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vi Preface

In Fall 2018, I took a stab at developing a one-quarter survey class on convex geometry for
an audience of second- and third-year graduate students at Caltech. These lecture notes
document the first version of the course, as it was actually given.

Unfortunately, 10 weeks do not suffice to reach the frontiers of a field that has been
explored for over 100 years. Therefore, the mission for the class was to guide the students
to some of the peaks in the theory of convex geometry so that they could begin to see the
beauty and extent of this territory.

I chose to cover topics in pure geometry that appear surprising and wonderful, without
much concern for the immediate applications. The material includes some of the most
classical topics, such as the Euler–Poincaré–Schläfli formula, Steiner’s formula, and the
isoperimetric inequality. But it also reaches toward more modern perspectives, such as
Barthe’s proof of the geometric Brascamp–Lieb inequality via optimal transportation. We
finished the course with a new proof of the Alexandrov–Fenchel inequality that appeared on
arXiv last month (!). The students will judge whether this synthesis was successful.

There is no pretense that the course gives a comprehensive treatment of any part of
convex geometry. Even subject to this limitation, there are a number of ancillary topics
that are missing. For instance, we did not discuss conic geometry, smooth convex bodies,
hyperbolic polynomials and polarization, mixed discriminants, monotone transportation,
log-concave distributions and measures, almost-spherical slices of convex bodies, ideas from
asymptotic convex geometry, the connections with information theory, or any applications.
At some point, I may reform and extend these lectures to address these shortcomings.

Right now, these notes have some severe deficiencies. They repeat the material as it was
presented, without the benefit of review or reflection. Many of the lectures contain my first
attempt to explain a subject, and the results are not always very satisfying. The notes are
almost totally void of citations to the sources that I used to prepare the lectures, and they
lack most of the background and context that would appear in a published work. Although
I have edited the lectures for English usage and (somewhat) consistent typography, I did
not check or correct the mathematical content. Caveat lector!

I would like to thank the participants in this course for their interest and attention.
They are Ameera Abdelaziz, Jeremy Bernstein, Jialin Chen, Elijah Cole, Victor Dorobantu,
Spencer Gordon, SooJean Han, Dimitar Ho, De Huang, Richard Kueng, Tongxin Li, Riley
Murray, Florian Schaefer, Andrew J. Taylor, Oguzhan Teke, Lucian Werner, Recep Can
Yavas, Jing Yu, Fangzhou Xiao, and Shumao Zhang. My former student Michael B. McCoy
wrote the LaTeX template that supports these lecture notes. Without their effort, there
would be no typed lecture notes, no figures, and no homework solutions. Nevertheless, any
errors are my sole responsibility.

I would also like to thank Sasha Barvinok, whose courses introduced me to the deeper
mysteries of convex geometry. My enduring interest stems from my research collaboration
with Dennis Amelunxen, Martin Lotz, and Michael McCoy. Finally, I am grateful to Ramon
Van Handel for extensive discussions about this class; in particular, he sent me a preliminary
version of his manuscript on the Alexandrov–Fenchel inequality so that I could present it.

Joel A. Tropp
Steele Family Professor of Applied & Computational Mathematics
California Institute of Technology
Pasadena, California
December 2018



Lecture 1: Convex sets from the inside

Scribe: Richard Kueng
Editor: Joel A. Tropp

ACM 204, Fall 2018
Prof. Joel A. Tropp
2 October 2018

1.1 Agenda for Lecture 1
This lecture gives some context for the course and some background information about affine
geometry. We continue with the definition of a convex set, the central object in this course.
The main focus of today’s lecture is the internal structure of a convex set. The key idea is
that a convex set contains all (finite) averages of points drawn from the convex set. We also
single out special subsets, called faces, whose points cannot be written as averages of points
in the set from outside the face.

1. Overview and history
2. Affine geometry
3. Convex sets and convex hulls
4. The Carathéodory theorem
5. Basic topology of convex sets
6. Extreme points and faces

1.2 Introduction
ACM/IDS 204 is a topics course on convexity. This term, the focus is on Brunn–Minkowski
theory. Roughly, this subfield of convex geometry concerns the interaction between convexity
and volume in finite dimensions.

Brunn–Minkowski theory is named after two founders of the formal study of convexity.
Karl Hermann Brunn (1862–1939) was a German mathematician who worked on convexity
and knot theory. His 1887 thesis, Über Ovale und Eiflächen, is one of the earliest general
treatments of convex bodies. It contains a well-known result called the Brunn slicing theorem,
which we will prove.

Hermann Minkowski (1864–1909) was born in what is now Kaunas, Lithuania; he worked
in Germany and Switzerland. Minkowski laid the foundations of convexity theory, including
some of the most basic definitions and results. He was particularly interested in interactions
between lattices and convex bodies, which blossomed into a field called the geometry of
numbers. Minkowski is also known for his work on the four-dimensional geometry of
space–time.

The names of Brunn and Minkowski are united in the famous Brunn–Minkowski theorem,
which asserts that the volume is a log-concave function. We will state and prove the modern
version of their result later this term.

Convexity, as a subject, has its roots in the earliest geometrical investigations. Polytopes,
polyhedra, and dissections appear already in Euclid’s Elements. The regular convex bodies
(the tetrahedron, cube, octahedron, dodecahedron, and icosahedron) were also known to the
Greeks. The isoperimetric problem in the plane, which we will discuss, is associated with a
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legendary story about Dido, the queen of Carthage and a supporting character in Vergil’s
Aeneid.

Before the systematic work of Brunn & Minkowski, there were other substantial inves-
tigations into the geometry of regular figures in the plane and space. Kepler (1571–1630)
proved that there are only 13 semiregular Archimedean solids, and he studied a problem that
we now call sphere packing. Euler (1707–1783) established the first result on combinatorial
topology, the relation among the vertices, edges, and faces of a convex polytope in space; we
will prove the modern version later this term. Other important 19th century researchers who
worked on convex geometry include Gauss (1777–1855; constructible polygons, curvature,
lattice packings, non-Euclidean geometry), Steiner (1796–1863; expansion, symmetrization,
isoperimetry), Cauchy (1798–1857; rigidity, surface area formula), and Schläfli (1814–1895;
higher-dimensional polytopes).

For a summary of the history of convexity theory, see [Gru93]. We may discuss more of
this background as it arises.

This course is sui generis. We will draw material from a wide range of sources, including
the papers and books listed on the syllabus. Three particularly useful references are Barvi-
nok’s textbook [Bar02], Gruber’s graduate-level survey [Gru07], and Schneider’s magnum
opus [Sch14].

1.3 Setting and Notation
Convexity is a subject that takes place in a real vector space. This term, we will be working
in the simplest class of real vectors spaces, namely the finite-dimensional Euclidean spaces.

1.3.1 Linear Structure

Recall that R𝑑 is the family of all 𝑑-dimensional (column) vectors with real entries:

R𝑑 := {(𝑥1, . . . , 𝑥𝑑) : 𝑥𝑖 ∈ R for 𝑖 = 1, . . . , 𝑑.}.

We make R𝑑 a linear space in the usual way, equipping it with scalar multiplication and
addition, performed coordinate by coordinate:

𝛼 · (𝑥1, . . . , 𝑥𝑑) := (𝛼𝑥1, . . . , 𝛼𝑥𝑑) for 𝛼 ∈ R;
(𝑥1, . . . , 𝑥𝑑) + (𝑦1, . . . , 𝑦𝑑) := (𝑥1 + 𝑦1, . . . , 𝑥𝑑 + 𝑦𝑑).

We use lowercase Greek letters (𝛼, 𝛽, 𝜆, 𝜏) for scalars. Boldface italic letters (𝑥,𝑦, 𝑧) refer to
vectors in R𝑑, and we use subscripted italic letters (𝑥𝑖, 𝑦𝑖, 𝑧𝑖) to refer to individual coordinates
of the vectors. We write 0 := (0, . . . , 0) ∈ R𝑑 for the zero vector, also known as the origin.

It is sometimes convenient to work with the standard basis for R𝑑. This basis consists of
the vectors that have a unit entry in a specific coordinate and zeros elsewhere:

e𝑖 := (0, . . . , 0⏟  ⏞  
𝑖−1

, 1, 0, . . . , 0) ∈ R𝑑 for 𝑖 = 1, . . . , 𝑑.

We sometimes write e := (1, . . . , 1) ∈ R𝑑 for the vector of ones.

1.3.2 Geometry
Next, let us add geometry in the form of angles and distances. We introduce the standard
inner product, which reflects the “similarity” between two vectors:

⟨𝑥, 𝑦⟩ :=
∑︁𝑑

𝑖=1
𝑥𝑖𝑦𝑖 for 𝑥,𝑦 ∈ R𝑑.
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The inner product induces the Euclidean norm, which reflects the magnitude of a vector:

‖𝑥‖2 := ⟨𝑥, 𝑥⟩ =
∑︁𝑑

𝑖=1
𝑥2

𝑖 for 𝑥 ∈ R𝑑.

The Cauchy–Schwarz inequality provides a bound on the inner product:

|⟨𝑥, 𝑦⟩| ≤ ‖𝑥‖‖𝑦‖ for 𝑥,𝑦 ∈ R𝑑.

We can now define the cosine of the angle between a pair of vectors:

cos 𝜃(𝑥,𝑦) := ⟨𝑥, 𝑦⟩
‖𝑥‖‖𝑦‖

for 𝑥,𝑦 ∈ R𝑑.

It is convenient to parameterize angles in the range [0, 2𝜋).

1.3.3 Topology

The Euclidean norm also induces a topology on R𝑑. For a sequence {𝑥𝑘 : 𝑘 ∈ N} ⊂ R𝑑 and
a point 𝑥 ∈ R𝑑,

𝑥𝑘 → 𝑥 if and only if ‖𝑥𝑘 − 𝑥‖ → 0.
The basic open sets (i.e., neighborhoods) and closed sets in the norm topology are just the
open and closed norm balls. For 𝑥 ∈ R𝑑 and 𝑟 ≥ 0, we define open and closed balls:

N(𝑥; 𝑟) := {𝑦 ∈ R𝑑 : ‖𝑦 − 𝑥‖ < 𝑟};
N̄(𝑥; 𝑟) := {𝑦 ∈ R𝑑 : ‖𝑦 − 𝑥‖ ≤ 𝑟}.

The empty set ∅ and the space R𝑑 are both open and closed. We use sans serif capitals
(A,B,C) to denote sets.

Let A ⊂ R𝑑. An interior point of a set is one that is contained in an open subset of the
set, and the interior int A is the family of all interior points of the set:

𝑥 ∈ int A if and only if N(𝑥; 𝑟) ⊂ A for some 𝑟 > 0.

A limit point of the set is the limit of a convergent sequence of points drawn from the set,
and the closure cl A is the family of all limit points of the set:

𝑥 ∈ cl A if and only if 𝑥𝑘 → 𝑥 where 𝑥𝑘 ∈ A for 𝑘 ∈ N.

The boundary bd A of the set consists of points in the closure that are not in the interior:
bd A := cl A ∖ int A.

A set is closed if it coincides with its closure; that is, a closed set contains all its limit
points. A set is bounded if it is contained in a closed ball about the origin:

A is bounded if and only if A ⊂ N̄(0; 𝑟) for some (finite) 𝑟.

A set is compact if and only if every sequence from the set contains a subsequence that
converges in the set. More precisely, for any sequence {𝑥𝑘 : 𝑘 ∈ N} ⊂ A, there are indices
𝑘ℓ for ℓ ∈ N so that the sequence 𝑥𝑘ℓ

converges to a point 𝑥 ∈ A as the subindex ℓ → ∞.
The Heine–Borel theorem asserts that, in R𝑑, a set is compact if and only if it is closed and
bounded.

We conclude with a technicality. The trivial linear space R0 := {0} consists of the origin
only. The singleton {0} is both an open and a closed set. It is convenient to regard the
origin as an interior point of R0 and to assert that R0 has no boundary points.
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Warning 1.3.1 (Subsets). In these lectures, the symbol ⊂ denotes an arbitrary subset. This
notation does not exclude the possibility of equality. We write $ to emphasize that the
subset is proper.

Warning 1.3.2 (Compactness). Here is the general definition of compactness. A subset of a
topological space is compact if and only if every open cover of the subset has a finite subcover.
If we specialize to R𝑑, this definition states that a set A ⊂ R𝑑 is compact when the following
condition holds. For an arbitrary index set 𝐼, points 𝑥𝑖 ∈ R𝑑, and numbers 𝑟𝑖 ∈ R,

A ⊂
⋃︁

𝑖∈𝐼
N(𝑥𝑖; 𝑟𝑖) implies A ⊂

⋃︁
𝑗∈𝐽

N(𝑥𝑗 ; 𝑟𝑗) for some finite subset 𝐽 of 𝐼.

This general definition can be useful when we undertake packing and covering arguments.
Although compactness and sequential compactness are equivalent in a metric space (such as
a normed linear space), they are not equivalent in general.

The Heine–Borel equivalence (closed + bounded = compact) also fails in general; indeed,
it does not hold in any infinite-dimensional normed linear space.

1.3.4 Volume

For a (Lebesgue) measurable set A ⊂ R𝑑, the volume Vol𝑑(A) is the Lebesgue content of the
set. To be more precise, we introduce the (ordinary) indicator function

1A(𝑥) :=
{︃

1, 𝑥 ∈ A
0, 𝑥 /∈ A.

Writing d𝑥 for the Lebesgue measure,

Vol𝑑(A) :=
∫︁
1A(𝑥) d𝑥

The 0-dimensional volume is defined by the relations

Vol0({0}) = 1 and Vol0(∅) = 0.

If the dimension is clear, we may also drop the subscript and write simply Vol(A).
For the most part, measure theory will not play a role in this course. Indeed, for a convex

set C in R𝑑, the Lebesgue volume Vol𝑑(C) is equivalent with more elementary notions of
volume. For example, we can approximate C by a disjoint family of small cubes, total the
volumes of the cubes, and take the limit as the cubes grow smaller.

1.4 Affine Geometry
We assume that you, the student, are familiar with linear algebra and basic notions of linear
geometry. Core ideas include linear subspaces, linear hulls, linear independence, and linear
maps. It is less common for introductory classes to treat affine geometry, so we begin with a
reminder of the essential concepts from this subject.
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1.4.1 Affine Spaces

As you well know, two distinct points 𝑥,𝑦 ∈ R𝑑 span a unique line:

line(𝑥,𝑦) := {(1 − 𝛼)𝑥 + 𝛼𝑦 : 𝛼 ∈ R}. (1.4.1)

A line does not need to contain the origin, but it is parallel with a unique line that does
contain the origin. Note that the definition (1.4.1) remains valid when 𝑥 = 𝑦, in which case
the line collapses to a single point.

The notion of a line extends to the notion of an affine space.

Definition 1.4.1 (Affine space). A set L ⊂ R𝑑 is called an affine space if it contains all of its
lines:

𝑥,𝑦 ∈ L implies that line(𝑥,𝑦) ⊂ L.
The empty set ∅ is (vacuously) affine. An affine space is also called a flat.

Each affine space is parallel with a unique linear subspace (that contains the origin), and
we can define the dimension of an affine space to equal the dimension of the parallel linear
subspace. Examples of affine spaces include a single point (with dimension zero), a line
(with dimension one), a plane (with dimension two), a hyperplane (with dimension 𝑑− 1),
and the entirety of R𝑑 (with dimension 𝑑).

Each affine space L ⊂ R𝑑 is a closed subset of R𝑑, and it inherits the relative topology
from R𝑑. To be more explicit, let us consider a sequence {𝑥𝑘 : 𝑘 ∈ N} ⊂ L and a point 𝑥 ∈ L.
Then 𝑥𝑘 → 𝑥 if and only if ‖𝑥𝑘 − 𝑥‖ → 0. (Since the affine space L is closed, the limit 𝑥, if
it exists, must remain in L.)

1.4.2 Affine Hulls
We can generalize the definition (1.4.1) of a line to allow for more than two points. The key
is to restrain the sum of the scalar coefficients to equal one.

Definition 1.4.2 (Affine combination). Let 𝑥1, . . . ,𝑥𝑘 ∈ R𝑑. An affine combination of these
points takes the form∑︁𝑘

𝑖=1
𝛼𝑖𝑥𝑖 where

∑︁𝑘

𝑖=1
𝛼𝑖 = 1 for 𝛼𝑖 ∈ R.

A short calculation shows that an affine space is a set that contains all of the affine
combinations of its points. Let us consider the operation that collects all possible affine
combinations of the points in a general set.

Definition 1.4.3 (Affine hull). Let A ⊂ R𝑑 be a nonempty set. The affine hull aff A consists of
all (finite) affine combinations of points drawn from the set A.

aff A :=
{︂∑︁𝑘

𝑖=1
𝛼𝑖𝑥𝑖 :

∑︁𝑘

𝑖=1
𝛼𝑖 = 1 and 𝑥𝑖 ∈ A and 𝑘 ∈ N

}︂
.

It is routine to check that aff A is an affine space. See Figure 1.1 for an illustration.

As a simple example, the affine hull of a pair of points is the line spanned by the points:
aff{𝑥,𝑦} = line(𝑥,𝑦). It is easy to verify that the affine hull of a set of 𝑘 + 1 points has
dimension no greater than 𝑘.

The affine hull, aff A, of a set A is the intersection of all affine spaces that contain A. In
this sense, it is the smallest affine space containing A.
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1.4.3 Affine Independence

When we form the affine hull, aff A, of a set A, some of the points may be superfluous. For
example, we do not need all the points in a line to form its affine hull: aff line(𝑥,𝑦) =
aff{𝑥,𝑦}. It is valuable to have a notion of when a family of points cannot be reduced
without changing its affine hull.

Definition 1.4.4 (Affine independence). A family {𝑥0,𝑥1, . . . ,𝑥𝑘} ⊂ R𝑑 is affinely independent
if none of the points is an affine combination of the others. Algebraically, affine independence
is the condition that∑︁𝑘

𝑖=1
𝛼𝑖𝑥𝑖 = 0 and

∑︁𝑘

𝑖=1
𝛼𝑖 = 0 imply that 𝛼𝑖 = 0 for each 𝑖 = 1, . . . , 𝑘.

Affine independence is also equivalent to the family of secants {𝑥1 − 𝑥0, . . . ,𝑥𝑘 − 𝑥0} being
linearly independent.

It is clear that affine independence is a hereditary property: a subset of an affinely
independent set remains affinely independent.

Affinely independent sets generate affine spaces of maximal dimension. Consider a set
A = {𝑥0, . . . ,𝑥𝑘} ⊂ R𝑑. The dimension of the affine hull aff A is no greater than 𝑘. This
bound is achieved precisely when A is affinely independent. In particular, 𝑑 + 1 is the
maximum cardinality of an affinely independent set in R𝑑.

1.4.4 Affine Maps

We also need to introduce collection of maps that respect affine geometry. Just as a linear
map preserves linear combinations, an affine map preserves affine combinations.

Definition 1.4.5 (Affine map). A function 𝑇 : R𝑑 → R𝑚 is called an affine map if

𝑇
(︁

(1 − 𝛼)𝑥 + 𝛼𝑦
)︁

= (1 − 𝛼)𝑇 𝑥 + 𝛼𝑇 𝑦 when 𝛼 ∈ R and 𝑥,𝑦 ∈ R𝑑.

This condition is strictly weaker than linearity.

Each affine map 𝑇 : R𝑑 → R𝑚 is the composition of a linear map 𝑆 : R𝑑 → R𝑚 and
translation by a point 𝑥0 ∈ R𝑑:

𝑇 𝑥 = 𝑆(𝑥 − 𝑥0) = 𝑆𝑥 − 𝑦0 where 𝑦0 = 𝑆𝑥0 ∈ R𝑚.

As a consequence, we can bring to bear the theory of linear maps to understand fully the
structure of affine maps.

1.5 A First Look at Convex Sets
We begin our journey into the theory of convexity by developing an “internal” view of convex
sets. In other words, we study the relationship between a convex set and its own points.
Our presentation has strong parallels with the treatment of affine geometry.
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1.5.1 Line Segments
As we extend our scope beyond affine geometry, the first step is to narrow our attention
from lines to line segments.

Definition 1.5.1 (Line segments). Let 𝑥,𝑦 ∈ R𝑑 be points. The closed segment and open
segment generated by 𝑥 and 𝑦 are, respectively, the sets

[𝑥,𝑦] := {(1 − 𝜏)𝑥 + 𝜏𝑦 : 𝜏 ∈ [0, 1]};
(𝑥,𝑦) := {(1 − 𝜏)𝑥 + 𝜏𝑦 : 𝜏 ∈ (0, 1)}.

We also define the half-open segments:

(𝑥,𝑦] := {(1 − 𝜏)𝑥 + 𝜏𝑦 : 𝜏 ∈ (0, 1]};
[𝑥,𝑦) := {(1 − 𝜏)𝑥 + 𝜏𝑦 : 𝜏 ∈ [0, 1)}.

As you may surmise, the quantity 1 − 𝜏 will arise often enough to merit notation:

𝜏 := 1 − 𝜏 for 𝜏 ∈ R.

Whereas every point in a line is the same, the endpoints of a line segment are distinguished.
This apparently innocuous difference explains why convex geometry is a richer subject than
affine geometry.

Here is another salient observation. The definition (1.4.1) of a line places no restriction
on the value of the parameter 𝛼. On the other hand, the definition of a line segment restricts
the parameter 𝜏 to the interval [0, 1] = {𝑡 ∈ R : 0 ≤ 𝑡 ≤ 1}. We already begin to see that
convexity is the realm of linear inequalities, while affine geometry is the realm of linear
equalities.

More generally, an affine space is the solution to a system of inhomogeneous linear
equations. Later, we will discover that a (closed) convex set is the solution to an (infinite)
system of linear inequalities.

1.5.2 Convex Sets
We are now prepared to make the fundamental definition of this course.

Definition 1.5.2 (Convex set). A set C ⊂ R𝑑 is convex if it contains all of its line segments:

𝑥,𝑦 ∈ C implies [𝑥,𝑦] ⊂ C.

An alternative statement is that, if a convex set contains two points, it also contains all of
their arithmetical averages. Note that the empty set ∅ is (vacuously) convex.

The simplest example of a set that is not convex consists of two distinct points. A
creative individual will quickly find other sets, such as a kidney bean, that fail to be convex.

Here is a collection of some important convex sets that you may already have encountered.
We will permanently affix notation to some of these examples.

1. Affine spaces. Each affine space is convex.
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2. Orthant. The vectors with nonnegative entries form a convex set:

R𝑑
+ := {𝑥 ∈ R𝑑 : 𝑥𝑖 ≥ 0 for each 𝑖}.

The vectors with strictly positive entries form a convex set:

R𝑑
++ := {𝑥 ∈ R𝑑 : 𝑥𝑖 > 0 for each 𝑖}.

These sets are also convex cones, as you will see on your homework.
3. Probability simplex. The set of probability distributions supported on {1, . . . , 𝑑} forms

a convex set, called the probability simplex:

Δ𝑑 :=
{︂

𝑥 ∈ R𝑑
+ :
∑︁𝑑

𝑖=1
𝑥𝑖 = 1

}︂
.

4. Euclidean ball. The vectors with norm no greater than one forms a convex set:

B𝑑 := {𝑥 ∈ R𝑑 : ‖𝑥‖ ≤ 1}.

5. Norm balls. More generally, the unit ball of any norm on R𝑑 is a convex set.
6. Unit-volume cube. The unit-volume cube is convex:

Q𝑑 := [0, 1]𝑑 = {𝑥 ∈ R𝑑 : 0 ≤ 𝑥𝑖 ≤ 1 for each 𝑖}.

7. Nonnegative polynomials. The nonnegative polynomials with fixed maximum degree
form a convex cone:

{𝑝 ∈ P𝑑 : 𝑝(𝑡) ≥ 0 for all 𝑡 ∈ R}.
The linear space P𝑑 contains all polynomials with real coefficients and degree at most
𝑑.

8. Birkhoff polytope. The doubly stochastic matrices forms a convex set:{︂
𝐴 ∈ R𝑑×𝑑

+ :
∑︁𝑑

𝑗=1
𝑎𝑖𝑗 = 1 for each 𝑗 and

∑︁𝑑

𝑖=1
𝑎𝑖𝑗 for each 𝑖

}︂
.

These are nonnegative matrices whose row sums and column sums all equal one.
9. Positive-semidefinite matrices. The complex positive-semidefinite (psd) matrices form

a convex cone:

H𝑑
+ := {𝐴 ∈ C𝑑×𝑑 : ⟨𝑥, 𝐴𝑥⟩ ≥ 0 for all 𝑥 ∈ C𝑑}.

In this expression, we have used the standard Hermitian inner product. Complex
strictly positive-definite (pd) matrices form a convex cone. The real psd matrices also
form a closed convex cone, as do the real pd matrices.

10. Quantum states. The (complex) psd matrices with trace one form a convex set:{︂
𝐴 ∈ H𝑑

+ :
∑︁𝑑

𝑖=1
𝑎𝑖𝑖 = 1

}︂
.

This is Richard Kueng’s favorite example.

You can see from the diversity of this (very small) collection of examples that convexity
arises in a wide range of situations.



Lecture 1: Convex Sets from the Inside 9

1.5.3 Operations Preserving Convexity

There are many operations that preserve convexity. Suppose that C,K ⊂ R𝑑 are convex. Let
A,B ⊂ R𝑑 and M ⊂ R𝑚 be arbitrary sets.

1. Intersection. The set C ∩ K is convex.
2. Direct product. The set C × K is convex.
3. Dilation. The dilation 𝛼C is convex for each 𝛼 ∈ R. We define the dilation of a general

set as
𝛼A := {𝛼𝑥 : 𝑥 ∈ A}.

4. (Minkowski) addition. The sum C + K is convex. We define the sum of two sets as

A + B := {𝑥 + 𝑦 : 𝑥 ∈ A and 𝑦 ∈ B}.

This is an unexpectedly rich operation that will repay our investment.
5. Affine maps. For any affine map 𝑇 : R𝑑 → R𝑚, the image 𝑇 C and the preimage

𝑇 (−1)C are convex. Images and preimages are defined as

𝑇 A := {𝑇 𝑥 : 𝑥 ∈ A} and 𝑇 (−1)M := {𝑥 ∈ R𝑑 : 𝑇 𝑥 ∈ M}.

You will verify these claims on your homework.

1.5.4 Convex Hulls
The line segment [𝑥,𝑦] is the collection of (arithmetical) averages of the points 𝑥,𝑦. We can
also consider averages of greater numbers of points. This idea leads to a fruitful definition.

Definition 1.5.3 (Convex combination). Let 𝑥1, . . . ,𝑥𝑘 ∈ R𝑑. A convex combination of these
points takes the form∑︁𝑘

𝑖=1
𝜆𝑖𝑥𝑖 where

∑︁𝑘

𝑖=1
𝜆𝑖 = 1 and 𝜆𝑖 ≥ 0 for each 𝑖.

Observe that the vector 𝜆 = (𝜆1, . . . , 𝜆𝑘) of coefficients belongs to the probability simplex
Δ𝑘.

A set is convex precisely when it contains all convex combinations of points drawn from
the set. We may now introduce an operation that collects all possible convex combinations
of points from a general set.

Definition 1.5.4 (Convex hull). Let A ⊂ R𝑑 be a nonempty set. The convex hull conv A consists
of all (finite) convex combinations of points drawn from the set A.

conv A :=
{︂∑︁𝑘

𝑖=1
𝜆𝑖𝑥𝑖 : 𝜆 ∈ Δ𝑘 and 𝑥𝑖 ∈ A and 𝑘 ∈ N

}︂
.

It is not hard to check that conv A is indeed a convex set. See Figure 1.1 for an illustration.

Here is the simplest example. The convex hull of a pair of points is the line segment
generated by the points: conv{𝑥,𝑦} = [𝑥,𝑦].

To create a more vivid picture in your mind, you can think of conv A as the set obtained
by “shrink-wrapping” the set A. The following facts justify this intuition:
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∙ If C ⊂ R𝑑 is convex, then conv C = C. In other words, we extract all of the value from
the convex hull operation by applying it once.

∙ The convex hull, conv A, is the intersection of all convex sets that contain A.

These facts do require proof, which you should take the time to provide.
We close this subsection with the definition of an important class of convex sets.

Definition 1.5.5 (Simplex). The convex hull of an affinely independent set of points is called a
simplex.

Examples of simplices include a point, a line segment, a triangle, a tetrahedron, and so
forth. Like affinely independent sets, simplices enjoy a hereditary property. Suppose that
A = {𝑥1, . . . ,𝑥𝑘} is affinely independent. For every subset B ⊂ A, the convex hull conv B is
also a simplex.

1.6 The Carathéodory Theorem
We saw that the affine hull of a set can be generated by a finite subset of its points, with
cardinality one plus the dimension of the affine hull. Convex hulls are more complicated
objects than affine hulls, and so a finite number of points may not be sufficient to generate
the convex hull of an infinite set. For example, consider the unit circle:

S1 := {𝑥 ∈ R2 : ‖𝑥‖ = 1}.

The convex hull of S1 is simply the unit disc B2. It is easy to see that the unit circle has no
finite subset whose convex hull exhausts the unit disc.

As a first step toward understanding the structure of convex hulls, let us establish a very
important theorem that emphasizes the role of affinely independent points in constructing
convex hulls. Later, we will develop a more complete understanding about which points are
needed to generate a convex hull.

Theorem 1.6.1 (Carathéodory). Suppose that A ⊂ R𝑑 and 𝑥 ∈ conv A. Then 𝑥 is a convex
combination of affinely independent points drawn from A. In particular, 𝑥 can be expressed
as a convex combination of 𝑑+ 1 or fewer points in A.

Proof. Since 𝑥 ∈ conv A, we can express it as a convex combination of points drawn from A:

𝑥 =
∑︁𝑘

𝑖=1
𝜆𝑖𝑥𝑖 where

∑︁𝑘

𝑖=1
𝜆𝑖 = 1 and 𝜆𝑖 > 0 and 𝑥𝑖 ∈ A for each 𝑖.

We can surely avoid having any coefficients 𝜆𝑖 that equal zero. Moreover, among all such
representations, we can select one where the number 𝑘 of summands is minimal.

In service of finding a contradiction, imagine that the family {𝑥1, . . . ,𝑥𝑘} is affinely
dependent. Then we can find real coefficients 𝛼1, . . . , 𝛼𝑘, not all zero, for which∑︁𝑘

𝑖=1
𝛼𝑖𝑥𝑖 = 0 and

∑︁𝑘

𝑖=1
𝛼𝑖 = 0.

Select the smallest index 𝑚 that validates the inequalities

𝛼𝑚 > 0 and 𝜆𝑚

𝛼𝑚
≤ 𝜆𝑖

𝛼𝑖
for each 𝑖 where 𝛼𝑖 > 0.
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This index 𝑚 must exist because at least one of the 𝛼𝑖 is positive.
Combining the first two displays, we can write the distinguished point 𝑥 ∈ conv A in the

form

𝑥 =
∑︁𝑘

𝑖=1
𝜆𝑖𝑥𝑖 − 𝜆𝑚

𝛼𝑚

∑︁𝑘

𝑖=1
𝛼𝑖𝑥𝑖 =

∑︁𝑘

𝑖=1

(︂
𝜆𝑖 − 𝜆𝑚

𝛼𝑚
𝛼𝑖

)︂
𝑥𝑖 =:

∑︁𝑘

𝑖=1
𝛽𝑖𝑥𝑖.

Observe that 𝛽𝑚 = 0. Meanwhile, our choice of 𝑚 ensures that 𝛽𝑖 ≥ 0 for each index 𝑖.
Next,

∑︀𝑘
𝑖=1 𝛽𝑖 = 1 because the 𝜆𝑖 sum to one and the 𝛼𝑖 sum to zero.

In other words, we have written 𝑥 as a convex combination of at most 𝑘 − 1 points in
A. This contradicts the minimality of 𝑘. We must conclude that the family {𝑥1, . . . ,𝑥𝑘} is
affinely independent.

An alternative statement of Theorem 1.6.1 is that the convex hull of a set is the union of
the simplices generated by the set:

conv A =
⋃︁

{conv T : T ⊂ A is affinely independent}.

Returning to our two-dimensional example, we see that the unit disc B2 is the union of all
triangles with vertices on the unit circle.

As this observation intimates, Theorem 1.6.1 is a powerful tool for representing points in
the convex hull of a large set. It produces valuable information about the geometry and
topology of convex hulls. It also serves as a building block for more powerful techniques,
including the theorems of Minkowski and Dubins on extremal representations.

Beyond that, Carathéodory’s theorem stands as the gateway to the field of combinatorial
convex geometry. It leads to easy proofs of other important results, including the theorems
of Radon and Helly. Perhaps, you will explore these ideas on your homework.

1.7 Topology of Convex Sets
In this course, we are interested in how convexity interacts with volume. Therefore, we
will focus our attention on compact, convex sets because these sets all have a well-defined
volume. As a preliminary, it is valuable to develop a more detailed understanding of the
topology of convex sets and convex hulls.

1.7.1 The Interior and Closure of a Convex Set
The most basic fact about the topology of a convex set explains how the line segments in a
convex set interact with its boundary.

Proposition 1.7.1 (Internal segments). Let C $ R𝑑 be a nonempty convex set. Let 𝑥 ∈ int C
and 𝑦 ∈ bd C. Then the open segment generated by these two points lies in the interior of
the set: (𝑥,𝑦) ⊂ int C.

The proof is based on an elementary geometric argument, which we leave to you. This
simple result has some important consequences:

Corollary 1.7.2 (Interior and closure of a convex set). Let A ⊂ R𝑑 be a convex set. Then the
interior, int A, and the closure, cl A, are both convex sets.

The convex hull operation also preserves some topological properties.
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Figure 1.1 (The affine hull, the convex hull, the relative interior, and the relative boundary). The set A
contains six points (solid circles) that form a hexagon. The affine hull, aff A, is the plane
that contains this hexagon (light blue), The convex hull, C := conv A, is the entire hexagon,
including its edges (dark blue and black lines). The relative interior, relint C, is the inside of
the hexagon (dark blue), while the relative boundary, relbd C consists of the outside of the
hexagon (black lines). The set C has dimension two.

Theorem 1.7.3 (Topology of a convex hull). The convex hull of an open set is open. The convex
hull of a compact set is compact.

The first part is an easy exercise, while the second part involves Carathéodory’s theorem.
We omit the details.

Warning 1.7.4 (Convex hull does not preserve closedness). The convex hull of a closed set need
not be closed. For example, consider the convex hull of a line and a point not on the line.

Remark 1.7.5 (Closed convex hull). The closed convex hull of A equals the intersection of all
closed convex sets that contain A.

1.7.2 The Dimension of a Convex Set
Convex sets can be flat, like a pancake or a halibut. Indeed, a convex set need not have
any interior points. As a consequence, the topological interior and boundary of a convex set
are not always the most useful way to think about its inside and outside. Here is a better
approach.

Definition 1.7.6 (Relative interior and boundary). Let C ⊂ R𝑑 be a nonempty convex set with
affine hull L = aff C. The relative interior, relint C, is the interior of the set C, computed
with respect to the relative topology on L. Since L is closed in R𝑑, the closure of C in L is the
same as its closure in R𝑑. The relative boundary, relbd C := cl C ∖ relint C, is the boundary
of the set C, computed with respect to the relative topology on L. See Figure 1.1 for an
illustration.

A point in the relative interior of a convex set is sometimes called an internal point of
the set. To appreciate why the relative interior is the correct notion of “inside” for convex
sets, we begin with the example of a simplex.
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Proposition 1.7.7 (Relative interior of a simplex). Consider an affinely independent set A :=
{𝑥1, . . . ,𝑥𝑘} ⊂ R𝑑. The relative interior of the simplex T = conv A takes the form

relint T =
{︂∑︁𝑘

𝑖=1
𝜆𝑖𝑥𝑖 :

∑︁𝑘

𝑖=1
𝜆𝑖 = 1 and 𝜆𝑖 > 0

}︂
.

In particular, the simplex T has an internal point.

Proof sketch. We may assume that 𝑘 = 𝑑+ 1. Since A is affinely independent, the following
linear system has a unique solution for each 𝑥 ∈ aff A:

𝑥 =
∑︁𝑘

𝑖=1
𝜆𝑖𝑥𝑖 and

∑︁𝑘

𝑖=1
𝜆𝑖 = 1.

Indeed, the solution operator 𝜆 : aff A → R𝑘 is a continuous affine map, called the barycentric
coordinates. By continuity, if 𝜆(𝑥) > 0, then 𝜆(𝑦) > 0 for all 𝑦 in some open ball N(𝑥; 𝑟).
In other words, 𝜆(𝑥) > 0 implies that 𝑥 ∈ int T.

On the other hand, suppose that 𝑥 ∈ T, but 𝜆𝑖(𝑥) = 0 for some index 𝑖. Since 𝜆 is
continuous and affine, each open ball N(𝑥; 𝑟) includes a point 𝑦 where 𝜆𝑖(𝑦) < 0. This point
𝑦 /∈ T. Therefore, 𝑥 ∈ bd T.

Corollary 1.7.8 (Relative interior of a convex set). In R𝑑, each nonempty convex set has an
internal point.

Proof. A nonempty convex set coincides with its convex hull. According to Theorem 1.6.1,
the convex hull of a set contains a simplex with the same dimension as the affine hull of the
set. Proposition 1.7.7 asserts that this simplex contains an internal point. This distinguished
internal point must also lie internal to the original convex set.

To summarize, every nonempty convex set has an “inside” so long as we treat it as a
subset of its affine hull. As a consequence, the affine hull of a convex set is its natural milieu.
This leads to another important definition.

Definition 1.7.9 (Dimension of a convex set). In R𝑑, the dimension of a convex set is the dimension
of its affine hull.

1.8 Extreme Points and Faces
We will invest a lot of energy to comprehend the structure of the boundary of a convex set.
Today, we will consider (sets of) points on the boundary of a convex set as they relate to the
other points inside the convex set. In the next lecture, we will examine how the boundary of
a convex set looks from the outside.

1.8.1 Extreme Points
The internal points of a convex set are averages of other points in the convex set. It is
interesting to single out points in the convex set that cannot be written as averages of other
points. We imagine that these are the points in the boundary that are most remote from
the interior of the set. In this discussion, we restrict our attention to closed convex sets.

Definition 1.8.1 (Extreme point). Let C ⊂ R𝑑 be a closed convex set. A point 𝑥 ∈ C is called
an extreme point of C if 𝑦, 𝑧 ∈ C and 1

2 (𝑦 + 𝑧) = 𝑥 imply that 𝑦 = 𝑧 = 𝑥. See Figure 1.2
for an illustration.
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Figure 1.2 (Faces of the triangle, the unit disc, and the arch). Extreme points are marked with heavy
lines and circles, while one-dimensional faces are marked with light lines. [left] The extreme
points of the triangle are the three vertices; its one-dimensional faces are the three edges.
[center] The extreme points of the unit disc compose the entire unit circle; the unit disc has no
one-dimensional faces. [right] The extreme points of the arch are the two lower vertices and the
entire top arc; the three one-dimensional faces are the bottom, left, and right sides.

As our intuition suggests, every extreme point belongs to the (relative) boundary of the
convex set.

Proposition 1.8.2 (Extreme points lie in the boundary). Let C ⊂ R𝑑 be a closed convex set. If
𝑥 ∈ C is an extreme point, then 𝑥 ∈ relbd C.

Proof. Define L = aff C, and suppose that 𝑥 ∈ relint C. By definition of the relative interior,
there is a positive number 𝑟 so that the L-open ball N(𝑥; 𝑟) ∩ L ⊂ C. In particular, this open
ball contains a point 𝑥 + ℎ that is different from 𝑥. But then 𝑦 = 𝑥 + ℎ and 𝑧 = 𝑥 − ℎ
belong to the open ball, and 𝑥 = 1

2 (𝑦 + 𝑧). We must conclude that 𝑥 is not an extreme
point of C.

In the forthcoming lectures, we will come to appreciate the fundamental role of extreme
points in determining the structure of a closed, convex set. We will also learn about their
importance for optimization.

1.8.2 Faces
We can extend the concept of an extreme point by considering a set of points in a convex
set that cannot be written as the averages of points outside that set.

Definition 1.8.3 (Face). Let C ⊂ R𝑑 be a closed convex set. A closed convex set F ⊂ C is
called a face if 𝑦, 𝑧 ∈ C and 1

2 (𝑦 + 𝑧) ∈ F implies that 𝑦, 𝑧 ∈ F. A face is also called an
extreme set. See Figure 1.2.

Notation 1.8.4 (Face of (C)). We sometimes write F C C to abbreviate the relation that F is a
face of C.

Since each face is a convex set, we can assign it a dimension. In particular, the extreme
points are zero-dimensional faces. By convention, the empty set ∅ is regarded as a face of a
convex set C, and the set C itself is also a face. The faces ∅,C are called improper faces of C;
all other faces of C are called proper faces.

As with extreme points, each proper face is contained in the relative boundary of the
convex set. The proof is similar.
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Faces have very important transitivity and intersection properties. These statements
follow quickly from the definition of a face.

Proposition 1.8.5 (Faces: Transitivity and intersection). Let C ⊂ R𝑑 be a closed convex set.

1. If F1 C C and F2 C C and F1 ⊂ F2, then F1 C F2.
2. If F1 C F2 and F2 C C, then F1 C C.
3. Let 𝐼 be any index set. If F𝑖 C C for each 𝑖 ∈ 𝐼, then the intersection

⋂︀
𝑖∈𝐼 F𝑖 C C.

In particular, the extreme points of a face of a closed convex set are also extreme points of
the convex set.

We will spend quite a lot of time studying how the faces of a convex set interact with
each other, and how they relate to its volumetric properties.

Remark 1.8.6 (Faces are closed). It is not necessary to include the qualification that a face is
closed. In view of Proposition 1.7.1, the subsequent part of Definition 1.8.3 already implies
that each face is closed.

Remark 1.8.7 (Role of 1
2 ). In Definitions 1.8.1 and 1.8.3, the number 1

2 has no special significance.
Indeed, a closed convex set F ⊂ C is a face if and only if, for some 𝜏 ∈ (0, 1),

𝑦, 𝑧 ∈ C and 𝜏𝑦 + 𝜏𝑧 ∈ F implies 𝑦, 𝑧 ∈ F.

Warning 1.8.8 (Terminology for faces). The term “face” is not defined consistently in the literature
on convex geometry. In particular, some authors use “face” to refer to what we call an
“exposed face.” Always check the definition!
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2.1 Agenda for Lecture 2
This lecture takes an external view of convex sets, in contrast to the internal view from
Lecture 1. We introduce the Euclidean projector, which reports the closest point in a convex
set. The projector is a useful tool for constructing hyperplanes that separate a convex
set from an external point. We then use separating hyperplanes to construct supporting
hyperplanes, and we learn that every compact, convex set is the intersection of the halfspaces
that contain it. We conclude with the concept of an exposed face of a convex set, which is
the intersection of the set with a supporting hyperplane.

1. The Euclidean projector

2. Hyperplanes and halfspaces

3. Separating hyperplanes

4. Supporting hyperplanes and the support function

5. Exposed faces

2.2 The Euclidean Projector
To begin, we introduce an important function, called the Euclidean projector, that finds the
closest point in a closed convex set. This function is a useful tool for studying separation
and support; it will also provide an important ingredient for our investigation of volumetric
properties.

Definition 2.2.1 (Distance and projection). Let C ⊂ R𝑑 be a nonempty closed convex set, and let
𝑥 ∈ R𝑑 be a point. The distance from 𝑥 to C is

dist(𝑥; C) := distC(𝑥) := min{‖𝑦 − 𝑥‖ : 𝑦 ∈ C}.

A compactness argument shows that the minimum is achieved, and a strict convexity
argument shows that the minimizer is unique. Therefore, we may define a function

proj(𝑥; C) := projC(𝑥) := arg min{‖𝑦 − 𝑥‖ : 𝑦 ∈ C}.

The function projC(·) is called the projector onto C, while the value projC(𝑥) is called the
projection of 𝑥 onto C. The projector is also called the Euclidean projector or the metric
projector.

The projection has an elegant variational characterization that allows us to establish its
key properties.
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Figure 2.1 (Euclidean projection of 𝑥 onto C). The vector connecting the projection projC(𝑥) to 𝑥
forms an obtuse angle with every vector connecting projC(𝑥) to a point 𝑧 in the set C.

Theorem 2.2.2 (Variational characterization of projection). Let C ⊂ R𝑑 be a nonempty closed convex
set, and fix a point 𝑝⋆ ∈ C. Then

𝑝⋆ = projC(𝑥) if and only if ⟨𝑥 − 𝑝⋆, 𝑧 − 𝑝⋆⟩ ≤ 0 for all 𝑧 ∈ C.

See Figure 2.1 for an illustration.

This result is simply the first-order optimality condition for minimizing a smooth function
(i.e., the squared distance) over the convex set C. This fact is important for us, so we include
a complete proof.

Proof. To prove the forward implication, assume that 𝑝⋆ = projC(𝑥) ∈ C. Fix a point 𝑧 ∈ C
and a number 𝜏 ∈ (0, 1). By convexity,

𝜏𝑝⋆ + 𝜏𝑧 = 𝑝⋆ + 𝜏(𝑧 − 𝑝⋆) ∈ C.

Since 𝑝⋆ is the point in C at minimum distance from 𝑥,

‖𝑝⋆ − 𝑥‖ ≤ ‖𝑝⋆ + 𝜏(𝑧 − 𝑝⋆) − 𝑥‖.

Square both sides, expand the squared norm on the right-hand side, and rearrange to arrive
at

2𝜏⟨𝑥 − 𝑝⋆, 𝑧 − 𝑝⋆⟩ ≤ 𝜏2‖𝑧 − 𝑝⋆‖2.

Divide by 2𝜏 and take the limit as 𝜏 → 0 to discover that

⟨𝑥 − 𝑝⋆, 𝑧 − 𝑝⋆⟩ ≤ 0.

Since 𝑧 ∈ C is arbitrary, the forward implication holds.
To prove the reverse implication, assume that 𝑝⋆ ∈ C satisfies the variational condition

for each 𝑧 ∈ C. We need to show that 𝑝⋆ is the projection of 𝑥 onto C. Calculate that

0 ≥ ⟨𝑥 − 𝑝⋆, (𝑧 − 𝑥) + (𝑥 − 𝑝⋆)⟩
= ‖𝑥 − 𝑝⋆‖2 + ⟨𝑥 − 𝑝⋆, 𝑧 − 𝑥⟩
≥ ‖𝑥 − 𝑝⋆‖2 − ‖𝑥 − 𝑝⋆‖‖𝑧 − 𝑥‖.
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The last inequality is Cauchy–Schwarz. Rearranging, we conclude that

‖𝑝⋆ − 𝑥‖ ≤ ‖𝑧 − 𝑥‖.

Since 𝑧 ∈ C is arbitrary, we determine that 𝑝⋆ is the projection of 𝑥 onto C.

The variational characterization yields a number of significant consequences. First, we
investigate how projections of two different points interact.

Corollary 2.2.3 (Projection of two points). Let C ⊂ R𝑑 be a nonempty closed convex set. For all
𝑥,𝑦 ∈ R𝑑,

‖ projC(𝑥) − projC(𝑦)‖2 ≤ ⟨projC(𝑥) − projC(𝑦), 𝑥 − 𝑦⟩.

Proof. We instantiate the variational characterization from Theorem 2.2.2 twice. For the
projection of 𝑥 onto C, we select the mobile point 𝑧 = projC(𝑦). For the projection of 𝑦
onto C, we select the mobile point 𝑧 = projC(𝑥). Thus,

⟨𝑥 − projC(𝑥), projC(𝑦) − projC(𝑥)⟩ ≤ 0;
⟨projC(𝑦) − 𝑦, projC(𝑦) − projC(𝑥)⟩ ≤ 0.

We have rewritten the second relation by negating both sides of the inner product. Add the
two relations:

⟨(𝑥 − 𝑦) − (projC(𝑥) − projC(𝑦)), projC(𝑦) − projC(𝑥)⟩ ≤ 0.

Expand the inner product and rearrange to achieve the stated result.

We may draw two further corollaries. The first result shows that the projection varies in
a regular way. It is an immediate consequence of Corollary 2.2.3 and the Cauchy–Schwarz
inequality.

Corollary 2.2.4 (The projector is Lipschitz). The projector projC(·) onto a closed convex set
C ⊂ R𝑑 is a 1-Lipschitz function:

‖ projC(𝑥) − projC(𝑦)‖ ≤ ‖𝑥 − 𝑦‖ for all 𝑥,𝑦 ∈ R𝑑.

In particular, the projector is continuous.

Later, we will see that the projection of a point onto a closed convex set C varies
continuously as we change C, but we will have to introduce a topology on convex sets before
we can make sense of this statement.

The next fact is tangential to our purposes, but it plays a foundational role in optimization
theory; see Rockafellar [Roc70, Sec. 24].

Corollary 2.2.5 (The projector is monotone). The projector onto a closed convex set C ⊂ R𝑑 is a
monotone operator. That is, for all 𝑥,𝑦 ∈ C,

0 ≤ ⟨projC(𝑥) − projC(𝑦), 𝑥 − 𝑦⟩.

The map I − projC is also a monotone operator:

0 ≤ ⟨(𝑥 − projC(𝑥)) − (𝑦 − projC(𝑦)), 𝑥 − 𝑦⟩.

(In fact, both maps are maximal monotone.)

This result follows quickly from Corollaries 2.2.3 and 2.2.4.
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Hs,↵
<latexit sha1_base64="zvh7aARsuWPOg/FoQUCvJCw0lAk=">AAACDXicbVDLSsNAFJ3UV42vqEs3g6XgQkoigroruumygrGFJoTJZNIOnTyYmQgl5Avc+CtuXKi4de/Ov3GSZqGtF4Y5nHMv99zjp4wKaZrfWmNldW19o7mpb23v7O4Z+wf3Isk4JjZOWMKHPhKE0ZjYkkpGhiknKPIZGfjTm1IfPBAuaBLfyVlK3AiNYxpSjKSiPKOt606E5ESEea/wcsdPWCBmkfpyUZxCB7F0ggrPaJkdsyq4DKwatEBdfc/4coIEZxGJJWZIiJFlptLNEZcUM1LoTiZIivAUjclIwRhFRLh5dU4B24oJYJhw9WIJK/b3RI4iUXpUnZX1Ra0k/9NGmQwv3ZzGaSZJjOeLwoxBmcAyGxhQTrBkMwUQ5lR5hXiCOMJSJairEKzFk5eBfda56pi3563udZ1GExyBY3ACLHABuqAH+sAGGDyCZ/AK3rQn7UV71z7mrQ2tnjkEf0r7/AHBNpwm</latexit><latexit sha1_base64="zvh7aARsuWPOg/FoQUCvJCw0lAk=">AAACDXicbVDLSsNAFJ3UV42vqEs3g6XgQkoigroruumygrGFJoTJZNIOnTyYmQgl5Avc+CtuXKi4de/Ov3GSZqGtF4Y5nHMv99zjp4wKaZrfWmNldW19o7mpb23v7O4Z+wf3Isk4JjZOWMKHPhKE0ZjYkkpGhiknKPIZGfjTm1IfPBAuaBLfyVlK3AiNYxpSjKSiPKOt606E5ESEea/wcsdPWCBmkfpyUZxCB7F0ggrPaJkdsyq4DKwatEBdfc/4coIEZxGJJWZIiJFlptLNEZcUM1LoTiZIivAUjclIwRhFRLh5dU4B24oJYJhw9WIJK/b3RI4iUXpUnZX1Ra0k/9NGmQwv3ZzGaSZJjOeLwoxBmcAyGxhQTrBkMwUQ5lR5hXiCOMJSJairEKzFk5eBfda56pi3563udZ1GExyBY3ACLHABuqAH+sAGGDyCZ/AK3rQn7UV71z7mrQ2tnjkEf0r7/AHBNpwm</latexit><latexit sha1_base64="zvh7aARsuWPOg/FoQUCvJCw0lAk=">AAACDXicbVDLSsNAFJ3UV42vqEs3g6XgQkoigroruumygrGFJoTJZNIOnTyYmQgl5Avc+CtuXKi4de/Ov3GSZqGtF4Y5nHMv99zjp4wKaZrfWmNldW19o7mpb23v7O4Z+wf3Isk4JjZOWMKHPhKE0ZjYkkpGhiknKPIZGfjTm1IfPBAuaBLfyVlK3AiNYxpSjKSiPKOt606E5ESEea/wcsdPWCBmkfpyUZxCB7F0ggrPaJkdsyq4DKwatEBdfc/4coIEZxGJJWZIiJFlptLNEZcUM1LoTiZIivAUjclIwRhFRLh5dU4B24oJYJhw9WIJK/b3RI4iUXpUnZX1Ra0k/9NGmQwv3ZzGaSZJjOeLwoxBmcAyGxhQTrBkMwUQ5lR5hXiCOMJSJairEKzFk5eBfda56pi3563udZ1GExyBY3ACLHABuqAH+sAGGDyCZ/AK3rQn7UV71z7mrQ2tnjkEf0r7/AHBNpwm</latexit>

Hs,↵
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<latexit sha1_base64="+qeWZQKFMi8A4vujvFY14JI9beQ=">AAAB9HicbVC9TsMwGPzCbyl/BUYWiwqJqUoQErBVsDAWidBKbagcx2mtOnZkO6Aq6nuwMABi5WHYeBucNgO0nGT5dPd98vnClDNtXPfbWVpeWV1br2xUN7e2d3Zre/v3WmaKUJ9ILlUnxJpyJqhvmOG0kyqKk5DTdji6Lvz2I1WaSXFnxikNEjwQLGYEGys99ELJIz1O7JXrSb9WdxvuFGiReCWpQ4lWv/bViyTJEioM4VjrruemJsixMoxwOqn2Mk1TTEZ4QLuWCpxQHeTT1BN0bJUIxVLZIwyaqr83cpzoIpqdTLAZ6nmvEP/zupmJL4KciTQzVJDZQ3HGkZGoqABFTFFi+NgSTBSzWREZYoWJsUVVbQne/JcXiX/auGy4t2f15lXZRgUO4QhOwINzaMINtMAHAgqe4RXenCfnxXl3PmajS065cwB/4Hz+ALQlktc=</latexit><latexit sha1_base64="+qeWZQKFMi8A4vujvFY14JI9beQ=">AAAB9HicbVC9TsMwGPzCbyl/BUYWiwqJqUoQErBVsDAWidBKbagcx2mtOnZkO6Aq6nuwMABi5WHYeBucNgO0nGT5dPd98vnClDNtXPfbWVpeWV1br2xUN7e2d3Zre/v3WmaKUJ9ILlUnxJpyJqhvmOG0kyqKk5DTdji6Lvz2I1WaSXFnxikNEjwQLGYEGys99ELJIz1O7JXrSb9WdxvuFGiReCWpQ4lWv/bViyTJEioM4VjrruemJsixMoxwOqn2Mk1TTEZ4QLuWCpxQHeTT1BN0bJUIxVLZIwyaqr83cpzoIpqdTLAZ6nmvEP/zupmJL4KciTQzVJDZQ3HGkZGoqABFTFFi+NgSTBSzWREZYoWJsUVVbQne/JcXiX/auGy4t2f15lXZRgUO4QhOwINzaMINtMAHAgqe4RXenCfnxXl3PmajS065cwB/4Hz+ALQlktc=</latexit><latexit sha1_base64="+qeWZQKFMi8A4vujvFY14JI9beQ=">AAAB9HicbVC9TsMwGPzCbyl/BUYWiwqJqUoQErBVsDAWidBKbagcx2mtOnZkO6Aq6nuwMABi5WHYeBucNgO0nGT5dPd98vnClDNtXPfbWVpeWV1br2xUN7e2d3Zre/v3WmaKUJ9ILlUnxJpyJqhvmOG0kyqKk5DTdji6Lvz2I1WaSXFnxikNEjwQLGYEGys99ELJIz1O7JXrSb9WdxvuFGiReCWpQ4lWv/bViyTJEioM4VjrruemJsixMoxwOqn2Mk1TTEZ4QLuWCpxQHeTT1BN0bJUIxVLZIwyaqr83cpzoIpqdTLAZ6nmvEP/zupmJL4KciTQzVJDZQ3HGkZGoqABFTFFi+NgSTBSzWREZYoWJsUVVbQne/JcXiX/auGy4t2f15lXZRgUO4QhOwINzaMINtMAHAgqe4RXenCfnxXl3PmajS065cwB/4Hz+ALQlktc=</latexit>

s
<latexit sha1_base64="+qeWZQKFMi8A4vujvFY14JI9beQ=">AAAB9HicbVC9TsMwGPzCbyl/BUYWiwqJqUoQErBVsDAWidBKbagcx2mtOnZkO6Aq6nuwMABi5WHYeBucNgO0nGT5dPd98vnClDNtXPfbWVpeWV1br2xUN7e2d3Zre/v3WmaKUJ9ILlUnxJpyJqhvmOG0kyqKk5DTdji6Lvz2I1WaSXFnxikNEjwQLGYEGys99ELJIz1O7JXrSb9WdxvuFGiReCWpQ4lWv/bViyTJEioM4VjrruemJsixMoxwOqn2Mk1TTEZ4QLuWCpxQHeTT1BN0bJUIxVLZIwyaqr83cpzoIpqdTLAZ6nmvEP/zupmJL4KciTQzVJDZQ3HGkZGoqABFTFFi+NgSTBSzWREZYoWJsUVVbQne/JcXiX/auGy4t2f15lXZRgUO4QhOwINzaMINtMAHAgqe4RXenCfnxXl3PmajS065cwB/4Hz+ALQlktc=</latexit><latexit sha1_base64="+qeWZQKFMi8A4vujvFY14JI9beQ=">AAAB9HicbVC9TsMwGPzCbyl/BUYWiwqJqUoQErBVsDAWidBKbagcx2mtOnZkO6Aq6nuwMABi5WHYeBucNgO0nGT5dPd98vnClDNtXPfbWVpeWV1br2xUN7e2d3Zre/v3WmaKUJ9ILlUnxJpyJqhvmOG0kyqKk5DTdji6Lvz2I1WaSXFnxikNEjwQLGYEGys99ELJIz1O7JXrSb9WdxvuFGiReCWpQ4lWv/bViyTJEioM4VjrruemJsixMoxwOqn2Mk1TTEZ4QLuWCpxQHeTT1BN0bJUIxVLZIwyaqr83cpzoIpqdTLAZ6nmvEP/zupmJL4KciTQzVJDZQ3HGkZGoqABFTFFi+NgSTBSzWREZYoWJsUVVbQne/JcXiX/auGy4t2f15lXZRgUO4QhOwINzaMINtMAHAgqe4RXenCfnxXl3PmajS065cwB/4Hz+ALQlktc=</latexit><latexit sha1_base64="+qeWZQKFMi8A4vujvFY14JI9beQ=">AAAB9HicbVC9TsMwGPzCbyl/BUYWiwqJqUoQErBVsDAWidBKbagcx2mtOnZkO6Aq6nuwMABi5WHYeBucNgO0nGT5dPd98vnClDNtXPfbWVpeWV1br2xUN7e2d3Zre/v3WmaKUJ9ILlUnxJpyJqhvmOG0kyqKk5DTdji6Lvz2I1WaSXFnxikNEjwQLGYEGys99ELJIz1O7JXrSb9WdxvuFGiReCWpQ4lWv/bViyTJEioM4VjrruemJsixMoxwOqn2Mk1TTEZ4QLuWCpxQHeTT1BN0bJUIxVLZIwyaqr83cpzoIpqdTLAZ6nmvEP/zupmJL4KciTQzVJDZQ3HGkZGoqABFTFFi+NgSTBSzWREZYoWJsUVVbQne/JcXiX/auGy4t2f15lXZRgUO4QhOwINzaMINtMAHAgqe4RXenCfnxXl3PmajS065cwB/4Hz+ALQlktc=</latexit>

Figure 2.2 (Hyperplanes). Hyperplanes H𝑠,𝛼 and their corresponding normal vectors 𝑠 and levels
𝛼. Increasing the level 𝛼 moves the hyperplane in the direction 𝑠.
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R2
<latexit sha1_base64="orN/us3pq15xdrZLkmx3qrjKPPY=">AAAB8nicbVA9T8MwFHzhs4SvAiOLRYXEVCVdgAFRwcJYEKGVmlA5rtNadZzIdpCqqBK/goUBECv/g52Nf4PTdoCWkyyd7t7TO1+Ycqa043xbC4tLyyurpTV7fWNza7u8s3unkkwS6pGEJ7IVYkU5E9TTTHPaSiXFcchpMxxcFn7zgUrFEnGrhykNYtwTLGIEayP5fox1Pwzzm9F9rVOuOFVnDDRP3CmpnH/aZ48A0OiUv/xuQrKYCk04VqrtOqkOciw1I5yObD9TNMVkgHu0bajAMVVBPs48QodG6aIokeYJjcbq740cx0oN49BMFhnVrFeI/3ntTEcnQc5EmmkqyORQlHGkE1QUgLpMUqL50BBMJDNZEeljiYk2NdmmBHf2y/PEq1VPq861U6lfwAQl2IcDOAIXjqEOV9AADwik8AQv8Gpl1rP1Zr1PRhes6c4e/IH18QPAKpMy</latexit><latexit sha1_base64="1wVtKkGcKBtsEfMoU4hsIFwP1BE=">AAAB8nicbVA9T8MwFHwpXyV8FRhZIiokpirtAgyIChbGggit1ITKcZ3WquNYtoNURf0bLAyAuvI/2FkQ/wan7QAtJ1k63b2nd75QMKq0635bhaXlldW14rq9sbm1vVPa3btXSSox8XDCEtkKkSKMcuJpqhlpCUlQHDLSDAdXud98JFLRhN/poSBBjHqcRhQjbSTfj5Huh2F2O3qodUplt+JO4CyS6oyULz7sczH+shud0qffTXAaE64xQ0q1q67QQYakppiRke2nigiEB6hH2oZyFBMVZJPMI+fIKF0nSqR5XDsT9fdGhmKlhnFoJvOMat7Lxf+8dqqj0yCjXKSacDw9FKXM0YmTF+B0qSRYs6EhCEtqsjq4jyTC2tRkmxKq819eJF6tclZxb9xy/RKmKMIBHMIxVOEE6nANDfAAg4AneIFXK7WerTdrPB0tWLOdffgD6/0HsEWUpg==</latexit><latexit sha1_base64="1wVtKkGcKBtsEfMoU4hsIFwP1BE=">AAAB8nicbVA9T8MwFHwpXyV8FRhZIiokpirtAgyIChbGggit1ITKcZ3WquNYtoNURf0bLAyAuvI/2FkQ/wan7QAtJ1k63b2nd75QMKq0635bhaXlldW14rq9sbm1vVPa3btXSSox8XDCEtkKkSKMcuJpqhlpCUlQHDLSDAdXud98JFLRhN/poSBBjHqcRhQjbSTfj5Huh2F2O3qodUplt+JO4CyS6oyULz7sczH+shud0qffTXAaE64xQ0q1q67QQYakppiRke2nigiEB6hH2oZyFBMVZJPMI+fIKF0nSqR5XDsT9fdGhmKlhnFoJvOMat7Lxf+8dqqj0yCjXKSacDw9FKXM0YmTF+B0qSRYs6EhCEtqsjq4jyTC2tRkmxKq819eJF6tclZxb9xy/RKmKMIBHMIxVOEE6nANDfAAg4AneIFXK7WerTdrPB0tWLOdffgD6/0HsEWUpg==</latexit>

H�
s,↵

<latexit sha1_base64="bjWb9PKNB8cQHU/tUpH0o0HJw1o=">AAACDXicbVC7TsMwFHXKq5RXgJHFoqrEAFWCkICtgqVjkQit1ITIcZzWqvOQ7SBVUb6AhV9hYQDEys7G3+CkGaDlSpaPzrlX99zjJYwKaRjfWm1peWV1rb7e2Njc2t7Rd/fuRJxyTCwcs5gPPCQIoxGxJJWMDBJOUOgx0vcm14XefyBc0Di6ldOEOCEaRTSgGElFuXrLDpEciyDr5vcnbmZ7MfPFNFRfJvJjaCOWjFHu6k2jbZQFF4FZgSaoqufqX7Yf4zQkkcQMCTE0jUQ6GeKSYkbyhp0KkiA8QSMyVDBCIRFOVp6Tw5ZifBjEXL1IwpL9PZGhUBQeVWdpfl4ryP+0YSqDCyejUZJKEuHZoiBlUMawyAb6lBMs2VQBhDlVXiEeI46wVAk2VAjm/MmLwDptX7aNm7Nm56pKow4OwCE4AiY4Bx3QBT1gAQwewTN4BW/ak/aivWsfs9aaVs3sgz+lff4AiJOcnQ==</latexit><latexit sha1_base64="bjWb9PKNB8cQHU/tUpH0o0HJw1o=">AAACDXicbVC7TsMwFHXKq5RXgJHFoqrEAFWCkICtgqVjkQit1ITIcZzWqvOQ7SBVUb6AhV9hYQDEys7G3+CkGaDlSpaPzrlX99zjJYwKaRjfWm1peWV1rb7e2Njc2t7Rd/fuRJxyTCwcs5gPPCQIoxGxJJWMDBJOUOgx0vcm14XefyBc0Di6ldOEOCEaRTSgGElFuXrLDpEciyDr5vcnbmZ7MfPFNFRfJvJjaCOWjFHu6k2jbZQFF4FZgSaoqufqX7Yf4zQkkcQMCTE0jUQ6GeKSYkbyhp0KkiA8QSMyVDBCIRFOVp6Tw5ZifBjEXL1IwpL9PZGhUBQeVWdpfl4ryP+0YSqDCyejUZJKEuHZoiBlUMawyAb6lBMs2VQBhDlVXiEeI46wVAk2VAjm/MmLwDptX7aNm7Nm56pKow4OwCE4AiY4Bx3QBT1gAQwewTN4BW/ak/aivWsfs9aaVs3sgz+lff4AiJOcnQ==</latexit><latexit sha1_base64="bjWb9PKNB8cQHU/tUpH0o0HJw1o=">AAACDXicbVC7TsMwFHXKq5RXgJHFoqrEAFWCkICtgqVjkQit1ITIcZzWqvOQ7SBVUb6AhV9hYQDEys7G3+CkGaDlSpaPzrlX99zjJYwKaRjfWm1peWV1rb7e2Njc2t7Rd/fuRJxyTCwcs5gPPCQIoxGxJJWMDBJOUOgx0vcm14XefyBc0Di6ldOEOCEaRTSgGElFuXrLDpEciyDr5vcnbmZ7MfPFNFRfJvJjaCOWjFHu6k2jbZQFF4FZgSaoqufqX7Yf4zQkkcQMCTE0jUQ6GeKSYkbyhp0KkiA8QSMyVDBCIRFOVp6Tw5ZifBjEXL1IwpL9PZGhUBQeVWdpfl4ryP+0YSqDCyejUZJKEuHZoiBlUMawyAb6lBMs2VQBhDlVXiEeI46wVAk2VAjm/MmLwDptX7aNm7Nm56pKow4OwCE4AiY4Bx3QBT1gAQwewTN4BW/ak/aivWsfs9aaVs3sgz+lff4AiJOcnQ==</latexit>

H+
s,↵

<latexit sha1_base64="xLmFPst2fvtNRjGFlwtd0ZmtFog=">AAACDXicbVDLSsNAFJ3UV62vqEs3g6UgKCURQd0V3XRZwdhCE8NkMmmHTh7MTIQS8gVu/BU3LlTcunfn3zhJs9DWC8MczrmXe+7xEkaFNIxvrba0vLK6Vl9vbGxube/ou3t3Ik45JhaOWcwHHhKE0YhYkkpGBgknKPQY6XuT60LvPxAuaBzdymlCnBCNIhpQjKSiXL1lh0iORZB18/tjN7O9mPliGqovE/kJtBFLxih39abRNsqCi8CsQBNU1XP1L9uPcRqSSGKGhBiaRiKdDHFJMSN5w04FSRCeoBEZKhihkAgnK8/JYUsxPgxirl4kYcn+nshQKAqPqrM0P68V5H/aMJXBhZPRKEklifBsUZAyKGNYZAN9ygmWbKoAwpwqrxCPEUdYqgQbKgRz/uRFYJ22L9vGzVmzc1WlUQcH4BAcAROcgw7ogh6wAAaP4Bm8gjftSXvR3rWPWWtNq2b2wZ/SPn8AhVucmw==</latexit><latexit sha1_base64="xLmFPst2fvtNRjGFlwtd0ZmtFog=">AAACDXicbVDLSsNAFJ3UV62vqEs3g6UgKCURQd0V3XRZwdhCE8NkMmmHTh7MTIQS8gVu/BU3LlTcunfn3zhJs9DWC8MczrmXe+7xEkaFNIxvrba0vLK6Vl9vbGxube/ou3t3Ik45JhaOWcwHHhKE0YhYkkpGBgknKPQY6XuT60LvPxAuaBzdymlCnBCNIhpQjKSiXL1lh0iORZB18/tjN7O9mPliGqovE/kJtBFLxih39abRNsqCi8CsQBNU1XP1L9uPcRqSSGKGhBiaRiKdDHFJMSN5w04FSRCeoBEZKhihkAgnK8/JYUsxPgxirl4kYcn+nshQKAqPqrM0P68V5H/aMJXBhZPRKEklifBsUZAyKGNYZAN9ygmWbKoAwpwqrxCPEUdYqgQbKgRz/uRFYJ22L9vGzVmzc1WlUQcH4BAcAROcgw7ogh6wAAaP4Bm8gjftSXvR3rWPWWtNq2b2wZ/SPn8AhVucmw==</latexit><latexit sha1_base64="xLmFPst2fvtNRjGFlwtd0ZmtFog=">AAACDXicbVDLSsNAFJ3UV62vqEs3g6UgKCURQd0V3XRZwdhCE8NkMmmHTh7MTIQS8gVu/BU3LlTcunfn3zhJs9DWC8MczrmXe+7xEkaFNIxvrba0vLK6Vl9vbGxube/ou3t3Ik45JhaOWcwHHhKE0YhYkkpGBgknKPQY6XuT60LvPxAuaBzdymlCnBCNIhpQjKSiXL1lh0iORZB18/tjN7O9mPliGqovE/kJtBFLxih39abRNsqCi8CsQBNU1XP1L9uPcRqSSGKGhBiaRiKdDHFJMSN5w04FSRCeoBEZKhihkAgnK8/JYUsxPgxirl4kYcn+nshQKAqPqrM0P68V5H/aMJXBhZPRKEklifBsUZAyKGNYZAN9ygmWbKoAwpwqrxCPEUdYqgQbKgRz/uRFYJ22L9vGzVmzc1WlUQcH4BAcAROcgw7ogh6wAAaP4Bm8gjftSXvR3rWPWWtNq2b2wZ/SPn8AhVucmw==</latexit>

hs, xi = ↵
<latexit sha1_base64="6e6sZoAD83tSr2emDBB6KtDScS4=">AAACHXicbVDLSgMxFM3UV62vUZdugkVwIWVGFHUhFN24rGBtoVPKnUymDc1khiQjlqFf4sZfceNCxYUb8W/MtF3U1gMhJ+eeS+49fsKZ0o7zYxUWFpeWV4qrpbX1jc0te3vnXsWpJLROYh7Lpg+KciZoXTPNaTORFCKf04bfv87rjQcqFYvFnR4ktB1BV7CQEdBG6tinHgfR5RR7fswDNYjMlanh0fTzcejJsekSe8CTHnTsslNxRsDzxJ2QMpqg1rG/vCAmaUSFJhyUarlOotsZSM0Ip8OSlyqaAOlDl7YMFRBR1c5G6w3xgVECHMbSHKHxSJ3uyCBS+ajGGYHuqdlaLv5Xa6U6PG9nTCSppoKMPwpTjnWM86xwwCQlmg8MASKZmRWTHkgg2iRaMiG4syvPk/px5aLi3J6Uq1eTNIpoD+2jQ+SiM1RFN6iG6oigJ/SC3tC79Wy9Wh/W59hasCY9u+gPrO9fQOmjYA==</latexit><latexit sha1_base64="6e6sZoAD83tSr2emDBB6KtDScS4=">AAACHXicbVDLSgMxFM3UV62vUZdugkVwIWVGFHUhFN24rGBtoVPKnUymDc1khiQjlqFf4sZfceNCxYUb8W/MtF3U1gMhJ+eeS+49fsKZ0o7zYxUWFpeWV4qrpbX1jc0te3vnXsWpJLROYh7Lpg+KciZoXTPNaTORFCKf04bfv87rjQcqFYvFnR4ktB1BV7CQEdBG6tinHgfR5RR7fswDNYjMlanh0fTzcejJsekSe8CTHnTsslNxRsDzxJ2QMpqg1rG/vCAmaUSFJhyUarlOotsZSM0Ip8OSlyqaAOlDl7YMFRBR1c5G6w3xgVECHMbSHKHxSJ3uyCBS+ajGGYHuqdlaLv5Xa6U6PG9nTCSppoKMPwpTjnWM86xwwCQlmg8MASKZmRWTHkgg2iRaMiG4syvPk/px5aLi3J6Uq1eTNIpoD+2jQ+SiM1RFN6iG6oigJ/SC3tC79Wy9Wh/W59hasCY9u+gPrO9fQOmjYA==</latexit><latexit sha1_base64="6e6sZoAD83tSr2emDBB6KtDScS4=">AAACHXicbVDLSgMxFM3UV62vUZdugkVwIWVGFHUhFN24rGBtoVPKnUymDc1khiQjlqFf4sZfceNCxYUb8W/MtF3U1gMhJ+eeS+49fsKZ0o7zYxUWFpeWV4qrpbX1jc0te3vnXsWpJLROYh7Lpg+KciZoXTPNaTORFCKf04bfv87rjQcqFYvFnR4ktB1BV7CQEdBG6tinHgfR5RR7fswDNYjMlanh0fTzcejJsekSe8CTHnTsslNxRsDzxJ2QMpqg1rG/vCAmaUSFJhyUarlOotsZSM0Ip8OSlyqaAOlDl7YMFRBR1c5G6w3xgVECHMbSHKHxSJ3uyCBS+ajGGYHuqdlaLv5Xa6U6PG9nTCSppoKMPwpTjnWM86xwwCQlmg8MASKZmRWTHkgg2iRaMiG4syvPk/px5aLi3J6Uq1eTNIpoD+2jQ+SiM1RFN6iG6oigJ/SC3tC79Wy9Wh/W59hasCY9u+gPrO9fQOmjYA==</latexit>

s
<latexit sha1_base64="+qeWZQKFMi8A4vujvFY14JI9beQ=">AAAB9HicbVC9TsMwGPzCbyl/BUYWiwqJqUoQErBVsDAWidBKbagcx2mtOnZkO6Aq6nuwMABi5WHYeBucNgO0nGT5dPd98vnClDNtXPfbWVpeWV1br2xUN7e2d3Zre/v3WmaKUJ9ILlUnxJpyJqhvmOG0kyqKk5DTdji6Lvz2I1WaSXFnxikNEjwQLGYEGys99ELJIz1O7JXrSb9WdxvuFGiReCWpQ4lWv/bViyTJEioM4VjrruemJsixMoxwOqn2Mk1TTEZ4QLuWCpxQHeTT1BN0bJUIxVLZIwyaqr83cpzoIpqdTLAZ6nmvEP/zupmJL4KciTQzVJDZQ3HGkZGoqABFTFFi+NgSTBSzWREZYoWJsUVVbQne/JcXiX/auGy4t2f15lXZRgUO4QhOwINzaMINtMAHAgqe4RXenCfnxXl3PmajS065cwB/4Hz+ALQlktc=</latexit><latexit sha1_base64="+qeWZQKFMi8A4vujvFY14JI9beQ=">AAAB9HicbVC9TsMwGPzCbyl/BUYWiwqJqUoQErBVsDAWidBKbagcx2mtOnZkO6Aq6nuwMABi5WHYeBucNgO0nGT5dPd98vnClDNtXPfbWVpeWV1br2xUN7e2d3Zre/v3WmaKUJ9ILlUnxJpyJqhvmOG0kyqKk5DTdji6Lvz2I1WaSXFnxikNEjwQLGYEGys99ELJIz1O7JXrSb9WdxvuFGiReCWpQ4lWv/bViyTJEioM4VjrruemJsixMoxwOqn2Mk1TTEZ4QLuWCpxQHeTT1BN0bJUIxVLZIwyaqr83cpzoIpqdTLAZ6nmvEP/zupmJL4KciTQzVJDZQ3HGkZGoqABFTFFi+NgSTBSzWREZYoWJsUVVbQne/JcXiX/auGy4t2f15lXZRgUO4QhOwINzaMINtMAHAgqe4RXenCfnxXl3PmajS065cwB/4Hz+ALQlktc=</latexit><latexit sha1_base64="+qeWZQKFMi8A4vujvFY14JI9beQ=">AAAB9HicbVC9TsMwGPzCbyl/BUYWiwqJqUoQErBVsDAWidBKbagcx2mtOnZkO6Aq6nuwMABi5WHYeBucNgO0nGT5dPd98vnClDNtXPfbWVpeWV1br2xUN7e2d3Zre/v3WmaKUJ9ILlUnxJpyJqhvmOG0kyqKk5DTdji6Lvz2I1WaSXFnxikNEjwQLGYEGys99ELJIz1O7JXrSb9WdxvuFGiReCWpQ4lWv/bViyTJEioM4VjrruemJsixMoxwOqn2Mk1TTEZ4QLuWCpxQHeTT1BN0bJUIxVLZIwyaqr83cpzoIpqdTLAZ6nmvEP/zupmJL4KciTQzVJDZQ3HGkZGoqABFTFFi+NgSTBSzWREZYoWJsUVVbQne/JcXiX/auGy4t2f15lXZRgUO4QhOwINzaMINtMAHAgqe4RXenCfnxXl3PmajS065cwB/4Hz+ALQlktc=</latexit>

hs, xi = ↵
<latexit sha1_base64="6e6sZoAD83tSr2emDBB6KtDScS4=">AAACHXicbVDLSgMxFM3UV62vUZdugkVwIWVGFHUhFN24rGBtoVPKnUymDc1khiQjlqFf4sZfceNCxYUb8W/MtF3U1gMhJ+eeS+49fsKZ0o7zYxUWFpeWV4qrpbX1jc0te3vnXsWpJLROYh7Lpg+KciZoXTPNaTORFCKf04bfv87rjQcqFYvFnR4ktB1BV7CQEdBG6tinHgfR5RR7fswDNYjMlanh0fTzcejJsekSe8CTHnTsslNxRsDzxJ2QMpqg1rG/vCAmaUSFJhyUarlOotsZSM0Ip8OSlyqaAOlDl7YMFRBR1c5G6w3xgVECHMbSHKHxSJ3uyCBS+ajGGYHuqdlaLv5Xa6U6PG9nTCSppoKMPwpTjnWM86xwwCQlmg8MASKZmRWTHkgg2iRaMiG4syvPk/px5aLi3J6Uq1eTNIpoD+2jQ+SiM1RFN6iG6oigJ/SC3tC79Wy9Wh/W59hasCY9u+gPrO9fQOmjYA==</latexit><latexit sha1_base64="6e6sZoAD83tSr2emDBB6KtDScS4=">AAACHXicbVDLSgMxFM3UV62vUZdugkVwIWVGFHUhFN24rGBtoVPKnUymDc1khiQjlqFf4sZfceNCxYUb8W/MtF3U1gMhJ+eeS+49fsKZ0o7zYxUWFpeWV4qrpbX1jc0te3vnXsWpJLROYh7Lpg+KciZoXTPNaTORFCKf04bfv87rjQcqFYvFnR4ktB1BV7CQEdBG6tinHgfR5RR7fswDNYjMlanh0fTzcejJsekSe8CTHnTsslNxRsDzxJ2QMpqg1rG/vCAmaUSFJhyUarlOotsZSM0Ip8OSlyqaAOlDl7YMFRBR1c5G6w3xgVECHMbSHKHxSJ3uyCBS+ajGGYHuqdlaLv5Xa6U6PG9nTCSppoKMPwpTjnWM86xwwCQlmg8MASKZmRWTHkgg2iRaMiG4syvPk/px5aLi3J6Uq1eTNIpoD+2jQ+SiM1RFN6iG6oigJ/SC3tC79Wy9Wh/W59hasCY9u+gPrO9fQOmjYA==</latexit><latexit sha1_base64="6e6sZoAD83tSr2emDBB6KtDScS4=">AAACHXicbVDLSgMxFM3UV62vUZdugkVwIWVGFHUhFN24rGBtoVPKnUymDc1khiQjlqFf4sZfceNCxYUb8W/MtF3U1gMhJ+eeS+49fsKZ0o7zYxUWFpeWV4qrpbX1jc0te3vnXsWpJLROYh7Lpg+KciZoXTPNaTORFCKf04bfv87rjQcqFYvFnR4ktB1BV7CQEdBG6tinHgfR5RR7fswDNYjMlanh0fTzcejJsekSe8CTHnTsslNxRsDzxJ2QMpqg1rG/vCAmaUSFJhyUarlOotsZSM0Ip8OSlyqaAOlDl7YMFRBR1c5G6w3xgVECHMbSHKHxSJ3uyCBS+ajGGYHuqdlaLv5Xa6U6PG9nTCSppoKMPwpTjnWM86xwwCQlmg8MASKZmRWTHkgg2iRaMiG4syvPk/px5aLi3J6Uq1eTNIpoD+2jQ+SiM1RFN6iG6oigJ/SC3tC79Wy9Wh/W59hasCY9u+gPrO9fQOmjYA==</latexit>

s
<latexit sha1_base64="+qeWZQKFMi8A4vujvFY14JI9beQ=">AAAB9HicbVC9TsMwGPzCbyl/BUYWiwqJqUoQErBVsDAWidBKbagcx2mtOnZkO6Aq6nuwMABi5WHYeBucNgO0nGT5dPd98vnClDNtXPfbWVpeWV1br2xUN7e2d3Zre/v3WmaKUJ9ILlUnxJpyJqhvmOG0kyqKk5DTdji6Lvz2I1WaSXFnxikNEjwQLGYEGys99ELJIz1O7JXrSb9WdxvuFGiReCWpQ4lWv/bViyTJEioM4VjrruemJsixMoxwOqn2Mk1TTEZ4QLuWCpxQHeTT1BN0bJUIxVLZIwyaqr83cpzoIpqdTLAZ6nmvEP/zupmJL4KciTQzVJDZQ3HGkZGoqABFTFFi+NgSTBSzWREZYoWJsUVVbQne/JcXiX/auGy4t2f15lXZRgUO4QhOwINzaMINtMAHAgqe4RXenCfnxXl3PmajS065cwB/4Hz+ALQlktc=</latexit><latexit sha1_base64="+qeWZQKFMi8A4vujvFY14JI9beQ=">AAAB9HicbVC9TsMwGPzCbyl/BUYWiwqJqUoQErBVsDAWidBKbagcx2mtOnZkO6Aq6nuwMABi5WHYeBucNgO0nGT5dPd98vnClDNtXPfbWVpeWV1br2xUN7e2d3Zre/v3WmaKUJ9ILlUnxJpyJqhvmOG0kyqKk5DTdji6Lvz2I1WaSXFnxikNEjwQLGYEGys99ELJIz1O7JXrSb9WdxvuFGiReCWpQ4lWv/bViyTJEioM4VjrruemJsixMoxwOqn2Mk1TTEZ4QLuWCpxQHeTT1BN0bJUIxVLZIwyaqr83cpzoIpqdTLAZ6nmvEP/zupmJL4KciTQzVJDZQ3HGkZGoqABFTFFi+NgSTBSzWREZYoWJsUVVbQne/JcXiX/auGy4t2f15lXZRgUO4QhOwINzaMINtMAHAgqe4RXenCfnxXl3PmajS065cwB/4Hz+ALQlktc=</latexit><latexit sha1_base64="+qeWZQKFMi8A4vujvFY14JI9beQ=">AAAB9HicbVC9TsMwGPzCbyl/BUYWiwqJqUoQErBVsDAWidBKbagcx2mtOnZkO6Aq6nuwMABi5WHYeBucNgO0nGT5dPd98vnClDNtXPfbWVpeWV1br2xUN7e2d3Zre/v3WmaKUJ9ILlUnxJpyJqhvmOG0kyqKk5DTdji6Lvz2I1WaSXFnxikNEjwQLGYEGys99ELJIz1O7JXrSb9WdxvuFGiReCWpQ4lWv/bViyTJEioM4VjrruemJsixMoxwOqn2Mk1TTEZ4QLuWCpxQHeTT1BN0bJUIxVLZIwyaqr83cpzoIpqdTLAZ6nmvEP/zupmJL4KciTQzVJDZQ3HGkZGoqABFTFFi+NgSTBSzWREZYoWJsUVVbQne/JcXiX/auGy4t2f15lXZRgUO4QhOwINzaMINtMAHAgqe4RXenCfnxXl3PmajS065cwB/4Hz+ALQlktc=</latexit>

Figure 2.3 (Halfspaces). [left] The positive halfspace H+
𝑠,𝛼 with inner normal 𝑠 at level 𝛼. [right]

The negative halfspace H−
𝑠,𝛼 with outer normal 𝑠 at level 𝛼.

2.3 Hyperplanes and Halfspaces
Hyperplanes and halfspaces are geometric objects that loom large in the theory of convexity.
They give us the language for developing separation and support theorems, which will emerge
later in this lecture. First, we need some terminology and notation.

Definition 2.3.1 (Hyperplane and halfspace). In R𝑑, a hyperplane is an affine space with codi-
mension one. A hyperplane cuts the linear space into two disjoint regions. We define a
closed halfspace to be the set of all points on one side of a hyperplane, including the points
in the hyperplane.
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Notation 2.3.2 (Hyperplane and halfspace). Fix a nonzero vector 𝑠 ∈ R𝑑, called a normal, and a
scalar 𝛼 ∈ R, called a level. The hyperplane with normal 𝑠 at level 𝛼 is the affine space

H𝑠,𝛼 := {𝑥 ∈ R𝑑 : ⟨𝑠, 𝑥⟩ = 𝛼}.

See Figure 2.2 for a picture of some hyperplanes. The (closed) halfspace with outer normal
𝑠 at level 𝛼 is the closed convex set

H−
𝑠,𝛼 := {𝑥 ∈ R𝑑 : ⟨𝑠, 𝑥⟩ ≤ 𝛼}.

The (closed) halfspace with inner normal 𝑠 at level 𝛼 is the closed convex set

H+
𝑠,𝛼 := {𝑥 ∈ R𝑑 : ⟨𝑠, 𝑥⟩ ≥ 𝛼}.

See Figure 2.3 for a diagram of these halfspaces.

We have chosen the letter 𝑠 as a mnemonic for “slope.” The normal vector 𝑠 is orthogonal
to all vectors contained in its hyperplane:

⟨𝑠, 𝑥 − 𝑦⟩ = 0 for all 𝑥,𝑦 ∈ H𝑠,𝛼.

All hyperplanes with normal 𝑠 are parallel with each other; increasing the level parameter 𝛼
translates the hyperplane in the direction 𝑠. Note that a hyperplane contains the origin if
and only if the level 𝛼 = 0.

There is also a valuable algebraic perspective on hyperplanes and halfspaces. Recall that
a linear functional on R𝑑 is a linear map 𝜙 : R𝑑 → R. By the representation theorem, the
linear functional takes the form 𝜙(𝑥) = ⟨𝑠, 𝑥⟩ for some vector 𝑠 ∈ R𝑑. As a consequence,
we can just as well parameterize hyperplanes and halfspaces by means of (nonzero) linear
functionals:

H𝜙,𝛼 := {𝑥 ∈ R𝑑 : 𝜙(𝑥) = 𝛼};
H−

𝜙,𝛼 := {𝑥 ∈ R𝑑 : 𝜙(𝑥) ≤ 𝛼};
H+

𝜙,𝛼 := {𝑥 ∈ R𝑑 : 𝜙(𝑥) ≥ 𝛼}.

We sometimes adopt the functional perspective in our discussion when it leads to clearer
explanations. In the infinite-dimensional setting, linear functionals are indispensable.

2.4 Separating Hyperplanes
We continue with an intuitive geometric fact about. Given any point not contained in a
closed convex set, we can insert a hyperplane between the point and the set. In a word, we
can separate a convex set from an external point. This simple idea turns out to be one of
the most powerful consequences of convexity. Let us state and prove the basic separation
theorem for closed convex sets.

Theorem 2.4.1 (Proper separation of a point from a closed convex set). Let C ⊂ R𝑑 be a closed
convex set. Fix a point 𝑥 /∈ C. Then there exists a (nonzero) vector 𝑠 ∈ R𝑑 for which

⟨𝑠, 𝑥⟩ > sup{⟨𝑠, 𝑧⟩ : 𝑧 ∈ C}.
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Figure 2.4 (Separating hyperplane). The hyperplane H𝑠,𝛼 properly separates the closed convex
set C from the external point 𝑥. The hyperplane is normal to the vector 𝑠 = 𝑥 − projC(𝑥)
emanating from the projection projC(𝑥) and connecting to the point 𝑥.

Proof. The Euclidean projector provides a geometrically natural approach to the separation
theorem. Introduce the nonzero vector

𝑠 := 𝑥 − projC(𝑥).

(The vector 𝑠 is nonzero because 𝑥 does not belong to the closed set C.) The variational
characterization of the projection, Theorem 2.2.2, states that

0 ≥ ⟨𝑥 − projC(𝑥), 𝑧 − projC(𝑥)⟩ = ⟨𝑠, 𝑧 − 𝑥 + 𝑠⟩ for all 𝑧 ∈ C.

Rearranging, we arrive at the bound

⟨𝑠, 𝑥⟩ ≥ ⟨𝑠, 𝑧⟩ + ‖𝑠‖2 for all 𝑧 ∈ C.

Take the supremum over 𝑧 ∈ C to conclude

⟨𝑠, 𝑥⟩ ≥ sup{⟨𝑠, 𝑧⟩ : 𝑧 ∈ C} + ‖𝑠‖2.

Since 𝑠 is nonzero, the inequality in the statement is strict.

Let us reinterpret Theorem 2.4.1 geometrically. Choose the level

𝛼 = 1
2

[︁
⟨𝑠, 𝑥⟩ + sup{⟨𝑠, 𝑧⟩ : 𝑧 ∈ C}

]︁
.

As shown in Figure 2.4, the hyperplane H𝑠,𝛼 lies strictly between the point 𝑥 and the set C,
intersecting neither. This picture explains the term “proper separation.”

It is often more convenient to describe separation in terms of linear functionals. Using
this language, we can make the notion of separation rigorous.
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Definition 2.4.2 (Separation). Let 𝜙 : R𝑑 → R be a nonzero linear functional. Let A,B ⊂ R𝑑 be
nonempty sets. We say that the linear functional separates (for emphasis, weakly separates)
the sets if

either inf{𝜙(𝑥) : 𝑥 ∈ A} ≥ sup{𝜙(𝑦) : 𝑦 ∈ B}
or inf{𝜙(𝑦) : 𝑦 ∈ B} ≥ sup{𝜙(𝑥) : 𝑥 ∈ A}.

We say that the linear functional properly separates the sets if one of these two conditions
holds with a strict inequality. Since hyperplanes are equivalent to linear functionals, we can
transfer the terminology of separation to hyperplanes.

Geometrically, separation means that we can insert a hyperplane between the sets, but
the hyperplane may contact the boundary of one or both of the sets. Proper separation
means that we can insert a hyperplane between the sets, avoiding the boundary of each; this
situation obtains in Figure 2.4.

Theorem 2.4.1 states that we can properly separate a point from a closed convex set.
Here is a useful extension to two sets.

Corollary 2.4.3 (Proper separation of convex sets). Let C,K ⊂ R𝑑 be closed convex sets, one of
which is compact. If C ∩ K = ∅, then we can properly separate the two sets with a hyperplane.

Proof sketch. The difference set D := C − K is closed and convex, and it does not contain
the origin. Theorem 2.4.1 yields a linear functional 𝜙 that properly separates D from the
origin. The same linear functional properly separates C from K.

Proper separation requires topological assumptions. But (weak) separation is possible
when we only enjoy the benefit of convexity.

Theorem 2.4.4 (Weak separation of convex sets). Let C,K ⊂ R𝑑 be convex sets whose relative
interiors do not intersect: relint C ∩ relint K = ∅. Then we can (weakly) separate the two sets
with a hyperplane.

We probably will not need this type of separation theorem, so we omit the proof.

2.5 Supporting Hyperplanes and Halfspaces
We can also use hyperplanes to help understand the boundary structure of a convex set. To
do so, we will consider the hyperplanes that (weakly) separate a point on the boundary from
the set.

Definition 2.5.1 (Supporting hyperplane). Let A ⊂ R𝑑 be a set, and let 𝑥 ∈ bd A. A hyperplane
H𝑠,𝛼 supports the set A at the boundary point 𝑥 if the hyperplane contains the point 𝑥 and
the set A is contained in the negative halfspace:

𝑥 ∈ H𝑠,𝛼 and A ⊂ H−
𝑠,𝛼.

By convention, we require the normal 𝑠 to point outward from the set A. Equivalently, a
nonzero linear functional 𝜙 : R𝑑 → R supports A at 𝑥 if

𝜙(𝑥) = sup{𝜙(𝑧) : 𝑧 ∈ A}.

See Figure 2.5 for a diagram. See also Remark 2.5.6 below.
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non-compact compact

Figure 2.5 (Supporting halfspaces). [left] The halfspace H− supports the convex set C at the point
𝑥. [right] If C is compact and convex and 𝑠 ̸= 0, then there is a supporting halfspace H− with
outer normal 𝑠.
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<latexit sha1_base64="lKDthvh2qSfzmKERuTeDfiusw6w=">AAAB+HicbVBNS8NAFHypX7V+RT16WSyCIJREBPVW9NJjBWMLbSib7aZdutmE3U2hhPwTLx5UvPpTvPlv3KY5aOvAwjDzHm92goQzpR3n26qsrW9sblW3azu7e/sH9uHRk4pTSahHYh7LboAV5UxQTzPNaTeRFEcBp51gcj/3O1MqFYvFo54l1I/wSLCQEayNNLDtfoT1WIVZKx9kkws3H9h1p+EUQKvELUkdSrQH9ld/GJM0okITjpXquU6i/QxLzQinea2fKppgMsEj2jNU4IgqPyuS5+jMKEMUxtI8oVGh/t7IcKTULArMZJFz2ZuL/3m9VIc3fsZEkmoqyOJQmHKkYzSvAQ2ZpETzmSGYSGayIjLGEhNtyqqZEtzlL68S77Jx23AerurNu7KNKpzAKZyDC9fQhBa0wQMCU3iGV3izMuvFerc+FqMVq9w5hj+wPn8A4CWTWw==</latexit><latexit sha1_base64="lKDthvh2qSfzmKERuTeDfiusw6w=">AAAB+HicbVBNS8NAFHypX7V+RT16WSyCIJREBPVW9NJjBWMLbSib7aZdutmE3U2hhPwTLx5UvPpTvPlv3KY5aOvAwjDzHm92goQzpR3n26qsrW9sblW3azu7e/sH9uHRk4pTSahHYh7LboAV5UxQTzPNaTeRFEcBp51gcj/3O1MqFYvFo54l1I/wSLCQEayNNLDtfoT1WIVZKx9kkws3H9h1p+EUQKvELUkdSrQH9ld/GJM0okITjpXquU6i/QxLzQinea2fKppgMsEj2jNU4IgqPyuS5+jMKEMUxtI8oVGh/t7IcKTULArMZJFz2ZuL/3m9VIc3fsZEkmoqyOJQmHKkYzSvAQ2ZpETzmSGYSGayIjLGEhNtyqqZEtzlL68S77Jx23AerurNu7KNKpzAKZyDC9fQhBa0wQMCU3iGV3izMuvFerc+FqMVq9w5hj+wPn8A4CWTWw==</latexit><latexit sha1_base64="lKDthvh2qSfzmKERuTeDfiusw6w=">AAAB+HicbVBNS8NAFHypX7V+RT16WSyCIJREBPVW9NJjBWMLbSib7aZdutmE3U2hhPwTLx5UvPpTvPlv3KY5aOvAwjDzHm92goQzpR3n26qsrW9sblW3azu7e/sH9uHRk4pTSahHYh7LboAV5UxQTzPNaTeRFEcBp51gcj/3O1MqFYvFo54l1I/wSLCQEayNNLDtfoT1WIVZKx9kkws3H9h1p+EUQKvELUkdSrQH9ld/GJM0okITjpXquU6i/QxLzQinea2fKppgMsEj2jNU4IgqPyuS5+jMKEMUxtI8oVGh/t7IcKTULArMZJFz2ZuL/3m9VIc3fsZEkmoqyOJQmHKkYzSvAQ2ZpETzmSGYSGayIjLGEhNtyqqZEtzlL68S77Jx23AerurNu7KNKpzAKZyDC9fQhBa0wQMCU3iGV3izMuvFerc+FqMVq9w5hj+wPn8A4CWTWw==</latexit>H<latexit sha1_base64="wbmDlpqP9lTmXZaWgKv/HdqmNaw=">AAAB8HicbVBNS8NAFHypX7V+VT16WSyCp5KKoN6KXnqsYLTYhrLZbtqlm03YfRFK6L/w4kHFqz/Hm//GbZqDtg4sDDPvsfMmSKQw6LrfTmlldW19o7xZ2dre2d2r7h/cmzjVjHsslrHuBNRwKRT3UKDknURzGgWSPwTjm5n/8MS1EbG6w0nC/YgOlQgFo2ilx15EcWTCrDXtV2tu3c1BlkmjIDUo0O5Xv3qDmKURV8gkNabbcBP0M6pRMMmnlV5qeELZmA5511JFI278LE88JSdWGZAw1vYpJLn6eyOjkTGTKLCTecJFbyb+53VTDC/9TKgkRa7Y/KMwlQRjMjufDITmDOXEEsq0sFkJG1FNGdqSKraExuLJy8Q7q1/V3dvzWvO6aKMMR3AMp9CAC2hCC9rgAQMFz/AKb45xXpx352M+WnKKnUP4A+fzBzi1kNA=</latexit><latexit sha1_base64="wbmDlpqP9lTmXZaWgKv/HdqmNaw=">AAAB8HicbVBNS8NAFHypX7V+VT16WSyCp5KKoN6KXnqsYLTYhrLZbtqlm03YfRFK6L/w4kHFqz/Hm//GbZqDtg4sDDPvsfMmSKQw6LrfTmlldW19o7xZ2dre2d2r7h/cmzjVjHsslrHuBNRwKRT3UKDknURzGgWSPwTjm5n/8MS1EbG6w0nC/YgOlQgFo2ilx15EcWTCrDXtV2tu3c1BlkmjIDUo0O5Xv3qDmKURV8gkNabbcBP0M6pRMMmnlV5qeELZmA5511JFI278LE88JSdWGZAw1vYpJLn6eyOjkTGTKLCTecJFbyb+53VTDC/9TKgkRa7Y/KMwlQRjMjufDITmDOXEEsq0sFkJG1FNGdqSKraExuLJy8Q7q1/V3dvzWvO6aKMMR3AMp9CAC2hCC9rgAQMFz/AKb45xXpx352M+WnKKnUP4A+fzBzi1kNA=</latexit><latexit sha1_base64="wbmDlpqP9lTmXZaWgKv/HdqmNaw=">AAAB8HicbVBNS8NAFHypX7V+VT16WSyCp5KKoN6KXnqsYLTYhrLZbtqlm03YfRFK6L/w4kHFqz/Hm//GbZqDtg4sDDPvsfMmSKQw6LrfTmlldW19o7xZ2dre2d2r7h/cmzjVjHsslrHuBNRwKRT3UKDknURzGgWSPwTjm5n/8MS1EbG6w0nC/YgOlQgFo2ilx15EcWTCrDXtV2tu3c1BlkmjIDUo0O5Xv3qDmKURV8gkNabbcBP0M6pRMMmnlV5qeELZmA5511JFI278LE88JSdWGZAw1vYpJLn6eyOjkTGTKLCTecJFbyb+53VTDC/9TKgkRa7Y/KMwlQRjMjufDITmDOXEEsq0sFkJG1FNGdqSKraExuLJy8Q7q1/V3dvzWvO6aKMMR3AMp9CAC2hCC9rgAQMFz/AKb45xXpx352M+WnKKnUP4A+fzBzi1kNA=</latexit>

C
<latexit sha1_base64="EMb4yOSuA9Mj1ADknwNSvLm79gU=">AAAB8HicbVBNS8NAFHypX7V+VT16WSyCp5KKoN6KvXisYLTYhrLZvrRLN5uwuxFK6L/w4kHFqz/Hm//GbZqDtg4sDDPvsfMmSATXxnW/ndLK6tr6RnmzsrW9s7tX3T+413GqGHosFrHqBFSj4BI9w43ATqKQRoHAh2DcmvkPT6g0j+WdmSToR3QoecgZNVZ67EXUjHSYtab9as2tuznIMmkUpAYF2v3qV28QszRCaZigWncbbmL8jCrDmcBppZdqTCgb0yF2LZU0Qu1neeIpObHKgISxsk8akqu/NzIaaT2JAjuZJ1z0ZuJ/Xjc14aWfcZmkBiWbfxSmgpiYzM4nA66QGTGxhDLFbVbCRlRRZmxJFVtCY/HkZeKd1a/q7u15rXldtFGGIziGU2jABTThBtrgAQMJz/AKb452Xpx352M+WnKKnUP4A+fzBzEhkMs=</latexit><latexit sha1_base64="EMb4yOSuA9Mj1ADknwNSvLm79gU=">AAAB8HicbVBNS8NAFHypX7V+VT16WSyCp5KKoN6KvXisYLTYhrLZvrRLN5uwuxFK6L/w4kHFqz/Hm//GbZqDtg4sDDPvsfMmSATXxnW/ndLK6tr6RnmzsrW9s7tX3T+413GqGHosFrHqBFSj4BI9w43ATqKQRoHAh2DcmvkPT6g0j+WdmSToR3QoecgZNVZ67EXUjHSYtab9as2tuznIMmkUpAYF2v3qV28QszRCaZigWncbbmL8jCrDmcBppZdqTCgb0yF2LZU0Qu1neeIpObHKgISxsk8akqu/NzIaaT2JAjuZJ1z0ZuJ/Xjc14aWfcZmkBiWbfxSmgpiYzM4nA66QGTGxhDLFbVbCRlRRZmxJFVtCY/HkZeKd1a/q7u15rXldtFGGIziGU2jABTThBtrgAQMJz/AKb452Xpx352M+WnKKnUP4A+fzBzEhkMs=</latexit><latexit sha1_base64="EMb4yOSuA9Mj1ADknwNSvLm79gU=">AAAB8HicbVBNS8NAFHypX7V+VT16WSyCp5KKoN6KvXisYLTYhrLZvrRLN5uwuxFK6L/w4kHFqz/Hm//GbZqDtg4sDDPvsfMmSATXxnW/ndLK6tr6RnmzsrW9s7tX3T+413GqGHosFrHqBFSj4BI9w43ATqKQRoHAh2DcmvkPT6g0j+WdmSToR3QoecgZNVZ67EXUjHSYtab9as2tuznIMmkUpAYF2v3qV28QszRCaZigWncbbmL8jCrDmcBppZdqTCgb0yF2LZU0Qu1neeIpObHKgISxsk8akqu/NzIaaT2JAjuZJ1z0ZuJ/Xjc14aWfcZmkBiWbfxSmgpiYzM4nA66QGTGxhDLFbVbCRlRRZmxJFVtCY/HkZeKd1a/q7u15rXldtFGGIziGU2jABTThBtrgAQMJz/AKb452Xpx352M+WnKKnUP4A+fzBzEhkMs=</latexit>

Hu0
?,↵

<latexit sha1_base64="wQUFth6acpVHGB9YhHBKgioD31o=">AAACEnicbVDLSsNAFJ3UV62vqEs3g0UUkZKIoO6KbrqsYGyhKeFmOmmHTh7MTIQS8g9u/BU3LlTcunLn3zhJu9DqgWEO59zLvff4CWdSWdaXUVlYXFpeqa7W1tY3NrfM7Z07GaeCUIfEPBZdHyTlLKKOYorTbiIohD6nHX98Xfideyoki6NbNUloP4RhxAJGQGnJM4/dENRIBlkr9zLXj/lATkL9ZWl+6LlSgTjBLvBkBLln1q2GVQL/JfaM1NEMbc/8dAcxSUMaKcJByp5tJaqfgVCMcJrX3FTSBMgYhrSnaQQhlf2svCnHB1oZ4CAW+kUKl+rPjgxCWayqK8sL5r1C/M/rpSq46GcsSlJFIzIdFKQcqxgXAeEBE5QoPtEEiGB6V0xGIIAoHWNNh2DPn/yXOKeNy4Z1c1ZvXs3SqKI9tI+OkI3OURO1UBs5iKAH9IRe0KvxaDwbb8b7tLRizHp20S8YH9+7FZ7i</latexit><latexit sha1_base64="wQUFth6acpVHGB9YhHBKgioD31o=">AAACEnicbVDLSsNAFJ3UV62vqEs3g0UUkZKIoO6KbrqsYGyhKeFmOmmHTh7MTIQS8g9u/BU3LlTcunLn3zhJu9DqgWEO59zLvff4CWdSWdaXUVlYXFpeqa7W1tY3NrfM7Z07GaeCUIfEPBZdHyTlLKKOYorTbiIohD6nHX98Xfideyoki6NbNUloP4RhxAJGQGnJM4/dENRIBlkr9zLXj/lATkL9ZWl+6LlSgTjBLvBkBLln1q2GVQL/JfaM1NEMbc/8dAcxSUMaKcJByp5tJaqfgVCMcJrX3FTSBMgYhrSnaQQhlf2svCnHB1oZ4CAW+kUKl+rPjgxCWayqK8sL5r1C/M/rpSq46GcsSlJFIzIdFKQcqxgXAeEBE5QoPtEEiGB6V0xGIIAoHWNNh2DPn/yXOKeNy4Z1c1ZvXs3SqKI9tI+OkI3OURO1UBs5iKAH9IRe0KvxaDwbb8b7tLRizHp20S8YH9+7FZ7i</latexit><latexit sha1_base64="wQUFth6acpVHGB9YhHBKgioD31o=">AAACEnicbVDLSsNAFJ3UV62vqEs3g0UUkZKIoO6KbrqsYGyhKeFmOmmHTh7MTIQS8g9u/BU3LlTcunLn3zhJu9DqgWEO59zLvff4CWdSWdaXUVlYXFpeqa7W1tY3NrfM7Z07GaeCUIfEPBZdHyTlLKKOYorTbiIohD6nHX98Xfideyoki6NbNUloP4RhxAJGQGnJM4/dENRIBlkr9zLXj/lATkL9ZWl+6LlSgTjBLvBkBLln1q2GVQL/JfaM1NEMbc/8dAcxSUMaKcJByp5tJaqfgVCMcJrX3FTSBMgYhrSnaQQhlf2svCnHB1oZ4CAW+kUKl+rPjgxCWayqK8sL5r1C/M/rpSq46GcsSlJFIzIdFKQcqxgXAeEBE5QoPtEEiGB6V0xGIIAoHWNNh2DPn/yXOKeNy4Z1c1ZvXs3SqKI9tI+OkI3OURO1UBs5iKAH9IRe0KvxaDwbb8b7tLRizHp20S8YH9+7FZ7i</latexit>

Hu00
? ,↵

<latexit sha1_base64="qOXc9++Xku1qRoRBiOlQlUiKlYs=">AAACE3icbVDLSsNAFJ3UV62vqEs3g0UqKCUVQd0V3XRZwdhCU8LNdNIOnTyYmQgl5CPc+CtuXKi4dePOv3HSZqGtB4Y5nHMv997jxZxJZVnfRmlpeWV1rbxe2djc2t4xd/fuZZQIQm0S8Uh0PZCUs5DaiilOu7GgEHicdrzxTe53HqiQLArv1CSm/QCGIfMZAaUl1zxxAlAj6aetzE0dL+IDOQn0lyZZreY6UoE4xQ7weASZa1atujUFXiSNglRRgbZrfjmDiCQBDRXhIGWvYcWqn4JQjHCaVZxE0hjIGIa0p2kIAZX9dHpUho+0MsB+JPQLFZ6qvztSCGS+q66cnjDv5eJ/Xi9R/mU/ZWGcKBqS2SA/4VhFOE8ID5igRPGJJkAE07tiMgIBROkcKzqExvzJi8Q+q1/VrdvzavO6SKOMDtAhOkYNdIGaqIXayEYEPaJn9IrejCfjxXg3PmalJaPo2Ud/YHz+ACjWnxM=</latexit><latexit sha1_base64="qOXc9++Xku1qRoRBiOlQlUiKlYs=">AAACE3icbVDLSsNAFJ3UV62vqEs3g0UqKCUVQd0V3XRZwdhCU8LNdNIOnTyYmQgl5CPc+CtuXKi4dePOv3HSZqGtB4Y5nHMv997jxZxJZVnfRmlpeWV1rbxe2djc2t4xd/fuZZQIQm0S8Uh0PZCUs5DaiilOu7GgEHicdrzxTe53HqiQLArv1CSm/QCGIfMZAaUl1zxxAlAj6aetzE0dL+IDOQn0lyZZreY6UoE4xQ7weASZa1atujUFXiSNglRRgbZrfjmDiCQBDRXhIGWvYcWqn4JQjHCaVZxE0hjIGIa0p2kIAZX9dHpUho+0MsB+JPQLFZ6qvztSCGS+q66cnjDv5eJ/Xi9R/mU/ZWGcKBqS2SA/4VhFOE8ID5igRPGJJkAE07tiMgIBROkcKzqExvzJi8Q+q1/VrdvzavO6SKOMDtAhOkYNdIGaqIXayEYEPaJn9IrejCfjxXg3PmalJaPo2Ud/YHz+ACjWnxM=</latexit><latexit sha1_base64="qOXc9++Xku1qRoRBiOlQlUiKlYs=">AAACE3icbVDLSsNAFJ3UV62vqEs3g0UqKCUVQd0V3XRZwdhCU8LNdNIOnTyYmQgl5CPc+CtuXKi4dePOv3HSZqGtB4Y5nHMv997jxZxJZVnfRmlpeWV1rbxe2djc2t4xd/fuZZQIQm0S8Uh0PZCUs5DaiilOu7GgEHicdrzxTe53HqiQLArv1CSm/QCGIfMZAaUl1zxxAlAj6aetzE0dL+IDOQn0lyZZreY6UoE4xQ7weASZa1atujUFXiSNglRRgbZrfjmDiCQBDRXhIGWvYcWqn4JQjHCaVZxE0hjIGIa0p2kIAZX9dHpUho+0MsB+JPQLFZ6qvztSCGS+q66cnjDv5eJ/Xi9R/mU/ZWGcKBqS2SA/4VhFOE8ID5igRPGJJkAE07tiMgIBROkcKzqExvzJi8Q+q1/VrdvzavO6SKOMDtAhOkYNdIGaqIXayEYEPaJn9IrejCfjxXg3PmalJaPo2Ud/YHz+ACjWnxM=</latexit>

u00
?<latexit sha1_base64="mplM0NMp0ms3cIN6GuGbL+WQNCQ=">AAAB/nicbVBPS8MwHE3nvzn/VQUvXoJD5ml0Iqi3oRePE6wbrKWkabqFpUlJUmHUHfwqXjyoePVzePPbmG496OaDkMd7vx95eWHKqNKO821VlpZXVteq67WNza3tHXt3716JTGLiYsGE7IVIEUY5cTXVjPRSSVASMtINR9eF330gUlHB7/Q4JX6CBpzGFCNtpMA+8ELBIjVOzJVnk0Yj8JRGMrDrTtOZAi6SVknqoEQnsL+8SOAsIVxjhpTqt5xU+zmSmmJGJjUvUyRFeIQGpG8oRwlRfj7NP4HHRolgLKQ5XMOp+nsjR4kqIprJBOmhmvcK8T+vn+n4ws8pTzNNOJ49FGcMagGLMmBEJcGajQ1BWFKTFeIhkghrU1nNlNCa//IicU+bl03n9qzevirbqIJDcAROQAucgza4AR3gAgwewTN4BW/Wk/VivVsfs9GKVe7sgz+wPn8AvMeWHQ==</latexit><latexit sha1_base64="mplM0NMp0ms3cIN6GuGbL+WQNCQ=">AAAB/nicbVBPS8MwHE3nvzn/VQUvXoJD5ml0Iqi3oRePE6wbrKWkabqFpUlJUmHUHfwqXjyoePVzePPbmG496OaDkMd7vx95eWHKqNKO821VlpZXVteq67WNza3tHXt3716JTGLiYsGE7IVIEUY5cTXVjPRSSVASMtINR9eF330gUlHB7/Q4JX6CBpzGFCNtpMA+8ELBIjVOzJVnk0Yj8JRGMrDrTtOZAi6SVknqoEQnsL+8SOAsIVxjhpTqt5xU+zmSmmJGJjUvUyRFeIQGpG8oRwlRfj7NP4HHRolgLKQ5XMOp+nsjR4kqIprJBOmhmvcK8T+vn+n4ws8pTzNNOJ49FGcMagGLMmBEJcGajQ1BWFKTFeIhkghrU1nNlNCa//IicU+bl03n9qzevirbqIJDcAROQAucgza4AR3gAgwewTN4BW/Wk/VivVsfs9GKVe7sgz+wPn8AvMeWHQ==</latexit><latexit sha1_base64="mplM0NMp0ms3cIN6GuGbL+WQNCQ=">AAAB/nicbVBPS8MwHE3nvzn/VQUvXoJD5ml0Iqi3oRePE6wbrKWkabqFpUlJUmHUHfwqXjyoePVzePPbmG496OaDkMd7vx95eWHKqNKO821VlpZXVteq67WNza3tHXt3716JTGLiYsGE7IVIEUY5cTXVjPRSSVASMtINR9eF330gUlHB7/Q4JX6CBpzGFCNtpMA+8ELBIjVOzJVnk0Yj8JRGMrDrTtOZAi6SVknqoEQnsL+8SOAsIVxjhpTqt5xU+zmSmmJGJjUvUyRFeIQGpG8oRwlRfj7NP4HHRolgLKQ5XMOp+nsjR4kqIprJBOmhmvcK8T+vn+n4ws8pTzNNOJ49FGcMagGLMmBEJcGajQ1BWFKTFeIhkghrU1nNlNCa//IicU+bl03n9qzevirbqIJDcAROQAucgza4AR3gAgwewTN4BW/Wk/VivVsfs9GKVe7sgz+wPn8AvMeWHQ==</latexit>

u0
?<latexit sha1_base64="pygIVXjArm+QdYaIxPwbXUt5yew=">AAAB/XicbVBPS8MwHE3nvzn/VcWTl+AQPY1WBPU29OJxgnWDtZQ0TbewNClJKowy8Kt48aDi1e/hzW9juvWgmw9CHu/9fuTlRRmjSjvOt1VbWl5ZXauvNzY2t7Z37N29ByVyiYmHBROyFyFFGOXE01Qz0sskQWnESDca3ZR+95FIRQW/1+OMBCkacJpQjLSRQvvAjwSL1Tg1V5FPTkJfaSRDu+m0nCngInEr0gQVOqH95ccC5ynhGjOkVN91Mh0USGqKGZk0/FyRDOERGpC+oRylRAXFNP4EHhslhomQ5nANp+rvjQKlqkxoJlOkh2reK8X/vH6uk8ugoDzLNeF49lCSM6gFLLuAMZUEazY2BGFJTVaIh0girE1jDVOCO//lReKdta5azt15s31dtVEHh+AInAIXXIA2uAUd4AEMCvAMXsGb9WS9WO/Wx2y0ZlU7++APrM8fVZeV7A==</latexit><latexit sha1_base64="pygIVXjArm+QdYaIxPwbXUt5yew=">AAAB/XicbVBPS8MwHE3nvzn/VcWTl+AQPY1WBPU29OJxgnWDtZQ0TbewNClJKowy8Kt48aDi1e/hzW9juvWgmw9CHu/9fuTlRRmjSjvOt1VbWl5ZXauvNzY2t7Z37N29ByVyiYmHBROyFyFFGOXE01Qz0sskQWnESDca3ZR+95FIRQW/1+OMBCkacJpQjLSRQvvAjwSL1Tg1V5FPTkJfaSRDu+m0nCngInEr0gQVOqH95ccC5ynhGjOkVN91Mh0USGqKGZk0/FyRDOERGpC+oRylRAXFNP4EHhslhomQ5nANp+rvjQKlqkxoJlOkh2reK8X/vH6uk8ugoDzLNeF49lCSM6gFLLuAMZUEazY2BGFJTVaIh0girE1jDVOCO//lReKdta5azt15s31dtVEHh+AInAIXXIA2uAUd4AEMCvAMXsGb9WS9WO/Wx2y0ZlU7++APrM8fVZeV7A==</latexit><latexit sha1_base64="pygIVXjArm+QdYaIxPwbXUt5yew=">AAAB/XicbVBPS8MwHE3nvzn/VcWTl+AQPY1WBPU29OJxgnWDtZQ0TbewNClJKowy8Kt48aDi1e/hzW9juvWgmw9CHu/9fuTlRRmjSjvOt1VbWl5ZXauvNzY2t7Z37N29ByVyiYmHBROyFyFFGOXE01Qz0sskQWnESDca3ZR+95FIRQW/1+OMBCkacJpQjLSRQvvAjwSL1Tg1V5FPTkJfaSRDu+m0nCngInEr0gQVOqH95ccC5ynhGjOkVN91Mh0USGqKGZk0/FyRDOERGpC+oRylRAXFNP4EHhslhomQ5nANp+rvjQKlqkxoJlOkh2reK8X/vH6uk8ugoDzLNeF49lCSM6gFLLuAMZUEazY2BGFJTVaIh0girE1jDVOCO//lReKdta5azt15s31dtVEHh+AInAIXXIA2uAUd4AEMCvAMXsGb9WS9WO/Wx2y0ZlU7++APrM8fVZeV7A==</latexit>

Figure 2.6 (Separating hyperplanes converging to a supporting hyperplane). [left] The sequence of external
points 𝑥𝑘 /∈ C converges to a boundary point 𝑥 of the closed convex set C. The sequence H𝑘 of
hyperplanes separating 𝑥𝑘 from C converges to a hyperplane H that supports C at 𝑥. [right] A
convex set C need not have a unique supporting hyperplane at a given boundary point.

The next result demonstrates that a proper convex set is supported at every point of its
boundary. This fact complements Theorem 2.5.3.

Theorem 2.5.2 (Supporting hyperplanes to a convex set). Let C $ R𝑑 be a nonempty convex set.
For each 𝑥 ∈ bd C, there is a hyperplane that supports C at 𝑥.

Proof. The key idea is to produce the supporting hyperplane as a limit of separating
hyperplanes. This effort requires some care because the limit may not exist when the
boundary is nonsmooth. See Figure 2.6.

Let 𝑥 ∈ bd C. By definition of the boundary, for each 𝑟 > 0, we can describe an open
ball N(𝑥, 𝑟) about 𝑥 that exits cl C. As a consequence, we can extract a sequence from the
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exterior of the set cl C that converges to the distinguished boundary point 𝑥:

𝑥𝑘 → 𝑥 and 𝑥𝑘 ∈ R𝑑 ∖ cl C for each 𝑘 ∈ N.

For each index 𝑘, Theorem 2.4.1 yields a hyperplane with normal 𝑠𝑘 ̸= 0 that separates 𝑥𝑘

from cl C, hence from C (because the set is contained in its closure).
Rescale each normal 𝑢𝑘 := 𝑠𝑘/‖𝑠𝑘‖ to obtain a unit vector. Since the unit sphere in

R𝑑 is compact, we can extract a convergent subsequence from the sequence of unit normal
vectors: 𝑢𝑘ℓ

→ 𝑢⋆ where ‖𝑢⋆‖ = 1.
For each index 𝑘ℓ, the unit normal vector 𝑢𝑘ℓ

also generates a hyperplane that separates
𝑥𝑘ℓ

from C:
⟨𝑢𝑘ℓ

, 𝑥𝑘ℓ
− 𝑧⟩ > 0 for each 𝑧 ∈ C.

Take the limit as the subindex ℓ → ∞ to see that

⟨𝑢⋆, 𝑥 − 𝑧⟩ ≥ 0 for each 𝑧 ∈ C.

In other words,
𝛼 := ⟨𝑢⋆, 𝑥⟩ ≥ sup{⟨𝑢⋆, 𝑧⟩ : 𝑧 ∈ C}.

We conclude that the hyperplane H𝑢⋆,𝛼 supports C at 𝑥.

For a compact convex set, it is easy to see that every possible normal vector generates a
supporting hyperplane. Boundedness is essential for this type of result because an unbounded
convex set is not supported in its directions of recession.

Theorem 2.5.3 (Supporting hyperplanes to a compact convex set). Let C ⊂ R𝑑 be a nonempty
compact convex set. For each 𝑠 ̸= 0, there is a supporting hyperplane to C with normal 𝑠.
See Figure 2.5.

Proof. Fix a direction 𝑠 ∈ R𝑑. Since C is compact, we can define the level

𝛼⋆ := max{⟨𝑠, 𝑧⟩ : 𝑧 ∈ C}.

The maximum is achieved at some point 𝑥⋆ ∈ C. We quickly verify that the hyperplane
H𝑠,𝛼⋆

supports the set C at the point 𝑥⋆.

Theorem 2.5.3 has a remarkable consequence. It provides an external description of a
compact convex set as the intersection of all halfspaces that contain the set.

Corollary 2.5.4 (Dual representation of a compact convex set). Let C ⊂ R𝑑 be a nonempty compact
convex set. Then

C =
⋂︁

{H− : H− is a halfspace containing C}.

A fortiori,
C =

⋂︁
{H− : H− is a supporting halfspace of C}.

See Figure 2.7 for a depiction.



Lecture 2: Convex Sets from the Outside 25

C
<latexit sha1_base64="EMb4yOSuA9Mj1ADknwNSvLm79gU=">AAAB8HicbVBNS8NAFHypX7V+VT16WSyCp5KKoN6KvXisYLTYhrLZvrRLN5uwuxFK6L/w4kHFqz/Hm//GbZqDtg4sDDPvsfMmSATXxnW/ndLK6tr6RnmzsrW9s7tX3T+413GqGHosFrHqBFSj4BI9w43ATqKQRoHAh2DcmvkPT6g0j+WdmSToR3QoecgZNVZ67EXUjHSYtab9as2tuznIMmkUpAYF2v3qV28QszRCaZigWncbbmL8jCrDmcBppZdqTCgb0yF2LZU0Qu1neeIpObHKgISxsk8akqu/NzIaaT2JAjuZJ1z0ZuJ/Xjc14aWfcZmkBiWbfxSmgpiYzM4nA66QGTGxhDLFbVbCRlRRZmxJFVtCY/HkZeKd1a/q7u15rXldtFGGIziGU2jABTThBtrgAQMJz/AKb452Xpx352M+WnKKnUP4A+fzBzEhkMs=</latexit><latexit sha1_base64="EMb4yOSuA9Mj1ADknwNSvLm79gU=">AAAB8HicbVBNS8NAFHypX7V+VT16WSyCp5KKoN6KvXisYLTYhrLZvrRLN5uwuxFK6L/w4kHFqz/Hm//GbZqDtg4sDDPvsfMmSATXxnW/ndLK6tr6RnmzsrW9s7tX3T+413GqGHosFrHqBFSj4BI9w43ATqKQRoHAh2DcmvkPT6g0j+WdmSToR3QoecgZNVZ67EXUjHSYtab9as2tuznIMmkUpAYF2v3qV28QszRCaZigWncbbmL8jCrDmcBppZdqTCgb0yF2LZU0Qu1neeIpObHKgISxsk8akqu/NzIaaT2JAjuZJ1z0ZuJ/Xjc14aWfcZmkBiWbfxSmgpiYzM4nA66QGTGxhDLFbVbCRlRRZmxJFVtCY/HkZeKd1a/q7u15rXldtFGGIziGU2jABTThBtrgAQMJz/AKb452Xpx352M+WnKKnUP4A+fzBzEhkMs=</latexit><latexit sha1_base64="EMb4yOSuA9Mj1ADknwNSvLm79gU=">AAAB8HicbVBNS8NAFHypX7V+VT16WSyCp5KKoN6KvXisYLTYhrLZvrRLN5uwuxFK6L/w4kHFqz/Hm//GbZqDtg4sDDPvsfMmSATXxnW/ndLK6tr6RnmzsrW9s7tX3T+413GqGHosFrHqBFSj4BI9w43ATqKQRoHAh2DcmvkPT6g0j+WdmSToR3QoecgZNVZ67EXUjHSYtab9as2tuznIMmkUpAYF2v3qV28QszRCaZigWncbbmL8jCrDmcBppZdqTCgb0yF2LZU0Qu1neeIpObHKgISxsk8akqu/NzIaaT2JAjuZJ1z0ZuJ/Xjc14aWfcZmkBiWbfxSmgpiYzM4nA66QGTGxhDLFbVbCRlRRZmxJFVtCY/HkZeKd1a/q7u15rXldtFGGIziGU2jABTThBtrgAQMJz/AKb452Xpx352M+WnKKnUP4A+fzBzEhkMs=</latexit>

Figure 2.7 (Dual representation of a convex set). A compact convex set is the intersection of the
closed halfspaces that contain it.
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Figure 2.8 (Support function). Given a nonzero normal vector 𝑠 ∈ R𝑑, we compute the level
𝛼 = ℎC(𝑠). If 𝛼 < +∞, the hyperplane H𝑠,𝛼 supports the convex set C.

Proof sketch. Suppose that the intersection of supporting halfspaces contains a point 𝑧
that is external to C. Use Theorem 2.4.1 to separate 𝑧 from C by a hyperplane H⋆. By
Theorem 2.5.3, the set C has a supporting hyperplane parallel with H⋆. But then one of the
halfspaces of H⋆ contains C and excludes 𝑧. Therefore, 𝑧 cannot lie in the intersection after
all.

In fact, every closed convex set is the intersection of its supporting halfspaces. This
result takes a bit more bookkeeping, so we omit the proof.

It is convenient to pack up the information about the level of each supporting hyperplane
into a function.

Definition 2.5.5 (Support function). Let C ⊂ R𝑑 be a nonempty convex set. The support function
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Figure 2.9 (Exposed faces). [left] The intersection of a closed convex set C with a supporting
hyperplane H yields an exposed face F = C ∩ H. [right] An exposed point is a 0-dimensional
exposed face.

of the set is defined as

ℎ(𝑠; C) := ℎC(𝑠) := sup{⟨𝑠, 𝑧⟩ : 𝑧 ∈ C} for 𝑠 ∈ R𝑑.

In particular, for a unit vector 𝑢 ∈ S𝑑−1, the value of the support function ℎC(𝑢) yields
the signed distance from the origin to the supporting hyperplane of C with normal 𝑢. See
Figure 2.8 for an illustration.

The support function can take values in the extended real numbers. Indeed, if C has
no supporting hyperplane with outer normal 𝑠, then ℎC(𝑠) = +∞. On the other hand, if C
is compact, then the support function is everywhere finite. The support function is a very
useful tool, and we will return to investigate its properties in more detail.

Remark 2.5.6 (Proper support). Consider a closed, convex set C ⊂ R𝑑 with dim C < 𝑑. Each
hyperplane that contains aff C is a supporting hyperplane to C at every point 𝑥. This is not
so useful. By restricting our attention to the affine hull, we can easily produce supporting
hyperplanes that do not contain the entire set; these are called proper supporting hyperplanes.
Similarly, a linear functional 𝜙 that is not constant on C is called a proper supporting
functional for C.

2.6 Exposed Faces
Supporting hyperplanes give us another way to examine the boundary of a convex set. In
particular, they lead to another useful notion of “facial structure.”

Definition 2.6.1 (Exposed face). Let C ⊂ R𝑑 be a nonempty closed convex set, and let H be a
hyperplane that supports C. The closed convex set F := C ∩ H is called an exposed face of
the set C. See Figure 2.9.

We can also define an exposed face of a closed convex set C as a subset on which a linear
functional achieves its maximum value. Let 𝜙 : R𝑑 → R be a nonzero linear functional.
Then a set F ⊂ C is an exposed face if and only if

F = arg max{𝜙(𝑥) : 𝑥 ∈ C}.
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Figure 2.10 (Exposed points and faces). [left] The vertices of a simplex are exposed points; the
edges are exposed faces of dimension one. [right] The red points are extreme points of the arch
that are not exposed points; the top arc consists of exposed points; the bottom, left, and right
sides are exposed faces of dimension one.

This connection indicates why exposed faces play an important role in optimization.
Since an exposed face is a convex set, we can assign it a dimension. In particular, a

0-dimensional exposed face is called an exposed point. See Figure 2.10 for an illustration.
The construction of an exposed face via a supporting hyperplane ensures that every

exposed face is a subset of the boundary. The terminology “exposed face” is justified by the
following result.

Proposition 2.6.2 (Exposed faces are faces). Let C ⊂ R𝑑 be a closed convex set. If F is an
exposed face of C, then F is a face of C.

Proof. Suppose that 𝜙 : R𝑑 → R is a nonzero linear functional that generates the exposed
face F, and introduce notation for the value 𝛼 that 𝜙 achieves on F. That is,

F = arg max{𝜙(𝑥) : 𝑥 ∈ C} and 𝛼 := max{𝜙(𝑥) : 𝑥 ∈ C}.

Let us prove that F is a face. Extract points 𝑦, 𝑧 ∈ C for which 1
2 (𝑦 + 𝑧) ∈ F. Then

𝛼 = 𝜙
(︀ 1

2 (𝑦 + 𝑧)
)︀

= 1
2𝜙(𝑦) + 1

2𝜙(𝑧) ≤ 𝛼.

The inequality holds because 𝜙(𝑦) ≤ 𝛼 and 𝜙(𝑧) ≤ 𝛼. But these numerical considerations
ensure that 𝜙(𝑦) = 𝛼 and 𝜙(𝑧) = 𝛼. As a consequence, we conclude that 𝑦, 𝑧 ∈ F.

The converse of Proposition 2.6.2 is false in general. In particular, a convex set can have
extreme points that are not exposed. Figure 2.10 provides an example.

Remark 2.6.3 (Exposed points). For a compact convex set C ⊂ R𝑑, the set of exposed points is
dense in the set of extreme points. This is a nontrivial result due to Straszewicz; see [Sch14,
Thm. 1.4.7].
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3.1 Agenda for Lecture 3
Extreme points are distinguished points in the boundary of a convex set. They play a
fundamental role in determining the structure of the set. In this lecture, we develop two
major theorems that describe how we can represent the points in a convex set in terms of
the extreme points.

1. Review of extreme points, faces and exposed faces

2. Minkowski’s Theorem

3. Dubins’s Theorem

3.2 Review of extreme points, faces and exposed faces
We begin with a review of established results on the facial structure of a convex set.

3.2.1 Extreme points

Let C ⊂ R𝑑 be a closed, convex set. A point 𝑥 ∈ C is called an extreme point if 𝑦, 𝑧 ∈ C and
1
2 (𝑦 + 𝑧) = 𝑥 together imply that 𝑦 = 𝑧 = 𝑥.

In other words, an extreme point of C cannot be represented as the average of other
points in C. If 𝑥 ∈ C is an extreme point, then 𝑥 ∈ relbd C. Otherwise, 𝑥 would have an
open neighborhood (relative to the affine hull of C) that is contained in C, and we could
find two points in the neighborhood that average to 𝑥.

We write ext C for the set of extreme points of C. Let us remark that the set of extreme
points does not need to have any particular topological properties. Indeed, there is an a
convex set in R3 whose extreme points do not form a closed set!

3.2.2 Faces

As before, let C ⊂ R𝑑 be closed and convex. A face F of C is a closed, convex subset of
C with the property that 𝑦, 𝑧 ∈ C and 1

2 (y + 𝑧) ∈ F together imply that 𝑦, 𝑧 ∈ F. It is
convenient to write F C C for the “face of” relation.

In particular, an extreme point is a 0-dimensional face. An example of a 1-dimensional
face is a side of a planar polygon in R2.

Technically, ∅ and C are also considered faces, called improper faces. All other faces are
proper.

Like extreme points, proper faces are subsets of relbd C. To give further intuition, we
remark that a convex set remains convex if we deprive it of a face. That is, if F C C, then
C ∖ F is convex.
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Figure 3.1 Exposed faces shown in green, faces that are not exposed faces shown in red. Here,
the non-exposed faces are two points.

3.2.3 Transmission of extremality
Faces have valuable transitivity properties. If F C C and G C C, then F ⊂ G implies that
F C G. This is an immediate consequence of the definition of a face.

A more subtle property is that an extreme point of a face is automatically an extreme
point of the entire set.

Proposition 3.2.1 (Transmission of Extremality). Let C ∈ R𝑑 be a closed, convex set, and let FCC.
Then 𝑥 ∈ ext F implies that 𝑥 ∈ ext C.

Proof. Let 𝑥 ∈ F. Choose 𝑦, 𝑧 ∈ C such that 1
2 (𝑦 + 𝑧) = 𝑥. Since F is a face and 𝑥 ∈ F, we

infer that 𝑦, 𝑧 ∈ F. But 𝑥 ∈ ext F, so we must have 𝑦 = 𝑧 = 𝑥. It follows that 𝑥 ∈ ext C.

By the same argument, one can show that a face of a face is a face. That is, F C G and
G C C ensure that F C C.

3.2.4 Exposed Faces

Once again, let C ∈ R𝑑 be closed and convex. Let H be a supporting hyperplane of C. The
set C ∩ H is called an exposed face of C. In particular, a 0-dimensional exposed face is called
an exposed point.

Exposed faces are a distinct concept from faces. Nevertheless, every exposed face is a
face, as proven in Proposition 6.2 of Lecture 2. The converse is not necessarily true. For a
counterexample, see Figure 3.1.

By definition, each exposed point has the elegant property that it arises as the unique
maximizer of a linear functional over the convex body. The following result gives a useful
tool for finding extreme points.

Proposition 3.2.2 (A Criterion for Extremity). Let C ⊂ R𝑑 be a closed, convex set. If a linear
functional 𝜙 : R𝑑 → R achieves its maximum over C at a unique point 𝑥, then 𝑥 is an
extreme point of C.

Proof. Let 𝑥 be the unique point in C where 𝜙 : R𝑑 → R achieves its maximum over C.
Consider any two points 𝑦, 𝑧 ∈ C for which 𝑥 = 1

2 (𝑦 + 𝑧). By linearity,

𝜙(𝑥) = 1
2𝜙(𝑦) + 1

2𝜙(𝑧) ≤ 𝜙(𝑥).
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Since 𝜙(𝑦) ≤ 𝜙(𝑥) and 𝜙(𝑧) ≤ 𝜙(𝑥), we see that 𝜙(𝑦) = 𝜙(𝑧) = 𝜙(𝑥). But 𝜙 achieves the
value 𝜙(𝑥) on C only at the point 𝑥, so we must conclude that 𝑦 = 𝑧 = 𝑥. Therefore, 𝑥 is
an extreme point of C.

Of course, the point 𝑥 ∈ C described in Proposition 3.2.2 is also an exposed point of C.
To see this directly, define 𝛼 := 𝜙(𝑥). Introduce the hyperplane H = {𝑧 ∈ R𝑑 : 𝜙(𝑧) = 𝛼}.
This hyperplane H intersects C at the singleton {𝑥}. Indeed, for all other points 𝑦 ∈ C,
the linear functional takes values 𝜙(𝑦) < 𝛼. Therefore, H is a supporting hyperplane of C
containing only the point 𝑥. We conclude that 𝑥 is exposed.

3.3 Minkowski’s Theorem on Extremal Representations
Minkowski’s theorem on extremal representation is a major result that describes the role of
extreme points in determining the structure of a convex set.

Theorem 3.3.1 (Minkowski). Let C ⊂ R𝑑 be compact, convex, and nonempty. Then C =
conv ext C.

In other words, the extreme points of a compact convex set are sufficient to generate the
entire set.

3.3.1 Consequences of Minkowski’s Theorem

Before we prove Theorem 3.3.1, let us establish some corollaries.

Corollary 3.3.2 (Existence of Extreme Points). A nonempty, compact, convex set C ⊂ R𝑑 has an
extreme point.

Proof. The nonempty set C is the convex hull of its extreme points. But the convex hull of
the empty set is empty. Therefore, ext C cannot be empty.

The existence of extreme points is already an interesting fact. Note that compactness is
necessary for Corollary 3.3.2. It is easy to construct unbounded, closed, convex sets that
lack extreme points. The simplest example, perhaps, is a hyperplane.

A second consequence of Theorem 3.3.1 is that every point in a compact convex set has
a parsimonious representation as a convex combination of extreme points.

Corollary 3.3.3. Let C ∈ R𝑑 be compact, convex, and nonempty. If 𝑥 ∈ C, then 𝑥 is a convex
combination of at most 𝑑+ 1 extreme points of C.

Proof. Choose 𝑥 ∈ C. By Theorem 3.3.1, we have 𝑥 ∈ conv ext C. Carathéodory’s theorem
(from Lecture 1) implies that 𝑥 can be expressed as a convex combination of at most 𝑑+ 1
point in ext C.

The next consequence is a key result in optimization theory.

Corollary 3.3.4. Let 𝑓 : C → R be a (finite-valued) convex function on a compact convex set
C ⊂ R𝑑. Then 𝑓 achieves its maximum at an extreme point of 𝐶.
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Proof. Every finite-valued convex function 𝑓 is continuous (as we will discuss in the next
lecture), so it achieves its maximum value on the compact set C.

Let 𝑥⋆ ∈ C be a point where 𝑓 is maximized. By Corollary 3.3.3, we can write

𝑥⋆ =
∑︁𝑑+1

𝑖=1
𝜆𝑖𝑧𝑖 where 𝑧𝑖 ∈ ext C and 𝜆 ∈ Δ𝑑+1.

Jensen’s inequality implies that

𝑓(𝑥⋆) ≤
∑︁𝑑+1

𝑖=1
𝜆𝑖𝑓(𝑧𝑖) ≤ max{𝑓(𝑧𝑖) : 𝑖 = 1, 2, 3, . . . , 𝑑+ 1} =: 𝑓(𝑧⋆)

But 𝑥⋆ is a maximizer of 𝑓 on the set C, so the point 𝑧⋆ ∈ ext C is also a maximizer.

3.3.2 Proof of Theorem 3.3.1
Let us establish Minkowski’s theorem. The argument applies induction on the dimension of
the compact convex set.

First, let dim C = 0. In this case, the set is a singleton: C = {𝑥}. The point 𝑥 is
obviously an extreme point of C. It is evident that C = conv ext C.

Next, suppose that we have established Minkowski’s theorem for compact, convex sets
with dimension at most 𝑑 − 1. Let C ⊂ R𝑑 be a compact convex set, and assume that
dim C = 𝑑. Fix a point 𝑥 ∈ C. There are two possibilities to consider:

1. Suppose that 𝑥 ∈ relbd C. Then there exists a supporting hyperplane H to the set C at
the point 𝑥, by Theorem 5.2 in Lecture 2. Define the exposed face F = C ∩ H, which is
also a face of C. The dimension of F is at most 𝑑− 1, because dim H = 𝑑− 1. Since
dim F < 𝑑, the inductive hypothesis implies that F = conv ext F. Proposition 3.2.1
states that ext F ⊂ ext C, so that F ⊂ conv ext C. Since 𝑥 ∈ F, we determine that
𝑥 ∈ conv ext C.

2. Otherwise, 𝑥 ∈ relint C. Since dim C > 0, there exists a point 𝑦 ∈ C that is different
from 𝑥. The two points generate a line, line(𝑥,𝑦). This line intersects relbd C in
exactly two points because C is compact and convex. Denote these two points as
𝑧1, 𝑧2 ∈ relbd C. By case 1, the points 𝑧1, 𝑧2 ∈ conv ext C. Since 𝑥 ∈ [𝑧1, 𝑧2], it can
also be written as a convex combination of 𝑧1 and 𝑧2. We conclude that 𝑥 ∈ conv ext C.

The induction continues, and the proof is complete.

3.3.3 Extensions
Minkowski’s theorem is the first result in a grand theory of extremal representations. On
your homework, you will prove Klee’s theorem, which gives an extremal representation of an
(unbounded) closed convex set in R𝑑, provided the set does not contain any lines.

In fact, a version of Minkowski’s theorem holds in outrageous generality.

Theorem 3.3.5 (Krein–Milman). Let C be a nonempty compact convex subset of a locally convex
topological vector space. Then C = cl conv ext C.

In contrast with Theorem 3.3.1, the closure is required in Theorem 3.3.5. (In infinite
dimensions, extreme points can behave in counterintuitive ways.)

Most of the spaces you encounter in linear analysis fall into the class of Hausdorff locally
convex topological vector spaces. Compact sets in infinite-dimensional Banach spaces are a
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bit thin on the ground. (Indeed, an infinite-dimensional norm ball is never norm-compact!)
As a consequence, it is productive to consider spaces that have weaker topologies and,
therefore, admit more compact sets. Of particular importance is the dual of a Banach space,
equipped with the weak-* topology, because it contains some convex compact sets that are
supremely natural.

Theorem 3.3.6 (Alaoglu–Bourbaki). The closed unit ball in the dual of a Banach space is a
weak-* compact set.

Theorem 3.3.6 even extends, with appropriate modifications, to a Hausdorff locally
convex topological vector space.

Here is a specific example of critical importance. Let X be a compact Hausdorff space,
and let 𝐶(X) be the set of (real-valued) continuous functions on X, equipped with the
supremum norm. The dual 𝐶(X)* consists of signed regular Borel measures. Its unit ball is
a convex set that is weak-* compact.

Theorem 3.3.7 (Arens–Kelley). Let X be a compact Hausdorff space. The extreme points of
the unit ball of 𝐶(X)* are precisely the signed point masses 𝜀𝛿𝑥. That is, 𝜀 ∈ {±1}, and
𝛿𝑥(𝑓) = 𝑓(𝑥) for each 𝑥 ∈ X and 𝑓 ∈ 𝐶(X).

This result tells us that each probability measure on X is the weak-* limit of (finite)
convex combinations of (positive) point masses.

The Krein–Milman theorem yields corollaries of the same type that we discussed in
Section 3.3.1.

1. In infinite dimensions, the mere existence of extreme points can have remarkable
consequences. For example, it can be used to show that a homogeneous compact group
admits a Haar measure.

2. The fact that a (lower-semicontinuous) convex function achieves its maximum at an
extreme point of a compact convex set is known as Bauer’s maximum principle. It
plays a role in the calculus of variations.

3. Some other results that can be derived from Theorem 3.3.5 include the Stone–
Weierstrass theorem, the Lyapunov convexity theorem, and the Pontryagin maximum
principle.

It will come as no surprise that Corollary 3.3.3 has no immediate analog in infinite
dimensions. Nevertheless, the Krein–Milman theorem does have some related consequences:
We can realize each point in a compact convex set C as a (continuous) average of extreme
points. More precisely, for each 𝑥 ∈ C, there is a Borel probability measure 𝜇 supported on
cl ext C with the property that

𝜙(𝑥) =
∫︁

cl ext C
𝜙(𝑧) d𝜇(𝑧) for all linear functionals 𝜙.

This result leads to integral representation theorems of various types. Indeed, it is common
that an interesting class of (normalized) functions forms a weak-* compact and convex set
in an appropriate topological vector space. We can then write each function as an integral
over the extreme functions. Many major results in analysis follow this template.
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Here is an example of great importance in approximation theory and machine learning.
A function 𝑓 : R → R is called positive-definite if the matrix[︁

𝑓(𝑥𝑖 − 𝑥𝑗)
]︁

𝑖,𝑗=1,...,𝑛
is psd for each finite set {𝑥1, . . . , 𝑥𝑛} ⊂ R.

Bôchner’s theorem states that a function with 𝑓(0) = 1 is positive-definite if and only if it is
the Fourier transform of a probability measure:

𝑓(𝑥) =
∫︁

𝜉∈R
e−i2𝜋𝜉𝑥 d𝜇(𝜉). (3.3.1)

We can obtain Bôchner’s theorem from Theorem 3.3.5 if we invest the (substantial) effort
to verify that the complex exponentials compose the full set of extreme points of the class
of (normalized) positive-definite functions. The integral representation (3.3.1) implies that
every positive-definite function on R is an average of these extreme functions.

Other results that admit similar proofs include Bernstein’s theorem on completely
monotone functions, Loewner’s theorem on operator monotone functions, and the Lévy–
Khintchine theorem on infinitely divisible distributions.

To learn more about this topic, you may want to start with Barvinok’s book [Bar02,
Part III]. A more complete treatment appears in Simon’s work [Sim11, Chaps. 8, 9]. Simon
also covers Choquet theory, which refines these ideas to their essence.

Remark 3.3.8. Incidentally, Leonidas Alaoglu worked at Lockheed in Burbank for much of
his career, and he continued to participate in mathematical activities at Caltech. Our
mathematics department has an annual seminar, named in his honor.

3.4 Dubins’s Theorem on Extremal Representations
The next major result is Dubins’s theorem on extremal representations, which is sometimes
known as the “dual Carathéodory theorem.” It states that the extreme points of an affine
slice of a convex set can be expressed parsimoniously as a convex combination of the extreme
points of the set.

Theorem 3.4.1 (Dubins, 1962). Let C ⊂ R𝑑 be compact and convex. Let L ⊂ R𝑑 be an affine
space with codimension 𝑚. Then each extreme point of the intersection C ∩ L is a convex
combination of at most 𝑚+ 1 extreme points of C.

Affine slices of convex sets are often encountered in the field of convex optimization.
Indeed, a convex program in standard form maximizes a linear function over the intersection
of an affine space (determined by linear equality constraints) and a compact convex set. The
objective function achieves its maximum at an extreme point, and Dubins’s theorem tells
us that this extreme point has a simple representation in terms of the extreme points of
the compact convex set. This fact gives us a powerful tool for analyzing the solutions of a
convex program.

3.4.1 Proof of Theorem 3.4.1
Let us establish Dubins’s theorem. Define the set E := C ∩ L and fix a point 𝑥 ∈ E. By
Minkowski’s Theorem 3.3.1, we know that 𝑥 ∈ conv ext C. Carathéodory’s theorem ensures
that the point 𝑥 lies in the relative interior of the convex hull of an affinely independent
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Figure 3.2 (Proof of Dubins’s theorem). The point 𝑥 is captured inside an open segment inside the
set E, so it cannot be an extreme point of E.

set Z = {𝑧1, . . . ,𝑧𝑘}, where each 𝑧𝑖 ∈ ext C. By independence, the affine hull, aff Z, has
dimension 𝑘 − 1.

Now, assume 𝑘 − 1 > 𝑚. It follows that dim Z + dim L > 𝑑. By dimension counting, the
intersection of the affine spaces, (aff Z) ∩ L, contains a line L′ that contains the point 𝑥. (It
may be easier to visualize this step if you translate the point 𝑥 to the origin, in which case
aff Z and L are linear subspaces.) By construction,

𝑥 ∈ (relint conv Z) ∩ L′ ⊂ C ∩ L = E.

We have used the facts that conv Z ⊂ C and that L′ ⊂ L. This expression captures 𝑥 in an
open segment (relint conv Z) ∩ L′ contained in E. Therefore, 𝑥 cannot be an extreme point
of E. See Figure 3.2 for an illustration of the geometry.

By contraposition, we conclude that 𝑥 ∈ ext E implies that 𝑘−1 ≤ 𝑚. In other words, an
extreme point of E can be written as a convex combination of no more than 𝑚+ 1 extreme
points of C.

3.4.2 Extensions
Surprisingly, Dubins’s theorem does not depend heavily on topology. We say that a set C
in a linear space is algebraically compact if the intersection of set C with a line is always a
closed bounded segment (possible empty or a point).

Theorem 3.4.2 (Dubins, in general). Let C be an algebraically compact subset of a linear space,
and let L be an affine space with codimension 𝑚. Each extreme point of the intersection
C ∩ L can be written as a convex combination of at most 𝑚+ 1 extreme points of C.

The proof of Theorem 3.4.2 is only a little more difficult than the proof of Theorem 3.4.1.
The key is to establish the special case where L has codimension one, which follows from a
direct geometric argument. We can iterate this basic result instead of invoking Minkowski’s
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theorem, as we did in the proof of Theorem 3.4.1. See Barvinok’s book [Bar02, Sec. III.9]
for details.

Dubins’s Theorem 3.4.2 has striking applications to probability. Indeed, consider the set
Δ(X) of probability measures on a compact Hausdorff space X. The set Δ(X) is algebraically
compact, and its extreme points are the point masses 𝛿𝑥 for 𝑥 ∈ X, by the Arens–Kelley
Theorem 3.3.7. Slices of the set Δ(X) arise when we constrain moments of a probability
measure.

For concreteness, consider the case where X = [0, 1] ⊂ R. The moments of a measure 𝜇
on [0, 1] take the form∫︁ 1

0
𝑓(𝑥) d𝜇(𝑥) where 𝑓 : [0, 1] → R is a continuous function.

Specific examples include the first and second polynomial moments:

𝜇1 =
∫︁ 1

0
𝑥 d𝜇(𝑥) and 𝜇2 =

∫︁ 1

0
𝑥2 d𝜇(𝑥)

Measures with fixed moments form an affine space. For instance, the measures with mean 𝛼
form an affine space with codimension one:

L =
{︂
𝜇 :
∫︁ 1

0
𝑥 d𝜇(𝑥) = 𝛼

}︂
for 𝛼 ∈ R.

Dubins’s Theorem 3.4.2 states that the extreme points of the intersection Δ([0, 1]) ∩ L can
be written as a convex combination of at most two extreme points of Δ([0, 1]), viz., a convex
combination of at most two point masses.

Suppose that we wish to solve a linear maximization problem like

maximize
𝜇∈Δ([0,1])

∫︁ 1

0
𝑓(𝑥) d𝜇(𝑥) subject to

∫︁ 1

0
𝑥 d𝜇(𝑥) = 𝛼.

Then we can restrict our attention to those measures of the form 𝜏𝛿𝑥1 + 𝜏𝛿𝑥2 where 𝜏 ∈ [0, 1].
This reduction makes the challenge much less severe.
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4.1 Agenda for Lecture 4
A convex function enjoys more continuity and differentiability properties than a general
function. In this lecture, we will establish the basic facts about smoothness of convex
functions. We obtain a first result on the regularity of the boundary of a convex set
by applying these facts to the support function. In particular, almost every supporting
hyperplane to a convex body touches the body at a unique point. We will explain the
implications of this result in optimization theory.

1. Review of convex functions
2. Smoothness of convex functions on R
3. Smoothness of convex functions on R𝑑

4. The boundary of a convex body

4.2 Review of Convex Functions
This section reviews basic definitions and terminology related to convex functions. We write
R := R ∪ {±∞} for the extended real numbers, equipped with the usual rules for arithmetic
and order.

A convex function is defined by a geometric inequality, which states that the graph of
the function lies below its secants.

Definition 4.2.1 (Convex function). A function 𝑓 : R𝑑 → R is convex if

𝑓(𝜏𝑥 + 𝜏𝑦) ≤ 𝜏𝑓(𝑥) + 𝜏𝑓(𝑦) for all 𝑥,𝑦 ∈ R𝑑 and 𝜏 ∈ [0, 1].

Recall that 𝜏 := 1 − 𝜏 . A function 𝑔 : R𝑑 → R is concave if −𝑔 is convex.

Convexity is a self-improving property. Indeed, Definition 4.2.1 implies Jensen’s inequality
after a short inductive argument.

Proposition 4.2.2 (Jensen’s inequality). Let 𝑓 : R𝑑 → R be convex, and choose 𝑘 ∈ N. Then

𝑓

(︂∑︁𝑘

𝑖=1
𝜆𝑖𝑥𝑖

)︂
≤
∑︁𝑘

𝑖=1
𝜆𝑖𝑓(𝑥𝑖) for all 𝑥𝑖 ∈ R𝑑 and 𝜆 ∈ Δ𝑘.

A function 𝑓 is called proper if it takes at least one finite value. In particular, a proper
convex function cannot take the value −∞. (This is a consequence of the convention that
(−∞) + (+∞) = NaN, which is treated as an incomparable quantity.) A proper convex
function may take the value +∞, provided that it is not identically equal to +∞.

Definition 4.2.3 (Domain). The domain of a function 𝑓 : R𝑑 → R is the set of points where it
takes finite values:

dom 𝑓 = {𝑥 ∈ R𝑑 : 𝑓(𝑥) ̸= {±∞}}.
Observe that the domain of a convex (or concave) function must be a convex set.
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Figure 4.1 (Convexity implies continuity). The proof of Theorem 4.3.1 compares the slopes of the
two secants shown in the diagram.

4.3 Smoothness of Univariate Convex Functions
Let us begin with the smoothness properties of a convex function of a single real variable. We
demonstrate that the function is continuous. Then we show that it has one-sided derivatives,
and we prove that the function is differentiable almost everywhere.

4.3.1 Continuity
Our first theorem states that convexity implies continuity.

Theorem 4.3.1 (Univariate convex functions are convex). If 𝑓 : 𝐼 → R is convex on an interval
𝐼 ⊂ R, then 𝑓 is continuous on int 𝐼.

Proof. Fix a point 𝑥0 ∈ int 𝐼. By definition of int 𝐼, we can assume 𝑥0 belongs to an open
interval 𝑥0 ∈ (𝑎, 𝑏) ⊂ int 𝐼.

For any 𝑥 ∈ (𝑥0, 𝑏), we can write 𝑥 = (1 − 𝜏)𝑥0 + 𝜏𝑏 for some 𝜏 ∈ (0, 1). As 𝑥 ↓ 𝑥0, the
corresponding 𝜏 ↓ 0. By convexity,

𝑓(𝑥) ≤ (1 − 𝜏)𝑓(𝑥0) + 𝜏𝑓(𝑏)
= 𝑓(𝑥0) + 𝜏(𝑓(𝑏) − 𝑓(𝑥0)) → 𝑓(𝑥0) as 𝑥 ↓ 𝑥0.

That is, lim𝑥↓𝑥0 𝑓(𝑥) ≤ 𝑓(𝑥0). See Figure 4.1 for an illustration.
Along the same lines, we can write 𝑥0 = (1 − 𝜏)𝑥+ 𝜏𝑎 for some 𝜏 ∈ (0, 1). Note that, as

𝑥 ↓ 𝑥0, the corresponding 𝜏 ↓ 0. By convexity,

𝑓(𝑥0)
1 − 𝜏

≤ 𝑓(𝑥) + 𝜏

1 − 𝜏
𝑓(𝑎).

As a consequence, lim𝑥↓𝑥0 𝑓(𝑥) ≥ 𝑓(𝑥0). Figure 4.1 contains an illustration.
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Figure 4.2 (Increasing slope criterion). Proposition 4.3.2 states that convex functions have secants of
increasing slope. In the figure above, the slope of the secant between 𝑓(𝑥0) and 𝑓(𝑥) increases
in 𝑥, starting out negative (for 𝑥 < 𝑥0, such as 𝑥 = 𝑥𝑎) and becoming positive (for 𝑥 > 𝑥0,
such as 𝑥 = 𝑥𝑏).

From the last two paragraphs, it follows that lim𝑥↓𝑥0 𝑓(𝑥) = 𝑓(𝑥0). A similar argument
yields lim𝑥↑𝑥0 𝑓(𝑥) = 𝑓(𝑥0). We conclude that 𝑓 is continuous at 𝑥0. Therefore, 𝑓 is
continuous on int 𝐼.

4.3.2 The Increasing Slope Criterion
The following proposition characterizes convex functions as those functions whose secants
have increasing slope. Refer to Figure 4.2 for an illustration of the increasing slope criterion.
The proof is a short algebraic exercise.

Proposition 4.3.2 (Increasing slope criterion). The following statements are equivalent.

1. The function 𝑓 : 𝐼 → R is convex on an interval 𝐼 ⊂ R.
2. For each 𝑥0 ∈ 𝐼, the secants through 𝑥0 have weakly increasing slopes. That is,

𝑥 ↦→ 𝑓(𝑥) − 𝑓(𝑥0)
𝑥− 𝑥0

is weakly increasing on 𝐼 ∖ {𝑥0}

4.3.3 Directional Derivatives
Next, we demonstrate that a convex function of a real variable has one-sided derivatives.

Theorem 4.3.3 (Convex functions have one-sided derivatives). Let 𝑓 : 𝐼 → R be a convex function
on an interval 𝐼 ⊂ R. For each 𝑥0 ∈ int 𝐼, the left derivative D−𝑓(𝑥0) and the right derivative
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D+𝑓(𝑥0) both exist:

D−𝑓(𝑥0) := lim
𝑥↑𝑥0

𝑓(𝑥) − 𝑓(𝑥0)
𝑥− 𝑥0

= sup
𝑥<𝑥0

𝑓(𝑥) − 𝑓(𝑥0)
𝑥− 𝑥0

;

D+𝑓(𝑥0) := lim
𝑥↓𝑥0

𝑓(𝑥) − 𝑓(𝑥0)
𝑥− 𝑥0

= inf
𝑥>𝑥0

𝑓(𝑥) − 𝑓(𝑥0)
𝑥− 𝑥0

.

Furthermore, D−𝑓(𝑥0) ≤ D+𝑓(𝑥0).

Proof. Select points 𝑥 < 𝑥0 < 𝑦. Proposition 4.3.2 provides that

𝑓(𝑥) − 𝑓(𝑥0)
𝑥− 𝑥0

≤ 𝑓(𝑦) − 𝑓(𝑥0)
𝑦 − 𝑥0

.

For fixed 𝑦, we obtain an upper bound on the left-hand side. Proposition 4.3.2 shows that
the left-hand side is weakly increasing with 𝑥. Therefore, as 𝑥 ↑ 𝑥0, the left-hand side
converges to a limit, which allows us to define D−𝑓(𝑥0). Proposition 4.3.2 again ensures
that this limit coincides with the supremum over 𝑥 < 𝑥0.

A similar argument, interchanging the role of 𝑥 and 𝑦, guarantees that D+𝑓(𝑥0) exists
and justifies the representation as an infimum.

Proposition 4.3.2 and the variational formulas for the left and right derivatives together
ensure that D−𝑓(𝑥0) ≤ D+𝑓(𝑥0).

Although convexity ensures that the left and right derivatives exist, they need not
coincide. For instance, the left and right derivatives of the convex function 𝑓(𝑥) = |𝑥| satisfy
D−𝑓(0) = −1 and D+𝑓(0) = +1.

4.3.4 Differentiability
For a convex function of a real variable, the left and right derivatives are indeed equal at
most points.

Corollary 4.3.4 (Differentiability, almost everywhere). Let 𝑓 : 𝐼 → R be a convex function on an
interval 𝐼 ⊂ R. Then 𝑓 is differentiable almost everywhere on int 𝐼.

Proof. Repeated application of Theorem 4.3.3 yields

D−𝑓(𝑥) ≤ D+𝑓(𝑥) ≤ 𝑓(𝑦) − 𝑓(𝑥)
𝑦 − 𝑥

≤ D−𝑓(𝑦) ≤ D+𝑓(𝑦) when 𝑥 < 𝑦. (4.3.1)

A first consequence of the string (4.3.1) of inequalities is that D−𝑓 and D+𝑓 are both weakly
increasing functions on int 𝐼.

Here is a second consequence. Suppose that D−𝑓 is continuous at a point 𝑥0 ∈ int 𝐼.
Then 𝑓 is differentiable at 𝑥0. Indeed, we can fix 𝑦 = 𝑥0 and take limits in (4.3.1) as 𝑥 ↑ 𝑥0.
Afterward, fix 𝑥 = 𝑥0 and take limits in (4.3.1) as 𝑦 ↓ 𝑥0. Altogether, we obtain

D−𝑓(𝑥0) = lim
𝑥↑𝑥0

D−𝑓(𝑥) ≤ lim
𝑥↑𝑥0

𝑓(𝑥) − 𝑓(𝑥0)
𝑥− 𝑥0

≤ D−𝑓(𝑥0);

D−𝑓(𝑥0) = lim
𝑦↓𝑥0

D−𝑓(𝑦) ≥ lim
𝑦↓𝑥0

𝑓(𝑦) − 𝑓(𝑥0)
𝑦 − 𝑥0

≥ D−𝑓(𝑥0).
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It follows that 𝑓 is differentiable at 𝑥0 and

D𝑓(𝑥0) = lim
𝑧→𝑥0

𝑓(𝑧) − 𝑓(𝑥0)
𝑧 − 𝑥0

= D−𝑓(𝑥0).

Likewise, continuity of D+𝑓 at 𝑥0 implies differentiability of 𝑓 at 𝑥0.
We have seen that D−𝑓 is a weakly increasing function on int 𝐼, so it can have no more

than a countable number of discontinuities. Therefore, the derivative of 𝑓 fails to exist at
no more than a countable number of points in int 𝐼. In particular, 𝑓 is differentiable almost
everywhere in int 𝐼.

4.4 Smoothness of Multivariate Convex Functions
We now build on results from the previous section to develop smoothness results for convex
functions in 𝑑 dimensions.

4.4.1 Continuity

The first result states that, as in one dimension, a convex function on R𝑑 is continuous.

Theorem 4.4.1 (Local Lipschitz property). A convex function 𝑓 : R𝑑 → R is locally Lipschitz
on int dom 𝑓 . That is, for each 𝑥0 ∈ int dom 𝑓 and sufficiently small 𝜀 > 0, there exists a
constant 𝐿 ∈ R+ such that

|𝑓(𝑥) − 𝑓(𝑥0)| ≤ 𝐿 · ‖𝑥 − 𝑥0‖ for all 𝑥 ∈ N(𝑥0; 𝜀).

In particular, 𝑓 is continuous on int dom 𝑓 . Recall that N(𝑥0; 𝜀) is the open Euclidean ball
of radius 𝜀 centered at 𝑥0.

Proof. See [Sch14, Thm. 1.5.3] or [Gru07, Thm. 2.2] for the argument. It is similar in spirit
to the proof of Theorem 4.3.1, but it requires some extra technical arguments.

4.4.2 Directional Derivatives
Next, we introduce the concept of a directional derivative of a multivariate function.

Definition 4.4.2 (One-sided directional derivative). Let 𝑓 : R𝑑 → R. For 𝑥 ∈ int dom 𝑓 , the
derivative of 𝑓 in the direction 𝑢 ∈ R𝑑 is defined by the limit

𝑓 ′(𝑥; 𝑢) := lim
𝜆↓0

𝑓(𝑥 + 𝜆𝑢) − 𝑓(𝑥)
𝜆

.

Note that 𝑢 need not be a unit vector. When 𝑢 = 0, we use the convention 0/0 := 0.

In general, a function need not have directional derivatives at any point or in any direction.
The situation is more favorable for convex functions.

Corollary 4.4.3 (Convex functions have one-sided directional derivatives). Let 𝑓 : R𝑑 → R be a
convex function. Then 𝑓 ′(𝑥; 𝑢) exists for all 𝑥 ∈ int dom 𝑓 and all 𝑢 ∈ R𝑑.

Proof. The existence of directional derivatives follows from the existence of one-sided
derivatives of univariate convex functions. Indeed, the restriction of the convex function
𝑓 : R𝑑 → R̄ to the line through 𝑥 and 𝑥 + 𝑢 is a convex function 𝑔 : R → R defined by
𝑔(𝑡) = 𝑓(𝑥 + 𝑡𝑢). By Theorem 4.3.3, we know that D+𝑔 exists, and so 𝑓 ′(𝑥; 𝑢) exists.
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As in the one-dimensional case, we can try to assemble one-sided derivatives to obtain a
full derivative along a given direction.

Definition 4.4.4 (Directional derivative). We say that a function 𝑓 : R𝑑 → R has a directional
derivative at a point 𝑥 ∈ int dom 𝑓 in the direction 𝑢 ∈ R𝑑 if the positive and negative
one-sided directional derivatives coincide:

𝑓 ′(𝑥; 𝑢) = 𝑓 ′(𝑥; −𝑢).

The situation with multivariate functions, however, is more complicated because there
are many possibly directions in which we can differentiate.

4.4.3 Notions of Differentiability
Next, let us review several notions of multivariate differentiability. The first notion requires
that a function have directional derivatives in all directions.

Definition 4.4.5 (Gâteaux differentiability). A function 𝑓 : R𝑑 → R is Gâteaux differentiable at a
point 𝑥 ∈ int dom 𝑓 if it is differentiable in every direction:

𝑓 ′(𝑥; 𝑢) = 𝑓 ′(𝑥; −𝑢) for all 𝑢 ∈ R𝑑.

The second notion requires that a function admits an accurate linear approximation at a
point.

Definition 4.4.6 (Fréchet differentiability). A function 𝑓 : R𝑑 → R is Fréchet differentiable at
𝑥 ∈ int dom 𝑓 if there is a linear map D𝑓(𝑥) : R𝑑 → R such that

|𝑓(𝑥 + 𝑢) − 𝑓(𝑥) − D𝑓(𝑥)(𝑢)| = 𝑜(‖𝑢‖) uniformly as 𝑢 → 0.

More briefly, we say that 𝑓 is differentiable at 𝑥, and we refer to D𝑓(𝑥) as the derivative.
See https://sites.math.washington.edu/~folland/Math134/lin-approx.pdf for the
interpretation of the little-o notation in the context of a multivariate derivatives.

If a function 𝑓 has a derivative D𝑓(𝑥) at a point 𝑥, then it has directional derivatives in
all directions at 𝑥. More precisely,

𝑓 ′(𝑥; 𝑢) = D𝑓(𝑥)(𝑢) for all 𝑢 ∈ R𝑑.

That is, Fréchet differentiability implies Gâteaux differentiability.
The converse is false in general, as you learned in multivariate calculus: There is a

function on R2 that admits a directional derivative in each direction at the origin but
does not admit a derivative at the origin. Nevertheless, for convex functions, this type of
pathology is impossible.

Theorem 4.4.7 (Gâteaux = Fréchet for convex functions). Let 𝑓 : R𝑑 → R be convex, and let
𝑥 ∈ int dom 𝑓 . The following are equivalent:

1. 𝑓 has a directional derivative at 𝑥 in each direction e𝑖 for 𝑖 = 1, . . . , 𝑑.
2. 𝑓 is Gâteaux differentiable at 𝑥.
3. 𝑓 is Fréchet differentiable at 𝑥.

https://sites.math.washington.edu/~folland/Math134/lin-approx.pdf
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Proof. We have already discussed the facts that (3) implies (2) implies (1). It remains to
check that (1) implies (3). To do so, we assemble a candidate for the derivative from the
directional derivatives along the coordinates. Then we verify that this candidate satisfies
the definition of the Fréchet derivative. See [Sch14, Thm. 1.5.8] for the proof.

4.4.4 Differentiability of Convex Functions

We arrive now at the main event. We will demonstrate that every convex function is
differentiable almost everywhere.

Theorem 4.4.8 (Reidemeister). Let 𝑓 : R𝑑 → R be a convex function. Then 𝑓 is differentiable
almost everywhere in int dom 𝑓 .

Proof. For each 𝑖 = 1, . . . , 𝑑, we can construct one-sided partial derivatives along the
coordinate directions:

D−
𝑖 𝑓(𝑥) := 𝑓 ′(𝑥; e𝑖) = lim

𝜆↓0

𝑓(𝑥 + 𝜆e𝑖) − 𝑓(𝑥)
𝜆

;

D+
𝑖 𝑓(𝑥) := 𝑓 ′(𝑥; −e𝑖) = lim

𝜆↓0

𝑓(𝑥 − 𝜆e𝑖) − 𝑓(𝑥)
𝜆

.

Discretizing 𝜆, we see that each one-sided partial derivative is the pointwise (in 𝑥) limit of
a sequence of continuous functions indexed by 𝜆, so the one-sided partials are measurable.
This is a consequence of the fact (Theorem 4.4.1) that convex functions are continuous.

For each 𝑖 = 1, . . . , 𝑑, let us introduce the set 𝑌𝑖 of points where the partial derivatives
fail to agree:

𝑌𝑖 := {𝑥 ∈ int dom 𝑓 : 𝑓 ′(𝑥; e𝑖) ̸= 𝑓 ′(𝑥; −e𝑖)}.

Each set 𝑌𝑖 is measurable because the one-sided partials are measurable. We can compute
the measure of 𝑌𝑖 by integrating its 0–1 indicator function 1𝑌𝑖

. By Fubini’s theorem,∫︁
int dom 𝑓

d𝑥1𝑌𝑖
(𝑥) =

∫︁
d𝑥𝑑· · ·

∫︁
d𝑥2

∫︁
d𝑥11𝑌𝑖

((𝑥1, 𝑥2, . . . , 𝑥𝑑))⏟  ⏞  
=0

= 0.

Indeed, the univariate convex function 𝑥1 ↦→ 𝑓 ′((𝑥1, 𝑥2, . . . , 𝑥𝑑); e𝑖) is differentiable almost
everywhere (Corollary 4.3.4). As a consequence, the restriction of 1𝑌𝑖

along the first
coordinate is zero almost everywhere. Thus, the inner integral vanishes.

We determine that there is zero measure on the set of “bad points” where the 𝑖th partial
derivative fails to exist. Thus, there is zero measure on the union of bad points where any
one of the partial derivatives fails to exist. In other words, 𝑓 has partial derivatives along
each coordinate axis almost everywhere in int dom 𝑓 . By Theorem 4.4.7, we conclude that 𝑓
has a derivative almost everywhere in int dom 𝑓 .

Remark 4.4.9 (Alexandrov’s theorem). In fact, a convex function is twice differentiable almost
everywhere on the interior of its domain. This theorem, due to Alexandrov, is significantly
harder to prove. See [Gru07, Thm. 2.9].
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4.5 The Boundary of a Convex Body
We have started discussing the facial structure of a convex set, and we have seen that the
extreme points are sufficient to generate all of the points in the convex set. It is natural to
ask how much of the boundary can be “flat” and how much is “pointy.” These questions
provide a motivation for studying the regularity of the boundary a convex set.

In this section, we derive one of the simplest regularity results. We will show that, in
most directions, a compact convex convex set has a supporting hyperplane that touches the
set at a unique point. Afterward, we develop an application of this result in optimization.

4.5.1 The Support Function

Let C ⊂ R𝑑 be a compact convex set. Recall that the support function is defined as

ℎC(𝑠) := max{⟨𝑠, 𝑥⟩ : 𝑥 ∈ C} for 𝑠 ∈ R𝑑.

Intuitively, the support function takes a direction 𝑠, and reports the level 𝛼 ∈ R of the
hyperplane H𝑠,𝛼 with (outer) normal 𝑠 that supports C.

Some of the basic properties of the support function follow instantly from the definition.
First, the support function is convex because it is the pointwise maximum of linear functions.
For the same reason, the sublevel sets of the support function are closed. The support
function is also positive homogeneous:

ℎC(𝜆𝑠) = 𝜆ℎC(𝑠) for 𝜆 ≥ 0 and 𝑠 ∈ R𝑑.

A positive homogeneous, convex function is also called sublinear.

4.5.2 The Subdifferential

Recall that the subdifferential of a convex function 𝑓 : R𝑑 → R at a point 𝑦 ∈ relint dom 𝑓
is defined as

𝜕𝑓(𝑦) := {𝑢 ∈ R𝑑 : 𝑓(𝑧) − 𝑓(𝑦) ≥ ⟨𝑢, 𝑧 − 𝑦⟩ for all 𝑧 ∈ R𝑑}.

In other words, the subdifferential contains the slopes of affine lower bounds for the function
at the point 𝑦. This definition generalizes the gradient inequality that holds when the convex
function 𝑓 is differentiable at 𝑦:

𝑓(𝑧) − 𝑓(𝑦) ≥ D𝑓(𝑦)(𝑧 − 𝑦) for all 𝑧 ∈ R𝑑.

In particular, if 𝑓 is differentiable at 𝑦, then D𝑓(𝑦) belongs to the subdifferential 𝜕𝑓(𝑦). In
fact, 𝑓 is differentiable at 𝑦 if and only if the derivative D𝑓(𝑦) is the unique element of the
subdifferential.

4.5.3 Exposed Faces and the Support Function
We may now connect the smoothness properties of the support function with the boundary
structure of a convex set. The following result follows from the definition of the support
function, the definition of the subdifferential, and a short computation.

Proposition 4.5.1 (Subdifferential of support function). The subdifferential of the support function
ℎC of a closed convex set C ⊂ R𝑑 takes the form

𝜕ℎC(𝑠) = {𝑥 ∈ C : ⟨𝑠, 𝑥⟩ = ℎC(𝑠)} =: FC(𝑠) for 𝑠 ∈ R𝑑.
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Figure 4.3 (Exposed points in almost every direction). For almost every direction 𝑢 ∈ S𝑑−1, the face
of a convex set C (grey) exposed in the direction 𝑢 consists of a single point. The dark blue
arrows correspond to the four directions where the exposed face of C is not a point. Each
vector pointing from a vertex of the square into the adjacent light blue region is a direction
where the exposed face is a point (namely, the vertex).

In other words, the subdifferential of the support function in a direction 𝑠 is the face FC(𝑠)
of the set C that is exposed in the direction 𝑠.

As an immediate corollary, we see that the support function of C is differentiable at 𝑠
when the face exposed in the direction 𝑠 consists of a single point.

Corollary 4.5.2 (Derivative of support function). The support function ℎC of a closed convex set
C ⊂ R𝑑 is differentiable at 𝑠 ∈ R𝑑 if and only if FC(𝑠) is an exposed point of C.

We may now invoke Reidemeister’s theorem to obtain our main result. See Figure 4.3
for an illustration.

Corollary 4.5.3 (Almost every direction exposes a point). Let C ⊂ R𝑑 be a compact convex set.
For almost every 𝑠 ∈ R𝑑, the face FC(𝑠) exposed in the direction 𝑠 is an exposed point. A
fortiori, for almost every 𝑢 ∈ S𝑑−1, the face FC(𝑢) exposed in the direction 𝑢 is an exposed
point.

Proof. By Theorem 4.4.8, the support function ℎC is differentiable almost everywhere. By
Corollary 4.5.2, the support function is differentiable at 𝑠 if and only if FC(𝑠) is an exposed
point. The first conclusion follows.

We sketch a proof of the second claim. The support function is positively homogeneous, so
it is differentiable at a point 𝑠 if and only if it is differentiable on the entire ray {𝜆𝑠 : 𝜆 > 0}.
If the support function failed to be differentiable on a subset of the sphere with positive
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measure, the rays passing through this subset would compose a set of positive measure in
R𝑑.

Remark 4.5.4 (Smoothness). If we apply Alexandrov’s theorem (Remark 4.4.9) to the support
function, we see that the support function is twice differentiable almost everywhere. This
means that the level of the supporting hyperplane varies smoothly with the direction, most
of the time. For further results on the smoothness of the boundary, see [Sch14, Chap. 2]
or [Gru07, Chap. 5].

4.5.4 Application to Random Optimization
We conclude the lecture with a striking application of Corollary 4.5.3 in optimization.
Suppose we want to find an extreme point of a compact convex set C ⊂ R𝑑. This is possible
so long as we can optimize an arbitrary linear function over the set C.

Indeed, let us draw a standard normal vector 𝑔 ∈ R𝑑. The Lebesgue measure and the
standard normal measure have the same null sets (i.e., sets with zero measure). Therefore,
the conclusion of Reidemeister’s theorem holds almost everywhere with respect to the
standard normal measure. In other words, with probability one, a standard normal vector 𝑔,
exposes a face of C that is an exposed point.

Now, suppose that we solve the (random) optimization problem

maximize ⟨𝑔, 𝑥⟩ subject to 𝑥 ∈ C.

With probability one, the optimization problem has a unique solution that is an exposed
point, by definition of an exposed point. Exposed points are extreme, so we conclude that
the random optimization also locates an extreme point with probability one.

Suppose instead that we draw a vector 𝜃 ∈ S𝑑−1 uniformly at random from the unit
sphere and solve the optimization problem

maximize ⟨𝜃, 𝑥⟩ subject to 𝑥 ∈ C.

Then the unique solution is also an extreme point of C.

Warning 4.5.5 (Collecting coupons). This method is not an effective way to find all the exposed
points of a convex set. Even if we find each of 𝑛 exposed points with equal probability, it
will require about 𝑛 log𝑛 repetitions to find all 𝑛 because of the coupon collector problem.
Moreover, certain exposed points may appear with very low probability, and it is very hard
to find them by random sampling. See [GLS88, Sec. 6.5] for a discussion about methods for
finding vertices of polyhedra.
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5.1 Agenda for Lecture 5
Polarity is an essential tool for understanding the structure of convex sets. In this lecture,
we present the Bipolar Theorem. Then we introduce polytopes and polyhedra, which are
two basic classes of convex sets. Last, we prove the Weyl–Minkowski theorem, which gives
an equivalence between polytopes and bounded polyhedra.

1. Polarity
2. Polytopes and polyhedra
3. The Weyl–Minkowski Theorem

5.2 Polarity
In convex geometry, duality exchanges points with hyperplanes. It provides a mechanism
for translating facts about points to new facts about hyperplanes (and conversely). Polarity
is a duality operation for convex sets that exchanges vertices with facets, and it provides a
valuable tool for understanding the structure of a convex set.

5.2.1 Polar Sets
To begin, we introduce the notion of the polar of a set. Then we relate the polar to the
original set. In particular, we show that polarity is an involution on certain classes of convex
sets. That is, applying polarity twice sometimes returns the original set.

Definition 5.2.1 (Polar Set). Let A ⊂ R𝑑 be a nonempty set. The polar set of A is

A∘ := {𝑠 ∈ R𝑑 : ⟨𝑠, 𝑥⟩ ≤ 1 for all 𝑥 ∈ A}.

The definition immediately yields some basic facts about the polar operation.

Proposition 5.2.2 (Basic properties of polarity). Let A ⊂ R𝑑 be nonempty set. Then the polar A∘

is a closed convex set that contains the origin 0.

Proof. The appearance of the origin is evident. The polar is an intersection of closed
halfspaces, so it must be a closed convex set.

Polarity is probably familiar to you already because it is the precise relationship between
the unit ball of a norm and the unit ball of the dual norm. Figure 5.1 illustrates the polarity
relation for a few specific examples. Here is a catalog:

∙ If C = 𝜀 · B𝑑 for 𝜀 > 0, then C∘ = 𝜀−1 · B𝑑.
∙ If C is the ℓ𝑑

1 unit ball, then C∘ is the ℓ𝑑
∞ unit ball.

∙ If C is the ℓ𝑑
∞ unit ball, then C∘ is the ℓ𝑑

1 unit ball.
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𝜖

𝜖−1

Polar

Polar

Polar

Polar

Polar

Polar

(a)

(b)

(c)

Figure 5.1 (Dual of Norm Balls). From top to bottom: (a) The polar of the Euclidean ball with
radius 𝜀 is the Euclidean ball with radius 𝜀−1. (b) The polar of the ℓ∞ ball is the ℓ1 ball and
vice versa. (c) The polar of a hexagonal unit ball in R2 switches vectors that intersect vertices
and vectors orthogonal to facets.

∙ A hexagonal unit ball in R2 and its polar exchange vectors that intersect vertices with
vectors that are orthogonal to facets.

∙ In general, if C is a norm ball, then C∘ is the unit ball of the dual norm.

On the basis of these simple examples, we can make the following geometric observations
about the action of polarity:

1. Vertices are exchanged with facets.
2. Directions of elongation are exchanged with directions of compression.
3. In a finite-dimensional space, the dual of the dual of a norm ball is the norm ball itself.
4. More generally, applying polarity twice appears to undo its effect.

Let us develop a more detailed understanding of how polarity behaves. This analysis will
justify some of the foregoing claims more completely. First, we note that polarity reverses
the order on sets.

Proposition 5.2.3 (Polarity reverses inclusion). If A ⊂ B, then B∘ ⊂ A∘.

Proof. This result is an immediate consequence of Definition 5.2.1.

Next, we show that applying polarity twice leads to a set at least as large as the one we
started with.
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Proposition 5.2.4 (The double polar is nondecreasing). For A ⊂ R𝑑, we have A ⊂ (A∘)∘ := A∘∘

Proof. Fix a point 𝑥 ∈ A. For each 𝑠 ∈ A∘, we have ⟨𝑥, 𝑠⟩ = ⟨𝑠, 𝑥⟩ ≤ 1. Therefore,
𝑥 ∈ A∘∘.

The reverse of the inclusion in Proposition 5.2.4 can fail. For example, suppose that
A ⊂ R𝑑 is finite set of points. It can be shown that A $ conv A = A∘∘.

5.2.2 The Bipolar Theorem

Although the reverse of the inclusion in Proposition 5.2.4 can fail, it can only fail for
trivial reasons. If the initial set has the properties required of a polar set, as outlined in
Proposition 5.2.2, then the double polar returns the original set.

Theorem 5.2.5 (Bipolar Theorem). If C ⊂ R𝑑 is a closed convex set that contains the origin,
then C∘∘ = C.

Proof. By Proposition 5.2.4, it suffices to check that C∘∘ ⊂ C. The strategy is to use a
contrapositive argument: For a point 𝑧 /∈ C, we will show that 𝑧 /∈ C∘∘ using the separation
theorem. The proof goes as follows.

Since C is closed and convex, we can properly separate 𝑧 from C. In other words, there
exists a nonzero 𝑠 ∈ R𝑑 such that ⟨𝑠, 𝑧⟩ > 𝛼 and sup𝑥∈C⟨𝑠, 𝑥⟩ < 𝛼. Since 0 ∈ C, we must
have 𝛼 > 0. As a consequence, for each 𝑥 ∈ C, it holds that ⟨𝑠/𝛼, 𝑥⟩ ≤ 1. That is, 𝑠/𝛼 ∈ C∘.
However, ⟨𝑧, 𝑠/𝛼⟩ = ⟨𝑠/𝛼, 𝑧⟩ > 1. We conclude that 𝑧 /∈ C∘∘.

We can express Theorem 5.2.5 as the statement that polarity is an order-reversing
involution on the class of closed convex sets that contain the origin. In fact, polarity has a
similar behavior for several smaller classes of convex sets. To establish one of these results,
we need another easy proposition.

Proposition 5.2.6 (Duality of interior origin and boundedness). If 0 ∈ int A, then A∘ is bounded. If
A is bounded, then 0 ∈ int A∘.

Proof. Let us establish the first statement. For some 𝜀 > 0, we have 𝜀 · B𝑑 ⊂ A. Since
polarity reverses inclusion, A∘ ⊂ 𝜀−1 · B𝑑.

We turn to the second statement. For some 𝜚 > 0, we have A ⊂ 𝜚 · B𝑑. Since polarity
reverses inclusion, 𝜚−1 · B𝑑 ⊂ A∘. Therefore, 0 ∈ int A∘.

From Theorem 5.2.5 and Proposition 5.2.6, we conclude that polarity is an order-reversing
involution on the class of compact convex sets that contain the origin in their interior.

Remark 5.2.7 (Convex cones). Polarity is also an order-reversing involution on the class of
closed convex cones. This is an exercise.
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Figure 5.2 (Proof of the bipolar theorem). For a point 𝑧 /∈ C, we can properly separate the point
𝑧 from the set C. The separating hyperplane yields a vector 𝑠/𝛼 ∈ C∘. The point 𝑧 cannot
belong to the double polar C∘∘ because of the separation.

5.3 Polytopes and Polyhedra
Definitions of polytopes and polyhedra are presented in this section. We highlight the key
difference between the two.

Definition 5.3.1 (Polytope). A polytope is the convex hull of a finite set of points.

Definition 5.3.2 (Polyhedron). A polyhedron is the finite intersection of closed halfspaces.

See Figure 5.3 for an illustration of some polytopes and polyhedra. Note that a polytope
is always bounded, while a polyhedron may be bounded or unbounded. Otherwise, they
appear to be strikingly similar.

According to Minkowski’s extremal representation theorem, a polytope has a finite
number of extreme points. Moreover, every set with a finite number of extreme points is a
polytope. Later, we will see that a polyhedron has a finite number of faces, and every set
with a finite number of faces is a polyhedron.

5.4 Weyl–Minkowski Theorem
We may suspect that polytopes and polyhedra have something in common, but they are
apparently not the same objects because polyhedra can be unbounded. In fact, this is the
only obstacle to obtaining an equivalence. The Weyl–Minkowski theorem asserts that the
class of polytopes coincides with the class of bounded polyhedra.
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(a) A polytope (b) Two polyhedra

Figure 5.3 (Polytopes and Polyhedrons). A polytope is the convex hull of a finite point set. A
polyhedron is the intersection of a finite number of halfspaces. A polytope is always bounded,
but a polyhedron can be bounded or unbounded.

Theorem 5.4.1 (Weyl–Minkowski). We have the following implications.

1. A bounded polyhedron is a polytope.
2. A polytope is a bounded polyhedron.

The two parts require separate arguments. We will establish the first statement using a
direct characterization of the extreme points of a polyhedron. Afterward, we will develop
the second statement by invoking polarity and then applying the first statement. This is a
remarkable strategy: polarity gives us a striking conclusion, almost for free.

5.4.1 Characterization of Vertices
The proof of the first implication in Theorem 5.4.1 is based on a characterization the extreme
points of a polyhedron. In this context, an extreme point is commonly referred to as a
vertex.

Proposition 5.4.2 (Vertices of a polyhedron). Consider the polyhedron

P := {𝑥 ∈ R𝑑 : ⟨𝑠𝑖, 𝑥⟩ ≤ 𝛼𝑖 for all 𝑖 = 1, 2, 3, . . . , 𝑛}.

For a point 𝑥 ∈ P, introduce the set of constraints that are active at 𝑥:

𝐼(𝑥) := {𝑖 : ⟨𝑠𝑖, 𝑥⟩ = 𝛼𝑖}.

If 𝑥 is a vertex of P, then lin{𝑠𝑖 : 𝑖 ∈ 𝐼(𝑥)} = R𝑑.

Proof. Let 𝑥 ∈ P. Suppose that 𝑥 is a vertex of P, but lin{𝑠𝑖 : 𝑖 ∈ 𝐼(𝑥)} ≠ R𝑑. Then there
exists a nonzero point 𝑦 ∈ R𝑑 such that ⟨𝑠𝑖, 𝑦⟩ = 0 for all 𝑖 ∈ 𝐼(𝑥).

For a parameter 𝜀 > 0, define 𝑥+ := 𝑥 + 𝜀𝑦 and 𝑥− := 𝑥 − 𝜀𝑦. It is clear that
𝑥 = 1

2 (𝑥+ + 𝑥−), and both points 𝑥± are different from 𝑥 because the vector 𝑦 is nonzero.
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Figure 5.4 (Proof of Proposition 5.4.2). If 𝑥 is a vertex of P, then R𝑑 is spanned by the normal
vectors 𝑠𝑖 to the constraints 𝑖 ∈ 𝐼(𝑥) that are active at 𝑥.

Next, observe that 𝑥± ∈ P as soon as 𝜀 is sufficiently small. Indeed, the inactive
constraints 𝑖 /∈ 𝐼(𝑥) are finite in number, so we have a bound ⟨𝑠𝑖, 𝑥⟩ ≤ 𝛼𝑖 − 𝛿 with 𝛿 > 0
for all 𝑖 /∈ 𝐼(𝑥). As a consequence, for very small 𝜀,

⟨𝑠𝑖, 𝑥±⟩ = ⟨𝑠𝑖, 𝑥⟩ ± 𝜀⟨𝑠𝑖, 𝑦⟩ = 𝛼𝑖 for all 𝑖 ∈ 𝐼(𝑥);
⟨𝑠𝑖, 𝑥±⟩ = ⟨𝑠𝑖, 𝑥⟩ ± 𝜀⟨𝑠𝑖, 𝑦⟩ < 𝛼𝑖 for all 𝑖 /∈ 𝐼(𝑥).

We conclude that 𝑥 is not an extreme point of P. See Figure 5.4 for an illustration of the
argument.

Fact 5.4.3. The converse of Proposition 5.4.2 also holds true. That is, if R𝑑 is span of the
normals 𝑠𝑖 to the active constraints 𝑖 ∈ 𝐼(𝑥), then the point 𝑥 is a vertex of P.

5.4.2 Proof of the Weyl–Minkowski Theorem

We are now prepared to prove the Weyl–Minkowski theorem.
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A Bounded Polyhedron is a Polytope

Consider a bounded polyhedron

P := {𝑥 ∈ R𝑑 : ⟨𝑠𝑖, 𝑥⟩ ≤ 𝛼𝑖 for all 𝑖 = 1, 2, 3, . . . ,𝑚}.

The bounded polyhedron P is a compact convex set. Therefore, Minkowski’s theorem tells
us that P is the convex hull of its vertices. We must verify that the total number of vertices
is finite.

Each vertex 𝑥 of P induces a set 𝐼(𝑥) of active constraints, which compose a linear
system:

⟨𝑠𝑖, 𝑥⟩ = 𝛼𝑖 for each 𝑖 ∈ 𝐼(𝑥).

By Proposition 5.4.2, the family {𝑠𝑖 : 𝑖 ∈ 𝐼(𝑥)} spans R𝑑. So the linear system has full rank,
and the distinguished vertex 𝑥 is the unique solution of the linear system.

In other words, we have constructed an injection from vertices of the polyhedron into
the family of subsets of constraints. Since there are at most 2𝑚 subsets of constraints, the
polyhedron has at most 2𝑚 vertices.

Remark 5.4.4 (Vertex counting). In fact, P can have at most
(︀

𝑚
𝑑

)︀
vertices. Indeed, we can

identify each set {𝑠𝑖 : 𝑖 ∈ 𝐼} of normal vectors that spans R𝑑 with the subset that contains
the first 𝑑 vectors that form a basis (using the prespecified order 𝑠1, 𝑠2, . . . , 𝑠𝑚). This
observation gives an injection from the set of vertices into a family of

(︀
𝑚
𝑑

)︀
sets of constraints,

or fewer.

A Polytope is a Bounded Polyhedron

We use polarity to translate the question about polytopes to a question about polyhedra,
and then we apply the claim that we just established about polyhedra.

Consider the polytope
P := conv{𝑥1, ...𝑥𝑛} ⊂ R𝑑.

The polytope P is automatically bounded, so the challenge is to show that it admits a
representation as an intersection of halfspaces. Without loss of generality, we can assume
dim P = 𝑑 and 0 ∈ int P. The polar set takes the form

P∘ = {𝑠 ∈ R𝑑 : ⟨𝑠, 𝑥𝑖⟩ ≤ 1 for all 𝑖 = 1, 2, 3, . . . , 𝑛}.

Since P contains the origin in its interior, Proposition 5.2.6 shows that the polar P∘ is a
bounded polyhedron. Now, the first part of the Weyl–Minkowski theorem implies that P∘ is
a polytope:

P∘ = conv{𝑠1, 𝑠2, . . . , 𝑠𝑚}.

Polarizing again,

P∘∘ = {𝑥 ∈ R𝑑 : ⟨𝑥, 𝑠𝑖⟩ ≤ 1 for 𝑖 = 1, 2, 3, . . . ,𝑚}.

But P is a compact convex set that contains the origin, so Theorem 5.2.5 ensures that
P∘∘ = P. We have represented P as a finite intersection of halfspaces. In other words, P is a
polyhedron.
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6.1 Agenda for Lecture 6
The faces of a convex set make up the boundary, and they are a basic tool for understanding
the structure of the set. In this lecture, we will show that the relative interiors of the faces
partition the entire set. Then we will introduce the normal cone of a face, which contains all
of the vectors that are orthogonal to the vectors in a face. We can develop a fundamental
decomposition of Euclidean space in terms of the relative interiors of faces and in terms of
normal cones. After these generalities, we will focus our attention on the class of polytopes.
We will see that all faces of a polytope are exposed, and we will show that the dimension of
a face and its normal cone are complementary.

1. Facts about faces, old and new

2. Normal cones

3. The tiling induced by a convex set

4. Proper faces of a polytope are exposed

5. Structure of normal cones of polytopes

6.2 Facts about faces
We begin with a reminder about some of the properties of the faces of a convex set, and
then we continue with some new developments.

Fact 6.2.1 (What we already know about faces). Suppose C ⊂ R𝑑 is a closed convex set, and let
F ⊂ C be a face of C. The face has the following properties.

1. If F is a proper face of C, then F is contained in relbd C.

2. If F′ is a face of C, then F ∩ F′ is also a face of C.

3. If G is a face of F, then G is a face of C.

4. If F′ is an exposed face of C, then F′ is a face of C.

Next, we show that distinct faces have disjoint relative interiors. Furthermore, the
relative interiors of the faces partition the entire set.

Proposition 6.2.2 (Faces partition a convex set). Suppose C ⊂ R𝑑 is a closed convex set. Then

1. If F1,F2 are distinct faces of C, then relint(F1) ∩ relint F2 = ∅.

2. Each point 𝑥 ∈ C belongs to the relative interior of a unique face of C.
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Proof. We prove the first statement by contradiction. Suppose that 𝑥 ∈ relint F1 ∩ relint F2.
Since F1 and F2 are distinct, we can assume that there is a point 𝑦 ∈ F1∖F2. (Otherwise,
interchange the two sets and proceed.)

Because 𝑥 ∈ relint F1 and 𝑦 ∈ F1, we can find a third point 𝑧 ∈ F1 with the property
that 𝑥 ∈ (𝑦, 𝑧). But 𝑥 ∈ F2 is a convex combination of 𝑦, 𝑧 ∈ C. Therefore, 𝑦, 𝑧 ∈ F2 by
the definition of the face F2. This contradicts the requirement that 𝑦 ∈ F1 ∖ F2.

For the second statement, choose a point 𝑥 ∈ C. Define the closed convex set

F𝑥 :=
⋂︁

{F C C : 𝑥 ∈ F}.

Recall that C denotes the “face of” relation. Since the intersection of faces is a face, we see
that F𝑥 C C.

If 𝑥 ∈ relint F𝑥, the first statement ensures that no other face of C contains 𝑥 in its
relative interior. Therefore, 𝑥 is in the relative interior of a unique face.

On the other hand, imagine that 𝑥 ∈ relbd F𝑥. We will see that this case is impossible.
Indeed, the closed convex set F𝑥 has a proper supporting hyperplane H at 𝑥; that is, 𝑥 ∈ H,
but F𝑥 ∩ H $ F𝑥. By construction, F𝑥 ∩ H is an exposed face of F𝑥, so it is a face of F𝑥. By
transitivity of faces, (F𝑥 ∩ H) C C. But 𝑥 ∈ (F𝑥 ∩ H) $ F𝑥. This contradicts the minimality
of the face F𝑥.

6.3 Normal Cones
Next, we introduce the concept of a normal cone of a point of a convex set. The normal cone
collects all of the outer normals to hyperplanes that weakly separate the point from the set.

Definition 6.3.1 (Normal cone). Let C ⊂ R𝑑 be a closed convex set. For a point 𝑥 ∈ C, define
the normal cone to the set C at the point 𝑥 as

NC(𝑥) := {𝑠 ∈ R𝑑 : ⟨𝑠, 𝑥⟩ = ℎC(𝑠)}
=
{︀

𝑠 ∈ R𝑑 : ⟨𝑠, 𝑥⟩ = max𝑦∈C⟨𝑠, 𝑦⟩
}︀
.

As usual, ℎC(𝑠) denotes the value of the support function of C in direction 𝑠 ∈ R𝑑.

First, let us confirm that normal cones are indeed cones.

Proposition 6.3.2 (The normal cone is a cone). The normal cone NC(𝑥) is a closed convex cone.

Proof. Since 𝑥 ∈ C, a direction 𝑠 belongs to NC(𝑥) if and only if

⟨𝑠, 𝑦 − 𝑥⟩ ≤ 0 for all 𝑦 ∈ C.

In other words, the normal cone is an intersection of closed halfspaces that contain the
origin. Thus, it is a closed convex cone.

Next, we develop an alternative representation of the normal cone in terms of the metric
projector onto the convex set.

Proposition 6.3.3 (Normal cones and projections). Let C be a closed convex set, and let 𝑥 ∈ C.
The normal cone can be written as

NC(𝑥) = {𝑦 − 𝑥 : projC(𝑦) = 𝑥}.
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Figure 6.1 (Normal cones). This diagram describes the normal cones of a triangle and a disk.
For a point on the boundary of each object, the normal cone contains all of the arrows that
emanate from that point.

The set 𝑥 + NC(𝑥) is sometimes called the normal bundle of C at 𝑥. The normal bundle
contains all of the points in space whose metric projection onto C is 𝑥.

Proof. Suppose that 𝑠 ∈ NC(𝑥). By definition,

max𝑧∈C⟨𝑠, 𝑧⟩ = ⟨𝑠, 𝑥⟩.

Consider a point of the form 𝑦 = 𝑥 + 𝑠. Then

⟨𝑦 − 𝑥, 𝑧⟩ ≤ ⟨𝑦 − 𝑥, 𝑥⟩ for all 𝑧 ∈ C.

Equivalently,
⟨𝑦 − 𝑥, 𝑧 − 𝑥⟩ ≤ 0 for all 𝑧 ∈ C.

Since 𝑥 ∈ C, we see that 𝑥 satisfies the variational formula for the projection projC(𝑦). The
result follows.

We started by defining the normal cone of the convex set C at a point 𝑥. In fact, the
normal cone is the same for every point in the relative interior of a face. It is natural,
therefore, to parameterize normal cones in terms of faces, rather than points.

Proposition 6.3.4 (The normal cone depends only the face). Assume that F is a face of a closed
convex set C. If 𝑥,𝑦 ∈ relint F, then NC(𝑥) = NC(𝑦).

Proof. We prove this proposition by contradiction. Suppose 𝑥,𝑦 ∈ relint F, but their normal
cones are different.

Interchanging 𝑥 and 𝑦 if necessary, we can find a direction 𝑠 ∈ R𝑑 such that 𝑠 ∈
NC(𝑥)∖NC(𝑦). Since 𝑠 /∈ NC(𝑦) but 𝑠 ∈ NC(𝑥), the definition of the normal cone implies
that

⟨𝑠, 𝑦⟩ < max𝑧∈C⟨𝑠, 𝑧⟩ = max𝑧∈F⟨𝑠, 𝑧⟩ = ⟨𝑠, 𝑥⟩ =: 𝛼.

We determine that 𝑥 ∈ F ∩ H𝑠,𝛼 but 𝑦 /∈ F ∩ H𝑠,𝛼. In other words, 𝑥 belongs to a proper
face of F, so 𝑥 ∈ relbd F. This is a contradiction.
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As a consequence of Proposition 6.3.4, we have a well-defined concept of the normal cone
of a face of a convex set.

Definition 6.3.5 (Normal cone of a face). If F is a face of a closed convex set C, the normal cone
of the face is defined as

NC(F) := NC(𝑥) for a point 𝑥 ∈ relint F.

Proposition 6.3.4 ensures that the specific choice of 𝑥 is immaterial.

6.4 The Tiling Induced by a Convex Set
In this section, we develop a fundamental decomposition of Euclidean space induced by a
closed convex set. The normal bundles of the points in the set are disjoint, and they exhaust
all of the space. This construction can be simplified somewhat because each point in a face
has the same normal cone.

Theorem 6.4.1 (Tiling induced by a convex set). Suppose C ⊂ R𝑑 is closed and convex. Then we
have the decomposition

R𝑑 =
⋃̇︁

FCC
((relint F) + NC(F)).

The dot indicates that the union is disjoint.

Proof. Since the projector projC : R𝑑 → C is a surjection, every point in R𝑑 lies in the
preimage of the metric projector. Therefore,

R𝑑 =
⋃̇︁

FCC
proj(−1)

C (relint F)

=
⋃̇︁

FCC

⋃̇︁
𝑥∈relint F

proj(−1)
C (𝑥)

=
⋃̇︁

FCC

⋃̇︁
𝑥∈relint F

(𝑥 + NC(𝑥))

=
⋃̇︁

FCC

⋃̇︁
𝑥∈relint F

(𝑥 + NC(F))

=
⋃̇︁

FCC
((relint F) + NC(F)).

The first relation follows from Proposition 6.2.2, which ensures that each point 𝑥 ∈ C is
contained in the relative interior of a unique face. Moreover, since the relative interiors of
the faces are disjoint, we have decomposed R𝑑 as a disjoint union. To reach the second line,
we break up relint F into its constituent points; each has a distinct preimage because projC
is a function. The third line depends on Proposition 6.3.3, which relates the metric projector
to the normal bundle. Finally, we use Proposition 6.3.4 to see that the the normal cone of a
point 𝑥 depends only on the face in which it appears.

6.5 Proper Faces of a Polytope are Exposed
We now specialize our attention to polytopes. The facial structure of a polytope is simpler
than the facial structure of a general convex set. As a consequence, the tiling described in
Theorem 6.4.1 enjoys additional properties.

The goal of this section is to prove that every face of a polytope is exposed. First, we
show that an exposed face of a polytope is the convex hull of the vertices contained in the
face.
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Proposition 6.5.1 (Exposed faces of a polytope). Let P = conv{𝑥1, . . . ,𝑥𝑛} be a polytope, and
let F be an exposed face of P. Then F = conv{𝑥𝑖 : 𝑥𝑖 ∈ F}.

Proof. Define the set 𝐼 = {𝑖 : 𝑥𝑖 ∈ F} ⊂ {1, . . . , 𝑛} of indices of the vertices of P that are
contained in the face F. Since the face is convex, conv{𝑥𝑖 : 𝑖 ∈ 𝐼} ⊂ F. Our task is to
establish the reverse inclusion.

Since F is an exposed face, then there exists a linear functional 𝜙 that exposes the face.
That is, 𝜙(𝑧) ≤ 1 for all 𝑧 ∈ P, and 𝜙(𝑧) = 1 if and only if 𝑧 ∈ F.

Now, select a point 𝑥 ∈ F. Since F ⊂ P, we can write the point 𝑥 as a convex combination
of the vertices of P:

𝑥 =
∑︁𝑛

𝑖=1
𝜆𝑖𝑥𝑖 where 𝜆 ∈ Δ𝑛.

If there exists 𝑗 /∈ 𝐼 with 𝜆𝑗 > 0, then

𝜙(𝑥) =
∑︁𝑛

𝑖=1
𝜆𝑖𝜙(𝑥𝑖) = 𝜆𝑗𝜙(𝑥𝑗) +

∑︁
𝑖̸=𝑗

𝜆𝑖𝜙(𝑥𝑖)

≤ 𝜆𝑗𝜙(𝑥𝑗) +
∑︁

𝑖 ̸=𝑗
𝜆𝑖 < 𝜆𝑗 +

∑︁
𝑖 ̸=𝑗

𝜆𝑖 = 1.

However, this contradicts the assumption that 𝑥 ∈ F.
In short, every point in the face F can be expressed as a convex combination of the

vertices {𝑥𝑖 : 𝑖 ∈ 𝐼}. Thus, F ⊂ conv{𝑥𝑖 : 𝑖 ∈ 𝐼}.

Proposition 6.5.1 has some interesting implications for the structure of a polytope.

Corollary 6.5.2 (Properties of polytope faces). The exposed faces of a polytope enjoy the following
properties.

1. The exposed faces are polytopes.
2. The number of exposed faces is finite.

Proof. First, since an exposed face of the polytope is the convex hull of a finite point set, it
is a polytope.

Second, suppose that the polytope has 𝑛 vertices. Every exposed face is the convex hull
of a subset of these 𝑛 vertices. Therefore, the number of exposed faces cannot exceed 2𝑛.

In contrast with the general case, exposed faces of a polytope are transitive.

Corollary 6.5.3 (Transitivity of exposed faces of a polytope). For a polytope, an exposed face of an
exposed face is an exposed face.

Proof. Consider a polytope P = conv{𝑥1, . . . ,𝑥𝑚}. Let G be an exposed face of P, and let
F be an exposed face of G. According to Proposition 6.5, we may assume that

F = conv{𝑥𝑖 : 𝑖 ∈ 𝐼} and G = conv{𝑥𝑗 : 𝑗 ∈ 𝐽} where 𝐼 ⊂ 𝐽.

By exposure, there exist linear functionals 𝜙,𝜓 and numbers 𝛼, 𝛽 such that

𝜙(𝑥𝑖) = 𝛼 for 𝑖 ∈ 𝐼;
𝜙(𝑥𝑖) < 𝛼 for 𝑖 ∈ 𝐽 ∖ 𝐼;

𝜓(𝑥𝑗) = 𝛽 for 𝑗 ∈ 𝐽 ;
𝜓(𝑥𝑗) < 𝛽 for 𝑗 /∈ 𝐽 .
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For sufficiently small 𝜀, the linear functional 𝜉 = 𝜙+ 𝜀𝜓 has the property that

𝜉(𝑥𝑖) = 𝛼+ 𝜀𝛽 for 𝑖 ∈ 𝐼;
𝜉(𝑥𝑖) < 𝛼+ 𝜀𝛽 for 𝑖 /∈ 𝐼.

This is a simple consequence of the fact that P has a finite number of vertices. It follows
that 𝜉 weakly separates F from P, and F is an exposed face of P.

We arrive at the main result of the section.

Theorem 6.5.4 (Proper faces of a polytope are exposed). Every proper face of a polytope is an
exposed face.

Proof. We prove this result by induction over the dimension of the polytope P. If dim P = 0,
the statement is vacuous because the polytope has no proper face. Suppose that dim P = 𝑑,
and we have established the result for polytopes of lower dimension.

First, we claim that each proper face F of P is contained in an exposed face F′ of P.
Proposition 6.2.2 implies that relint F ∩ relint P = ∅. Thus, we can find a hyperplane H that
weakly separates F from P. Define F′ = P ∩ H. Since F ⊂ P, we see that F′ is an exposed
face of P that contains F.

If F = F′, it follows that F is an exposed face of P. Suppose instead that F is a proper
face of F′. Then we must have dim F ≤ 𝑑− 1. The exposed face F′ is a polytope because of
Corollary 6.5.2(1). The induction hypothesis now implies that F is an exposed face of F′.
Corollary 6.5.3 ensures that F is also an exposed face of P.

6.6 Normal Cones of Polyhedra
Next, we develop a structural result on the normal cones of a polyhedron. This result shows
that the normal cone at a point is generated by the active constraints. It also allows us to
compute the dimension of the normal cone.

Proposition 6.6.1 (Normal cones of a polyhedron). Let P = {𝑥 ∈ R𝑑 : ⟨𝑠𝑖, 𝑥⟩ ≤ 𝛼𝑖, 𝑖 = 1, . . . ,𝑚}
be a polyhedron. For a point 𝑥 ∈ P, define the set 𝐼(𝑥) = {𝑖 : ⟨𝑠𝑖, 𝑥⟩ = 𝛼𝑖} of active
constraints. Then NP(𝑥) = cone{𝑠𝑖 : 𝑖 ∈ 𝐼(𝑥)}.

Proof. Without loss of generality, we can assume that 𝑥 = 0 by considering the translated
polyhedron P − 𝑥. Define another polyhedron that is generated only by the constraints that
are active at the origin:

C := {𝑧 ∈ R𝑑 : ⟨𝑠𝑖, 𝑧⟩ ≤ 0 : 𝑖 ∈ 𝐼(0)}.

The normal cone of a polyhedron is locally determined, so NC(0) is the same as NP(0).
Define the conic hull of the active constraints:

K = conv{𝑠𝑖 : 𝑖 ∈ 𝐼(0)}.

By convexity of normal cones, K ⊂ NC(0) = NP(0). It remains to develop the reverse
inclusion.
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We prove that NC(0) ⊂ K by contradiction. Suppose that there exists a direction
𝑣 ∈ NC(0)∖K. Since 𝑣 ∈ NC(0),

⟨𝑣, 𝑥⟩ ≤ 0 for all 𝑥 ∈ C.

Because 𝑣 /∈ K, we can separate the point 𝑣 from the closed convex set K. Indeed, there
exists 𝑧 ∈ R𝑑 such that

⟨𝑣, 𝑧⟩ > 0 = max𝑠∈K⟨𝑠, 𝑧⟩.

However, by construction of K,

max𝑖∈𝐼(0)⟨𝑠𝑖, 𝑧⟩ = max𝑠∈K⟨𝑠, 𝑧⟩ = 0.

As a consequence, we determine that 𝑧 ∈ C. The separation condition requires that ⟨𝑣, 𝑧⟩ > 0.
This outcome contradicts the relation ⟨𝑣, 𝑧⟩ ≤ 0, which holds because 𝑧 ∈ C.

We have the following important corollary, which states that the dimension of a face and
its normal cone are complementary.

Corollary 6.6.2 (Dimension of the normal cone). Let F be a face of a polyhedron P ⊂ R𝑑. Then

dim F + dim NP(F) = 𝑑.

Proof. Consider a polyhedron

P = {𝑥 ∈ R𝑑 : ⟨𝑠𝑖, 𝑥⟩ ≤ 𝛼𝑖 for 𝑖 = 1, . . . ,𝑚}.

Let F be a face of P, and let 𝑥 ∈ relint F. Then the face can be written in terms of the active
constraints 𝐼(𝑥):

F = {𝑥 ∈ P : ⟨𝑠𝑖, 𝑥⟩ = 𝛼𝑖 for 𝑖 ∈ 𝐼(𝑥)}.

(Justify this claim!) As a consequence, the dimension of the face is

dim F = codim lin{𝑠𝑖 : 𝑖 ∈ 𝐼(𝑥)}.

Proposition 6.6.1 shows that the dimension of the normal cone is

dim NF(𝑥) = dim lin{𝑠𝑖 : 𝑖 ∈ 𝐼(𝑥)}.

Together, these relations imply the statement.
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7.1 Agenda for Lecture 7
In this lecture, we explain how to measure the distance between two compact convex sets
using the Hausdorff metric. This metric allows us to approximate any convex set by a
sequence of polytopes. Next, we establish an important topological result, called the Blaschke
selection theorem, which states that the convex bodies form a locally compact metric space.
We conclude the lecture with two examples of Hausdorff continuous functions: the metric
projection of a fixed point onto a convex body and the distance from a fixed point to a
convex body.

1. Hausdorff distance
2. Approximation by polytopes
3. The Blaschke selection theorem
4. Continuity of the metric projection

7.2 Hausdorff Distance
We wish to address the following questions:

1. How do we measure the “distance” between two compact convex sets?
2. Can we approximate a compact convex set by a “simpler” one, e.g., a polytope?
3. What functions are preserved under approximation?

We will make these questions more precise and well-defined as our discussion progresses. Let
us begin with the following definitions.

Definition 7.2.1 (Convex body). A convex body is a compact convex set, possibly empty. Intro-
duce the class C𝑑 of all convex bodies in R𝑑.

Definition 7.2.2 (Hausdorff distance). Let C,K be convex bodies in C𝑑. Then we define the
Hausdorff distance

distH(C,K) := inf{𝜀 > 0 : C ⊂ K + 𝜀B𝑑 and K ⊂ C + 𝜀B𝑑}.

It is important that the we define the Hausdorff distance to be symmetrical. Conceptually,
the Hausdorff distance tells us how much we need to enlarge one of the bodies in order to
enclose the other, and vice versa. More precisely, what is the least 𝜀 such that every point in
C is within 𝜀 distance of some point in K and every point in K is within 𝜀 distance of some
point in C?
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Figure 7.1 (Hausdorff distance illustrations). Note that the Hausdorff distance depends on the
position of the convex bodies relative to each other. [left] If the bodies are close to each other
then the ball radius 𝜀 for the set C + 𝜀B𝑑 does not have to be too large in order to enclose K
(and vice versa). [right] If the bodies are further apart, then 𝜀 must be larger.

An equivalent formulation of the definition is as follows:

distH(C,K) = max
{︂

max
𝑥∈C

dist(𝑥,K); max
𝑦∈K

dist(𝑦,C)
}︂

= max
{︂

max
𝑥∈C

min
𝑦∈K

‖𝑥 − 𝑦‖; max
𝑦∈K

min
𝑥∈C

‖𝑥 − 𝑦‖
}︂
.

We can use minimum and maximum operations instead of infimum and supremum because
we are dealing with compact sets, which implies that they are closed.

7.3 Approximation by Polytopes
The Hausdorff distance is a metric (see Theorem 7.6.1 for proof). Thus, we can equip C𝑑

with distH to form a metric space. This distance metric gives us a notion of approximation;
we consider three instances in Figure 7.2.

Theorem 7.3.1 (Approximation by polytopes). Let C be a convex body with dimension 𝑑, and let
𝜀 > 0. Then there exists a polytope P𝜀 ⊂ C such that distH(P𝜀,C) ≤ 𝜀.

In other words, for any positive distance 𝜀, we can produce a polytope that is a “good”
approximation of the set, where the criterion of how “good” the approximation is determined
by the Hausdorff distance to C.)

Proof. Consider the open cover
C ⊂

⋃︁
𝑥∈C

N(𝑥; 𝜀),

where N(𝑥; 𝜀) denotes the open ball (neighborhood) of radius 𝜀 centered at 𝑥. The convex
body C is compact, so there exists a finite subcover:

C ⊂
⋃︁

𝑥∈S
N(𝑥; 𝜀), where S ⊂ C and #S < ∞.

Define the polytope P𝜀 to be the convex hull of the finite set S.
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Figure 7.2 (Approximation by polytopes). Consider approximating the convex body C using the
polytope K. [left] We choose three points in C (red) and take the approximating polytope K
to be their convex hull. [center] We can obtain another approximation by taking the convex
hull of more points. This approximation is better than the leftmost approximation because we
do not need to expand K as much in order to enclose C; that is, distH(C, K) is larger in the
leftmost case than in the middle case. [right] We can also approximate by taking the polytope
K to be the convex hull of points selected outside the set C. The set K is the convex hull of
the points of intersection of five supporting hyperplanes to C.

We will verify that P𝜀 and C lie within Hausdorff distance 𝜀. Since S is a subset of C
and because C is convex, the convex hull of S is also a subset of C. Hence, P𝜀 ⊂ C. On the
other hand, the finite subcover of C is a subset of P𝜀 + 𝜀B𝑑. That is,

C ⊂
⋃︁

𝑥∈S
N(𝑥; 𝜀) ⊂ P𝜀 + 𝜀B𝑑.

Thus, we conclude distH(P𝜀,C) ≤ 𝜀.

7.4 The Blaschke Selection Theorem
We can define a notion of convergence of sets with respect to the Hausdorff distance, which
we denote using the usual arrow notation (→). For instance, the previous theorem can be
expressed as follows. There is a sequence {P𝑛 : 𝑛 ∈ N} of polytopes in C𝑑 with the property
that P𝑛 → C as 𝑛 → ∞.

Another topological concept is boundedness with respect to the metric.

Definition 7.4.1 (Boundedness). A sequence {C𝑖 : 𝑖 ∈ N} is bounded if each set C𝑖 is contained
in a closed Euclidean ball N̄(0; 𝜚) with radius 𝜚, centered at the origin.

We now turn to the fundamental result about the topology of the metric space of convex
bodies equipped with the Hausdorff distance.

Theorem 7.4.2 (Blaschke selection). The metric space (C𝑑,distH) is locally compact. In other
words, a bounded sequence of convex bodies in C𝑑 contains a convergent subsequence.

It may be useful to state the result in more mathematical detail. Consider a sequence
C1,C2,C3, · · · of nonempty convex bodies in C𝑑, and assume that each C𝑖 ⊂ 𝜚B𝑑 for some
𝜚 > 0. Then there is a subsequence {C𝑖𝑗

: 𝑗 ∈ N} with the property that C𝑖𝑗 → C, where
the limit C is a nonempty convex body in C𝑑.

Before we give a proof of the theorem, let us consider some simple applications.
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Figure 7.3 (Positions of a billiard ball). We consider images C𝑖 := 𝑄𝑖C + 𝑥𝑖 of a billiard ball at times
𝑖 = 1, 2, 3, · · · . Then {C𝑖} has a subsequence {C𝑖𝑗

: 𝑗 ∈ N} that converges to a convex body C⋆.
In other words, there is a location where the ball passes arbitrarily close an infinite number of
times.

Example 7.4.3 (Approximation by polytopes). Consider the family of polytopes {P𝜀 : 𝜀 > 0} that
we constructed in Theorem 7.3.1 to approximate the convex body C. Then we can extract a
convergent sequence, say {P𝜀𝑖

: 𝑖 ∈ N}, with limit C⋆. In fact, the limit C⋆ = C because the
polytopes approximate C arbitrarily well, and a convergent sequence in a metric space has a
unique limit.

Example 7.4.4 (Poincaré recurrence). Here is an amusing example related to the Poincaré
recurrence theorem. Fix a convex body C ∈ C𝑑. Let 𝑥𝑖 be arbitrary points in a compact set
Ω, and let 𝑄𝑖 ∈ R𝑑×𝑑 be arbitrary rotations. We can define a sequence of convex bodies via

C𝑖 := 𝑄𝑖C + 𝑥𝑖 for 𝑖 ∈ N.

Think about the positions of a billiard ball at discrete time instants as the ball cascades
around the table. By the Blaschke selection theorem, the sequence {C𝑖} admits a convergent
subsequence, with limit C⋆. For any 𝜀 > 0, there are an infinite number of times when
distH(C𝑖,C⋆) ≤ 𝜀. In a sense, the limiting body C⋆ is a frequent location of the moving set
C𝑖. See Figure 7.3.

Let us go ahead and establish the result. Further discussion appears in [Gru07, Sec. 6].

Proof of the Blaschke selection theorem. For simplicity of notation, denote B := 𝜚B𝑑, the
closed Euclidean ball centered at the origin and with radius 𝜚.

We will invoke the Arzelà–Ascoli theorem: Consider a family of real-valued, continuous
functions defined on a compact metric space. The family is compact if and only if it is
equibounded and equicontinuous.

We plan to apply the following special case. Consider a sequence of functions 𝑓𝑖 : B → R
with the following properties:

1. (Equibounded). The numbers |𝑓𝑖(𝑥)| are bounded above by a constant for all 𝑥 ∈ B and
all 𝑖 ∈ N.
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2. (1-Lipshitz). We have |𝑓𝑖(𝑥) − 𝑓𝑖(𝑦)| ≤ ‖𝑥 − 𝑦‖ for all 𝑥,𝑦 ∈ B and each 𝑖 ∈ N.

Then there exists a subsequence {𝑓𝑖𝑗
, 𝑗 ∈ N} that converges uniformly to a limit 𝑓⋆. That is,

for any 𝜀 > 0, there exists 𝐽 > 0 such that for all 𝑗 ≥ 𝐽 , we have ‖𝑓𝑖𝑗 − 𝑓⋆‖𝐿∞(B) < 𝜀.
For our scenario, define 𝑓𝑖(𝑥) := dist(𝑥; C𝑖). Recall that 𝑓𝑖 is nonnegative, 1-Lipschitz,

and convex. Moreover, it easy to check that 𝑓𝑖 is bounded above by the diameter of the
Euclidean ball B.

By Arzelà–Ascoli, there exists a subsequence {𝑓𝑖𝑗
: 𝑗 ∈ N} that converges to a function

𝑓⋆ : B → R. It is immediate that the limit 𝑓⋆ is nonnegative and 1-Lipschitz. With some
effort, it can be shown that the limit 𝑓⋆ is also convex.

Define C⋆ to be the zero sublevel set of 𝑓⋆. That is, C⋆ = {𝑥 ∈ B : 𝑓⋆(𝑥) ≤ 0}. The set
C⋆ is convex because 𝑓⋆ is convex. Furthermore, the set C⋆ is closed because 𝑓⋆ is continuous.
The set C⋆ is obviously bounded because it is contained in the Euclidean ball B. Hence C⋆

is a convex body.
Finally, we need to show that there exists a subsequence in the family {C𝑖} of convex

bodies that converges to C⋆. That is, there exists {C𝑖𝑗
: 𝑗 ∈ N} such that

C𝑖𝑗
→ C⋆ as 𝑗 → ∞.

The subsequence of sets is precisely the one associated with the subsequence of functions:

C𝑖𝑗
= {𝑥 ∈ B : 𝑓𝑖𝑗

(𝑥) ≤ 0}.

See Theorem 7.6.2 for confirmation that the limit C⋆ is nonempty.
Let 𝜀 > 0. Since 𝑓⋆ is continuous, there exists a 𝛿 > 0 such that

{𝑥 ∈ B : 𝑓⋆(𝑥) ≤ 𝛿} ⊂ C⋆ + 𝜀B𝑑.

(Recall that B𝑑 is the unit Euclidean ball, not the dilated ball B.) Moreover, because
𝑓𝑖𝑗

→ 𝑓⋆ uniformly, we have 𝑓⋆(𝑥) ≤ 𝑓𝑖𝑗
(𝑥) + 𝜀 uniformly for all 𝑥 ∈ B once the index 𝑗 is

sufficiently large. As a consequence,

C𝑖𝑗 = {𝑥 ∈ B : 𝑓𝑖𝑗 (𝑥) ≤ 0} ⊂ {𝑥 ∈ B : 𝑓⋆(𝑥) ≤ 𝜀} = C⋆ + 𝜀B𝑑.

The same line of reasoning can be used to show that C⋆ ⊂ C𝑖𝑗
+ 𝜀B𝑑 for all sufficiently

large indices 𝑗. By definition of the Hausdorff distance, for all large 𝑗 ∈ N, we have
distH(C𝑖𝑗 ,C⋆) ≤ 𝜀. Therefore, we conclude that C𝑖𝑗 → C⋆.

7.5 Continuity of the Metric Projection
Continuous functions preserve convergence, so it is important to understand what functions
on convex bodies are continuous with respect to the Hausdorff metric. As it happens, many
natural functions on convex bodies are indeed continuous. The following theorem describes
two of the most important examples.

Theorem 7.5.1 (Metric projection is continuous). Fix a point 𝑥 ∈ R𝑑. Then proj(𝑥; ·) is a
continuous function on C𝑑. As a consequence, dist(𝑥; ·) is also continuous on C𝑑.

In more detail, suppose that C𝑖 → C in the Hausdorff metric on C𝑑. Then

proj(𝑥; C𝑖) → proj(𝑥; C);
dist(𝑥; C𝑖) → dist(𝑥; C𝑖).

These relations will be very useful in our subsequent investigations.
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Proof. Let C𝑖 → C in the Hausdorff metric on C𝑑. Define 𝑦𝑖 := proj(𝑥; C𝑖) for each index
𝑖 ∈ N. We will make use of the following claims.

Claim 7.5.2. There exists a subsequence {𝑦𝑖𝑗
: 𝑗 ∈ N} that converges to a limit 𝑦⋆.

Proof. Since C𝑖 converges in Hausdorff metric, the entire sequence is enclosed within a fixed
Euclidean ball. Therefore, the sequence {𝑦𝑖} of metric projections must be bounded. A
bounded sequence in Euclidean space admits a convergent subsequence.

Claim 7.5.3. The limit 𝑦⋆ of the subsequence belongs to the limiting set C.

Proof. Recall that dist(·; C) is a continuous function. Suppose that 𝑦⋆ /∈ C. Then there
would exist an 𝜀 > 0 such that dist(𝑦𝑖𝑗

; C) > 𝜀 for an infinite sequence of indices 𝑗. But then
distH(C𝑖𝑗

,C) ≥ dist(𝑦𝑖𝑗
; C) > 𝜀 > 0. This inequality contradicts the fact that C𝑖𝑗

→ C.

Claim 7.5.4. The point 𝑦⋆ = proj(𝑥; C).

Proof. We will establish that 𝑦⋆ meets the variational characterization of the metric projec-
tion of 𝑥 onto C. That is,

⟨𝑥 − 𝑦⋆, 𝑧 − 𝑦⋆⟩ ≤ 0 for all 𝑧 ∈ C.

This will follow as a consequence of the variational characterization of 𝑦𝑖𝑗 = proj(𝑥; C𝑖𝑗 ):

⟨𝑥 − 𝑦𝑖𝑗 , 𝑧 − 𝑦𝑖𝑗 ⟩ ≤ 0 for all 𝑧 ∈ C𝑖𝑗 . (7.5.1)

Note that this relation holds for each index 𝑖𝑗 .
Fix a point 𝑧 ∈ C. Because C𝑖𝑗

→ C, we can construct a sequence {𝑧𝑖𝑗
} with 𝑧𝑖𝑗

∈ C𝑖𝑗

and 𝑧𝑖𝑗
→ 𝑧. (We may need to extract a further subsequence to do so.) Adding and

subtracting terms,

⟨𝑥 − 𝑦⋆, 𝑧 − 𝑦⋆⟩ = ⟨(𝑥 − 𝑦𝑖𝑗
) + (𝑦𝑖𝑗

− 𝑦⋆), (𝑧 − 𝑧𝑖𝑗
) + (𝑧𝑖𝑗

− 𝑦𝑖𝑗
) + (𝑦𝑖𝑗

− 𝑦⋆)⟩
= ⟨𝑥 − 𝑦𝑖𝑗

, 𝑧𝑖𝑗
− 𝑦𝑖𝑗

⟩ + (remainder terms).

By (7.5.1) and the fact that 𝑧𝑖𝑗
∈ C𝑖𝑗

, the explicit term on the right-hand side is nonpositive.
Let us now carefully expand out the remainder terms:

(remainder terms) = ⟨𝑥 − 𝑦𝑖𝑗
, 𝑧 − 𝑧𝑖𝑗

⟩ + ⟨𝑥 − 𝑦𝑖𝑗
, 𝑦𝑖𝑗

− 𝑦⋆⟩
+ ⟨𝑦𝑖𝑗

− 𝑦⋆, 𝑧 − 𝑧𝑖𝑗
⟩ + ⟨𝑦𝑖𝑗

− 𝑦⋆, 𝑧𝑖𝑗
− 𝑦𝑖𝑗

⟩
+ ⟨𝑦𝑖𝑗

− 𝑦⋆, 𝑦𝑖𝑗
− 𝑦⋆⟩.

The first term converges to zero because {𝑥 − 𝑦𝑖𝑗
} is bounded and 𝑧𝑖𝑗

→ 𝑧. The second,
third, and fifth terms converge to zero because 𝑦𝑖𝑗

→ 𝑦⋆. The fourth term converges to zero
because {𝑧𝑖𝑗 − 𝑦𝑖𝑗 } is bounded. In short, the remainder converges to zero.

We can conclude that ⟨𝑥 − 𝑦⋆, 𝑧 − 𝑦⋆⟩ ≤ 0 for every point 𝑧 ∈ C.
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At this point, we have demonstrated that every cluster point of the sequence {𝑦𝑖}
coincides with proj(𝑥; C). But this implies that the entire sequence converges:

𝑦𝑖 = proj(𝑥; C𝑖) → proj(𝑥; C).

This establishes the first claim in the statement of the theorem.
Finally, we turn to the second claim. We have

dist(𝑥; C𝑖) = ‖𝑥 − proj(𝑥; C𝑖)‖
→ ‖𝑥 − proj(𝑥; C)‖ = dist(𝑥; C),

where the second line follows directly from the first claim.

Remark 7.5.5 (Hölder continuity of the projection). In fact, proj(𝑥, ·) is Hölder continuous. This
follows from a more careful argument. See [Sch14, Lem. 1.8.11].

7.6 Supplementary Results
We close with some supplementary results about the Hausdorff distance.

7.6.1 Hausdorff Distance is a Metric
First, we verify that the Hausdorff distance satisfies all the properties required for it to be a
metric.

Theorem 7.6.1 (Hausdorff distance is a metric). The Hausdorff distance distH(·, ·) is a metric on
the class C𝑑 of convex bodies in R𝑑.

Proof. We establish the required properties one by one.

1. (Positive Definiteness). By definition of the Hausdorff distance, it is always nonnegative.
Furthermore, if C = K, then distH(C,K) = 0. This is evident.
Let us prove the converse. Suppose we have:

distH(C,K) = max
{︂

max
𝑥∈C

dist(𝑥; K); max
𝑦∈K

dist(𝑦; C)
}︂

= 0.

This means that each individual argument is zero because dist(·, ·) is a metric itself,
and so it is nonnegative:

max
𝑥∈C

dist(𝑥; K) = 0 implies dist(𝑥,K) = 0 for all 𝑥 ∈ C;

max
𝑦∈K

dist(𝑥; C) = 0 implies dist(𝑥,C) = 0 for all 𝑦 ∈ K.

By the definition of distance, this means that

min
𝑦∈K

‖𝑥 − 𝑦‖ = 0 for all 𝑥 ∈ C; (7.6.1)

min
𝑥∈C

‖𝑥 − 𝑦‖ = 0 for all 𝑦 ∈ K. (7.6.2)

Relation (7.6.1) implies that, for every 𝑥 in C, we can find a corresponding 𝑦⋆ ∈ K at
distance zero. In other words, 𝑦⋆ = 𝑥 ∈ C. Hence K ⊂ C. Likewise, relation (7.6.2)
implies that C ⊂ K. We determine that C = K.
Combining with the previous result, distH(C,K) = 0 if and only if C = K.
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2. (Symmetry). As stated before, the Hausdorff distance is defined to be symmetric:

distH(C,K) = max
{︂

max
𝑥∈C

dist(𝑥; K); max
𝑦∈K

dist(𝑦; C)
}︂

= distH(K,C).

3. (Triangle Inequality). Let C,K,S be convex bodies in C𝑑. We want to show that

distH(C,K) ≤ distH(C,S) + distH(S,K).

First, let us show for each fixed 𝑥 ∈ C that

dist(𝑥; K) ≤ dist(𝑥; S) + max
𝑧∈S

dist(𝑧; K).

Suppose thatthe minimum distance from the fixed 𝑥 to the set S is attained at point
𝑧⋆ ∈ S. Further suppose that the minimum distance from 𝑧⋆ to the set K is attained
at point 𝑦⋆ ∈ K:

dist(𝑥; S) = min
𝑧∈S

‖𝑥 − 𝑧‖ = ‖𝑥 − 𝑧⋆‖

dist(𝑧⋆; K) = min
𝑦∈K

‖𝑧⋆ − 𝑦‖ = ‖𝑧⋆ − 𝑦⋆‖.

Then we have

dist(𝑥; K) ≤ ‖𝑥 − 𝑦⋆‖
≤ ‖𝑥 − 𝑧⋆‖ + ‖𝑧⋆ − 𝑦⋆‖
= dist(𝑥,S) + dist(𝑧⋆,K)
≤ dist(𝑥,S) + max

𝑧∈S
dist(𝑧,K).

This computation follows from basic properties of the norm and the distance.
Second, we have

dist(𝑥; K) ≤ dist(𝑥; S) + max
𝑧∈S

dist(𝑧; K)

≤ max
𝑥⋆∈C

dist(𝑥⋆; S) + max
𝑧∈S

dist(𝑧,K)

≤ max
{︂

max
𝑥⋆∈C

dist(𝑥⋆; S); max
𝑧∈S

dist(𝑧; C)
}︂

+ max
{︂

max
𝑧∈S

dist(𝑧; K); max
𝑦∈K

dist(𝑦; S)
}︂

= distH(C; S) + distH(S,K).

The last identity is the definition of the Hausdorff distance. Because this relationship
holds for all fixed 𝑥 ∈ C, it must hold for the distinguished 𝑥 that yields the maximum
distance to K:

max
𝑥∈C

dist(𝑥; K) ≤ distH(C,S) + distH(S,K).
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Last, we can repeat the argument above for the symmetric case to get

max
𝑦∈K

dist(𝑦; C) ≤ distH(K,S) + distH(S,C) = distH(C,S) + distH(S,K).

In combination,

max
{︂

max
𝑥∈C

dist(𝑥; K); max
𝑦∈K

dist(𝑦; C)
}︂

≤ distH(C,S) + distH(S,K).

But the left side of the inequality is just the definition of the Hausdorff distance
between C and K. Hence,

distH(C,K) ≤ distH(C,S) + distH(S,K).

This establishes the triangle inequality.

7.6.2 The Limit of Nonempty Sets is Nonempty
Last, we demonstrate that the Hausdorff limit of a sequence of nonempty convex bodies
must be a nonempty convex body.

Theorem 7.6.2 (Nonempty limit). Let C1,C2,C3, . . . be a sequence of convex bodies that converges
to C in the Hausdorff metric. If the C𝑖 are nonempty for all 𝑖 ∈ N, then the limit C is also
nonempty.

Proof. The assumption implies that for all 𝜀 > 0, there exists an 𝐼 > 0 such that, for all
𝑖 ≥ 𝐼, we have

distH(C𝑖,C) ≤ 𝜀.

Suppose that the limit C were empty. This means that the Hausdorff distance between itself
and any other convex body is infinite. This contradicts the fact that distH(C𝑖,C) ≤ 𝜀 for all
sets C𝑖 with 𝑖 ≥ 𝐼. We conclude that C must be nonempty.
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8.1 Agenda for Lecture 8

Let B𝑑 denote the unit ball in R𝑑. For a convex body C in R𝑑 and some 𝜆 ≥ 0, we
define the parallel body C𝜆 := C + 𝜆B𝑑. This lecture is dedicated to understanding how
the volume of a parallel body depends on 𝜆. Specifically, we will show that the function
𝜆 ↦→ 𝑆C(𝜆) := Vol𝑑(C𝜆) is a degree-𝑑 polynomial.

The coefficients of the polynomial 𝑆C depend on the intrinsic volumes of the convex body
C. When C is a polytope, these intrinsic volumes have a rich geometric interpretation that
connects to polyhedral tilings of R𝑑, as addressed in the previous lecture. Understanding
the intrinsic volumes in the polyhedral case is a key component in proving that 𝑆C is a
polynomial for arbitrary convex bodies.

1. Worked Examples in the Plane

2. Steiner’s Formula for Polytopes

3. Understanding Intrinsic Volumes

4. Continuity of Intrinsic Volumes

5. Extending Steiner’s Formula to Arbitrary Convex Bodies

8.2 Worked Examples in the Plane
Figure 8.1 shows two polytopes in the plane (a triangle T and a rectangle R) along with
their parallel bodies for a common value of 𝜆.

In class, we constructed these parallel bodies by first translating a copy of each edge
away from the set by distance 𝜆, and then connecting the endpoints of “adjacent” translated
edges by arcs.

For the triangle T, the first of these steps contributed +3𝜆𝐿 units of area, where 𝐿 was
the length of a side of T. The second of these steps contributed three identical “caps”, each
formed by cutting out a 120-degree slice of a circle with radius 𝜆. Identifying 3𝐿 = perim(T)
as the perimeter of the triangle T, we find that 𝑆T(𝜆) = area(T) + 𝜆 perim(T) + 𝜋𝜆2.

For the rectangle R, we similarly group all area contributions from the edges, and we see
that they add +𝜆 perim(R). The endcaps again contribute the area of a radius-𝜆 circle to
the parallel body, which results in total area 𝑆R(𝜆) = area(R) + 𝜆 perim(R) + 𝜋𝜆2.

As it happens, every polytope P in R2 has the property that the Steiner polynomial
𝑆P(𝜆) = area(P) + 𝜆 perim(P) + 𝜋𝜆2.

8.3 Steiner’s Formula for Polytopes
The elementary geometric reasoning used in the previous section does not readily generalize
to higher dimensions. It seems as though we can do little more than restate the definition of
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λ�

T
λ

�

R

Figure 8.1 (Some parallel bodies). The parallel bodies at distance 𝜆 for a triangle T and a rectangle
R.

volume: if 1A(𝑥) is the 0–1 indicator that 𝑥 belongs to a set A, then certainly

𝑆C(𝜆) = Vol𝑑(C + 𝜆B𝑑) =
∫︁

𝑥∈R𝑑

1C+𝜆B𝑑
(𝑥) d𝑥.

But how does this help us? Over the course of this section, we will directly compute this
integral for convex polytopes, which will lead to the following theorem.

Theorem 8.3.1 (Steiner’s Formula). Let P be a polytope in R𝑑. Then, for all 𝜆 ≥ 0,

𝑆P(𝜆) = Vol𝑑(P + 𝜆B𝑑) =
∑︁𝑑

𝑗=0
𝜆𝑑−𝑗𝜅𝑑−𝑗𝑉𝑗(P).

The geometric functionals 𝑉𝑗(P) are called intrinsic volumes, and the constants 𝜅𝑖 := Vol𝑖(B𝑖)
do not depend on the polytope P.

Our proof of Steiner’s Formula in this polyhedral case has two key components. First,
we will appeal to Theorem 4.1 from Lecture 6 to partition the region of integration into the
disjoint union

R𝑑 =
⋃̇︁

FCP

(︀
relint(F) + N(F)

)︀
,

where F C P means “F is a face of P” and N(F) is the normal cone of F with respect to P.
The polyhedral nature of P is important here because it ensures that the set {F : F C P} of
faces is finite. In addition, each face and its normal cone have complementary dimensions.
The second step boils down to showing that, for any polytope F and for a large class of
functions 𝑓 : R+ → R, there is an especially simple expression for the integral∫︁

relint(F)+N(F)
𝑓(dist(𝑥; F)) d𝑥. (8.3.1)
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An expression for such an integral is useful to us because of the following fact: if 𝑥 belongs
to relint(F) + N(F) and 𝑓 = 1[0,𝜆], then we can write 1P+𝜆B𝑑

(𝑥) = 𝑓(dist(𝑥; F)). Our proof
of Steiner’s Formula then combines the these two ingredients by expressing∫︁

R𝑑

1P+𝜆B𝑑
(𝑥) d𝑥 =

∑︁
FCP

∫︁
relint(F)+N(F)

1[0,𝜆](dist(𝑥; F)) d𝑥. (8.3.2)

Then we show that the right-hand side has the desired polynomial dependence on 𝜆.
To improve the flow of our formal proof for Steiner’s Formula, we first prove a lemma

regarding integrals of the form (8.3.1). In what follows, S𝑘−1 denotes the unit sphere in
R𝑘, and 𝜎𝑘 is the measure1 over S𝑘−1 induced by the Lebesgue measure over R𝑘. We call a
function 𝑓 : R+ → R light tailed if the product 𝑓𝑞 belongs to 𝐿1(R+) for every polynomial 𝑞.

Lemma 8.3.2. For a 𝑗-dimensional face F C P of a polytope in R𝑑 and a light-tailed function
𝑓 we have

𝐼 :=
∫︁

relint(F)+N(F)
𝑓(dist(𝑥; F)) d𝑥

=

⎧⎨⎩Vol𝑗(F) · 𝜎𝑑−𝑗(N(F))
∫︁ ∞

0
𝑓(𝑟)𝑟𝑑−𝑗−1 d𝑟, 𝑗 < 𝑑

Vol𝑑(F) · 𝑓(0), 𝑗 = 𝑑.

Proof. If 𝑗 = 𝑑, then N(F) = {0}, and so dist(𝑥; F) = 0 for all 𝑥 in the region of integration.
Thus, when 𝑗 = 𝑑, it is clear that 𝐼 = Vol𝑑(F) · 𝑓(0).

Henceforth, consider 𝑗 < 𝑑. Because 𝑓 is light tailed, it must be in 𝐿1(R+). Using the
fact that relint(F) and N(F) are orthogonal, we can rewrite the integral 𝐼 as an iterated
integral

𝐼 =
∫︁

relint(F)
d𝑦

∫︁
N(F)

d𝑧 𝑓(dist(𝑦 + 𝑧; F))

where d𝑦 and d𝑧 are the Lebesgue measures on aff(F) and aff(N(F)), respectively. If
F = {𝑥0} is a vertex (i.e., a 0-dimensional face), then the Lebesgue measure is the unit mass
at the point 𝑥0.

Next, use the orthogonality of relint(F) and N(F) again to observe that 𝑓(dist(𝑦+𝑧; F)) =
𝑓(‖𝑧‖) for all (𝑦, 𝑧) ∈ relint(F) × N(F). This allows us to simplify the double integral to

𝐼 = Vol𝑗(F)
∫︁

N(F)
d𝑧 𝑓(‖𝑧‖).

The remaining integral is evaluated by changing to polar coordinates. In particular, the
reader may verify that∫︁

N(F)
d𝑧 𝑓(‖𝑧‖) =

∫︁
N(F)∩S𝑑−𝑗−1

d𝜎𝑑−𝑗

∫︁ ∞

0
d𝑟𝑓(𝑟)𝑟𝑑−𝑗−1

= 𝜎𝑑−𝑗(N(F))
∫︁ ∞

0
𝑓(𝑟)𝑟𝑑−𝑗−1d𝑟,

where the final integral is finite because 𝑓 is light-tailed.
1If we apply 𝜎𝑘 to some set A ⊂ R𝑘 that is not contained within the unit sphere, it should be understood

that we mean 𝜎𝑘(A ∩ S𝑘−1).
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With Lemma 8.3.2 in hand, we can give expressions for the intrinsic volumes that appear
in Steiner’s formula. Let 𝜔𝑗 = 𝜎𝑗(S𝑗−1) = 𝑗𝜅𝑗 . For a polytope P, introduce the set of
𝑗-dimensional faces: F𝑗(P) := {F C P : dim F = 𝑗}.

Definition 8.3.3 (Intrinsic volumes of a polytope). The 𝑗th intrinsic volume of a polytope P ⊂ R𝑑

is defined as
𝑉𝑗(P) =

∑︁
F∈F𝑗(P)

Vol𝑗(F)]𝑑−𝑗(N(F)),

where ]𝑑−𝑗(N(F)) := 𝜎𝑑−𝑗(N(F))/𝜔𝑑−𝑗 is the proportion of the (𝑑 − 𝑗 − 1)-dimensional
sphere subtended by the normal cone N(F).

We are now prepared to prove Steiner’s formula for polytopes.

Proof of Steiner’s formula for polytopes. Let P be a nonempty polytope in R𝑑, and fix 𝜆 ≥ 0.
By Equation (8.3.2), we have

𝑆P(𝜆) =
∑︁𝑑

𝑗=0

∑︁
F∈F𝑗(P)

∫︁
relint(F)+N(F)

1[0,𝜆](dist(𝑥; F)) d𝑥.

The remaining integrals can be computed by Lemma 8.3.2 with 𝑓 = 1[0,𝜆]. For a 𝑗-dimensional
face F, this gives∫︁

relint(F)+N(F)
1[0,𝜆](dist(𝑥; F)) d𝑥 = Vol𝑗(F)𝜎𝑑−𝑗(N(F)) 𝜆

𝑑−𝑗

𝑑− 𝑗

= Vol𝑗(F)]𝑗(N(F))𝜆𝑑−𝑗 𝜔
𝑑−𝑗

𝑑− 𝑗

= Vol𝑗(F)]𝑗(N(F))𝜆𝑑−𝑗𝜅𝑑−𝑗 .

We then sum over the faces F ∈ F𝑗(P) to reach∑︁
F∈F𝑗(P)

∫︁
relint(F)+N(F)

1[0,𝜆](dist(𝑥; F)) = 𝜆𝑑−𝑗𝜅𝑑−𝑗𝑉𝑗(P).

Collect the terms of the sum over 𝑗 to arrive at Steiner’s formula.

8.4 Understanding Intrinsic Volumes
Having proved Steiner’s Formula in the polyhedral case, let us discuss some properties of
intrinsic volumes. In the following, P,P′ ∈ C𝑑 are nonempty polytopes, and the index 𝑗
ranges over {0, 1, 2, . . . , 𝑑}.

1. (Nonnegativity). Each intrinsic volume 𝑉𝑗(P) ≥ 0.
Indeed, Vol𝑗 is nonnegative, and ]𝑗 take values in [0, 1].

2. (Volume). The intrinsic volume 𝑉𝑑(P) = Vol𝑑(P).
3. (Euler characteristic). Every nonempty polytope P has 𝑉0(P) = 1.

Equivalently, the normal cones of vertices of a polytope end up coving the entire unit
sphere. This is consistent with the worked examples from Section 8.2. It follows in
a roundabout way from Riedemeister’s theorem. It can also be proved more directly
using conjugate faces and polarity.
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4. (Homogeneity). 𝑉𝑗(𝜆P) = 𝜆𝑗𝑉𝑗(P) for each 𝜆 ≥ 0.
The case 𝜆 = 0 is trivial. For 𝜆 > 0, this point follows because F C P if and only if
(𝜆F) C (𝜆P). The dilated face has Vol𝑗(𝜆F) = 𝜆𝑗F, while the normal cone of 𝜆F in 𝜆P
coincides with the normal cone of F in P.

5. (Monotonicity). If P ⊂ P′, then 𝑉𝑗(P) ≤ 𝑉𝑗(P′).
This is not easy to prove directly. It follows, for example, from Kubota’s projection
formula or Crofton’s formula.

6. (Invariance). If 𝑇 : R𝑑 → R𝑑 is a rigid motion, then 𝑉𝑗(𝑇 P) = 𝑉𝑗(P). Recall that a
rigid motion is the composition of a translation and a rotation.
This point is a straightforward consequence of the definitions of faces, normal cones,
and intrinsic volumes.

7. (Intrinsic). Intrinsic volumes are unaffected when a polytope is lifted into a higher
dimensional space: 𝑉𝑗(P × {0𝑖}) = 𝑉𝑗(P).
Indeed, if F C P is a 𝑗-dimensional face of P, then the associated face of Q := P × {0𝑖}
is the set F × {0𝑖}, while the normal cone is NQ(F × {0𝑖}) = NP(F) ×R𝑖. The spherical
angle ]NQ(F × {0𝑖}) = ]NP(F) · 𝜅𝑑−𝑗/𝜅𝑑+𝑖−𝑗 .

8.5 Continuity of Intrinsic Volumes
Extending intrinsic volumes to the non-polyhedral setting is a critical step in proving Steiner’s
formula for arbitrary convex bodies. A significant limitation of the polyhedral definition is
that for non-polyhedral C, the index set F0(C) appearing in the definition of 𝑉0 could be
uncountable. The following definition bypasses this obstacle.

Definition 8.5.1 (Intrinsic volumes of a convex body). Let C be a nonempty convex body in R𝑑,
and choose a sequence of polytopes {P𝑛 : 𝑛 ∈ N} with Hausdorff limit lim𝑛→∞ P𝑛 = C.
Then we define the 𝑗th intrinsic volume of the convex body 𝑉𝑗(C) := lim𝑛→∞ 𝑉𝑗(P𝑛).

For the above definition to be valid, we must prove that the limit exists and that it is
independent of the particular sequence of approximating polytopes. Our proof will make
use of the following proposition.

Proposition 8.5.2 (Selectors). There exist functions 𝑓0, . . . , 𝑓𝑑 of the form 𝑓𝑗(𝑟) = 𝑞𝑗(𝑟) e−𝑟

where 𝑞𝑗 are polynomials of degree at most 𝑑 that have the following properties.

∙ 𝑓𝑑(0) = 1 and
∫︀∞

0 𝑓𝑑(𝑟)𝑟𝑖 d𝑟 = 0 for 𝑖 = 0, 1, 2, . . . , 𝑑− 1.
∙ 𝑓𝑗(0) = 0 and

∫︀∞
0 𝑓𝑗(𝑟)𝑟𝑖 d𝑟 = 𝛿𝑖𝑗 for 𝑖, 𝑗 = 0, 1, 2, . . . , 𝑑− 1.

Here, 𝛿𝑖𝑗 is the Kronecker delta.

The proposition essentially states that there exist continuous “light-tailed” functions
that can grab the coefficient of a desired monomial appearing in a polynomial.

Proof sketch. Consider the linear space of polynomials with real coefficients and degree at
most 𝑑. The linear functionals

𝜙𝑑 : 𝑞 ↦→ 𝑞(0) and 𝜙𝑖 : 𝑞 ↦→
∫︁ ∞

0
𝑞(𝑟)𝑟𝑖e−𝑟 d𝑟 for 𝑖 = 0, 1, 2, . . . , 𝑑− 1



74 ACM 204: Convex Geometry / Fall 2018 / Prof. Joel A. Tropp / Caltech

are linearly independent. Solve the linear system 𝜙𝑖(𝑞𝑗) = 𝛿𝑖𝑗 to obtain the required functions
𝑞𝑗 .

Proof (The intrinsic volumes are well-defined). Fix a sequence of polytopes {P𝑛 : 𝑛 ∈ N}
that converges to C in the Hausdorff metric. Our immediate goal is to obtain an expression
for 𝑉𝑗(P𝑛) other than the one given in its definition. Toward this end, we invoke Lemma
8.3.2. If F is a face of P𝑛 with dimension less than 𝑑, then applying the lemma with F and
𝑓𝑑−𝑗−1 gives∫︁

relint(F)+N(F)
𝑓𝑑−𝑗−1(dist(𝑥; F)) d𝑥 =

{︃
Vol𝑗(F)𝜎𝑑−𝑗(N(F)), dim F = 𝑗

0, dim F ̸= 𝑗.

We then sum these expressions over all faces F with dimension 𝑗 to obtain∫︁
R𝑑

𝑓𝑑−𝑗−1(dist(𝑥; P𝑛)) d𝑥 =
∑︁

F∈F𝑗(P𝑛)
Vol𝑗(𝐹 )𝜎𝑑−𝑗(N(F)) = 𝜔𝑑−𝑗𝑉𝑗(P𝑛).

This yields an alternative expression for 𝑉𝑗(P𝑛):

𝑉𝑗(P𝑛) = 1
𝜔𝑑−𝑗

∫︁
R𝑑

𝑓𝑑−𝑗−1(dist(𝑥; P𝑛)) d𝑥. (8.5.1)

The final thrust of the proof requires the following technical observations about the
integrand in (8.5.1):

1. Since {P𝑛 : 𝑛 ∈ N} converges to C, each set is “well inside” some fixed Euclidean ball
B. Furthermore, there exist constants 𝑐1 and 𝑐2 with

|𝑓𝑑−𝑗−1(dist(𝑥; P𝑛))| ≤ 𝑐1 exp(−𝑐2‖𝑥‖).

2. Continuity of 𝑓𝑑−𝑗−1 over R+ and dist(𝑥; ·) over convex bodies in R𝑑 ensures that we
have the pointwise limit

lim
𝑛→∞

𝑓𝑑−𝑗−1(dist(𝑥; P𝑛)) = 𝑓𝑑−𝑗−1(dist(𝑥; C)) for all 𝑥 ∈ R𝑑.

In particular, these limits hold for any sequence of polytopes that converges to C.

Invoking these properties in the order given, we can compute the limit

lim
𝑛→∞

𝑉𝑗(P𝑛) = 1
𝜔𝑑−𝑗

lim
𝑛→∞

∫︁
R𝑑

𝑓𝑑−𝑗−1(dist(𝑥; P𝑛)) d𝑥

= 1
𝜔𝑑−𝑗

∫︁
R𝑑

lim
𝑛→∞

𝑓𝑑−𝑗−1(dist(𝑥; P𝑛)) d𝑥

= 1
𝜔𝑑−𝑗

∫︁
R𝑑

𝑓𝑑−𝑗−1(dist(𝑥; C)) d𝑥.

This limit clearly does not depend on the sequence of polytopes {P𝑛}, so the intrinsic volume
𝑉𝑗(C) is well-defined.
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For the case 𝑗 = 𝑑, a similar argument shows that

lim
𝑛→∞

𝑉𝑑(P𝑛) = lim
𝑛→∞

∫︁
R𝑑

𝑓𝑑(dist(𝑥; P𝑛)) d𝑥

=
∫︁
R𝑑

lim
𝑛→∞

𝑓𝑑(dist(𝑥; P𝑛)) d𝑥 =
∫︁
R𝑑

𝑓𝑑(𝑥; C) d𝑥.

We conclude that the intrinsic volume 𝑉𝑑(C) is also well-defined.

This section’s last theorem was stated in class. This result is not required to extend
Steiner’s formula to convex bodies, but it will be important for the subsequent discussion.

Theorem 8.5.3 (Continuity of intrinsic volumes). The intrinsic volumes 𝑉𝑗 of a convex body, given
by Definition 8.5.1, are continuous with respect to the Hausdorff metric.

Proof. Let C be a convex body in R𝑑, and suppose that {C𝑛 : 𝑛 ∈ N} is a sequence of convex
bodies in R𝑑 that converges to C. We will show that, for any 𝑗 ≤ 𝑑,

lim
𝑛→∞

𝑉𝑗(C𝑛) = 𝑉𝑗(C).

For each index 𝑛, the definition of the intrinsic volume 𝑉𝑗(C𝑛) ensures that there exists
some polytope P𝑛 satisfying

|𝑉𝑗(P𝑛) − 𝑉𝑗(C𝑛)| ≤ 1/𝑛 and distH(P𝑛,C𝑛) ≤ 1/𝑛.

These polytopes form a sequence {P𝑛 : 𝑛 ∈ N}. By uniqueness of Hausdorff limits and the
fact that {C𝑛 : 𝑛 ∈ N} converges to C, it must hold that P𝑛 → C. Now, since {P𝑛 : 𝑛 ∈ N} is
a sequence of polytopes converging to C, Definition 8.5.1 ensures that we can express 𝑉𝑗(C) =
lim𝑛→∞ 𝑉𝑗(P𝑛). Then using |𝑉𝑗(C) − lim𝑛→∞ 𝑉𝑗(C𝑛)| = lim𝑛→∞ |𝑉𝑗(P𝑛) − 𝑉𝑗(C𝑛)| = 0, we
arrive at the desired result.

Warning 8.5.4 (Interpretation of intrinsic volumes). The combinatorial aspects of 𝑉𝑗 from Definition
8.3.3 do not extend to general convex bodies. Thus, the continuity of intrinsic volumes should
not be construed as implying statements about the facial structure of a non-polyhedral
convex body. Nevertheless, the interpretations of 𝑉𝑑 as the ordinary volume and 𝑉0 as the
Euler characteristic persist.

8.6 Extending Steiner’s Formula to Arbitrary Convex Bodies
Finally, we are prepared to extend Steiner’s formula to all convex bodies.

Theorem 8.6.1 (Steiner’s Formula). Let C ⊂ R𝑑 be a convex body in R𝑑. Then, for all 𝜆 ≥ 0,

𝑆C(𝜆) = Vol𝑑(C + 𝜆B𝑑) =
∑︁𝑑

𝑗=0
𝜆𝑑−𝑗𝜅𝑑−𝑗𝑉𝑗(C).

The intrinsic volumes 𝑉𝑖(C) are specified by Definition 8.5.1, and the constants 𝜅𝑖 := Vol𝑖(B𝑖)
are independent of the set C.
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Proof. Let {P : 𝑛 ∈ N} be a sequence of polytopes converging to the convex body C ⊂ R𝑑.
For each 𝑛, consider the polynomial 𝑆𝑛(𝜆) = Vol𝑑(P𝑛+𝜆B𝑑). The function 𝑆∞ = lim𝑛→∞ 𝑆𝑛

is a well-defined polynomial, taking values

𝑆∞(𝜆) = lim
𝑛→∞

∑︁𝑑

𝑗=0
𝜆𝑑−𝑗𝜅𝑑−𝑗𝑉𝑗(P𝑛)

=
∑︁𝑑

𝑗=0
𝜆𝑑−𝑗𝜅𝑑−𝑗 lim

𝑛→∞
𝑉𝑗(P𝑛) =

∑︁𝑑

𝑗=0
𝜆𝑑−𝑗𝜅𝑑−𝑗𝑉𝑗(C).

From here, we need only cite continuity of Vol𝑑 = 𝑉𝑑 to see that 𝑆∞(𝜆) = 𝑆C(𝜆) to conclude
on the desired result.

There are a great many theorems similar to the one above that go beyond the volume of
parallel bodies. In some cases these theorems refer to different measures of content; that is,
they concern scalar functions 𝜆 ↦→ 𝜇(C + 𝜆B𝑑) for 𝜇 other than Vol𝑑. In the next lecture, we
lay the groundwork for analyzing some of these alternative measures of content.

Remark 8.6.2 (Distance integrals). By integrating Steiner’s formula, we can obtain a general
expression for the integral of the distance to a convex set. Let 𝑓 : R+ → R be an integrable
function. Then∫︁

R𝑑

𝑓(dist(𝑥; C)) d𝑥 = 𝑓(0) · 𝑉𝑑(C) +
∑︁𝑑−1

𝑗=0

(︂∫︁ ∞

0
𝑓(𝑟)𝑟𝑑−𝑗−1 d𝑟

)︂
𝜔𝑑−𝑗 · 𝑉𝑗(C).

This expression is valid whenever the integrals on the right-hand side are all finite. We omit
the proof.
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9.1 Agenda for Lecture 9
There are many interesting functionals on sets that measure different types of “content.”
Examples include the ordinary volume (i.e., Lebesgue measure), the Gaussian measure,
or the number of integer-valued vectors in a given set. All of these examples derive from
measures. In convex geometry, it is natural to consider a more combinatorial approach to
the notion of content, rather than the measure-theoretic approach that you are familiar with.
To that end, we will study two different types of valuations, both of which abstract the basic
additivity property of a measure.

In the first part of the lecture, we rigorously introduce the concept of a set valuation.
Set valuations are defined on certain collections of sets, called intersectional families. Then
we develop a few simple (but nontrivial) identities for the Minkowski sum. These identities
allow us to prove that the intrinsic volumes are valuations.

In the second half of the lecture, we discuss how to extend set valuations to larger families
of sets that also include unions. To do so, it is more convenient to work in a linear space of
indicator functions generated by sets. This change of perspective turns out to be simpler
than remaining in the world of sets. In this more general environment, we define the concept
of a linear valuation, and we discuss how linear valuations induce set valuations. Finally, we
establish Groemer’s extension theorem, which describes circumstances when set valuations
can be used to construct linear valuations.

1. Set valuations
2. Identities for Minkowski sum
3. Examples of set valuations
4. The algebra of sets
5. Linear valuations
6. Groemer’s extension theorem

9.2 Set Valuations
We begin with the familiar notion of the volume of a set in R𝑑. One of the fundamental
properties of volume is the additivity law

Vol𝑑(∅) = 0 and Vol𝑑(A ∪ B) = Vol𝑑(A) + Vol𝑑(B) − Vol𝑑(A ∩ B).

This identity holds for all (Borel) measurable sets A,B ⊂ R𝑑.
Our goal is to define a set valuation, which is a notion of content that generalizes the

additivity property of volume. We can assign a volume to every measurable set. Similarly, a
set valuation will assign a number to each set from a distinguished class.
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Definition 9.2.1 (Intersectional family). A class S of sets is intersectional if ∅ ∈ S and if
A,B ∈ S implies A ∩ B ∈ S .

Example 9.2.2 (Intersectional families). There are many fundamental examples of intersectional
families of sets:

1. The collection of parallelotopes (that is, axis aligned rectangles) in R𝑑.
2. The collection of polytopes in R𝑑.
3. The collection of compact, convex sets in R𝑑.
4. The collection of all convex sets in R𝑑.
5. The class of all Borel sets in R𝑑.

We remark that these families of sets are listed in increasing order.

We are now prepared to define the concept of a set valuation.

Definition 9.2.3 (Set valuation). A (real-valued) set valuation on an intersectional family S is
a map 𝜇 : S → R which satisfies

1. 𝜇(∅) = 0;
2. 𝜇(A ∪ B) + 𝜇(A ∩ B) = 𝜇(A) + 𝜇(B) when A,B,A ∪ B ∈ S .

Note the requirement that the union A ∪ B is a member of S !

Every measure 𝜇 gives a set valuation on the 𝜎-algebra where it is defined. This
observation leads to a large class of examples, but there are other types of set valuations as
well.

Example 9.2.4 (Set valuations). As mentioned before, the parallelotopes in R𝑑, the polytopes
in R𝑑, and the convex bodies in R𝑑 each compose an intersectional family. For each one of
these families S , the following functions are set valuations:

1. (Volume Vol𝑑). The Lebesgue measure Vol𝑑 is a set valuation.
2. (Gaussian measure 𝛾𝑑). The probability 𝛾𝑑(C) that a standard normal vector in R𝑑

lies in a given set C ∈ S is a set valuation.
3. (Number of integer-valued vectors.) We can define a set valuation C ↦→ #(C ∩ Z𝑑)

that counts how many integer-valued vectors lie in a set C ∈ S .
4. (Euler characteristic 𝑉0). The Euler characteristic is the set valuation

𝑉0(C) :=
{︃

1, C is a nonempty convex body;
0, C is empty.

Although this example may seem trivial, some incredible consequences will emerge in
the next lecture.
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C K

Figure 9.1 (Minkowski sum identities). Suppose that C, K, C ∪ K are nonempty convex bodies. If
𝑥 ∈ C and 𝑦 ∈ K, then the segment [𝑥, 𝑦] contains a point in the intersection C ∩ K. In
particular, the intersection is a nonempty convex body.

9.3 Identities for Minkowski Sum
Let us pause for a moment to establish some identities for the Minkowski sum. These results
serve as a powerful tool for identifying set valuations on closed convex sets.

Proposition 9.3.1. Assume that C, K and C ∪ K are closed convex sets. For a closed convex
set E, the following identities hold.

1. (C ∪ K) + (C ∩ K) = C + K.

2. (C ∪ K) + E = (C + E) ∪ (K + E).

3. (C ∩ K) + E = (C + E) ∩ (K + E).

Although these properties seem very basic, they were discovered quite late in the history
of this subject. The result (1) first appeared in a 1966 paper of Sallee. We begin with a
lemma that isolates the core of the argument.

Lemma 9.3.2. Let C,K be nonempty, closed convex sets in R𝑑, and assume that C ∪ K is also
convex. Choose a point 𝑥 ∈ C and a point 𝑦 ∈ K. Then the segment [𝑥,𝑦] has a nontrivial
intersection with C ∩ K. In particular, C ∩ K is a nonempty, closed convex set.

Proof. Parameterize the segment [𝑥,𝑦] = (1−𝜏)𝑥+𝜏𝑦 for 𝜏 ∈ [0, 1]. Let 𝜏C be the maximum
value of 𝜏 where (1 − 𝜏)𝑥 + 𝜏𝑦 ∈ C. Similarly, let 𝜏K be the minimum value of 𝜏 where
(1 − 𝜏)𝑥 + 𝜏𝑦 ∈ K. Both extrema are achieved because C,K are closed and [𝑥,𝑦] is bounded.

Suppose that 𝜏C ̸= 𝜏K. Then we can interpose another number 𝜏C < 𝜏0 < 𝜏K. By
construction, (1 − 𝜏0)𝑥 + 𝜏0𝑦 is neither in C nor in K. Since 𝑥,𝑦 ∈ C ∪ K, this contradicts
the assumption that C ∪ K is convex.

We conclude that the point 𝑧 = (1 − 𝜏C)𝑥 + 𝜏C𝑦 = (1 − 𝜏K)𝑥 + 𝜏K𝑦 belongs to both C
and K.
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Proof of Proposition 9.3.1. Property (2) is trivial, and property (3) follows the same idea
as the proof of property (1). Therefore, we only present the proof of (1). The reader may
wish to complete the argument as an exercise.

First, we check the easy inclusion: (C∪K)+(C∩K) ⊂ C+K. Let 𝑦 ∈ C∪K and 𝑧 ∈ C∩K.
It is always possible to choose 𝑧 in the opposite set from 𝑦. Therefore, 𝑦 + 𝑧 ∈ C + K.

Next, we establish the more challenging inclusion: C + K ⊂ (C ∪ K) + (C ∩ K). Let 𝑥 ∈ C
and 𝑦 ∈ K. Lemma 9.3.2 states that the segment [𝑥,𝑦] contains a point 𝑧 ∈ C ∩ K. Write
𝑧 = (1 − 𝜏)𝑥 + 𝜏𝑦. The point 𝑧′ = 𝜏𝑥 + (1 − 𝜏)𝑦 ∈ C ∪ K because C ∪ K is convex. The
relation 𝑥 + 𝑦 = 𝑧 + 𝑧′ establishes the inclusion. Consult Figure 9.1 for an illustration.

9.4 Examples of Set Valuations
With the help of the results in the previous section, we can identify some more valuations
on the class of compact convex sets in R𝑑.

9.4.1 Minkowski Additive Set Functions

First, we establish a general result which shows that any additive functional yields a set
valuation.

Definition 9.4.1 (Minkowski additive set function). Let S be a family of sets in R𝑑. A function
𝜇 : S → R is (Minkowski) additive if

1. 𝜇(∅) = 0;

2. 𝜇(A + B) = 𝜇(A) + 𝜇(B) for all nonempty sets A,B ∈ S .

Corollary 9.4.2 (Additive functions are valuations). Let S be the intersectional family of closed
convex sets, and let 𝜇 : S → R be an additive set function. Then 𝜇 is a set valuation on S .

Proof. Property (1) in Definition 9.2.3 of a set valuation is true per assumption.
To verify property (2), assume that A,B,A ∪ B are nonempty, closed, and convex.

Lemma 9.3.2 implies that A ∩ B is a nonempty, closed convex set. Therefore, the additivity
property of 𝜇 implies that

𝜇(A ∪ B) + 𝜇(A ∩ B) = 𝜇((A ∪ B) + (A ∩ B)) = 𝜇(A + B).

We have also used identity (1) from Proposition (9.3.1) in the final relation.

The support function is, perhaps, the most important Minkowski additive functions.
Corollary 9.4.2 implies that it is a set valuation.

Corollary 9.4.3 (The support function is a valuation). Fix a direction 𝑠 ∈ R𝑑. For a convex body
C in R𝑑, the support function in direction 𝑠 is defined by the relations

ℎ(𝑠; C) := max{⟨𝑠, 𝑥⟩ : 𝑥 ∈ C} and ℎ(𝑠; ∅) = 0.

Then ℎ(𝑠; ·) is a set valuation on the class of convex bodies in R𝑑.
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Proof. Let us verify that the support function is Minkowski additive. For nonempty convex
bodies C,K ⊂ R𝑑,

max{⟨𝑠, 𝑥⟩ : 𝑥 ∈ C + K} = max{⟨𝑠, 𝑦 + 𝑧⟩ : 𝑦 ∈ C, 𝑧 ∈ K}
= max{⟨𝑠, 𝑦⟩ : 𝑦 ∈ C} + max{⟨𝑠, 𝑧⟩ : 𝑧 ∈ K}.

An application of Corollary 9.4.2 completes the argument.

Remark 9.4.4 (Empty sets). With the usual conventions of convex analysis, we would define
ℎ(𝑠; ∅) = −∞. We have chosen the definition here to be compatible with the theory of
valuations.

9.4.2 New Valuations from Minkowski Addition
There is another important class of valuations obtained from the composition of a valuation
with Minkowski addition.

Corollary 9.4.5 (Valuations from Minkowski addition). Let 𝜇 be a set valuation on the class C𝑑 of
convex bodies in R𝑑. Fix a convex body E ∈ C𝑑. Then 𝜇(· + E) is also a set valuation on C𝑑.

Proof. If E is empty, then the statement is vacuously true. Suppose instead that E is
nonempty.

To verify property (1) of a set valuation, note that ∅ + E = ∅. Therefore, 𝜇(∅ + E) =
𝜇(∅) = 0.

To verify property (2), assume that C,K,C ∪ K ∈ C𝑑. Using the distributive identities (2)
and (3) from Proposition 9.3.1, we obtain

𝜇((C ∪ K) + E) + 𝜇((C ∩ K) + E) = 𝜇((C + E) ∪ (K + E)) + 𝜇((C + E) ∩ (K + E))
= 𝜇(C + E) + 𝜇(K + E).

The last relation follows because 𝜇 is a set valuation.

An important consequence of Corollary 9.4.5 is that the intrinsic volumes are all set
valuations.

Corollary 9.4.6. Each intrinsic volume 𝑉𝑗 is a set valuation on the class C𝑑 of convex bodies
in R𝑑.

Proof. Fix an index 𝑗 = 0, 1, 2, . . . , 𝑑. Recall that the volume Vol𝑑(·) is a valuation on C𝑑.
For each 𝜆 > 0, Corollary 9.4.5 ensures that Vol𝑑(· + 𝜆B𝑑) is a valuation. Therefore, when
C,K,C ∪ K ∈ C𝑑,

Vol𝑑((C ∪ K) + 𝜆B𝑑) + Vol𝑑((C ∩ K) + 𝜆B𝑑) = Vol𝑑(C + 𝜆B𝑑) + Vol𝑑(K + 𝜆B𝑑). (9.4.1)

Steiner’s formula, from Lecture 8, states that

Vol𝑑(E + 𝜆B𝑑) =
∑︁𝑑

𝑗=0
𝜆𝑑−𝑗𝜅𝑑−𝑗𝑉𝑗(E).
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Applying this result to every term in equation (9.4.1) to see that

∑︁𝑑

𝑗=0
𝜆𝑑−𝑗𝜅𝑑−𝑗

[︁
𝑉𝑗(C ∪ K + 𝜆B𝑑) + 𝑉𝑗(C ∩ K + 𝜆B𝑑)

− 𝑉𝑗(C + 𝜆B𝑑) − 𝑉𝑗(K + 𝜆B𝑑)
]︁

= 0.

Since this polynomial vanishes for 𝜆 > 0, each of the coefficients is equal to zero. It follows
that

𝑉𝑗(C ∪ K + 𝜆B𝑑) + 𝑉𝑗(C ∩ K + 𝜆B𝑑) = 𝑉𝑗(C + 𝜆B𝑑) + 𝑉𝑗(K + 𝜆B𝑑).

Since 𝑉𝑗(∅) = 0 by definition, we conclude that 𝑉𝑗 is a set valuation.

9.5 The Algebra of Sets
We have been studying set valuations defined on intersectional families, such as the class of
convex bodies in R𝑑. We might also be interested in defining valuations for a larger family
of sets. For instance, it is useful to be able to assign content to unions of convex bodies.

The most obvious approach to extending an intersectional family is to consider the
smallest superset that is closed under unions. This method can be cumbersome because it
involves inclusion–exclusion relations.

We will develop a different mechanism for extending set valuations from an intersectional
family to a larger class. This approach replaces sets with their indicator functions.

Definition 9.5.1 (Indicator function). For a set A ⊂ R𝑑, the 0–1 indicator function is the map
[A] : R𝑑 → R defined by

[A](𝑥) :=
{︃

1, 𝑥 ∈ A
0, 𝑥 /∈ A.

We also use the notation 1A for the indicator, depending on typographical considerations.

Indicator functions interact very nicely with intersectional families because of the identity

[A ∩ B] = [A] · [B].

In other words, set intersection translates to pointwise multiplication of the indicator
functions.

Given an intersectional family of sets, we can construct a linear space from the indicators.

Definition 9.5.2 (Algebra of sets). Let S be an intersectional family in R𝑑. Introduce the real
linear space generated by the indicators of sets from the intersectional family:

A(S ) = linR{[A] : A ∈ S }

This linear space is called the algebra of sets in S because A(S ) is closed under real linear
combinations and pointwise multiplication.
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A generic element of the algebra A(S ) takes the form

𝑓 =
∑︁𝑚

𝑖=1
𝛼𝑖[A𝑖] where 𝛼𝑖 ∈ R and A𝑖 ∈ S .

That is, the algebra contains sums of indicator functions of sets in S.
What does this buy us? For all sets A,B in the intersectional family S , we have the

identity
[A] + [B] = [A ∪ B] + [A ∩ B]. (9.5.1)

As a consequence, the indicator [A ∪ B] of the union belongs to the algebra A(S ). Repeating
this argument, we see that the algebra contains all finite unions of sets from the intersectional
family.

9.6 Linear Valuations
As we have seen, the algebra contains the indicators of many new sets. Our next goal is
to adapt the notion of a set valuation to this new setting. As we have seen, set valuations
abstract the additive property of a measure. For an algebra, additive functions already play
a central role in the guise of linear functionals.

Definition 9.6.1 (Linear valuation). A linear valuation on an intersectional family S is a linear
functional on the algebra A(S ).

Let us demonstrate that every linear valuation on the algebra A(S ) induces a set
valuation on the intersectional family S . This result justifies the choice of terminology.

Proposition 9.6.2. If 𝜙 is a linear valuation S , then the composition A ↦→ 𝜙 ∘ [A] defines a
set valuation on S .

Proof. Since 𝜙 is a linear functional and [∅] = −[∅], we have 𝜙([∅]) = −𝜙([∅]). Therefore,
𝜙([∅]) = 0. Next, assume that A,B ∈ S . Since 𝜙 is a linear functional,

𝜙([A]) + 𝜙([B]) = 𝜙([A] + [B])
= 𝜙([A ∪ B] + [A ∩ B]) = 𝜙([A ∪ B]) + 𝜙([A ∩ B]).

We have used the identity (9.5.1) in the second step.

9.7 Groemer’s extension theorem
Conversely, we may ask if every set valuation 𝜇 on S induce a linear valuation 𝜙 on A(S ).
It is natural to define the function 𝜙 on the generating set of the algebra:

𝜙([A]) := 𝜇(A) for each A ∈ S . (9.7.1)

But it is not at all clear that we can extend this definition consistently to the entire algebra.
Indeed, we require that

𝜙(
∑︁𝑚

𝑖=1
𝛼𝑖[A𝑖]) =

∑︁𝑚

𝑖=1
𝛼𝑖𝜙([A𝑖]) for all 𝛼𝑖 ∈ R and all A𝑖 ∈ S .

The problem is that elements of the algebra can have different descriptions. To ensure that
𝜙 is a linear functional, we have to demonstrate that∑︁𝑚

𝑖=1
𝛼𝑖[A𝑖] = 0 implies that

∑︁𝑚

𝑖=1
𝛼𝑖𝜙([A𝑖]) = 0. (9.7.2)
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We use the vector zero to denote the indicator of the empty set: 0 = [∅]. The condition (9.7.2)
is probably not true for a general set valuation 𝜇 on an arbitrary intersectional family S.
The basic references on this subject, however, do not supply a counterexample.

Fortunately, in a number of important situations, it is possible to extend a set valuation
to a linear valuation in the manner described above. The next theorem, due to Groemer,
shows that every Hausdorff continuous set valuation on C𝑑 extends to a linear valuation on
A(C𝑑).

Theorem 9.7.1 (Groemer extension). Every Hausdorff continuous valuation on the class C𝑑 of
convex bodies extends to a linear valuation on the algebra A(C𝑑).

Proof. Given a continuous set valuation 𝜇, we define a function 𝜙 on the indicators of convex
bodies via the rule (9.7.1): 𝜙([C]) = 𝜇(C) for each C ∈ C𝑑. To ensure that 𝜙 is well-defined,
we must verify the condition (9.7.2).

The proof proceeds by induction on the dimension 𝑑. In case 𝑑 = 0, there is nothing to
prove because the algebra is one-dimensional. We will assume that the result holds for all
continuous set valuations on C𝑑−1, and we will establish the claim for C𝑑.

The proof of the induction step is performed via contradiction. Assume that (9.7.2) fails.
Then there exist 𝛼𝑖 ∈ R and C𝑖 ∈ C𝑑 such that∑︁𝑚

𝑖=1
𝛼𝑖[C𝑖] = 0; (9.7.3)∑︁𝑚

𝑖=1
𝛼𝑖𝜇(C𝑖) = 1. (9.7.4)

Among all such examples, select one where the number 𝑚 of terms is minimal.
Let H be a hyperplane whose closed halfspaces are denoted H±. Assume that C1 ⊂

int(H−). Since [A ∩ B] = [A] · [B], the assumption (9.7.3) implies the following relations:∑︁𝑚

𝑖=1
𝛼𝑖[C𝑖 ∩ H−] = 0; (9.7.5)∑︁𝑚

𝑖=1
𝛼𝑖[C𝑖 ∩ H+] = 0; (9.7.6)∑︁𝑚

𝑖=1
𝛼𝑖[C𝑖 ∩ H] = 0. (9.7.7)

We now use the properties of the set valuation 𝜇 to derive related conclusions from the
assumption (9.7.4). To that end, notice the following easy identities:

C𝑖 = (C𝑖 ∩ H+) ∪ (C𝑖 ∩ H−) and C𝑖 ∩ H = (C𝑖 ∩ H+) ∩ (C𝑖 ∩ H−).

Moreover, all the sets in these equations belong to the intersectional family C𝑑, so 𝜇 is
defined for each one. Since 𝜇 is a set valuation,

𝜇((C𝑖 ∩ H+) ∪ (C𝑖 ∩ H−)) + 𝜇((C𝑖 ∩ H+) ∩ (C𝑖 ∩ H−)) = 𝜇(C𝑖 ∩ H+) + 𝜇(C𝑖 ∩ H−).

Equivalently,

𝜇(C𝑖) = 𝜇(C𝑖 ∩ H+) + 𝜇(C𝑖 ∩ H−) − 𝜇(C𝑖 ∩ H). (9.7.8)
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Plugging (9.7.8) into (9.7.4) yields

1 =
∑︁𝑚

𝑖=1
𝛼𝑖𝜇(C𝑖)

=
∑︁𝑚

𝑖=1
𝛼𝑖𝜇(C𝑖 ∩ H+) +

∑︁𝑚

𝑖=1
𝛼𝑖𝜇(C𝑖 ∩ H−) −

∑︁𝑚

𝑖=1
𝛼𝑖𝜇(C𝑖 ∩ H). (9.7.9)

The induction hypothesis ensures that 𝜇 induces a linear valuation on convex bodies in the
hyperplane H, so (9.7.7) implies that∑︁𝑚

𝑖=1
𝛼𝑖𝜇(C𝑖 ∩ H) = 0.

By construction, (C1 ∩ H+) = ∅, so the minimality of 𝑚 requires that∑︁𝑚

𝑖=1
𝛼𝑖𝜇(C𝑖 ∩ H+) = 0.

As a consequence of these two observations, (9.7.9) reduces to∑︁𝑚

𝑖=1
𝛼𝑖𝜇(C𝑖 ∩ H−) = 1.

This calculation can be repeated for other halfspaces and replacing C1 with other C𝑖 to reach
stronger conclusions.

We can always find a sequence {H−
𝑗 } of halfspaces such that C1 ⊂ int(H−

𝑗 ) for which the
polyhedra P𝑞 = ∩𝑞

𝑗=1H−
𝑗 converge to C1 in the Hausdorff metric; cf. Lecture 7. For each

halfspace H−
𝑗 , the foregoing considerations apply. Hence, for each index 𝑞, we obtain∑︁𝑚

𝑖=1
𝛼𝑖𝜇(C𝑖 ∩ H−

1 · · · ∩ H−
𝑞 ) =

∑︁𝑚

𝑖=1
𝛼𝑖𝜇(C𝑖 ∩ P𝑞) = 1.

Since 𝜇 is continuous, we can take the limit as 𝑞 → ∞ to reach∑︁𝑚

𝑖=1
𝛼𝑖𝜇(C𝑖 ∩ C1) = 1.

It follows directly from (9.7.5) that∑︁𝑚

𝑖=1
𝛼𝑖[C𝑖 ∩ C1] = 0.

We have shown that the assumptions (9.7.3) and (9.7.4) remain valid after intersection with
the first set C1.

Repeat the same procedure with the remaining sets C2,C3, . . . ,C𝑚. This process yields
the relations

0 =
∑︁𝑚

𝑖=1
𝛼𝑖

[︁⋂︁𝑚

𝑗=1
C𝑗

]︁
=
(︁∑︁𝑚

𝑖=1
𝛼𝑖

)︁[︁⋂︁𝑚

𝑗=1
C𝑗

]︁
; (9.7.10)

1 =
∑︁𝑚

𝑖=1
𝛼𝑖𝜇
(︁⋂︁𝑚

𝑗=1
C𝑗

)︁
=
(︁∑︁𝑚

𝑖=1
𝛼𝑖

)︁
𝜇
(︁⋂︁𝑚

𝑗=1
C𝑗

)︁
. (9.7.11)

Now, the identity (9.7.11) implies that∑︁𝑚

𝑖=1
𝛼𝑖 ̸= 0 and 𝜇

(︁⋂︁𝑚

𝑗=1
C𝑗

)︁
̸= 0.
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Since
∑︀𝑚

𝑖=1 𝛼𝑖 ̸= 0, the identity (9.7.10) forces us to conclude that⋂︁𝑚

𝑗=1
C𝑗 = ∅.

A further application of (9.7.11) demonstrates that 𝜇(∅) ̸= 0 in contradiction to the fact
that 𝜇 is a set valuation.
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10.1 Agenda for Lecture 10
In this lecture, we will consider a very special valuation known as the Euler characteristic. It
will allow us to measure or evaluate not just convex bodies, but also finite unions of convex
bodies, which are generally non-convex. Applying this measurement tool to polytopes leads
to an intriguing constraint on the distribution of their faces of different dimension. For a
polytope in R3, this gives the famous formula that vertices − edges + facets = 2. Our agenda:

1. Recalls on valuations
2. The Euler characteristic
3. Hadwiger’s construction
4. The Euler–Poincaré–Schläfli formula

10.2 Recalls on Valuations
We first recall the essential notion of an intersectional family. This term refers to a family
of sets that is closed under finite intersections. More formally, it is defined as follows:

Definition 10.2.1 (Intersectional family). A class of sets S is intersectional if 𝜙 ∈ S and
A,B ∈ S means that A ∩ B ∈ S .

Armed with these concepts, we remind the reader of the notion of a set valuation, which
serves as a more abstract measure of volume.

Definition 10.2.2 (Set valuation). A real-valued set valuation on an intersectional family S is a
map 𝜇 : S → R satisfying

(1) 𝜇(∅) = 0;
(2) 𝜇(A ∩ B) + 𝜇(A ∪ B) = 𝜇(A) + 𝜇(B) when A,B,A ∪ B ∈ S .

There are many examples of set valuations, such as the intrinsic volume.

Example 10.2.3 (Intrinsic volumes are set valuations). Each intrinsic volume 𝑉𝑗 is a set valuation
on the class of convex bodies C𝑑 living in R𝑑.

At this point, we are confronted with a natural question: Can we extend set valuations
to larger classes of sets? Suppose we can measure the “content” of a convex set A, and we
can also measure the “content” of a convex set B. Can we measure the “content” of the
union A ∪ B, even though it is generally not convex?

To address this question, it is convenient to introduce functions in the algebra of sets in
S .
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Figure 10.1 (A simple Venn diagram). This figure is provided to ground the discussion. Inspection
of the figure should convince the reader that indicators of set membership obey the law:
[A ∪ B] + [A ∩ B] = [A] + [B].

Definition 10.2.4 (Algebra of sets). Let S be an intersectional family in R𝑑. The linear space

A(S ) = linR

{︁
[A] : A ∈ S

}︁
is called the algebra of sets in S . Here, [A] denotes the 0–1 indicator of the set A. A typical
element of the algebra A(S ) is a function of the form

𝑓 =
∑︁𝑚

𝑖=1
𝛼𝑖[A𝑖] for A𝑖 ∈ S and 𝛼𝑖 ∈ R.

As mentioned earlier, the algebra A(S ) is convenient in our quest of extending valuations
to non-convex unions. This is precisely because the algebra automatically contains all
indicators of finite unions of sets in S . To see this, note that [A ∪ B] = [A] + [B] − [A ∩ B],
which may be proved by staring at Figure 10.1. The implication of this statement is that
the indicator [A ∪ B] is in the algebra A(S ) because S is intersectional.

Now it is appropriate to recall the definition of a linear valuation.

Definition 10.2.5 (Linear valuation). A linear valuation is a linear functional 𝜙 on the algebra
of sets A(S ).

For example, if 𝜙 is a linear valuation, then

𝑓 =
∑︁

𝑖
𝛼𝑖[A𝑖] implies 𝜙(𝑓) =

∑︁
𝑖
𝛼𝑖𝜙([A𝑖]).

If A is a set whose indicator [A] belongs to the algebra A(S ), we will sometimes drop the
extra brackets when writing the linear functional: 𝜙(A) := 𝜙([A]).

The attentive reader may wonder: what justifies the name linear valuation? The answer
is that all linear valuations give us set valuations. First note that 𝜙([∅]) = 𝜙(0) = 0 by
linearity. To check the second condition, we argue by linearity and the basic property of
indicators:

𝜙([A]) + 𝜙([B]) = 𝜙([A] + [B]) by linearity
= 𝜙([A ∪ B] + [A ∩ B]) by Figure 10.1
= 𝜙([A ∪ B]) + 𝜙([A ∩ B]) by linearity.
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Equating the first and last expression tells us that, indeed, the linear valuation 𝜙 composed
with the map [·] from sets to indicators is a set valuation.

To reiterate, we have shown that a linear valuation always extends to a set valuation:

linear valuation always=⇒ set valuation

But does the reverse hold?

set valuation ???=⇒ linear valuation

Given a set valuation 𝜇 on S , it would be natural to try to construct a linear functional by
defining 𝜙([A]) := 𝜇(A) for A ∈ S . The trouble is that it is not clear that this consistently
extends to more complicated elements of the algebra. Indeed, we need to check that the
extension is not one-to-many.

All is not lost, thankfully, and Volland and Groemer provided two results about when
the extension does go through nicely. These theorems allow us to construct valuations on
objects like unions of polytopes or unions of convex bodies.

Theorem 10.2.6 (Volland). Each set valuation on the class P𝑑 of polytopes in R𝑑 extends to a
unique linear valuation on A(P𝑑).

Theorem 10.2.7 (Groemer). Each continuous set valuation on the class C𝑑 of convex bodies in
R𝑑 extends to a unique linear valuation on A(C𝑑).

A consequence of Theorem 10.2.7 of particular interest is that we can define intrinsic
volumes of unions of convex bodies. For example, we can give meaning to 𝑉𝑗(A) when
A = C1 ∪ ... ∪ C𝑚 for convex bodies C𝑖.

Warning 10.2.8 (Extended intrinsic volumes). The nice geometric interpretations of the intrinsic
volumes in the convex case are not always valid for the extension to the algebra of convex
sets.

10.3 The Euler Characteristic
In this lecture, we will study the most innocuous example of a set valuation extended to
the algebra of convex bodies: the Euler characteristic. Recall the definition of the zeroth
intrinsic volume, 𝑉0:

Definition 10.3.1 (Zeroth intrinsic volume). Let C ∈ C be a convex body. Then the zeroth
intrinsic volume 𝑉0(C) is defined as

𝑉0(C) =
{︃

1, if C is nonempty;
0, if C is empty.

To see that 𝑉0 is a continuous valuation, we must only check that limits of nonempty
convex bodies are nonempty. This follows from the fact that the Hausdorff distance between
any nonempty set and the empty set is (defined to be) infinite, so nonempty sets cannot
converge to empty ones.

With the continuity of 𝑉0 established, we can apply Groemer’s theorem to extend 𝑉0 to
a linear valuation on the algebra A(C𝑑). This leads to the following (abstract) definition of
the Euler characteristic.
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Figure 10.2 (Example calculations of the Euler characteristic). [left] The Euler characteristic of non-
empty convex bodies is trivially one. [right] More complicated arrangements may be derived by
breaking down a set into constituent indicators. Removing a convex body decreases the Euler
characteristic by one.

Definition 10.3.2 (Euler characteristic). The Euler characteristic 𝜒 : A(C𝑑) → R is the extension
of the zeroth intrinsic volume 𝑉0 to the algebra of convex bodies A(C𝑑). In particular,

𝜒
(︁∑︁𝑚

𝑖=1
𝛼𝑖[C𝑖]

)︁
=
∑︁𝑚

𝑖=1
𝛼𝑖𝜒([C𝑖]) =

∑︁
C𝑖 ̸=∅

𝛼𝑖.

This definition is somewhat mysterious and abstract, so we give some example calculations
in Figure 10.2. Here are a few exercises.

Exercise 10.3.3. Check that for the union of disjoint convex bodies, the Euler characteristic
counts the number of bodies.

Exercise 10.3.4. Does the boundary of a polytope belong to the algebra of convex bodies?
What about the relative interior?

Exercise 10.3.5. Does the open disk live in the algebra of convex bodies? If so, what is its
Euler characteristic?

10.4 Hadwiger’s Construction
In the previous section, we gave a somewhat abstract definition of the Euler characteristic
motivated by Groemer’s theorem, along with some computational examples. In this section,
we will discuss a recursive construction of the Euler characteristic due to Hadwiger. The
first part of the theorem will rehash the results of the previous section, but the second part
of the theorem will go much further.

Theorem 10.4.1 (Hadwiger). There is a unique linear valuation 𝜒 : A(C𝑑) → R on the algebra
of convex bodies with the property that 𝜒(C) = 1 if C is a nonempty convex body.



Lecture 10: The Euler Characteristic 91












































































































AH 1
A B INGI O

EBTlH l EBTly _I

AnB3 4 1
Y

EAnB3 yI 0

TAUB k I LAVBT.ly I

AnB
A B

AlAnB

Z AiAnB
7ft HB ZHA EAM
xlAuBIzfAnBl ezafzftnBI

onihrerseoq
waemwemdi.FI

intersed.no Xconohibutify
ouseuion F Inowm p

Figure 10.3 (A visualisation of Hadwiger’s construction). Hadwiger constructs the Euler characteristic
by scanning a hyperplane along one coordinate axis. Summing “changes” in the Euler charac-
teristics of the lower dimensional slices gives the Euler characteristic of the whole object. Note
that we only register a contribution when the hyperplane enters a convex body, but not when
it leaves.

Moreover, if A ⊂ R𝑑 is a set for which [A] ∈ A(C𝑑), then the Euler characteristic of A
may be computed by summing over discontinuous jumps in the Euler characteristic of slices
of A swept across a coordinate axis:

𝜒(A) =
∑︁

𝜏∈R

[︁
𝜒(A ∩ H𝜏 ) − lim

𝜀↓0
𝜒(A ∩ H𝜏+𝜀)

]︁
, (10.4.1)

where H𝜏 := {𝑥 ∈ R𝑑 : 𝑥𝑑 = 𝜏} is a hyperplane orthogonal to the 𝑑th coordinate axis.

We provide a visualisation of Hadwiger’s construction of the Euler characteristic in
Figure 10.3. It will be helpful to keep this picture in mind during the following proof.

Proof. Uniqueness of the valuation 𝜒 is immediate. Indeed, the algebra A(C𝑑) is spanned
by the indicators of convex bodies, and we have defined the valuation for each convex body.
The challenge is to show that the Euler characteristic is well-defined.

The proof will proceed by induction on dimension 𝑑. We begin with dimension 𝑑 = 0.
Each function 𝑓 in the algebra A(C0) must take the form 𝑓 = 𝛼[{0}] because the origin is
the only point in R0. The definition 𝜒(𝑓) := 𝛼 produces a linear functional.

We now assume that there is a unique linear valuation 𝜒 : A(C𝑑−1) → R with the
property that 𝜒(C) = 1 for each nonempty convex body C ∈ C𝑑−1.

For any function 𝑓 ∈ A(C𝑑), define the restriction 𝑓𝜏 := 𝑓 · [H𝜏 ] to the hyperplane at
level 𝜏 . It is clear that restriction is a linear map onto the subalgebra of functions that
are supported on the hyperplane H𝜏 . This subalgebra is isomorphic to A(C𝑑−1), which will
allow us to apply the induction hypothesis to restricted functions.

Express the function 𝑓 ∈ A(C𝑑) in the form

𝑓 =
∑︁𝑚

𝑖=1
𝛼𝑖[C𝑖] for C𝑖 ∈ C𝑑 and 𝛼𝑖 ∈ R.
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Observe that
𝑓𝜏 =

∑︁𝑚

𝑖=1
𝛼𝑖[C𝑖 ∩ H𝜏 ].

Since all of the functions are supported on H𝜏 , we can invoke the induction hypothesis to
apply the Euler characteristic, which is a linear valuation on the lower-dimensional space:

𝜒(𝑓𝜏 ) =
∑︁𝑚

𝑖=1
𝛼𝑖𝜒(C𝑖 ∩ H𝜏 ) =

∑︁
C𝑖∩H𝜏 ̸=∅

𝛼𝑖.

From the above expression, it is clear that 𝜒(𝑓𝜏 ) only changes when the scanning hyperplane
H𝜏 leaves or enters one of the convex bodies C𝑖.

We may now study the discontinuities in 𝜒(𝑓𝜏 ) as a function of 𝜏 , the level of the
hyperplane. Introduce the linear function 𝑙 : 𝑥 ↦→ 𝑥𝑑 that returns the last coordinate of its
input. Let 𝐼 index the convex bodies C𝑖 which are just supported by and lie beneath H𝜏 .
Then

𝜒(𝑓𝜏 ) − lim𝜀↓0 𝜒(𝑓𝜏+𝜀) =
∑︁

𝑖∈𝐼
𝛼𝑖 where 𝐼 = {𝑖 : max𝑥∈C𝑖 𝑙(𝑥) = 𝜏}.

Notice that we only pick up terms when the hyperplane H𝜏 descends into one of the
convex bodies C𝑖. We get no contribution when H𝜏 leaves the bottom of C𝑖. Indeed, when
C𝑖 ∩ H𝜏 = ∅ we must also have lim𝜀↓0 C𝑖 ∩ H𝜏+𝜀 = ∅. See Figure 10.3 for an illustration.

Since 𝑙 has a unique maximum value on each of the 𝑚 convex bodies C𝑖, there are at
most 𝑚 distinct points 𝜏 where 𝜒(𝑓𝜏 ) changes value. We now define 𝜒(𝑓) to be the sum of
contributions from the discontinuities:

𝜒(𝑓) :=
∑︁

𝜏∈R

[︁
𝜒(𝑓𝜏 ) − lim𝜀↓0 𝜒(𝑓𝜏+𝜀)

]︁
. (10.4.2)

If 𝑓 = [C] is the indicator of a nonempty convex body in C𝑑, then 𝑙 has a unique maximum
value on C, so 𝜒(C) = 1, as required.

We need to confirm that 𝜒, as defined in (10.4.2), is indeed a valuation. The restriction
map is linear, so

(𝛼𝑓 + 𝛽𝑔)𝜏 = 𝛼𝑓𝜏 + 𝛽𝑓𝜏 for 𝑓, 𝑔 ∈ A(C𝑑).

By the inductive hypothesis, 𝜒 is a linear valuation on the subalgebra {𝑓𝜏 : 𝑓 ∈ A(C𝑑)}.
That is,

𝜒((𝛼𝑓 + 𝛽𝑔)𝜏 ) = 𝛼𝜒(𝑓𝜏 ) + 𝛽𝜒(𝑔𝜏 ).

By the linearity of the sum and limit in (10.4.2), we determine that

𝜒(𝛼𝑓 + 𝛽𝑔) = 𝛼𝜒(𝑓) + 𝛽𝜒(𝑔).

We conclude that 𝜒 is a linear valuation on A(C𝑑).
Finally, we note that the formula (10.4.1) holds if we specialize (10.4.2) to a function of

the form 𝑓 = [A].

10.5 The Euler–Poincaré–Schläfli Formula
In this section, we will apply Hadwiger’s construction of the Euler characteristic to prove
the first theorem of algebraic topology.



Lecture 10: The Euler Characteristic 93


















Figure 10.4 (Hadwiger slices up a polytope). As a hyperplane scans through a polytope, the cross
sections are also polytopes of lower dimension.

Theorem 10.5.1 (Euler–Poincaré–Schläfli). Let P be a polytope with dim P = 𝑑. Define 𝑓𝑖(P) to
be the number of faces of P with dimension 𝑖. Then∑︁𝑑

𝑖=0
(−1)𝑖𝑓𝑖(P) = 1.

This famous formula is originally due to Euler in R3. It was extended to higher dimensions
by Schläfli, and the first complete proof was given by Poincaré.

For instance, let us consider some of the low-dimensional cases:

vertices − edges = 0 when dim P = 2;
vertices − edges + facets = 2 when dim P = 3.

Most of the work for proving the EPS formula will occur in the following lemma.

Lemma 10.5.2 (Some Euler characteristics). For a polytope P with dim P = 𝑑, we have

𝜒(bd P) = 1 + (−1)𝑑−1

𝜒(int P) = (−1)𝑑

Proof. As we have seen, every point in a convex set belongs to some face, and proper faces
are contained in the boundary. Therefore, the boundary of the polytope may be decomposed
as

bd P =
⋃︁

FCP, F̸=P
F.

In particular, the indicator [bd P] belongs to the algebra of polytopes A(P𝑑), which means
that 𝜒(bd P) is defined.

We may calculate 𝜒(bd P) by induction on the dimension of P. When 𝑑 = 1, the polytope
P is an interval, so the boundary of P consists of two different points. Thus, the Euler
characteristic 𝜒(bd P) = 2 = 1 + (−1)1−1.
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Assume that the result holds for dimension 𝑑− 1, and consider a 𝑑-dimensional polytope
P. We will invoke the construction in Theorem 10.4.1. See Figure 10.4 for an illustration.

Let us consider slices of the polytope, i.e., the intersections P ∩ H𝜏 with hyperplanes
H𝜏 = {𝑥 ∈ R𝑑 : 𝑥𝑑 = 𝜏}. Define 𝜏max and 𝜏min to be the values of 𝜏 where the hyperplane H𝜏

respectively enters and leaves the polytope P as we decrease 𝜏 . Formally, 𝜏max = max𝑥∈P 𝑙(𝑥),
and 𝜏min = min𝑥∈P 𝑙(𝑥), where 𝑙 reports the last coordinate of a vector. To compute the
Euler characteristic of the intersection with H𝜏 , we have three cases to consider:

1. For 𝜏min < 𝜏 < 𝜏max, the intersection P ∩ H𝜏 is a 𝑑− 1 dimensional polytope (see the
homework!), and the boundary bd(P ∩ H𝜏 ) = (bd P) ∩ H𝜏 . The inductive hypothesis
shows that the Euler characteristic of the intersection satisfies

𝜒((bd P) ∩ H𝜏 ) = 𝜒(bd(P ∩ H𝜏 )) = 1 + (−1)𝑑−2.

2. For each 𝜏 ∈ {𝜏min, 𝜏𝑚𝑎𝑥}, the intersection P ∩ H𝜏 is a nonempty face of P contained
in bd P. Indeed, the intersection is the maximum of a linear functional on the set P.
As a consequence,

𝜒((bd P) ∩ H𝜏 ) = 𝜒(P ∩ H𝜏 ) = 1

because each face of a polytope is a polytope.

3. For 𝜏 < 𝜏min and 𝜏 > 𝜏max, it is clear that

𝜒((bd P) ∩ H𝜏 ) = 𝜒(∅) = 0.

Armed with this information, we may now compute the Euler characteristic of the
boundary bd P using Theorem 10.4.1. Noticing that the only interesting things happen at
the top and bottom, we get

𝜒(bd P) =
∑︁

𝜏∈R

[︁
𝜒((bd P) ∩ H𝜏 ) − lim

𝜀↓0
𝜒((bd P) ∩ H𝜏+𝜀)

]︁
= (1) + (1 − (1 + (−1)𝑑+2))
= 1 + (−1)𝑑−1.

The first contribution in the second line comes from 𝜏max, when the hyperplane enters the
top of the polytope, and the second contribution comes from 𝜏min, when the hyperplane
leaves the bottom of the polytope.

Finally, we compute the Euler characteristic of the the interior using the relation
𝜒(P) = 𝜒(bd P) + 𝜒(int P).

Using this lemma, we may swiftly prove the EPS formula.

Proof of the EPS formula. Recall that a polytope P admits a disjoint decomposition into
faces. Therefore,

[P] =
∑︁

FCP
[relint F].
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By linearity of the Euler characteristic and the previous lemma,

1 = 𝜒(P) =
∑︁

FCP
𝜒(relint F)

=
∑︁

FCP
(−1)dim F

=
∑︁𝑑

𝑖=0
(−1)𝑖𝑓𝑖(P).

This endeth the lesson.
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11.1 Agenda for Lecture 11
We begin with a famous geometric problem, called Buffon’s Needle. The most common
solution is based on conditional probability computations. We present an alternative solution
using purely geometric arguments. This is one of the earliest result in the field of integral
geometry, which concerns questions about averaging over geometric groups.

This lecture gives an introduction to integral geometry. Our approach is based on
Hadwiger’s functional theorem. This result states that every “nice” valuation on convex
bodies can be expressed in terms of the intrinsic volumes. Hadwiger’s work demonstrates
that the intrinsic volumes are truly fundamental to convex geometry.

Using Hadwiger’s functional theorem, we develop two general results in integral geometry.
First, we establish Crofton’s formula, which gives an expression for the total measure of the
set of affine flats that touch a convex body. Second, we establish the principal kinematic
formula, which gives an expression for the total measure of the set of rigid motions that
bring two convex bodies into contact with each other.

1. Buffon’s Needle
2. Hadwiger’s Theorems
3. Grassmannians and Invariant Measures
4. Crofton’s Formula
5. Principal Kinematic Formula

11.2 Buffon’s Needle
To begin, we describe Buffon’s needle problem, and we give a geometrical solution. Further
discussion appears in [KR97, Sec. 1].

11.2.1 The Problem
Consider an infinite family of parallel lines in the plane with unit separation between adjacent
pairs. Suppose that we toss a needle of length 𝐿 “randomly” onto the plane. What is the
expected number of intersections between the needle and the lines? See Figure 11.1 for an
illustration.

It is important to explain what we mean by “random” here. We assume that one
endpoint of the needle is distributed uniformly over the space (hence both endpoints), and
the orientation of the needle is also uniformly distributed. The following solution depends
heavily on these assumptions.

11.2.2 Solution
We present an ingenious solution, originally proposed by Barbier in [Bar60]. Crofton gave a
far-reaching extension of this method in [Cro68].
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Figure 11.1 (Buffon’s Needle). A needle is tossed randomly on a grid of lines. [left] Due to the
uniform distribution assumption, two needles of length 𝐿 can be assumed to be dependent on
each other and [right] form a needle of length 2𝐿.

Let 𝑋𝐿 be a random variable defined as

𝑋𝐿 := #{intersections between a random needle of length 𝐿 and the grid}.

Define a function

𝑓(𝐿) := E[𝑋𝐿] = expected number of intersections.

Let 𝑋𝐿 and 𝑋 ′
𝐿 be two instances of the random variable. Then

2𝑓(𝐿) = E[𝑋𝐿] + E[𝑋 ′
𝐿] = E[𝑋𝐿 +𝑋 ′

𝐿].

The above equality holds true regardless of whether 𝑋𝐿 and 𝑋 ′
𝐿 are statistically independent!

Indeed, we can allow arbitrary dependency between 𝑋𝐿 and 𝑋 ′
𝐿.

Suppose that two needles are welded together as illustrated in Figure 11.1[right]. The
endpoint and the orientation of the first needle are uniformly distributed. The endpoint of
the second needle is welded to the endpoint of the first needle, so it inherits the uniform
distribution of its endpoint and orientation from the first needle. Therefore, even if the two
needles are attached, 𝑋𝐿 and 𝑋 ′

𝐿 have the same distribution. Moreover 𝑋𝐿 +𝑋 ′
𝐿 has the

same distribution as 𝑋2𝐿, the number of intersections of a needle of twice the length. Thus,

2𝑓(𝐿) = E[𝑋𝐿 +𝑋 ′
𝐿] = E[𝑋2𝐿] = 𝑓(2𝐿).

Repeating the same argument, we find that

𝑞𝑓(𝐿) = 𝑓(𝑞𝐿) for 𝑞 ∈ Q+.

It is also clear that 𝑓 is an increasing function. Indeed, the longer the needle, the larger the
expected number of intersections. Therefore, we can say that

𝛼𝑓(𝐿) = 𝑓(𝛼𝐿) for 𝛼 ∈ R+. (11.2.1)

In other words, 𝑓 is positively homogeneous.
We can now think about different ways to concatenate needles. For example, consider

Figure 11.2[left]. We can impose arbitrary dependency structure on several 𝑋𝐿𝑖
without

changing the expectation:

E[𝑋𝐿1 +𝑋𝐿2 +𝑋𝐿3 +𝑋𝐿4 ] = 𝑓(𝐿1 + 𝐿2 + 𝐿3 + 𝐿4).
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Figure 11.2 (Different Configurations). [left] Due to the flexibility in the dependency, we can form
an arbitrary shape from 𝑛 different needles. [right] Using limiting arguments, we can arrange
infinitesimal needles to form a circle.

More generally,
E
[︁∑︁𝑚

𝑖=1
𝑋𝐿𝑖

]︁
= 𝑓

(︁∑︁𝑚

𝑖=1
𝐿𝑖

)︁
In summary, we can arrange needles of arbitrary lengths into any configuration. The expected
number of intersections is always proportional to the total length.

We now consider a circular ring with circumference 𝐿. Define

𝐶𝐿 = #{intersections between a random ring with circumference 𝐿 and the grid}.

By taking limits, we can think about the ring as being composed of infinitesimal needles.
The previous argument shows that

E[𝐶𝐿] = 𝑓(𝐿).

In particular, consider the ring with diameter one and circumference 𝜋. The number of
intersections between this ring and the grid is no longer random: it always equals two. See
Figure 11.2[right]. Therefore,

2 = E[𝐶𝜋] = 𝑓(𝜋).
For any 𝐿 > 0, the positive homogeneity relation (11.2.1) implies that

2𝐿 = 𝑓(𝜋𝐿) = 𝜋𝑓(𝐿).

We conclude that
𝑓(𝐿) = 2𝐿

𝜋
.

This is the solution to Buffon’s needle problem.

Remark 11.2.1 (The random model). Notice that this argument really requires the uniform
distribution assumption. Otherwise, the endpoint of 𝑋𝐿 and its orientation may not be a
valid starting point for 𝑋 ′

𝐿, in which case the concatenation of 𝑋𝐿 and 𝑋 ′
𝐿 may not be an

instance of 𝑋2𝐿. This problem persists for more complicated configurations.

11.2.3 Integral Geometry
Buffon’s needle problem involves volumetric properties (i.e., nonempty intersection) of
geometric objects (i.e., needles and grids). It also involves averaging over a geometric group
(i.e., the set of rigid motions).

The field of integral geometry, or geometric probability, concerns this general class of
problems. This lecture will develop some important results from integral geometry. The
tools, however, are much more sophisticated than the simple arguments we applied above.
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11.3 Hadwiger’s Theorems
The most direct approach to integral geometry requires some deep theorems of Had-
wiger [Had57] that characterize valuations on convex bodies. This section introduces
Hadwiger’s results without proof. We begin with a definition.

Definition 11.3.1 (Simple valuation). A set valuation 𝜇 on C𝑑 is simple if dim C < 𝑑 implies that
𝜇(C) = 0.

Example 11.3.2 (Volume). The volume Vol𝑑 on C𝑑, derived from the Lebesgue measure on R𝑑,
is a simple valuation.

Hadwiger’s characterization theorem shows that volume is the only simple set valuation
that is compatible with Euclidean geometry.

Theorem 11.3.3 (Hadwiger’s Characterization). Let 𝜇 be a simple, Hausdorff continuous valuation
on C𝑑 that is invariant under proper rigid motions (i.e., translation and rotation). Then

𝜇 = const · Vol𝑑 .

Proof. See [KR97, Thm. 8.3.2] for a proof devised by Klain; this is considered to be the
most direct approach. Hadwiger’s book [Had57] contains the original proof, which is more
difficult.

In its spirit, Theorem 11.3.3 is similar to the fact that, up to scaling, Lebesgue measure
is the unique translation invariant, additive, positive measure on R𝑑. It is much easier to
establish the classic result about Lebesgue measure because the measure must be additive
on the entire class of Borel sets, which is enormous. In contrast, we are constraining the set
valuation only on convex bodies, which are less numerous. Nevertheless, the assumptions
in Theorem 11.3.3 are still strong enough to force the set valuation to coincide with the
Lebesgue measure. The proof is quite difficult; it involves results about the dissection of
convex bodies and representation theory.

Hadwiger’s characterization theorem has an immediate and spectacular consequence: The
intrinsic volumes are essentially the only set valuations that are compatible with Euclidean
geometry.

Corollary 11.3.4 (Hadwiger’s Functional Theorem). Let 𝜇 be a Hausdorff continuous valuation on
C𝑑 that is invariant under proper rigid motions. Then 𝜇 is a linear combination of intrinsic
volumes 𝑉𝑗:

𝜇 =
∑︁𝑑

𝑗=0
𝛼𝑗𝑉𝑗 for 𝛼𝑗 ∈ R.

Proof. This result follows from an easy induction argument using Hadwiger’s characterization
theorem. For details, see [KR97, Thm. 9.1.1].

Hadwiger’s functional theorem reveals that the intrinsic volumes are truly fundamental
quantities in Euclidean geometry. In the rest of this lecture, we will see how this fact leads
to striking results in integral geometry.
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11.4 Grassmannians and Invariant Measures
Before we continue with our geometric questions, we need to spend a few minutes to
understand how we compute volumes of some geometric sets.

First, recall that the Grassmannian G (𝑗, 𝑑) is the family of all 𝑗-dimensional subspaces
in R𝑑:

G (𝑗, 𝑑) :=
{︁

L ⊂ R𝑑 : L is a 𝑗-dimensional subspace
}︁
.

It is also natural to parameterize the Grassmannian in terms of rotations of a given subspace.
We write SO(𝑑) for the group of 𝑑 × 𝑑 rotation matrices; that is, the 𝑑 × 𝑑 orthogonal
matrices with determinant one. Let L0 ∈ 𝐺(𝑗, 𝑑) be a fixed 𝑗-dimensional subspace. Then

G (𝑗, 𝑑) = {𝑈L0 : 𝑈 ∈ SO(𝑑)}.

So the Grassmannian is the orbit of a single subspace under the rotation group. Note,
however, that this orbit covers the Grassmannian many times.

We are going to construct a probability measure 𝜈𝑗 on the Grassmannian G (𝑗, 𝑑) that is
invariant under rotations. First, recall that there is a rotation-invariant probability measure
𝜈 on the group SO(𝑑) of rotation matrices. Draw a random orthogonal matrix 𝑄 ∈ SO(𝑑)
according to the measure 𝜈. Then 𝑄L0 is a uniformly random element of the Grassmannian
G (𝑗, 𝑑). Up to scaling, 𝜈𝑗 is the push-forward of 𝜈 onto G (𝑗, 𝑑) via the map 𝑄 ↦→ 𝑄L0. We
normalize 𝜈𝑗 so that the total measure of the G (𝑗, 𝑑) is one.

Next, we introduce the affine Grassmannian:

A (𝑗, 𝑑) =
{︁

A ⊂ R𝑑 : A is a 𝑗-dimensional affine set
}︁
.

Each affine set A ∈ A (𝑗, 𝑑) can be expressed uniquely as a translation of a subspace:

A = L + 𝑥 where L ∈ G (𝑗, 𝑑) and 𝑥 ∈ L⊥.

This representation suggests how we can construct a measure 𝜇𝑗 on the affine Grassmannian
A (𝑗, 𝑑) that is invariant under rigid motions. First, we select a subspace L ∈ G (𝑗, 𝑑) from
the uniform distribution 𝜈𝑗 . The translation 𝑥 ∈ L⊥ follows the Lebesgue measure on L⊥.

It is sometimes more convenient to express an affine set A ∈ A (𝑗, 𝑑) in terms of a fixed
subspace L0 ∈ G (𝑗, 𝑑):

A = 𝑈(L0 + 𝑥) where 𝑥 ∈ L⊥
0 and 𝑈 ∈ SO(𝑑).

Up to scaling, the measure 𝜇𝑗 on the affine Grassmannian is the push-forward of the product
measure Leb(L⊥

0 ) × 𝜈 via the map (𝑥,𝑄) ↦→ 𝑄(L0 + 𝑥). We have normalized the measure
𝜇𝑗 so that

𝜇𝑗{A ∈ A (𝑗, 𝑑) : A ∩ B𝑑 ̸= ∅} = 𝜅𝑑−𝑗 .

In other words, the total measure of the set of 𝑗-dimensional flats that touch the ball B𝑑 is
the volume of the ball B𝑑−𝑗 .

11.5 Crofton’s Formula
We are now prepared to study another geometric question: What is the measure of the set
of affine flats of dimension 𝑗 that touch a convex body in R𝑑?
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Let C ∈ C𝑑 be a convex body. The measure of set of flats of dimension 𝑗 that touch the
convex body C can be written as

𝜇𝑗{A ∈ A (𝑗, 𝑑) : C ∩ A ̸= ∅}⏟  ⏞  
Total measure of flats that touch C

=
∫︁

A (𝑗,𝑑)
𝜒(C ∩ A)⏟  ⏞  

Euler
characteristic

d𝜇𝑗(A)⏟  ⏞  
integrate over

subspace and translate

The Euler characteristic returns one precisely when the flat A and the convex body C have
a nontrivial intersection.

Crofton’s formula gives an answer to the question about the measure of the set of affine
flats that touch a convex body. It also provides a new interpretation of the intrinsic volumes.

Theorem 11.5.1 (Crofton’s formula). Let C ∈ C𝑑 be a nonempty convex body. Then∫︁
A (𝑗,𝑑)

𝜒(C ∩ A) d𝜇𝑗(A) =
[︂
𝑑

𝑗

]︂−1
𝑉𝑑−𝑗(C)

where the flag coefficient is defined as[︂
𝑑

𝑗

]︂
:=
(︂
𝑑

𝑗

)︂
𝜅𝑑

𝜅𝑗𝜅𝑑−𝑗
.

When we apply Crofton’s formula for specific choices of the dimension 𝑗 of the flat, we
obtain interpretations of specific intrinsic volumes. For example,

∙ Volume (𝑗 = 0). The volume 𝑉𝑑 is the measure of the set of points that touch C.
∙ Surface area (𝑗 = 1). The surface area 𝑉𝑑−1 is twice the measure of the set of affine
lines that pierce C.

∙ Mean width (𝑗 = 𝑑− 1). The mean width 𝑉1 is proportional to the measure of the set
of affine hyperplanes that intersect C.

∙ Euler characteristic (𝑗 = 𝑑). The Euler characteristic 𝑉0 is equal to one because R𝑑

intersects the nonempty set C.

Let us establish the result.

Proof. Define a functional 𝜙 : C𝑑 → R via the rule

𝜙(C) =
∫︁

A (𝑗,𝑑)
𝜒(C ∩ A) d𝜇𝑗(A).

Since 𝜒 is a set valuation and the integral is linear, it follows that 𝜙 is a set valuation. Since
𝜒 is continuous, it follows that 𝜙 is continuous. Let 𝑇 be a rigid motion. Since 𝜒 and 𝜇𝑗 are
invariant under rigid motions,

𝜙(𝑇 C) =
∫︁

A (𝑗,𝑑)
𝜒((𝑇 C) ∩ A) d𝜇𝑗(A)

=
∫︁

A (𝑗,𝑑)
𝜒(C ∩ (𝑇 −1A)) d𝜇𝑗(A)

=
∫︁

A (𝑗,𝑑)
𝜒(C ∩ A)) d𝜇𝑗(A) = 𝜙(C).
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We see that 𝜙 is a continuous set valuation that is invariant under rigid motions. Hadwiger’s
functional theorem now implies that

𝜙(C) =
∑︁𝑑

𝑗=0
𝛼𝑗𝑉𝑗(C)

for some coefficients 𝛼𝑗 ∈ R. We must determine the coefficients.
First, we claim that 𝜙 is homogeneous of degree 𝑑− 𝑗. In that case, because the intrinsic

volume 𝑉𝑖 is homogeneous of degree 𝑖, we must have

𝜙(C) = 𝛼𝑑−𝑗 · 𝑉𝑑−𝑗(C). (11.5.1)

To verify homogeneity, select 𝜆 > 0. For a subspace L, we have the relations

𝜆C ∩ (L + 𝑥) ̸= ∅ if and only if C ∩ (L + 𝜆−1𝑥) ̸= ∅.

Therefore, if we write A = L + 𝑥 and use Fubini’s theorem to factor the integral over 𝜇𝑗 ,

𝜙(𝜆C) =
∫︁

G (𝑗,𝑑)
d𝜈𝑗(L)

∫︁
L⊥

d𝑥𝜒(𝜆C ∩ (L + 𝑥))

=
∫︁

G (𝑗,𝑑)
d𝜈𝑗(L)

∫︁
L⊥

d𝑥𝜒(C ∩ (L + 𝜆−1𝑥))

= 𝜆𝑑−𝑗

∫︁
G (𝑗,𝑑)

d𝜈𝑗(L)
∫︁

L⊥
d𝑥𝜒(C ∩ (L + 𝑥)) = 𝜆𝑑−𝑗𝜙(C).

The factor 𝜆𝑑−𝑗 comes from the Jacobian of the change of variables 𝜆−1𝑥 ↦→ 𝑥 on the
(𝑑− 𝑗)-dimensional space L⊥.

In the expression (11.5.1), the constant 𝛼𝑑−𝑗 does not depend on C. Therefore, we can
determine its value by choosing a suitable set C. The natural choice is C = B𝑑. From Q3(a)
of Homework #2, we know intrinsic volumes of the unit ball:

𝑉𝑑−𝑗(B𝑑) =
(︂
𝑑

𝑗

)︂
𝜅𝑑

𝜅𝑗
.

In order to compute 𝜙(B𝑑), fix a subspace L0. Notice that

𝜒(B𝑑 ∩ (L0 + 𝑥)) = 1 if and only if 𝑥 ∈ L⊥
0 ∩ B𝑑.

Write A = 𝑄(L0 + 𝑥) for 𝑥 ∈ L⊥
0 , and factor the integral to obtain

𝜙(B𝑑) =
∫︁

SO(𝑑)
d𝜈(𝑄)

∫︁
L⊥

0

𝜒(B𝑑 ∩ 𝑄(L0 + 𝑥)) d𝑥

=
∫︁

SO(𝑑)
d𝜈(𝑄)

∫︁
L⊥

0 ∩B𝑑

d𝑥 = 𝜅𝑑−𝑗 .

For C = B𝑑, the formula (11.5.1) reduces to

𝜅𝑑−𝑗 = 𝛼𝑑−𝑗 ·
(︂
𝑑

𝑗

)︂
𝜅𝑑

𝜅𝑗
.

This relation determines 𝛼𝑑−𝑗 . Combine with (11.5.1) to complete the argument.

Remark 11.5.2 (Euler characteristic). There is nothing special about the appearance of the Euler
characteristic in this argument. We can replace it with other intrinsic volumes and perform
similar calculations.
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Figure 11.3 (Rigid Motions). The rigid motion 𝑇 translates and rotates the convex body K so that
C and 𝑇 K have a nonempty intersection.

11.6 Principal Kinematic Formula
Finally, we will consider another question in integral geometry: What is the measure of
the set of rigid motions that bring two convex bodies into contact with each other? See
Figure 11.3 for an illustration.

The family E𝑑 of rigid motions on R𝑑 can be parameterized as

E𝑑 := {(𝑥,𝑄) : 𝑥 ∈ R𝑑 and 𝑄 ∈ SO(𝑑)}.

A pair 𝑇 = (𝑥,𝑄) ∈ E𝑑 acts via the rule.

𝑇 𝑧 := 𝑄𝑧 + 𝑥.

We equip the set E𝑑 with the product of the Lebesgue measure Vol𝑑 on the first coordinate
and the rotation-invariant measure 𝜈 of the second coordinate.

Our goal is to compute

𝜇{𝑇 ∈ E𝑑 : C ∩ 𝑇 K ̸= ∅} =
∫︁

E𝑑

𝜒(C ∩ 𝑇 K) d𝜇(𝑇 ).

We have the following amazing result.

Theorem 11.6.1 (Principal kinematic formula). Let C,K ∈ C𝑑 be nonempty convex bodies. Then∫︁
E𝑑

𝜒(C ∩ 𝑇 K) d𝜇(𝑇 ) =
∑︁𝑑

𝑗=0

[︂
𝑑

𝑗

]︂−1
𝑉𝑗(C)𝑉𝑑−𝑗(K).

Some remarks are in order:

∙ Theorem 11.6.1 is referred to as a “kinematic formula” because it concerns moving
convex bodies.

∙ The kinematic formula is not obvious in the plane, let alone in higher-dimensional
Euclidean spaces.

∙ Another suprising fact is that the formula only involves the intrinsic volumes of the
individual convex bodies C and K; no “joint” characteristics of the pair (C,K) appear.
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∙ There is nothing special about the choice of the Euler characteristic in this formula.
We can also develop “nonprincipal” kinematic formulas for other intrinsic volumes.

∙ Using Groemer’s extension theorem, we can even lift kinematic formula to the algebra
of convex bodies.

We will now provide a very rough sketch for the proof of the kinematic formula.

Proof. Here are the basic steps:

1. Define a functional 𝜙(C,K) via the rule

𝜙(C,K) =
∫︁

E𝑑

𝜒(C ∩ 𝑇 K) d𝜇(𝑇 ).

2. Show that 𝜙 is symmetric in its coordinates.
3. Show that 𝜙(C, ·) is a “nice” valuation.
4. Apply Hadwiger’s functional theorem to obtain

𝜙(C, ·) =
∑︁𝑑

𝑗=0
𝛼𝑗(C)𝑉𝑗(·).

5. Prove that each 𝛼𝑗(·) is a “nice” valuation.
6. Apply Hadwiger’s functional theorem to each of the 𝛼𝑗(·) to obtain

𝛼𝑗(C) =
∑︁𝑑

𝑖=0
𝛼𝑖𝑗𝑉𝑖(C).

7. Combine these results to see that

𝜙(C,K) =
∑︁

𝑖,𝑗=0𝑑
𝛼𝑖𝑗𝑉𝑖(C)𝑉𝑗(K).

8. Choose C = 𝜆B𝑑 and K = 𝜇B𝑑 to determine the constants 𝛼𝑖𝑗 .

See [KR97, Thm. 10.1.1] or [Gru07, Sec. 7.4] for a complete proof.
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12.1 Agenda for Lecture 12
In this lecture, we will discuss the isoperimetric problem, a solution of the isoperimetric
problem via the Brunn–Minkowski inequality, and a proof of the Brunn–Minkowksi inequality
using the Prékopa–Leindler inequality. Last, we will prove the Prékopa–Leindler inequality.

1. Dido’s problem and the isoperimetric theorem
2. Minkowski surface area
3. Isoperimetry and the Brunn–Minkowski inequality
4. Geometry and analytic inequalities

12.2 Dido’s Problem
We can trace the origins of the isoperimetric problem to antiquity. Dido was a Phoenician
princess who fled her home after her brother, Pygmalion of Tyre, assassinated her wealthy
husband, Sychaeus. She arrived in northern Africa, in modern-day Libya. She asked the
local ruler, King Iarbas, for a small plot of land—whatever she could enclose with the hide of
a bull. He agreed. She cut the hide into a narrow strip and formed a large circle, enclosing
the base of a hill. Thanks to Dido’s skill at geometric thinking and maroquinerie, this hill
became the city of Carthage.

We can pose the same question in a more abstract form. In the plane, among all closed
curves of fixed length, which one(s) enclose the greatest area? Dido intuitively understood
that the (only) answer is a circle. This is called the isoperimetric problem because it concerns
curves of equal perimeter.

Dually, we can ask what is the minimum perimeter curve that encloses a fixed area. In
three dimensions, the analogous problem requests the object with minimum surface area
that encloses a fixed volume. Again, the unique solution is a Euclidean ball. This type
of isoperimetric problem arises when we study soap bubbles. A single bubble is spherical
because it chooses the configuration that minimizes the total surface energy, which is
proportional to its surface area.

In this lecture, we consider a somewhat more general version of the isoperimetric problem.
In R𝑑, among all measurable sets with fixed surface area, which one(s) have the greatest
volume? Equivalently, among all measurable sets with fixed volume, which one(s) have the
least surface area? Today, we will prove the following version of the isoperimetric theorem.

Theorem 12.2.1 (Isoperimetric theorem). In R𝑑, among all convex bodies of fixed volume, a
scaled Euclidean ball has the minimum surface area.

In fact, the Euclidean ball is the unique convex body of minimum surface area. We will
discuss this point later, but we omit the complete proof.
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𝐶

𝐶 + 𝜀𝐵𝑑

Figure 12.1 (Minkowski surface area). The Minkowski surface area of C is the limiting difference
between the volume of the parallel body, C + 𝜀B𝑑 (blue) and the volume of C (light blue),
relative to the thickness 𝜀 of the shell as the shell becomes narrower.

The isoperimetric theorem actually holds for all measurable sets. We will prove this
result—but only for a special notion of surface area. Unfortunately, a fully general treatment
requires sophisticated ideas from the field of geometric measure theory.

12.3 Minkowski Surface Area
Before we can continue with our discussion of the isoperimetric theorem, we need to develop
a notion of surface area for convex sets. The Minkowski surface area of a convex body is the
volume of an infinitesimal shell surrounding the body, divided by the thickness of the shell.
We obtain this shell as the difference between the body and an infinitesimal parallel body.

Definition 12.3.1 (Minkowski surface area: Convex bodies). Let C ⊂ R𝑑 be a nonempty convex
body. The Minkowski surface area of C is

𝑆𝑑−1(C) := lim
𝜀↓0

Vol𝑑(C + 𝜀B𝑑) − Vol𝑑(C)
𝜀

. (12.3.1)

The limit in this expression exists, courtesy of Steiner’s formula (see below). By changing
variables, it is easy to see 𝑆𝑑−1 is homogeneous of degree 𝑑− 1.

We have already encountered the Minkowski surface area in another context.

Corollary 12.3.2 (Surface area and intrinsic volumes). Let C ⊂ R𝑑 be a nonempty convex body.
Then 𝑆𝑑−1(C) = 2𝑉𝑑−1(C).

Proof. By Steiner’s formula and a change of index,

𝑆𝑑−1(C) = lim
𝜀↓0

∑︀𝑑
𝑗=0 𝜀

𝑑−𝑗𝜅𝑑−𝑗𝑉𝑗(C) − Vol𝑑(C)
𝜀

= lim
𝜀↓0

∑︀𝑑
𝑗=0 𝜀

𝑗𝜅𝑗𝑉𝑑−𝑗(C) − 𝜀0𝜅0 𝑉𝑑(C)
𝜀

= lim
𝜀↓0

∑︁𝑑

𝑗=1
𝜀𝑗−1𝜅𝑗𝑉𝑑−𝑗(C) = 𝜅1 𝑉𝑑−1(C).

Since 𝜅1 = Vol1(B1) = 2, the statement follows.
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For convex bodies, the Minkowski surface area agrees with other notions of surface area
derived using measure theory or differential geometry. We can also extend the concept of
Minkowski surface area to measurable sets, with some additional care.

Definition 12.3.3 (Minkowski surface area: Measurable sets). Let A ⊂ R𝑑 be a measurable set.
The (lower outer) Minkowski surface area of A is

𝑆𝑑−1(A) := lim inf
𝜀↓0

Vol𝑑(A + 𝜀B𝑑) − Vol𝑑(A)
𝜀

.

The Minkowski surface area coincides with other notions of surface area for sets that
have piecewise smooth boundaries. For uglier sets, however, different flavors of surface area
can give divergent results.

12.4 Isoperimetry and the Brunn-Minkowski Inequality
We will prove the isoperimetric theorem as a consequence of an important geometric inequality,
associated with the names Brunn and Minkowski.

12.4.1 The Brunn–Minkowsi Inequality
The Brunn–Minkowski inequality states that the volume is a log-concave measure. It is one
of the most fundamental facts in the entire field of geometry.

Theorem 12.4.1 (Multiplicative Brunn-Minkowski inequality). Let A,E ⊂ R𝑑 be measurable sets. For
𝜆 ∈ [0, 1],

Vol𝑑((1 − 𝜆)A + 𝜆E) ≥ Vol𝑑(A)1−𝜆 · Vol𝑑(E)𝜆. (12.4.1)

For convex bodies, equality holds if and only if

1. A or E is a single point;
2. A and E are contained in a parallel hyperplanes; or
3. A and E have nonempty interiors and are homothetic; that is, one set is a translation

and/or dilation of the other.

In general, equality can hold only if the sets are convex with subsets of measure zero removed.

In the next section, we will prove the Brunn–Minkowski inequality (omitting the equality
condition).

12.4.2 Brunn–Minkowski implies the Isoperimetric Theorem
First, let us see how this result is relevant to the current discussion. The Brunn–Minkowski
inequality quickly implies the isoperimetric theorem.

Corollary 12.4.2 (Isoperimetric Inequality). Let A ⊂ R𝑑 be a nonempty, measurable set. Then(︂
𝑆𝑑−1(A)
𝑆𝑑−1(B𝑑)

)︂ 1
𝑑−1

≥
(︂

Vol𝑑(A)
Vol𝑑(B𝑑)

)︂ 1
𝑑

. (12.4.2)

Equality holds if and only if A (up to a set of measure zero) is homothetic to a Euclidean
ball.



108 ACM 204: Convex Geometry / Fall 2018 / Prof. Joel A. Tropp / Caltech

Let us note two particular consequences:

1. If 𝑆𝑑−1(A) = 𝑆𝑑−1(B𝑑), then Vol𝑑(A) ≤ Vol𝑑(B𝑑). For all sets with fixed Minkowski
surface area, a scaled Euclidean ball has the maximum volume.

2. If Vol𝑑(A) = Vol𝑑(B𝑑), then 𝑆𝑑−1(A) ≥ 𝑆𝑑−1(B𝑑). For all sets with fixed volume, a
scaled Euclidean ball has the minimum Minkowski surface area.

Therefore, the isoperimetric inequality implies the isoperimetric theorem. The equality case
establishes that the ball is the unique extremal solution.

Proof. Since the volume is homogeneous of degree 𝑑 and the Minkowski surface area is
homogeneous of degree 𝑑− 1, we may as well assume that Vol𝑑(A) = Vol𝑑(B𝑑).

For 𝜀 > 0, we make the change of variables 𝜀 = 𝜆/(1 − 𝜆). The Brunn–Minkowksi
inequality, Theorem 12.4.1, implies that

𝑆𝑑−1(A) = lim inf
𝜀↓0

Vol𝑑(A + 𝜀B𝑑) − Vol𝑑(A)
𝜀

= lim inf
𝜆↓0

Vol𝑑(((1 − 𝜆)A + 𝜆B𝑑)/(1 − 𝜆)) − Vol𝑑(A)
𝜆/(1 − 𝜆)

= lim inf
𝜆↓0

(1 − 𝜆)−𝑑 Vol𝑑((1 − 𝜆)A + 𝜆B𝑑) − Vol𝑑(A)
𝜆/(1 − 𝜆)

≥ lim inf
𝜆↓0

(1 − 𝜆)−𝑑 Vol𝑑(A)1−𝜆 · Vol𝑑(B𝑑)𝜆 − Vol𝑑(A)
𝜆/(1 − 𝜆)

= lim inf
𝜆↓0

(1 − 𝜆)−𝑑 Vol𝑑(B𝑑) − Vol𝑑(B𝑑)
𝜆/(1 − 𝜆)

= lim inf
𝜆↓0

(1 − 𝜆)−𝑑 Vol𝑑((1 − 𝜆)B𝑑 + 𝜆B𝑑) − Vol𝑑(B𝑑)
𝜆/(1 − 𝜆)

= lim inf
𝜀↓0

Vol𝑑(B𝑑 + 𝜀B𝑑) − Vol𝑑(B𝑑)
𝜀

= 𝑆𝑑−1(B𝑑).

We have also used the fact that the volume is homogeneous of degree 𝑑. Finally, note that
the inequality holds strictly unless A is homothetic to B𝑑.

12.5 Geometry and Analytic Inequalities
There are many proofs of the Brunn–Minkowski inequality. Today, we will pursue an
approach that was pioneered by Liusternik in the 1930s. He realized that the Brunn–
Minkowski inequality, Theorem 12.4.1, can be interpreted as a functional inequality applied
to the indicator functions of the sets. By replacing sets with functions, we gain access to
tools from analysis, which facilitates the proof. Moreover, this point of view shows that the
Brunn–Minkowski inequality does not depend on the sets being convex.

12.5.1 The Prékopa–Leindler Inequality
The modern version of this approach proceeds via an inequality, independently developed by
Prékopa and Leindler around 1970.
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Theorem 12.5.1 (Prékopa–Leindler inequality). Fix 𝜆 ∈ [0, 1]. Let 𝑓, 𝑔, ℎ : R𝑑 → R+ be nonnega-
tive integrable functions that satisfy the inequality

ℎ((1 − 𝜆)𝑥 + 𝜆𝑦) ≥ 𝑓(𝑥)1−𝜆𝑔(𝑦)𝜆 for all 𝑥,𝑦 ∈ R𝑑. (12.5.1)

Then ∫︁
R𝑑

ℎ(𝑥) d𝑥 ≥
(︂∫︁

R𝑑

𝑓(𝑥) d𝑥

)︂1−𝜆(︂∫︁
R𝑑

𝑔(𝑥) d𝑥

)︂𝜆

. (12.5.2)

At first sight, this result looks perplexing. If anything, it may remind the reader of
Hölder’s inequality. For nonnegative integrable functions 𝑓, 𝑔 : R𝑑 → R+, set

𝑘(𝑥) := 𝑓(𝑥)1−𝜆𝑔(𝑥)𝜆.

Hölder’s inequality states that∫︁
R𝑑

𝑘(𝑥) d𝑥 ≤
(︂∫︁

R𝑑

𝑓(𝑥) d𝑥

)︂1−𝜆(︂∫︁
R𝑑

𝑔(𝑥) d𝑥

)︂𝜆

.

The Prékopa–Leindler inequality requires a special condition, and its sense is the opposite
of Hölder’s inequality. Observe that, when 𝑥 = 𝑦, the condition (12.5.1) on ℎ just requires
that ℎ(𝑥) ≥ 𝑘(𝑥). But ℎ must also satisfy the condition (12.5.1) for all pairs (𝑥,𝑦), so it
will typically be somewhat larger than 𝑘.

Remark 12.5.2 (History). The Prékopa–Leindler inequality is part of a larger family of inequali-
ties that dates back to Liusternik’s work. This family is now known as the Borell–Brascamp–
Lieb inequalities. These inequalities replace the geometric means in Theorem 12.5.1 with
other power means.

Liusternik’s result involved a power mean with a specific positive exponent. His argument
contained some errors, arising from measure-theoretic issues. In 1952, Henstock & MacBeath
corrected the proof and developed a larger family of similar inequalities (for all 𝑝 > 0). Later,
around 1970, Prékopa and Leindler independently established Theorem 12.5.1, which is the
𝑝 = 0 case. Soon after, Borell and Brascamp–Lieb independently obtained the result for the
remaining exponents (𝑝 < 0).

12.5.2 Proof of Brunn–Minkowski from Prékopa–Leindler
Before we continue with the proof of Theorem 12.5.1, let us explain why it implies the
Brunn–Minkowski inequality, Theorem 12.4.1.

Fix a parameter 𝜆 ∈ (0, 1). The cases 𝜆 ∈ {0, 1} are trivial. Let A and E be nonempty
measurable sets in R𝑑. If either one is empty, the result is trivial.

Consider the 0–1 indicator functions 𝑓 = 1A and 𝑔 = 1E. Construct the indicator
ℎ = 1(1−𝜆)A+𝜆E of the convex combination. For all 𝑥,𝑦 ∈ R𝑑, it is easy to see that

1(1−𝜆)A+𝜆E((1 − 𝜆)𝑥 + 𝜆𝑦) ≥ 1A(𝑥)1−𝜆 · 1E(𝑦)𝜆.

Using the Prékopa–Leindler inequality, Theorem 12.5.1, we calculate that

Vol𝑑((1 − 𝜆)A + 𝜆E) =
∫︁
R𝑑

1(1−𝜆)A+𝜆E(𝑥) d𝑥

≥
(︂∫︁

R𝑑

1A(𝑥) d𝑥

)︂1−𝜆(︂∫︁
R𝑑

1E(𝑥) d𝑥

)︂𝜆

= Vol𝑑(A)1−𝜆 · Vol𝑑(E)𝜆.

This is the Brunn–Minkowski inequality.



110 ACM 204: Convex Geometry / Fall 2018 / Prof. Joel A. Tropp / Caltech

12.5.3 Proof of Prékopa-Leindler
Let us establish the Prékopa–Leindler inequality. The proof is based on a simple measure
transportation argument. The next section contains some more context for this construction.

The proof is by induction on the dimension. The difficult case is 𝑑 = 1. Assume
𝑓, 𝑔 : R → R++ are strictly positive, continuous functions. The general case follows by
approximation.

Introduce the positive normalizing constants

𝐹 =
∫︁
R
𝑓(𝑥) d𝑥 and 𝐺 =

∫︁
R
𝑔(𝑥) d𝑥.

Construct functions 𝑆, 𝑇 : (0, 1) → R that satisfy

1
𝐹

∫︁ 𝑆(𝑎)

−∞
𝑓(𝑥) d𝑥 = 𝑎 and 1

𝐺

∫︁ 𝑇 (𝑎)

−∞
𝑔(𝑥) d𝑥 = 𝑎 for 𝑎 ∈ (0, 1).

That is, 𝑆(𝑎) and 𝑇 (𝑎) are the 𝑎th quantiles of the probability distributions 𝑓/𝐹 and 𝑔/𝐺.
Since 𝑓 and 𝑔 are continuous and positive, 𝑢 and 𝑣 are differentiable and increasing. By the
fundamental theorem of calculus,

1
𝐹
𝑓(𝑆(𝑎)) · 𝑆′(𝑎) = 1 and 1

𝐺
𝑔(𝑇 (𝑎)) · 𝑇 ′(𝑎) = 1.

Next, define the function 𝑅 = (1 − 𝜆)𝑆 + 𝜆𝑇 . For 𝑎 ∈ (0, 1), we have

𝑅′(𝑎) = (1 − 𝜆)𝑆′(𝑎) + 𝜆𝑇 ′(𝑎)
≥ (𝑆′(𝑎))1−𝜆 · (𝑇 ′(𝑎))𝜆

=
(︂

𝐹

𝑓(𝑆(𝑎))

)︂1−𝜆(︂
𝐺

𝑔(𝑇 (𝑎))

)︂𝜆

.

The inequality is the inequality between geometric means and arithmetic means.
We are now prepared to bound the integral of the function ℎ. Under the change of

variables 𝑥 = 𝑅(𝑎), we see that∫︁
R
ℎ(𝑥) d𝑥 ≥

∫︁ 1

0
ℎ(𝑅(𝑎)) ·𝑅′(𝑎) d𝑎

≥
∫︁ 1

0
(𝑓(𝑆(𝑎)))1−𝜆𝑔(𝑇 (𝑎))𝜆 ·

(︂
𝐹

𝑓(𝑆(𝑎))

)︂1−𝜆(︂
𝐺

𝑔(𝑇 (𝑎))

)︂𝜆

d𝑎

= 𝐹 1−𝜆𝐺𝜆

=
(︂∫︁

R
𝑓(𝑥) d𝑥

)︂1−𝜆(︂∫︁
R
𝑔(𝑥) d𝑥

)︂𝜆

.

This completes the proof of the Prékopa–Leindler inequality on R.
Next, assume the Prékopa–Leindler inequality holds for dimension 𝑑− 1. Fix 𝜆 ∈ (0, 1),

and suppose that 𝑓, 𝑔, ℎ : R𝑑 → R+ satisfying the hypothesis (12.5.1). For points 𝑎, 𝑏 ∈ R,
we set 𝑐 = (1 − 𝜆)𝑎+ 𝜆𝑏. Define the functions 𝑓𝑎, 𝑔𝑏, ℎ𝑐 : R𝑑−1 → R+ by slicing:

𝑓𝑎(𝑥) = 𝑓(𝑥, 𝑎); 𝑔𝑏(𝑦) = 𝑔(𝑦, 𝑏); ℎ𝑐(𝑧) = ℎ(𝑧, 𝑐) for 𝑥,𝑦, 𝑧 ∈ R𝑑−1.
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By the hypothesis (12.5.1), these functions are related via the rule

ℎ𝑐((1 − 𝜆)𝑥 + 𝜆𝑦) ≥ 𝑓𝑎(𝑥)1−𝜆𝑔𝑏(𝑦)𝜆.

Next, define univariate functions 𝐹,𝐺,𝐻 : R → R+:

𝐹 (𝑎) =
∫︁
R𝑑−1

𝑓𝑎(𝑥) d𝑥; 𝐺(𝑏) =
∫︁
R𝑑−1

𝑔𝑏(𝑦) d𝑦; 𝐻(𝑐) =
∫︁
R𝑑−1

ℎ𝑐(𝑧) d𝑧.

Since 𝑓𝑎, 𝑔𝑏, and ℎ𝑐 satisfy the hypothesis of the Prékopa–Leindler inequality on R𝑑−1, it
follows that

𝐻(𝑐) = 𝐻((1 − 𝜆)𝑎+ 𝜆𝑏) ≥ 𝐹 (𝑎)1−𝜆𝐺(𝑏)𝜆.

Therefore, the hypothesis (12.5.1) of the one-dimensional Prékopa–Leindler inequality holds
for the functions 𝐹 , 𝐺, and 𝐻. By Fubini’s theorem and an application of the inequality for
𝑑 = 1, ∫︁

R𝑑

d𝑥ℎ(𝑥) =
∫︁
R

d𝑐
∫︁
R𝑑−1

d𝑧 ℎ𝑐(𝑧)

=
∫︁
R

d𝑐𝐻(𝑐)

≥
(︂∫︁

R
d𝑎𝐹 (𝑎)

)︂1−𝜆(︂∫︁
R

d𝑏𝐺(𝑏)
)︂𝜆

=
(︂∫︁

R
d𝑎
∫︁
R𝑑−1

d𝑥 𝑓𝑎(𝑥)
)︂1−𝜆(︂∫︁

R
d𝑏
∫︁
R𝑑−1

d𝑦 𝑔𝑏(𝑦)
)︂𝜆

=
(︂∫︁

R𝑑

d𝑥 𝑓(𝑥)
)︂1−𝜆(︂∫︁

R𝑑

d𝑥 𝑔(𝑥)
)︂𝜆

.

The last equality follows from Fubini’s theorem.

12.5.4 Optimal Transport
Here is some background on the optimal transport argument that appears in the proof of
the Prékopa–Leindler inequality.

Let 𝜇, 𝜈 : R → R be probability measures with continuous densities 𝑢 and 𝑣. We can
think about each measure as describing how one ton of sand is spread across the real line. A
transportation map is a measurable function 𝑇 : R → R that reshapes the first pile of sand
into the second. That is,

𝜇(𝑇−1(A)) = 𝜈(A) for each measurable set A ⊂ R.

Equivalently,∫︁
𝜙(𝑇 (𝑥)) d𝜇(𝑥) =

∫︁
𝜙(𝑥) d𝜈(𝑥) for all bounded continuous 𝜙 : R → R.

We are interesting in finding a transportation map that rearranges the first pile 𝜇 of sand
into the form 𝜈 as inexpensively as possible. In particular, we want to minimize the cost∫︁

R
|𝑥− 𝑇 (𝑥)|2 d𝜇(𝑥).
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This expression says that the cost of moving a unit of sand from the location 𝑥 to the
location 𝑇 (𝑥) is the square of the distance that we move the sand. The integral gives the
total cost of moving all of the sand. This is called an optimal transport problem.

On the real line, this problem is straightforward to solve because it never pays to move
sand farther than we have to. Roughly, we start with the unit of sand that 𝜇 places at the
left-most end of the line, and we redistribute it to the left-most point where 𝜈 distributes
a unit of sand. We proceed rightward in this fashion. More rigorously, we need to find an
increasing function 𝑇 : R → R where

P𝑋∼𝜇{𝑋 ≤ 𝑇 (𝑎)} =
∫︁ 𝑇 (𝑎)

−∞
𝑣(𝑥) d𝑥 =

∫︁ 𝑎

−∞
𝑣(𝑦) d𝑦 = P𝑌 ∼𝜈{𝑌 ≤ 𝑡} for all 𝑎 ∈ R.

Differentiating, we see that
𝑢(𝑇 (𝑎)) · 𝑇 ′(𝑎) = 𝑣(𝑎).

The optimal transport map can be obtained explicitly by solving this equation.
In the proof of the Prékopa–Leindler inequality, we constructed probability densities

by normalizing the two functions 𝑓, 𝑔. It turns out that the worst case is when each of
these densities is the uniform distribution on the unit interval [0, 1]. To take advantage of
this insight, we transported both of the probability densities to the uniform distribution.
Although we used the form of the transport map in the argument, we do not directly apply
the fact that it minimizes the cost of transport.

The same proof strategy will appear again when we present Barthe’s proof of the
Brascamp–Lieb inequality. (This is a different Brascamp–Lieb inequality than the one we
mentioned earlier!)
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13.1 Agenda for Lecture 13
In this lecture, we will give a proof of the isoperimetric theorem via Steiner symmetrization,
which is a method that decreases the surface area of a convex body while keeping the volume
the same. We will define Steiner symmetrization of a convex body, give its properties, and
then prove the isoperimetric inequality by way of the sphericity theorem of Gross.

1. Motivation
2. Steiner symmetrization
3. The isoperimetric inequality via symmetrization
4. Proof of the sphericity theorem of Gross

13.2 Motivation
Jakob Steiner (1796-1863) was a Swiss mathematician who worked primarily on geometry.
Steiner was obsessed with the isoperimetric theorem. He hated using algebra and analysis, and
he published five different, purely geometric proofs of the isoperimetric theorem. However, all
of his proofs were wrong—or at least incomplete—because he assumed that the isoperimetric
problem has a solution.

The mathematician Oskar Perron caricatured Steiner’s approach to the isoperimetric
theorem as follows.

Theorem 13.2.1. Among all closed curves in the plane with a given length, the circle encloses
the maximum area.

“Proof.” For any closed curve that is not a circle, there is a method (given by Steiner) that
increases the area enclosed by the curve while keeping the length constant. Therefore, the
circle has the greatest area among all closed curves.

To illustrate his complaint, Perron drew an analogy with another flawed argument:

“Theorem” 13.2.2. The number 1 is the greatest positive integer.

“Proof.” For any positive integer other than 1, there is a method (squaring) that increases
the integer. Therefore, 1 is the greatest integer.

The claim is obviously wrong. The main issue, of course, is that by squaring integers
over and over again, we do not obtain a convergent sequence with the limit 1. In contrast,
we can correct Steiner’s approach to the isoperimetric theorem by demonstrating that his
method generates a sequence of figures that converges to the circle.

Despite these flaws, Steiner’s geometric methods have enduring interest. Among them,
Steiner symmetrization and the four-hinge method are the most famous ones. In today’s
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Figure 13.1 (Steiner symmetrization). The Steiner symmetrization, stH(C), of the set C is symmetric
about the hyperplane H.

lecture, we will develop Steiner’s symmetrization method and show how it leads to a
complete proof of the isoperimetric inequality. The Blaschke selection theorem furnishes the
convergence claim, which allows us to avoid Steiner’s pitfall.

13.3 Steiner Symmetrization
Steiner symmetrization is a method for decreasing the surface area of a set while preserving
its volume. In our treatment, we focus on the convex case, although the idea has wider
currency.

Definition 13.3.1 (Steiner symmetrization). Let C ⊂ R𝑑 be a nonempty convex body, and let
H ⊂ R𝑑 be a hyperplane. Let L be the line normal to H that passes through the origin. The
Steiner symmetrization of C with respect to H is denoted as stH(C). We construct stH(C) by
taking each nonempty segment C ∩ (L + 𝑥) with 𝑥 ∈ H and sliding it down the line L + 𝑥
until the midpoint of the segment is located at 𝑥 ∈ H. Algebraically,

stH(C) :=
{︂

𝑥 + 𝑙 ∈ R𝑑 : 𝑥 ∈ H, 𝑙 ∈ L, ‖𝑙‖2 ≤ 1
2 length (C ∩ (L + 𝑥))

}︂
.

See Figure 13.1 for an illustration.

13.3.1 Properties of the Steiner Symmetrization
Steiner symmetrization has a number of remarkable properties. The following result collects
the ones that we will need, but there are others.

Proposition 13.3.2 (Steiner symmetrization). Let H ⊂ R𝑑 be an arbitrary hyperplane. For
legibility, we write st(·) in place of stH(·). For convex bodies C,K ⊂ R𝑑, the operation of
Steiner symmetrization...
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1. Preserves containment. If C ⊂ K, then st(C) ⊂ st(K).
2. Preserves dilations. For 𝜆 ≥ 0, we have st(𝜆C) = 𝜆 st(C) + 𝑥0 for some 𝑥0 ∈ R𝑑.
3. Preserves convexity. The symmetrization st(C) is a convex body.
4. Reduces Minkowski sums. The symmetrization st(C + K) ⊃ st(C) + st(K) + 𝑥0 for some

𝑥0 ∈ R𝑑.
5. Preserves volume. The volume Vol𝑑(st(C)) = Vol𝑑(C).
6. Decreases surface area. The surface area 𝑆𝑑−1(st(C)) ≤ 𝑆𝑑−1(C).
7. Is continuous on proper bodies. st(·) is Hausdorff continuous on the class of convex bodies

with positive volume.

Proof. Items 1 and 2 are left as an easy exercise. Let us establish the remaining results.

3. Convexity. Let 𝑥,𝑦 ∈ st(C), and let L be the line normal to H that passes through the
origin. Consider the trapezoid

T = conv{(C ∩ (L + 𝑥)) ∪ (C ∩ (L + 𝑦))}.

(Draw a picture!) Then the symmetrization st(T) is also a convex trapezoid, and
𝑥,𝑦 ∈ st(T). Thus, the line segment [𝑥,𝑦] with endpoints 𝑥 and 𝑦 satisfies

[𝑥,𝑦] ⊂ st(T) ⊂ st(C),

where the first inclusion follows from the convexity of st(T), and the second inclusion
follows from Property 1. The proof of compactness is left as an exercise.

4. Minkowski sums. Without loss of generality, assume that H contains the origin, and let
𝑥 ∈ st(C) and 𝑦 ∈ st(K). We write

𝑥 = 𝑔 + 𝑙 and 𝑦 = ℎ + 𝑚 where 𝑔,ℎ ∈ H and 𝑙,𝑚 ∈ L.

By definition of Steiner symmetrization,

‖𝑙‖2 ≤ 1
2 length(C ∩ (L + 𝑥)) and ‖𝑚‖2 ≤ 1

2 length(K ∩ (L + 𝑦)).

We can bound the total length of the normal vectors by a short calculation:

‖𝑙 + 𝑚‖2 ≤ ‖𝑙‖2 + ‖𝑚‖2 (13.3.1)

≤ 1
2 length(C ∩ (L + 𝑥)) + 1

2 length(K ∩ (L + 𝑦))

= 1
2 length(C ∩ (L + 𝑥) + K ∩ (L + 𝑦)) (13.3.2)

= 1
2 length((C − 𝑥) ∩ L + (K − 𝑦) ∩ L)

≤ 1
2 length((C + K − 𝑥 − 𝑦) ∩ L) (13.3.3)

= 1
2 length((C + K) ∩ (L + 𝑥 + 𝑦)).
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The first line (13.3.1) is just the triangle inequality. Step (13.3.2) follows from the fact
that the the length of the sum of two parallel line segments is the sum of the lengths
of the line segments. Last, (13.3.3) holds because (A ∩ C) + (B ∩ C) ⊂ (A + B) ∩ C.
The remaining steps follow from elementary geometric reasoning.
We obviously have

𝑥 + 𝑦 = (𝑔 + ℎ) + (𝑙 + 𝑚) where 𝑔 + ℎ ∈ C + K and 𝑙 + 𝑚 ∈ L.

The preceding argument implies that 𝑥 + 𝑦 ∈ st(C + K).
5. Volume. This property follows instantly from the Cavalieri’s principle, which states that

two bodies have the same volume if their sections have the same volume. Equivalently,
we can compute the volume by writing down the integral and applying Fubini’s theorem.

6. Surface area. By Property 4, we have

st(C + 𝜀B𝑑) ⊃ st(C) + st(B𝑑) = st(C) + B𝑑.

The Minkowski surface area formula, given in Lecture 12 (Definition 3.1), yields

𝑆𝑑−1(st(C) = lim
𝜀↓0

Vol𝑑(st(C) + 𝜀B𝑑) − Vol𝑑(st(C))
𝜀

≤ lim
𝜀↓0

Vol𝑑(st(C + 𝜀B𝑑)) − Vol𝑑(st(C))
𝜀

= lim
𝜀↓0

Vol𝑑(C + 𝜀B𝑑) − Vol𝑑(C)
𝜀

= 𝑆𝑑−1(C).

The inequality is an immediate consequence of the inclusion in the preceding display.
7. Continuity. Let C𝑗 be convex bodies with positive volume such that C𝑗 → C. Without

loss of generality, assume that 0 ∈ int(C) and that H passes through 0. Under these
assumptions, Hausdorff convergence is equivalent to the condition that, for every 𝜀 > 0
and large enough 𝑗,

(1 − 𝜀)C ⊂ C𝑗 ⊂ (1 + 𝜀)C.

By Property 1, it follows that

(1 − 𝜀) st(C) ⊂ st(C𝑗) ⊂ (1 + 𝜀) st(C).

Since 0 ∈ st(C), this condition is equivalent to the limit st(C𝑗) → st(C).

This completes the argument.

13.4 The Isoperimetric Inequality via Symmetrization
It is intuitive that repeated symmetrization of a convex body can generate a sequence that
converges to a Euclidean ball. This result is called the sphericity theorem, and it was
established by Gross in 1917. We will state the result formally, and then show how it implies
the isoperimetric inequality.
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Theorem 13.4.1 (Gross sphericity). Let C ∈ R𝑑 be a convex body with positive volume and
let Steiner(C) denote the set of all the convex bodies obtained from C by a finite number
of successive Steiner symmetrizations through hyperplanes containing the origin. Then
Steiner(C) contains a sequence that converges to a scaled Euclidean ball.

The proof of Theorem 13.4.1 appears below in Section 13.5.
To establish the isoperimetric inequality, we rely on an easy corollary of the sphericity

theorem. This result also depends on the fact that symmetrization preserves volume.

Corollary 13.4.2. There is a sequence of hyperplanes H1,H2,H3, . . . through the origin for
which

stH𝑗 stH𝑗−1 . . . stH1(C) →
(︂

Vol𝑑(C)
Vol𝑑(B𝑑)

)︂1/𝑑

B𝑑.

With Corollary 13.4.1 at hand, we can prove a version of the isoperimetric inequality for
convex bodies.

Corollary 13.4.3 (Isoperimetric inequality). For a convex body C ⊂ R𝑑 with positive volume,(︂
𝑆𝑑−1(C)
𝑆𝑑−1(B𝑑)

)︂1/(𝑑−1)
≥
(︂

Vol𝑑(C)
Vol𝑑(B𝑑)

)︂1/𝑑

.

Proof. Let H1,H2,H3, . . . be the sequence of hyperplanes guaranteed by Corollary 13.4.2.
By Property 6 of Steiner symmetrization,

𝑆𝑑−1(C) ≥ 𝑆𝑑−1(stH1(C)) ≥ · · · ≥ 𝑆𝑑−1(stH𝑗 . . . stH1(C)) ≥ · · · .

Passing to the limit,

𝑆𝑑−1(C) ≥ 𝑆𝑑−1

(︃(︂
Vol𝑑(C)
Vol𝑑(B𝑑)

)︂1/𝑑

B𝑑

)︃
=
(︂

Vol𝑑(C)
Vol𝑑(B𝑑)

)︂(𝑑−1)/𝑑

𝑆𝑑−1(B𝑑).

We have used the continuity of the Minkowski surface area 𝑆𝑑−1.

13.5 Proof of the Sphericity Theorem of Gross
We continue with the proof of Theorem 13.4.1. For a convex body K ⊂ R𝑑, we define the
radius of the smallest origin-centered ball that contains the body:

𝜚(K) := inf{𝜆 ≥ 0 : K ⊂ 𝜆B𝑑}.

Let 𝜚∞ be the minimum radius of a ball that contains an element of Steiner(C):

𝜚∞ = inf{𝜚(K) : K ∈ Steiner(C)}.

By Property 1 of Steiner symmetrization, the set Steiner(C) is bounded in Hausdorff
metric. Therefore, by Blaschke’s selection theorem, there exists a convergent sequence
{K𝑗 : 𝑗 ∈ N} ⊂ Steiner(C) with the properties that

K𝑗 → K∞ and 𝜚∞ = lim
𝑗→∞

𝜚(K𝑗) = 𝜚(K∞).
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Figure 13.2 (Proof of the sphericity theorem). Assume that there exists a spherical cap S that does
not intersect K∞. When we apply Steiner symmetrization, the reflection 𝑅H(S) does not
intersect stH(C).

We have used the continuity of the radius 𝜚 to obtain the last identity.
The set K∞ is contained in the ball 𝜚∞B𝑑. For the sake of contradiction, suppose that

K∞ is a proper subset of 𝜚∞B𝑑. Since K∞ is a convex body, there exists a nondegenerate
spherical cap S ⊂ 𝜚∞S𝑑−1 that does not meet the set: S ∩ K∞ = ∅. (Recall that a spherical
cap is the intersection of a Euclidean ball with the sphere, and nondegeneracy means that
the cap is neither empty nor a single point.) We will argue that it is possible to symmetrize
the set K∞ repeatedly to ensure that it does not touch the sphere 𝜚∞S𝑑−1 anywhere.

In the sequel, every hyperplane H will be understood to contain the origin. Define 𝑅H(·)
to be the reflection with respect to a hyperplane H. For every hyperplane H,

S ∩ stH(K∞) = ∅ and 𝑅H(S) ∩ stH(K∞) = ∅.

See Figure 13.2 for an illustration. By compactness of the sphere, we can cover 𝜚∞S𝑑−1 with
the reflections of the spherical cap S in a finite number of hyperplanes. Therefore, we can
find a finite list H1, . . . ,H𝑚 of hyperplanes with the property that

𝜚∞S𝑑−1 ⊂
⋃︁𝑚

𝑖=1
𝑅H𝑖

(S).

Use these hyperplanes to define the successive symmetrization st⋆ := stH𝑚
stH𝑚−1 . . . stH1 .

Now, this discussion ensures that

𝜚∞S𝑑−1 ∩ st⋆(K∞) = ∅.

Therefore, st⋆(K∞) ⊂ int(𝜚∞B𝑑). Since the set st⋆(K∞) is compact,

𝜚(st⋆(K∞)) < 𝜚∞.

For each index 𝑗, define the proper convex body C𝑗 := st⋆(K𝑗) ∈ Steiner(C). By the definition
of 𝜚∞, we have 𝜚(C𝑗) ≥ 𝜚∞ for each index 𝑗. Continuity of the symmetrization operator
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implies that

lim
𝑗→∞

C𝑗 = lim
𝑗→∞

st⋆(K𝑗) = st⋆(K∞).

Since the radius 𝜚 is continuous, this identity implies that

𝜚∞ ≤ lim
𝑗→∞

𝜚(C𝑗) = 𝜚(st⋆(K∞)) < 𝜚∞.

This is a blatant contradiction.
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14.1 Agenda for Lecture 14
This lecture introduces the theory of ellipsoids, which are the affine images of the Euclidean
unit ball. We consider the problem of approximating a convex body by the maximum-
volume ellipsoid that can be inscribed inside the body. Every convex body admits an affine
transformation where the maximum-volume ellipsoid is the Euclidean ball. We will develop
a characterization of convex bodies that are subject to this normalization. Finally, we give a
simple application of this result to Banach space geometry. In the next lecture, we will use
these tools (and more) to obtain a reversed form of the isoperimetric inequality.

Here is a summary of the topics:

1. Affine classes.
2. Ellipsoids
3. The John ellipsoid
4. Characterization of John’s position
5. Equivalence of norms

14.2 The Affine Class of a Convex Body
Convex bodies are a diverse club. Some are pointy, some have lots of facets, some are very
thin, some are very thick. See Figure 14.1 for examples.

rectangle square

ellipsoid circle

affine
transformation

affine
transformation

Figure 14.1 (Affine transformations of convex bodies). Some examples of convex bodies and their
affine images.
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B𝑑 R2

R3

Figure 14.2 (Examples of ellipsoids). The first two ellipsoids are nondegenerate Euclidean balls in
R2. The third is a degenerate ellipsoid in R3.

We can go from the figures on the left to the figures on the right (and vice versa) by
means of an affine transformation. The figures on the right have a larger volume relative to
their surface area than the ones on the left. We will be interested in affine transformations,
like these, that improve the isoperimetric ratio.

A nondegenerate affine transformation preserves some basic geometric features of a convex
body, including convexity and boundary structure. Therefore, it is sometimes appropriate
to group all of the (nondegenerate) affine images of a convex body into an equivalence class.

14.3 Ellipsoids
We begin our treatment of affine families of convex bodies with the most basic example:
ellipsoids. As usual, let B𝑑 ⊂ R𝑑 be the Euclidean unit ball, centered at the origin.

Definition 14.3.1 (Ellipsoid). An ellipsoid E is an affine image of the Euclidean ball B𝑑:

E = 𝑇 B𝑑 + 𝑎

where 𝑇 : R𝑑 → R𝑑 is a linear map and the point 𝑎 ∈ R𝑑 is called the center of the ellipsoid.
We say that the ellipsoid is nondegenerate when the linear map 𝑇 is nonsingular, in which
case dim E = 𝑑. See Figure 14.2 for an illustration.

Fix a nondegenerate ellipsoid E = 𝑇 B𝑑 + 𝑎. We can write

E =
{︀

𝑥 ∈ R𝑑 : ⟨𝑇 −1(𝑥 − 𝑎), 𝑇 −1(𝑥 − 𝑎)⟩ ≤ 1
}︀

This expression can be rewritten again in the form

E =
{︀

𝑥 ∈ R𝑑 : ⟨𝑃 (𝑥 − 𝑎), 𝑥 − 𝑎⟩ ≤ 1
}︀

where the matrix 𝑃 := (𝑇 𝑇 *)−1 is positive definite.
Since 𝑇 is nonsingular, we can introduce the eigenvalue factorization 𝑇 𝑇 * = 𝑄Λ2𝑄*.

The matrix 𝑄 is orthogonal with columns 𝑞1, . . . , 𝑞𝑑. The matrix Λ = diag(𝜆1, . . . , 𝜆𝑑) is
positive definite. Changing variables, we have

E =
{︀

𝑥 ∈ R𝑑 : ⟨𝑄Λ−2𝑄*(𝑥 − 𝑎), 𝑥 − 𝑎⟩ ≤ 1
}︀

=
{︂

𝑥 ∈ R𝑑 :
∑︁𝑑

𝑖=1
𝜆−2

𝑖 ⟨𝑞𝑖, 𝑥 − 𝑎⟩2 ≤ 1
}︂
,
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𝑞2

𝑞1

E

E∘

𝜆2
2𝜆2

1

Figure 14.3 (Ellipsoids and eigenvalue factorizations). The ellipsoid E has semiaxes in the directions
of unit eigenvectors 𝑞1 and 𝑞2 with lengths corresponding to 𝜆2

1 and 𝜆2
2, respectively. The

semiaxes of the polar ellipsoid E∘ have the same directions 𝑞1 and 𝑞2 and the reciprocal lengths
𝜆−2

1 and 𝜆−2
2 .

We can interpret the eigenvectors 𝑞𝑖 and the squares of the eigenvalues 𝜆2
𝑖 of the matrix

𝑇 𝑇 * as the directions and lengths of the semiaxes of E. See Figure 14.3.
We can easily compute the volume of the ellipsoid in terms of the eigenvalues:

Vol𝑑(E) = Vol𝑑(𝑇 B𝑑) = | det 𝑇 | · Vol𝑑(B𝑑)

=
(︂∏︁𝑑

𝑖=1
𝜆𝑖

)︂
Vol𝑑(B𝑑) =

(︂∏︁𝑑

𝑖=1
𝜆2

𝑖

)︂1/2
Vol𝑑(B𝑑). (14.3.1)

The first identity holds because volume is translation invariant, and the second follows the
change of variables formula. We have taken the last step for our later convenience.

The representation of a nondegenerate ellipsoid E = 𝑇 B𝑑 + 𝑎 in terms of an affine map
is not unique. To remove the extra degrees of freedom, consider the polar decomposition
𝑇 = 𝑆𝑈 where 𝑆 is positive definite and 𝑈 is orthogonal. Then

E = (𝑆𝑈)B𝑑 + 𝑎 = 𝑆(𝑈B𝑑) + 𝑎 = 𝑆B𝑑 + 𝑎.

The latter representation of the ellipsoid with a positive-definition matrix 𝑆 is unique.
In the sequel, we will focus on origin-symmetric ellipsoids, which take the form

E =
{︀

𝑥 ∈ R𝑑 : ⟨𝑃 𝑥, 𝑥⟩ ≤ 1
}︀

where 𝑃 is positive definite.

In this case, we can easily obtain a formula for the polar ellipsoid:

E∘ =
{︀

𝑥 ∈ R𝑑 : ⟨𝑃 −1𝑥, 𝑥⟩ ≤ 1
}︀

=
{︂

𝑥 ∈ R𝑑 :
∑︁𝑑

𝑖=1
𝜆2

𝑖 ⟨𝑞𝑖, 𝑥⟩2 ≤ 1
}︂
. (14.3.2)

As before, 𝑃 −1 = 𝑄Λ2𝑄*. The proof is an exercise.
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Figure 14.4 (Maximum volume ellipsoid). The maximum volume ellipsoid contained in each of two
simple convex bodies.

14.4 The John Ellipsoid
In this section, we study an extremal problem involving ellipsoids and convex bodies: What
is the “largest” ellipsoid contained inside a nondegenerate convex body C in R𝑑? We will
quantify the size of the ellipsoid in terms of its volume. This leads to the formulation

max{Vol𝑑(E) : E ⊂ C and E an ellipsoid}.

We will solve a simplified version of this problem and characterize convex bodies for which
the solution is the Euclidean ball. See Figure 14.4 for examples of convex bodies along with
their associated maximum volume ellipsoids.

From now on, we will restrict our attention to a norm ball K ⊂ R𝑑. That is, K is

∙ origin-symmetric (K = −K),
∙ a convex body, and
∙ contains 0 ∈ int K. Equivalently, dim K = 𝑑.

For a norm ball, the maximum-volume ellipsoid must be an origin-centered ellipsoid because
it inherits the symmetries of K. This is left as an exercise for the reader.

We now prove a basic existence and uniqueness result about maximum-volume ellipsoids.

Theorem 14.4.1 (Löwner–John). Let K ⊂ R𝑑 be a norm ball. Among all ellipsoids E ⊂ K, there
is a unique ellipsoid of maximum volume.

For the proof, we need an important inequality from matrix theory.

Fact 14.4.2 (Minkowski determinant theorem). The function 𝐴 ↦→ log det A is strictly concave on
positive-definite matrices, modulo lines. More precisely, for positive-definite matrices 𝑃 ,𝑆,
we have the inequality

log det
(︀ 1

2 (𝑃 + 𝑆)
)︀

≥ 1
2 (log det 𝑃 + log det 𝑆).

Equality holds if and only if 𝑃 = 𝜆𝑆 for some 𝜆 > 0.

Proof sketch. By factorization, we can reduce to the case where 𝑃 = I:

det
(︀ 1

2 (𝑃 + 𝑆)
)︀

= det(𝑃 ) · det
(︁

1
2 (I + 𝑃 −1/2𝑆𝑃 −1/2)

)︁
=: det(𝑃 ) · det

(︀ 1
2 (I + 𝐴)

)︀
.

We bound the latter determinant as follows.

det
(︀ 1

2 (I + 𝐴)
)︀

=
∏︁𝑑

𝑖=1
1
2 (1 + 𝑎𝑖) ≥

(︂
1 +

∏︁𝑑

𝑖=1
𝑎𝑖

)︂1/2
= (det(I) + det(𝐴))1/2

.
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The inequality is an elementary numerical bound. Combine the displays and rewrite in
terms of 𝑆 and 𝑃 .

With this inequality at hand, we can establish the Löwner–John theorem.

Proof of the Löwner–John Theorem. First, we establish the existence of a maximizing el-
lipsoid. Recall that we can parameterize ellipsoids uniquely as E = 𝑆B𝑑 where 𝑆 is a
positive-semidefinite matrix. Note that we are allowing degenerate cases. Introduce the set
of ellipsoids included in the norm ball K:

ℰ := {𝑆 ∈ R𝑑×𝑑 is psd : 𝑆B𝑑 ⊂ K}.

Since K is compact, this set of matrices is also compact. Next, observe that the map
𝑆 ↦→ Vol𝑑(𝑆B𝑑) is continuous. Therefore, it achieves its maximum on ℰ , say at 𝑆⋆. Finally,
note that the optimizer 𝑆⋆ is actually positive definite. Indeed, if 𝑆⋆ is singular, then
Vol𝑑(𝑆⋆B𝑑) = 0. This cannot happen because 0 ∈ int K, which implies that K contains a
ball with positive volume.

Next, we show that the maximizing ellipsoid is unique. Suppose that E1 = 𝑆1B𝑑 and
E2 = 𝑆2B𝑑 are different maximum-volume ellipsoids that are contained in K. The ellipsoids
have the same volume, so det 𝑆1 = det 𝑆2. As a consequence, 𝑆1 ̸= 𝜆𝑆2 for any scalar 𝜆.

Now, consider the average of the two ellipsoids:

E′ := 1
2 (𝑆1 + 𝑆2)B𝑑 = 1

2 (E1 + E2) ⊂ K.

In other words, E′ is an ellipsoid that is contained in the convex set K. Let us estimate the
volume of the ellipsoid E′. In light of the volume computation (14.3.1),

Vol𝑑(E′) =
⃒⃒
det( 1

2 𝑆1 + 1
2 𝑆2)

⃒⃒
· Vol𝑑(B𝑑)

> (det 𝑆1)1/2(det 𝑆2)1/2 · Vol𝑑(B𝑑)
= max{Vol𝑑(E1),Vol𝑑(E2)}.

Fact 14.4.2 produces a strict inequality because 𝑆1 and 𝑆2 are not on a line. The last
relation holds because det 𝑆1 = det 𝑆2. We arrive at a contradiction.

We have shown that every norm ball contains a unique maximum-volume ellipsoid, which
is known as the John ellipsoid. By a similar argument, every norm ball is contained in a
unique minimum-volume ellipsoid, which is known as the Löwner ellipsoid. We focus on
John ellipsoids in our discussion.

An important property of John ellipsoids is that they are affine covariant. If E is
the maximum-volume ellipsoid of K and 𝑆 is a positive-definite matrix, then 𝑆E is the
maximum-volume ellipsoid of 𝑆K. This is an easy exercise.

Suppose that K is a norm ball with John ellipsoid E = 𝑆B𝑑, where 𝑆 is positive definite.
It follows that the affine image K̃ = 𝑆−1K is a norm ball whose John ellipsoid is the Euclidean
ball B𝑑. Thus, every norm ball has a (unique) affine image whose John ellipsoid is the
Euclidean ball. See Figure 14.5. This observation motivates a definition.

Definition 14.4.3 (John’s position). A norm ball K is in John’s position if its maximum-volume
ellipsoid is the Euclidean ball.

To summarize, we have shown that every norm ball has a (unique) affine image in John’s
position.
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affine
transformation

K K̃

Figure 14.5 (John’s position). The affine transformation taking a convex body K and its maximum-
volume ellipsoid to John’s position. In John’s position, the maximum volume ellipsoid is just
the Euclidean ball B𝑑.

Figure 14.6 (Contact points). A convex body in John’s position along with four contact points.

14.5 Characterization of John’s Position
Out next goal is to obtain a characterization of norm balls in John’s position.

Theorem 14.5.1 (John’s Characterization). Let K ⊂ R𝑑 be a norm ball with B𝑑 ⊂ K. The
following are equivalent:

1. K has B𝑑 as its maximum-volume ellipsoid. That is, K is in John’s position.
2. There are unit vectors 𝑢1, . . . ,𝑢𝑚 ∈ B𝑑 ∩ bd K and positive weights 𝛼1, . . . , 𝛼𝑚 > 0

such that ∑︁𝑚

𝑖=1
𝛼𝑖 𝑢𝑖𝑢

*
𝑖 = I𝑑 and

∑︁𝑚

𝑖=1
𝛼𝑖 = 𝑑. (14.5.1)

The number 𝑚 of contact points can be chosen with 𝑑 ≤ 𝑚 ≤
(︀

𝑑+1
2
)︀

+ 1.

The unit vectors 𝑢𝑖 in the theorem statement are called contact points. They are
chosen from among the locations where the inscribed ball B𝑑 touches the boundary of K, as
illustrated in Figure 14.6. The first equation in (14.5.1) requires that the contact points be
spread out over the sphere, and they cannot cluster too close to a subspace. The second
equation in (14.5.1) is just the trace of the first condition.

It also is clear that, for a norm ball K, can require that the antipode of a point −𝑢𝑖 be
included along with the point 𝑢𝑖. This observation will play a role in the next lecture.

We begin the argument with a simple geometric lemma.

Lemma 14.5.2 (Supporting hyperplane at a contact point). Instate the notation of Theorem 14.5.1.
For each index 𝑖, the hyperplane {𝑥 ∈ R𝑑 : ⟨𝑢𝑖, 𝑥⟩ = 1} supports the norm ball K at the
point 𝑢𝑖.

Proof. Since 𝑢𝑖 ∈ bd K, there is a supporting hyperplane H = {𝑥 : ⟨𝑣, 𝑥⟩ ≤ 1} to K at
the point 𝑢𝑖. It must be the case that 𝑣 has unit norm because 𝑢𝑖 has unit norm. Since
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B𝑑 ⊂ K, the hyperplane H also supports B𝑑 at 𝑢𝑖. But the only supporting hyperplane to
the Euclidean ball at the point 𝑢𝑖 has the unit normal 𝑢𝑖. Thus 𝑣 = 𝑢𝑖.

Let us continue with the proof of the characterization theorem.

Proof of John’s Characterization. First, we establish that the second condition implies the
first condition. Construct an inscribed ellipsoid

E =
{︂

𝑥 ∈ R𝑑 :
∑︁𝑑

𝑖=1
𝜆−2

𝑖 ⟨𝑞𝑖, 𝑥⟩2 ≤ 1
}︂

⊂ K.

We need to show that
∏︀𝑑

𝑖=1 𝜆𝑖 ≤ 1 with equality if and only if 𝜆𝑖 = 1 for 𝑖 = 1, . . . , 𝑑.
In view of (14.3.1) and the general discussion of ellipsoids, this condition ensures that
Vol𝑑(E) = Vol𝑑(B𝑑) with equality if and only if E = B𝑑.

According to Lemma 14.5.2, the hyperplane {𝑥 : ⟨𝑢𝑗 , 𝑥⟩ = 1} supports the set K at the
point 𝑢𝑗 . Since E ⊂ K, we also have the relation ⟨𝑢𝑗 , 𝑥⟩ ≤ 1 for all 𝑥 ∈ K. In particular,
𝑢𝑗 ∈ E∘. Using the expression (14.3.2) for the polar ellipsoid, we see that∑︁𝑑

𝑖=1
𝜆2

𝑖 ⟨𝑞𝑖, 𝑢𝑗⟩2 ≤ 1.

The assumption in condition 2. yields∑︁𝑑

𝑗=1
𝛼𝑗

∑︁𝑑

𝑖=1
𝜆2

𝑖 ⟨𝑞𝑖, 𝑢𝑗⟩2 ≤
∑︁𝑚

𝑗=1
𝛼𝑗 = 𝑑.

Exchanging the order of the sums,∑︁𝑑

𝑖=1
𝜆2

𝑖

∑︁𝑚

𝑗=1
𝛼𝑗⟨𝑞𝑖, 𝑢𝑗⟩2 =

∑︁𝑑

𝑖=1
𝜆2

𝑖 ‖𝑞𝑖‖2 =
∑︁𝑑

𝑖=1
𝜆2

𝑖 ≤ 𝑑.

The second relation is an easy consequence of the first equation in (14.5.1), and the last
relation holds because the eigenvectors 𝑞𝑖 have unit norm. By the AM–GM inequality,(︂∏︁𝑑

𝑖=1
𝜆2

𝑖

)︂1/𝑑

≤ 1
𝑑

∑︁𝑑

𝑖=1
𝜆2

𝑖 ≤ 1.

Moreover, all the inequalities hold with equality precisely when 𝜆2
𝑖 = 1 for 𝑖 = 1, . . . , 𝑑. This

is the required result.
Next, we take up the more challenging proof that the first condition implies the second.

Assume that B𝑑 is the maximum-volume ellipsoid of K. We need to show that there
are contact points 𝑢1, . . . ,𝑢𝑚 ∈ B𝑑 ∩ bd K and weights 𝛼1, . . . , 𝛼𝑚 > 0 that satisfy the
condition (14.5.1).

It suffices to prove that

𝑑−1I𝑑 ∈ conv{𝑢𝑢* : 𝑢 ∈ B𝑑 ∩ bd K} =: C ⊂ H𝑑.

We have written H𝑑 for the real-linear space of 𝑑× 𝑑 symmetric matrices, equipped with the
trace inner product ⟨𝐻, 𝐴⟩ := trace(𝐻𝐴). The dimension of the linear space is

(︀
𝑑+1

2
)︀
, so

we can invoke Carathéodory’s theorem to obtain a set of at most 𝑚 =
(︀

𝑑+1
2
)︀

+ 1 contact
points that satisfy the condition of the theorem.
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To the contrary, assume that 𝑑−1I𝑑 /∈ C. Since B𝑑 ∩ bd K is a compact set, the set C is
compact and convex. Thus, there exists a linear functional on H𝑑 that properly separates
𝑑−1I from C. In other terms, there is a matrix 𝐻 ∈ H𝑑 such that

⟨𝐻, 𝑑−1I𝑑⟩ < ⟨𝐻, 𝑢𝑢*⟩ for each 𝑢 ∈ B𝑑 ∩ bd K.

Equivalently,
𝑑−1 trace 𝐻 < 𝑢*𝐻𝑢 for each 𝑢 ∈ B𝑑 ∩ bd K.

Since trace(𝑑−1I𝑑) = 1 = trace(𝑢𝑢*), we can add a scaled identity matrix to 𝐻 to ensure
that trace 𝐻 = 0 without affecting the separation inequalities. In summary,

0 < 𝑢*𝐻𝑢 for each 𝑢 ∈ B𝑑 ∩ bd K.

From this condition, we will argue that it is possible to inscribe in K an ellipsoid with greater
volume that B𝑑.

For small 𝛿 > 0, consider the ellipsoid

E𝛿 :=
{︀

𝑥 ∈ R𝑑 : 𝑥*(I + 𝛿𝐻)𝑥 ≤ 1
}︀
.

It is clear that the matrix I + 𝛿𝐻 is positive definite, so this set is indeed an ellipsoid.
Observe that E𝛿 ≠ B𝑑 for any 𝛿 > 0. Moreover, no contact point 𝑢 ∈ B𝑑 ∩ bd K belongs to
the ellipsoid E𝛿:

𝑢*(I + 𝛿𝐻)𝑢 = 1 + 𝛿𝑢*𝐻𝑢 > 1.

It follows that the ellipsoid E𝛿 does not intersect the boundary bd K at any point because
the boundary is compact. Therefore, E𝛿 ⊂ K.

Now, let us show that Vol𝑑(E𝛿) ≥ Vol𝑑(B𝑑). To do so, we simply observe that

det(I + 𝛿𝐻)1/𝑑 ≤ 1
𝑑

trace(I + 𝛿𝐻) = 1 = det(I𝑑).

By the formula (14.3.1), we see that Vol𝑑(E𝛿) ≥ Vol𝑑(B𝑑). But the Euclidean ball is the
unique maximum-volume ellipsoid, so E𝛿 = B𝑑. This is a contradiction.

14.6 Equivalence of Norms
As a simple application of John’s characterization, let us prove one of the core results on the
geometry of finite-dimensional Banach spaces.

Theorem 14.6.1 (Equivalence of Norms). Let K ⊂ R𝑑 be a norm ball, and let E ⊂ K be the
maximum-volume inscribed ellipsoid. Then K ⊂

√
𝑑E.

Proof. By affine covariance, we may assume that K is in John’s position. Therefore, there
are contact points 𝑢𝑖 ∈ B𝑑 ∩ bd K and weights 𝛼𝑖 > 0 that satisfy John’s condition (14.5.1).
Let 𝑥 ∈ K. Lemma 14.5.2 implies that ⟨𝑢𝑖, 𝑥⟩ ≤ 1 for each contact point 𝑢𝑖. Therefore,

‖𝑥‖2 =
∑︁𝑚

𝑖=1
𝛼𝑖⟨𝑢𝑖, 𝑥⟩2 ≤

∑︁𝑑

𝑖=1
𝛼𝑖 = 𝑑.

It follows that 𝑥 ∈
√
𝑑B𝑑. This is the required result.
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For general culture, let us outline one of the main classical implications of this result.
First, we define a notion of distance between pairs of norms on R𝑑.

Definition 14.6.2 (Banach–Mazur distance). Let ‖ · ‖𝑎 and ‖ · ‖𝑏 be two norms on R𝑑. The
Banach–Mazur “distance” between the norms is defined in terms of the associated operator
norms:

𝛿(‖ · ‖𝑎, ‖ · ‖𝑏) := inf{‖𝑇 ‖𝑎→𝑏‖𝑇 −1‖𝑏→𝑎 : 𝑇 : R𝑑 → R𝑑 is nonsingular, linear}.

It can be shown that 𝛿 ≥ 1, with equality if and only if the two norms are equal. The
function log 𝛿 determines a metric on the family of norms on R𝑑. With this metric, the
norms on R𝑑 compose a compact metric space, called the Banach–Mazur compactum.

Theorem 14.6.1 implies that every norm on R𝑑 is within distance
√
𝑑 of the standard

Euclidean norm:
𝛿(‖ · ‖𝑎, ℓ

𝑑
2) ≤

√
𝑑.

As a consequence, all pairs of norms on R𝑑 lie within distance 𝑑 of each other:

𝛿(‖ · ‖𝑎, ‖ · ‖𝑏) ≤ 𝑑.

It is, perhaps, surprising that
𝛿(ℓ𝑑

1, ℓ
𝑑
∞) ≤ const ·

√
𝑑.

Nevertheless, in 1981, Gluskin proved that there are two norms that satisfy

𝛿(‖ · ‖𝑎, ‖ · ‖𝑏) ≥ const · 𝑑.

His proof constructs two realizations of a random polytope, and he shows that the two
polytopes are very far apart.
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15.1 Agenda for Lecture 15
In this lecture, we develop a reversed isoperimetric inequality. This result identifies the
convex body that has the maximum surface area at a given volume. To frame this question
properly, we need consider an affine-invariant formulation. We approach the problem via
Ball’s theorem, which identifies the cube as the norm ball with largest volume relative to
the volume of its inscribed ellipsoid. The proof of Ball’s theorem is based on an analytic
inequality, called the geometric Brascamp–Lieb inequality. In the last part of the lecture,
we prove the geometric Brascamp–Lieb inequality using a mass transportation argument
proposed by Barthe.

1. The reverse isoperimetric inequality
2. From Brascamp–Lieb to volume bounds
3. Brascamp–Lieb via mass transportation

15.2 The Reverse Isoperimetric Inequality
We first recall the isoperimetric inequality for convex bodies. For all convex bodies C ⊂ R𝑑,

𝑆𝑑−1(C)
Vol𝑑(C)(𝑑−1)/𝑑

≥ 𝑆𝑑−1(B𝑑)
Vol𝑑(B𝑑)(𝑑−1)/𝑑

.

The left-hand side of this expression is called the isoperimetric quotient of C, and it is
interpreted as dimensionless ratio of surface area to volume.

The isoperimetric inequality states that, among all convex bodies, the Euclidean ball has
the minimum isoperimetric quotient. It is natural to ask if there is a reversed isoperimetric
inequality: among all convex bodies C ⊂ R𝑑, which one(s) have the maximum isoperimetric
quotient? The question was initially raised in the 1930s. Unfortunately, this formulation
is not well-posed because convex sets can be “flattened” such that their volume remains
constant while their surface area grows unbounded, like a “pancake,” so the isoperimetric
quotient grows without bound.

To constrain the problem so that it is well posed, we only consider convex bodies in
John’s position. That is, we require that the maximum volume ellipsoid contained within
the body be the Euclidean ball. Recall that for any convex body C ⊂ R𝑑 with Vol𝑑(C) > 0,
there is an affine map 𝑇 such that 𝑇 (C) is in John’s position. Our approach is to identify
the maximum volume of a convex body in John’s position. This problem was solved by Ball
in 1991. For simplicity, we restrict our attention to norm balls in John’s position.

Theorem 15.2.1 (Ball, 1991). In R𝑑, among norm balls in John’s position, the cube

Q𝑑 := {𝑥 ∈ R𝑑 : ‖𝑥‖ℓ∞ ≤ 1}

has the maximum volume.
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We will prove Theorem 15.2.1 in Section 15.3. But first, let use state the reverse
isoperimetric inequality formally and explain why it is a corollary of Ball’s theorem.

Corollary 15.2.2 (Reverse isoperimetric inequality). Every norm ball K ⊂ R𝑑 has an affine image
K̃ such that

Vol𝑑(K̃) = Vol𝑑(Q𝑑) and 𝑆𝑑−1(K̃) ≤ 𝑆𝑑−1(Q𝑑).

This statement can be rewritten in terms of isoperimetric quotients:

inf
K̃

𝑆𝑑−1(K̃)
Vol𝑑(K̃)(𝑑−1)/𝑑

≤ 𝑆𝑑−1(Q𝑑)
Vol𝑑(Q𝑑)(𝑑−1)/𝑑

.

The infimum ranges over all affine images of all norm balls K ⊂ R𝑑. This implies that,
among all norm balls, the cube has the maximum surface area for a fixed volume once we
apply an affine transform that minimizes surface area.

Proof. A cube Q ⊂ R𝑑 is a dilation of the ℓ∞ ball Q𝑑. First, let us compute the isoperimetric
quotient of a cube Q. We have

𝑆𝑑−1(Q) = 2𝑑 · Vol𝑑(Q)(𝑑−1)/𝑑

because the cube has 2𝑑 facets and each facet is a cube of dimension 𝑑− 1 with the same
side length.

Let K ⊂ R𝑑 be a norm ball. To prove the theorem, we will find an affine transform K̃
such that

𝑆𝑑−1(K̃) ≤ 2𝑑 · Vol𝑑(K̃)(𝑑−1)/𝑑. (15.2.1)
To see why this is sufficient, observe that the cube Q with Vol𝑑(Q) = Vol𝑑(K̃) satisfies

𝑆𝑑−1(K̃) ≤ 2𝑑 · Vol𝑑(Q)(𝑑−1)/𝑑 = 𝑆𝑑−1(Q).

This is the reverse isoperimetric inequality.
Consider the affine image K̃ of the norm ball that is in John’s position; i.e., B𝑑 is the

maximum volume ellipsoid of K̃. Then

𝑆𝑑−1(K̃) = lim
𝜀 ↓ 0

Vol𝑑(K̃ + 𝜀B𝑑) − Vol𝑑(K̃)
𝜀

≤ lim
𝜀 ↓ 0

Vol𝑑((1 + 𝜀)K̃) − Vol𝑑(K̃)
𝜀

= 𝑑 · Vol𝑑(K̃).

The inequality holds because B𝑑 ⊂ K̃, and we have used convexity to combine the two
dilations of K̃. Furthermore,

𝑑 · Vol𝑑(K̃) = 𝑑 · Vol𝑑(K̃)1/𝑑 · Vol𝑑(K̃)(𝑑−1)/𝑑

≤ 𝑑 · Vol𝑑(Q𝑑)1/𝑑 · Vol𝑑(K̃)(𝑑−1)/𝑑

= 2𝑑 · Vol𝑑(K̃)(𝑑−1)/𝑑.

The first inequality follows from Ball’s Theorem, and the final equality holds because
Vol𝑑(Q𝑑) = 2𝑑. Combine the last two displays to obtain (15.2.1). This concludes the proof
of the claim.
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Remark 15.2.3 (The reversed isoperimetric theorem for general convex bodies). If the symmetry
assumption in Ball’s Theorem is removed, then the regular simplex has the maximum volume
among all convex bodies in John’s position. Furthermore, the regular simplex solves the
affine reverse isoperimetric problem among all convex bodies.

15.3 From Brascamp–Lieb to Volume Bounds
In this section, we explain how to derive Ball’s Theorem from an important analytic inequality,
called the geometric Brascamp–Lieb theorem. This result was established in a more general
form by Brascamp & Lieb in 1976; Ball observed that their result simplifies dramatically if
some of the parameters satisfy the condition that characterizes John’s position.

Theorem 15.3.1 (Brascamp & Lieb 1976; Ball 1991). Consider unit vectors 𝑢𝑖 ∈ R𝑑 and positive
weights 𝛼𝑖 > 0 for 𝑖 = 1, . . . ,𝑚 that satisfy John’s condition:∑︁𝑚

𝑖=1
𝛼𝑖 𝑢𝑖𝑢

*
𝑖 = I𝑑 and

∑︁𝑚

𝑖=1
𝛼𝑖 = 𝑑. (15.3.1)

For all nonnegative, integrable functions 𝑓𝑖 : R → R,∫︁
R𝑑

∏︁𝑚

𝑖=1
𝑓𝑖(⟨𝑢𝑖, 𝑥⟩)𝛼𝑖 d𝑥 ≤

∏︁𝑚

𝑖=1

(︂∫︁
R
𝑓𝑖(𝑡) d𝑡

)︂𝛼𝑖

. (15.3.2)

Equality is achieved when each 𝑓𝑖 is the same Gaussian function, such as

𝑓𝑖(𝑡) = e−𝜋𝑡2
for 𝑖 = 1, . . . ,𝑚.

The geometric Brascamp–Lieb inequality is very powerful. It contains familiar inequalities,
including the Hölder inequality, sharp Young inequalities for convolution, and a version of
the Loomis–Whitney projection inequality. There is also a reversed version, discussed on
the homework, that contains the Prékopa–Leindler inequality. We will prove Theorem 15.3.1
in the next section.

The geometric Brascamp–Lieb inequality is well suited for proving results about cubes.
Indeed, we can take the functions 𝑓𝑖 to be indicators of the unit interval (𝑓𝑖 = 1[−1,+1]).
Then the product on the right-hand side simplifies to the volume of a cube. As an example
of this type, let us show how Theorem 15.3.1 implies Ball’s theorem.

Proof of Theorem 15.2.1. Let K ⊂ R𝑑 be a norm ball, and assume that K is in John’s
Position. We need to show that

Vol𝑑(K) ≤ Vol𝑑(Q𝑑) = 2𝑑.

To do so, we use John’s theorem to construct an outer approximation of K whose volume is
easier to compute.

Since B𝑑 ⊂ K, by John’s theorem, there are symmetric contact points ±𝑢𝑖 ∈ B ∩ bd K
and positive weights 𝛼𝑖 > 0 for 𝑖 = 1, . . . ,𝑚 that satisfy (15.3.1). We define a bounded
polyhedron P via

P := {𝑥 ∈ R𝑑 : |⟨𝑢𝑖, 𝑥⟩| ≤ 1 for 𝑖 = 1, . . . ,𝑚}.
Note that K ⊂ P, as shown in Figure 15.1. Define the functions 𝑓𝑖 = 1[−1,+1], and observe
that the indicator of the polyhedron takes the form

1P(𝑥) =
∏︁𝑚

𝑖=1
1[−1,+1](⟨𝑢𝑖, 𝑥⟩) =

∏︁𝑚

𝑖=1
1[−1,+1](⟨𝑢𝑖, 𝑥⟩)𝛼𝑖 .
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u1

−u1

−u2 u2

K P

Bd

Figure 15.1 (Proof of Ball’s theorem). This figure illustrates a norm ball K (blue) in John’s position.
The Euclidean ball B𝑑 is the maximum-volume inscribed ellipsoid. The contact points ±𝑢𝑖

between K and B𝑑 are marked with arrows. The polyhedron P (blue and green) is the
intersection of the negative halfspaces that support the convex body K at the contact points
±𝑢𝑖.

Note that we can introduce the power of 𝛼𝑖 because the indicator function only assumes the
values 0 and 1.

We can use this expression to bound the volume of the set K. As K ⊂ P, we see that

Vol𝑑(K) ≤ Vol𝑑(P) =
∫︁
R𝑑

1P(𝑥) d𝑥

=
∫︁
R𝑑

∏︁𝑚

𝑖=1
1[−1,+1](⟨𝑢𝑖, 𝑥⟩)𝛼𝑖 d𝑥

≤
∏︁𝑚

𝑖=1

(︂∫︁
R𝑑

1[−1,+1](𝑡) d𝑡
)︂𝛼𝑖

=
∏︁𝑚

𝑖=1
2𝛼𝑖 = 2𝑑.

The second inequality is (15.3.2). At the last step, we have used the second part of John’s
condition. This calculation yields the desired fact that Vol𝑑(K) ≤ 2𝑑.

15.4 Brascamp–Lieb via Mass Transportation
We will establish Theorem 15.3.1 using a mass transportation argument developed by
Franck Barthe (1998). Extensions of this approach yield the equality conditions, have
higher-dimensional extensions, and imply the reversed geometric Brascamp–Lieb inequality.
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15.4.1 Consequences of John’s Condition
First, let us state a lemma that extracts the information we need from John’s condi-
tion (15.3.1).

Lemma 15.4.1 (Consequences of John’s condition). The assumption (15.3.1) implies the following
inequalities.

1. For all scalars 𝜃𝑖, if 𝑦 =
∑︀𝑚

𝑖=1 𝛼𝑖𝜃𝑖 𝑢𝑖, then ‖𝑦‖2 ≤
∑︀𝑚

𝑖=1 𝛼𝑖𝜃
2
𝑖 ·.

2. For each linear map 𝑇 on R𝑑,

det(𝑇 ) ≤
∏︁𝑚

𝑖=1
‖𝑇 𝑢𝑖‖𝛼𝑖 .

3. For all scalars 𝜃𝑖 > 0,

det
(︁∑︁𝑚

𝑖=1
𝜃𝑖𝛼𝑖 𝑢𝑖𝑢

*
𝑖

)︁
≥
∏︁𝑚

𝑖=1
𝜃𝛼𝑖

𝑖 .

The proof of the third statement in the lemma requires a variational representation of
the determinant. This type of formula is sometimes called quasi-linearization in the matrix
analysis literature.

Fact 15.4.2 (Variational representation of determinant). Let 𝐴 ∈ R𝑑×𝑑 be a positive-definite matrix.
Then

(det 𝐴)1/𝑑 = min
{︂

1
𝑑

trace(𝑇 𝐴) : det 𝑇 = 1 and 𝑇 is positive definite
}︂
.

For completeness, we will establish this fact in a moment. But first, let us prove
Lemma 15.4.1.

Proof of Lemma 15.4.1. To establish the first statement, define the matrix 𝑈 with columns
𝑢𝑖, the diagonal matrix 𝐴2 = diag(𝛼1, . . . , 𝛼𝑚), and the vector 𝜃 = (𝜃1, . . . , 𝜃𝑚). The usual
operator norm inequality implies

‖𝑦‖2 = ‖𝑈𝐴2𝜃‖2 ≤ ‖𝑈𝐴‖2‖𝐴𝜃‖2.

The first term equals 1:

‖𝑈𝐴‖2 = ‖𝑈𝐴2𝑈*‖ =
⃦⃦⃦∑︁𝑚

𝑖=1
𝛼𝑖 𝑢𝑖𝑢

*
𝑖

⃦⃦⃦
= ‖I𝑑‖ = 1.

The second term can be expanded as

‖𝐴𝜃‖2 =
∑︁𝑚

𝑖=1
𝛼𝑖𝜃

2
𝑖 .

Combine the last three displays to obtain the result.
To obtain the second result, we may assume that 𝑇 is positive semidefinite without loss

of generality. Let 𝑇 =
∑︀𝑑

𝑗=1 𝜆𝑖𝑞𝑗𝑞*
𝑗 be an eigenvalue decomposition. Then

‖𝑇 𝑢𝑖‖2 =
∑︁𝑑

𝑗=1
𝜆2

𝑗 ⟨𝑞𝑗 , 𝑢𝑖⟩2 ≥
∏︁𝑑

𝑗=1
𝜆

2⟨𝑞𝑗 , 𝑢𝑖⟩2

𝑗 .
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We have used the AM–GM inequality, as a privilege of the fact
∑︀

𝑗⟨𝑞𝑗 , 𝑢𝑖⟩2 = 1, which
holds because the eigenvectors compose an orthonormal basis. It follows that∏︁𝑚

𝑖=1
‖𝑇 𝑢𝑖‖𝛼𝑖 ≥

∏︁𝑚

𝑖=1

∏︁𝑑

𝑗=1
𝜆

𝛼𝑖⟨𝑞𝑗 , 𝑢2
𝑖 ⟩

𝑗

=
∏︁𝑑

𝑗=1
𝜆

∑︀𝑚

𝑖=1
𝛼𝑖⟨𝑞𝑗 , 𝑢𝑖⟩2

𝑗 =
∏︁𝑑

𝑗=1
𝜆𝑗 = det 𝑇 .

We have used John’s condition (15.3.1) at the second-to-last step, along with the fact that
the eigenvectors have unit norm.

Last, we dualize the second result to obtain the third inequality. According to Fact 15.4.2,
there is a matrix 𝑇 *𝑇 with determinant 1 that satisfies

det
(︁∑︁𝑚

𝑖=1
𝜃𝑖𝛼𝑖 𝑢𝑖𝑢

*
𝑖

)︁1/𝑑

= 1
𝑑

trace
(︁∑︁𝑚

𝑖=1
𝜃𝑖𝛼𝑖 (𝑇 𝑢𝑖)(𝑇 𝑢𝑖)*

)︁
=
∑︁𝑚

𝑖=1
(𝛼𝑖/𝑑) 𝜃𝑖 ‖𝑇 𝑢𝑖‖2

≥
(︁∏︁𝑚

𝑖=1
𝜃𝛼𝑖

𝑖

)︁1/𝑑(︁∏︁𝑚

𝑖=1
‖𝑇 𝑢𝑖‖𝛼𝑖

)︁2/𝑑

≥
(︁∏︁𝑚

𝑖=1
𝜃𝛼𝑖

𝑖

)︁1/𝑑

.

The first inequality is AM–GM, which is valid since
∑︀𝑚

𝑖=1 𝛼𝑖 = 𝑑. The last inequality follows
from part 2 of the lemma.

We conclude this section with a proof of the variational representation of the determinant.

Proof of Fact 15.4.2. It is an exercise to argue that the minimum is achieved. By changing
coordinates, we may assume that the minimizer is a diagonal matrix. Parameterize 𝑇 =
diag(𝑡11, . . . , 𝑡𝑑𝑑). Taking the logarithm of the determinant constraint, the minimization
problem is

minimize
1
𝑑

∑︁𝑑

𝑖=1
𝑡𝑖𝑖𝑎𝑖𝑖 subject to

∑︁𝑑

𝑖=1
log 𝑡𝑖𝑖 = 0.

This optimization problem can be written in a convex form (by relaxing the equality
constraint to an inequality), so the minimum is achieved when the KKT conditions are in
force. Introducing a Lagrange multiplier 𝛽, we have the relations

𝑑−1𝑎𝑖𝑖 = 𝛽𝑡−1
𝑖𝑖 for 𝑖 = 1, . . . , 𝑑.

To satisfy the equality constraint, we must have

0 =
∑︁𝑑

𝑖=1
log 𝑡𝑖𝑖 =

∑︁𝑑

𝑖=1
log(𝛽𝑑𝑎−1

𝑖𝑖 ) = 𝑑 log(𝛽𝑑) − log
(︂∏︁𝑑

𝑖=1
𝑎𝑖𝑖

)︂
.

Using the last two displays in sequence,

1
𝑑

∑︁𝑑

𝑖=1
𝑡𝑖𝑖𝑎𝑖𝑖 = 𝛽𝑑 =

(︂∏︁𝑑

𝑖=1
𝑎𝑖𝑖

)︂1/𝑑

.

Invoke Hadamard’s determinant inequality to arrive at the bound

1
𝑑

trace(𝑇 𝐴) = 1
𝑑

∑︁𝑑

𝑖=1
𝑡𝑖𝑖𝑎𝑖𝑖 =

(︂∏︁𝑑

𝑖=1
𝑎𝑖𝑖

)︂1/𝑑

≥ (det 𝐴)1/𝑑.
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Equality holds when 𝐴 is diagonal. This completes the argument.
Finally, let us summarize an easy proof of Hadamard’s determinant inequality. Let

𝐴 = 𝐶𝐶* be a Cholesky decomposition. Then

det 𝐴 = det(𝐶𝐶*) = (det 𝐶)2 =
(︂∏︁𝑑

𝑖=1
𝑐𝑖𝑖

)︂2
≤
∏︁𝑑

𝑖=1
𝑎𝑖𝑖.

Indeed, the construction of the Cholesky decomposition ensures that 𝑐2
𝑖𝑖 ≤ 𝑎𝑖𝑖.

15.4.2 Proof of the Geometric Brascamp–Lieb Inequality
First, let us verify that Gaussian functions achieve equality in Theorem 15.3.1. Define
𝑓𝑖(𝑡) = e−𝜋𝑡2 for each index 𝑖. Since

∫︀
R 𝑓𝑖(𝑡) d𝑡 = 1, the right-hand side of (15.3.2) equals

one. As for the left-hand side,∫︁
R𝑑

∏︁𝑚

𝑖=1
𝑓𝑖(⟨𝑢𝑖, 𝑥⟩)𝛼𝑖 d𝑥 =

∫︁
R𝑑

∏︁𝑚

𝑖=1
e−𝜋𝛼𝑖⟨𝑢𝑖, 𝑥⟩2

d𝑥

=
∫︁
R𝑑

e−𝜋
∑︀𝑚

𝑖=1
𝛼𝑖⟨𝑢𝑖, 𝑥⟩2

d𝑥 =
∫︁
R𝑑

e−𝜋||𝑥||2
d𝑥 = 1.

The penultimate identity is an immediate consequence of John’s condition (15.3.1). This
demonstrates that Gaussian functions saturate the inequality (15.3.2).

Next, we establish the inequality (15.3.2). To that end, we may assume that each function
𝑓𝑖 is positive, continuous, and has integral 1. We wish to show that

𝐼 :=
∫︁
R𝑑

∏︁𝑚

𝑖=1
𝑓𝑖(⟨𝑢𝑖, 𝑥⟩)𝛼𝑖 d𝑥 ≤ 1.

To do so, we transport the mass of a Gaussian function (which saturates the inequality) to
the functions 𝑓𝑖 that we are actually given. We will show that this operation decreases the
value of the integral from the value it attains for Gaussians.

Let 𝑔(𝑎) := e−𝜋𝑎2 be the Gaussian function whose integral equals 1. For each 𝑖, construct
the optimal transport map 𝑇𝑖 : R → R via the equation∫︁ 𝑇𝑖(𝑎)

−∞
𝑔(𝑥) d𝑥 =

∫︁ 𝑎

−∞
𝑓𝑖(𝑥) d𝑥.

Since 𝑓𝑖 and 𝑔 are positive and continuous, 𝑇𝑖 is increasing and differentiable. It follows
from elementary calculus that

𝑔(𝑇𝑖(𝑎)) · 𝑇 ′
𝑖 (𝑎) = 𝑓𝑖(𝑎) for all 𝑎 ∈ R.

We can substitute these expressions into the integral 𝐼 to obtain

𝐼 =
∫︁
R𝑑

∏︁𝑚

𝑖=1
𝑓𝑖(⟨𝑢𝑖, 𝑥⟩)𝛼𝑖 d𝑥

=
∫︁
R𝑑

(︁∏︁𝑚

𝑖=1
𝑔(𝑇𝑖(⟨𝑢𝑖, 𝑥⟩))𝛼𝑖

)︁(︁∏︁𝑚

𝑖=1
𝑇 ′

𝑖 (⟨𝑢𝑖, 𝑥⟩)𝛼𝑖

)︁
d𝑥

=
∫︁
R𝑑

e−𝜋
∑︀𝑚

𝑖=1
𝛼𝑖𝑇𝑖(⟨𝑢𝑖, 𝑥⟩)2(︁∏︁𝑚

𝑖=1
𝑇 ′

𝑖 (⟨𝑢𝑖, 𝑥⟩)𝛼𝑖

)︁
d𝑥. (15.4.1)
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We must see how this expression relates to the integral of a Gaussian.
Make the inspired change of variables

𝑦 =
∑︁𝑚

𝑖=1
𝛼𝑖𝑇𝑖(⟨𝑢𝑖, 𝑥⟩) 𝑢𝑖.

According to Lemma 15.4.1(1),

‖𝑦‖2 ≤
∑︁𝑚

𝑖=1
𝛼𝑖𝑇𝑖(⟨𝑢𝑖, 𝑥⟩)2.

The Jacobian of the change of variables is easily computed as

𝐽(𝑦,𝑥) = det
(︁∑︁𝑚

𝑖=1
𝑇 ′

𝑖 (⟨𝑢𝑖, 𝑥⟩) · 𝛼𝑖 𝑢𝑖𝑢
*
𝑖

)︁
≥
∏︁𝑚

𝑖=1
𝑇 ′

𝑖 (⟨𝑢𝑖, 𝑥⟩)𝛼𝑖 .

The inequality follows from Lemma 15.4.1(3). Substitute the last two displays into the
expression (15.4.1) for the integral to arrive at

𝐼 ≤
∫︁
R𝑑

e−𝜋‖𝑦‖2
𝐽(𝑦,𝑥) d𝑥 =

∫︁
R𝑑

e−𝜋‖𝑦‖2
d𝑦 = 1.

The second relation is just the standard change of variables formula from multidimensional
calculus.
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16.1 Agenda for Lecture 16
For a convex body C in R𝑑, the parallel body at level 𝜆 ≥ 0 is the set C + 𝜆B𝑑. In Lecture
8, we established Steiner’s formula, which states that the function 𝜆 ↦→ Vol𝑑(C + 𝜆B𝑑) is
a polynomial for 𝜆 ≥ 0. The coefficients appearing in this polynomial are called intrinsic
volumes, and we spent some time developing their properties. Over the course of Lectures
9–12, we saw time and time again that intrinsic volumes are truly fundamental objects in
convex geometry.

Today, we introduce a substantial generalization of intrinsic volumes. Where before we
considered the univariate polynomial 𝜆 ↦→ Vol𝑑(C + 𝜆B𝑑), we will now consider multivariate
functions of the form

(𝜆1, . . . , 𝜆𝑚) ↦→ Vol𝑑(𝜆1C1 + · · · + 𝜆𝑚C𝑚) (16.1.1)

induced by a collection of 𝑚 convex bodies C𝑖 in R𝑑. Much like the volume of a parallel
body, the function (16.1.1) is a (multivariate) polynomial in the parameters 𝜆 ≥ 0. For a
family of convex bodies, {C𝑖}𝑖∈[𝑚], the coefficients of (16.1.1) are called the mixed volumes
of {C𝑖}𝑖∈[𝑚]. Mixed volumes are also fundamental quantities that capture many features of
a family of convex bodies.

The primary purpose of this lecture is to prove that (16.1.1) is indeed a polynomial in 𝜆.
This result is called Minkowski’s theorem. We will also cover some basic properties of mixed
volumes, although the real exploration of mixed volumes begins in the next lecture. Here is
the order of business:

1. Support functions: The key to deriving Minkowski’s theorem
2. Minkowski’s theorem on mixed volumes
3. Mixed volumes and intrinsic volumes

16.2 Support Functions: The Key to Deriving Minkowski’s Theorem
Our derivation of Minkowski’s theorem on mixed volumes involves different tools from
the proof of Steiner’s formula in Lecture 8. As usual, we establish the result for a family
C1, . . . ,C𝑚 of polytopes, and we extend the result to other convex bodies by approximation.
See Figure 16.1 for an illustration of how weighted Minkowski sums behave with polytopes.
Whereas we proved Steiner’s Formula by evaluating a high-dimensional integral in polar
coordinates, our proof of Minkowski’s theorem on mixed volumes proceeds by induction.
Support functions play a crucial role in the inductive step.

Recall that the support function of a convex set C ⊂ R𝑑 is the function ℎC defined by

ℎC(𝑢) = sup{⟨𝑢, 𝑥⟩ : 𝑥 ∈ C} for 𝑢 ∈ R𝑑.
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Figure 16.1 (Weighted Minkowski sums of two polygons). The figure illustrates 𝜇C + 𝜆K for a handful
of values of 𝜇, 𝜆 ≥ 0. When 𝜇 = 𝜆 > 0 we obtain regular octogons, labeled “S.” If 𝜇 ≫ 𝜆 then
we encounter shapes resembling C̃, while if 𝜆 ≫ 𝜇 the result is a shape more like K̃. When
both weights are positive, the resulting polygon always has eight faces. Observe that weighted
Minkowski sums of polytopes do not exhibit the “rounded corners” that occur with parallel
bodies.

In this lecture, we typically restrict our attention to the value of the support funciton on
the unit sphere. A simple but fundamental property of the support function is linearity in
the set-argument. That is, for convex bodies C and K and nonnegative scalars 𝜇, 𝜆, we have

ℎ𝜇C+𝜆K = 𝜇ℎC + 𝜆ℎK.

This result appeared on your homework.
Next, let us introduce the set-valued mapping that returns the face exposed in the

direction 𝑢:
FC(𝑢) = arg max{⟨𝑢, 𝑥⟩ : 𝑥 ∈ C} for 𝑢 ∈ R𝑑.

This mapping is well-defined because convex bodies are closed and bounded. In particular,
note that

FC(0) = C.

It may come as a surprise that the face map FC enjoys the same type of linearity property
as the support function.

Lemma 16.2.1. Let C1, . . . ,C𝑚 be fixed convex bodies in R𝑑. For a nonnegative vector 𝜆 =
(𝜆1, . . . , 𝜆𝑚), define C(𝜆) = 𝜆1C1 + · · · + 𝜆𝑚C𝑚. Then

FC(𝜆)(𝑢) =
∑︁𝑚

𝑖=1
𝜆𝑖FC𝑖

(𝑢) for each 𝑢 ∈ R𝑑.

In this expression, the summation sign refers to a Minkowski sum.
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Proof. The result is trivial when 𝑢 = 0. It suffices to establish the result for a fixed unit
vector 𝑢.

First, we show that any point 𝑥 ∈ FC(𝜆)(𝑢) can be expressed as a 𝜆-weighted sum of
elements from FC𝑖

(𝑢). Since FC(𝜆)(𝑢) is contained in C(𝜆), we know that 𝑥 can be written
as 𝑥 =

∑︀𝑚
𝑖=1 𝜆𝑖𝑥𝑖 for some 𝑥𝑖 ∈ C𝑖. Now, using ⟨𝑢, 𝑥𝑖⟩ ≤ ℎC𝑖

(𝑢), we can expand the inner
product ⟨𝑢, 𝑥⟩ = ℎC(𝜆)(𝑢) to obtain

ℎC(𝜆)(𝑢) = ⟨𝑢, 𝑥⟩ =
∑︁𝑚

𝑖=1
𝜆𝑖⟨𝑢, 𝑥𝑖⟩ ≤

∑︁𝑚

𝑖=1
𝜆𝑖ℎC𝑖(𝑢) =

∑︁𝑚

𝑖=1
ℎ𝜆𝑖C𝑖(𝑢) = ℎC(𝜆)(𝑢).

The final equality follows from the additivity of support functions. From the preceding
equation, it is clear that 𝜆𝑖⟨𝑢, 𝑥𝑖⟩ < 𝜆𝑖ℎC𝑖

(𝑢) cannot happen. Thus, when 𝜆𝑖 > 0, we
have ⟨𝑢, 𝑥𝑖⟩ = ℎC𝑖

(𝑢), and so 𝑥𝑖 ∈ FC𝑖
(𝑢). When 𝜆𝑖 = 0, we can simply replace 𝑥𝑖 by an

arbitrary element of FC𝑖
(𝑢) while still maintaining the condition 𝑥 =

∑︀𝑚
𝑖=1 𝜆𝑖𝑥𝑖.

To complete the proof, we must verify that, if 𝑥𝑖 ∈ FC𝑖
(𝑢), then the point 𝑥 :=

∑︀𝑚
𝑖=1 𝜆𝑖𝑥𝑖

belongs to FC(𝜆)(𝑢). Indeed,

⟨𝑢, 𝑥⟩ =
∑︁𝑚

𝑖=1
𝜆𝑖⟨𝑢, 𝑥𝑖⟩ =

∑︁𝑚

𝑖=1
𝜆𝑖ℎC𝑖

(𝑢) = ℎ∑︀𝑚

𝑖=1
𝜆𝑖C𝑖

(𝑢) = ℎC(𝜆)(𝑢).

Since 𝑥 evidently belongs to C(𝜆), the last display ensures that 𝑥 ∈ FC(𝜆)(𝑢).

Now, linearity of FC is all well and good, but how does it get us any closer to deriving a
polynomial expression for the volume of a weighted Minkowski sum? The answer lays in the
following lemma, which gives an expression for the volume of a polytope P in terms of the
support function ℎP and the face map FP. This formula will support an induction on the
dimension of the polytope.

Lemma 16.2.2. Let P ⊂ R𝑑 be a polytope with a nonempty interior, and let U be the (finite)
set of outer unit normals to the facets of P. Then

Vol𝑑(P) = 1
𝑑

∑︁
𝑢∈U

ℎP(𝑢) · Vol𝑑−1(FP(𝑢)).

Proof sketch. This result was on the homework, so we give only a brief outline of the
argument.

First, consider the case where 0 belongs to the polytope P. For every facet H of P, there
is some unit vector 𝑢 in U for which FP(𝑢) = H. Using cone for the conic hull operator, we
can write

P =
⋃︁

𝑢∈U
cone(FP(𝑢)) ∩ {𝑥 : ⟨𝑢, 𝑥⟩ ≤ ℎP(𝑢)}. (16.2.1)

Each term appearing in the union is a pyramid1 with base FP(𝑢) and height ℎP(𝑢). Thus,
by applying the result from Homework 2 Problem 2(b), we have

Vol𝑑
(︀

cone(FP(𝑢)) ∩ {𝑥 : ⟨𝑢, 𝑥⟩ ≤ ℎP(𝑢)}
)︀

= ℎP(𝑢)
𝑑

Vol𝑑−1(FP(𝑢)).

To complete the argument, one need only verify that (1) distinct terms in the union from
Equation 16.2.1 have disjoint relative interiors, and (2) that any vector 𝑢 ∈ U where FP(𝑢)
is not a facet of P necessarily contributes no mass to the union.

1In the sense of Homework 2, Problem 2.
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If the polytope does not contain the origin, we use a translation argument. If 𝑥 ∈ P,
then the first part of the proof implies that

Vol𝑑(P) = Vol𝑑(P − 𝑥) = 1
𝑑

∑︁
𝑢∈U

ℎP−𝑥(𝑢) · Vol𝑑−1(FP−𝑥(𝑢))

= 1
𝑑

∑︁
𝑢∈U

ℎP(𝑢) · Vol𝑑−1(FP(𝑢)) − 1
𝑑

∑︁
𝑢∈U

⟨𝑢, 𝑥⟩ · Vol𝑑−1(FP(𝑢)).

Translation does not change the directions that expose facets, nor the shape of the facets.
We have also used additivity of support functions. Finally, observe that the last sum equals
zero, as you showed in Problem Set 2, Problem 2.

At this point, a derivation of the Minkowski theorem is beginning to take shape. If we
set P =

∑︀𝑚
𝑖=1 𝜆𝑖P𝑖 for polytopes P𝑖 and nonnegative scalars 𝜆𝑖, then for an appropriate

index set U we could simultaneously apply Lemmas 16.2.1 and 16.2.2 to write

Vol𝑑(P) = 1
𝑑

∑︁
𝑢∈U

(𝜆1ℎP1(𝑢) + · · · + 𝜆𝑚ℎP𝑚
(𝑢)) · Vol𝑑−1(𝜆1FP1(𝑢) + · · ·𝜆𝑚FP𝑚

(𝑢)).

We would then appeal to an appropriate induction hypothesis to establish that the Vol𝑑−1(· · · )
term is a polynomial.

The preceding outline is indeed the main idea in our proof of Minkowski’s theorem on
mixed volumes. However, one issue remains: the set U of directions was chosen as a function
of P, but P is a function of 𝜆. To prove that 𝜆 ↦→ Vol𝑑(

∑︀𝑚
𝑖=1 𝜆𝑖P𝑖) is a polynomial, we

would also need to make sure that the set U does not depend on 𝜆. Luckily for us, this is
true.

Lemma 16.2.3. Fix nonempty polytopes P1, . . . ,P𝑚 ⊂ R𝑑. For 𝜆 ∈ R𝑚
+ , define the polytope

P(𝜆) :=
∑︀𝑚

𝑖=1 𝜆𝑖P𝑖. Let U be the (finite) set of outer unit normals to the facets of P(1).
Then the outer unit normals of the facets of P(𝜆) all appear in U .

Proof. It suffices to show that the affine hull of any facet of P(𝜆) is a translate of the affine
hull of a facet of P(1).

For each 𝑖 ∈ [𝑚], pick a face F𝑖 from P𝑖, and let 𝜆 ∈ R𝑚
+ be such that F(𝜆) :=

∑︀𝑚
𝑖=1 𝜆𝑖F𝑖

is a facet of P(𝜆). By translation, we can assume that each relint(F𝑖) contains the origin.2
Now, let H be the hyperplane containing F(𝜆). Since it contains the origin, H is the linear
hull of F(𝜆). Without loss of generality, we can assume 𝜆𝑖 > 0. Therefore,

H =
∑︁𝑚

𝑖=1
lin(𝜆𝑖F𝑖) =

∑︁𝑚

𝑖=1
lin(F𝑖) = lin

(︁∑︁𝑚

𝑖=1
F𝑖

)︁
= lin(F(1)).

Thus, we see that aff(F(𝜆)) = aff(F(1)) = H.
Thus we have shown that F(1) is parallel to F(𝜆) and has dimension 𝑑− 1. To confirm

that F(1) is a facet of P(1), we invoke Lemma 16.2.1.

2Note that any translation of the F𝑖 will not affect whether or not F(𝜆) and F(1) are in parallel
hyperplanes.
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16.3 Minkowski’s Theorem on Mixed Volumes
We are now prepared to state and prove Minkowski’s theorem on mixed volumes.

Theorem 16.3.1 (Minkowski). There is a permutation-invariant function 𝑉 : (C𝑑)𝑑 → R on a
family of 𝑑 convex bodies in R𝑑 that satisfies

Vol𝑑(𝜆1C1 + · · · + 𝜆𝑚C𝑚) =
∑︁𝑚

𝑖1,...,𝑖𝑑=1
𝑉 (C𝑖1 , . . . ,C𝑖𝑑

) · 𝜆𝑖1 · · ·𝜆𝑖𝑑
(16.3.1)

for all convex bodies {C𝑗}𝑚
𝑗=1 ⊂ C𝑑 and all 𝜆 ∈ R𝑚

+ . The function 𝑉 is called the mixed
volume.

We focus on the case when each C𝑗 = P𝑗 is a polytope in R𝑑. The general result follows
from the fact that Vol𝑑 and weighted Minkowski summation are Hausdorff continuous. We
also rely on the fact that the homogeneous polynomials of fixed degree are closed under
limits.

Proof. The proof is by induction on the dimension 𝑑. When 𝑑 = 1 all convex bodies are line
segments and the claim is trivial. Henceforth consider 𝑑 > 1, and assume the theorem up to
dimension 𝑑− 1. In the argument, we will notate the mixed volume in dimension 𝑑 as 𝑉[𝑑]
for clarity.

Let U denote the (finite) set of outer unit-normals of facets of
∑︀𝑚

𝑗=1 P𝑗 . By Lemma
16.2.3, U contains the outer unit normals of every facet of P(𝜆) :=

∑︀𝑚
𝑗=1 𝜆𝑗P𝑗 , regardless

of the choice of 𝜆 ∈ R𝑚
+ .

In order to keep subsequent expressions legible, for each (𝑗,𝑢) in [𝑚] × U we abbreviate
F𝑢

𝑗 := FP𝑗
(𝑢) and ℎ𝑢

𝑗 := ℎP𝑗
(𝑢). Using these new symbols, Lemmas 16.2.1 and 16.2.2 give

us

Vol𝑑(P(𝜆)) = 1
𝑑

∑︁
𝑢∈U

(𝜆1ℎ
𝑢
1 + · · · + 𝜆𝑚ℎ

𝑢
𝑚) · Vol𝑑−1(𝜆1F𝑢

1 + · · · + 𝜆𝑚F𝑢
𝑚) (16.3.2)

where 𝜆1F𝑢
1 + · · · + 𝜆𝑚F𝑢

𝑚 =: F𝑢
𝜆 is the face of P(𝜆) exposed by 𝑢.

Now, we prepare for the inductive step. The induction hypothesis states that there exists
a permutation-invariant function 𝑉[𝑑−1] : C 𝑑−1

𝑑−1 → R satisfying

Vol𝑑−1(𝜆1Q1 + · · ·𝜆𝑚Q𝑚) =
∑︁

𝑖∈[𝑚]𝑑−1
𝑉[𝑑−1](Q𝑖1 , . . . ,Q𝑖𝑑−1) · 𝜆𝑖1 · · ·𝜆𝑖𝑑−1 (16.3.3)

for every collection of polytopes Q1, . . . ,Q𝑚 ⊂ C𝑑−1. This statement does not immediately
help us reduce Equation 16.3.2 because the argument to Vol𝑑−1 consists of convex bodies in
R𝑑. To resolve this, we need to extend 𝑉[𝑑−1] to (𝑑− 1)-tuples of convex bodies in R𝑑 that
are contained in parallel hyperplanes (orthogonal to the direction 𝑢 ∈ U ). In this case, we
can determine the value of 𝑉[𝑑−1] by translating all of the lower-dimensional convex bodies
into the parallel hyperplane containing the origin, and we can compute the mixed volume
there by means of the inductive hypothesis.

Having thus extended 𝑉[𝑑−1], we apply the induction hypothesis for fixed direction 𝑢 to
write

Vol𝑑−1(𝜆1F𝑢
1 + · · ·𝜆𝑚F𝑢

𝑚) =
∑︁

𝑖∈[𝑚]𝑑−1
𝑉[𝑑−1](F𝑢

𝑖1
, . . . ,F𝑢

𝑖𝑑−1
) · 𝜆𝑖1 · · ·𝜆𝑖𝑑−1 .
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Substitute this expression into Equation 16.3.2 to reach

Vol𝑑(P(𝜆)) = 1
𝑑

∑︁
𝑢∈U

∑︁
𝑖∈[𝑚]𝑑−1

𝑉[𝑑−1](F𝑢
𝑖1
, . . . ,F𝑢

𝑖𝑑−1
) · 𝜆𝑖1 · · ·𝜆𝑖𝑑−1

[︁∑︁𝑚

𝑗=1
𝜆𝑗ℎ

𝑢
𝑗

]︁
.

Now, set 𝑗 ∈ [𝑚] to be the 𝑑th coordinate of a new multiindex 𝑖 ∈ [𝑚]𝑑 that we form by
appending 𝑗 to the original multiindex 𝑖 ∈ [𝑚]𝑑−1. This allows us to write

Vol𝑑(P(𝜆)) = 1
𝑑

∑︁
𝑢∈U

∑︁
𝑖∈[𝑚]𝑑

ℎ𝑢
𝑖𝑑
𝑉[𝑑−1](F𝑢

𝑖1
, . . . ,F𝑢

𝑖𝑑−1
) · 𝜆𝑖1 · · ·𝜆𝑖𝑑

= 1
𝑑

∑︁
𝑖∈[𝑚]𝑑

∑︁
𝑢∈U

ℎ𝑢
𝑖𝑑
𝑉[𝑑−1](𝐹𝑢

𝑖1
, . . . , 𝐹𝑢

𝑖𝑑−1
) · 𝜆𝑖1 · · ·𝜆𝑖𝑑

=
∑︁

𝑖∈[𝑚]𝑑
𝜆𝑖1 · · ·𝜆𝑖𝑑

∑︁
𝑢∈U

ℎ𝑢
𝑖𝑑
𝑉[𝑑−1](𝐹𝑢

𝑖1
, . . . , 𝐹𝑢

𝑖𝑑−1
)/𝑑. (16.3.4)

We are nearly done. In view of (16.3.4), we might want to define

𝑉 (P𝑖1 , . . . ,P𝑖𝑑
) :=

∑︁
𝑢∈U

ℎ𝑢
𝑖𝑑
𝑉[𝑑−1](F𝑢

𝑖1
, . . . ,F𝑢

𝑖𝑑−1
)/𝑑. (16.3.5)

This expression is not evidently invariant under interchanges of distinct P𝑖𝑑
and P𝑖𝑗

. To
resolve this, we construct 𝑉 by symmetrizing the 𝑉 over all permutations of [𝑑]; that is,

𝑉 (P𝑖1 , . . . ,P𝑖𝑑
) := 1

𝑑!
∑︁

𝜎∈Sym𝑑

𝑉 (P𝑖𝜎(1) , . . . ,P𝑖𝜎(𝑑)).

This completes our proof.

16.4 Mixed Volumes and Intrinsic Volumes
To begin to understand mixed volumes, one may refer to a two-dimensional illustration; see
Figure 16.2.

We may also wonder whether there is any connection between mixed volumes and the
intrinsic volumes that have taken so much of our attention. In fact, the intrinsic volumes
are specific cases of the mixed volumes. Apply Steiner’s formula and the 𝑚 = 2 case of
Minkowski’s theorem. Then group monomials to obtain

Vol𝑑(C + 𝜆B𝑑) =
∑︁𝑑

𝑗=0
𝜆𝑑−𝑗1𝑗

(︂
𝑑

𝑗

)︂
𝑉 (C, . . . ,C⏟  ⏞  

𝑗 times

,B𝑑, . . . ,B𝑑⏟  ⏞  
𝑑−𝑗 times

)

=
∑︁𝑑

𝑗=0
𝜆𝑑−𝑗𝜅𝑑−𝑗𝑉𝑗(C).

By comparing coefficients, we find that

𝑉𝑗(C) = 1
𝜅𝑑−𝑗

(︂
𝑑

𝑗

)︂
𝑉 (C, . . . ,C⏟  ⏞  

𝑗 times

,B𝑑, . . . ,B𝑑⏟  ⏞  
𝑑−𝑗 times

).

In the next lecture, we will continue our discussion of mixed volumes, and we will develop
some of their main properties.
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R3
<latexit sha1_base64="ZBe+9hoQIWQqxmOgHJaL+DBwZfg=">AAAB8nicbVA9T8MwFHwpXyV8FRhZLCokpiqBARgQFSyMBRFaqQmV4zqtVceJbAepiirxK1gYALHyP9jZ+Dc4LQO0nGTpdPee3vnClDOlHefLKs3NLywulZftldW19Y3K5tatSjJJqEcSnshWiBXlTFBPM81pK5UUxyGnzXBwUfjNeyoVS8SNHqY0iHFPsIgRrI3k+zHW/TDMr0d3h51K1ak5Y6BZ4v6Q6tmHffoAAI1O5dPvJiSLqdCEY6XarpPqIMdSM8LpyPYzRVNMBrhH24YKHFMV5OPMI7RnlC6KEmme0Gis/t7IcazUMA7NZJFRTXuF+J/XznR0HORMpJmmgkwORRlHOkFFAajLJCWaDw3BRDKTFZE+lphoU5NtSnCnvzxLvIPaSc25cqr1c5igDDuwC/vgwhHU4RIa4AGBFB7hGV6szHqyXq23yWjJ+tnZhj+w3r8Bwa2TMw==</latexit><latexit sha1_base64="9wBEra0WTOVBwP7KtgDfPE+/VZ4=">AAAB8nicbVA9T8MwFHwpXyV8FRhZLCokpiqFARgQFSyMBRFaqQmV4zqtVSexbAepivo3WBgAdeV/sLMg/g1O2wFaTrJ0untP73yB4Expx/m2CguLS8srxVV7bX1jc6u0vXOvklQS6pKEJ7IZYEU5i6mrmea0KSTFUcBpI+hf5X7jkUrFkvhODwT1I9yNWcgI1kbyvAjrXhBkt8OH43ap7FScMdA8qU5J+eLDPhejL7veLn16nYSkEY014VipVtUR2s+w1IxwOrS9VFGBSR93acvQGEdU+dk48xAdGKWDwkSaF2s0Vn9vZDhSahAFZjLPqGa9XPzPa6U6PPUzFotU05hMDoUpRzpBeQGowyQlmg8MwUQykxWRHpaYaFOTbUqozn55nrhHlbOKc+OUa5cwQRH2YB8OoQonUINrqIMLBAQ8wQu8Wqn1bL1Zo8lowZru7MIfWO8/sciUpw==</latexit><latexit sha1_base64="9wBEra0WTOVBwP7KtgDfPE+/VZ4=">AAAB8nicbVA9T8MwFHwpXyV8FRhZLCokpiqFARgQFSyMBRFaqQmV4zqtVSexbAepivo3WBgAdeV/sLMg/g1O2wFaTrJ0untP73yB4Expx/m2CguLS8srxVV7bX1jc6u0vXOvklQS6pKEJ7IZYEU5i6mrmea0KSTFUcBpI+hf5X7jkUrFkvhODwT1I9yNWcgI1kbyvAjrXhBkt8OH43ap7FScMdA8qU5J+eLDPhejL7veLn16nYSkEY014VipVtUR2s+w1IxwOrS9VFGBSR93acvQGEdU+dk48xAdGKWDwkSaF2s0Vn9vZDhSahAFZjLPqGa9XPzPa6U6PPUzFotU05hMDoUpRzpBeQGowyQlmg8MwUQykxWRHpaYaFOTbUqozn55nrhHlbOKc+OUa5cwQRH2YB8OoQonUINrqIMLBAQ8wQu8Wqn1bL1Zo8lowZru7MIfWO8/sciUpw==</latexit>

0
<latexit sha1_base64="jrFK9EreK2HBlhqlH0Yrrdfx8Y4=">AAAB53icbZA7SwNBFIXvxldcX1FLm8EgWIVZG7UQgzaWCbgmkCxhdjKbjJmdXWZmhbAE7G0sVGz9NfZ2/hsnj0ITDwx8nHMvc+8NU8G1wfjbKSwtr6yuFdfdjc2t7Z3S7t6dTjJFmU8TkahmSDQTXDLfcCNYM1WMxKFgjXBwPc4bD0xpnshbM0xZEJOe5BGnxFirjjulMq7gidAieDMoX366F48AUOuUvtrdhGYxk4YKonXLw6kJcqIMp4KN3HamWUrogPRYy6IkMdNBPhl0hI6s00VRouyTBk3c3x05ibUexqGtjInp6/lsbP6XtTITnQU5l2lmmKTTj6JMIJOg8daoyxWjRgwtEKq4nRXRPlGEGnsb1x7Bm195EfyTynkF13G5egVTFeEADuEYPDiFKtxADXygwOAJXuDVuXeenTfnfVpacGY9+/BHzscPU6COUA==</latexit><latexit sha1_base64="O2wCYsazTlKUZEUBW/LK/gn+Qiw=">AAAB43icbZA9SwNBEIbn4lc8v6KtzWIQrMKdjVqIQRvLCMYEkiPsbeaSNXt7x+6eEI78AhsLtbXwx9jbiP/GzUehiS8sPLzvDDszYSq4Np737RSWlldW14rr7sbm1vZOyd2900mmGNZZIhLVDKlGwSXWDTcCm6lCGocCG+Hgapw3HlBpnshbM0wxiGlP8ogzaqx143VKZa/iTUQWwZ9B+eLDPU/fv9xap/TZ7iYsi1EaJqjWLd9LTZBTZTgTOHLbmcaUsgHtYcuipDHqIJ8MOiKH1umSKFH2SUMm7u+OnMZaD+PQVsbU9PV8Njb/y1qZiU6DnMs0MyjZ9KMoE8QkZLw16XKFzIihBcoUt7MS1qeKMmNv49oj+PMrL0L9uHJW8crVS5iqCPtwAEfgwwlU4RpqUAcGCI/wDC/OvfPkvE4LC86sYw/+yHn7Ac51jp8=</latexit><latexit sha1_base64="O2wCYsazTlKUZEUBW/LK/gn+Qiw=">AAAB43icbZA9SwNBEIbn4lc8v6KtzWIQrMKdjVqIQRvLCMYEkiPsbeaSNXt7x+6eEI78AhsLtbXwx9jbiP/GzUehiS8sPLzvDDszYSq4Np737RSWlldW14rr7sbm1vZOyd2900mmGNZZIhLVDKlGwSXWDTcCm6lCGocCG+Hgapw3HlBpnshbM0wxiGlP8ogzaqx143VKZa/iTUQWwZ9B+eLDPU/fv9xap/TZ7iYsi1EaJqjWLd9LTZBTZTgTOHLbmcaUsgHtYcuipDHqIJ8MOiKH1umSKFH2SUMm7u+OnMZaD+PQVsbU9PV8Njb/y1qZiU6DnMs0MyjZ9KMoE8QkZLw16XKFzIihBcoUt7MS1qeKMmNv49oj+PMrL0L9uHJW8crVS5iqCPtwAEfgwwlU4RpqUAcGCI/wDC/OvfPkvE4LC86sYw/+yHn7Ac51jp8=</latexit>

hs, xi = ↵
<latexit sha1_base64="6e6sZoAD83tSr2emDBB6KtDScS4=">AAACHXicbVDLSgMxFM3UV62vUZdugkVwIWVGFHUhFN24rGBtoVPKnUymDc1khiQjlqFf4sZfceNCxYUb8W/MtF3U1gMhJ+eeS+49fsKZ0o7zYxUWFpeWV4qrpbX1jc0te3vnXsWpJLROYh7Lpg+KciZoXTPNaTORFCKf04bfv87rjQcqFYvFnR4ktB1BV7CQEdBG6tinHgfR5RR7fswDNYjMlanh0fTzcejJsekSe8CTHnTsslNxRsDzxJ2QMpqg1rG/vCAmaUSFJhyUarlOotsZSM0Ip8OSlyqaAOlDl7YMFRBR1c5G6w3xgVECHMbSHKHxSJ3uyCBS+ajGGYHuqdlaLv5Xa6U6PG9nTCSppoKMPwpTjnWM86xwwCQlmg8MASKZmRWTHkgg2iRaMiG4syvPk/px5aLi3J6Uq1eTNIpoD+2jQ+SiM1RFN6iG6oigJ/SC3tC79Wy9Wh/W59hasCY9u+gPrO9fQOmjYA==</latexit><latexit sha1_base64="6e6sZoAD83tSr2emDBB6KtDScS4=">AAACHXicbVDLSgMxFM3UV62vUZdugkVwIWVGFHUhFN24rGBtoVPKnUymDc1khiQjlqFf4sZfceNCxYUb8W/MtF3U1gMhJ+eeS+49fsKZ0o7zYxUWFpeWV4qrpbX1jc0te3vnXsWpJLROYh7Lpg+KciZoXTPNaTORFCKf04bfv87rjQcqFYvFnR4ktB1BV7CQEdBG6tinHgfR5RR7fswDNYjMlanh0fTzcejJsekSe8CTHnTsslNxRsDzxJ2QMpqg1rG/vCAmaUSFJhyUarlOotsZSM0Ip8OSlyqaAOlDl7YMFRBR1c5G6w3xgVECHMbSHKHxSJ3uyCBS+ajGGYHuqdlaLv5Xa6U6PG9nTCSppoKMPwpTjnWM86xwwCQlmg8MASKZmRWTHkgg2iRaMiG4syvPk/px5aLi3J6Uq1eTNIpoD+2jQ+SiM1RFN6iG6oigJ/SC3tC79Wy9Wh/W59hasCY9u+gPrO9fQOmjYA==</latexit><latexit sha1_base64="6e6sZoAD83tSr2emDBB6KtDScS4=">AAACHXicbVDLSgMxFM3UV62vUZdugkVwIWVGFHUhFN24rGBtoVPKnUymDc1khiQjlqFf4sZfceNCxYUb8W/MtF3U1gMhJ+eeS+49fsKZ0o7zYxUWFpeWV4qrpbX1jc0te3vnXsWpJLROYh7Lpg+KciZoXTPNaTORFCKf04bfv87rjQcqFYvFnR4ktB1BV7CQEdBG6tinHgfR5RR7fswDNYjMlanh0fTzcejJsekSe8CTHnTsslNxRsDzxJ2QMpqg1rG/vCAmaUSFJhyUarlOotsZSM0Ip8OSlyqaAOlDl7YMFRBR1c5G6w3xgVECHMbSHKHxSJ3uyCBS+ajGGYHuqdlaLv5Xa6U6PG9nTCSppoKMPwpTjnWM86xwwCQlmg8MASKZmRWTHkgg2iRaMiG4syvPk/px5aLi3J6Uq1eTNIpoD+2jQ+SiM1RFN6iG6oigJ/SC3tC79Wy9Wh/W59hasCY9u+gPrO9fQOmjYA==</latexit>

Hs,↵
<latexit sha1_base64="zvh7aARsuWPOg/FoQUCvJCw0lAk=">AAACDXicbVDLSsNAFJ3UV42vqEs3g6XgQkoigroruumygrGFJoTJZNIOnTyYmQgl5Avc+CtuXKi4de/Ov3GSZqGtF4Y5nHMv99zjp4wKaZrfWmNldW19o7mpb23v7O4Z+wf3Isk4JjZOWMKHPhKE0ZjYkkpGhiknKPIZGfjTm1IfPBAuaBLfyVlK3AiNYxpSjKSiPKOt606E5ESEea/wcsdPWCBmkfpyUZxCB7F0ggrPaJkdsyq4DKwatEBdfc/4coIEZxGJJWZIiJFlptLNEZcUM1LoTiZIivAUjclIwRhFRLh5dU4B24oJYJhw9WIJK/b3RI4iUXpUnZX1Ra0k/9NGmQwv3ZzGaSZJjOeLwoxBmcAyGxhQTrBkMwUQ5lR5hXiCOMJSJairEKzFk5eBfda56pi3563udZ1GExyBY3ACLHABuqAH+sAGGDyCZ/AK3rQn7UV71z7mrQ2tnjkEf0r7/AHBNpwm</latexit><latexit sha1_base64="zvh7aARsuWPOg/FoQUCvJCw0lAk=">AAACDXicbVDLSsNAFJ3UV42vqEs3g6XgQkoigroruumygrGFJoTJZNIOnTyYmQgl5Avc+CtuXKi4de/Ov3GSZqGtF4Y5nHMv99zjp4wKaZrfWmNldW19o7mpb23v7O4Z+wf3Isk4JjZOWMKHPhKE0ZjYkkpGhiknKPIZGfjTm1IfPBAuaBLfyVlK3AiNYxpSjKSiPKOt606E5ESEea/wcsdPWCBmkfpyUZxCB7F0ggrPaJkdsyq4DKwatEBdfc/4coIEZxGJJWZIiJFlptLNEZcUM1LoTiZIivAUjclIwRhFRLh5dU4B24oJYJhw9WIJK/b3RI4iUXpUnZX1Ra0k/9NGmQwv3ZzGaSZJjOeLwoxBmcAyGxhQTrBkMwUQ5lR5hXiCOMJSJairEKzFk5eBfda56pi3563udZ1GExyBY3ACLHABuqAH+sAGGDyCZ/AK3rQn7UV71z7mrQ2tnjkEf0r7/AHBNpwm</latexit><latexit sha1_base64="zvh7aARsuWPOg/FoQUCvJCw0lAk=">AAACDXicbVDLSsNAFJ3UV42vqEs3g6XgQkoigroruumygrGFJoTJZNIOnTyYmQgl5Avc+CtuXKi4de/Ov3GSZqGtF4Y5nHMv99zjp4wKaZrfWmNldW19o7mpb23v7O4Z+wf3Isk4JjZOWMKHPhKE0ZjYkkpGhiknKPIZGfjTm1IfPBAuaBLfyVlK3AiNYxpSjKSiPKOt606E5ESEea/wcsdPWCBmkfpyUZxCB7F0ggrPaJkdsyq4DKwatEBdfc/4coIEZxGJJWZIiJFlptLNEZcUM1LoTiZIivAUjclIwRhFRLh5dU4B24oJYJhw9WIJK/b3RI4iUXpUnZX1Ra0k/9NGmQwv3ZzGaSZJjOeLwoxBmcAyGxhQTrBkMwUQ5lR5hXiCOMJSJairEKzFk5eBfda56pi3563udZ1GExyBY3ACLHABuqAH+sAGGDyCZ/AK3rQn7UV71z7mrQ2tnjkEf0r7/AHBNpwm</latexit>

Hs,↵
<latexit sha1_base64="zvh7aARsuWPOg/FoQUCvJCw0lAk=">AAACDXicbVDLSsNAFJ3UV42vqEs3g6XgQkoigroruumygrGFJoTJZNIOnTyYmQgl5Avc+CtuXKi4de/Ov3GSZqGtF4Y5nHMv99zjp4wKaZrfWmNldW19o7mpb23v7O4Z+wf3Isk4JjZOWMKHPhKE0ZjYkkpGhiknKPIZGfjTm1IfPBAuaBLfyVlK3AiNYxpSjKSiPKOt606E5ESEea/wcsdPWCBmkfpyUZxCB7F0ggrPaJkdsyq4DKwatEBdfc/4coIEZxGJJWZIiJFlptLNEZcUM1LoTiZIivAUjclIwRhFRLh5dU4B24oJYJhw9WIJK/b3RI4iUXpUnZX1Ra0k/9NGmQwv3ZzGaSZJjOeLwoxBmcAyGxhQTrBkMwUQ5lR5hXiCOMJSJairEKzFk5eBfda56pi3563udZ1GExyBY3ACLHABuqAH+sAGGDyCZ/AK3rQn7UV71z7mrQ2tnjkEf0r7/AHBNpwm</latexit><latexit sha1_base64="zvh7aARsuWPOg/FoQUCvJCw0lAk=">AAACDXicbVDLSsNAFJ3UV42vqEs3g6XgQkoigroruumygrGFJoTJZNIOnTyYmQgl5Avc+CtuXKi4de/Ov3GSZqGtF4Y5nHMv99zjp4wKaZrfWmNldW19o7mpb23v7O4Z+wf3Isk4JjZOWMKHPhKE0ZjYkkpGhiknKPIZGfjTm1IfPBAuaBLfyVlK3AiNYxpSjKSiPKOt606E5ESEea/wcsdPWCBmkfpyUZxCB7F0ggrPaJkdsyq4DKwatEBdfc/4coIEZxGJJWZIiJFlptLNEZcUM1LoTiZIivAUjclIwRhFRLh5dU4B24oJYJhw9WIJK/b3RI4iUXpUnZX1Ra0k/9NGmQwv3ZzGaSZJjOeLwoxBmcAyGxhQTrBkMwUQ5lR5hXiCOMJSJairEKzFk5eBfda56pi3563udZ1GExyBY3ACLHABuqAH+sAGGDyCZ/AK3rQn7UV71z7mrQ2tnjkEf0r7/AHBNpwm</latexit><latexit sha1_base64="zvh7aARsuWPOg/FoQUCvJCw0lAk=">AAACDXicbVDLSsNAFJ3UV42vqEs3g6XgQkoigroruumygrGFJoTJZNIOnTyYmQgl5Avc+CtuXKi4de/Ov3GSZqGtF4Y5nHMv99zjp4wKaZrfWmNldW19o7mpb23v7O4Z+wf3Isk4JjZOWMKHPhKE0ZjYkkpGhiknKPIZGfjTm1IfPBAuaBLfyVlK3AiNYxpSjKSiPKOt606E5ESEea/wcsdPWCBmkfpyUZxCB7F0ggrPaJkdsyq4DKwatEBdfc/4coIEZxGJJWZIiJFlptLNEZcUM1LoTiZIivAUjclIwRhFRLh5dU4B24oJYJhw9WIJK/b3RI4iUXpUnZX1Ra0k/9NGmQwv3ZzGaSZJjOeLwoxBmcAyGxhQTrBkMwUQ5lR5hXiCOMJSJairEKzFk5eBfda56pi3563udZ1GExyBY3ACLHABuqAH+sAGGDyCZ/AK3rQn7UV71z7mrQ2tnjkEf0r7/AHBNpwm</latexit>

s
<latexit sha1_base64="+qeWZQKFMi8A4vujvFY14JI9beQ=">AAAB9HicbVC9TsMwGPzCbyl/BUYWiwqJqUoQErBVsDAWidBKbagcx2mtOnZkO6Aq6nuwMABi5WHYeBucNgO0nGT5dPd98vnClDNtXPfbWVpeWV1br2xUN7e2d3Zre/v3WmaKUJ9ILlUnxJpyJqhvmOG0kyqKk5DTdji6Lvz2I1WaSXFnxikNEjwQLGYEGys99ELJIz1O7JXrSb9WdxvuFGiReCWpQ4lWv/bViyTJEioM4VjrruemJsixMoxwOqn2Mk1TTEZ4QLuWCpxQHeTT1BN0bJUIxVLZIwyaqr83cpzoIpqdTLAZ6nmvEP/zupmJL4KciTQzVJDZQ3HGkZGoqABFTFFi+NgSTBSzWREZYoWJsUVVbQne/JcXiX/auGy4t2f15lXZRgUO4QhOwINzaMINtMAHAgqe4RXenCfnxXl3PmajS065cwB/4Hz+ALQlktc=</latexit><latexit sha1_base64="+qeWZQKFMi8A4vujvFY14JI9beQ=">AAAB9HicbVC9TsMwGPzCbyl/BUYWiwqJqUoQErBVsDAWidBKbagcx2mtOnZkO6Aq6nuwMABi5WHYeBucNgO0nGT5dPd98vnClDNtXPfbWVpeWV1br2xUN7e2d3Zre/v3WmaKUJ9ILlUnxJpyJqhvmOG0kyqKk5DTdji6Lvz2I1WaSXFnxikNEjwQLGYEGys99ELJIz1O7JXrSb9WdxvuFGiReCWpQ4lWv/bViyTJEioM4VjrruemJsixMoxwOqn2Mk1TTEZ4QLuWCpxQHeTT1BN0bJUIxVLZIwyaqr83cpzoIpqdTLAZ6nmvEP/zupmJL4KciTQzVJDZQ3HGkZGoqABFTFFi+NgSTBSzWREZYoWJsUVVbQne/JcXiX/auGy4t2f15lXZRgUO4QhOwINzaMINtMAHAgqe4RXenCfnxXl3PmajS065cwB/4Hz+ALQlktc=</latexit><latexit sha1_base64="+qeWZQKFMi8A4vujvFY14JI9beQ=">AAAB9HicbVC9TsMwGPzCbyl/BUYWiwqJqUoQErBVsDAWidBKbagcx2mtOnZkO6Aq6nuwMABi5WHYeBucNgO0nGT5dPd98vnClDNtXPfbWVpeWV1br2xUN7e2d3Zre/v3WmaKUJ9ILlUnxJpyJqhvmOG0kyqKk5DTdji6Lvz2I1WaSXFnxikNEjwQLGYEGys99ELJIz1O7JXrSb9WdxvuFGiReCWpQ4lWv/bViyTJEioM4VjrruemJsixMoxwOqn2Mk1TTEZ4QLuWCpxQHeTT1BN0bJUIxVLZIwyaqr83cpzoIpqdTLAZ6nmvEP/zupmJL4KciTQzVJDZQ3HGkZGoqABFTFFi+NgSTBSzWREZYoWJsUVVbQne/JcXiX/auGy4t2f15lXZRgUO4QhOwINzaMINtMAHAgqe4RXenCfnxXl3PmajS065cwB/4Hz+ALQlktc=</latexit>

s
<latexit sha1_base64="+qeWZQKFMi8A4vujvFY14JI9beQ=">AAAB9HicbVC9TsMwGPzCbyl/BUYWiwqJqUoQErBVsDAWidBKbagcx2mtOnZkO6Aq6nuwMABi5WHYeBucNgO0nGT5dPd98vnClDNtXPfbWVpeWV1br2xUN7e2d3Zre/v3WmaKUJ9ILlUnxJpyJqhvmOG0kyqKk5DTdji6Lvz2I1WaSXFnxikNEjwQLGYEGys99ELJIz1O7JXrSb9WdxvuFGiReCWpQ4lWv/bViyTJEioM4VjrruemJsixMoxwOqn2Mk1TTEZ4QLuWCpxQHeTT1BN0bJUIxVLZIwyaqr83cpzoIpqdTLAZ6nmvEP/zupmJL4KciTQzVJDZQ3HGkZGoqABFTFFi+NgSTBSzWREZYoWJsUVVbQne/JcXiX/auGy4t2f15lXZRgUO4QhOwINzaMINtMAHAgqe4RXenCfnxXl3PmajS065cwB/4Hz+ALQlktc=</latexit><latexit sha1_base64="+qeWZQKFMi8A4vujvFY14JI9beQ=">AAAB9HicbVC9TsMwGPzCbyl/BUYWiwqJqUoQErBVsDAWidBKbagcx2mtOnZkO6Aq6nuwMABi5WHYeBucNgO0nGT5dPd98vnClDNtXPfbWVpeWV1br2xUN7e2d3Zre/v3WmaKUJ9ILlUnxJpyJqhvmOG0kyqKk5DTdji6Lvz2I1WaSXFnxikNEjwQLGYEGys99ELJIz1O7JXrSb9WdxvuFGiReCWpQ4lWv/bViyTJEioM4VjrruemJsixMoxwOqn2Mk1TTEZ4QLuWCpxQHeTT1BN0bJUIxVLZIwyaqr83cpzoIpqdTLAZ6nmvEP/zupmJL4KciTQzVJDZQ3HGkZGoqABFTFFi+NgSTBSzWREZYoWJsUVVbQne/JcXiX/auGy4t2f15lXZRgUO4QhOwINzaMINtMAHAgqe4RXenCfnxXl3PmajS065cwB/4Hz+ALQlktc=</latexit><latexit sha1_base64="+qeWZQKFMi8A4vujvFY14JI9beQ=">AAAB9HicbVC9TsMwGPzCbyl/BUYWiwqJqUoQErBVsDAWidBKbagcx2mtOnZkO6Aq6nuwMABi5WHYeBucNgO0nGT5dPd98vnClDNtXPfbWVpeWV1br2xUN7e2d3Zre/v3WmaKUJ9ILlUnxJpyJqhvmOG0kyqKk5DTdji6Lvz2I1WaSXFnxikNEjwQLGYEGys99ELJIz1O7JXrSb9WdxvuFGiReCWpQ4lWv/bViyTJEioM4VjrruemJsixMoxwOqn2Mk1TTEZ4QLuWCpxQHeTT1BN0bJUIxVLZIwyaqr83cpzoIpqdTLAZ6nmvEP/zupmJL4KciTQzVJDZQ3HGkZGoqABFTFFi+NgSTBSzWREZYoWJsUVVbQne/JcXiX/auGy4t2f15lXZRgUO4QhOwINzaMINtMAHAgqe4RXenCfnxXl3PmajS065cwB/4Hz+ALQlktc=</latexit>

Figure 16.2 (Mixed volumes in two dimensions). For the two convex bodies C, K ⊂ R2, the area of
C + K can be clearly divided into four regions: the area of C, the area of K, and the area of
the shaded region along with its reflection. This symmetry of C + K makes it seem perfectly
natural that 𝑉 (C, K) = 𝑉 (K, C). Note that 𝑉 is symmetric because we make it so; there are
choices of C, K for which [C + K] ∖ [C ∪ K] does not exhibit any meaningful symmetry.
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17.1 Agenda for Lecture 17
In the last lecture we introduced mixed volumes, which can be seen as generalizations of
intrinsic volumes that are defined in terms of mulitple convex bodies. After reminding
ourselves of last lecture’s main result, we will explore additional examples and prove basic
properties of mixed volumes.

1. Mixed volumes, recap from last lecture
2. Examples of mixed volumes
3. Basic properties of mixed volumes
4. Monotonicity of mixed volumes

17.2 Mixed Volumes and Minkowski’s Theorem
Let C𝑑 denote the space of convex bodies in R𝑑. In the last lecture, we proved Minkowski’s
theorem on mixed volumes.

Theorem 17.2.1 (Minkowski). There exists a permutation-invariant map 𝑉 : (C𝑑)𝑑 −→ R, such
that for all C1, . . . ,C𝑚 ∈ C𝑑 and 𝜆1, . . . , 𝜆𝑚 ≥ 0, we have

Vol𝑑(𝜆1C1 + · · · + 𝜆𝑚C𝑚) =
∑︁𝑚

𝑖1,...,𝑖𝑑=1
𝑉 (C𝑖1 , . . . ,C𝑖𝑑

) · 𝜆𝑖1 · · ·𝜆𝑖𝑑

Thus, the volume of the Minkowski sum 𝜆1C1 + · · · + 𝜆𝑚C𝑚 is a degree-𝑑 homogeneous
polynomial in the 𝑚 scalar variables 𝜆1, . . . , 𝜆𝑚. The coefficients of the polynomial are given
in terms of the function 𝑉 , evaluated at different combinations of 𝑑 of the sets C1, . . . ,C𝑚,
chosen with repetition.

Definition 17.2.2 (Mixed volumes). We call the function 𝑉 from Theorem 17.2.1 the mixed vol-
ume. For C1, . . . ,C𝑑 ∈ C𝑑, we call 𝑉 (C1, . . . ,C𝑑) the mixed volume of the family (C1, . . . ,C𝑑).

By considering the case𝑚 = 𝑑 in Minkowski’s theorem, we derive the following alternative
expression for the mixed volume:

Lemma 17.2.3 (Derivative formulation of mixed volumes). We have the following alternative ex-
pression for the mixed volume:

𝑑! · 𝑉 (C1, . . .C𝑑) = 𝜕𝑑

𝜕𝜆1 · · · 𝜕𝜆𝑑
Vol𝑑(𝜆1C1 + · · · + 𝜆𝑑C𝑑)

Proof. This expression follows when we apply Theorem 17.2.1 and observe that summands
where the indices 𝑖1, . . . , 𝑖𝑑 are distinct have mixed derivative equal to the mixed volume,
while all other summands have a zero mixed derivative.
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Figure 17.1 (Two-dimensional mixed volumes). An instance of mixed volumes in two dimensions;
see formula (17.3.1).

17.3 Examples of Mixed Volumes
To help us understand the scope of the mixed volumes, we consider a collection of geometric
examples.

Example 17.3.1 (The two-dimensional case). In R2, we have

2𝑉 (C,K) = Vol2(C + K) − Vol2(C) − Vol2(K). (17.3.1)

This identity is illustrated in Figure 17.1.

When we include only two convex bodies, the formula in Theorem 17.2.1 simplifies
dramatically.

Vol𝑑(𝜆C + 𝜇K) =
𝑑∑︁

𝑖=0

(︂
𝑑

𝑖

)︂
𝜆𝑖𝜇𝑑−𝑖 · 𝑉 (C, . . . ,C⏟  ⏞  

𝑖 times

, K, . . . ,K⏟  ⏞  
𝑑−𝑖 times

) (17.3.2)

The mixed volumes of two bodies already describe a number of interesting geometric settings.

Example 17.3.2 (Mixed volumes with a line segment). Let C ⊂ R𝑑 be a convex body. Write C | L for
the orthogonal projection of C onto a subspace L. Consider a line segment U := [0,𝑢] ⊂ R𝑑.
We then have

Vol𝑑(𝜆C + 𝜇U) = Vol𝑑(𝜆C) + length(𝜇U) · Vol𝑑
(︀
𝜆C
⃒⃒
𝑢⊥)︀

= 𝜆𝑑 Vol𝑑(C) + 𝜆𝑑−1𝜇 length(U) · Vol𝑑
(︀
C | 𝑢⊥)︀.

Thus, by matching coefficients with (17.3.2), we get

𝑉 (C, . . . ,C) = Vol𝑑(C) and

𝑉 (C, . . . ,C,U) = 1
𝑑

length(U) · Vol𝑑
(︀
C
⃒⃒
𝑢⊥)︀.

All the other mixed volumes are zero. This is illustrated in Figure 17.2.
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Figure 17.2 (Mixed volumes with a segment). This picture illustrates the formula derived in Ex-
ample 17.3.2 for the mixed volumes of a convex body C and a line segment U = [0, 𝑢].

In Example 17.3.2, for a unit vector 𝑢, we have seen that 𝑑 · 𝑉 (C, . . . ,C, [0,𝑢]) gives us
the volume of the projection of C onto the hyperplane 𝑢⊥. Indeed, there are more instances
where mixed volumes in C are related to the volumes of projections of C.

Example 17.3.3 (Quermassintegrals). In the last lecture, we obtained the following relationship
between mixed volumes and intrinsic volumes.(︂

𝑑

𝑖

)︂
𝑉 (C, . . . ,C⏟  ⏞  

𝑖 times

,B𝑑, . . . ,B𝑑⏟  ⏞  
𝑑−𝑖 times

) = 𝜅𝑑−𝑖𝑉𝑖(C). (17.3.3)

Furthermore, Kubota showed that intrinsic volumes are related to the mean values of
projections as follows.

𝑉𝑖(C) = 𝜅𝑑

𝜅𝑖𝜅𝑑−𝑖

(︂
𝑑

𝑖

)︂∫︁
𝐺(𝑖,𝑑)

𝑉𝑖

(︀
C
⃒⃒
L
)︀

d𝜈𝑗(L).

Here, 𝜈𝑖 denotes the rotation-invariant probability measure on the Grassmannian 𝐺(𝑖, 𝑑),
which consists of 𝑖-dimensional subspaces in R𝑑. As usual, C

⃒⃒
L denotes the projection of C

onto L. Combining these equations, we obtain

𝑊
(𝑑)
𝑑−𝑖(C) := 𝑉 (C, . . . ,C⏟  ⏞  

𝑖 times

,B𝑑, . . . ,B𝑑⏟  ⏞  
𝑑−𝑖 times

) = 𝜅𝑑

𝜅𝑖

∫︁
𝐺(𝑖,𝑑)

Vol𝑖
(︀
C
⃒⃒
L
)︀

d𝜈𝑗(L).

In words, the mixed volume is proportional to the mean 𝑖-dimensional volume of the
projections of C onto the 𝑖-dimensional subspaces.

The quantity 𝑊 (𝑑)
𝑖 is called the 𝑖th quermassintegral of the set C. This German word

translates, roughly, as mean projection volume. The quermassintegrals arise naturally from
the definition of mixed volumes, and they are equivalent to intrinsic volumes, modulo scaling.
Quermassintegrals depend on the dimension 𝑑, in contrast to the intrinsic volumes, which
do not.
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Figure 17.3 (Mean projection volumes). [left] The mixed volume 𝑉 (C, B𝑑, . . . , B𝑑) is proportional
to the average volume of the projections of C onto all hyperplanes. [right] The mixed volume
𝑉 (C, Q𝑑, . . . , Q𝑑) is proportional to the average size of projections of C onto hyperplanes
spanned by coordinate axes.

Next, we present an analogue of Example 17.3.3 where balls are replaced by cubes.

Example 17.3.4 (Coordinate projection volumes). Let Q𝑑 denote the ℓ𝑑
∞ unit ball. In his 1984

doctoral thesis, Pajor showed that(︂
𝑑

𝑖

)︂
𝑉 (C, . . . ,C⏟  ⏞  

𝑖 times

,Q𝑑, . . . ,Q𝑑⏟  ⏞  
𝑑−𝑖 times

) = Vol𝑑(Q𝑑)
Vol𝑖(Q𝑖)

∑︁
|𝐼|=𝑖

Vol𝑖(𝑃𝐼C),

The sum extends over sets 𝐼 ⊂ {1, . . . , 𝑑}, and 𝑃𝐼 denotes the orthogonal projection from
R𝑑 onto R𝐼 . Thus, we have

𝑉 (C, . . . ,C⏟  ⏞  
𝑖 times

,Q𝑑, . . . ,Q𝑑⏟  ⏞  
𝑑−𝑖 times

) = 2𝑑−𝑖

(︂
𝑑

𝑖

)︂−1∑︁
|𝐼|=𝑖

Vol𝑖(𝑃𝐼C).

The mixed volume is proportional to the mean volume of 𝑖-dimensional projections along the
coordinate axes. This formula was derived independently by Leinster (2012) in a different
geometric setting.

We conclude this section with a list of miscellaneous related examples.

Example 17.3.5 (More mixed volumes). Let C,K ⊂ R𝑑 be convex bodies, and write ◇𝑑 for the
ℓ𝑑

1 unit ball.

1. 𝑉 (C, . . . ,C,B𝑑) is proportional to the Minkowski surface area of C.
2. 𝑉 (C, . . . ,C,Q𝑑) is proportional to the mean (𝑑 − 1)-volume of the projections of C

onto the coordinate hyperplanes.
3. 𝑉 (C, . . . ,C,K) is proportional to the K-surface area of the set C.
4. 𝑉 (C,B𝑑, . . . ,B𝑑) is proportional to the mean width of C.
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5. 𝑉 (C,Q𝑑, . . . ,Q𝑑) is proportional to the mean length of the projections of C onto
individual coordinates.

6. 𝑉 (C, ◇𝑑, . . . , ◇𝑑) is proportional to the Rademacher width of C:

𝑉 (C, ◇𝑑, . . . , ◇𝑑) ∝ E𝜀 max𝑥∈C ⟨𝜀, 𝑥⟩

where 𝜀 ∼ uniform{±1}𝑑.

This last result also appears in Pajor’s thesis.

17.4 Basic Properties of Mixed Volumes
The main goal of this lecture is to outline the main facts about mixed volumes. The first
result is an alternative formula for the mixed volumes that shows how they depend on the
volumes of the summands.

Proposition 17.4.1 (Inclusion–Exclusion). For C1, . . . ,C𝑑 ∈ C𝑑, we have

𝑑! · 𝑉 (C1, . . .C𝑑) =
∑︁𝑑

𝑘=1
(−1)𝑛+𝑘

∑︁
𝑖1<...<𝑖𝑘

Vol𝑑(C𝑖1 + · · · + C𝑖𝑘
)

= Vol𝑑(C1, . . . ,C𝑑) − [Vol𝑑(C1 + · · · C𝑑−1) + · · · + Vol𝑑(C2 + · · · + C𝑑)]
+ · · · + (−1)𝑑−1[Vol𝑑(C1) + · · · + Vol𝑑(C𝑑)].

Proof sketch. Denote the right hand side of the above equation by 𝑓(C1, . . . ,C𝑑). By
Theorem 17.2.1, the function (𝜆1, · · · , 𝜆𝑑) ↦→ 𝑓(𝜆1C1, . . . , 𝜆𝑑C𝑑) is a degree-𝑑 polynomial
in the variables 𝜆1, . . . , 𝜆𝑑. We will show that every term in 𝑓(𝜆1C1, . . . , 𝜆𝑑C𝑑) vanishes,
except for the term with monomial 𝜆1 · · ·𝜆𝑑. Indeed, we have

(−1)𝑛+1𝑓({0},C2, . . . ,C𝑑)

=
∑︁

2≤𝑖≤𝑑
Vol𝑑(C𝑖) −

[︁∑︁
2≤𝑗≤𝑑

Vol𝑑({0} + C𝑗) +
∑︁

2≤𝑖<𝑗≤𝑑
Vol𝑑(C𝑖 + C𝑗)

]︁
+

⎡⎣∑︁
2≤𝑗<𝑘≤𝑑

Vol𝑑({0} + C𝑗 + C𝑘) +
∑︁

2≤𝑖<𝑗<𝑘≤𝑑

Vol𝑑(C𝑖 + C𝑗 + C𝑘)

⎤⎦− · · ·

= 0.

By repeating the above argument with 𝜆𝑖 = 0 for each 𝑖, we obtain

𝑓(𝜆1C1, . . . , 𝜆𝑑C𝑑) ∝ 𝜆1 · · ·𝜆𝑑.

By Theorem 17.2.1, this implies the result.

Next, we note that mixed volumes reproduce the volume as a special case. (Conversely,
the mixed volumes can be obtained by polarization of the volume.)

Proposition 17.4.2 (Volume). For all C ∈ C𝑑,

𝑉 (C, . . . ,C) = Vol𝑑(C). (17.4.1)

Proof. This point follows from Equation (17.3.3), with 𝑖 = 𝑑.
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Like the volume, the mixed volumes interact nicely with isometries of Euclidean space
and with affine maps.

Proposition 17.4.3 (Affine motions). The mixed volume is invariant under translation; that is
for all C1, . . . ,C𝑑 ∈ C𝑑 and 𝑥1, . . . ,𝑥𝑑 ∈ R𝑑, we have

𝑉 (C1 + 𝑥1, . . . ,C𝑑 + 𝑥𝑑) = 𝑉 (C1, . . . ,C𝑑).

The mixed volume is affine covariant. For all 𝑇 ∈ R𝑑×𝑑, we have

𝑉 (𝑇 C1, . . . ,𝑇 C𝑑) = | det 𝑇 | · 𝑉 (C1, . . . ,C𝑑).

In particular, if 𝑇 is a rigid motion, the mixed volume is unchanged.

Proof. The results follow from the translation invariance and affine covariance of the volume,
respectively.

The mixed volume is Minkowski additive in each coordinate.

Proposition 17.4.4 (Linearity). The mixed volume is Minkowski additive in each coordinate.
For 𝛼, 𝛽 ≥ 0 and C,K,D2, . . . ,D𝑑 ∈ C𝑑, we have

𝑉 (𝛼C + 𝛽K,D2, . . . ,D𝑑) = 𝛼𝑉 (C,D2, . . . ,D𝑑) + 𝛽𝑉 (K,D2, . . . ,D𝑑).

Proof. We have

Vol𝑑(𝜆1(𝛼C + 𝛽K) + 𝜆2D2 + · · · + 𝜆𝑑D𝑑)
= Vol𝑑(𝜆1𝛼C + 𝜆1𝛽K + 𝜆2D2 + · · · + 𝜆𝑑D𝑑).

We expand both sides of the above equation in terms of Theorem 17.2.1. The 𝜆1 · · ·𝜆𝑑

monomial on the left-hand side is given by 𝑑! · 𝑉 (𝛼C + 𝛽K,D2, . . . ,D𝑑), while the one of the
right-hand side is given by 𝑑! · 𝛼𝑉 (C,D2, . . . ,D𝑑) + 𝑑! · 𝛽𝑉 (K,D2, . . . ,D𝑑), from which we
obtain the result.

Like the volume, the mixed volume is also a valuation in each coordinate.

Proposition 17.4.5 (Valuation). The mixed volume is a set valuation with respect to each
coordinate. That is, for all D2, . . .D𝑑 ∈ C𝑑 the map

K ↦→ 𝑉 (K,D2, . . . ,D𝑑)

is a set valuation.

Proof. We know that Vol𝑑(· + K) is a set valuation. For C,K,C ∪ K ∈ C𝑑, we have

Vol𝑑(𝜆1(C ∪ K) + 𝜆2D2 + · · ·𝜆𝑑D𝑑) + Vol𝑑(𝜆1(C ∩ K) + 𝜆2𝐷2 + · · · + 𝜆𝑑D𝑑)
= Vol𝑑(𝜆1C + 𝜆2D2 + · · · + 𝜆𝑑D𝑑) + Vol𝑑(𝜆1K + 𝜆2D2 + · · · + 𝜆𝑑D𝑑).

We can now apply Theorem 17.2.1 to each summand. Conclude by matching coefficients of
the resulting polynomials.
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Proposition 17.4.6 (Continuity). The mixed volume is Hausdorff continuous in each coordinate.
That is, for all D2, . . . ,D𝑑 ∈ C𝑑 and sequences {C𝑖}𝑖∈N ⊂ C𝑑 with C𝑖 → C, we have

𝑉 (C𝑖,D2, . . . ,D𝑑) → 𝑉 (C,D1, . . . ,D𝑑).

Proof. This follows from the fact that Vol𝑑 is continuous and that pointwise convergence
of a series of polynomials of constant degree implies the convergence of the polynomial
coefficients.

17.5 Monotonicity of Mixed Volumes
The mixed volumes are increasing with respect to set inclusion in each coordinate. This fact
is rather more difficult to prove as compared with the other properties. In this section, we
will give the geometric argument that supports monotonicity.

Theorem 17.5.1 (Monotonicity). For C1, . . . ,C𝑑,K1, . . . ,K𝑑 ∈ C𝑑, we have

0 ≤ 𝑉 (C1, . . . ,C𝑑) ≤ 𝑉 (K1, . . . ,K𝑑). (17.5.1)

Proof of Theorem 17.5.1. The first inequality in Theorem 17.5.1 follows from the second.
Indeed, for 𝑥𝑖 ∈ C𝑖, we have

𝑉 (C1, . . . ,C𝑑) ≥ 𝑉 ({𝑥1}, . . . , {𝑥𝑑}) = 0.

The last identity is an immediate consequence of the definition of mixed volumes.
To prove the second inequality, we need the following lemma.

Lemma 17.5.2 (Facet representation of mixed voumes). Let C ∈ C𝑑, and let P2, . . . ,P𝑑 ∈ P𝑑 be
polytopes. Introduce the finite set U that contains the unit outer normals of the facets of
𝜆2P2 + · · · + 𝜆𝑑P𝑑 for all 𝜆𝑖 ≥ 0. Then

𝑉 (C,P2, . . . ,P𝑑) = 1
𝑑

∑︁
𝑢∈U

ℎC(𝑢) · 𝑉[𝑑−1](FP1(𝑢), . . . ,FP𝑑
(𝑢)).

As usual, FP(𝑢) denotes the face of P exposed in the direction 𝑢. We have written 𝑉[𝑑−1] for
the mixed volume in dimension 𝑑− 1, where we translate each set FP𝑖(𝑢) into the hyperplane
𝑢⊥ containing the origin.

With this result at hand, we can complete the proof that mixed volumes are monotone. We
establish the lemma in the next section.

By continuity of the mixed volume, it is enough to consider the case where {C𝑖}2≤𝑖≤𝑑

and {K𝑖}2≤𝑖≤𝑑 consist of polytopes. By symmetry, it is enough to check monotonicity in the
first argument. Therefore, we want to show

𝑉 (C,D2 . . . ,D𝑑) ≤ 𝑉 (K,D2, . . . ,D𝑑), (17.5.2)

for all polytopes C,K,D2, . . . ,D𝑑 ∈ P with C ⊂ K.
We prove (17.5.2) by induction over the dimension, noting that the result is trivial for

𝑑 = 1. Assume that (17.5.2) holds in dimension 𝑑− 1, which implies that (𝑑− 1)-dimensional
mixed volumes are nonnegative. Then we can apply Lemma 17.5.2 to obtain a representation

𝑉 (C,D2 . . . ,D𝑑) = 1
𝑑

∑︁
𝑢∈U

ℎC(𝑢) · 𝑉[𝑑−1](FD1(𝑢), . . . ,FD𝑑
(𝑢)).

Since C ⊂ K, the support functions satisfy ℎC ≤ ℎK pointwise. By the inductive hypothesis,
𝑉[𝑑−1] is nonnegative. The inequality (17.5.2) follows.
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17.5.1 Facet Representation of Generalized Surface Area
We conclude with a formula for the C-surface area of a polytope P. This result leads directly
to the mixed volume representation in Lemma 17.5.2.

Lemma 17.5.3 (Facet representation of generalized surface area). Let C ∈ C𝑑, and let P ∈ P𝑑 be
a polytope. Define U to be the set of outer normals of facets of P. Then

𝑉 (C,P, . . . ,P) = 1
𝑑

∑︁
𝑢∈U

ℎC(𝑢) · Vol𝑑−1(FP(𝑢)). (17.5.3)

Before we prove this result, let us explain how it implies Lemma 17.5.2.

Proof of Lemma 17.5.2 from Lemma 17.5.3. Let P =
∑︀𝑑

𝑖=2 𝜆𝑖P𝑖 in Lemma 17.5.3. Expand
the volume polynomial and extract the mixed derivative.

Finally, let us establish the facet representation of the generalized surface area of a
polytope.

Proof of Lemma 17.5.3. First, for a (𝑑− 2)-dimensional face G of the polytope P, we have
Vol𝑑(G + 𝜀B𝑑) = O(𝜀2). because of Steiner’s formula and the fact 𝑉𝑑(G) = 𝑉𝑑−1(G) = 0.

The next step is analogous to the computation of Minkowski surface area, but we use
Minkowski’s mixed volume theorem (17.3.2) instead of Steiner’s formula. Compute

1
𝑑

lim
𝜀↓0

Vol𝑑(𝜀C + P) − Vol𝑑(P)
𝜀

= 1
𝑑

lim
𝜀↓0

∑︀𝑑
𝑗=0 𝜀

𝑗
(︀

𝑑
𝑗

)︀
𝑉 (C, . . . ,C,P, . . . ,P) − 𝜀0𝑉 (P, . . . ,P)

𝜀

= 1
𝑑

lim
𝜀↓0

∑︀𝑑
𝑗=1 𝜀

𝑗
(︀

𝑑
𝑗

)︀
𝑉 (C, . . . ,C,P, . . . ,P)

𝜀
= 𝑉 (C,P, . . . ,P).

This gives a geometric expression for the mixed volume we are studying.
Let us establish the formula (17.5.3) in case 0 ∈ C. By a geometric argument, we have

1
𝜀

[Vol𝑑(𝜀C + P) − Vol𝑑(P)] =
∑︁

𝑢∈U
ℎC(𝑢) · Vol𝑑−1(FP(𝑢)) + 1

𝜀
O(𝜀2)

−→
∑︁

𝑢∈U
ℎC(𝑢) · Vol𝑑−1(FP(𝑢)) as 𝜀 ↓ 0.

(17.5.4)

Indeed, the only significant contributions to Vol𝑑(𝜀C + P) − Vol𝑑(P) come from facets of
P. The facet with normal 𝑢 is extended into a prism by a segment of length 𝜀ℎC(𝑢) in a
direction chosen from FC(𝑢); the sum in (17.5.4) totals the volumes of these prisms. The
other faces of P contribute a negligible amount by the first observation in the proof. See
Figure 17.4 for an illustration.

Finally, let us extend (17.5.3) to the case where 0 /∈ C. For a point 𝑥 ∈ C, we can
apply (17.5.3) to C − 𝑥. We obtain

𝑉 (C,P, . . . ,P) = 𝑉 (C − 𝑥,P, . . . ,P)

=
∑︁

𝑢∈U
ℎC−𝑥(𝑢) · Vol𝑑−1(FP(𝑢))

=
∑︁

𝑢∈U
ℎC(𝑢) · Vol𝑑−1(FP(𝑢)) −

∑︁
𝑢∈U

⟨𝑢, 𝑥⟩ · Vol𝑑−1(FP(𝑢))

=
∑︁

𝑢∈U
ℎC(𝑢) · Vol𝑑−1(FP(𝑢)).
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Figure 17.4 (Facet representation of generalized surface area). Illustration of Equation (17.5.4). The
dominant contribution to the volume of P + 𝜀C comes from P and from the facets of P. The
facet with normal 𝑢 is extended to a prism by a segment of length 𝜀ℎC(𝑢) pointing in a
direction from FC(𝑢).

We showed that the second sum in the penultimate line is zero on the homework.
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18.1 Agenda for Lecture 18
This week we will prove the Alexandrov–Fenchel Inequality (AFI), a deep fact about mixed
volumes. The lecture today contains some geometric preparations that date back to the
work of Alexandrov. It describes a method for approximating convex bodies by polytopes
with extra properties. This construction will reduce the proof of the AFI to a linear algebra
problem.

1. Strongly isomorphic polytopes
2. Simple polytopes
3. Approximation by simple, strongly isomorphic polytopes
4. Support vectors and facet structure
5. Linear extension of mixed volumes

18.2 Strongly Isomorphic Polytopes
As part of the proof of Minkowski’s theorem on mixed volumes, we established an interested
fact about linear families of polytopes. For any polytopes P1,P2, . . . ,P𝑛 ⊂ R𝑑, there is a
fixed, finite set U = {𝑢1, . . . , 𝑢𝑁 } ⊂ S𝑑−1 that contains all outward unit normals of the
facets of polytopes of the form

𝜆1P1 + · · · + 𝜆𝑛P𝑛, for all 𝜆𝑖 ≥ 0.

In other words, forming nonnegative Minkowski combinations of polytopes only generates a
finite number of facet directions.

This fact is surprising at first sight, but it is a general property of polytopes. To begin
this lecture, we will introduce families of polytopes that exhibit the same behavior in an
even purer form.

Definition 18.2.1 (Strongly isomorphic polytopes). Two polytopes P1,P2 ⊂ R𝑑 are strongly iso-
morphic (SI) if

dim FP1(𝑢) = dim FP2(𝑢) for all 𝑢 ∈ S𝑑−1.

We can extend this definition to larger families of polytopes, including infinite families. See
Figure 18.1 for an illustration.

The basic facts about strongly isomorphic polytopes are not especially hard to establish,
but the arguments are not very illuminating. Instead, we summarize some of their basic
properties without proof.

Fact 18.2.2 (Strongly isomorphic polytopes). Strongly isomorphic polytopes have the following
properties.
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Figure 18.1 (Strongly isomorphic polytopes). Strongly isomorphic polytopes have the property that
the face exposed in a given direction has the same dimension in each polytope. This diagram
exhibits a family of three strongly isomorphic polytopes in R2.

1. Normal cone characterization. Two polytopes P1,P2 ⊂ R𝑑 are SI if and only if the normal
cones at vertices are the same. That is, the sets

{NP𝑖(𝑣) : 𝑣 is a vertex of P𝑖}

are identical for 𝑖 = 1, 2.

2. Linear families. If P1,P2 ⊂ R𝑑 are SI polytopes, then {𝜆1P1 + 𝜆2P2 : 𝜆1, 𝜆2 ≥ 0} is an
SI family of polytopes.

3. Heritability. Let P1,P2 ⊂ R𝑑 be SI polytopes. For each fixed 𝑢 ∈ S𝑑−1, the faces FP1(𝑢)
and FP2(𝑢) are SI polytopes.

Recall that a polytope is completely determined by the heights of its facets and the
normal directions of its facets. For a family of SI polytopes S , the normal directions of the
facets fall in the same finite set. Let

U := {𝑢 ∈ S𝑑−1 : FP(𝑢) is a facet of P for P ∈ S }.

Each polytope P ∈ S is determined by the values of its support function ℎ(·; P) on the set
U :

{ℎ(𝑢; P) : 𝑢 ∈ U }

This observation leads to a definition that will play an important role in the treatment of
the Alexandrov–Fenchel inequality.

Definition 18.2.3 (Support vector). Let S be a family of SI polytopes in R𝑑, and let U =
{𝑢1, . . . ,𝑢𝑁 } be the common set of facet directions. The support vector of a polytope P ∈ S
is

ℎ(P) := (ℎ𝑖(P))𝑁
𝑖=1 := (ℎ(𝑢𝑖; P))𝑁

𝑖=1 ∈ R𝑁 .

The support vector determines the polytope P.
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(a) Simple (b) Simple (c) Not simple

Figure 18.2 (Simple Polytopes). Each vertex of a simple polytope in R𝑑 is contained in exactly 𝑑
facets. (a) In R2, all convex polygons are simple. (b) The cube and the tetrahedron in R3 are
simple. (c) The square pyramid in R3 is not simple, because its apex belongs to four facets.

18.3 Simple Polytopes
Next, we consider a special class of polytopes that are stable under perturbations. These
polytopes also play a basic role in combinatorics and in optimization.

Definition 18.3.1 (Simple Polytope). A polyhedron P ∈ R𝑑 is simple if every vertex in contained
in exactly 𝑑 facets. A simple polytope is a simple polyhedron that is also bounded. See
Figure 18.2 for an illustration.

Most polytopes are simple, and they remain so after perturbation.

Fact 18.3.2 (Simple polytopes). Simple polytopes have the following properties.

1. Genericity. Most polytopes are simple. In particular, for any matrix 𝐴 with full row-rank,
the set

P = {𝑥 : 𝐴𝑥 ≤ 𝑏}

is a simple polyhedron for almost every right-hand side 𝑏.

2. Perturbations. If P is a simple polytope, all small perturbations of the facets parallel
to their outer normals result in a simple polytope P′ with the same set of outer
normals. Moreover, the strong isomorphism class of a simple polytope is preserved by
perturbation.

Proof sketch. In the construction of the polyhedron, each inequality that holds with equality
determines a facet of P. A vertex of P is a point where 𝑑 or more inequalities hold with
equality. But, for a generic choice of 𝑏, it is not possible for more than 𝑑 of the inequalities
to hold with equality at a given point. A similar observation explains why simple polytopes
are stable under perturbation. The result on perturbations of strongly isomorphic polytopes
involves reasoning about normal cones.
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18.4 Approximation by Simple, Strongly Isomorphic Polytopes
Strongly isomorphic polytopes are completely determined by their support vectors. Simple
polytopes are stable under perturbation. We wish to work with polytopes that enjoy both
of these favorable properties. This requirement may seem restrictive. But, in fact, these
polytopes are everywhere.

Theorem 18.4.1 (Approximation by SSI polytopes). Let C1, . . . ,C𝑚 ⊂ R𝑑 be convex bodies con-
taining the origin. For all 𝜀 > 0, there are simple, strongly isomorphic (SSI) polytopes
P1, . . . ,P𝑚 ⊂ R𝑑 such that

distH(C𝑖,P𝑖) < 𝜀 and 0 ∈ int P𝑖 for each 𝑖 = 1, . . . ,𝑚.

Proof sketch. For each 𝑖, approximate C𝑖 by a polytope Q𝑖 with 0 ∈ int Q𝑖. Let P =
Q1 + · · · + Q𝑚. There is a perturbation P′ of P that is a simple polytope that has a facet
parallel to every facet of P. For very small 𝛼 > 0, define P𝑖 = Q𝑖 + 𝛼P′.

Here is the key outcome of this result. Given a family of 𝑚 convex bodies, we can
approximate it with a family (P1, . . . ,P𝑑) of 𝑚 SSI polytopes with 𝑁 facet-normal directions.
Consider the set of polytopes

S = {P : P shares the isomorphism class of P𝑖}.

Note that S contains all small facet-normal perturbations of each simple polytope P ∈ S .
One particular consequence is that

lin{ℎ(P) : P ∈ S } = R𝑁 .

This result will allow us to construct a linear extension of the mixed volumes later in this
lecture.

18.5 Support Vectors and Facet Structure
As we have seen, the support vector of a polytope (in an SI family) determines the polytope
completely. Our next goal is to develop more concrete realizations of this principle. In
particular, we will explain how the support vector of the polytope determines the structure
of its facets.

18.5.1 Neighboring Facets
Let S be an SI family with common unit normal directions U = {𝑢1, . . . ,𝑢𝑁 }. Fix a
polytope P ∈ S. Define the facet of P exposed in the direction 𝑢𝑖:

F𝑖 := F𝑖(P) := FP(𝑢𝑖) for 𝑖 = 1, . . . , 𝑁 .

For each pair of facets, let

F𝑖𝑗 := F𝑖𝑗(P) := F𝑖(P) ∩ F𝑗(P).

The set F𝑖𝑗 is either empty or has dimension 𝑑− 2. In the latter case, F𝑖𝑗 is a ridge of the
polytope P. Introduce the set

𝐽 := {(𝑖, 𝑗) ⊂ R𝑁×𝑁 : dim F𝑖𝑗 = 𝑑− 2}.

The set 𝐽 contains the information about which pairs of facets are adjacent or neighboring.
The following observation is immediate.
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(a) (A convex polygon). In R2, the hexagon has six facets, each with two
neighbors. The set 𝐽 of neighboring facets is a cycle on the six facets.

(b) (A cube). In R3, the cube has six facets, each with four neighbors.
The set 𝐽 of neighboring facets is a clique, minus the three edges
((1, 2), (3, 4), (5, 6)) associated with opposite pairs of faces.

Figure 18.3 (Facets and neighboring facets). This diagram contains examples of two convex polytopes,
their facets, and the graph determined by neighboring facets.

Fact 18.5.1 (Neighboring facets). The set 𝐽 determines the edges of a connected, undirected
graph on the facets {1, . . . , 𝑁}.

See Figure 18.3 for an illustration of these concepts.

18.5.2 The Support Function of a Facet

Let F𝑖 be a fixed facet of the polytope P, and let H𝑖 be the (unique) hyperplane that contains
the facet F𝑖. Our goal is to compute the support function of F𝑖 with respect to the plane H𝑖

in terms of the support vector ℎ = ℎ(P). The reason for this particular computation will
become clear when we use these results to develop formulas for mixed volumes.

Each facet of F𝑖 is a ridge F𝑖𝑗 of the polytope P. Therefore, each facet of F𝑖 is determined
by the intersection of F𝑖 with F𝑗 where (𝑖, 𝑗) ∈ 𝐽 . In other words, each facet of F𝑖 is exposed
by the direction 𝑢𝑗 where (𝑖, 𝑗) ∈ 𝐽 . We need to project 𝑢𝑗 onto the plane H𝑖 to obtain the
outer normal of the facet F𝑖𝑗 , and this requires some trigonometry.

We wish to compute the level of the facet F𝑖𝑗 of F𝑖. To that end, define the angle between
the facet normals:

𝜃𝑖𝑗 := ](𝑢𝑖,𝑢𝑗) ∈ (0, 𝜋) for (𝑖, 𝑗) ∈ 𝐽 .
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Figure 18.4 (Facets of facets). [left] The set F𝑖𝑗 is a facet of F𝑖, exposed in the direction 𝑢𝑗 . The
vector 𝑣𝑖𝑗 is the unit outer normal of the facet F𝑖𝑗 , considered as a subset of aff F𝑖. This
diagram also illustrates a second facet F𝑖𝑗′ of F𝑖. [right] Computation of the support function of
F𝑖𝑗 in the direction 𝑣𝑖𝑗 .

Define the vector 𝑣𝑖𝑗 ⊥ 𝑢𝑖 to be the unit outer normal to F𝑖𝑗 , regarded as a facet of F𝑖. In
other words, we need the value of the support function of F𝑖 in the direction 𝑣𝑖𝑗 :

ℎ𝑖𝑗 := ℎ𝑖𝑗(P) := max{⟨𝑣𝑖𝑗 , 𝑥⟩ : 𝑥 ∈ F𝑖} = ⟨𝑣𝑖𝑗 , 𝑥𝑗⟩ for any 𝑥𝑗 ∈ F𝑖𝑗 .

See Figure 18.4 for an illustration.
By plane trigonometry,

𝑢𝑗 = 𝑢𝑖 cos 𝜃𝑖𝑗 + 𝑣𝑖𝑗 sin 𝜃𝑖𝑗 .

Take the inner product of this expression with any vector 𝑥𝑗 ∈ F𝑖𝑗 = F𝑖 ∩ F𝑗 . Then

⟨𝑢𝑗 , 𝑥𝑗⟩ = ⟨𝑢𝑖, 𝑥𝑗⟩ cos 𝜃𝑖𝑗 + ⟨𝑣𝑖𝑗 , 𝑥𝑗⟩ sin 𝜃𝑖𝑗 .

Identify the support levels of the facets F𝑗 ,F𝑖,F𝑖𝑗 to see that

ℎ𝑗 = ℎ𝑖 cos 𝜃𝑖𝑗 + ℎ𝑖𝑗 sin 𝜃𝑖𝑗 .

Solve this expression for ℎ𝑖𝑗 to reach

ℎ𝑖𝑗 = ℎ𝑗 csc 𝜃𝑖𝑗 − ℎ𝑖 cot 𝜃𝑖𝑗 where (𝑖, 𝑗) ∈ 𝐽 . (18.5.1)

In this relation, ℎ𝑖 = ℎ𝑖(P).
To reiterate, we have computed the support vector ℎ𝑖: of the facet F𝑖 in terms of the

support vector ℎ of P. It is important to note that ℎ𝑖: is a linear function of ℎ.

18.6 Linear Extension of Mixed Volumes
Next, we will show how to express mixed volumes in terms of support vectors and to extend
this formula linearly. We have the following process:

𝑉 (C1, . . . ,C𝑑)
approx

EGGGGGGGGGGGGGGGGGGGGC

SSI
𝑉 (P1, . . . ,P𝑑)

supp. vector of facets
EGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGC

restrict to facets
𝑉 (ℎ(P1), . . . ,ℎ(P𝑑)).
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In other words, we can approximate a family of convex bodies by a family of SSI polytopes.
Each of these polytopes is determined completely by its support vector, i.e., the height of its
facets. As such, we may as well compute mixed volumes of SSI bodies directly in terms of
their support functions.

18.6.1 The Two-Dimensional Case

To warm up, let us work out what happens in R2. Let C,K ⊂ R2 be a pair of SSI polygons
with 𝑁 facets. The set 𝐽 of neighboring facets is always a cycle graph:

𝐽 = {(𝑖, (𝑖+ 1) mod 𝑁) : 𝑖 = 1, . . . , 𝑁}.

In other words, the 𝑖th facet is contingent on the facets 𝑖+1 and 𝑖−1. Introduce the support
vectors ℎ(C),ℎ(K) ∈ R𝑁 of the sets, along with the support vectors ℎ𝑖:(K) of the facets of
K.

Using the facet representation of the mixed volume, we calculate that

𝑉 (C,K) = 1
2
∑︁𝑁

𝑖=1
ℎ𝑖(C) · Vol1(F𝑖(K))

= 1
2
∑︁𝑁

𝑖=1
ℎ𝑖(C)(ℎ𝑖,𝑖+1(K) + ℎ𝑖,𝑖−1(K))

= 1
2
∑︁𝑁

𝑖=1
ℎ𝑖(C)

[︀
ℎ𝑖+1(K) csc 𝜃𝑖,𝑖+1 + ℎ𝑖−1(K) csc 𝜃𝑖,𝑖−1

− ℎ𝑖(K)(cot 𝜃𝑖,𝑖+1 + cot 𝜃𝑖,𝑖−1)
]︀

= 1
2
∑︁

(𝑖,𝑗)∈𝐽
ℎ𝑖(C)ℎ𝑗(K) csc 𝜃𝑖𝑗 − 1

2
∑︁𝑁

𝑖=1
ℎ𝑖(C)ℎ𝑖(K)(cot 𝜃𝑖,𝑖+1 + cot 𝜃𝑖,𝑖−1)

= 1
2ℎ(C)*𝑀ℎ(K) − 1

2ℎ(C)*𝐷ℎ(K)

= 1
2ℎ(C)*(𝑀 − 𝐷)ℎ(K).

In the second line, we have used the fact that the length of the one-dimensional set F𝑖(K) is
the sum of its two support values ℎ𝑖,𝑖+1(K) and ℎ𝑖,𝑖−1(K). In the third line, we introduce
the formula (18.5.1). Last, rearrange this expression, and write it in matrix form.

Now, observe that the matrix 𝑀 ∈ R𝑁×𝑁 is nonnegative and irreducible:

(𝑀)𝑖𝑗 =
{︃

csc 𝜃𝑖𝑗 , for (𝑖, 𝑗) ∈ 𝐽,

0, otherwise.

The irreducibility holds because 𝐽 is the adjacency matrix of a connected, undirected graph
and csc 𝜃𝑖𝑗 > 0. Meanwhile, the matrix 𝐷 ∈ R𝑁×𝑁 is diagonal:

(𝐷)𝑖𝑖 = cot 𝜃𝑖,𝑖+1 + cot 𝜃𝑖,𝑖−1 for 𝑖 = 1, . . . , 𝑁 .

We have expressed the mixed volume as a bilinear form with very concrete properties.
Finally, recall that the support vectors ℎ(P) of polytopes in the same isomorphism class

of C and K span R𝑁 . Therefore, we can extend this computation to all of R𝑁 using linearity.

𝑉 (𝑥,𝑦) = 𝑥*(𝑀 − 𝐷)𝑦 for all 𝑥,𝑦 ∈ R𝑁 .

This expression gives concrete meaning to the mixed volume of an arbitrary pair of support
vectors.
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18.6.2 The General Case
We can do the same thing in higher dimensions, but the formulas become more tangled. Let
P1, . . . ,P𝑑 ⊂ R𝑑 be an SSI family of polytopes with support vectors ℎ(P𝑖) ∈ R𝑁 . Let 𝐽 be
the facet graph of this isomorphism class. Using the facet representation of mixed volumes
(twice!),

𝑉 (P1, . . . ,P𝑑) = 1
𝑑

∑︁𝑁

𝑖=1
ℎ𝑖(P1) · 𝑉 (F𝑖(P2), . . . ,F𝑖(P𝑑))

= 1
𝑑(𝑑− 1)

∑︁𝑁

𝑖=1
ℎ𝑖(P1)

∑︁
(𝑖,𝑗)∈𝐽

ℎ𝑖𝑗(P2) · 𝑉 (F𝑖𝑗(P3), . . . ,F𝑖𝑗(P𝑑))

= . . .

= 1
𝑑

ℎ(P1)*(𝑀 − 𝐷)ℎ(P2).

Note that we have used the computation of the support of F𝑖 in the plane H𝑖 to apply the
facet representation of the mixed volume the second time. The rest of the details are similar.

In this case, the matrix 𝑀 remains nonnegative and irreducible:

(𝑀)𝑖𝑗 =
{︃

(𝑑− 1)−1 csc 𝜃𝑖𝑗 · 𝑉 (F𝑖𝑗(P3), . . . ,F𝑖𝑗(P𝑑)), for (𝑖, 𝑗) ∈ 𝐽,

0, otherwise.

The entries (𝑀)𝑖𝑗 > 0 for (𝑖, 𝑗) ∈ 𝐽 because the (𝑑 − 2)-dimensional mixed volume
𝑉 (F𝑖𝑗(P3), . . . ,F𝑖𝑗(P𝑑)) of the 𝑑− 2 ridges is always positive. The matrix 𝐷 is diagonal:

(𝐷)𝑖𝑖 = 1
𝑑− 1

∑︁
𝑗:(𝑖,𝑗)∈𝐽

[︀
cot 𝜃𝑖𝑗 · 𝑉 (F𝑖𝑗(P3), . . . ,F𝑖𝑗(P𝑑))

+ cot 𝜃𝑗𝑖 · 𝑉 (F𝑗𝑖(P3), . . . ,F𝑗𝑖(P𝑑))
]︀
.

As before, we can extend the mixed volumes linearly to all vectors 𝑥,𝑦 ∈ R𝑁 :

𝑉 (𝑥,𝑦,P3, . . . ,P𝑑) = 1
𝑑

𝑥*(𝑀 − 𝐷)𝑦.

These detailed formulas and the linear extensions will play a key role in the proof of the
AFI in the next lecture.
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19.1 Agenda for Lecture 19
In this course we devoted a lot of time to discuss different concepts of volumes and in-
equalities between them. These have remarkable geometric consequences. For example,
the isoperimetric inequality gives an extremal property for the Euclidean unit ball that
implies both the Sobolev inequality (with optimal constants) and concentration of measure
phenomena for Lipschitz functions on the sphere. Today, we will discuss the mother of all
volume inequalities.

1. The Alexandrov–Fenchel inequality (AFI)
2. Consequences
3. Setup for proof
4. Proof of the AFI

19.2 The Alexandrov–Fenchel Inequality
The Alexandrov–Fenchel inequality is a fundamental fact about mixed volumes.

Theorem 19.2.1 (Alexandrov 1937,1938). Let C,K,P1, . . . ,P𝑑 ⊂ R𝑑+2 be convex bodies. Then,

𝑉 (C,K,P1, . . . ,P𝑑)2 ≥ 𝑉 (C,C,P1, . . . ,P𝑑) · 𝑉 (K,K,P1, . . . ,P𝑑).

At first glance, the AFI vaguely resembles the Cauchy–Schwarz inequality, but it goes in
the opposite direction! Bounds of this form are called hyperbolic inequalities in contrast to
elliptic inequalities, like Cauchy–Schwarz.

Theorem 19.2.1 is considered to be one of the deepest and most powerful results in all of
convex geometry. Until recently, it has also had the reputation of being brutally hard to
prove.

The result was first claimed by Fenchel in 1936, but his proof was unsatisfactory. Hadwiger
described the argument as “schwer verständlich” (difficult to understand). The first proof
was obtained by Alexandrov in 1937 using strongly isomorphic polytopes. Alexandrov
developed a second proof in 1938 using differential geometry and inequalities for mixed
dicriminants. It is traditional to name the inequality after both Fenchel (for the conjecture)
and Alexandrov (for the proof).

Around 1980, Khonvanskii and Tessier independently showed that the AFI is equivalent
to the Hodge index theorem from algebraic geometry. This led to other proofs via algebraic
methods.

There are further connections between the AFI and mixed discriminants that were until
recently opaque, but the relationship has recently been clarified. Mixed discrimants play an
important role in discrete geometry.

Today, we will present a proof of the AFI due to Shenfeld & Van Handel from November
2018 [SVH18]. In a sense, their argument “short circuits” Alexandrov’s polytope proof. The
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setup and the machinery are similar in spirit, but Shenfeld & Van Handel discovered that
there is a simple device that reduces Alexandrov’s difficult computations to a single line.

Shenfeld & Van Handel have also given a short, clean variant of Alexandrov’s differential
geometry proof that exposes the connection between the AFI and Alexandrov’s inequality
for mixed discriminants. The differential geometry proof is conceptually simpler than the
polytope proof. But it requires substantive results about elliptic partial differential equations
that we prefer not to rely on.

19.3 Consequences of the Alexandrov–Fenchel Inequality
Using the symmetry of the mixed volumes, we can extract many further inequalities from
the AFI by iteration. Before establishing the result, we discuss some of these consequences
(without proof).

The AFI implies Minkowski’s first inequality, which states that

𝑉 (C, . . . ,C,K)𝑑 ≥ Vol𝑑(C)𝑑−1 · Vol𝑑(K).

This in turn yields the Brunn–Minkowski theorem for convex bodies and also Urysohn’s
mean width inequality. In fact, there is a more general lower bound:

𝑉 (C1, . . . ,C𝑑)𝑑 ≥ Vol𝑑(C1) · · · Vol𝑑(C𝑑).

That is, the mixed volume is always bigger than the geometric mean of the volumes.
Recall that mixed volumes give rise to intrinsic volumes by combining a convex body

with Euclidean balls in different proportions. As a consequence, the AFI yields inequalities
for the intrinsic volumes.

In particular, the AFI implies an entire sequence of isoperimetric inequalities:(︂
Vol𝑑(C)
Vol𝑑(B𝑑)

)︂1/𝑑

≤
(︂
𝑉𝑑−1(C)
𝑉𝑑−1(B𝑑)

)︂1/(𝑑−1)
≤ · · · ≤ 𝑉1(C)

𝑉1(B𝑑) .

The first relation is the isoperimetric inequality. The inequality between the first member
and the last is Urysohn’s inequality.

The AFI also implies that the intrinsic volume sequence is (ultra-)log-concave. For all 𝑗
(where it makes sense),

𝑉𝑗(C)2 ≥ 𝑗 + 1
𝑗

· 𝑉𝑗+1(C) · 𝑉𝑗−1(C).

This tells us that intrinsic volumes have a sub-Poissonian distribution. This result is due to
Chevet in 1976, and it was rediscovered by McMullen in 1991.

19.4 Setup for the Proof
Before we begin the proof, we need to set out some background material.

19.4.1 Simple, Strongly Isomorphic Polytopes
We begin with a brief recapitulation of the insights from last lecture. Fix 𝑑 ≥ 0. Let
C,K,P1, . . . ,P𝑑 ⊂ R𝑑+2 be a family of simple, strongly isomorphic (SSI) polytopes. Let
U = {𝑢1, . . . ,𝑢𝑁 } ⊂ S𝑑+1 be the common set of unit outward normals to facets of the
polytopes. We define the support vector of a polytope P in this family to be

ℎ(P) := (ℎ𝑖(P))𝑁
𝑖=1 = (ℎ(𝑢𝑖,P))𝑁

𝑖=1 ∈ R𝑁 .
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Consider the family S of polytopes with the same isomorphism class as C,K,P𝑖. The
support vectors of polytopes in S have some appealing properties.

(i) If P ∈ S is simple, its support vector is still a support vector of a polytope in S after
an arbitrary small perturbation.

(ii) In particular, the support vectors of polytopes in S span all of R𝑁 .
(iii) The support vectors of polytopes in S form a convex cone.

Next, we define the facet maps:

F𝑖(P) = facet of P exposed in direction 𝑢𝑖.

Recall that (the support vector of) the facet F𝑖(P) is a linear function of the support vector
ℎ(P). Since the support vectors span all of R𝑁 , we can extend F𝑖(P) = F𝑖(ℎ(P)) linearly to
obtain a map F𝑖(𝑥) for 𝑥 ∈ R𝑁 . That is, instead of putting support vectors into the facet
map, we can input arbitrary vectors. It is not important to assign any particular geometric
meaning to this expression.

Now, we come to the most important observation from last lecture. The mixed volumes
can be written as

𝑉 (C,K,P1, . . . ,P𝑑) = 1
𝑑+ 2

∑︁𝑁

𝑖=1
ℎ𝑖(C) · 𝑉 (F𝑖(K),F𝑖(P1), . . . ,F𝑖(P𝑑))

= ℎ(C)*(𝑀 − 𝐷)ℎ(K).

In this expression, 𝑀 is a nonnegative, symmetric, irreducible matrix, and 𝐷 is a diagonal
matrix. This bilinear form allows us to extend mixed volumes linearly to all vectors
𝑥,𝑦 ∈ R𝑁 :

𝑉 (𝑥,𝑦,P1, . . . ,P𝑑) := 𝑥*(𝑀 − 𝐷)𝑦

=: 1
𝑑+ 2

∑︁𝑁

𝑖=1
𝑥𝑖𝑉 (F𝑖(𝑦),F𝑖(P1), . . . ,F𝑖(P𝑑)).

We can assign meaning to the first and last expression using the second expression.

19.4.2 Irreducible Matrices
The matrix 𝑀 that appears in the formula for the mixed volumes is nonnegative and
irreducible. A great deal is known about the eigenstructure of this type of matrix. We rely
on the following well-known result.

Fact 19.4.1 (Perron). Suppose that 𝐴 is a nonnegative, irreducible square matrix. Then the
maximum eigenvalue of 𝐴 is simple, and the associated eigenvector is the unique eigenvector
with strictly positive entries.

This is the linear-algebraic version of the fact that a random walk on a connected graph
converges to a stationary distribution that assigns weight to each point. Think of the positive
eigenvector as the stationary distribution. We are not going to prove this fact here; it belongs
in a lecture about linear algebra or Markov chains.
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19.4.3 Hyperbolic Inequalities
Let 𝐴 be a positive-semidefinite matrix. The bilinear form induced by this matrix satisfies
a Cauchy–Schwarz inequality:

⟨𝑥, 𝐴𝑦⟩2 ≤ ⟨𝑥, 𝐴𝑥⟩⟨𝑦, 𝐴𝑦⟩ for all 𝑥,𝑦.

The results discussed here go into the opposite direction, however. As a consequence, we
need to understand circumstances when a bilinear form obeys the opposite inequality. We
have the following result.

Lemma 19.4.2 (Hyperbolic inequalities). Let 𝐴 be self-adjoint with respect to a given inner
product. The following are equivalent:

(i) 𝐴 has at most one eigenvector with a positive eigenvalue.
(ii) ⟨𝑥, 𝐴𝑦⟩2 ≥ ⟨𝑥, 𝐴𝑥⟩⟨𝑦, 𝐴𝑦⟩ for all 𝑦 such that ⟨𝑦, 𝐴𝑦⟩ ≥ 0 and for all 𝑥.

The proof is an exercise in linear algebra, and it bears similarities to the proof of
Cauchy–Schwarz.

Relations of the kind in Lemma 19.4.2 are called hyperbolic inequalities. To see why,
consider the following polynomial in 𝑑+ 1 variables:

𝑞(𝑥) = 𝑥2
0 − 𝑥2

1 − · · · − 𝑥2
𝑑 = 𝑥*𝐽𝑥 where 𝐽 = diag(1,−1,−1, . . . ,−1).

This polynomial appears in the abstract theory of space-time. There is a single distinguished
direction 𝑥0 corresponding to time, while the other 𝑑 (undistinguished) coordinates corre-
spond to space. Setting this polynomial greater than or equal to zero results in the pair of
light cones at the origin. Everything within the future light cone (time is nonnegative) may
be affected by a particle emitted at the origin while everything within the past light cone
(time is nonpositive) may have affected the origin (future+past causal connections). This
behavior arises from the fact that the bilinear form 𝐽 has the Lorentz spectral signature:
one eigenvalue (time) is positive, the remaining ones (space) are all negative.

For the task at hand, the vector 𝑦 will be a support vector, which will ensure that
⟨𝑦, 𝐴𝑦⟩ ≥ 0. But it will be very important that the vector 𝑥 ∈ R𝑁 can be chosen in an
arbitrary fashion.

19.4.4 A Refined AFI
We are now prepared to write down the version of the AFI that we are going to prove.

Theorem 19.4.3. Let K,P1, . . . ,P𝑑 ⊂ R𝑑+2 be a family of simple, strongly isomorphic polytopes.
Let U = {𝑢1, . . . ,𝑢𝑁 } ⊂ S𝑑+1 be the common set of facet outer normals. Then, for any
𝑥 ∈ R𝑁 ,

𝑉 (𝑥,K,P1, . . . ,P𝑑)2 ≥ 𝑉 (𝑥,𝑥,P1, . . . ,P𝑑) · 𝑉 (K,K,P1, . . . ,P𝑑).

In particular, we can take 𝑥 = ℎ(C), where C is another simple, strongly isomorphic
polytope. This implies AFI, because we can approximate a general family of convex bodies
by a family of simple, strongly isomorphic polytopes.

19.5 Proof of Theorem 19.4.3
The proof works by induction on the dimension.
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19.5.1 Base Case

We begin with the base case 𝑑 = 0. Let C,K ⊂ R2 be simple, strongly isomorphic polytopes.
Minkowski’s first theorem states

𝑉 (C,K)2 ≥ 𝑉 (C,C) · 𝑉 (K,K).

We established this result on the homework as a consequence of the Brunn–Minkowski
inequality.

For any 𝑥 ∈ R𝑁 , the vector 𝑥 + 𝛼ℎ(K) is guaranteed to be a support vector, provided
that 𝛼 > 0 is sufficiently large. This is a consequence of the fact that the support vectors
form a cone, and the support vector ℎ(K) of the SSI polytope K remains a support vector
after an arbitrary small perturbation.

We can use this fact to infer

𝑉 (𝑥 + 𝛼ℎ(K),K)2 ≥ 𝑉 (𝑥 + 𝛼ℎ(K),𝑥 + 𝛼ℎ(K)) · 𝑉 (K,K).

The base case now follows from the linearity of the mixed volumes, written in terms of the
support vectors.

19.5.2 The Inductive Step

Let us turn to the induction step. We need to show that, for all 𝑥 ∈ R𝑁 ,

V(𝑥,P1, . . . ,P𝑑)2 ≥ 𝑉 (𝑥,𝑥,P1, . . . ,P𝑑) · 𝑉 (K,K,P1, . . . ,P𝑑).

We are going to establish this point by exploiting the special structure of the bilinear form
associated with mixed volumes.

Translation invariance allows us to assume that 0 ∈ int(P1). This choice ensures that
ℎ𝑖(P1) is strictly positive for all 𝑖. Define a sequence of weights:

𝑝𝑖 := 1
𝑑+ 2

𝑉 (F𝑖(P1), . . . ,F𝑖(P𝑑))
ℎ𝑖(P) > 0 for 1 ≤ 𝑖 ≤ 𝑁 .

We use these positive 𝑝𝑖 to define a weighted inner product on R𝑁 :

⟨𝑎, 𝑏⟩𝑝 :=
∑︁𝑁

𝑖=1
𝑝𝑖𝑎𝑖𝑏𝑖.

Next, construct a matrix 𝐴 ∈ R𝑁×𝑁 via its action on 𝑥 ∈ R𝑁 :

(𝐴𝑥)𝑖 = 1
𝑑+ 2 · 1

𝑝𝑖
· 𝑉𝑑+1(F𝑖(𝑥),F𝑖(P1), . . . ,F𝑖(P𝑑)).

The matrix 𝐴 has several remarkable properties. First, note that

⟨𝑦, 𝐴𝑥⟩𝑝 =
∑︁𝑁

𝑖=1
𝑝𝑖𝑦𝑖(𝐴𝑥)𝑖

= 1
𝑑+ 2

∑︁𝑁

𝑖=1
𝑦𝑖𝑉 (F𝑖(𝑥),F𝑖(P1), . . . ,F𝑖(P𝑑))

= 𝑉 (𝑦,𝑥,P1, . . . ,P𝑑)
= 𝑉 (𝑥,𝑦,P1, . . . ,P𝑑)
= · · · = ⟨𝑥, 𝐴𝑦⟩𝑝.
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Therefore, 𝐴 is self-adjoint with respect to the weighted inner product. A similar argument
reveals that

𝐴 = diag(𝑝)−1(𝑀 − 𝐷).

This formula ensures that 𝐴 is still nonnegative and irreducible. Indeed, multiplication by a
positive diagonal matrix does not affect either property.

Why did we do all this reweighting? The reason is that we want to make ℎ(P1) into an
eigenvector of 𝐴 with eigenvalue 1. Indeed,

(𝐴ℎ(P1))𝑖 = 1
𝑑+ 2 · 1

𝑝𝑖
· 𝑉 (F𝑖(P1),F𝑖(P1), . . . ,F𝑖(P𝑑)) = ℎ𝑖(𝑃1).

We are going to prove that 1 is the only positive eigenvalue of 𝐴.
First, let is prove that 1 is the largest eigenvalue of 𝐴. Perron’s theorem shows that the

positive vector ℎ(P1) is the unique eigenvector associated with the maximum eigenvalue of
𝐴 + 𝛼I, where 𝛼 > 0 is some very big number that we use to kill of potentially negative
numbers on the diagonal. This in turn ensures that 1 is the maximum eigenvalue of 𝐴, and
it is a simple eigenvalue.

Next, we will prove that the remaining eigenvalues of 𝐴 are nonpositive. This point
follows from the following claim:

⟨𝐴𝑥, 𝐴𝑥⟩𝑝 ≥ ⟨𝑥, 𝐴𝑥⟩𝑝 for all 𝑥 ∈ R𝑁 . (19.5.1)

For the moment, assume that (19.5.1) holds, and let us complete the proof.
Let (𝑥, 𝜆) be an eigenpair of 𝐴. The claim (19.5.1) implies that the eigenvalue satisfies

𝜆2 ≥ 𝜆. This in turn demands 𝜆 ≥ 1 or 𝜆 ≤ 0. But 1 is the maximum eigenvalue of 𝐴, and
it is simple. Therefore, the matrix 𝐴 has Lorentz signature (i.e., the matrix has at most one
positive eigenvalue). Lemma 19.4.2 now ensures that

⟨𝑥, 𝐴𝑥⟩2
𝑝 ≥ ⟨𝑥, 𝐴𝑥⟩𝑝 · ⟨ℎ(K), 𝐴ℎ(K)⟩𝑝.

Equivalently,

𝑉 (𝑥,K,P1, . . . ,P𝑑)2 ≥ 𝑉 (𝑥,𝑥,P1, . . . ,P𝑑) · 𝑉 (K,K,P1, . . . ,P𝑑).

This is what we needed to show.
Finally, let us verify the claim (19.5.1). This is one of the primary new insights that

Shenfeld & Van Handel provided. Use the induction hypothesis to compute

(𝐴𝑥)2
𝑖 𝑝𝑖 = 1

𝑑+ 2 · ℎ𝑖(P1) · 𝑉 (F𝑖(𝑥),F𝑖(P𝑖), . . . ,F𝑖(P𝑖))2

𝑉 (F𝑖(P1),F𝑖(P1), . . . ,F𝑖(P𝑑))

≥ 1
𝑑+ 2 · ℎ𝑖(P1) · 𝑉 (F𝑖(𝑥),F𝑖(𝑥),F𝑖(P2), . . . ,F𝑖(P𝑑)).

Summing over the indices reveals

⟨𝐴𝑥, 𝐴𝑥⟩𝑝 ≥ 1
𝑑+ 2

∑︁𝑁

𝑖=1
ℎ𝑖(P1) · 𝑉 (F𝑖(𝑥),F𝑖(𝑥),F𝑖(P2), . . . ,F𝑖(P𝑑)) = ⟨𝑥, 𝐴𝑥⟩𝑝.

The claim follows from induction.
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20.1 Overview
This assignment covers basic definitions in affine geometry and convexity, operations that
preserve convexity, topology of convex sets, combinatorial convexity, support and separation,
faces, exposed faces, and the theorems of Minkowski and Dubins.

20.1.1 Directions
It may take a long time to do everything, so just do as much as you can and turn that in.
Starred problems are optional; the number of stars reflects the difficulty. You are welcome to
collaborate with your peers, but you must write up your own solutions. Please avoid books
or the internet unless you are really stuck. If you use any resources to solve the problems,
you must cite them in your solution. Please follow the Homework Guide when preparing
your assignment.

20.2 Exercises
Exercises involve important definitions and basic facts that you should verify for yourself.
These statements often play a role in other problems or in class. Do not write up the
solutions to the exercises.

1. (Preserving Convexity). Let C,K ⊂ R𝑑 be (nonempty) convex sets.

a) Show that the intersection C ∩ K and the direct product C × K are convex. Is the
union C ∪ K convex?

b) For 𝜆 ∈ R, show that the dilation 𝜆C := {𝜆𝑥 : 𝑥 ∈ C} is convex. Show that the
Minkowski sum C + K := {𝑥 + 𝑦 : 𝑥 ∈ C,𝑦 ∈ K} is convex.

c) Let 𝑇 : R𝑑 → R𝑑 be an affine map, i.e., the composition of a linear map and
a translation. Show that the image 𝑇 C is convex. Show that the preimage
{𝑥 ∈ R𝑑 : 𝑇 𝑥 ∈ C} is convex.

2. (*A Characterization of Convexity). Prove that C is convex if and only if (𝜆+ 𝜇)C =
𝜆C + 𝜇C for all 𝜆, 𝜇 > 0.

3. (Convex Cones). A convex cone is a convex set K ⊂ R𝑑 that is positively homogeneous:
𝜆K = K for 𝜆 > 0. With this definition, a convex cone is always “anchored” at
zero. Which of the set operations in Exercise (1) preserve the property of positive
homogeneity?

4. (Topology). In this exercise, we work out the basic topological properties of convex
hulls.

a) Let C be a (nonempty) convex set. Let 𝑥 ∈ bd C and 𝑦 ∈ int C. Prove that the
open segment (𝑥,𝑦) ⊂ int C.
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b) Show that the convex hull of an open set is open.
c) Show that the convex hull of a compact set is compact. Hint: Carathéodory.
d) Do any/all of the operations in Exercise (1) preserve topological properties

(openness, closedness, compactness)?
e) Prove in detail that a simplex (i.e., the convex hull of affinely independent points)

contains a point in its relative interior.

5. (Distance). Let C ⊂ R𝑑 be a nonempty, closed, convex set. Compute the gradient of
the map 𝑥 ↦→ 1

2 dist2(𝑥,C).

6. (*Extreme Points). By a direct argument (not using Minkowski), prove that a compact,
convex set in R𝑑 has an extreme point.

20.3 Problems
Problems require more substantial investigations. You will write up the solutions to the
problems.

1. (Radon + Helly). Carathéodory’s theorem is one of the three fundamental results in
combinatorial convexity. This problem concerns the other two results and a geometric
application.

a) (Radon). Prove the Radon theorem: Let A ⊂ R𝑑 be a finite, affinely dependent
set. Then we can partition A = B ∪ R into disjoint sets (i.e., B ∩ R = ∅) whose
convex hulls overlap:

conv B ∩ conv R ̸= ∅.
Hint: In the affine dependency condition, collect points with positive coefficients
together.

b) (Helly). Prove the Helly theorem: Let C1, . . . ,C𝑛 be convex sets in R𝑑, where
𝑛 ≥ 𝑑 + 1. Suppose that each subfamily of 𝑑 + 1 convex sets has a nonempty
intersection. Then the whole family of convex sets has a nonempty intersection.
Hints: For fixed 𝑑, use induction on 𝑛. The case 𝑛 = 𝑑 + 2 contains the main
idea: apply Radon’s theorem to points drawn from all intersections of subfamilies
of 𝑑+ 1 convex sets.

c) (*Helly ∞). Extend Helly’s theorem from a finite family of at least 𝑑+ 1 convex
sets in R𝑑 to an arbitrary family of at least 𝑑 + 1 compact convex sets in R𝑑.
Produce a family of noncompact convex sets where the conclusion fails.

d) (*Vincensini). Prove Vincensini’s extension of Helly’s theorem: Let C1, . . . ,C𝑛

be convex sets in R𝑑, where 𝑛 ≥ 𝑑 + 1. Suppose that each subfamily of 𝑑 + 1
convex sets contains a translate of a fixed convex set K ⊂ R𝑑. Prove that the
intersection of the entire family contains a translate of K. Establish “Vincensini
∞,” in the spirit of (c).

e) (Strips). In R2, a (closed) strip of width 𝑤 is the locus of points contained
between two parallel lines at distance 𝑤. The minimum width of a set is the
smallest width of a strip that contains the set. Prove that each compact convex
set of minimum width one contains a segment of length one in each direction.
Hint: Dual representation via halfspaces!
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2. (Unbounded Minkowski). We shall extend Minkowski’s theorem to closed, but un-
bounded, convex sets. Let C ⊂ R𝑑 be a nonempty closed convex set.

a) Prove that the recession cone, rec C, is a closed convex cone:

rec C := {𝑢 ∈ R𝑑 : 𝑢 + C ⊂ C}.

b) (*) Check that the lineality space, lin C, is a linear subspace:

lin C := rec C ∩ (− rec C).

We say that a closed convex set is line-free if its lineality space is the trivial
subspace {0}.

c) (*) Prove that C = (lin C)+C0, where C0 is a closed, convex, line-free set contained
in the orthogonal complement of lin C. Therefore, we may as well ignore the
lineality space.

d) Show that a closed convex K satisfies K = conv relbd K unless K is an affine
space or a halfspace of an affine space. Hint: Prove by contradiction, using weak
separation.

e) An extreme ray of a closed convex set C is a face {𝑥 + 𝜆𝑠 : 𝜆 ≥ 0} where 𝑥 ∈ C
and 𝑠 ∈ R𝑑 ∖ {0}. The set of extreme rays is extr C. For a face F of C, check that
extr F ⊂ extr C.

f) Prove that a closed, convex, line-free set K admits the decomposition

K = conv(ext K ∪ extr K).

Hint: Mimic the proof of Minkowski’s theorem, using the foregoing results.
g) (*) Conclude that a closed, convex, line-free set K has an extreme point and,

moreover,
K = (conv ext K) + (rec K).

Hint: A ray that is not a line has an extreme point.

3. (Uncertainty Quantification). Minkowski’s theorem and Dubins’s theorem have appeal-
ing applications in probability. In this problem, we will develop some finite-dimensional
examples. Let S ⊂ R be a finite set. Consider the collection of probability distributions
on S:

Δ(S) :=
{︁

𝑝 : S → R+ :
∑︁

𝑠∈S
𝑝(𝑠) = 1 and 𝑝(𝑠) ≥ 0 for all 𝑠 ∈ S

}︁
⊂ RS

We equip RS with the canonical inner product. Let 𝑋 be a random variable with
values in S.

a) Show that Δ(S) is compact and convex. Identify all of the extreme points, with
proof.

b) Report all optimal solutions to the uncertainty quantification problem

maximize𝑋 E[𝑋2]
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c) Report at least one optimal solution to the uncertainty quantification problem

maximize𝑋 Var[𝑋]

Hint: Constrain E𝑋 = 𝛼 for a fixed 𝛼 ∈ R.
d) (*) For 𝛼 ∈ R, report an one optimal solution to the uncertainty quantification

problem
maximize𝑋 P{𝑋 ≥ 𝑠} subject to E𝑋 = 𝛼.

e) (*) Show that a standard-form linear program with 𝑚 equality constraints has a
solution with at most 𝑚+ 1 nonzero entries.

4. (Semidefinite Programming). Dubins’s theorem and its relatives have incredible
consequences. A case of particular importance involves the positive-semidefinite (psd)
cone. We work in the complex setting because the computations are cleaner. The set
of Hermitian matrices of order 𝑛 is

H𝑛 := {𝐴 ∈ C𝑛×𝑛 : 𝐴 = 𝐴*}.

We equip the Hermitian matrices with the trace inner product:

⟨𝐴, 𝐵⟩ := trace(𝐴𝐵) for 𝐴,𝐵 ∈ H𝑛.

The complex psd cone is

H𝑛
+ := {𝐴 ∈ H𝑛 : 𝑢*𝐴𝑢 ≥ 0 for all 𝑢 ∈ C}.

The complex positive-definite (pd) cone is

H𝑛
++ := {𝐴 ∈ H𝑛 : 𝑢*𝐴𝑢 > 0 for all nonzero 𝑢 ∈ C}.

The main result of this problem is due, independently, to Barvinok (1995) and Pataki
(1998).

a) Verify that H𝑛 is a real linear space with dimension 𝑛2.
b) Explain why H𝑛

+ is a line-free, closed, convex cone. Check that H𝑛
++ is the interior

of H𝑛
+.

c) Let 𝐴 ∈ H𝑛
+ be a psd matrix with rank 𝑟 < 𝑛. Show that 𝐴 is an internal

point of an exposed face F ⊂ H𝑛
+ with dimension 𝑟2. Hint: Consider the linear

functional 𝜙 = ⟨𝑃 , ·⟩ where 𝑃 is the orthogonal projector onto null 𝐴. In fact, F
is essentially a copy of H𝑟

+.
d) (*) Confirm that the faces of H𝑛

+ are in one-to-one correspondence with subspaces
of C𝑛. Show that the correspondence reverses inclusion.

e) Let L be a nontrivial affine space with codimension 𝑚, and assume E := H𝑛
+ ∩ L is

nonempty. Show that each extreme point of E is contained in the relative interior
of an exposed face F of H𝑛

+ with dimension at most 𝑚. Hint: We must have
dim(F ∩ L) = 0.

f) Conclude that the extreme points of E include a matrix with rank at most
√
𝑚.
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g) (*) Reinterpret: A standard-form SDP with 𝑚 equality constraints has a solution
whose rank is at most

√
𝑚.

h) (*) Describe the proper faces of the set C := {𝐴 ∈ H+
𝑛 : trace 𝐴 = 1} of quantum

states. With L as before, prove the extreme points of C ∩ L include a matrix with
rank at most

√
𝑚.
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21.1 Overview
This assignment covers polytopes, polyhedra, normal cones, polarity, the Weyl–Minkowski
theorem, Hausdorff distance, support functions, Steiner’s formula, intrinsic volumes, valua-
tions, and the Euler characteristic.

21.1.1 Directions
It may take a long time to do everything, so just do as much as you can and turn that in.
Starred problems are optional; the number of stars reflects the difficulty. You are welcome to
collaborate with your peers, but you must write up your own solutions. Please avoid books
or the internet unless you are really stuck. If you use any resources to solve the problems,
you must cite them in your solution. Please follow the Homework Guide when preparing
your assignment.

21.2 Exercises
Exercises involve important definitions and basic facts that you should verify for yourself.
These statements often play a role in other problems or in class. Do not write up the
solutions to the exercises.

1. (Continuity of set operations). Some basic operations on compact convex sets are
continuous with respect to the Hausdorff metric. Suppose that {C𝑖 : 𝑖 ∈ N} ⊂ R𝑑 is a
sequence of nonempty convex bodies that converges in Hausdorff metric to a nonempty
convex body C ⊂ R𝑑. That is, C𝑖 → C. Let K ⊂ R𝑑 be a fixed convex body.

a) Confirm that the Hausdorff distance distH is a metric on convex bodies.
b) Show that Minkowski addition is continuous: C𝑖 + K → C + K.
c) Show that an affine map 𝑇 : R𝑑 → R𝑚 is continuous: 𝑇 C𝑖 → 𝑇 C.
d) (*) Show that intersection may be discontinuous: Sometimes, C𝑖 ∩ K ̸→ C ∩ K.

Show that continuity of the intersection is restored if C and K cannot be separated
by a hyperplane.

2. (Polytope calculus). Let us verify some key facts about polytopes and polyhedra.
These are not hard, once we have polarity and the Weyl–Minkowski theorem at hand.

a) For sets A,B, check the following polar relations:

(A ∪ B)∘ = A∘ ∩ B∘ and (A ∩ B)∘ = conv(A∘ ∪ B∘).

b) Prove that the Minkowski sum of two polytopes is a polytope.
c) Prove that the intersection of two polytopes is a polytope.
d) Check that a face of a polytope is a polytope, and a polytope has finitely many

faces.
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e) Check that a face of a polyhedron is a polyhedron; a polyhedron has finitely many
faces.

f) Prove that an affine slice of a polytope is a polytope.

3. (Valuations). Show that indicator functions satisfy the inclusion–exclusion law:

[A1 ∪ · · · ∪ A𝑚] =
∑︁𝑚

𝑘=1
(−1)𝑘+1

∑︁
𝑖1<𝑖2<···<𝑖𝑘

[A𝑖1 ∩ · · · ∩ A𝑖𝑘
].

What is the 𝑚 = 2 case? Conclude that a linear valuation 𝜙 satisfies

𝜙([A1 ∪ · · · ∪ A𝑚]) =
∑︁𝑚

𝑘=1
(−1)𝑘+1

∑︁
𝑖1<𝑖2<···<𝑖𝑘

𝜙([A𝑖1 ∩ · · · ∩ A𝑖𝑘
]).

(**) Does a set valuation always satisfy the analogous relation?

21.3 Problems
Problems require more substantial investigations. You will write up the solutions to the
problems.

1. (Conjugate Faces). Let P ⊂ R𝑑 be a polytope that contains the origin in its interior,
and let P∘ be its polar. In this problem, we will establish some important facts about
the facial structure of the polytope and its polar. For a face FCP, define the conjugate
face F◇ of P∘ as

F◇ := {𝑠 ∈ P∘ : ⟨𝑠, 𝑥⟩ = 1 for all 𝑥 ∈ F}.

We write C for the “face of” relation.

a) If F C P, show that F◇ C P∘.
b) Prove that dim F + dim F◇ = 𝑑− 1.
c) A facet of a polytope is a face with dimension 𝑑− 1. Show that every polytope

has a facet. Deduce that a 𝑑-dimensional polytope has a face of every dimension
𝑗 = 0, 1, 2, . . . , 𝑑.

d) Show that every polytope is the intersection of the halfspaces determined by its
facets:

P = {𝑥 ∈ R𝑑 : ⟨𝑠𝑖, 𝑥⟩ ≤ 𝛼𝑖 for 𝑖 = 1, . . . ,𝑚},

where F𝑖 = {𝑥 ∈ R𝑑 : ⟨𝑠𝑖, 𝑥⟩ = 𝛼𝑖} is a facet of P for each 𝑖. Conclude that every
proper face of a polytope is the intersection of the facets that contain it.

e) (*) Check that facial conjugacy reverses inclusion: If F,GCP, then F ⊂ G implies
G◇ ⊂ F◇.

f) (*) If FCP, show that F◇◇ = F. Conclude that ◇ is a bijection between faces of P
and P∘.

g) (*) Show that F◇ is a base of the normal cone N(F). That is, N(F) = cone F◇ and
each ray of N(F) pierces F◇ in exactly one point.

2. (Pyramids). Let C,K ⊂ R𝑑 be closed convex sets, and let ℎ(·; C) denote the support
function of the set C.
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a) Check that ℎ(𝑠; C + K) = ℎ(𝑠; C) + ℎ(𝑠; K) for each 𝑠 ∈ R𝑑.
b) Let E ⊂ R𝑑−1 be a closed convex set, and fix 𝑎 > 0. A pyramid is a set of the

form
T := {𝜏 · (𝑥, 0) + 𝜏 · (0, 𝑎) : 𝑥 ∈ E and 𝜏 ∈ [0, 1]} ⊂ R𝑑.

Sketch a few pyramids in R2 and R3. Then prove that the volume of the pyramid
T is

Vol𝑑(T) = 1
𝑑

· Vol𝑑−1(E) · 𝑎.

Compare with the formulas for the area of a triangle and volume of a circular
cone.

c) (*) Use the latter expression recursively to determine the volume of the set

T =
{︂

𝑥 ∈ R𝑑
+ :
∑︁𝑑

𝑖=1
𝑥𝑖 ≤ 1

}︂
.

Obtain, as a consequence, the volume of the ℓ𝑑
1 unit ball. Hint: Draw some

pictures!
d) More generally, consider a bounded polyhedron that contains the origin in its

interior, with 𝑚 facets, given explicitly as

P = {𝑥 ∈ R𝑑 : ⟨𝑢𝑖, 𝑥⟩ ≤ 𝛼𝑖 for 𝑖 = 1, . . . ,𝑚} where ‖𝑢𝑖‖ = 1 for each 𝑖.

Let F𝑖 be the facet with outer normal 𝑢𝑖. Check that ℎ(𝑢𝑖; P) = 𝛼𝑖 > 0 for each
𝑖, and

Vol𝑑(P) = 1
𝑑

∑︁𝑚

𝑖=1
Vol𝑑−1(F𝑖) · ℎ(𝑢𝑖; P).

e) For a unit vector 𝑧 ∈ R𝑑, relate the surface area of the facet F𝑖 to the surface
area of its orthogonal projection F𝑖 | 𝑧⊥ onto the hyperplane 𝑧⊥:

Vol𝑑−1(F𝑖 | 𝑧⊥) = Vol𝑑−1(F𝑖) · |⟨𝑢𝑖, 𝑧⟩|.

f) (*) Confirm the identity∑︁𝑚

𝑖=1
Vol𝑑−1(F𝑖) · ⟨𝑢𝑖, 𝑧⟩ = 0 for all nonzero 𝑧 ∈ R𝑑.

Check that the formula in (e) for Vol𝑑(P) is still valid when P does not contain
the origin.

3. (Steiner, Wills, Cauchy, and Kubota). In this problem, we will develop some extensions
and applications of Steiner’s formula, including alternative presentations of the intrinsic
volumes.

a) Use Steiner’s formula to compute the intrinsic volumes of the Euclidean ball B𝑑.
b) For a convex body C ⊂ R𝑑, prove Wills’s formula:

𝑊 (C) :=
∫︁
R𝑑

e−𝜋 dist2(𝑥;C) d𝑥 =
∑︁𝑑

𝑗=0
𝑉𝑗(C).
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c) (*) Wills’s formula yields the intrinsic volumes of a direct product of convex
bodies:

𝑉𝑗(C × K) =
∑︁

𝑖+𝑘=𝑗
𝑉𝑖(C) · 𝑉𝑘(K). for 𝑗 = 0, 1, 2, . . . , 𝑑.

Hint: Compute 𝑊 (𝜆(C × K)) for nonnegative 𝜆.
d) (*) A parallelotope is the direct product of line segments: [0, 𝑠1] × · · · × [0, 𝑠𝑛].

Compute the intrinsic volumes of the parallelotope in terms of the side lengths 𝑠𝑖.
e) Prove Steiner’s formula for intrinsic volumes:

𝑉𝑗(C + 𝜆B𝑑) =
∑︁

𝑖≤𝑗
𝜆𝑗−𝑖 · 𝜅𝑑−𝑖

𝜅𝑑−𝑗

(︂
𝑑− 𝑖

𝑑− 𝑗

)︂
· 𝑉𝑖(C).

The number 𝜅𝑖 := Vol𝑖(B𝑖). Hint: Express the volume of C + (𝜆+ 𝜇)B𝑑 in two
ways.

f) For a polytope P ⊂ R𝑑, explain why 2𝑉𝑑−1(P) equals the surface area of P. Then
establish Cauchy’s surface area formula:

𝑉𝑑−1(P) = 1
2𝜅𝑑−1

∫︁
S𝑑−1

𝑉𝑑−1(P | 𝑢⊥) d𝜎(𝑢)

We have written P | 𝑢⊥ for the orthogonal projection onto the hyperplane 𝑢⊥ and
d𝜎 for the surface measure on the sphere (induced by the Lebesgue measure).

g) Explain how to extend Cauchy’s formula from polytopes to convex bodies.
h) (*) Kubota showed that the other intrinsic volumes admit Cauchy-like formulas:

𝑉𝑗(C) = 𝜅𝑑−1−𝑗

(𝑑− 𝑗)𝜅𝑑−𝑗𝜅𝑑−1

∫︁
S𝑑−1

𝑉𝑗(C | 𝑢⊥) d𝜎(𝑢) for 𝑗 = 0, 1, 2, . . . , 𝑑− 1.

Prove it. Hints: Apply Steiner’s formula to compute 𝑉𝑑−1((C +𝜆B𝑑) | 𝑢⊥). You’ll
also need Cauchy’s formula and Steiner’s formula for intrinsic volumes.

i) (**) Kubota also extended Cauchy’s formula to higher-dimensional projections:

𝑉𝑗(C) = 𝜅𝑑

𝜅𝑗𝜅𝑑−𝑗

(︂
𝑑

𝑗

)︂∫︁
𝐺(𝑗,𝑑)

𝑉𝑗(C | L) d𝜈𝑗(L)

where C | L is the orthogonal projection of C onto a 𝑗-dimensional subspace L
and 𝜈𝑗 is the rotation-invariant probability measure on the family 𝐺(𝑗, 𝑑) of
𝑗-dimensional subspaces of R𝑑. Hint: We can construct a uniformly random
subspace by projecting out one uniformly random direction at a time.

j) Specialize Kubota’s projection formula to the case 𝑗 = 1. How does this result
help us interpret the intrinsic volume 𝑉1? What does Kubota’s formula signify
for other 𝑗?

k) Use Kubota’s projection formula to confirm that intrinsic volumes are monotone
with respect to inclusion. That is, C ⊂ C′ implies that 𝑉𝑗(C) ≤ 𝑉𝑗(C′) for each
index 𝑗.
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4. (*Conic Geometry). In this problem, we explore the elegant duality theory of convex
cones. We will also establish Moreau’s theorem, a very important fact about convex
cones. It can be viewed as an analog of the Peirce decomposition of the identity
into two orthogonal projectors onto complementary subspaces. Let K,K1,K2 ⊂ R𝑑 be
nonempty, closed, convex cones.

a) Define the polar cone

K∘ := {𝑠 ∈ R𝑑 : ⟨𝑠, 𝑥⟩ ≤ 0 for all 𝑥 ∈ K.}.

Show that this definition coincides with the definition in Lecture 5, where zero is
replaced by one. Prove that the polar cone is a nonempty, closed, convex cone.

b) What is the polar cone of a linear subspace? What is the polar cone of the
nonnegative orthant? What is the polar cone of the set of positive-semidefinite
matrices?

c) Specialize the variational characterization of a projector to the conic setting. For
𝑥 ∈ R𝑑,

𝑦 = projK(𝑥) if and only if 𝑦 ∈ K, 𝑥 − 𝑦 ∈ K∘, ⟨𝑥 − 𝑦, 𝑦⟩ = 0.

d) Establish the following properties of the projector onto a cone. For 𝑥 ∈ R𝑑,
i. projK(𝑥) = 0 if and only if 𝑥 ∈ K∘.
ii. projK(𝜆𝑥) = 𝜆projK(𝑥) for 𝜆 ≥ 0.
iii. projK(−𝑥) = −proj−K(𝑥).
iv. 𝑥 = 𝑝K(𝑥) + 𝑝K∘(𝑥).

e) Prove Moreau’s theorem: Each point 𝑥 ∈ R𝑑 has an orthogonal decomposition
𝑥 = 𝑘 + 𝑛 where 𝑘 ∈ K and 𝑛 ∈ K∘ and ⟨𝑘, 𝑛⟩ = 0.

f) Use Moreau’s theorem to prove that every symmetric matrix can be represented
uniquely as the difference of two psd matrices.

g) Establish the formulas

(K1 ∩ K2)∘ = K∘
1 + K∘

2 and (K1 + K2)∘ = K∘
1 ∩ K∘

2.

Show that polarity reverses inclusion: K1 ⊂ K2 implies K∘
2 ⊂ K∘

1.
h) Prove the bipolar theorem: (K∘)∘ = K.
i) A cone is polyhedral if it is a finite intersection of halfspaces containing the origin.
Prove that a polyhedral cone has a finite number of extreme rays.

j) (**) Let K ⊂ R𝑑 be a polyhedral cone. For a bounded continuous function
𝑓 : R2

+ → R, define

𝜙𝑓 (K) := E
[︀
𝑓
(︀
‖projK(𝑔)‖2, ‖projK∘(𝑔)‖2)︀]︀ where 𝑔 ∼ normal(0, I).

Prove the master Steiner formula for polyhedral cones:

𝜙𝑓 (K) =
∑︁𝑑

𝑗=0
𝜙𝑓 (L𝑗) · 𝑣𝑗(K).

where L𝑗 is a 𝑗-dimensional subspace. The numbers 𝑣𝑗 are called conic intrinsic
volumes.

k) (**) Extend the conic Steiner formula to all cones and all Borel measurable
functions for which the expectations are finite.
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22.1 Overview
This assignment covers valuations, the Euler characteristic, integral geometry, the Brunn–
Minkowksi theorem, the Prékopa–Leindler inequality, Steiner symmetrization, the isoperimet-
ric inequality, John’s theorem, the reverse isoperimetric inequality, and the Brascamp–Lieb
inequality.

22.1.1 Directions
It may take a long time to do everything, so just do as much as you can and turn that in.
Starred problems are optional; the number of stars reflects the difficulty. You are welcome to
collaborate with your peers, but you must write up your own solutions. Please avoid books
or the internet unless you are really stuck. If you use any resources to solve the problems,
you must cite them in your solution. Please follow the Homework Guide when preparing
your assignment.

22.2 Exercises
Exercises involve important definitions and basic facts that you should verify for yourself.
These statements often play a role in other problems or in class. Do not write up the
solutions to the exercises.

1. (Planar Kinematics). Compute the measure 𝜇 of the set of rigid motions 𝑇 that bring
two convex sets C,K in the plane into contact: 𝜇{𝑇 : C ∩ 𝑇 K ̸= ∅}. Are any of these
results obvious? Draw some pictures!

a) C = B2 and K = B2.
b) C = [0, 1]2 and K = B2.
c) C = [0, 1]2 and K = [0, 1]2.
d) C = [0, 1]2 and K = [0, 1] × {0}.

2. (Brunn–Minkowski). Prove that the following results are equivalent if they hold for
all measurable sets C,K ⊂ R𝑑 and all 𝜏 ∈ [0, 1], with 𝜏 := 1 − 𝜏 .

a) Vol𝑑(C + K)1/𝑑 ≥ Vol𝑑(C)1/𝑑 + Vol𝑑(K)1/𝑑.
b) Vol𝑑(𝜏C + 𝜏K)1/𝑑 ≥ 𝜏 Vol𝑑(C1/𝑑) + 𝜏 Vol𝑑(K)1/𝑑.
c) Vol𝑑(𝜏C + 𝜏K) ≥ Vol𝑑(C)𝜏 Vol𝑑(K)𝜏 .
d) Vol𝑑(𝜏C + 𝜏K) ≥ min{Vol𝑑(C),Vol𝑑(K)}.

3. (*Hurwitz). There is an easy proof of the isoperimetric theorem in the plane, if you
know a little Fourier analysis. Let 𝑠 ↦→ (𝑥(𝑠), 𝑦(𝑠)) for 𝑠 ∈ [0, 2𝜋] be an arclength
parameterization of a smooth, nonintersecting, closed curve in the plane. In other
words, (𝑥(𝑠), 𝑦(𝑠)) is the point at arclength 𝐿𝑠/(2𝜋) from (𝑥(0), 𝑦(0)).
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a) First, show that
1

2𝜋

∫︁ 2𝜋

0

[︀
𝑥′(𝑠)2 + 𝑦′(𝑠)2]︀ d𝑠 = 𝐿2.

b) For a counterclockwise parameterization, show that the total area enclosed by
the curve is

𝐴 = −
∫︁ 2𝜋

0
𝑦(𝑠)𝑥′(𝑠) d𝑠.

c) Expand 𝑥 and 𝑦 in Fourier series, and rewrite the integrals using Parseval’s
theorem.

d) Conclude that 𝐿2 ≥ 4𝜋𝐴, with equality if and only if the curve is a circle.
e) (**) Extend this result to all nonintersecting, closed plane curves.

22.3 Problems
Problems require more substantial investigations. You will write up the solutions to the
problems.

1. (Dual Volume). Consider the class C ∘
𝑑 of convex bodies in R𝑑 that contain the origin in

their interior, along with the empty set. We define ∅∘ = ∅, and we assume C,K ∈ C ∘
𝑑 .

a) Let 𝜇 be a set valuation on C ∘
𝑑 . Prove that the map C ↦→ 𝜇(C∘) is a set valuation.

b) Show that polarity is a Hausdorff continuous map on bodies in C ∘
𝑑 that contain a

fixed ball about the origin.
c) Conclude that the dual volume Vol∘𝑑 : C ↦→ Vol𝑑(C∘) is a continuous set valuation

on C ∘
𝑑 . (*) Extend the dual volume to a linear valuation on the algebra A(C ∘

𝑑 );
discuss.

d) Recall that ℎ(𝑠; C) is the support function. Establish the formula

Vol∘𝑑(C) = 1
𝑑!

∫︁
R𝑑

e−ℎ(𝑠;C) d𝑠.

Hint: Integrate 1C∘ in spherical coordinates. (*) What is the analog for Vol𝑑?
Do these formulas extend to the algebra? In what form?

e) Deduce Firey’s inequality: For 𝜏 ∈ [0, 1],

log Vol∘𝑑((1 − 𝜏)C + 𝜏K) ≤ (1 − 𝜏) log Vol∘𝑑(C) + 𝜏 log Vol∘𝑑(K).

That is, the dual volume is log-convex.
f) (*) Formulate and derive an isoperimetric inequality that relates dual volume

and “dual surface area.”

2. (Brunn–Minkowski). In this problem, we will examine some of the consequences of
the Brunn–Minkowski inequality.
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a) Prove Brunn’s slicing theorem: Let C ⊂ R𝑑 be a convex body, and fix a direction
𝑠 ∈ R𝑑. Let H𝛼 := {𝑥 ∈ R𝑑 : ⟨𝑠, 𝑥⟩ = 𝛼}. Prove that

𝛼 ↦→ log Vol𝑑−1(C ∩ H𝛼) is concave.

Explain what this means, and draw a picture.
b) For 𝑑-dimensional convex bodies C,K ⊂ R𝑑, define the K-surface area of C via

𝑑 · 𝑆𝑑−1(C; K) := lim
𝜀↓0

Vol𝑑(C + 𝜀K) − Vol𝑑(C)
𝜀

.

(In class, we will show that this limit exists.) Draw some pictures. Use the
Brunn–Minkowski inequality to prove Minkowski’s first inequality

𝑆𝑑−1(C; K) ≥ Vol𝑑(C)(𝑑−1)/𝑑 · Vol𝑑(K)1/𝑑.

Hint: Let 𝑓(𝜏) := Vol𝑑((1 − 𝜏)C + 𝜏K)1/𝑑. The result is equivalent to 𝑓 ′(0) ≥
𝑓(1) − 𝑓(0).

c) Show that the K-surface area of the Euclidean ball is proportional to the mean
width of K:

𝑑𝑆𝑑−1(B𝑑; K) = 𝜅𝑑−1 𝑉1(K).

d) Derive Urysohn’s mean-width inequality and give an interpretation in words:

𝑉1(K)
𝑉1(B𝑑) ≥

(︂
Vol𝑑(K)
Vol𝑑(B𝑑)

)︂1/𝑑

.

e) (**) Prove the co-area formula. For a smooth, compactly supported function
𝑓 : R𝑑 → R, ∫︁

R𝑑

‖∇𝑓(𝑥)‖2 d𝑥 =
∫︁ ∞

0
d𝑡 𝑆𝑑−1({|𝑓(𝑥)| ≥ 𝑡}).

As usual, 𝑆𝑑−1 is the Minkowski surface area. Draw a picture. Hint: In R2, this
can be accomplished by using the arclength parameterization of the boundary of
the level set.

f) Show that isoperimetric inequality implies the following (optimal) Sobolev inequal-
ity. For a smooth, compactly supported function 𝑓 : R𝑑 → R and 𝑝 = 𝑑/(𝑑− 1),(︂

1
𝜅𝑑

∫︁
R𝑑

|𝑓(𝑥)|𝑝 d𝑥

)︂1/𝑝

≤ 1
𝜔𝑑

∫︁
R𝑑

‖∇𝑓(𝑥)‖2 d𝑥.

(*) Prove that the converse holds in R2; that is, Sobolev implies isoperimetry.

3. (Steiner Symmetrization). Steiner symmetrization is a very useful tool for establishing
geometric results. We already saw a proof of the isoperimetric inequality using this
technique, but we can do other things besides.
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a) Let C,K ⊂ R𝑑 be nonempty convex bodies. Use the Gross sphericity theorem to
construct a single sequence H1,H2,H3, . . . of hyperplanes for which

stH𝑛
stH𝑛−1 . . . stH1 C → const(C) B𝑑

stH𝑛
stH𝑛−1 . . . stH1 K → const(K) B𝑑

}︃
as 𝑛 → ∞.

What are the constants? Hint: Alternate.
b) Use Steiner symmetrization and part (a) to establish Brunn–Minkowski in the

form
Vol𝑑(C + K)1/𝑑 ≥ Vol𝑑(C)1/𝑑 + Vol𝑑(K)1/𝑑

c) Establish the Meyer–Pajor lemma: For a norm ball K ⊂ R𝑑 and a hyperplane H,

Vol∘𝑑(stH K) ≥ Vol∘𝑑(K).

Hints: Assume that H = {𝑥 ∈ R𝑑 : 𝑥𝑑 = 0}. Consider the slicing operation
A(𝑡) = {𝑥 ∈ R𝑑−1 : (𝑥, 𝑡) ∈ A}. Confirm that 1

2 (K∘(𝑡) + K∘(−𝑡)) ⊂ (stH K)∘(𝑡).
Use symmetry of K∘ and the Brunn slicing theorem.

d) Deduce the Blaschke–Santaló inequality: For a norm ball K ⊂ R𝑑,

Vol𝑑(K) · Vol∘𝑑(K) ≤ Vol𝑑(B𝑑)2.

That is, the Euclidean ball maximizes the product of the volume and the dual
volume.

e) (*) Prove Mahler’s inequality: For a norm ball K ⊂ R𝑑,

4𝑑

(𝑑!)2 ≤ Vol𝑑(K) · Vol∘𝑑(K).

The conjectured minimizer is the ℓ𝑑
1 ball, which suggests the bound is far from

sharp. (**) Bourgain & Milman have established a lower bound of (c/𝑑)𝑑 for an
absolute constant. Can you prove this?

4. (*John’s Ellipsoids). The characterization of maximum-volume ellipsoids extends from
norm balls to general convex bodies. Let C ⊂ R𝑑 be a convex body with dim C = 𝑑.

a) Prove that C contains a unique ellipsoid E with maximum volume.
b) Prove that there is an affine transformation 𝑇 for which B𝑑 is the maximum-

volume ellipsoid of the set 𝑇 C. We say that 𝑇 C is in John’s position.
c) Suppose that B𝑑 ⊂ C. Show that the following are equivalent:

∙ B𝑑 is the maximum-volume ellipsoid of C.
∙ There are contact points 𝑢1, . . . ,𝑢𝑚 ∈ B𝑑 ∩ bd C and weights 𝛼1, . . . , 𝛼𝑚 > 0
with ∑︁𝑚

𝑖=1
𝛼𝑖𝑢𝑖 ⊗ 𝑢𝑖 = I𝑑 and

∑︁𝑚

𝑖=1
𝛼𝑖𝑢𝑖 = 0.

d) Let E be the maximum-volume ellipsoid of the set C. Prove that E ⊂ C ⊂ 𝑑E.
Show that the upper bound can be improved to C ⊂

√
𝑑E when C is origin-

symmetric.
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e) Dualize (a)–(c) to obtain results about the minimum-volume ellipsoid containing
C.

f) Let Δ𝑑 := {𝑥 ∈ R𝑑
+ :

∑︀𝑑
𝑖=1 𝑥𝑖 = 1} be the probability simplex. Find the

maximum- and minimum-volume ellipsoids of Δ𝑑.
g) (**) Prove that the simplex Δ𝑑 has maximum volume among all convex bodies

with the same maximum-volume ellipsoid. Deduce that the simplex solves the
reverse isoperimetric problem over all convex bodies. Hint: Use Brascamp–Lieb
with 𝑓𝑖(𝑡) = e−𝑡1{𝑡≥0}.

h) Let Δ𝑑 := {𝐴 ∈ H𝑑 : trace 𝐴 = 1 and 𝐴 is psd}, where H𝑑 is the set of 𝑑 ×
𝑑 symmetric matrices. Show that the maximum-volume ellipsoid of Δ𝑑 is a
Euclidean ball centered at 𝑑−1I𝑑 with radius (𝑑(𝑑 − 1))−1/2. Show that the
minimum-volume ellipsoid of Δ𝑑 is a Euclidean ball centered at 𝑑−1I𝑑 with radius
(1 − 1/𝑑)1/2.

5. (*Brascamp & Lieb). This problem contains some topics around the Brascamp–Lieb
inequality.

a) Show that every 𝑘-dimensional section of the unit cube C := [−1/2, 1/2]𝑑 has
volume at most (𝑑/𝑘)𝑘/2. Hint: Write the section as C ∩ L for a subspace L
containing the origin. Express C ∩ L in terms of the vectors 𝑃 e𝑖, where 𝑃 is the
orthogonal projector onto L.

b) Ball conjectured a reversed form of Brascamp–Lieb, which was established by
Barthe. The proof is very similar to the one we saw in class. Suppose that
𝑢𝑖 ∈ R𝑑 are unit vectors and 𝛼𝑖 > 0 satisfy

∑︀𝑚
𝑖=1 𝛼𝑖𝑢𝑖 ⊗ 𝑢𝑖 = I𝑑. Suppose that

ℎ(𝑦) ≥
∏︁𝑚

𝑖=1
𝑓𝑖(𝜃𝑖)𝛼𝑖 for all 𝑦 =

∑︁𝑚

𝑖=1
𝜃𝑖𝛼𝑖𝑢𝑖.

Then ∫︁
R𝑑

ℎ(𝑦) d𝑦 ≥
∏︁𝑚

𝑖=1

(︂∫︁
R
𝑓𝑖(𝑡) d𝑡

)︂𝛼𝑖

.

Derive the Prékopa–Leindler inequality as a consequence.
c) Suppose that a symmetric convex body K ⊂ R𝑑 has the Euclidean ball B𝑑 as its

minimum-volume enclosing ellipsoid. Prove that the minimum volume is achieved
by a scaled ℓ𝑑

1 ball. Hint: Use the representation of volume that is dual to the
formula in problem (1)(d).

d) (**) Lieb obtained a powerful extension of Brascamp–Lieb. Here is a formulation
due to Ball. Suppose that 𝑃𝑖 : R𝑑 → R𝑑 are orthogonal projectors and 𝛼𝑖 > 0 are
such that

∑︀𝑚
𝑖=1 𝛼𝑖𝑃𝑖 = I𝑑. For nonnegative, integrable functions 𝑓𝑖 : ran(𝑃𝑖) →

R, ∫︁
R𝑑

∏︁𝑚

𝑖=1
𝑓𝑖(𝑃𝑖𝑥)𝛼𝑖 d𝑥 ≤

∏︁𝑚

𝑖=1

(︃∫︁
ran(𝑃𝑖)

𝑓𝑖(𝑥) d𝑥

)︃𝛼𝑖

.

Equal Gaussians saturate the inequality. Barthe invented a proof similar to
the argument in class, but it requires more sophisticated methods from optimal
transport.

e) (**) Formulate a general statement of the reverse Brascamp–Lieb inequality by
combining parts (b) and (d). Prove it.
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