms.

3.2 General Set Functions

While convex analysis provides much of our notation and terminology, our main object of

study in this work are functions over the Boolean cube Zn
2 = {0,1}n. The term Boolean
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function refers to functions on the cube which take on Boolean values; real-valued functions

of Boolean vectors are a generalization called pseudoboolean functions. However, since the

power set of a finite set is equivalent to the Boolean cube, in other technical literature the

term set function is used. We will use the terminology and notation of sets and set functions,

which is more common when the functions are submodular. However, it will be useful to use

double brackets [[ ]] to denote the Boolean value of some statement:

[[statement]] :=











1 if the statement is true

0 if the statement is false

Throughout this thesis, we work in some context where there is some finite ground set E of

cardinality n. We let H = R2E
be the space of real-valued functions on subsets of E. That

is, if f ∈ H then it is a function f : 2E → R, where 2E is the power set of E. We use the

upper-case letters for subsets of E, and lowercase letters for elements of E. Also, we drop

brackets for small sets: denoting b or bc rather than {b} or {b, c} when the context is clear.

We occasionally use + to mean union, as in A+ b+ c = A∪ {b} ∪ {c}, but only when the sets

are disjoint. When we say that a collection of sets is disjoint, we mean they are pairwise

disjoint.

We treat the elements of E as the indices of vectors in Rn. Then for any A∈ 2E , we define

1A ∈ Rn to be the indicator vector of that set.

1A[e] := [[e ∈ A]] =











1 if e ∈ A

0 if e ∈ E \ A

For example, {1e}e∈E is the set of standard unit vectors. Clearly 2E is isomorphic to the

commutative group Zn
2 under the mapping of indicator vectors: 1A+1B ≡ 1A	B mod 2. That

is, addition over the group 2E is the symmetric set difference (	), defined by:

A	 B := (A\ B)∪ (B \ A)

There are some straightforward consequences of this isomorphism. For example, since ; acts

as the identity element, and every element of the group is of order two, A	 B = ; if and only
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if A= B. Furthermore, the group of characters of Zn
2 is used to define the Fourier transform

for set functions, as shown in subsection 3.2.3.

3.2.1 Set Function Derivatives

We now define linear operators on set functions in a way that parallels conventions in, for

example, signal processing; this is a slightly different approach than that usually seen in

the literature on set functions. We define the (symmetric) shift operator SB : H→H as the

operator which applies a symmetric difference to the argument of a set function:

SB f (A) := f (A	 B)

If we shift with respect to a singleton we write Sb = S{b}. Clearly these operators are linear

and are isomorphic to the group Zn
2, meaning that SBSC = SB	C . Hence, the operators

commute since Zn
2 is commutative. We define the discrete derivative with respect to a single

element as the difference between a shift operator of the element and the identity.

∆b := Sb − 1

Note that the derivative operator has the same function space H as its domain and range. A

common definition of discrete derivative uses union and intersection rather than symmetric

difference, but the advantage of using the symmetric difference is that it is diagonalized by

the Fourier transform (i.e., it is a convolution), but the operator defined in terms of unions is

not. In any case, the interpretation of the derivative is straightforward; if we evaluate ∆b f

on sets that do not contain the element b, we get the change in value of the function due to

adding the element:

∆b f (A) = f (A	 b)− f (A)

So if f is interpreted as a valuation function, then ∆b f (A) is the marginal value of item b

relative to the set A. If we evaluate on a set that already contains b, then the derivative is

the change in value from removing the set, which is −1 times the marginal value.

We define the derivative operator with respect to a set B as the product of derivative



15

operators with respect to each element in the set:

∆B :=
∏

b∈B

∆b =
∏

b∈B

(Sb − 1) (3.2.1)

Because the shift operators commute, this equation does not depend on the ordering of the

product, so the above expression for derivative is well-defined. As is the standard convention

for empty products, we define ∆; to be the identity. It is obvious from our definition that

derivatives with respect to disjoint sets combine to form the derivative with respect to their

union. That is, assuming B, C disjoint,1 we have:

∆B∆C =
∏

b∈B

∆b

∏

c∈C

∆c =
∏

e∈B∪C

∆e =∆B∪C

If we expand out the terms in the product in Equation 3.2.1, we can get an equivalent

definition of the derivative as a sum of shift operators:

∆B =
∑

C∈2E

[[C ⊆ B]] (−1)|B|+|C |SC

For example, the derivative with respect to a pair of elements ∆bc =∆{b,c} equals:

∆bc f (A) = f (A	 bc)− f (A	 b)− f (A	 c) + f (A)

This also called the second order difference operator. Note that there is also a product rule

for discrete derivatives:

Lemma 3.1 (Product Rule for Set Function Derivatives).

∆B( f g) =
∑

C∈2E

[[C ⊆ B]] (∆C f )(SC∆B\C g) (3.2.2)

Proof. When |B|= 1, this is true by the following identity:

∆b( f g) = (Sb f − f )Sb g + f (Sb g − g)

= (∆b f )(Sb∆;g) + (∆; f )(S;∆b g)

1 Since (∆b)2 = −2∆b, the general formula is ∆B∆C = (−2)|B∩C |∆B∪C .
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If |B|> 1, iterating over all elements b ∈ B results in Equation 3.2.2.

3.2.2 Monotone and Low Order Functions

With our definition of derivative, we can define the cones of order q monotone functions,

which we denote H+q (resp. H−q ). It is the subset of functions with all order q derivatives

nonnegative (resp. nonpositive). With a slight overload of notation, we will use the symbol

± rather than state all equations for H+q and H−q separately.

H±q := { f ∈H | ±∆B f (A)≥ 0 for all A, B ∈ 2E with A∩ B = ;, |B|= q }

The first few of these cones have more common names, and simple alternate characterizations:

• H±0 nonnegative/nonpositive: ± f (A)≥ 0

• H±1 nondecreasing/nonincreasing: ±( f (A∪ B)− f (A))≥ 0

• H±2 supermodular/submodular: ±( f (A∪ B ∪ C)− f (A∪ B)− f (A∪ C) + f (A))≥ 0

Note that the characterizations we list involve adding and removing entire sets rather than just

single elements. This fact generalizes nicely to higher order monotone functions. Informally,

the following proposition states that for a q monotone function, we can replace the singleton

sets that occur in the definition of the discrete derivative (Equation 3.2.1) with general

disjoint sets, and still get a valid inequality.

Proposition 3.2. The function f is in H±q if and only if for all collections of q+ 1 disjoints sets

A, B1, . . . Bq, we have:

±
q
∏

i=1

�

SBi
− 1

�

f (A)≥ 0 (3.2.3)

Proof. Clearly if C is an arbitrary subset of size q, disjoint from A, we can choose each of the

sets Bi to be singletons such that C = B1 + . . .+ Bq, which implies the operator product in

Equation 3.2.3 is the set derivative with respect to C . Hence f ∈H±q .

Conversely, if f ∈H±q , we wish to prove that Equation 3.2.3 holds for arbitrary choices of

disjoint sets. Fix the disjoint sets, and for each set Bi, choose an ordering of its elements,

resulting in a chain of strict subsets. That is, let B(i, 0) = ; and B(i, j−1)+ c(i, j) := B(i, j) ⊆
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B(i) for j = 1 . . . |Bi|. Then each term in the product can be expressed as a telescoping sum:

SBi
− 1=

|Bi |
∑

j=1

SB(i, j) − SB(i, j−1) =
|Bi |
∑

j=1

SB(i, j−1)∆c(i, j)

By substituting this equivalence into the each term in the the product from Equation 3.2.3,

and then expanding the sum out to |B1| . . . |Bq| terms, we get:

±
q
∏

i=1

�

SBi
− 1

�

f (A) = ±
q
∏

i=1

|Bi |
∑

j=1

SB(i, j−1)∆c(i, j) f (A) =
∑

j1,..., jq

±SB′( j1,... jq)∆C ′( j1,... jq) f (A),

B′( j1, . . . jq) := ∪q
i=1B(i, ji − 1), C ′( j1, . . . jq) := {c(i, ji)}

q
i=1.

Note that for each term in the series, the argument A, shifting sets B′ and derivative sets C ′

are disjoint. Also each set C ′ is of size q. Therefore, the expression from Equation 3.2.3 is

equivalent to a sum of order q derivatives. Since f ∈H±q implies that order q derivatives are

uniformly nonnegative (resp. nonpositive), the entire sum is nonnegative.

This result is included in [FH05] but given as a symmetric statement over collections of k

general sets, not necessarily disjoint. Given general sets C1, . . . , Cq, this defines q+ 1 disjoint

sets as follows: A=
⋂q

j=1 C j, Bi =
⋂

j 6=i C j \ Ci. Then by applying the above Proposition to

the disjoint sets, we get the result in the form stated in [FH05]:

±(−1)q
�

f
�

∩q
j=1C j

�

+
∑

J⊆{1,...,q}
J 6=;

(−1)|J | f
�

∪i∈J ∩ j 6=i C j

�

�

≥ 0.

Products of Monotonic Functions. Due to the product rule of Equation 3.2.2, we can get

simple rules for classifying products of functions if they obey certain patterns of monotonicities.

To express the following lemma, we will need variables to be signs: {+,−}. For these purposes

they are equivalent to the unit numbers {+1,−1}.

Lemma 3.3. Suppose f , g ∈H are monotonic for every order up to order q:

f ∈Hs0
0 ∩ . . .∩Hsq

q , g ∈Ht0
0 ∩ . . .∩Htq

q .

If the signs of the monotonicities sk, tk ∈ {+,−} satisfy γ = s0 tq = s1 tq−1 = . . . = sq t0, then
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f g ∈Hγq.

Proof. Let B be any set of size q. We use the product rule (Equation 3.2.2) to take the

derivative of f g with respect to B. For simplicity we do not write the argument A, but assume

it is disjoint from B. Within the resulting sum, we use the factorization γ= sk tq−k:

γ∆B( f g) =
∑

C∈2E

[[C ⊆ B]] γ(∆C f )(SC∆B\C g)

=
q
∑

k=0

∑

C∈2E

[[C ⊆ B, |C |= k]] (sk∆C f )(tq−kSC∆B\C g)

For |C | = k, we have sk∆C f ≥ 0 since f ∈ Hsk
0 and tq−kSC∆B\C g ≥ 0 since f ∈ Htq−k

q−k and

|B \C | = q− k. So each term in the sum multiplies to a nonnegative sign. Thus γ∆B( f g)≥ 0

for arbitrary B of size q, so indeed f g ∈Hγq.

For example, if f is nonnegative, nondecreasing, submodular (H+0 ∩H
+
1 ∩H

−
2 ), and g is

nonnegative nonincreasing submodular (H+0 ∩H
−
1 ∩H

−
2 ), then the product f g is nonnegative

submodular H+0 ∩H
−
2 , but neither increasing nor decreasing in general. Another example

of Lemma 3.3 is that the cone of nonnegative, nondecreasing, supermodular functions

(H+0 ∩H
+
1 ∩H

+
2 ) is closed under multiplication.

We define q-th order functions, as functions with all derivatives beyond order q equal to

zero.

Hq := { f ∈H |∆B f (A) = 0 for all A, B ∈ 2E with |B|> q }

It is easy to see from the definition that: Hq =H+q+1∩H
−
q+1 and Hq ⊂Hq+1. The set of zeroth

order functions are constant functions. In the context of set functions, first order functions

are known as modular, and admit the description: f (A) = f (;) +
∑

a∈A( f (a)− f (;)).

3.2.3 Fourier Analysis of Set Functions

In this section, we briefly introduce the Fourier transform for set functions, but it is primarily

expanded upon in Chapter 6. The characters of the group 2E can be written as ψB(A) :=

(−1)|A∩B| since ψB(A1)ψB(A2) = (−1)|A1∩B|(−1)|A2∩B| = (−1)|(A1	A2)∩B| =ψB(A1	A2). These

oscillate between 1 and −1 when elements of particular set B are added or removed from the

argument. Thus, we define the Fourier tranform of a set function by taking the appropriately



19

normalized inner product with such functions:

bf (B) :=
1

2|E|

∑

A∈2E

f (A)ψB(A)

This is an orthogonal transform, so though the inverse formula has a different normalization

constant, it is otherwise the same: f (A) =
∑

B∈2E bf (B)ψB(A). One way to interpret the

Fourier coefficient for a set is that it is the average of all the derivatives with respect to that

set (modulo a factor of −1 for odd sets).

bf (B) =
(−1)|B|

2|E\B|

∑

A∈2E

[[A⊆ E \ B]]∆B f (A) (3.2.4)

Next, we define convolutions of set functions:

f ∗ g(A) :=
∑

B∈2E

f (A	 B)g(B)

This satisfies the standard properties of a convolution: Commutivity f ∗g = g∗ f , Associativity,

( f ∗ g) ∗ h= f ∗ (g ∗ h), Linearity (α f + β g) ∗ h= α( f ∗ h) + β(g ∗ h). Also, convolution in

the time domain is multiplication in the Fourier Domain, and vice-versa.

Öf ∗ g(B) = 2n
bf (B)bg(B), Óf g(B) = (bf ∗ bg)(B).

The advantage of our definition for set function derivatives is that it is just a convolution.

That is, ∆C f = f ∗ g where g(A) = [[A⊆ C]] (−1)|A|+|C |, and 2n
bg(B) = [[C ⊆ B]] (−2)|C |. So a

derivative can be treated as a sort of high-pass filter. After taking the derivative with respect to

C , all coefficients which are not subsets of C are zeroed out: Õ∆C f (B) = [[C ⊆ B]] (−2)|C | bf (B).

This gives us a formula to express a derivative as a sum of Fourier coefficents:

∆C f (A) = (−2)|C |
∑

B∈2E

[[C ⊆ B]] bf (B)ψB(A) (3.2.5)

Another important linear operator that can be expressed as a convolution is the projection of

a function onto the space of low order functions. By Equation 3.2.4, the subspace Hq can be

characterized as those functions with Fourier transform supported only on sets of size up to
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q. That is:

Hq = { f ∈H | bf (B) = 0 for all |B|> q }

The best q-th order approximation for a set function in an `2 sense is given by setting all higher

order Fourier coefficients to zero: g = arg ming ′∈Hq
‖ f − g ′‖ ⇔ bg(B) = [[|B| ≤ q]] bf (B).

This is immediate from the fact that the Fourier transform is an isometry. See [HH92] and

[GMR00] for the formulas of this operation in terms of different function bases.

In elementary signal processing, the domains analyzed are the continuous/discrete

circle/line (Zn, [0,1], Z, or R). Exactly as there, (periodic) shifting, derivatives, and low

pass filtering can all be expressed as convolutions, so unsurprisingly these operations all

commute with each other.

3.2.4 Tensor Product Bases of Set Functions

In addition to the standard basis and the Fourier transform, there are several other useful

bases for representing set functions. For a thorough discussion, see [GMR00], but let us

review two of the more important ones. The feature common to all the bases that we present

is that they can be expressed easily through tensor products.

Möbius Transform and Boolean Polynomials. One way to represent set functions is as a

multilinear (a.k.a. polynomial) function over the Boolean cube p(x) = p0+ p1 x[1]+ p2 x[2]+

. . . p1...n x[1] . . . x[n]. This gives a simple way to interpolate a set function continuously

over the unit cube by letting the variable x take on values [0,1]n ⊂ Rn. In this case, the

interpolation is multilinear by convention since Booleans satisfy x2 = x , and so there is no

reason to include nonlinear terms such as x[i]2.

To calculate the coeffcient of a polynomial that represents a set function, we evaluate the

set function derivative at the empty set. A set function derivative is exactly the stencil of a

mixed derivative of an n dimensional function; an order q discrete derivative is the forward

difference operator tensored in some set of q dimensions. Since the Boolean polynomial

is multilinear, in general, set function derivatives equal the continuous partial derivatives

exactly (provided the argument set and derivative set are disjoint). For example: suppose

E = {1, 2, 3}, and the set function f is related to the Boolean polynomial p by f (A) = p(1A).

Then the set function derivative with respect to the set {1, 2} evaluated at the set {3} equals the
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mixed partial derivative of p at the corresponding corner: ∆12 f (3) = D12p(13) = p12 + p123.

The transformation from set function values to polynomial coefficients is sometimes

called the Möbius transform. We can express this not only as a set derivative, but also we

can use Equation 3.2.5 to equate it with a sum of Fourier coefficients.

g(B) =∆B f (;) = (−2)|B|
∑

C

[[B ⊆ C]] bf (C)

f (A) =
∑

B

[[B ⊆ A]] g(B)

Disjuction. Functions of the form min(1, |A∩ B|) are equivalent to a disjunction (Boolean

OR) operation. A sum of such functions is equivalent to a set cover function, as described in

subsection 4.4.2. These functions do not quite form a basis of H, since they all have f (;) = 0.

But by including a constant offset, we get a basis for H. The corresponding analysis and

synthesis formulas are:

h(B) = −∆B f (E) = −2|B|∆E\B bf (E)

f (A) = f (;) +
∑

B

min(1, |A∩ B|)h(B)

There is an interesting consequence to the formula relating the set cover coefficients to Fourier

coefficients. The original function f is set cover representable (meaning it can be expressed

as a nonnegative combination of such functions, so that h(B)≥ 0 for all nonempty B) if and

only if the Fourier coefficients bf (B) for nonempty sets are nonpositive and nondecreasing.

Tensor Product Notation. The above formulas may seem a bit mysterious and hard to

check for correctness. However, the calculations are fairly simple if you consider set functions

as vectors in R2n
, since all of the bases we have described can be expressed in terms of n-fold

tensor products of 2× 2 matrices. Let us denote (⊗n) for the operation of tensoring a matrix

with itself n times. Then the main formulas of this section can be written as:

Fourier: bf =

�

1/2 1/2
1/2 −1/2

�⊗n

f , f =

�

1 1
1 −1

�⊗n
bf .

Möbius: g =

�

1 0
−1 1

�⊗n

f , f =

�

1 0
1 1

�⊗n

g.
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Disjunction: h= −
�

0 1
1 −1

�⊗n

f , f = f (;) +

�

�

1 1
1 1

�⊗n

−
�

1 1
1 0

�⊗n�

h.

Therefore, it is straightforward to derive the basic formulas relating different tensor product

bases by simply inverting and/or multiplying 2× 2 matrices.

3.3 Properties of Submodular Set Functions

There are many equivalent characterizations of submodularity. As we have already introduced

the notion of set derivative, we give a few which are directly related to set derivatives:

1. f (A+ b+ c)− f (A+ b)− f (A+ c) + f (A)≤ 0, for all b, c ∈ E, A⊆ E − b− c.

2. f (A∪ B ∪ C)− f (A∪ B)− f (A∪ C) + f (A)≤ 0, for all A, B, C disjoint.

3. f (A∩ B) + f (A∪ B)≤ f (A) + f (B) for all A, B ∈ 2E .

4. f (A+ c)− f (A)≥ f (B + c)− f (B) for all c ∈ E, A⊆ B ⊆ E − c.

There are
�n

2

�

2n−2 different inequalities to check in item 1. This is the minimum number of

inequalities needed to check submodularity in general. That is, no subset of these inequalities

implies any other subset of them. Theorem 3.2 gives the characterizations of items 2. The

interpretation of item 4 is that first order differences are decreasing functions. It is an easy

consequence of item 3. To test submodularity, it is generally easiest to use item 1. Besides

the fact that it has fewer inequalities to check, each inequality involves the change in value

when adding only 2 elements to a set.

These properties seem fairly similar in that they involve inequalities of the set derivatives.

However, there are several other characterizations, some of which appear to have nothing to

do with second order differences being negative. For example, a set function f is submodular

if and only if for all c ∈ Rn it holds that A, B ∈ Qc ⇒ A∩ B, A∪ B ∈ Qc, where Qc :=

arg minA f (A) + 〈1A,c〉. In words, this means that the collection of minimizers of f plus any

modular function is a lattice. See [Fuj05] for a proof. Another example of a rather striking

necessary and sufficient condition for submodularity is given in Proposition 3.4.

Maximization While the exact maximization of general submodular functions is a hard

problem, maximizing a nonnegative nondecreasing submodular function under a cardinality
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constraint can be done to within a constant factor of the optimum. That is, if one wishes to

find a maximal set of size k, then a simple greedy algorithm2 will give a set of cardinality k

with function value no less than 1− 1/e of the maximal set of cardinality k [NWF78]. This

useful property of approximate maximization is is a major driving force behind the interest

in submodular functions, as it has many practical applications and useful generalizations.

However, aside from our experiments showcased in Figure 6.1, we otherwise focus on the

problem of submodular minimization.

3.3.1 Convex Analysis of Submodularity

We give an overview of how convex analysis can be used to analyze submodular functions.

While this presentation is original, the material is standard [Sch03, Fuj05, Bac11].

We start by defining some important polyhedra used in the analysis of submodular

functions. We can define the subdifferential of a set function in a form analogous to continous

functions, except modular set functions play the role of linear functionals. Any vector λ ∈ Rn

defines a modular function on E, which we can denote in different ways, depending on what

is convenient for the context:

2E 3 A 7→ λ(A) := 〈1A,λ〉=
∑

a∈A

λ[a]

Then the subdifferential of a set function at a set is defined as a modular function which

lower bounds the change in value of the function relative to that set. That is, λ is subgradient

for f at the set A, if for all sets B the difference f (B)− f (A) is bounded below by difference

λ(B)−λ(A).

∂ f (A) := {λ ∈ Rn | f (B)≥ f (A) + 〈1B − 1A,λ〉 for all B ∈ 2E }

We also refer to this as the discrete subdifferential. Unlike a continuous subdifferential, which

may be empty if a function is nonconvex, the discrete subdifferential is always nonempty. In

fact, the subdifferential for the set A is unbounded along every ray in the direction 1A−1E\A.

This is true for any set function. This is because ∂ f (A) is a polyhedron defined by the normal

directions 1B − 1A where B ∈ 2E \ {A}, and for any such direction 〈1B − 1A,1A− 1E\A〉 =
2Add elements one at a time by choosing whichever element increases the function the most.
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−|A	 B| < 0. So moving far enough in the direction 1A − 1E\A will always result in a

subgradient. Precisely, for any λ ∈ Rn, we have:

λ+ t(1A− 1E\A) ∈ ∂ f (A) ⇔ t ≥max
B∈2E

B 6=A

f (A)− f (B) +λ(B)−λ(A)
|A	 B|

In what follows, we will assume that the set function f is ‘normalized’, it has f (;) = 0,

possibly by subtracting an offset. The submodular polyhedron Pf and base polytope B f are

thus defined by:

Pf := {λ ∈ Rn | 〈1A,λ〉 ≤ f (A) for all A∈ 2E } (3.3.1)

B f := {λ ∈ Rn | 〈1,λ〉= f (E), and 〈1A,λ〉 ≤ f (A) for all A∈ 2E } (3.3.2)

It is easy to see that that Pf = ∂ f (;). Furthermore,

Pf ∩ ∂ f (A) = Pf ∩ {λ ∈ Rn | λ(A) = f (A) }

In particular, B f = ∂ f (;)∩ ∂ f (E). Note that all vectors in the set B f must satisfy λ[a]≤ f (a)

and 〈1,λ〉= f (E), and thus λ[b]≥ f (E)−
∑

a∈E−b f (a). So the set B f is bounded and we

are justified in referring to it as a polytope. The elements of the base polytope are called

the bases of the function. Note when f is the rank function of a matroid (cf. Appendix A),

each extreme point of the base polytope corresponds to the indicator vector of a base (a.k.a.

basis) for the matroid.

The base polytope essentially contains all the subgradients needed to fully characterize a

submodular function. While it is defined by exponentially many constraints, there is a simple

formula to optimize a linear function over it if we have oracle access to the function, if and

only if the function is submodular. The key insight due to Edmonds [Edm70] is that solving

maxλ∈B f
〈x,λ〉 depends only on the ordering of the components of x.

We say that a permutation π ∈ Sn (Sn is the nth symmetric group, the set of all bijections

from E to itself) is consistent with a vector x, if the components of x are nonincreasing with

respect to that permutation. Let Kπ be the cone of all vectors consistent with π, and K◦π be
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its polar cone.

Kπ := {x ∈ Rn | x[π1]≥ x[π2] . . .≥ x[πn] } (3.3.3)

K◦π := {λ ∈ Rn | 〈1,λ〉= 0, and
∑k

i=1λ[πi]≤ 0 for k = 1 . . . n } (3.3.4)

Note that these cones are proper with respect to the subspace of vectors orthogonal to 1.

Given a permutation π, consider a sequence of sets starting with the empty set, adding

one element at a time in the order specified by π. Then for a set function f , define νπ, f ∈ Rn

to be the vector with coordinates equal to the changes in value of f over this sequence of

sets. For this, it will be useful to define $k to be the subset of E consisting of the first k

elements in π.

νπ, f [πk] :=∆πk
f ($k−1) = f ($k)− f ($k−1) (3.3.5)

$k := {π1, . . . ,πk} (3.3.6)

The points νπ, f are called the extreme bases of the function f ; we will justify the name by

proving that they are indeed the vertices of the base polytope. First, we need to prove that

they are even in the base polytope.

Proposition 3.4. The set function f is submodular if and only if νπ, f ∈ B f for all π ∈ Sn.

Proof. Suppose f is not submodular. Then f (A+ b + c) + f (A) > f (A+ b) + f (A+ c) for

some b, c ∈ E, A⊆ E − b− c. Let π be a permutation with $k = A, A+ b, A+ b+ c for k =

|A|, |A|+1, |A|+2 respectively. This means 〈1A,νπ, f 〉 = f (A), νπ, f [c] = f (A+ b+ c)− f (A+ b)

and thus:

〈1A+c,νπ, f 〉= 〈1A,νπ, f 〉+ 〈1c,νπ, f 〉= f (A) + f (A+ b+ c)− f (A+ b)> f (A+ c)

So we conclude νπ, f violates a constraint and is not in the polytope B f .

Otherwise, suppose f is submodular. Clearly 〈1,νπ, f 〉 = f (E) for all permutations π,

so the equality constraint in the definition of B f is satisfied. Let A be any set and π be any

permutation. We wish to show that 〈1A,νπ, f 〉 ≤ f (A). Let the increasing sequence k(·) corre-

spond to the indices of A relative to the permutation π. That is, A= {πk(1),πk(2), . . . ,πk(|A|)}.
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This means we have for j = 1 . . . |A|, A∩$k( j)−1 = {πk(1),πk(2), . . . ,πk( j−1)}= A∩$k( j−1).

〈1A,νπ, f 〉=
|A|
∑

j=1

f ($k( j))− f ($k( j)−1)

≤
|A|
∑

j=1

f (A∩$k( j))− f (A∩$k( j)−1) (submodularity)

=
|A|
∑

j=1

f (A∩$k( j))− f (A∩$k( j−1)) (definition of k(·))

= f (A∩$k(|A|)) = f (A)

So we conclude 〈1A,νπ, f 〉 ≤ f (A) for all A∈ 2E so νπ, f ∈ B f .

Note that Proposition 3.4 gives yet another characterization of submodularity. For the

rest of this section, we will assume that f is submodular. Having established that the points

defined by Equation 3.3.5 are bases, we can characterize them further:

Proposition 3.5. The point νπ, f is the unique element of B f which maximizes the inner product

with any element of Kπ.
⋂

x∈Kπ

arg max
λ∈B f

〈x,λ〉=
�

νπ, f

	

Furthermore, νπ, f is extreme in B f .

Proof. First we show that νπ, f is maximal when x is a corner of the unit cube. Let A

be any set such that 1A ∈ Kπ. That is, A = $k for k = |A|. Note that by definition

of B f , the maximal value maxλ∈B f
〈1A,λ〉 must be no more than f (A). By construction,

〈1$k ,νπ, f 〉 =
∑k

j=1 f ($ j)− f ($ j−1) = f ($k) = f (A), so νπ, f achieves this maximum value.

By Proposition 3.4, νπ, f is an element of B f . So we conclude νπ, f ∈ arg maxλ∈B f
〈1$k ,λ〉

for k = 1 . . . n.

Next, suppose x is an arbitrary point in Kπ. Then we can decompose it into a sum:

x= x[πn]1+
∑n−1

k=1αk1$k with nonnegative coefficients αk = x[πk]− x[πk+1]≥ 0. Since

〈1,λ〉 is constant over B f , and νπ, f is maximal for each term in the sum, we conclude that

νπ, f ∈ arg maxλ∈B f
〈x,λ〉.

To show uniqueness, suppose λ,λ′ ∈ B f both maximize the inner product for all x ∈ Kπ.

Then 〈x,λ〉 ≤ 〈x,λ′〉 for all x ∈ Kπ, which is equivalent to λ−λ′ ∈ K◦π. Likewise, λ′−λ ∈ K◦π,
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but since K◦π is pointed, this implies that λ= λ′.

Similarly, to see that νπ, f is extreme in B f , suppose that νπ, f = θλ1 + (1 − θ)λ2 for

some λ1,λ2 ∈ B f , with θ ∈ (0,1). The optimality of νπ, f implies that 〈x,λ2〉 ≤ 〈x,νπ, f 〉

for all x ∈ Kπ, which is equivalent to λ2 − νπ, f = θ(λ1 − λ2) ∈ K◦π. Likewise λ1 − νπ, f =

(1−θ )(λ2−λ1) ∈ K◦π. Again by using the fact that K◦π is a pointed cone, we have λ2−λ1 = 0,

and thus νπ, f = λ1 = λ2.

So we have justified the name extreme base for the vectors νπ, f . In fact, these are the

only extreme elements of B f . That is, we can characterize the base polytope as the convex

hull of the collection {νπ, f }π∈Sn
.

Proposition 3.6. B f = conv {νπ, f }π∈Sn
.

Proof. Clearly every x ∈ Rn is contained in some cone Kπ. Thus Proposition 3.5 implies

that maxλ∈B f
〈x,λ〉 = maxπ∈Sn

〈x,νπ, f 〉 for all x ∈ Rn. So if C = conv {νπ, f }π∈Sn
, we have

σB f
= σC everywhere. Both sets are closed and convex, thus δB f

= σ∗B f
= σ∗C = δC , so we

conclude they are identical.

3.3.2 Lovász Extension

Let us review what we have established about σB f
, the support function of the base polytope

of f . First, what does it evaluate to at a corner of the unit cube? By Proposition 3.4, the

points νπ, f are contained in the base polytope, therefore for any set A∈ 2E , the inequality

〈1A,λ〉 ≤ f (A) is satisfied with equality for some λ ∈ B f (namely any νπ, f for which

1A ∈ Kπ). Thus σB f
(1A) = maxλ∈B f

〈1A,λ〉 = f (A). So therefore σB f
is an interpolation of

f to the vertices of the unit cube. Furthermore, since it is a support function, it is convex

by construction, making it a natural tool for use in minimization. Since this function is so

important, we will denote it simply f̃ , and we refer to it as the Lovász extension of f .

f̃ (x) := σB f
(x) =max

λ∈B f

〈x,λ〉

On a historical note, this is named after Lovász, who was the first to consider it as a tool

for minimization [GLS81, Lov83]. It appeared earlier in the work of Edmonds [Edm70]

implicitly, in that he showed how maximizing a linear function over the base polytope can be

done in a greedy fashion.
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Since B f is bounded, f̃ has full domain. The subgradient of the Lovász extension at a

point x is the convex hull of all base vertices for permutations consistent with that vector:

∂ f̃ (x) = conv {νπ, f | x ∈ Kπ } (3.3.7)

In particular, the subgradients at a corner of the unit cube are also discrete subgradients for

f .

∂ f (A)∩ B f = conv {νπ, f | A= {π1, . . . ,π|A|} } (3.3.8)

Consider what Equation 3.3.7 implies about the relationship between subdifferentials at

different points. If the point y is consistent with at least the permutations with which x is

consistent, then all subgradients at x are also subgradients at y:

x ∈ Kπ for all π such that y ∈ Kπ⇒ ∂ f̃ (x) ⊆ ∂ f̃ (y)

In particular, by relating the subdifferential of x to the corner point 1A, we can derive a

condition for when the continous subgradients for f̃ are also discrete subgradients for f .

Given a point x, defining X+α to be the subset of components of x greater than or equal to α,

it is not hard to see that x ∈ Kπ if and only if 1X+α
∈ Kπ for all α ∈ R. So by Equation 3.3.7,

we get:

X+α := { e ∈ E | x[e]≥ α }

∂ f̃ (x) =
⋂

α∈R
∂ f (X+α )∩ B f (3.3.9)

Note that there is a subtlety to this characterization that is important for algorithms that use

the Lovász extension to minimize the set function. In order to conclude that the continuous

subdifferential ∂ f̃ (x) is included in the set function subdifferential ∂ f (A), it is necessary

that the components of x in A be strictly separated from the complementary components.

min
a∈A

x[a]> max
b∈E\A

x[b] ⇒ ∂ f̃ (x) ⊆ ∂ f (A) (3.3.10)

min
a∈A

x[a]≥ max
b∈E\A

x[b] ; ∂ f̃ (x) ⊆ ∂ f (A) (3.3.11)

Note that the premise of Equation 3.3.11 does imply that ∂ f̃ (x)∩ ∂ f (A) is nonempty.
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3.3.3 Examples of Base Polytopes

Which is more important—a submodular function or its base polytope? Of course, given

the dual relationship between the two, one cannot really be more important than the other,

but historically, base polytopes were discovered first by Edmonds. Any base polytope is the

union of the faces of a polymatroid. (Interestingly, polymatroids can be defined without

mentioning submodularity.)

We start with a short proof of an important property of submodular functions. For any

submodular function, minimizing out a subset of the variables results in another submodular

function. This is exactly analogous to convex functions. Suppose a the function g(A, B) is a

submodular function on 2E×F , where A∈ 2E , B ∈ 2F . Then suppose f is given by minimizing

g over all arguments B:

f (A) =min
B⊆F

g(A, B) (3.3.12)

It is simple to show if g is submodular, then f must be as well:

f (A1) + f (A2) = g(A1, B1) + g(A2, B2) Where Bi = arg min
B⊆F

g(Ai, B)

≥ g(A1 ∪ A2, B1 ∪ B2) + g(A1 ∩ A2, B1 ∩ B2) (Submodularity of g)

≥ f (A1 ∪ A2) + f (A1 ∩ A2) (Minimality of f )

In particular, when a function f is graph representable, it can be written as a minimum over

submodular g(A, B), where g is a fully general quadratic function.

f (A) = c(A) +min
B

s(B) + 1TA W111E\A+ 1
T
A W121F\B + 1

T
B W221F\B

The term graph representable refers to the fact that a second-order submodular function is

a cut function of a graph. We can express points in the base polytope of f through 2|E|+|F |

linear inequalities. That is, λ ∈ B f if:

−1TA (λ− c) + sT1B + 1
T
A W111E\A+ 1

T
A W121F\B + 1

T
B W221F\B ≥ 0

for all A∈ 2E , B ∈ 2F .

Now consider a simpler case where all entries of W11 and W22 equal zero. This means the
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graph is bipartite: one partition for E and and the other for the variables to be minimized

over. Such a function can then be expressed as:

f (A) = 1TA c+min
B

1TA W(1− 1B) + sT1B

= c(A) +
∑

j

min(s j,w j(A))

For this function, we can introduce new variables to give a simple description of the base

polytope. That is, λ ∈ B f if there exists some Y ∈ R|E|×|F | such that:

λ= c+ YT1, 0≤ Y≤W, Y1= s.

So testing membership in this base polytope is much simpler than the general case. What

happens if we iterate Equation 3.3.12, by introducing a new bipartite graph between sets of

variables. If we do this k times, we get a graph representable function, only now the graph

is a trellis with k levels:

f (A) = 1TA c+ min
B1,...Bk

1TA W1(1− 1B1
) +

k
∑

j=2

1TB j−1
W j(1− 1B j

) + sT1Bk
(3.3.13)

Again, this function has an efficiently representable base polytope. That is, we have λ ∈ B f

if for some matrices Y1, . . . ,Yk, we have:

λ= c+ YT
1 1, 0≤ Y1 ≤W1, (3.3.14)

Y j1= YT
j+11, 0≤ Y j+1 ≤W j+1 for j = 1 . . . k− 1,

Yk1= s.

3.4 Submodular Minimization

The general problem we are interested in is finding a global minimizer of a submodular

function. Finding Before discussing specific algorithmic techniques, let us review what the

optimality conditions and duality gap are for solving submodular minimization as a convex

minimization problem. Recall that σ[0,1]n(x) =maxλ∈[0,1]n〈x,λ〉=
∑

e∈E max(x[e], 0) is the

support function of the unit cube.
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Theorem 3.7 (Submodular Minimization Optimality Conditions). We have for all A ∈ 2E ,

λ ∈ B f :

f (A) +σ[0,1]n(−λ)≥ 0 (3.4.1)

This equation is satisfied with equality if and only if (1A − 1E\A) • λ ≤ 03, and λ ∈ ∂ f (A).

Furthermore this is true if and only if A minimizes f over 2E , and λ maximizes −σ[0,1]n(−λ)

over B f .

Proof. For any A∈ 2E , λ ∈ B f :

−σ[0,1]n(−λ) = min
x∈[0,1]n

〈x,λ〉 (def. of σ[0,1]n) (3.4.2)

≤ 〈1A,λ〉 (minimality of x) (3.4.3)

≤ f (A) (def. of B f ) (3.4.4)

This demonstrates Equation 3.4.1. If (1A− 1E\A) • λ ≤ 0, then λ[a] ≤ 0 for all a ∈ A and

λ[b]≥ 0 for all b ∈ E\A, so then 1A is an optimal x in Equation 3.4.2, and thus Equation 3.4.3

is an equality. Conversely, if λ[a] > 0 for some a ∈ A or λ[b] < 0 for some b ∈ E \ A, then

Equation 3.4.3 must be a strict inequality. Finally, a base vector λ is contained in ∂ f (A) if

and only if 〈1A,λ〉 = f (A), i.e. Equation 3.4.4 is satisfied with equality. Finally, note that

since the bound in Equation 3.4.1 is universal, it can only hold with equality for optimal A

and λ. This establishes conditions for when equality can hold, but we need to demonstrate

that it always will. That is, Equation 3.4.1 is equivalent to the following statement of weak

duality, but we additionally need strong duality:

max
λ∈B f

min
x∈[0,1]n

〈x,λ〉 ≤ min
x∈[0,1]n

max
λ∈B f

〈x,λ〉 (3.4.5)

Since the constraints are polyhedral, strong duality holds by Fenchel’s Duality Theorem.

3.4.1 Ellipsoid Method and Polynomial Time Algorithms

The ellipsoid method has been of historical importance in that it can be used to establish the

possibility of polynomial time optimization of general convex functions. For example, Hačijan

used it in the late 1970s to prove that linear programs were polynomial time solvable [Hač79].
3 We use the symbol • to denote the elementwise or Hadamard product of vectors.
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While its generality is a great strength for proving theorems, in practice the problems it can

be applied to have specialized methods that work much faster.

Suppose we wish to minimize a convex function using an oracle which takes as input

any point in the function’s domain and returns the function value and a subgradient. We

can use the fact that for any current iterate xk with subgradient λk ∈ ∂ f (xk), a minimizer

x∗ ∈ arg min f must be contained in the half-space 〈x∗,λk〉 ≤ 〈xk,λk〉+ f k
best − f (xk), where

f k
best is the smallest value of f encountered up to step k. Splitting algorithms are a general

class of algorithms that maintain a feasible region such as a polytope or an ellipsoid, then

use oracle information to splits the feasible region and reduce it somehow.

In particular, a simple variant of the ellipsoid algorithm might proceed as follows. Start

with ellipsoid E0 large enough to be guaranteed to contain a minimizer of f , set k = 0

and begin: Let xk be the the centroid of Ek, and use the oracle to get a subgradient λk ∈

∂ f (xk). This gives a half-space that splits the current ellipsoid, namely Hk := {x ∈ Rn |

〈x,λk〉 ≤ 〈xk,λk〉+ f k
best − f (xk) }. Let Ek+1 be the ellipsoid of minimal volume which contains

the intersection Hk∩Ek. Increment k and repeat these iterations until an iterate is sufficiently

close to optimality.

To represent ellipsoids numerically, one can use a positive definite matrix and a vector.

Under this representation, computing the minimal volume ellipsoid for the next iterate

amounts to a rank-one update rule of the matrix. The algorithm can be analyzed by bounding

the rate at which the volume of these ellipsoids decrease.

The Lovász extension f̃ is a convex function, and by Equation 3.3.7, a subgradient at any

point can be generated efficiently, provided evaluation of the set function f is efficient. So one

can use a generic convex minimization algorithm such as an ellipsoid method to minimize

f̃ over the unit cube. Note that the original ellipsoid method proposed for submodular

minimization in [GLS81] differs somewhat from the algorithm outlined above, but the

important ideas are the same: using the convexity of f̃ and an efficient subgradient oracle to

minimize the set function.

However, the asymptotic running time of the ellipsoid method depends on the values of

the function itself, not just the size of the problem. Hence its running time is actually weakly

polynomial. Since then, several strongly polynomial algorithms for submodular minimization

have been developed. [IFF01] [IO09] Unfortunately, these are all of complexity at least

O(n5), and they are not empirically fast enough to be of practical use for all but very small
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problems.

3.4.2 Fujishige’s Minimal Norm Algorithm

As originally shown by Fujishige [FI11], finding the point of the base polytope B f of minimal

`2 norm is equivalent to solving the submodular minimization problem. (We prove a more

general version of this equivalance in Theorem 5.4.)With access to an oracle that maximizes a

linear function over a basepolytope, one uses the Frank-Wolfe algorithm to find the minimum

norm point in that polytope. The algorithm is guaranteed to converge in finite time because

there are only finitely many possible subsets of vertices, and it is a descent algorithm which

never returns to the same state. In general the algorithm could require exponentially many

calls to an oracle, albeit no problem instance exhibiting this behavior is known.

To satisfy the role of the oracle, we need an an efficient subroutine which can solve

arg maxλ∈B f
〈x,λ〉 for any x ∈ Rn. By Proposition 3.5, we know that if x ∈ Kπ, the point

νπ, f is a maximizing vertex of the polytope for that functional. So, we just need to sort4

the components of x to find a permutation with which x is consistent, and then our oracle

returns the base vertex given by the formula in Equation 3.3.5. This procedure is known

as the greedy algorithm, because if f is the rank function of a matroid, it is equivalent to

adding elements to an independent set greedily depending on their weight x[e].

Despite there being no subexponential upper bounds on the running time, this algorithm

works quite well in practice. The exact performance will depend some subtleties, such as

how expensive it is to compute the submodular function. If f is a complicated function such

as a log-determinant, then computing νπ, f given π may actually be the bottleneck of the

program.

3.4.3 Special Cases

There are certain special cases of submodular minimization for which faster algorithms are

known to exist. Even these are not necessarily useful in practice, but they are always asymp-

totically faster than the algorithms which make no assumptions other than submodularity.

4This can be a major source of nondeterminacy in an implementation if a sorting routine does not specify how
ties are broken. Ties are not unlikely because the minimum norm base is expected to have many components of
the same magnitude.
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Symmetric Unconstrained minimization of a symmetric submodular function is trivial,

since for such functions we have 2 f (;) = f (;) + f (E) ≤ f (A) + f (E \ A) ≤ 2 f (A) for all A,

so ; and E trivially minimize A. However, if we restrict the search domain to exclude the

extreme sets, the minimization problem is very much of interest. In this case, we can use

an algorithm discovered by Queyranne [Que98] to minimize the a symmetric submodular

function over the range 2E \ {;, E}.

Quadratic Potentials and Extensions The minimization of second-order submodular func-

tions can be reformulated as finding the smallest cut of a graph with positive edge weights

which separates two specific vertices. This is dual to finding the maximum flow between those

two vertices, if the edge weights are capacities. This is a classic problem in computer science

and there are a great variety of algorithms for solving it efficiently. One of the conceptually

simplest of these is the Ford-Fulkerson algorithm which, in its simplest form, requires the

weights to be integral.

Yet, even if a submodular function is not second order, it may still be possible to use

min-cut/max-flow algorithms to minimize it. This is done by introducing extra Boolean

variables to create a higher dimensional second order function, such that the original function

is given by minimizing the second order function over the extra variables. Functions that

admit such a representation are called graph representable. Much work has been done over

the years to determine which functions are graph representable, and, furthermore, how to

most efficiently represent the function, or at least approximate it efficiently. See for example,

[KZ04], [JLB11]. Graph representable functions are necessarily submodular.
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Chapter 4

Smoothed Gradient Methods for
Decomposable Functions

4.1 Introduction

Several submodular minimization problems arising in machine learning and other domains

have structure that allows for solving them more efficiently. Examples include symmetric

functions that can be solved in O(n3) evaluations using Queyranne’s algorithm [Que98],

and functions that decompose into attractive, pairwise potentials, that can be solved using

graph cutting techniques [FD05]. In this chapter, we introduce a novel class of submodular

minimization problems that can be solved efficiently with convex optimization. In particular,

we develop an algorithm SLG, that can minimize a class of submodular functions that we call

decomposable. These are functions that can be decomposed into sums of concave functions

applied to modular (additive) functions. Our algorithm is based on recent techniques of

smoothed convex minimization [Nes05] applied to the Lovász extension. We demonstrate

the usefulness of our algorithm on a joint classification-and-segmentation task involving

tens of thousands of variables, and show that it outperforms state-of-the-art algorithms for

general submodular function minimization by several orders of magnitude.

4.2 Background on Submodular Function Minimization

We are interested in minimizing set functions that map subsets of some base set E to real

numbers; i.e. given f : 2E → R we wish to solve for A∗ ∈ arg minA f (A). For simplicity of

notation, we use the base set E = {1, . . . n}, but in an application the base set may consist of

nodes of a graph, pixels of an image, etc. Without loss of generality, we assume f (;) = 0. If
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the function f has no structure, then there is no way solve the problem other than checking

all 2n subsets. In this chapter, we consider functions that satisfy a key property that arises in

many applications: submodularity (c.f., [Lov83]). A set function f is called submodular if

and only if, for all A, B ∈ 2E , we have

f (A∪ B) + f (A∩ B)≤ f (A) + f (B). (4.2.1)

Submodular functions can alternatively, and perhaps more intuitively, be characterized in

terms of their discrete derivatives. First, we define ∆c f (A) = f (A∪ {c})− f (A) to be the

discrete derivative of f with respect to c ∈ E at A; intuitively this is the change in f ’s value

by adding the element c to the set A. Then, f is submodular if and only if:

∆c f (A)≥∆c f (B), for all A⊆ B ⊆ E − c.

Note the analogy to concave functions; the discrete derivative is smaller for larger sets, in

the same way that φ(x +h)−φ(x)≥ φ(y +h)−φ(y) for all x ≤ y, h≥ 0 if and only if φ is

a concave function on R. Thus a simple example of a submodular function is f (A) = φ(|A|)

where φ is any concave function. Yet despite this connection to concavity, minimizing a

submodular function can be done in polynomial time, wheras maximizing it is NP-hard.

This is similar to the fact that it is easier to minimize a convex function than to maximize.

One explanation for this is that submodular minimization can be reformulated as a convex

minimization problem.

To see this, consider taking a set function minimization problem, and reformulating it as

a minimization problem over the unit cube [0, 1]n ⊂ Rn. Define 1A ∈ Rn to be the indicator

vector of the set A, i.e.,

1A[e] =











0 if e /∈ A

1 if e ∈ A

We use the notation x[e] for the component of the vector x corresponding to element e. Also

we drop brackets and commas in subscripts, so 1ab = 1{a,b} and 1a = 1{a}. For any vector

λ ∈ Rn, we use the shorthand λ(A) for the corresponding modular function:

λ(A) :=
∑

a∈A

λ[a] = 〈1A,λ〉
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A continuous extension of a set function is a function with a continuous argument that

interpolates the values of the set function to the corners of the unit cube. That is, we should

have [0, 1]n ⊆ dom f̃ ⊆ Rn and f (A) = f̃ (1A). Furthermore, we do not want the minimum of

the continous function to be completely unrelated to the minimum of the set function. That

is, if a particular set is a minimizer of the set function, then that should necessarily imply

that the corresponding indicator vector is a minimizer of the continous extension over the

unit cube:

A∗ ∈ arg min
A∈2E

f (A) ⇒ 1A∗ ∈ arg min
x∈[0,1]n

f̃ (x). (4.2.2)

A key result due to Lovász [Lov83] states that each submodular function f has an extension

f̃ that not only satisfies the above property, but is also convex and efficient to evaluate. We

can define the Lovász extension in terms of the base polytope B f :

f̃ (x) =max
λ∈B f

〈λ,x〉, B f = {λ ∈ Rn | λ(E) = f (E), λ(A)≤ f (A), for all A∈ 2E }.

The base polytope B f is defined by exponentially many inequalities, and evaluating f̃ requires

solving a linear program over this polyhedron. Perhaps surprisingly, as shown by Lovász, f̃

can be very efficiently computed as follows. For a fixed x ∈ Rn, let π: E→ E be a permutation

such that x[π1]≥ . . .≥ x[πn], and then define the set$k = {π1, . . . ,πk}. Then we have a

formula for f̃ and a subgradient:

f̃ (x) =
n
∑

k=1

x[πk]( f ($
k)− f ($k−1)), ∂ f̃ (x) 3

n
∑

k=1

1πk
( f ($k)− f ($k−1)). (4.2.3)

Note that if two components of x are equal, the above formula for f̃ is independent of the

permutation chosen, but the subgradient is not unique.

Equation 4.2.2 was used to show that submodular minimization can be achieved in

polynomial time [Lov83]. However, algorithms which directly minimize the Lovász extension

are regarded as impractical. Despite being convex, the Lovász extension is non-smooth, and

hence a simple subgradient descent algorithm would need O(1/ε2) steps to achieve O(ε)

accuracy.

Recently, Nesterov showed that if knowledge about the structure of a particular non-

smooth convex function is available, it can be exploited to achieve a running time of O(1/ε)
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[Nes05]. One way this is done is to construct a smooth approximation of the non-smooth

function, and then use an accelerated gradient descent algorithm which is highly effective

for smooth functions. Connections of this work with submodularity and combinatorial

optimization are also explored in [CN07] and [Bac10]. In fact, in [Bac10], Bach shows that

computing the smoothed Lovász gradient of a general submodular function is equivalent

to solving a submodular minimization problem. In this chapter, we do not treat general

submodular functions, but rather a large class of submodular minimization functions that

we call decomposable. (To apply the smoothing technique of [Nes05], special structural

knowledge about the convex function is required, so it is natural that we would need special

structural knowledge about the submodular function to leverage those results.) We further

show that we can exploit the discrete structure of submodular minimization in a way that

allows terminating the algorithm early with a certificate of optimality, which leads to dramatic

performance improvements.

4.3 The Decomposable Submodular Minimization Problem

In this chapter, we consider the problem of minimizing submodular functions of the following

form:

f (A) = c(A) +
∑

j

φ j(w j(A)), (4.3.1)

where c,w j ∈ Rn and w j ≥ 0 and φ j : [0,w j(E)]→ R are arbitrary one-dimensional concave

functions. Without loss of generality, we will assume, by rescaling if necessary, that ‖w j‖∞ = 1.

It is shown in 4.4.1 that functions of this form are submodular. We call this class of functions

decomposable submodular functions, as they decompose into a sum of concave functions

applied to nonnegative modular functions. Below, we give examples of decomposable

submodular functions arising in applications.

We first focus on the special case where all the concave functions φ j are positive multiples

of threshold functions min(τ, ·) for some threshold τ > 0. Since these functions are of key

importance, we denote Ψ(τ,w, A) to be the submodular function given by thresholding the

modular function w(A) at threshold τ:

Ψ(τ,w, A) :=min(τ,w(A))
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We refer to these submodular functions as threshold potentials. In Section 4.6, we will show

how to generalize our approach to arbitrary decomposable submodular functions.

Examples. The simplest example is a 2-potential, which has the form φ(|A∩{b, c}|), where

φ(1) − φ(0) ≥ φ(1) − φ(2). It can be expressed as a sum of a modular function and a

threshold potential:

φ(|A∩ {b, c}|) = φ(0) + (φ(2)−φ(1))〈1A,1bc〉+ (2φ(1)−φ(0)−φ(2))Ψ(1,1bc, A)

An example application where such function arises is in image classification schemes such as

in [SWRC09]. In order to compute the Maximum a Posteriori configuration of a pairwise

Markov Random Field model, one must minimize a sum of these potentials. On a high level,

such an algorithm computes a value p[b] that corresponds to the log-likelihood of pixel b

being of one class vs. another, and for each pair of adjacent pixels, a value rbc related to the

log-likelihood that pixels b and c are of the same class. Then the algorithm classifies pixels

by minimizing a sum of 2-potentials: f (A) = c(A) +
∑

b,c rbc(1− |1− 〈1A,1bc〉|). If the value

rbc is large, this encourages the pixels b and c to be classified similarly.

More generally, consider a higher order potential function: a concave function of the

number of elements in some activation set D, φ(|A∩D|) where φ is concave. It can be shown

that this can be written as a sum of a modular function and a positive linear combination

of |D| − 1 threshold potentials with boolean weights (w j ∈ {0,1}n). However, threshold

potentials with nonuniform weights are strictly more general than those with boolean weights.

That is, there exists τ and w such that Ψ(τ,w, A) cannot be expressed as
∑

jφ j(|Dj ∩ A|) for

any collection of concave φ j and sets Dj.

Recent work [KLT09] has shown that classification performance can be improved by

adding terms corresponding to such higher order potentials φ j(|Dj ∩ A|) to the objective

function where the functions φ j are piecewise linear concave functions, and the regions Dj

of various sizes generated from a segmentation algorithm. Minimization of these particular

potential functions can then be reformulated as a graph cut problem [KKT07], but this is

less general than our approach.

Another canonical example of a submodular function is a set cover function. Such a

function can be reformulated as a combination of threshold potentials with boolean weights
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and unit threshold (details in 4.4.2). Thus all functions that are weighted combinations of

set cover functions can be expressed as threshold potentials.

Another example of decomposable functions arises in multiclass queuing systems [II07].

These are of the form f (A) = u(A)φ(v(A)), where u,v are nonnegative weight vectors and

φ is a nonpositive nonincreasing concave function. We show in 4.4.3, that with the proper

choice of φ j and w j, this can in fact be reformulated as sum of the type in Equation 4.3.1

with n terms.

In our own experiments, shown in Section 4.7, we use an implementation of TextonBoost

[SWRC09] and augment it with quadratic higher order potentials. That is, we use TextonBoost

to generate per-pixel scores c, and then minimize f (A) = c(A) +
∑

j |A∩ Dj||Dj \ A|, where

the regions Dj are regions of pixels that we expect to be of the same class (e.g., by running

a cheap region-growing heuristic). The potential function |A∩ Dj||Dj \ A| is smallest when

A contains all of Dj or none of it. It gives the largest penalty when exactly half of Dj is

contained in A. This encourages the classification scheme to classify most of the pixels in a

region Dj the same way. We generate regions with a basic region-growing algorithm with

random seeds. See Figure 4.1a for an illustration of examples of regions that we use. In our

experience, this simple idea of using higher-order potentials can dramatically increase the

quality of the classification over one using only 2-potentials, as can be seen in Figure 4.2.

4.4 Classification of Submodular Functions

In this section we explain why decomposable functions are submodular, describe some

examples of decomposable functions, and show that decomposable functions are more

general than some other classes of submodular functions that have been studied.

4.4.1 Submodularity of Decomposable Functions

Since the sum of submodular functions is submodular, we need only prove the submodularity

of f (A) = φ(w(A)), where φ is an arbitrary one-dimensional concave function and w≥ 0.

By definition of concavity, for all θ ∈ [0,1], we have:

φ(θ (y + h) + (1− θ )x) +φ((1− θ )(y + h) + θ x)≥ φ(y + h) +φ(x)
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If x ≤ y and h≥ 0, then setting θ = h/(y − x + h) in the above gives us:

φ(x + h)−φ(x)≥ φ(y + h)−φ(y) (4.4.1)

Then, for all c ∈ E \ A, we compute the the discrete derivative ∆c f (A):

∆c f (A) = φ(w(A) +w[c])−φ(w(A)) (4.4.2)

Thus if A⊆ B ⊆ E and c ∈ E \ B, then w(A) ≤ w(B), so by Eqs. 4.4.1 and 4.4.2, ∆c f (A) ≥

∆c f (B), and hence f is submodular.

4.4.2 Set Cover Functions as Threshold Potentials

Suppose we are given a finite collection of finite sets C = {Ce}e∈E ⊆ 2J , where E is an index

set for the collection, and J is some universal set where all sets in the collection live. Then

the collection C defines a set cover function—the cardinality of the union of a subcollection.

We represent subcollections by sets of indices A∈ 2E .

2E 3 A 7→ f (A) :=
�

�∪e∈ACe

�

�

For every j ∈ J , we define the vectors w j ∈ {0, 1}|E| as the indicator vector of the subcollection

of sets that contain j. That is, w j[e] = 1 if j ∈ Ce and w j[e] = 0 if j /∈ Ce. We claim:

f (A) =
∑

j∈J

min(1,w j(A))

Each term in the sum equals 1 if j ∈ ∪e∈ACe and 0 otherwise. Thus summing over all j must

give the cardinality of ∪e∈ACe, which is exactly the set cover function.

Hence we conclude all set cover functions can be represented as a sum of threshold

potentials with boolean-valued weight vectors and unit thresholds. When n ≥ 3, this is

strictly less general than potentials with boolean weights and nonunit thresholds. For example,

f (A) =min(2, |A|) = Ψ(2,1, A) cannot be represented as a nonnegative combination of set

cover functions.
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4.4.3 Reformulation of a Class of Functions

Another example of decomposable functions are the problems under consideration in [II07],

which are of the following form:

f (A) = u(A)φ(v(A))

Where u,v are nonnegative weight vectors and φ is a nonincreasing concave function.

Suppose we can construct a vector we for each e ∈ E and a concave function φ0 such that

the following holds for all A∈ 2E:

φ0(we(A)) =











φ(v(A))−φ(0) if e ∈ A

0 if e ∈ E \ A
(4.4.3)

Then we claim the following is an equivalent formulation for f in decomposable form:

g(A) = 〈1A,φ(0)u〉+
∑

e∈E

u[e]φ0(we(A)) (4.4.4)

Indeed, plugging Equation 4.4.3 to the above gives:

g(A) = 〈1A,φ(0)u〉+
∑

e∈A

u[e](φ(v(A))−φ(0)) = f (A)

To satisfy Equation 4.4.3 we define φ0 as follows:

φ0(t) =











0 if t ≤ v(E)

φ(t − v(E))−φ(0) if t > v(E)

And let we = v+ v(E) 1e. It is straightforward to check that these definitions satisfy Equa-

tion 4.4.3. Note φ0 is concave because φ is nonincreasing concave. Incidentally, the decom-

position in Equation 4.4.4 proves that f is submodular.
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4.4.4 Strict Generality of Threshold Potentials

Any concave cardinality function can be decomposed into the sum of several threshold

potentials with Boolean weight vectors. Equivalently, it is representable as a nonnegative

combination of set cover functions.

φ(|A∩ B|) = φ(0) + (φ(|B|)−φ(|B| − 1))〈1A,1B〉

+
|B|−1
∑

k=1

(2φ(k)−φ(k− 1)−φ(k+ 1))min(k, 〈1A,1B〉)

Since φ is concave, the coefficients (2φ(k)−φ(k− 1)−φ(k+ 1)) are positive. So without

loss of generality, any sum of concave cardinality functions can be expressed as a sum of a

modular function and a positive combination of threshold potentials with Boolean weights.

f (A) = p0 + p1(A) +
∑

B∈2E

|B|≥2

|B|−1
∑

k=1

r(B, k)min(k, 〈1A,1B〉) (4.4.5)

There are
∑n

k=2

�n
k

�

(k−1) = 1+2n−1(n−2) coefficients r(B, k) and they all must be nonneg-

ative. If n is small enough, we can evaluate all 2n values of a set function and use a linear

program solver to find a representation of the above form, if one exists. When n= 4, this

is an LP feasibility problem with 5 unconstrained variables (the offset p0 and the modular

part p1), 17 nonnegative variables (the coefficients r(B, k)), and 16 equality constraints

(the values of f ). We discovered that the threshold potential f (A) = min(τ,w(A)) with

w= [1/2, 1/2, 1/2, 1] and τ= 1 does not have a feasible solution to Equation 4.4.5.

Note that any decomposable function can be represented as a finite sum of threshold

potentials. This is because w(A) can only equal finitely many values, and for any concave

function, we can construct a positive combination of threshold potentials that agrees with

the concave function on those values. For any one-dimensional function φ and any finite set

of arguments z1 < . . .< zm, define the piecewise linear interpolant φ:

φ(z) = p0 + p1z +
m−1
∑

i=2

ri min(z, zi) (4.4.6)

p0 = φ(z1)− z1
φ(z2)−φ(z1)

z2 − z1
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p1 =
φ(zm)−φ(zm−1)

zm − zm−1

ri =
φ(zi)−φ(zi−1)

zi − zi−1
−
φ(zi+1)−φ(zi)

zi+1 − zi
for i = 2 . . . m− 1 (4.4.7)

It is straightforward to check that φ(zi) = φ(zi) for all zi, which justifies our claim that φ is

an interpolant for φ. By construction in Equation 4.4.6, φ(z) is a linear function plus a linear

combination of threshold functions. The coefficients ri in Equation 4.4.7 are positive for all

choices of zi if and only if φ is concave. Hence to represent a general concave potential as

a sum of threshold potentials, we take {zi}mi=1 = {w(A) | A∈ 2E }, where m is the number

of possible values of w(A). Thus φ(w(A)) = φ(w(A)) for all A ∈ 2E . However, for general

weight vectors, m could equal 2n. This means that to use the formula in Equation 4.4.6,

we need exponentially many threshold potentials to represent the function φ(w(A)) exactly.

So even though general concave functions do not induce a strictly more general class of

submodular functions, they can provide a much more compact representation for functions

in this class.

4.5 The SLG Algorithm for Threshold Potentials

We now present our algorithm for efficient minimization of a decomposable submodular

function f based on smoothed convex minimization. We first show how we can efficiently

smooth the Lovász extension of f . We then apply accelerated gradient descent to the gradient

of the smoothed function. Lastly, we demonstrate how we can often obtain a certificate of

optimality that allows us to stop early, drastically speeding up the algorithm in practice.

4.5.1 The Smoothed Extension of a Threshold Potential

The key challenge in our algorithm is to efficiently smooth the Lovász extension of f , so that

we can resort to algorithms for accelerated convex minimization. We now show how we can

efficiently smooth the threshold potentials Ψ(τ,w, A) =min(τ,w(A)) of Section 4.3, which

are simple enough to allow efficient smoothing, but rich enough when combined to express

a large class of submodular functions. We denote the base polytope of a single threshold
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potential Ψ(τ,w, ·) by BΨ(τ,w,·) =B(τ,w). The Lovász extension of Ψ(τ,w, ·) is thus:

Ψ̃(τ,w,x) = max
λ∈B(τ,w)

〈x,λ〉 (4.5.1)

B(τ,w) := {λ ∈ Rn | 〈1,λ〉= τ, 0≤ λ≤w }

We define a smoothed Lovász extension by taking the infimal convolution with the quadratic

function 1
2µ
‖x‖2, where µ is a scale parameter.

Ψ̃µ(τ,w,x) := Ψ̃(τ,w,x)�
1

2µ
‖x‖2

= min
z∈Rn
Ψ̃(τ,w,z− x) +

1

2µ
‖z‖2

= max
λ∈B(τ,w)

〈x,λ〉 −
µ

2
‖λ‖2 (4.5.2)

To give a simple justification for this definition, we note that for small µ, this function

approximates the nonsmooth function uniformly in x. We can take an optimal solution to

Equation 4.5.1 and use it in Equation 4.5.2 to get the following bound:

0≤ Ψ̃(τ,w,x)− Ψ̃µ(τ,w,x)≤ µτ/2 for all x ∈ Rn

Here we use the fact that ‖λ‖2 ≤ ‖λ‖1‖λ‖∞ ≤ τ for all λ ∈ B(τ,w), since we assumed

‖w‖∞ = 1. We conclude that the smoothed extension converges uniformly to the nonsmooth

as µ→ 0.

To compute this function, we note Equation 4.5.2 is equivalent to the projection of x/µ

ontoB(w, y). Due to the simple structure of the base polytope, this can be solved efficiently.

The optimal base λ∗ is also the gradient of the smoothed extension:

∇Ψ̃µ(τ,w,x) = arg max
λ∈B(τ,w)

〈x,λ〉 −
µ

2
‖λ‖2 = ΠB(τ,w)(x/µ). (4.5.3)

Recall that ΠC(x) := arg minx′∈C ‖x− x′‖ denotes the projection of x onto the convex set C .

To solve for λ∗, we form the Lagrangian and derive the dual problem:

Ψ̃µ(τ,w,x) = min
s∈R,y1,y2≥0

�

max
λ∈Rn
〈x,λ〉 −

µ

2
‖λ‖2 + 〈y1,λ〉+ 〈y2,w−λ〉+ s(τ− 〈1,λ〉)

�
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= min
t∈R,y1,y2≥0

1

2µ
‖x− s1+ y1 − y2‖2 + 〈y2,w〉+ sτ.

In the second step the optimal λ = 1
µ
(x− s1+ y1 − y2). By strong duality, if the variables

s,y1,y2 are optimal for the dual problem, then λ must also be optimal. If we fix s, then we

can solve for the optimal variables y∗1 and y∗2 componentwise. So we have:

y∗1 =max(0,−x+ s∗1)

y∗2 =max(0,x− s∗1−µw)

⇒ λ∗ =max(0,min(w, (x− s∗1)/µ)). (4.5.4)

This expresses λ∗ as a function of the unknown optimal variable s∗. For the simple case of

2-potentials, we can solve for s∗ explicitly and get a closed form expression for the gradient

of the smoothed Lovász extension:

∇Ψ̃µ(1,1bc,x) =























1b if x[b]≥ x[c] +µ

1c if x[c]≥ x[b] +µ

1
2
(1bc +

1
µ
(x[b]− x[c])(1b − 1c)) if |x[b]− x[c]|< µ

For higher dimensions, it is easier to compute s∗ implicitly from the constraint 〈1,λ∗〉 = τ. We

defineρµx,w(s) to be the value of 〈1,λ(s)〉, whereλ(s) is given by the formula of Equation 4.5.4.

ρµx,w(s) :=
∑

e∈E

max(0,min(w[e], (x[e]− s)/µ))

This function is a monotonic continuous piecewise linear function of s, so one approach is to

use a simple root-finding algorithm to solve ρµx,w(s∗) = τ. Additionally, in Section 5.4, we

outline two algorithms for solving this problem. First, we derive an explicit formula that

requires sorting 2n elements to compute. Also, we show how it is possible to find s∗ with a

linear number of operations (in expectation) via a randomized algorithm.

4.5.2 The SLG Algorithm for Minimizing Sums of Threshold Potentials

Stepping beyond a single threshold potential, we now assume that the submodular function

to be minimized can be written as a nonnegative linear combination of threshold potentials
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and a modular function, i.e.,

f (A) = c(A) +
∑

j

r jΨ(τ j,w j, A). (4.5.5)

So the smoothed Lovász extension of f , and its gradient (cf. Equation 4.5.3) are given by:

f̃ µ(x) = 〈x,c〉+
∑

j

r jΨ̃
µ(τ j,w j,x), (4.5.6)

∇ f̃ µ(x) = c+
∑

j

r jΠB(τ j ,w j)(x/µ)

We can use the accelerated gradient descent algorithm of [Nes05] to minimize this function.

This algorithm requires that the smoothed objective have a Lipschitz continuous gradient.

That is, for some constant L, it must hold that ‖∇ f̃ µ(x)−∇ f̃ µ(y)‖ ≤ L‖x−y‖, for all x,y ∈ Rn.

Fortunately, by construction, the smoothed threshold extensions Ψ̃µ(τ j,w j,x) all have 1/µ

Lipschitz gradient, a direct consequence of the characterization in Equation 4.5.3. Hence

we have a loose upper bound for the Lipschitz constant of f̃ µ: L ≤ D
µ

, where D =
∑

j r j.

Furthermore, the smoothed threshold extensions approximate the threshold extensions

uniformly: |Ψ̃µ(τ j,w j,x) − Ψ̃(τ j,w j,x)| ≤
µτ j

2
for all x, so | f̃ µ(x) − f̃ (x)| ≤ µD2

2
, where

D2 =
∑

j r jτ j.

One way to use the smoothed gradient is to specify an accuracy ε, then minimize f̃ µ for

sufficiently small µ to guarantee that the solution will also be an approximate minimizer of

f̃ . Then we simply apply the accelerated gradient descent algorithm of [Nes05]. See also

[BBC11] for a description. Note that the projection onto the unit cube is trivial: Π[0,1]n(x) =

max(0, min(1,x)). Algorithm 4.1 formalizes our Smoothed Lovász Gradient (SLG) algorithm.

The optimality gap of a smooth convex function at the iterate yt can be computed from its

gradient:

gapk = − min
x∈[0,1]n

〈x− yk,∇ f̃ µ(yk)〉= 〈yk,∇ f̃ µ(yk)〉+ 〈1, max(0,−∇ f̃ µ(yk))〉.

In summary, as a consequence of the results of [Nes05], we have the following guarantee

about SLG:

Theorem 4.1. SLG is guaranteed to provide an ε-optimal solution after running for O (D
ε
)
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Algorithm 4.1: SLG: Smoothed Lovász Gradient
Input: Accuracy ε; decomposable function f .
begin
µ= ε

2D2
, L = D

µ
, x0 = z0 = 1

2
1;

for k = 1, 2, . . . do
gk←∇ f̃ µ(xk−1)/L;
yk← Π[0,1]n(xk−1 − gk);

zk← Π[0,1]n
�

z0 − 1
2

∑k
j=1 j g j

�

;

if gapk ≤ ε/2 then stop;
;
xk← (k yk + 2zk)/(k+ 2);

xε ← yk;
Output: ε-optimal xε to minx∈[0,1]n f̃ (x)

iterations.

SLG is only guaranteed to provide an ε-optimal solution to the continuous optimization

problem. Fortunately, once we have an ε-optimal point for the Lovász extension, we can

efficiently round it to set which is ε-optimal for the original submodular function using

Algorithm 4.2. As shown in Equation 4.2.3, the extension f̃ is a convex combination of the

values of the set function, so it cannot be smaller than the smallest of those values.

Algorithm 4.2: Set Generation by Rounding the Continuous Solution
Input: Vector x ∈ [0, 1]n; submodular function f .
begin

By sorting, find any permutation π satisfying: x[π1]≥ . . .≥ x[πn];
$k← {π1, . . . ,πk};
K∗← arg mink∈{0,1,...,n} f ($k);
C ← {$k | k ∈ K∗ };

Output: Collection of sets C , such that f (A)≤ f̃ (x) for all A∈ C

4.5.3 Early Stopping based on Discrete Certificates of Optimality

In general, if the minimum of f is not unique, the output of SLG may be in the interior of

the unit cube. However, if f admits a unique minimum A∗, then the iterates will tend toward

the corner eA∗ . Of course, since we are actually interested in solving a discrete problem, it is

not necessary to wait for the iterates to converge to the optimal corner. Below, we show that
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it is possible to use information about the current iterates to check optimality of a set and

terminate the algorithm before the continuous problem has converged.

To prove optimality of a candidate set A, we can use a subgradient of f̃ at eA, which is

also a discrete subgradient for f at A. If λ ∈ ∂ f (A), and then we can compute an optimality

gap:

f (A)− f ∗ ≤ max
x∈[0,1]n

〈1A− x,λ〉=
∑

a∈A

max(0,λ[a]) +
∑

b∈E\A

max(0,−λ[b]). (4.5.7)

In particular, if λ[a] ≤ 0 for a ∈ A and λ[b] ≥ 0 for b ∈ E \ A, then A is optimal. With

only knowledge of candidate set A, finding a subgradient λ ∈ ∂ f (A) which demonstrates

optimality may be extremely difficult, as the subdifferential is a polyhedron with exponentially

many extreme points. But our algorithm naturally suggests the subgradient we could use; the

gradient of the smoothed extension is also a discrete sugradient—provided that a particular

condition holds, as described in the following Lemma.

Lemma 4.2. Suppose f is a decomposable submodular function with Lovász smoothed extension

f̃ µ as in Equation 4.5.5 and Equation 4.5.6, respectively. If x ∈ Rn and A∈ 2E satisfy

min
a∈A

x[a]≥ µ+ max
b∈E\A

x[b], (4.5.8)

then ∇ f̃ µ(x) ∈ ∂ f (A).

Proof. By linearity of subdifferentials, it is sufficient to consider the case where f is single

threshold potential. Recall the formula for the gradient:

λ=∇Ψ̃µ(τ,w,x) =max(0, min(w, (x− s∗1)/µ)) s∗ chosen so that 〈1,λ〉= τ

There are two possibilities to consider. First, if mina∈A x[a] ≤ s∗ − µ, then Equation 4.5.8

implies for all b ∈ E \ A we have x[b]< s∗ and thus λ[k] = 0. This means that λ(E \ A) = 0

and so λ(A) = λ(E) = τ. So clearly λ is a maximing base for the set A. That is, λ ∈

arg maxλ′∈B(τ,w)〈1A,λ′〉= ∂Ψ̃(τ,w,1A) ⊆ ∂Ψ(τ,w, A).

On the other hand, if mina∈A x[a]> s∗−µ, then for all a ∈ A we have (x[a]−s∗)/µ≥ 1≥

w[a] and thus λ[a] = w[a]. Therefore we must have λ(A) =w(A), and since λ′(A)≤w(A)

for any λ′ ∈B(τ,w), again it is true that λ is a maximizing base for A.
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Lemma 4.2 states that if the components of point x corresponding to elements of A are all

larger than all the other components by at least µ, then the gradient at x is a subgradient for

f̃ at 1A (which by Equation 4.5.7 allows us to compute an optimality gap). In practice, this

separation of components naturally occurs as the iterates move in the direction of the point

1A, long before they ever actually reach the point 1A. But even if the components are not

separated, we can easily add a positive multiple of 1A to separate them and then compute

the gradient there to get an optimality gap. In summary, we have the following algorithm to

check the optimality of a candidate set:

Algorithm 4.3: Set Optimality Check
Input: Set A; decomposable function f ; scale µ; x ∈ Rn.
begin
γ= µ+maxa∈A,b∈E\A x[a]− x[b];
g=∇ f̃ µ(x+ γ1A);
δ =

∑

a∈A max(0, g[a]) +
∑

b∈E\A max(0,−g[b]);
Output: Optimality gap δ ≥ f (A)− f ∗

Of critical importance is how to choose the candidate set A. However, by Equation 4.5.7,

for a set to be optimal, we want the components of the gradient∇ f̃ µ(x+γ1A)[a] to be negative

for a ∈ A and positive for b ∈ E \ A. So it is natural to choose A= { a ∈ E | ∇ f̃ µ(x)[a]≤ 0 }.

Thus, if adding γ1A does not change the signs of the components of the gradient, then, in fact,

we have found an optimal set. We have found this stopping criterion to be quite effective in

practice, and we use it in all of our experiments.

4.6 Extension to General Concave Potentials

To extend our algorithm to work on general concave functions, we note that an arbitrary

smooth concave function can be expressed as an integral of threshold potential functions

min(x , y). Informally, this is because d2

d y2 min(x , y) = −δ(y − x), the Dirac delta. (To

see why, note min(x , y) is a piecewise linear function with a jump of −1 in its derivative

at x = y.) So, ignoring boundary terms and integrating by parts we should expect that
∫

φ′′(y)min(x , y)d y =
∫

φ′(y) d
d y

min(x , y)d y = −
∫

φ(y)δ(y − x)d x = −φ(x). We state

this formally in the following Lemma:
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Lemma 4.3. For φ ∈ C2([0, T]),

φ(x) = φ(0) +φ′(T )x −
∫ T

0

min(x , y)φ′′(y)d y, ∀x ∈ [0, T]

Proof. This is a straightforward application of integration by parts:

∫ T

0

min(x , y)φ′′(y)d y =

∫ x

0

yφ′′(y)d y +

∫ T

x
xφ′′(y)d y

= (yφ′(y)−φ(y))
�

�

x
0 + xφ′(y)

�

�

T
x

= xφ′(x)−φ(x) +φ(0) + xφ′(T )− xφ′(x)

= φ(0) + xφ′(T )−φ(x).

This Lemma motivates our definition of the smoothed Lovász extension for a general sum

of concave potentials. If f is decomposable as in Equation (4.3.1), we define the smoothed

extension as:

f̃ µ(x) := 〈c,x〉+
∑

j

�

φ j(0) +φ
′(T j)〈x,w j〉 −

∫ T j

0

Ψ̃µ(τ,w j,x)φ
′′
j (τ)dτ

�

. (4.6.1)

Here T j := w j(E). By Lemma 4.3, as µ → ∞, we have f̃ µ → f̃ pointwise since Ψ̃µ → Ψ̃.

We can apply SLG to f̃ µ essentially unchanged; the conditions for optimality still hold, and

so on. Conceptually, we just use a different smoothed gradient, but calculating it is more

involved. We need to compute the integrals of the form
∫ T j

0 ∇Ψ̃
µ(τ,w j,x)φ′′j (τ)dτ. Since the

components of the gradient ∇Ψ̃µ(τ,w j,x) are each piecewise linear functions with respect

to τ, we can evaluate the integral by parts. The resulting formula only evaluates φ, but not

its derivatives.

4.6.1 Formula Derivation

Let f (A) = φ(w(A)) be a general concave potential. For ease of notation, in the following

let g(τ) =∇Ψ̃µ(τ,w,x) be the gradient of the smoothed extension of a threshold potential.

Then by Equation 4.6.1, the gradient of smoothed extention of f is given by:

∇ f̃ µ(x) = φ′(T )w−
∫ T

0

g(τ)φ′′(τ)dτ (4.6.2)
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Note that g is a piecewise linear function of τ. Let [τi,τi+1] with 0= τ0 ≤ . . .≤ τN = T =

w(E) be the intervals on which g is linear. Let gi := g(τi). In particular, g0 = 0 and gN =w.

Denote the derivative of g(τ) with respect to τ (wherever it exists) as g′(τ). So within the

interval (τi,τi+1) it is:

g′(τi + ε) =
gi+1 − gi

τi+1 −τi
= g′(τi+1 − ε) (4.6.3)

So then our smoothed gradient can be evaluated:

∇ f̃ µ(x) = φ′(τN )w−
N
∑

i=1

∫ τi

τi−1

g(τ)φ′′(τ)dτ

= φ′(τN )w+
N
∑

i=1

�

g′(τ)φ(τ)− g(τ)φ′(τ)
��

�

τi

τi−1

= φ′(τN )w+
N
∑

i=1

g′(τi − ε)(φ(τi)−φ(τi−1))−
N
∑

i=1

(giφ
′(τi)− gi−1φ

′(τi−1))

= φ′(τN )w+
N
∑

i=1

(gi − gi−1)(φ(τi)−φ(τi−1))
τi −τi−1

− (gNφ
′(τN )− g0φ

′(τ0))

=
N
∑

i=1

(gi − gi−1)(φ(τi)−φ(τi−1))
τi −τi−1

Interestingly, this formula no longer requires φ to be differentiable. To compute the break-

points for τ, note that τ is itself a piecewise linear function of the parameter s, implicitly

defined by the equation: 〈1,max(0, min(w, (x− s1)/µ))〉 = τ. The discontinuities of the

derivative occur where x[e]− s equals 0 or µw[e]. Let si be the value of s that corresponds

to τi. For a particular value of s, we say that the component of x indexed by e is an active

component if 0 ≤ x[e]− s ≤ µw[e]. Thus the difference gi − gi−1 is nonzero only in the

active components, and there it equals (si − si−1)/µ. Let Ai be the set of active components

for τ ∈ [τi−1,τi]. Then, in that interval we have dτ
ds
= |Ai|/µ and we can simplify a part of

the above sum:
gi − gi−1

τi −τi−1
=
1Ai
(si − si−1)/µ

(si − si−1)|Ai|/µ
=
1Ai

|Ai|
. (4.6.4)

In summary, the formulas reduce to:

P = {(−x[e], e), (µw[e]− x[e], e)}e∈E = {(si, ai)}, where si ≤ si+1 (4.6.5)
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Ai = a1 	 a2 . . .	 ai (4.6.6)

τ j =
j
∑

i=1

|Ai|(si+1 − si)/µ (4.6.7)

∇ f̃ µ(x) =
2n−1
∑

i=1

1Ai

φ(τi)−φ(τi−1)
|Ai|

(4.6.8)

A naïve implementation would compute and add each vector in turn, and thus require O(n2)

operations in the worst case. This is because there is no guarantee that the sets Ai are small.

In fact, it may be that entire ground set is active and thus 1Ai
fully dense. Despite this, it is

possible to compute the sum with only O(n) operations (not counting the cost of sorting).

To see how we can do this, first define z j :=
∑ j

i=1
φ(τi)−φ(τi−1)

|Ai |
. Then any component of g

is a difference z j − z j′ for some indices j, j′. Namely, j is the step at which the component

activates, and j′ is the step at which it deactivates. The entire procedure is listed in Algorithm

4.4.

Algorithm 4.4: Gradient for General Concave Functions
Input: Domain vector x, Weight vector w, Concave function φ, Smoothing scale µ.
begin

P ←∪e∈E{(−x[e], e), (µw[e]− x[e], e)};
Sort P = {(si, ai)}, where si ≤ si+1;
τ0← 0; z← 0; A← ;;
for i = 1 . . . 2n− 1 do

if ai /∈ A then
g[ai]←−z;
A← A+ ai;

else
g[ai]← g[ai] + z;
A← A− ai;

τi ← τi−1 + |A|(si+1 − si)/µ;
if A 6= ; then

z← z +
�

φ(τi)−φ(τi−1)
�

/|A|;
g[a2n]← g[a2n] + z;

Output: g= Gradient for µ−smoothed Lovász extension of φ(w(A)) at x

4.7 Experiments

Synthetic Data. We reproduce the experimental setup of [FI11] designed to compare

submodular minimization algorithms. Our goal is to find the minimum cut of a randomly
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Figure 4.1: (a) Example regions used for our higher-order potential functions (b-c) Compari-
sion of running times of submodular minimization algorithms on synthetic problems from
DIMACS [JM93].

generated graph (which requires submodular minimization of a sum of 2-potentials) with

the graph generated by the specifications in [JM93]. We compare against the state of the

art combinatorial algorithms (LEX2, HYBRID, SFM3, PR [FI03]) that are guaranteed to find

the exact solution in polynomial time, as well as the Minimum Norm algorithm of [FI11], a

practical alternative with unknown running time. Figures 4.1b and 4.1c compare the running

time of SLG against the running times reported in [FI11]. In some cases, SLG was 6 times

faster than the MinNorm algorithm. However, the comparison to the MinNorm algorithm

is inconclusive in this experiment, because while we used a faster machine, we also used a

simple MATLAB implementation. What is clear is that SLG scales at least as well as MinNorm

on these problems, and is practical for problem sizes that the combinatorial algorithms cannot

handle.

Image Segmentation Experiments. We also tested our algorithm on the joint image

segmentation-and-classification task introduced in Section 4.3. We used an implementation

of TextonBoost [SWRC09], then trained on and tested subsampled images from [EVGW+].

As seen in Figures 4.2e and 4.2g, using only the per-pixel score from our TextonBoost imple-

mentation gets the general area of the object, but does not do a good job of identifying the

shape of a classified object. Compare to the ground truth in Figures 4.2b and 4.2d. We then

perform MAP inference in a Markov Random Field with 2-potentials (as done in [SWRC09]).

While this regularization, as shown in Figures 4.2f and 4.2h, leads to improved performance,

it still performs poorly on classifying the boundary.
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(a) Original Image (b) Ground truth (c) Original Image (d) Ground Truth

(e) Pixel-based (f) Pairwise Potentials (g) Pixel-based (h) Pairwise Potentials

(i) Concave Potentials (j) Continuous (k) Concave Potentials (l) Continuous

Figure 4.2: Segmentation Experimental Results
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Finally, we used SLG to regularize with higher order potentials. To generate regions

for our potentials, we randomly picked seed pixels and grew the regions based on HSV

channels of the image. We picked our seed pixels with a preference for pixels which were

included in the least number of previously generated regions. Figure 4.1a shows what the

regions typically looked like. For our experiments, we used 90 total regions. We used SLG

to minimize f (A) = c(A) +
∑

j |A∩ Dj||Dj \ A|, where c was the output from TextonBoost,

scaled appropriately. Figures 4.2i and 4.2k show the classification output. The continuous

variables x at the end of each run are shown in Figures 4.2j and 4.2l; while it has no formal

meaning, in general one can interpret a very high or low value of x[e] to correspond to high

confidence in the classification of the pixel e. To generate the result shown in Figure 4.2k, a

problem with 104 variables and 90 concave potentials, our MATLAB/mex implementation of

SLG took 71.4 seconds. In comparison, the MinNorm implementation of the SFO toolbox

[Kra10] gave the same result, but took 6900 seconds. Similar problems on an image of twice

the resolution (4× 104 variables) were tested using SLG, resulting in a runtimes of roughly

1600 seconds.

4.8 Conclusion

We have developed a novel method for efficiently minimizing a large class of submodular

functions of practical importance. We do so by decomposing the function into a sum of

threshold potentials, whose Lovász extensions are convenient for using modern smoothing

techniques of convex optimization. This allows us to solve submodular minimization problems

with thousands of variables that cannot be expressed using only pairwise potentials. Thus we

have achieved a middle ground between graph-cut-based algorithms, which are extremely

fast but only able to handle very specific types of submodular minimization problems, and

combinatorial algorithms, which assume nothing but submodularity but are impractical for

large-scale problems.
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Chapter 5

Distributed Submodular
Minimization

5.1 Introduction

Without any doubt, there have been tremendous gains in the efficiency of convex optimization

algorithms over the past century. The fact that one can now routinely solve nonlinear

constrained programs with thousands of variables is not due to advances in hardware alone.

However, there are still domains where the problem is so large that a straightforward

application of optimization algorithms is not practical. This is often due to an abundance of

data; the entire convex optimization problem cannot even be loaded in memory on a single

computer, let be alone solved in a reasonable amount of time. For such problems, the only

option is to develop algorithms that can take advantage of parallel computation. This is a

very active field of research in convex optimization. Given the strong connections between

convex and submodular minimization established in Chapter 3, a natural idea, then, is to

use techniques of distributed convex optimization for distributed submodular minimization.

First, in Section 5.2, we derive a general framework for submodular minimization using

minimization of the Lovász extension with barrier functions. This is not specific to distributed

computation, but it suggests a general technique for developing submodular minimization

algorithms. Then in Section 5.3, we use this framework by applying accelerated first-order

minimization methods to the resulting convex problems to develop submodular minimization

algorithms that can be run in parallel. Finally, in Section 5.5, we give some basic empirical

results of these algorithms on synthetic test problems.
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5.2 Submodular Minimization with General Barrier Functions

In this section, we dissect the different ways one can formulate submodular minimization

as a convex optimization program. Let f be a submodular set function over the set E with

|E| = n. We assume f is normalized, meaning that f (;) = 0. We wish to find a minimizer of

f —any subset of E that achieves the minimal value of f :

f ∗ :=min
A∈2E

f (A) (5.2.1)

Recall that a submodular function f defines a convex function over Rn called the Lovász

extension, which we denote f̃ . It is defined as the support function of the base polytope B f .

That is: f̃ (x) = σB f
(x) =maxλ∈B f

〈x,λ〉. The base polytope is defined by:

B f = {λ ∈ Rn | 〈1,λ〉= f (E), and 〈1A,λ〉 ≤ f (A) for all A∈ 2E }.

Furthermore, minimizing the Lovász extension over the unit cube [0,1]n is equivalent to

minimizing the submodular function in the following sense: given some x∗ ∈ [0,1]n that

minimizes f̃ and any threshold α ∈ (0, 1), the set of components of x∗ greater than or equal

to that threshold must be a minimizer of f . Note that by using an indicator function, we can

express the constrained program of minimizing over the unit cube as an unconstrained convex

program: minx f̃ (x)+δ[0,1]n(x). In the unconstrained program, the unit cube indicator δ[0,1]n

acts as a barrier to ensure that a minimal x exists. Without it, the Lovász extension has

no finite minimizer in general. That is, unless 0 ∈ B f (or equivalently f (E) = f ∗ = 0), we

have infx∈Rn f̃ (x) = −∞. Hence we can consider minimizing f̃ over the unit cube to be a

particular case of a more general technique of minimizing f̃ plus a convex barrier function

φ:

min
x

f̃ (x) +φ(x) (5.2.2)

We refer to Equation 5.2.2 as the primal program. Its corresponding dual program is:

max
λ∈B f

−φ∗(−λ) (5.2.3)

It is not immediately obvious that if we let φ be anything other than the indicator of the unit

cube that solving Equation 5.2.2 will lead to a solution of Equation 5.2.1. Indeed, we do
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need a few conditions beyond convexity to ensure that this is the case. The first three of the

of following Properties will ensure that a minimizer of f can be computed by thresholding a

solution to the primal problem. The fourth Property is only necessary to ensure that solutions

of the dual problem will also give minimizers of f via thresholding.

Properties 5.1. Barrier Function φ with Threshold α

5.1.a The function φ is separable; it can be expressed as a sum of functions each depending

on a single coordinate. This means its conjugate φ∗ is separable as well.

5.1.b All vectors in Rn are subgradients of φ somewhere, which means φ∗ has full domain.

5.1.c At some multiple of the ones vector (α1), the only subgradient of φ is the zero vector.

This means that α1 is a strict subgradient of φ∗ at the origin.

5.1.d [Optional] The function φ is uniquely minimized at α1. This means that α1 is the

unique subgradient of φ∗ at the origin.

In summary:

φ(x) =
∑

e∈E

φe(x[e]) ⇔ φ∗(λ) =
∑

e∈E

φ∗e (λ[e]) (5.2.4a)

⋃

x∈dom(φ)

∂φ(x) = Rn, ⇔ dom(φ∗) = Rn (5.2.4b)

∂φ(α1) = {0} ⇔ φ∗(λ)> 〈α1,λ〉+φ∗(0) for all λ 6= 0 (5.2.4c)

φ(x)> φ(α1) for all x 6= α1 ⇔ ∂φ∗(0) = {α1} (5.2.4d)

For example, φ(x) = δ[0,1]n(x) satisfies Properties 5.1.a through 5.1.c with any α ∈ (0, 1),

but violates Property 5.1.d. The functions φ(x) = 1
2
‖x‖2, −

∑

e∈E log(1− x[e]2) satisfy all the

Properties with α = 0. As counterexamples, note that φ(x) = δ{0}(x) violates 5.1.c, whereas

φ(x)≡ 0 violates b and d, and φ(x) = ‖x‖1 violates b and c.

The purpose of Property 5.1.c is to ensure that the order of the components of the optimal

dual vector are nearly the same as the ordering of the components of the optimal primal

vector. Specifically, we will make use of the following Lemma, whose proof is obvious:

Lemma 5.1. If g is a one-dimensional convex function and ∂g(α) = {β} and y ∈ ∂g(x), then

y < β only if x < α, and y > β only if x > α. Conversely, we have x < α only if y ≤ β , and

x > α only if y ≥ β .
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We will first state what we can conclude about the solutions to Equation 5.2.2 and

Equation 5.2.3 under the weaker assumption that all but the last of Properties 5.1 hold. We

state these results separately but prove them together, because the convex programs are dual

to each other.

Proposition 5.2 (Primal form). Suppose f̃ is the Lovász extension of the submodular function

f , and φ ∈ Conv satisfies Properties 5.1.a through 5.1.c with threshold α. Let x∗ be a minimizer

of Equation 5.2.2. Define the set X++α (resp. X+α ) to be the set of components of x∗ greater than

(resp. greater than or equal to) the threshold α.

X++α := { e ∈ E | x∗[e]> α }

X+α := { e ∈ E | x∗[e]≥ α }
(5.2.5)

Then X+α and X++α are minimizers of f . That is, f (X+α ) = f (X++α ) = f ∗.

Proposition 5.3 (Dual Form). Suppose φ ∈ Conv satisfies Properties 5.1.a through 5.1.c. Let

λ∗ be a maximizer of Equation 5.2.3, wherein B f is the base polytope of the submodular function

f . Define the set Λ−−0 (resp. Λ−0 ) to be the set of components of λ∗ which are negative (resp.

nonpositive).

Λ−−0 := { e ∈ E | λ∗[e]< 0 }

Λ−0 := { e ∈ E | λ∗[e]≤ 0 }
(5.2.6)

Then Λ−0 and Λ−−0 are respectively upper and lower bounds for minimizers of f . That is,

f (A) = f ∗, only if Λ−−0 ⊆ A⊆ Λ−0 .

Proof. Since dom f̃ ∗ is a polyhedron and domφ∗ = Rn, we can apply Fenchel’s Duality

Theorem to the functions f̃ and φ, which gives us:

min
x∈Rn

f̃ (x) +φ(x) =max
λ∈Rn

− f̃ ∗(λ)−φ∗(−λ)

Since f̃ = σB f
, and f̃ ∗ = δB f

, the right hand side is equivalent to Equation 5.2.3. By

Equation 2.1.5, the optimal solutions (x∗,λ∗) of these programs are characterized by:

λ∗ ∈ ∂ f̃ (x∗)∩−∂φ(x∗), x∗ ∈ ∂ f̃ ∗(λ∗)∩ ∂φ∗(−λ∗).

This implies −λ∗[e] ∈ ∂φe(x∗[e]), where φe is the one-dimensional convex function from
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the decomposition φ(x) =
∑

e∈E φe(x[e]). Thus by Lemma 5.1 and Property 5.1.c we have:

e ∈ Λ−−0 ⇔ λ∗[e]< 0 ⇒ x∗[e]> α ⇔ e ∈ X++α

e /∈ Λ−0 ⇔ λ∗[e]> 0 ⇒ x∗[e]< α ⇔ e /∈ X+α

This means that Λ−−0 ⊆ X++α ⊆ X+α ⊆ Λ
−
0 , hence:

λ∗[e]≥ 0 for all e ∈ X+α , λ∗[e]≤ 0 for all e ∈ E \ X++α .

Also note by Equation 3.3.9, we have λ∗ ∈ ∂ f̃ (x∗) ⊆ ∂ f (X+α ). So the set X+α and base λ∗

satisfy the premise of Theorem 3.7, and so X+α must be a minimizer of f . Likewise, since

X++α = X+
β

for some β > α, we can use Equation 3.3.9 to conclude λ∗ ∈ ∂ f (X++α ), and so by

the same argument X++α is a minimizer of f .

To prove Proposition 5.3, we use the same facts we established in the proof of Proposi-

tion 5.2. Namely, since f (X+α ) = f ∗, λ∗ ∈ ∂ f (X+α ), and Λ−−0 ⊆ X+α ⊆ Λ
−
0 , we can bound f (A)

for any A∈ 2E:

f (A)− f ∗ ≥ 〈1A− 1X+α
,λ∗〉=

∑

e∈A\X+α

λ∗[e]−
∑

e∈X+α \A

λ∗[e]

=
∑

e∈A\Λ−0

|λ∗[e]|+
∑

e∈Λ−−0 \A

|λ∗[e]|

Since |λ∗[e]| > 0 for e ∈ E \ (Λ−0 \ Λ
−−
0 ), if either A \ Λ−0 or Λ−−0 \ A is nonempty we have

f (A) > f ∗. Therefore, any minimizer of f must be sandwiched between Λ−−0 and Λ−0 as

claimed.

Note that if no component of λ∗ equals zero, then Λ−−0 = Λ−0 is the unique minimizer of

f . In general though, a solution to the dual problem might only give nonstrict bounds for

minimizers of f . For example, suppose E = {1,2} and f (A) = min(1, |A|). Then A∗ = ; is

the unique minimizer of f and B f = { (θ , 1− θ ) | θ ∈ [0,1] }. Suppose we use the barrier

function φ = δ[0,1]2 . Then φ∗(−λ) = σ[0,1]2(−λ) = 0 for all λ ∈ B f . If we take λ∗ = (1,0),

then Λ−0 = {2}, which is not a minimizer of f . (This does not contradict the Theorem since

Λ−−0 = ;, hence Λ−−0 ⊆ A∗ ⊆ Λ−0 .) Likewise, it is also possible to construct an example

where Λ−−0 is not a minimizer. Consider an example identical to the previous one except
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that f (A) = min(1, |A|) − |A|. In this case, A∗ = {1,2} is the unique minimizer of f , and

λ∗ = (−1,0) is maximal for Equation 5.2.3. But then Λ−−0 = {1} is not a minimizer of f .

Finally, note that if we take the direct product of these two examples, then we get a case

where Λ−−0 ( A∗ ( Λ−0 .

These counterexamples are due to the fact that if φ does not have a unique minimizer,

we do not have a strong enough condition on the components x∗[e] for which λ∗[e] = 0.

However, when φ is is uniquely minimized at α1, then the primal and dual problems give

identical results.

Theorem 5.4. Suppose φ ∈ Conv satisfies Properties 5.1. Let x∗ be a minimizer of Equa-

tion 5.2.2 and use it to define X++α , X+α as in Equation 5.2.5. Let λ∗ be a maximizer of Equa-

tion 5.2.3 and use it to define Λ−−0 ,Λ−0 as in in Equation 5.2.6. Then X++α = Λ−−0 is the unique

minimal minimizer of f , and X+α = Λ
−
0 is the unique maximal minimizer of f .

Proof. The hypothesis of the Theorem is identical to the Propositions, with the additional

assumption that Property 5.1.d holds. This extra condition implies 0 /∈ ∂φe(x) for x 6= α.

Hence:

−λ ∈ ∂φe(x)⇒























x < α ⇔ λ > 0

x = α ⇔ λ= 0

x > α ⇔ λ < 0

Thus, since −λ∗ ∈ ∂φ(x∗), we must have X++α = Λ−−0 and X+α = Λ
−
0 . The theorem then

follows immediately from the conclusions of Proposition 5.2 and Proposition 5.3.

Discussion The implication of this result is that we have a great deal of flexibility in how we

can solve Equation 5.2.1 through convex optimization. Any barrier function which satisfies

the conditions of the theorem can be used.

Properties 5.1 are, in some sense, necessary for the conclusions of the Theorem to hold.

Clearly B f must be contained in domφ∗, and Property 5.1.b is needed to ensure this is true

for all submodular functions f . Because Property 5.1.d is not necessary to find a minimizer

of f with the primal problem, one might suspect by symmetry that Properties 5.1.a, b and

d would be sufficient to find a minimizer of f with the dual problem. This is not the case,

however. For example, if we tried to use φ(x) = ε‖x‖1 +
1
2
‖x‖2, and B f ⊆ [−ε,ε]n, then we
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would have x∗ = 0, and λ∗ an arbitrary point in B f , so solving this convex program would

tell us nothing useful about the the submodular minimization problem.

Note that we define the Lovász extension to be the support function of the submodular

polytope B f rather than the submodular polyhedron Pf . Using the base polytope is strictly

more general in the following sense: the Theorem still holds with Pf used in place of B f ,

provided that the threshold α > 0. To see this, first note that σPf
= σB f

+ δRn
+
. Hence

minimizing σPf
+ φ1 is equivalent to minimizing σB f

+ φ2, where φ2 = φ1 + δRn
+
, and

φ∗2 = φ
∗
1 �δRn

−
. Then φ2 satisfies Properties 5.1 if and only if φ1 does with α > 0.

5.3 Consensus Algorithms for Submodular Minimization

5.3.1 Notation

Using convex analysis, we can develop consensus algorithms for submodular minimization.

In particlar, suppose our submodular functions can be reprsented as a sum of a modular

function plus M submodular functions, each of which depends on a subset of the ground set.

min
A

c(A) +
M
∑

i=1

fi(A∩ Ei)

The assumption that each subfunction fi depends only on a subset of the variables confers

no loss of generality, since we can just take each Ei to be the full ground set E if necessary.

However, it can lead to a substantially more efficient algorthm (in time and memory) in the

case where the average coverage 1
M

∑M
i=1 |Ei|/|E| is small.

By Theorem 5.4, we can minimize f by computing the proximal operator of the Lovász

extension f̃ :

min
x∈Rn

1

2
‖x‖2 + 〈x,c〉+

∑

i

f̃i(Pix)

Here the projection matrices Pi select out the coordinates corresponding to the sets Bi . That

is, for d ∈ Ei, e ∈ E, Pi[d, e] = [[d = e]]. Then by forming the Langragian we get the dual

problem:

max
λi

min
x,xi

1

2
‖x‖2 + 〈x,c〉+

∑

i

f̃i(xi) +λ
T
i (Pix− xi)
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max
λi

−
1

2
‖c+

∑

i

PT
i λi‖2 −

∑

i

f̃ ∗i (λi)

The dual functions f̃ ∗i are indicactor functions of the corresponding base polytopes B fi
. We

scale and concatenate the λi into a single vector z of size N =
∑M

i=1 |Ei|

λi = SiQiz ∈ Rn

R=
∑

i

PT
i SiQi

The projection matrices Qi select out the appropriate coordinates of z and we choose the

scales Si so that the matrix R is a projection R2 = R. So then the problem can be written in a

form with a single vector variable:

min
z∈RN

1

2
‖c+Rz‖2 (5.3.1)

SiQiz ∈ B fi
for i = 1. . . M

Note that any feasible z gives us a base vector for f : λ = c + Rz ∈ B f . We then apply

accelerated gradient methods to this formulation to derive algorithms. However, in the

implementations we maintain the vectors λi separately, because that is how we parallelize.

5.3.2 Outline of Algorithms

Note that Equation 5.3.1 is in a form to which we can simply apply standard first order

methods to it. We implemented and tested three different first order methods:

1. Proximal Gradient

2. Accelerated Proximal Gradient (FISTA)

3. Proximal Gradient with Barzilai-Borwein stepsizes

The last technique simply applies proximal gradient, but uses aggressive stepsizes. The idea is

that if Lk is an estimate of the Lipschitz constant used in the algorithm, O(1/k2) convergence

is guaranteed if we ensure that our updates satisfy:

Lk ≥
‖R(zk+1 − zk)‖2

‖zk+1 − zk‖2
(5.3.2)
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Here R is the hessian of our objective function. A conservative option to guarantee con-

vergence is to backtrack whenever a constraint is violated; that is, discard the update zk+1,

increase Lk and project again. It is then difficult to achieve a balance between making sure

the stepsizes are large enough, but not to waste too many updates backtracking. Instead by

using Barzilai–Borwein stepsize, we simply set Lk+1 to be equal to quantity on the right-hand

side of this Equation 5.3.2 for step k. The overall behavior is to take large steps when the

projection is preventing progress in the objective, at the expense of ocasionally overstepping.

This results in non-montonic convergence.

Accelerating the Min-Norm Algorithm. Can we use accelerated methods even when there

is no algorithm for projection onto the submodular polytope? We outline a procedure that

has worked well in some limited experiments. The problem is to maximize −‖
∑

λi‖2 subject

to λi ∈ B fi
. Initially let λ̂

0
i = λ

0
i .

1. gk = −
∑

i λ̂
k
i

2. Choose descent directions by maximizing the first order approximation of the objective

with the greedy method: yk
i = arg maxy∈B fi

(y− λ̂k
i )

T gk.

3. Find coefficients β k
i through box-constrained least squares:

min
βi∈[0,1]

1

2
















∑

i

βiy
k
i + (1− βi)λ̂

k
i
















2

.

4. Update the vectors using an accelerated update rule: λk+1
i = β k

i yk
i + (1 − β

k
i )λ̂

k
i ,

λ̂i
k+1
= λk+1

i + (αk−1)
αk+1

(λk+1
i −λk

i ), αk+1 =
1+
q

1+4α2
k

2
.

5. Repeat until convergence criterion is met.

In our experiments, we use another accelerated gradient method to find the β k
i in step 3.

Unfortunately, the vectors λ̂i actually can leave the constraint set, although this appears to

actually speed convergence.
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5.4 Fast Proximal Threshold Potentials

The general principle of our consensus algorithms is to combine simple submodular functions

for which projection onto the base polytope is efficient in order to project onto the base

polytope of the sum. One class of functions for which projection is efficient are threshold

potentials, introduced in Section 4.3. To review, a threshold potential is a positive modular

function truncated at some treshold: f (A) =min(τ,w(A)), where w≥ 0 and 0< τ <w(E).

The base polytope for such a function is given by the intersection of a box with a plane:

B f = {λ ∈ Rn | 〈1,λ〉= τ, 0≤ λ≤w }. In this section, we outline two algorithms for the

general problem of projecting onto a box-plane intersection (not necessarily a base polytope).

The first method requires sorting the components of the vector to be projected, but is simple

to implement. Our second method is a randomized algorithm that runs in expected linear

time.

5.4.1 General Plane Intersection Projection

The following proposition will be useful for the characterization of projections onto convex

subsets of planes. It suggests a general method for computing the projection of a single plane

intersected with any convex set.

Proposition 5.5. Let C be any closed convex set in Rn, and P be the plane given by 〈x,a〉= b.

Then, for t ∈ R,

〈ΠC(x+ ta),a〉= b⇔ ΠC(x+ ta) = ΠC∩P(x) (5.4.1)

Proof. The backward direction of the proposition is obvious, since ΠC∩P(x) ∈ P. To prove

the forward direction, we use the following facts:

• If C is any convex set, then y= x−ΠC(x) implies that ΠC(x+ y) = ΠC(x).

• If P is a plane normal to the vector a, then ΠP(x+ a) = ΠP(x).

• If C1, C2 are any convex sets, then z = ΠC1
(x + λ) = ΠC2

(x − λ) implies that z =

ΠC1∩C2
(x). (This is a special case of Proposition 2.2.)

To prove the proposition we use λ = x+ ta−ΠC(x+ ta), and by the above facts ΠC(x+λ) =

ΠP(x−λ) = ΠC(x+ ta) = ΠC∩P(x).
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How can we interpret the proposition? Suppose we start at a point x, move in the

direction normal to the plane for some distance, and then project onto C . If the resulting

point is on the plane, then it must be the projection of x onto the intersection of the plane

with C . Therefore to calculate the projection, it is a matter of finding this correct distance.

We conclude that if a convex set C is easy to project onto, this allows us to project almost

as easily onto C ∩ P. In some cases, this will give a closed form formula. For example, when

C itself is an intersection of planes, then this reduces to the matrix inversion problem of

underdetermined least squares. But if there is no closed form solution, then we can at least

say that the Proposition reduces the problem of a multi-dimensional optimization problem

to a 1-dimensional root finding problem. If we let ρ(t) = 〈ΠC(x+ ta),a〉, then we can use

any numerical root-finding method to solve ρ(t∗) = b. Of course, in order for this to work,

the projection ΠC must be computationally inexpensive to compute.

5.4.2 Box-Plane Projection Algorithms

For the particular case of Proposition 5.5 in which we are interested, the convex set C is

a box: {x ∈ Rn | `≤ x≤ u }. This is, of course, an extremely simple set to project onto.

Each component of a vector to be projected need only be compared to the boundaries of

the box and adjusted accordingly. That is, ΠC(x) =max(`,min(u,x)). As a consequence of

the Proposition, we can project onto a box-plane intersection easily, provided that we can

efficiently solve the following equation:

〈max(`,min(u,x+ t∗a)),a〉= b (5.4.2)

Once the satisfying value t∗ is known, the projected point is given by:

ΠC∩P(x) =max(`, min(u,x+ t∗a)) (5.4.3)

Though we could use a general numerical method to find the root of Equation 5.4.2, we can

do better with a routine specialized for this particular problem. In this case, the function

ρ(t) is monotonic and piecewise linear, which we can write as:

ρ(t) = −b+ 〈a, max(`, min(u,x+ t∗a))〉
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Algorithm 5.1: Projection onto a Box Intersecting a Plane
Input: Vectors `,u,a,x ∈ Rn, scalar b, where

C := {y ∈ Rn | `≤ y≤ u, 〈x,a〉= b } 6= ;.
begin

P ← ; ;
for i← 1 to n do

if a[i] 6= 0 and `[i]< u[i] then
s← a[i]2 sign(a[i])/2;
t`← (`[i]− x[i])/a[i];
tu← (u[i]− x[i])/a[i];
P ← P ∪

��

s, t`
�

,
�

−s, tu

�	

;
r ←−b+ 〈`+ u,a〉/2 ;
t∗← PLM Root(0, r, P);
y∗←max(`, min(u,x+ t∗a));

Output: y∗ = ΠC(x).

= r +
∑

(si ,t i)∈P

si|t − t i|. (5.4.4)

The formulas for the breakpoints t i, slopes si, and offset r in terms of the problem data

(`,u,a, b,x) are derived through simple algebraic manipulation; we thus list them in Algo-

rithm 5.1 without further comment. Now the problem has been reduced to finding the

root of a function of the form in Equation 5.4.4. There are at least two ways to handle this

subproblem. Our first suggestion: sort the breakpoints t i; then evaluate each value ρ(t i) in

sequence until bracketing the root to an interval where ρ is linear; finally, solve the locally

linear equation for the root t∗. This requires O(n log n) operations for the sort and O(n)

operations on the sorted data. The details of this procedure are listed as Algorithm 5.2.

(Note that if we use Algorithm 5.2 within Algorithm 5.1, we can skip the first for loop and

set q̃← 0 and r̃ ←−b+ 〈min(` • a,u • a),1〉.)

Alternatively, we can use a randomized algorithm to find the root that runs in expected

O(n) operations. The earliest publication of this idea is in [PK90], but we were inspired by

the more recent article [DSSSC08] for linear-time projection onto the `1 ball in a machine

learning context. The principle behind this algorithm is the same as that of finding a quantile

of a list of numbers in O(n) operations. We randomly choose breakpoints as pivots, eliminating

a fraction of the data from consideration at each iteration. We do this by simplifying the

description of the input function in the range that the root must lie. That is, given input

parameters q, r, s, t i, we keep track of q̃, r̃ and a subset of indices Ĩ such that for all t near
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Algorithm 5.2: PLM Root: Sorted Version

Input: Piecewise Linear Monotonic Function ρ(t) = qt + r +
∑

i si|t − t i|, represented
by: Scalars q, r, List of ordered pairs P = {(si, t i)}i, sorted so that t i ≤ t i+1.

begin
q̃← q; r̃ ← r;
for i = 1 to |P| do

q̃← q̃− si ;
r̃ ← r̃ + si t i ;

t ← 0;
for i = 1 to |P| do

r̃ ← r̃ + q(t i − t);
t ← t i;
if r̃ ≥ 0 then stop;
;
q̃← q̃+ 2si ;

if q̃ 6= 0 then
t ← t − r̃/q̃;

Output: t satisfying ρ(t) = 0

the root of the function we have:

qt + r +
∑

i∈I

si|t − t i|= q̃t + r̃ +
∑

i∈ Ĩ

si|t − t i|

The details of this are shown in Algorithm 5.3.

5.5 Experiments

Since we can easily compute the proximal operator for a threshold potential, we use our

algorithms to minimize a sum of threshold potentials. We tested on a synthetic problem

designed to mimic semi-supervised learning. Given n points in some metric space, we define

weight vectors: w[ j] = w0 exp(−d(i, j)/d0)2) where d(i, j) is the distance between i and j,

and w0 and d0 are model parameters. Then given a vector of partial (possibly noisy) labels

c ∈ {−1,0,+1}, we minimize the following to classify the points:

f (A) = c(A) +
∑

i

min(wi(A),wi(E \ A))

See Figure 5.1 for an example of a problem. Figure 5.4 and Figure 5.3 show examples of

program output using two of our techniques (FISTA and the Barzilai–Borwein proximal
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Algorithm 5.3: PLM Root: Unsorted Version

Input: Piecewise Linear Monotonic Function ρ(t) = qt + r +
∑

i si|t − t i|, represented
by: Scalars q, r, Unsorted list of ordered pairs P = {(si, t i)}i.

begin
q̃← q; r̃ ← r; P̃ ← P;
while P̃ 6= ; do

Choose (s0, t0) at random from P̃ ;
dq`← 0; dr`← 0; P`← ;;
dqu← 0; dru← 0; Pu← ;;
for (si, t i) ∈ P̃ do

if t i > t0 then
Pu← Pu ∪

�

(si, t i)
	

;
else

dqu← dqu + si;
dru← dru − si t i;

if t i < t0 then
P`← P` ∪

�

(si, t i)
	

;
else

dq`← dq` − si;
dr`← dr` + si t i;

v0← (q̃+ dqu + dq`)t0 + r̃ + dru + dr` ;
if v0 < 0 then

q̃← q̃+ dqu;
r̃ ← r̃ + dru;
P̃ ← Pu;

else if v0 > 0 then
q̃← q̃+ dq`;
r̃ ← r̃ + dr`;
P̃ ← P`;

else
t ← t0;
stop while;

if P̃ = ; then
t ←−r̃/q̃ ;

Output: t satisfying ρ(t) = 0
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Figure 5.1: Example Synthetic Semi-Supervised Learning Problem. 10000 total points. 90
labeled points.

gradient). Note the nonmonotonic convergence of the latter method. In Figure 5.2, we show

the results dividing up the number of potentials across different simulated processors to

examine the effect of parallelization. Since the main bottleneck of implementation is the

computing the projections, which parallelizes perfectly across processors, we see close to

ideal speedup times.
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Figure 5.2: Speedup on example problem with 10000 total points using Proximal Gradient
with Barzilai–Borwein stepsizes,
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75

Chapter 6

Learning Fourier Sparse Set
Functions

6.1 Introduction

Suppose we wish to sketch the evolution of a massive network: we are given a sequence of

networks, where between each step, only few edges get added or removed. Can we compute

a small number of statistics, which allow, in hindsight, to reconstruct which edges got added

or removed, without storing the entire network? In this chapter, we show that this is possible

by observing and storing a small number of random cuts and their values.

Formally, we consider the problem of learning a set function f (mapping subsets of some

finite set E of size n to the real numbers) by observing its value on a few sets. Without

observing any structure, we clearly need an exponential (in n) number of observations to

approximate the function well over all sets, so we need an appropriate regularity condition.

To that end, we consider the situation where f is smooth in the sense of having a decaying

Fourier (Hadamard-Walsh) spectrum. One natural example of this is the cut function of a

(possibly directed) graph, or generalized additively independent (GAI) functions [Fis67],

that decompose into a sum of local terms.

By leveraging recent results from sparse recovery [Ver12], we show that if the function is

sparse in the Fourier domain, having at most k nonzero coefficients, and support contained

in a known collection P of size p, then it is possible to efficiently recover the function exactly

from very few samples. In particular, suppose we pick O(k log4
�

p
�

) sets uniformly at random.

Then with very high probability (over this random choice), observing the values of the

function on these sets is sufficient to exactly reconstruct it.
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Besides decaying Fourier spectrum, many set functions encountered in practice satisfy

additional properties. In particular, we consider submodular functions, which form a natural

discrete analogue of convex functions [Lov83]. Submodularity is satisfied by numerous

set functions encountered in practice, such as the cut function in graphs [Sch03], entropy

[KK80], mutual information [KSG08] etc. The problem of learning submodular functions

has received considerable attention recently [GHIM09, BH11]. However, approximating a

submodular function by a factor better than
p

n/ log n uniformly over all sets requires an

exponential number of function evaluations, even if those can be adaptively chosen [GHIM09].

We show that submodularity implies certain structure in the Fourier domain, which can be

exploited to reduce the number of required samples even further.

Besides allowing us to sketch the evolution of large graphs by observing the value of a few

random cuts, as mentioned above, our results show that practically relevant set functions, such

as certain valuation functions, a fundamental concept in economics capturing substitutability

of certain products, can be efficiently learned from few examples. Another natural application

is in speeding up submodular optimization: standard algorithms assume that the function f

is presented by an oracle, which evaluates f on any set. In general, evaluating f can be very

costly (requiring the solution of a large linear system, or perform large-scale simulations). In

such a setting, if f is Fourier-sparse, we can approximate it compactly using a small number

of random sets, and then optimize the compact representation instead.

In summary, our main contributions are:

• We show that it is possible to learn Fourier k-sparse set functions exactly using

O(k log4
�

p
�

) random samples. This reconstruction is robust to noise.

• We show that properties such as symmetry and submodularity of f imply structure

in the Fourier domain, which can be exploited to obtain further reduction in sample

complexity.

• We demonstrate our algorithm on a problem of sketching the evolution of a graph, and

on approximate submodular optimization.
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6.2 Background

Recall that we define H = R2E
to be the space of set functions with ground set E, which

is of size n. Suppose we are given the value of a set function f ∈H on some collection of

subsets. For now, let us assume that these observations are noise free – we will relax this

condition later. Under what conditions can we hope to recover f ? Clearly, without any

assumptions about f , we need an exponential number (in n) of samples in order to obtain

exact reconstruction. However, if f is smooth in some way, we may hope to do better. Similar

to continuous functions, a natural smoothness condition is decaying Fourier spectrum.

6.2.1 The Fourier transform on set functions.

Set functions can equivalently be represented as real-valued functions of boolean vectors,

known as pseudoboolean functions. Just as the set of boolean vectors {0,1}n forms the

commutative group Zn
2 under addition modulo 2, the power set 2E forms an equivalent group

under the operation of symmetric set difference: A	 B := (A\ B)∪ (B \ A). So the space H

has a natural Fourier (also called Hadamard-Walsh) basis, and in our set function notation

the corresponding Fourier basis vectors, or Fourier modes, are defined as:

ψB(A) := (−1)|A∩B|.

The space H is endowed with the standard inner product: 〈 f , g〉 := 2−n
∑

A∈2E f (A)g(A). The

Fourier transform of a function is given by its inner products with Fourier modes:

bf (B) := 〈 f ,ψB〉= 2−n
∑

A∈2E

f (A)(−1)|A∩B|.

Note that the sum in this definition has exponentially many terms, so it is not practical

to evaluate directly. As with any orthonormal basis, we have a reconstruction formula:

f (A) =
∑

B∈2E bf (B)ψB(A).

The Fourier support of a set function is the collection of subsets with nonzero Fourier

coefficient: Supp[bf ] := {B ∈ 2E | bf (B) 6= 0 }. Given a collection of subsets P ⊆ 2E , let

HP := { f ∈H | Supp[bf ] ⊆ P } be the subspace with Fourier support contained in P. We

assume we have some a priori knowledge about the Fourier support which gives a natural
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choice for P. We discuss this in further detail in Section 6.4, but for now assume P is some

known collection of polynomial size. One illustrative example is the collection of sets of size

q or less: Pq := {B ∈ 2E | |B| ≤ q }. As it is particularly important, we denote this function

space, consisting of all functions of order q or less, by the symbol Hq. The number of free

parameters is p =
∑q

j=0

�n
j

�

, which is not too large when q = 2.

Now with P fixed, suppose we restrict ourselves to f ∈ HP. Can we recover f with a

subexponential number of samples? In the next section, we show that if the Fourier support

is small, then this is indeed possible by leveraging recent results from sparse reconstruction.

6.3 Conditions for Recovery

Since a set function is uniquely determined by its Fourier transform, recovering a Fourier-

sparse function can be thought of as recovery of a sparse vector in R2n
. For large n, even

representing such vectors will be intractable. However, if we know that the Fourier support

of a function is contained in P, then, instead, we treat bf as a sparse vector in Rp. We will

show that it is possible to uniquely recover any f ∈HP with |Supp[bf ]| ≤ k by observing the

values fM (with high probability over the choice of measurement sets M), provided that

m= O(k log4(p)).

Matrix vector notation. In the problems that we consider, we observe the function f

evaluated on sets from a measurement collection M = {Ai} of size m. We arrange these

measurements in a vector fM ∈ Rm, where fM[i] := f (Ai) for i = 1 . . . m. Note the bold

typeface used to distinguish vectors from set functions. Furthermore, we will assume that the

Fourier support is contained in a known potential support collection P= {B j} of size p. We

denote f̂P ∈ Rp for the the corresponding vector of Fourier coefficients, where f̂P[ j] := bf (B j)

for j = 1 . . . p. Lastly, we denote ΨM,P for the m× p matrix which relates the two vectors,

ΨM,P[i, j] :=ψB j
(Ai) = (−1)|Ai∩B j |. (6.3.1)

Then for f ∈HP we have:

fM =ΨM,P f̂P. (6.3.2)
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So recovery of f is equivalent to recovery of a sparse vector from linear measurements.

Restricted Isometry. The problem of finding a k-sparse vector from an underdetermined

linear system has received significant attention in the context of compressive sensing [CRT06,

Don06]. A sufficient condition for recovery is that the sensing matrix satisfies a key property,

the Restricted Isometry Property (RIP). In order to ensure that our measurement matrix ΨM,P

satisfies this property, we simply choose the measurement sets M= {A1, . . . , Am} uniformly

at random. Then, as we will see below, results in random matrix theory imply that with

high probability (for any fixed P), the measurement matrix indeed satisfies RIP. This insight

opens up a vast collection of tools from compressive sensing for the purpose of recovering

set functions.

The idea behind RIP is that a matrix acts approximately as an isometry on sparse vectors.

Specifically, suppose for some sparsity level k and δ ≥ 0 we have:

(1−δ)‖x‖2 ≤ ‖Φx‖2 ≤ (1+δ)‖x‖2 for all x ∈ Rp with Supp[x]≤ k (6.3.3)

We define δk(Φ) as the smallest value of δ such that Equation 6.3.3 holds. An easy conse-

quence of this definition is that the linear measurement vector y = Φx0 uniquely determines

any k-sparse x0 if and only if δ2k < 1. Furthermore, with a stronger assumption on the

isometry constants, the original vector can be recovered by solving a convex optimization

problem:

min
x∈Rp

‖x‖1, Φx= y (6.3.4)

Originally, [CT05] showed that Equation 6.3.4 recovers any k-sparse x0 if δ3k + 3δ4k < 2,

but this condition has been weakened several times, most recently in [Fou10], which gives

the condition δ2k (Φ)< 3/(4+
p

6)≈ .465. Furthermore, as discussed below, this result can

be generalized to noisy measurements.

Main Reconstruction Result As discussed above, RIP is a very powerful property, but it is

not easy to check that any given matrix satisifies it. In fact, most constructions are based

on choosing measurements with randomness and then calculating the likelihood of RIP.

Perhaps the simplest such case is for random matrices with independent subgaussian entries.

However, in our case, we are randomly sampling rows from an orthonormal matrix with
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bounded entries. Fortunately, as shown Rudelson and Vershynin [RV08] [Ver12], even in this

setting, as long as m= O(k log4(p)), the expectation of the kth RIP constant is small. More

recently, [Rau10] demonstrated that RIP for such matrices holds with high probability. Our

result below is essentially Theorem 4.4 of [Rau10] as applied to our case of set functions.

Theorem 6.1. For a fixed collection P = {B j}
p
j=1 ⊂ 2E , suppose a measurement collection

M = {Ai}mi=1 ⊂ 2E is chosen by selecting the sets Ai uniformly at random. Define the matrix

ΨM,P ∈ Rm×p as in Equation 6.3.1. Then there exist universal constants C1, C2 > 0 such that if

k ≤ p/2, and m≥max(C1k log4(p), C2k log(1/δ)), except for an event of probability no more

than δ, the following holds for all f ∈HP:

For any noise level η≥ 0 and any noisy vector of measurements y ∈ Rm within that noise

level: ‖y − fM‖2 ≤ η, suppose g ∈HP has Fourier transform vector ĝP ∈ Rp given by :

ĝP = arg min
x∈Rp

‖x‖1, ‖y−ΨM,Px‖2 ≤ η. (6.3.5)

Then the following bound holds for some universal constants C3, C4:

‖ f − g‖2 ≤
C3p

k
µk (̂f) +

C4p
m
η, (6.3.6)

where the quantity µk(·) is defined as the `1 error of the best k-sparse approximation.

µk(x) := min
Supp(z)≤k

‖x− z‖1 (6.3.7)

In particular, if f̂P is k-sparse and η= 0, then g = f .

Therefore, we obtain a strong guarantee for efficiently (using convex optimization)

learning Fourier-sparse set functions, robust against measurement noise. Note that, up to

log factors, this matches lower bounds of [CJK11], who show that Ω(k log n) measurements

are necessary for recovery of a k sparse function in Hq with q fixed.

6.4 Classes of Set Functions

In general, p is superlinear in n, so even though Equation 6.3.4 is equivalent to a Linear

Program, it will not necessarily lead to an efficient recovery algorithm. In the extreme case,
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if P= 2E , then even calculating a single matrix-vector product ΨT
M,Py is difficult. So even

though the recovery guarantees of Theorem 6.1 apply to arbitrary collections P, we need to

make some further assumptions about our function to get a practical algorithm for recovery.

6.4.1 Symmetric functions.

One natural structural property, obeyed by set functions commonly arising in practice, is

symmetry. That is, for all sets A it holds that f (A) = f (E \A). Examples of functions satisfying

this property are the cut function in undirected graphs, as well as the mutual information,

both considered in our experiments (cf. Section 6.6). It turns out that symmetry already

implies interesting structure in the Fourier domain:

Proposition 6.2. Let f be a symmetric set function. Then for all sets B of odd cardinality, it

holds that bf (B) = 0.

Therefore, symmetry already implies that we can restrict P only to sets of odd cardinality.

6.4.2 Low order functions.

In 3.2.2, we defined the subspace Hq of order q functions. The following characterizations

are all equivalent:

Properties 6.1. Low Order Characterizations

1. ∆B f (A) = 0 for all A, B ∈ 2E with |B|> q.

2. bf (B) = 0 for all B ∈ 2E with |B|> q.

3. f (A) =
∑

B [[B ⊆ A, |B| ≤ q]]∆B f (;) for all A∈ 2E .

4.
∑

J⊆{0,1...q+1}
0∈J

(−1)|J | f
�

	i∈JAi

�

= 0, for all A0, A1 . . . Aq+1 ∈ 2E .

5. There exist gi ∈H and |Bi| ≤ q such that f (A) =
∑

i gi(A∩ Bi) for all A∈ 2E .

Many set functions f are low-order, or well-approximated by a low-order function.

Recovery of an order 1 function is equivalent to classical compressed sensing with a Bernoulli

measurement matrix (assuming we ignore the constant offset f (;)). Recovery of a symmetric

order 2 function can be thought of as recovering a graph from values of a cut function,

a problem which received considerable interest, partly due to several problems arising in



82

computational biology [ABK+04, GK00, CK10]. We can see the correspondence as follows:

given a weighted undirected graph, defined by a matrix of edge weights W, define the

symmetric cut function over sets of vertices of the graph:

φW (A) :=
∑

u∈A,v /∈A

W [u, v]. (6.4.1)

Then the Fourier transform can be computed explicity:

ÒφW (B) =























1
2

∑

u,v W [u, v], B = ;

−1
2
W [u, v], B = {u, v}

0, otherwise.

(6.4.2)

Hence there is a simple linear correspondence between weights of a graph and the 2nd order

Fourier coefficients of φW. Clearly, this correspondence works in reverse, i.e., given any

symmetric 2nd order function f , there is a unique graph such that f (A)− f (;) = φW(A). In

the general case, functions in Hq can be thought of as cut functions of hypergraphs of degree

q, as considered in [BM10].

6.4.3 Submodular functions.

Another structural property exhibited by many set functions of practical importance is

submodularity, a natural discrete analogue of convexity [Lov83]. We present a definition of

submodular functions emphasizing the Fourier transform. The shift operator and discrete

difference operator are eigenfunctions of the Fourier transform. The shift operator applied

to a Fourier mode is SBψC(A) =ψC(B)ψC(A), and the discrete difference of a Fourier mode

is ∆BψC(A) = [[B ⊆ C]] (−2)|B|ψC(A). Submodular functions are those with nonnegative

second order differences: ∆B f (A)≤ 0 where A and B are disjoint, and B is a set of size two.

We can drop the restriction that A and B are disjoint by multiplying by the corresponding

Fourier mode, giving us following characterization of the cone of submodular functions:

H−2 = { f ∈H |ψB(A)∆B f (A)≤ 0 for all A, B ∈ 2E , |B|= 2 }.
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While submodularity does not immediately restrict the set P of candidate supports, it immedi-

ately implies dependence among the Fourier coefficients, (a subset of) which can be encoded

as constraints in the convex program solved during recovery. In particular, submodularity

can be characterized in the Fourier domain. By using Equation 3.2.5 to express a second

order difference as a sum of Fourier coefficient, we see that f is submodular if and only if for

all |B|= 2 and A⊆ E \ B:

bf (B) +
∑

C∈2E

[[B ( C]] bf (C)ψC(A)≤ 0 (6.4.3)

Checking submodularity is no easier in the Fourier domain; it still requires checking at least

2n−2
�n

2

�

inequalities. However, we can get a necessary condition for submodularity.

Proposition 6.3. For all f ∈H−2 , and |B|= 2, B ( C,

bf (B) + |bf (C)| ≤ 0. (6.4.4)

Proof. Given a particular C1 such that B ( C1, let Q := {A∈ 2E |ψC1
(A) = sign(bf (C1)) }. By

summing Equation 6.4.3 over all A∈Q, we have:

∑

A∈Q

�

bf (B) +
∑

C∈2E

[[B ( C]] bf (C)ψC(A)
�

≤ 0

|Q| bf (B) +
∑

C∈2E

[[B ( C]] bf (C)
∑

A∈Q
ψC(A)≤ 0 (6.4.5)

Fix a set C2 from the inner sum of Equation 6.4.5. We claim if C1 6= C2, then there is some

set D such that A ∈ Q ⇔ A	 D ∈ Q, and ψC2
(A) = −ψC2

(A	 D), so
∑

A∈QψC2
(A) = 0 by

symmetry. To construct a set D which will satisfy the claim, at least one of the following two

possibilities must work:

1. Choose any c ∈ C2 \ C1, and let D = {c}

2. Choose any b ∈ B, and c ∈ C1 \ C2, and let D = {b, c}

In summary, we have:

∑

A∈Q
ψC2
(A) =











0 if B ⊆ C2 and C2 6= C1

|Q| sign(bf (C1)) if C2 = C1
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Thus Equation 6.4.5 reduces to |Q| bf (B)+ bf (C1)|Q| sign(bf (C1))≤ 0, which is then equivalent

to Equation 6.4.4 as desired.

This has an immediate simple implication about the support of a submodular function:

Corollary 6.4. For f ∈H−2 , if C ∈ Supp[bf ], then B ∈ Supp[bf ] for all B ⊂ C with |B|= 2.

Besides providing some intuition about the Fourier support of submodular functions,

Equation 6.4.4 gives a relatively simple convex constraint that can be incorporated into our

recovery program. In general, adding any valid convex constraint can never increase our

recovery error (a simple consequnce of convexity), and in practice it often decreases it.

There is another such useful constraint for any function which is low order in addition to

being submodular. We can fully characterize third order submodular functions in terms of
�n

2

�

inequalities.

Proposition 6.5. For all f ∈H3, then f ∈H−2 if and only if for all |B|= 2:

bf (B) +
∑

e∈E\B

|bf (B + e)| ≤ 0. (6.4.6)

Proof. For third order submodular functions, Equation 6.4.3 reduces to the following, which

must hold for all |B|= 2 and A⊆ E \ B:

bf (B) +
∑

e∈E\B

bf (B + e)ψB+e(A)≤ 0 (6.4.7)

To show that Equation 6.4.6 is necessary for submodularity, apply Equation 6.4.7 to the set

A∗ = { e ∈ E \ B | bf (B + e)< 0 }. By construction, we have:

bf (B + e)ψB+e(A
∗) = |bf (B + e)|

And this implies Equation 6.4.6. For the converse statement, note that A∗ is the choice of

A that maximizes the left-hand side of Equation 6.4.7. That is, for all A ⊆ E \ B, we have

bf (B + e)ψB+e(A)≤ |bf (B + e)|, which means that Equation 6.4.6 implies Equation 6.4.7.

Similarly, for fourth order submodular functions, we can get a necessary but not sufficient



85

condition which is stronger than Equation 6.4.4. For all f ∈H4 ∩H−2 and |B|= 2, we have:

bf (B) + |bf (B + s)± bf (B + t)| ± bf (B + s+ t)≤ 0

The problem of recovering a submodular function has been studied in [CKKL12] through

noise stability. One consequence of this property is that for any submodular function we

have:
∑

B∈2E

[[|B| ≥ 2, |B| even]] bf (B) +

 

∑

B∈2E

[[|B| ≥ 2]] (|B| − 1) bf (B)2
!1/2

≤ 0

6.5 Reconstruction Algorithms

In Section 6.3, we have shown that the problem of learning Fourier-sparse set functions can

be reduced to the Compressed Sensing paradigm of recovery of a sparse vector from RIP

measurements. This insight allows us to open up a cornucopia of algorithms that have been

developed for this setup [TW10]. In particular, several greedy algorithms such as Orthogonal

Matching Pursuit can explicitly take advantage of RIP to guarantee recovery, as shown in

[Tro04]. For our experiments, we take the approach of convex optimization. Rather than

solving Equation 6.3.4 exactly, we minimize the Lagrangian formulation so that we can apply

an accelerated proximal method such as that of [AT06],

min
x∈Rp

‖x‖1 +
1

2µ
‖ΨM,Px− y‖2. (6.5.1)

In our experiments, we use the toolbox TFOCS [BCG11], which requires only that we supply

a method to apply ΨM,P and ΨT
M,P. In the case of second order set functions, we do not

need to store the entire m × p matrix, and there is a formula that only requires O(mn)

storage. Let ΨM,q :=ΨM,Pq
be the subsampled m×

�n
q

�

Fourier matrix where the columns

correspond to the sets of size q. So the matrix ΨM,1 ∈ Rm×n is given by the formula:

ΨM,1[i, j] = 1− 2[[ j ∈ Ai]]. If the 2nd order Fourier coeffients from x ∈ R(
n
2) are arranged in

the off-diagonal elements of an n×n a matrix X, then the elements of ΨM,2x are the diagonal

elements of ΨM,1XΨT
M,1, and the transpose operation is ΨT

M,2r=ΨT
M,1 diag(r)ΨM,1.
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6.5.1 Exploiting structure in the Fourier domain.

In Section 6.4, we have shown that submodularity implies constraints about the relative

magnitudes of the Fourier coefficients. In addition to encoding this structure into the convex

program to improve recovery, this structure can further be exploited to extend our technique

to higher order functions (where the collection P can become intractably large). The key

step in most sparse recovery algorithms is to find the largest magnitude elements of ΨT
M,Pr

given a residual vector r. For example, first order methods applied to Equation 6.5.1, such as

the ones we use, are equivalent to iterative soft-thresholding. While we could find the largest

magnitude elements of ΨT
M,Pr by simply applying the full transformation and sorting, one

can use submodularity to avoid having to compute the entire set of higher-order coefficients.

For example, if the function is 3rd order and submodular, we can apply Equation 6.4.6, and

note for |B|= 3,

|bf (B)| ≤min
b∈B
−bf (B − b)−

∑

a∈E\B

|bf (B − b+ a)|

So these constraints can be used to speed up the identification of the largest magnitude

coefficients, as we need only compute the 3rd order coefficients with sufficient slack. We

leave a detailed investigation of this direction open for future work.

6.6 Applications and Experiments

We evaluate our approach towards learning set functions on two real-world data sets. We also

use synthetic data to demonstrate our claim that enforcing submodularity through convex

constraints can improve recovery of submodular functions.

6.6.1 Sketching graph evolution

We consider the problem of reconstructing (differences between) graphs by observing random

cuts. Suppose we are given a sequence of weighted undirected graphs with weight matrices

W1, . . . ,WT that, without loss of generality, share the same set of vertices. Let fi(A) = φWi
(A)

be the the corresponding symmetric cut functions as defined in Equation 6.4.1. Note that by

Equation 6.4.2, knowing fi uniquely determines Wi. (To handle the case of directed graphs,

we can use a correspondence with undirected bipartite graphs of twice the size.)
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Figure 6.1: Experimental results. (a) Graph sketching of transitions of the Autonomous
Systems graph. We plot number of random cuts observed vs. reconstruction error (Combined
Type I + Type II error). During different transitions, the number ∆ of changing edges varies.
Notice how approximately 8∆ random observations suffice for perfect reconstruction. (b)
Approximate submodular maximization in environmental monitoring. We wish to choose
sets of locations with maximum mutual information. We compare the greedy algorithm
optimizing the true functions, Fourier-sparse reconstructions obtained from n, 2n, 4n and 8n
samples with random selection. Notice that 8n samples already provide performance very
close to the true objective.
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As we have observed in Section 6.5, cut functions are contained in H2, and there is one

edge for each nonzero Fourier coefficient. We can thus use Corollary 6.1 to reconstruct the

graph by observing O (|k(t)| log4 n) values of random cuts, where k(t) is the number of edges

at time t. Note that while in practice, typically k = Ω(n), and for large graphs, we would

require a proportionally large number of observations. If, however, we are interested in

how a graph changes over time, and this change happens slowly, we use the fact that the

difference W(t) −W(t+1) is sparse.

In our experiments, we take a sequence of five snapshots of the Autonomous Systems

graph 1. Our experiments are performed on the subgraph induced by the 128 nodes with

largest degree. We first pick an increasing number of sets at random. We then sketch the

graphs at different time steps by computing the cut values associated with those sets. Since

the cut function is linear in the edge weights, the difference in cut values corresponds to

the cuts in the symmetric graph differences. We can therefore reconstruct the difference in

the edge sets by using the reconstruction algorithm described in Section 6.5. Note that the

number of changing edges varies from 62 to 245. Figure 6.1a presents the reconstruction

error (in terms of the fraction of edges correctly classified as changing or not changing). For

all transitions, exact recovery is possible, using a number of samples that is approximately a

factor of 8 larger than the number of changing edges. Also, we observe that, consistently,

with results in compressive sensing, a sharp phase transition occurs between a regime in

which the error is close to 100%, and the regime in which perfect reconstruction occurs.

6.6.2 Approximate submodular optimization

Suppose a submodular function to be optimized is extremely expensive to evaluate, but

can be approximated with our recontruction methods from random samples. Then one can

evaluate the function on random samples to construct an approximation, and optimize the

approximation. We test this approach on submodular function maximization in an environ-

mental monitoring application. We consider the problem of selecting a small number of most

informative observations for the purpose of spatial prediction. We take temperature data from

the NIMS sensor node [HAG+06] deployed at a lake near the University of California, Merced.

The environment is discretized in a set E of n = 86 locations. We train a nonstationary

Gaussian Process using data from a single scan of the lake by the NIMS sensor node, using a
1downloaded from http://snap.stanford.edu

http://snap.stanford.edu
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method described by [KSG08]. In order to quantify the informativeness of a set of locations

A∈ 2E , we use the mutual information

f (A) = I(XA; XE\A) = H(XE\A)−H(XE\A | XA)

that quantifies the reduction of uncertainty in the unobserved locations E \ A by taking

into account the observations XA at the selected observations. As shown by [KSG08], f is

submodular and approximately monotonic (for small sets A). Therefore, an efficient greedy

algorithm produces a set AG with near-maximal informativeness. The algorithm proceeds by

adding observations that maximally increase f (A) until k observations have been selected

[NWF78].

Unfortunately, computing mutual information f (A) for the case of Gaussian processes

requires solving a linear system of n variables, which is very expensive for large n. We

consider approximating f by a low-order function. We evaluate f on an increasing number

of sets, chosen uniformly at random, and then use the algorithm described in Section 6.5 to

approximate f ∈ H2. Notice that even though f not exactly sparse, it appears to be well-

approximated by a order 2 function: the best order 2 approximation explains approximately

86 % of its variance. In order to determine how well suited the approximate function is

for optimization, we run the greedy algorithm on the approximation, and compare the

resulting sets with the (provably near-optimal) solutions obtained by running the greedy

algorithm on the original (expensive to evaluate) function f . As baseline, we also compare

against the performance of sets chosen uniformly at random. Figure 6.1b presents the

results of the experiment, using approximations obtained from n, 2n, 4n and 8n random

function evaluations. Notice that n and 2n function evaluations, not surprisingly, lead to

poor performance. However, even 4n samples lead to strong performance, and 8n samples

leads to solutions almost as good as those obtained when working with the true objective.

These results indicate that the proposed approximations can perform very well even though

the assumption of exact sparsity in the Fourier domain is not met.

6.6.3 Synthetic Submodular Recovery

We claimed in Section 6.4 that if a function is known to be submodular, then incorporating

convex constraints implied by submodularity can improve the recovery of a function. We now
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describe some experiments on synthetic functions that demonstrate this claim empirically.

We attempt the recovery a 3rd order submodular function by incorporating the constraints

from Equation 6.4.6 into a convex recovery algorithm.

We take n = 16 and restrict to H3, therefore p = 697. By Proposition 5, we can check

submodularity with 120 constraints. These numbers are small enough so that we can use a

standard interior point method solver to get accurate solutions. We construct f by taking a

function with i.i.d. Gaussian entries and then projecting it onto the cone H−2 ∩H3 to get a

target synthetic function. The resulting projection is not exactly sparse; on average it has

200± 10 (out of 697 possible) nonzero Fourier coefficients. However, it is compressible, and

so we can expect a small error even without recovering the support exactly. Then, given

random function samples, we reconstruct the target function by minimizing the Fourier `1

norm, but vary what sets of additional constraints we apply. First, we simply solve Equation

6.3.4 with no additional constraints. For our second way, we assume oracle access to the

signs of the Fourier coefficients and we enforce the known signs of the coefficients. Lastly,

we enforce the constraints of Equation 6.4.6. The results are plotted in Figure 2. Enforcing

submodularity significantly improves the recovery. It gives a relative error of less than 10−3

with only 300 measurements, and it recovers the support exactly with about 350. Using

the `1 norm alone requires about 450 measurements just to get a relative error or 10−3.

The method with oracle access to the signs of the coefficients has better performance than

standard `1, but is still not as good as the submodularity-enforcing method.

6.7 Related Work

Fourier analysis on the Boolean cube The problem of learning Boolean and pseudo-

boolean functions has a long history with many special cases that have been studied, and the

use of discrete Fourier analysis dates back to the work of [Man94] and [LMN93].

The specific problem of reconstructing graphs from few observations has received attention

due to important applications in bioinformatics. [AC04]. The literature distinguishes additive

queries (computing weight of all edges in a subgraph), and less powerful cross-additive queries

(computing the weight of edges between two sets of vertices). Cuts are a special case of

the latter. The literature also distinguishes adaptive queries (that can choose observations

based on past observations) and less powerful nonadaptive queries (that have to commit to all
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Figure 6.2: Empirical study of submodular constraints. Synthetic functions on a base set of
16 elements. Attempted recovery with differing types of constraints. The experiments were
repeated with different random synthetic functions and different random measurments, and
the mean relative error ‖ f − g‖2/‖ f ‖2 is plotted vs. number of random measurements.

observations in advance). In general, non-adaptive algorithms only requiring cross-additive

queries are preferred (as these make the fewest assumptions, can be parallelized, etc.). For

graphs with n nodes and k edges, an information theoretic lower bound of Ω
� k log(n2/k)

log k

�

additive (possibly adaptive) queries is known. [Maz10] provides an adaptive polynomial

time algorithm that attains this optimal complexity in log n nonadaptive rounds. To our

knowledge, the only existing non-adaptive algorithms with linear dependence on k are non-

constructive (i.e., not polynomial time) [BM10]. This approach also requires additive queries.

To our knowledge, ours is the first efficient nonadaptive approach (and furthermore only

requires cross-additive queries).

Learning of pseudo-boolean functions (and associated hypergraphs) has been considered

in [CJK11], which provides an almost tight adaptive algorithm for computing the Fourier

coefficients of k-bounded pseudoboolean functions. [BM10] provide a non-adaptive, but

also non-constructive approach, requiring additive queries.

Learning submodular functions Unfortunately, even without noise, there are strong lower

bounds, limiting our expectations on learning general submodular functions. Without access
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to a data set of exponential size, it is not possible to approximate general submodular

functions to a factor better than Ω(
p

n/ log n) [GHIM09]. On a more positive side, if the

function is Lipschitz, and sets are sampled uniformly at random, then for any ε > 0, a

O (log 1
ε
) approximation can be achieved on a fraction of at least 1− ε of all sets [BH11].

However, for optimization purposes, a guarantee that the approximation is of high quality

on only a subset (even a large subset) of sets is problematic, since typically nothing can be

inferred about the resulting minimizer. The problem of approximating a general submodular

function by a simpler one for the purpose of efficient minimization is studied in [JLB11],

who do not exploit the special structure of Fourier-sparse functions.

Compressive sensing There has been vast interest in sparse reconstruction and compressive

sensing [Don06, CW08]. But traditionally this has been motivated by sparsity of signals as a

trigonometric polynomial or in the wavelet domain. However, we are unaware of any work

directly applying these ideas to discrete cube. If work on sublinear Fourier transforms as of

[GGI+02] can be thought of as applying the ideas from learning sparse boolean functions

to sparse trigonmetric polynomials, then our work can be thought of as doing the reverse.

Opening up a toolbox of new methods for this domain is the main contribution of this chapter.

6.8 Conclusion

We have considered the problem of reconstructing set functions with decaying Fourier

(Hadamard-Walsh) spectrum, from a small number of possibly noisy observations. By lever-

aging recent results from random matrices and sparse reconstruction, we have shown that

standard algorithms can be used to obtain perfect reconstruction, with a number of samples

that scales linearly with the support size of the Fourier spectrum. This insight allows us to

open up a vast toolbox of modern optimization methods for learning set functions, which

previously has been mostly the domain of purely theoretical investigation. For example, our

results imply that standard `1 minimization can be used to reconstruct a sparse graph from

observing the values of a number of random cuts, which (up to logarithmic factors) matches

information-theoretic lower bounds in [Maz10]. Furthermore, we show that other properties,

such as submodularity and symmetry, imply structure among the Fourier coefficients that

can be exploited to reduce sample complexity, as well as speed up reconstruction algorithms.
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We demonstrate the effectiveness of our approach on two applications, showing that we

can indeed sketch changes in real-world networks by measuring random cuts, and that we

can obtain useful approximations of expensive-to-compute set functions for the purpose of

optimization.
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Chapter 7

Conclusion

One of our main objectives in this work has been to bridge the gap between the two extremes

of submodular functions: on one hand there are very basic or specialized functions that admit

simple and practical minimization algorithms, but are fairly limited in what they can describe,

and, on the other, there are the those for which no specialized minimization algorithms are

known. For the latter case, the only algorithms that have polynomial upper bounds on the

running time are impractical for all but very small problems, and the methods which seem

to work have no guarantees. Our intent has been to the extend the classes of submodular

functions for which there exist fairly efficient algorithms, and to that end in Chapter 4 and 5

we developed several novel techniques for submodular minimization using convex analysis.

The SLG algorithm of Chapter 4 gives a method for minimizing sums of functions of the

form φ(w(A)): these are compositions of nonnegative modular functions w with concave

functions φ. Admittedly, such functions are always representable as a minimum of a second

order submodular function, so in principle they can be solved via graph cut algorithms.

However, if the concave function φ is not piecewise linear, in order to represent the function

exactly, one needs to introduce a breakpoint (corresponding to an extra vertex in the graph)

for every possible value of w(A), which, in the worst case, is 2n. The main innovation of our

algorithm is that it remains efficient and independent of the number of breakpoints. We do

this by computing a gradient of a smoothed version of the Lovász extension and applying an

accelerated descent method.

In Chapter 5, our main result demonstrates that there is a great deal of flexibility in

choosing a barrier function to minimize a submodular function via convex programming. It

might be useful, in fact, to adapt the barrier function to the submodular function. In analogy

to matrix preconditioning: would this help address scaling issues, and how could we estimate
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an appropriate choice for the barrier function?

The major question we attempted to address, and one which remains unresolved, is

how can we try to discover better representations of submodular functions? A common

theme of this thesis is the utility of having a simple description of the base polytope of a

submodular function. We expect such descriptions to be useful both for learning a submodular

function and projecting onto the base polytope (essentially the same problem as submodular

minimization).

Most of the functions in our experiments are variations of graph representable functions

such as in Equation 3.3.13. Our interest has not been in trying to extend graph cut algorithms

but to take advantage of the efficient base polytope representation of Equation 3.3.14. By

efficient, we mean refer to the fact that the number of variables and additional constraints

scales linearly with the number of nonzero coefficients in the specification. Can we find any

other classes of submodular functions that also have efficient lifted representations—possibly

in terms of the second order cone or the semidefinite cone? And if such classes exist, do

the any of results in Chapter 6 generalize to allow one to learn such a representation in a

reasonable time with a reasonable number of observations?

Lastly, we would like to pose one core question to that seems simple but remains open

to our knowledge—what is the smallest family of submodular functions such that every

submodular function is in their conic hull? Equivalently, what is the smallest number of

half-spaces that intersect to form the submodular polar cone
�

H−2
�◦

? We know this family

must exist, and it must be finite, albeit exponential in size.
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Appendix A

Matroid Theory

Matroids are a class of set systems which are intimately connected to submodular set functions.

The name “matroid” stems from the fact that they can be treated as an abstract generalization

of matrices. However, there are several different equivalent definitions of matroids, some of

which are quite unexpected. For a gentle introduction to the subject, see [GM12]. Since our

focus is on submodularity, we give merely the original definition of matroid introduced by

Whitney [Whi35] (in terms of independent sets), as well as a formulation (in terms of the

existence of a rank function) which directly invokes submodularity.

A matroid M = (E,I) is defined by a ground set E together with a collection of subsets

I ⊆ 2E that satisfies the following properties:

Properties A.1. Matroid Independence Axioms

I-1. ; ∈ I

I-2. A⊂ B and B ∈ I ⇒ A∈ I

I-3. A, B ∈ I with |A|< |B| ⇒ ∃ b ∈ B \ A such that A+ b ∈ I

It is an exercise in elementary linear algebra to show that if E is a set of vectors from

a common vector space, then the collection of independent subsets of vectors satisfies the

Properties A.1. For general matroids, the sets in the collection I are called the independent

sets of a matroid. If a set of vectors are expressed in the form of a matrix, and the independent

sets of those vectors are in one-to-one correspondence with the independent sets of a matroid,

then that matrix is said to represent the matroid. Matroids are strictly more general than

matrices in that not every matroid can be represented as a matrix, though the simplest

example requires |E| ≥ 8.
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An alternative characterization of a matroid is through the properties of an associated set

function. One can show that a set E is the ground set for a matroid if and only if it admits a

set function r ∈H with the following properties:

Properties A.2. Matroid Rank Axioms

R-1. r(;) = 0.

R-2. r(A+ b)− r(A) ∈ {0, 1} for all A∈ 2E , b ∈ E \ A.

R-3. r(A+ b+ c)− r(A+ b)− r(A+ c) + r(A)≤ 0 for all A∈ 2E , b, c ∈ E \ A.

Of particular note is the third property: submodularity.

As an example, if E is a set of vectors, then the Properties A.2 are satisfied by the set

function equal to the dimension of the subspace spanned by vectors in a set (a.k.a. the rank).

For general matroids, the rank of a set is defined as the size of the largest independent subset:

r(A) =max
B∈I
B⊆A

|B| (A.0.1)

One can check that for any matroid, the rank function defined this way gives rise to a set

function satisfying Properties A.2.

Conversely, given a rank function satisfying Properties A.2, one can define independent

sets as those whose size equals their rank:

I= {A∈ 2E | r(A) = |A| } (A.0.2)

Then one can check that this collection forms the independence system of a matroid; that is,

Properties A.1 are satisfied.

Other defining features of matroids are their circuits (minimal dependent sets) and their

bases (maximal independent sets). The latter is significant for the theory of submodular

functions, since the set of bases of a matroid forms corresponds to the vertices of the base

polytope (as defined in Equation 3.3.2) of the rank function.

One extremely important generalization of matroids are polymatroids, as introduced by

Edmonds [Edm70]. If the independence system of a matroid is considered to be a subset

of the Boolean cube {0, 1}n, then a polymatroid is an analogous subset of Zn
+ or Rn

+. In the
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case of real vectors, it is equivalent to the base polytope of a nonnegative nondecreasing

submodular function.



99

Bibliography

[ABK+04] N. Alon, R. Beigel, S. Kasif, S. Rudich, and B. Sudakov, Learning a hidden

matching, SIAM J. Comput. 33 (2004), no. 2, 487–501. 6.4.2

[AC04] D. Angluin and J. Chen, Learning a hidden graph using o (log n) queries per edge,

Learning Theory (2004), 210–223. 6.7

[AT03] A. Auslender and M. Teboulle, Asymptotic cones and functions in optimization and

variational inequalities, Springer Monographs in Mathematics, Springer-Verlag,

New York, 2003. 2.1

[AT06] , Interior gradient and proximal methods for convex and conic optimization,

SIAM Journal on Optimization 16 (2006), no. 3, 697–725. 6.5

[Bac10] F. Bach, Structured sparsity-inducing norms through submodular functions, Ad-

vances in Neural Information Processing Systems 23 (J. Lafferty, C. K. I. Williams,

J. Shawe-Taylor, R.S. Zemel, and A. Culotta, eds.), 2010, pp. 118–126. 4.2

[Bac11] , Learning with submodular functions: A convex optimization perspective,

CoRR abs/1111.6453 (2011). 3.3.1

[BBC11] S. Becker, J. Bobin, and E.J. Candès, Nesta: A fast and accurate first-order method

for sparse recovery, SIAM J. Img. Sci. 4 (2011), no. 1, 1–39. 4.5.2

[BCG11] S. Becker, E. J. Candès, and M. Grant, Templates for convex cone problems with

applications to sparse signal recovery, Mathematical Programming Computation

3 (2011), 165–218. 6.5

[BH11] M.F. Balcan and N.J.A. Harvey, Learning submodular functions, Proceedings of the

43rd annual ACM symposium on Theory of computing, ACM, 2011, pp. 793–802.

6.1, 6.7



100

[BM10] N.H. Bshouty and H. Mazzawi, Optimal query complexity for reconstructing

hypergraphs, STACS 2010: 27th International Symposium on Theoretical Aspects

of Computer Science, LIPIcs., vol. 5, Leibniz-Zent. Inform., 2010, pp. 143–154.

6.4.2, 6.7

[Brè67] L. M. Brègman, A relaxation method of finding a common point of convex sets and

its application to the solution of problems in convex programming, Z̆. Vyčisl. Mat.
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[Hač79] L.G. Hačijan, A polynomial algorithm in linear programming, Dokl. Akad. Nauk

SSSR 244 (1979), no. 5, 1093–1096. 3.4.1

[HAG+06] T.C. Harmon, R.F. Ambrose, R.M. Gilbert, J.C. Fisher, M. Stealey, and W.J. Kaiser,

High Resolution River Hydraulic and Water Quality Characterization using Rapidly

Deployable Networked Infomechanical Systems (NIMS RD), Tech. Report 60, CENS,

2006. 6.6.2

[HH92] P.L. Hammer and R. Holzman, Approximations of pseudo-Boolean functions; ap-

plications to game theory, ZOR Zeitschrift für Operations Research Methods and

Models of Operations Research 36 (1992), no. 1, 3–21. 3.2.3



103

[HUL93] Jean-Baptiste Hiriart-Urruty and Claude Lemaréchal, Convex analysis and mini-

mization algorithms. II, Grundlehren der Mathematischen Wissenschaften [Fun-

damental Principles of Mathematical Sciences], vol. 306, Springer-Verlag, Berlin,

1993, Advanced theory and bundle methods. 2.1

[IFF01] S. Iwata, L. Fleischer, and S. Fujishige, A combinatorial strongly polynomial

algorithm for minimizing submodular functions, J. ACM 48 (2001), no. 4, 761–

777. 1, 3.4.1

[II07] T. Itoko and S. Iwata, Computational geometric approach to submodular func-

tion minimization for multiclass queueing systems, Integer Programming and

Combinatorial Optimization (Matteo Fischetti and DavidP. Williamson, eds.),

Lecture Notes in Computer Science, vol. 4513, Springer Berlin Heidelberg, 2007,

pp. 267–279. 4.3, 4.4.3

[IO09] S. Iwata and J. B. Orlin, A simple combinatorial algorithm for submodular function

minimization, Proceedings of the twentieth Annual ACM-SIAM Symposium on

Discrete Algorithms (Philadelphia, PA, USA), SODA ’09, Society for Industrial

and Applied Mathematics, 2009, pp. 1230–1237. 1, 3.4.1

[JLB11] Stefanie Jegelka, Hui Lin, and Jeff A. Bilmes, On fast approximate submodular

minimization, Advances in Neural Information Processing Systems 24 (J. Shawe-

Taylor, R.S. Zemel, P. Bartlett, F.C.N. Pereira, and K.Q. Weinberger, eds.), 2011,

pp. 460–468. 3.4.3, 6.7

[JM93] D.S. Johnson and C.C. McGeoch (eds.), Network flows and matching: First dimacs

implementation challenge, American Mathematical Society, Boston, MA, USA,

1993. 4.1, 4.7

[KK80] A.K. Kelmans and B.N. Kimelfeld, Multiplicative submodularity of a matrix’s prin-

cipal minor as a function of the set of its rows and some combinatorial applications,

Discrete Mathematics 44 (1980), no. 1, 113–116. 6.1

[KKT07] P. Kohli, M.P. Kumar, and P.H.S. Torr, P3 beyond: Solving energies with higher

order cliques, Computer Vision and Pattern Recognition, 2007. CVPR ’07. IEEE

Conference on, june 2007, pp. 1 –8. 4.3



104

[KLT09] P. Kohli, L. Ladický, and P.H. Torr, Robust higher order potentials for enforcing label

consistency, Int. J. Comput. Vision 82 (2009), no. 3, 302–324. 4.3

[Kra10] A. Krause, Sfo: A toolbox for submodular function optimization, J. Mach. Learn.

Res. 11 (2010), 1141–1144. 4.7

[KSG08] A. Krause, A. Singh, and C. Guestrin, Near-Optimal Sensor Placements in Gaussian

Processes: Theory, Efficient Algorithms and Empirical Studies, Journal of Machine

Learning Research 9 (2008), 235–284. 6.1, 6.6.2

[KZ04] V. Kolmogorov and R. Zabin, What energy functions can be minimized via graph

cuts?, Pattern Analysis and Machine Intelligence, IEEE Transactions on 26 (2004),

no. 2, 147–159. 3.4.3

[LMN93] N. Linial, Y. Mansour, and N. Nisan, Constant depth circuits, Fourier transform,

and learnability, Journal of the ACM (JACM) 40 (1993), no. 3, 607–620. 6.7

[Lov83] L. Lovász, Submodular functions and convexity, Mathematical programming: the

state of the art, Springer, Berlin, 1983, pp. 235–257. 1, 3.3.2, 4.2, 4.2, 4.2, 6.1,

6.4.3

[Man94] Y. Mansour, Learning boolean functions via the fourier transform, Theoretical

advances in neural computation and learning (1994), 391–424. 6.7

[Maz10] H. Mazzawi, Optimally reconstructing weighted graphs using queries, Proc. SODA,

2010. 6.7, 6.8

[Mur03] K. Murota, Discrete convex analysis, SIAM Monographs on Discrete Mathemat-

ics and Applications, Society for Industrial and Applied Mathematics (SIAM),

Philadelphia, PA, 2003. 1

[Nes05] Y. Nesterov, Smooth minimization of non-smooth functions, Mathematical Pro-

gramming 103 (2005), 127–152. 4.1, 4.2, 4.5.2, 4.5.2

[NWF78] G.L. Nemhauser, L.A. Wolsey, and M.L. Fisher, An analysis of approximations for

maximizing submodular set functions - I, Mathematical Programming 14 (1978),

no. 1, 265–294. 3.3, 6.6.2



105

[PK90] P.M. Pardalos and N. Kovoor, An algorithm for a singly constrained class of

quadratic programs subject to upper and lower bounds, Mathematical Program-

ming 46 (1990), 321–328. 5.4.2

[Que98] M. Queyranne, Minimizing symmetric submodular functions, Mathematical Pro-

gramming 82 (1998), 3–12. 3.4.3, 4.1

[Rau10] H. Rauhut, Compressive sensing and structured random matrices, Theoretical

foundations and numerical methods for sparse recovery, Radon Ser. Comput.

Appl. Math., vol. 9, Walter de Gruyter, Berlin, 2010, pp. 1–92. 6.3

[Roc70] R.T. Rockafellar, Convex analysis, Princeton Mathematical Series, No. 28, Prince-

ton University Press, Princeton, N.J., 1970. 2.1

[RV08] M. Rudelson and R. Vershynin, On sparse reconstruction from Fourier and Gaussian

measurements, Communications on Pure and Applied Mathematics 61 (2008),

no. 8, 1025–1045. 6.3

[Sch03] A. Schrijver, Combinatorial optimization. Polyhedra and efficiency. Vol. B, Algo-

rithms and Combinatorics, vol. 24, Springer-Verlag, Berlin, 2003, Matroids, trees,

stable sets, Chapters 39–69. 3.3.1, 6.1

[SK10] P. Stobbe and A. Krause, Efficient minimization of decomposable submodular

functions, NIPS, 2010, pp. 2208–2216. 1.1, 1.2

[SK12] , Learning fourier sparse set functions, Journal of Machine Learning Re-

search - Proceedings Track 22 (2012), 1125–1133. 1.2

[SWRC09] J. Shotton, J. Winn, C. Rother, and A. Criminisi, Textonboost for image under-

standing: Multi-class object recognition and segmentation by jointly modeling

texture, layout, and context, International Journal of Computer Vision 81 (2009),

2–23. 4.3, 4.7

[Tro04] J.A. Tropp, Greed is good: algorithmic results for sparse approximation., IEEE

Transactions on Information Theory 50 (2004), no. 10, 2231–2242. 6.5

[TW10] J.A. Tropp and S.J. Wright, Computational Methods for Sparse Solution of Linear

Inverse Problems, Proceedings of the IEEE 98 (2010), no. 6, 948–958. 6.5



106

[Ver12] R. Vershynin, Introduction to the non-asymptotic analysis of random matrices,

Compressed sensing, Cambridge Univ. Press, Cambridge, 2012, pp. 210–268.

6.1, 6.3

[Whi35] H. Whitney, On the Abstract Properties of Linear Dependence, Amer. J. Math. 57

(1935), no. 3, 509–533. A


	List of Figures
	List of Algorithms
	Introduction
	Main Contributions
	Outline of Thesis

	Background of Convex Analysis
	Basic Concepts
	Proximal Operators

	Set Functions and Submodularity
	Overview
	General Set Functions
	Set Function Derivatives
	Monotone and Low Order Functions
	Fourier Analysis of Set Functions
	Tensor Product Bases of Set Functions

	Properties of Submodular Set Functions
	Convex Analysis of Submodularity
	Lovász Extension
	Examples of Base Polytopes

	Submodular Minimization
	Ellipsoid Method and Polynomial Time Algorithms
	Fujishige's Minimal Norm Algorithm
	Special Cases


	Smoothed Gradient Methods for Decomposable Functions
	Introduction
	Background on Submodular Function Minimization
	The Decomposable Submodular Minimization Problem
	Classification of Submodular Functions
	Submodularity of Decomposable Functions
	Set Cover Functions as Threshold Potentials
	Reformulation of a Class of Functions
	Strict Generality of Threshold Potentials

	The SLG Algorithm for Threshold Potentials
	The Smoothed Extension of a Threshold Potential
	The SLG Algorithm for Minimizing Sums of Threshold Potentials
	Early Stopping based on Discrete Certificates of Optimality

	Extension to General Concave Potentials
	Formula Derivation

	Experiments
	Conclusion

	Distributed Submodular Minimization
	Introduction
	Submodular Minimization with General Barrier Functions
	Consensus Algorithms for Submodular Minimization
	Notation
	Outline of Algorithms

	Fast Proximal Threshold Potentials
	General Plane Intersection Projection
	Box-Plane Projection Algorithms

	Experiments

	Learning Fourier Sparse Set Functions
	Introduction
	Background
	The Fourier transform on set functions.

	Conditions for Recovery
	Classes of Set Functions
	Symmetric functions.
	Low order functions.
	Submodular functions.

	Reconstruction Algorithms
	Exploiting structure in the Fourier domain.

	Applications and Experiments
	Sketching graph evolution
	Approximate submodular optimization
	Synthetic Submodular Recovery

	Related Work
	Conclusion

	Conclusion
	Matroid Theory
	Bibliography

