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Preface

“Alea iacta est. The die has been cast.”

—Julius Caesar, after crossing the Rubicon, 49 BCE

“The reader of any book is entitled to ask why it had to be written at all and, if the
book absolutely had to exist, why it couldn’t have been shorter.”

—Walter Russell Mead

CMS/ACM 117 is a first-year graduate course on probability theory and stochastic
processes for students in computing and mathematical sciences. It is not intended
to be a first course in probability, and our focus will be on developing theoretical
foundations, rather than providing a toolkit for calculation. Nevertheless, we will
touch on a few substantive applications of the theory to demonstrate its implications
for practical problems.

Course overview
Modern probability is expressed in the language of measure theory. Although measure
theory has a bad reputation, it can be engaging and accessible if we do not venture too
deep within the labyrinth of details. The probabilistic motivation also breathes life
into the subject.

In Fall 2023, the measure theory
background was treated in an
optional boot camp outside of class.
This year, measure theory once again
takes its rightful seat at the head of
the table.

The course notes begin with a rigorous, but unfussy, overview of measure and
integration theory. Our goal is to develop good geometric intuitions for the concepts
of measure and integral. When studying probability, one must learn some abstract
measure theory, and we introduce these ideas early on so that the student gains the
confidence that only comes with practice. From the appendices, a keen reader can also
learn the foundational results on existence and uniqueness of measures, including the
construction of the Lebesgue measure.

This development sets the stage for a quick treatment of Kolmogorov’s axiomatic
definition of probability. We introduce new probabilistic language that adds a vivid
interpretation to the measure-theoretic constructs. The key new idea in probability
theory is that algebras of events encode our knowledge about the world; the concept
of independence is best understood through this lens.

Next, we introduce our first stochastic process: a sum of independent random
variables. We develop the tools for understanding the finite-time and asymptotic
behavior of independent sums. These ideas include concentration inequalities, large-
deviation principles, laws of large numbers, the central limit theorem, and more. These
results require us to explore what it means for two probability distributions to be
similar to each other.

Afterward, we turn our attention to the fundamental concept of conditional
expectation. How does our current knowledge about the world affect our predictions
for the future? We present these ideas in an intuitive way using the concept of best
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approximation of a random variable. Conditioning also allows us to talk about the
relative density of one distribution with respect to another, a major ingredient in
Bayesian statistics and other fields.

To gain some experience with conditioning, we study discrete-time martingales.
These are random processes where the future depends only on the past. We develop
the basic theory of maximal inequalities and martingale convergence. These tools have
a wide implications, including techniques for prediction, filtering, adaptive testing,
online learning, and stochastic optimization.

Along the way, we will explore other applications of probability theory in computa-
tional statistics, computational mathematics, computer science, electrical engineering,
and control theory.

Previous iterations of this course included the development of other sequential
random processes, namely Markov chains. We have removed this important material
to make the course more manageable.

These notes
The Fall 2024 edition of CMS/ACM 117 is the sixth instantiation of this class. Hopefully,
this version of the course is approaching asymptotic stability. Future upgrades to the
notes may supersede the current version.

These lecture notes diverge somewhat from CMS/ACM 117 as it was taught in Fall
2024, because they contain additional material that was not covered in the classroom.
At present, they are intended as a reference for the students who have taken the
class. The notes have been prepared with some care. Nevertheless, they are not fully
polished, and they may still contain repetitions, omissions, errors, and inconsistencies.
In particular, they lack full scholarly citations. Caveat lector!

Activities
The lecture notes are full of exercises and problems. Exercises contain material that
is essential for your understanding, and they are usually quite easy. Problems are
intended to give you more practice with the concepts or to expand your understanding;
they may be more difficult or lengthier than exercises. Applications are designed to
show how tools from probability theory are used in computational mathematics; they
may involve coding and simulation.

More challenging activities may be marked with stars; the number of stars gives a
rough indication of the difficulty.

Starred sections and asides
For those with more experience,
consider this: “Never underestimate
the joy people derive from hearing
something they already know.”

—Enrico Fermi

This course is designed for students arriving from a wide range of academic experiences.
Students with more applied backgrounds may not have seen much of the material in this
course, while students from more theoretical backgrounds may have seen the majority.
Students who are just entering this subject may want to focus on the unstarred material,
while students with more exposure should take the time the understand the starred
sections and appendices. The hope is that everyone will learn something that is new
and interesting for them.

Similarly, asides are reserved for technical comments. These sidebars address
questions that may occur to you as you read or they may point toward more advanced
parts of probability theory. This material falls outside the scope of the class, so you
may skip it with impunity.

Prerequisites
The prerequisites for this course are differential and integral calculus (e.g., Caltech
Math 1ac), intermediate linear algebra (e.g., Math 1b and ACM 104), and applied
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probability (e.g., Math 3 and ACM 116). Exposure to linear analysis (e.g., ACM 107a)
and functional analysis (e.g., ACM 107b) is valuable but not necessary.

This course demands experience with basic facts about set theory, real numbers,
functions, point–set topology, sequences, series, convergence, continuity, derivatives,
Riemann integrals, metric spaces, and linear spaces. At Caltech, this material is covered
in the undergraduate class Math 108a. You will also benefit from some exposure to
measure theory, which is covered in Math 108b. Some good textbooks include

• [Fol99] Folland, Real Analysis, 2nd ed., Wiley, 1999.
• [Roy88] Royden, Real Analysis, 3rd ed., Macmillan, 1988.
• [Rud76] Rudin, Principles of mathematical analysis, 3rd ed., Wiley, 1976.
• [Tao16] Tao, Analysis I, 3rd ed., Springer, 2014.

It may be possible to brush up on this background as the course proceeds.

Supplemental textbooks
There is no required textbook for the course. Some relatively recent books that cover
related material include

• [GS01] Grimmett & Stirzaker, Probability and random processes, Oxford, 2001.
• [Wil91] Williams, Probability with martingales, Cambridge, 1991.
• [Dur19] Durrett, Probability theory and examples, 5th ed., Cambridge, 2019.
• [Pol02] Pollard, A user’s guide to measure theoretic probability, Cambridge,

2002.
• [Bil12] Billingsley, Probability and measure, 3rd ed., Wiley, 2012.
• [Dud02] Dudley, Real analysis and probability, 2nd ed., Cambridge, 2002.
• [Kal02] Kallenberg, Foundations of modern probability, 2nd ed., Springer, 2002.

These books are arranged in rough order of difficulty. Grimmett & Stirzaker is a rigorous
book on applied probability, focusing on probability models and problem solving.
Williams is a charming, short book on martingales, but it is also idiosyncratic and
telegraphic. Durrett’s book seems to be the current standard in graduate mathematics
programs. Pollard’s book contains a personal perspective on probability, with loads of
intuition. Billingsley’s book is more technical. Dudley’s book gives a thorough treatment
of the foundations of set theory, real analysis, and probability. Last, Kallenberg contains
a comprehensive, rigorous overview of topics in modern probability.

Acknowledgements
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Notation and Definitions

“You sound like a physicist,” she said.
“There’s no reason to be insulting.”

—Dr. No, Percival Everett, 2022

The notation in this course is standard in probability theory and related fields.
This section contains the main definitions and conventions. Other notation will be
introduced as needed.

Set theory
The Pascal notation, := or =:, generates a definition. Sets without any particular
internal structure are denoted with sans serif capitals: A,B, E. Collections of sets are
written in a calligraphic font: A,B,F. The power set (that is, the collection containing
all subsets) of a set E is written as P(E).

The symbol ∅ is reserved for the empty set. We use braces to denote a set. The
character ∈ (or, rarely, ∋) is the member-of relation. The set-builder notation

{𝑥 ∈ A : 𝑃 (𝑥)}
carves out the (unique) set of elements that belong to a set A and that satisfy the
predicate 𝑃 . The operator # returns the cardinality of a set. Basic set operations
include union (∪), intersection (∩), symmetric difference (△), set difference (\), and
the complement (c) with respect to a fixed set. We often write ¤∪ for the union of
disjoint sets.

The natural numbers ℕ := {1, 2, 3, . . . }. Ordered tuples and sequences are written
with parentheses, e.g.,

(𝑎1, 𝑎2, 𝑎3, . . . , 𝑎𝑛) or (𝑎1, 𝑎2, 𝑎3, . . . )
Alternative notations include things like (𝑎𝑖 : 𝑖 ∈ ℕ) or (𝑎𝑖 )𝑖 ∈ℕ or simply (𝑎𝑖 ).

The relations ⊆ and ⊇ indicate set containment. For a sequence of increasing
(resp., decreasing) sets, we may use arrows to denote the union (resp., intersection):

A𝑖 ↑
⋃∞
𝑖=1 A𝑖 when A1 ⊆ A2 ⊆ A3 ⊆ · · · ;

A𝑖 ↓
⋂∞
𝑖=1 A𝑖 when A1 ⊇ A2 ⊇ A3 ⊇ · · · .

We typically use italic lowercase letters like 𝑓 , 𝑔 , ℎ for functions. To introduce a
function 𝑓 with domain A and codomain B, we write

𝑓 : A → B where 𝑓 : 𝑎 ↦→ 𝑓 (𝑎).
For a subset E ⊆ A, the set 𝑓 (E) is the image of E. For a subset F ⊆ B, the set 𝑓 −1(F)
is the preimage of F. The circle ◦ composes functions.

The set A × B is the Cartesian product of sets A and B. The symbol A𝑛 denotes
the 𝑛-fold product of A with itself: A𝑛 = A × · · · × A, with A repeated 𝑛 times. More
generally, AI is a repeated product of A indexed by a set I. For each 𝑖 ∈ I, the function
𝜋𝑖 : AI → A refers to the 𝑖 th coordinate projection: 𝜋𝑖 ((𝑎 𝑗 : 𝑗 ∈ I)) = 𝑎𝑖 .
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Real analysis
We mainly work in the field ℝ of real numbers, equipped with the absolute value
|·|. The extended real numbers ℝ := ℝ ∪ {±∞} are defined with the usual rules
of arithmetic and order. In particular, we instate the conventions that 0/0 = 0 and
0 · ±∞ = 0. Expressions involving competing infinities (∞ −∞) are undefined, and
we do not allow division by infinity. We use the standard (American) notation for open
and closed intervals; e.g.,

(𝑎, 𝑏) := {𝑥 ∈ ℝ : 𝑎 < 𝑥 < 𝑏} and [𝑎, 𝑏] := {𝑥 ∈ ℝ : 𝑎 ≤ 𝑥 ≤ 𝑏}.

Occasionally, we will visit the rational field ℚ or the complex field ℂ. The imaginary
unit, i, is written in an upright font. Euler’s constant is denoted as e; by default every
logarithm has base e.

We use modern conventions for words describing order; these may be slightly
different fromwhat you are used to.

Warning: Positive means ≥ 0! ■
In this course, we enforce the definition that positive

means ≥ 0 and negative means ≤ 0. For example, the positive integers compose the set
ℤ+ := {0, 1, 2, 3, . . . } and the positive reals compose the set ℝ+ := {𝑥 ∈ ℝ : 𝑥 ≥ 0}.
When required, we may deploy the phrase strictly positive to mean > 0 and strictly
negative to mean < 0. For instance, the set ℝ++ := {𝑥 ∈ ℝ : 𝑥 > 0} contains the
strictly positive real numbers. Similarly, increasing means “never going down” and
decreasing means “never going up.”

Warning: The infix maximum
and minimum have the opposite
appearance to what you might
expect! ■

We often write the maximum (∨) or minimum (∧) of two numbers using infix
notation. Given a nonempty set A ⊆ ℝ of extended real numbers, define

sup(A) := least upper bound on A in ℝ;

inf (A) := greatest lower bound on A in ℝ.

The supremum and infimum always exist, but they may be infinite.
Each of the following expressions means that the sequence (𝑥𝑖 : 𝑖 ∈ ℕ) has limiting

value 𝑥 :
lim
𝑖→∞

𝑥𝑖 = 𝑥 or 𝑥𝑖 → 𝑥 as 𝑖 → ∞ or 𝑥𝑖 → 𝑥.

Wemay use vertical arrows to indicate that a real-valued sequence increases or decreases
to its limiting value: 𝑥𝑖 ↑ 𝑥 or 𝑥𝑖 ↓ 𝑥 . Recall that a monotone A monotone sequence is either

increasing or decreasing.
sequence always has a

limit in the extended reals. The limit superior and limit inferior are defined as

lim sup
𝑖→∞

𝑥𝑖 := lim
𝑖→∞

sup𝑛≥𝑖 𝑥𝑛 = inf𝑖 ∈ℕ sup𝑛≥𝑖 𝑥𝑛 ;

lim inf
𝑖→∞

𝑥𝑖 := lim
𝑖→∞

inf𝑛≥𝑖 𝑥𝑛 = sup𝑖 ∈ℕ inf𝑛≥𝑖 𝑥𝑛 .

These limits always exist, but they may be infinite.
For a pair of functions with a common domain, we understand relations and

other operations in the pointwise sense. For example, 𝑓 = 𝑔 means 𝑓 (𝑥) = 𝑔 (𝑥)
for all 𝑥 in their shared domain. When the functions are real-valued, we may write
𝑓 ∧ 𝑔 for the function 𝑥 ↦→ ( 𝑓 (𝑥) ∧ 𝑔 (𝑥)) with the same domain or 𝑓 𝑔 for the
function 𝑥 ↦→ ( 𝑓 (𝑥)𝑔 (𝑥)) with the same domain. Similarly, 𝑓 ≤ 𝑔 means that
𝑓 (𝑥) ≤ 𝑔 (𝑥) for all 𝑥 in the domain. We often use a compact set-builder notation,
such as {𝑓 ≤ 𝑔 } := {𝑥 : 𝑓 (𝑥) ≤ 𝑔 (𝑥)}, for brevity.

Much the same way, for a sequence ( 𝑓𝑗 : 𝑗 ∈ ℕ) of functions with a common
domain, the expression 𝑓𝑗 → 𝑓 means pointwise convergence of the 𝑓𝑗 to a limiting
function 𝑓 . For real-valued functions, we may use vertical arrows to denote pointwise
monotone convergence. For example,

𝑓𝑗 ↑ 𝑓 if and only if 𝑓𝑗+1 ≥ 𝑓𝑗 and 𝑓𝑗 → 𝑓 .
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The increasing limit always exists pointwise, but it may take (some) infinite values.
Likewise, 𝑓𝑗 ↓ 𝑓 refers to decreasing monotone convergence.

Measure and integral
Given a collection C of subsets of X, the symbol 𝜎 (C) denotes the smallest 𝜎 -algebra
on X that contains all the sets in C.

For a topological space X, the family B(X) contains the The family of Borel sets is the
sigma-algebra generated by all open
sets.

Borel sets in X. In particular,
B(ℝ𝑛) contains the Borel sets in ℝ𝑛 .

To denote measures, we typically use Greek letters in the middle of the alphabet
(𝜇, 𝜈). The letter 𝜆 is reserved for the Lebesgue measure on ℝ, and 𝜆𝑛 is the Lebesgue
measure on ℝ𝑛 . We write 𝛿𝑥 for the Dirac mass of intensity one, concentrated at a
point 𝑥 .

Given a subset A ⊆ X of a domain, we define the real-valued 0–1 indicator function

1A : X → ℝ where 1A(𝑥) :=
{
1, 𝑥 ∈ A;
0, 𝑥 ∉ A.

Indicator functions and sets are in one-to-one correspondence, so we can switch
between them at will.

Riemann–Darboux integrals play a central role in our definition of Lebesgue
integrals. We employ the classic notation for Riemann integrals, but we will color the
integral symbol to emphasize when an integral is defined in the sense of Riemann:∫ 𝑏

𝑎

𝑓 (𝑥) d𝑥 is the Riemann integral of 𝑓 : [𝑎, 𝑏] → ℝ.

Except where explicitly noted, all other integrals are defined in the sense of Lebesgue.
We have many, many equivalent notations for these Lebesgue integrals. For a measure
𝜇 (on a 𝜎 -algebra) on X and a function 𝑓 : X → ℝ, we may write

𝜇( 𝑓 ) :=
∫
X
𝑓 (𝑥) 𝜇(d𝑥) =:

∫
X
𝑓 (𝑥) d𝜇(𝑥) =:

∫
X
𝑓 d𝜇

It is common that we omit the domain X from these notations. To integrate over a
subset A ⊆ X, we may write

𝜇( 𝑓 ;A) :=
∫
A
𝑓 (𝑥) 𝜇(d𝑥) :=

∫
X
1A(𝑥) 𝑓 (𝑥) 𝜇(d𝑥).

We eschew the notation where the limits of the Lebesgue integral are placed above and
below the integral sign. When the measure is the Lebesgue measure 𝜆, the differential
is often abbreviated as well: d𝑥 := 𝜆(d𝑥).

We also use the arrow notation to refer to modes of convergence that require
measure or integral. In these cases, we will give an explicit qualification to emphasize
the type of convergence. For example, we may write 𝑓𝑗 → 𝑓 𝜆-almost everywhere or
ℎ 𝑗 → ℎ in L1(𝜆).

For weak convergence of measures, we deploy the seismic arrow: 𝜇𝑛 ⇝ 𝜇. In
parallel, we use the seismic arrow ⇝ to refer to converge in distribution for random
variables (𝑋𝑛 ⇝ 𝑋 ) and distribution functions (𝐹𝑛 ⇝ 𝐹 ).

Linear algebra
We usually denote scalars with lowercase Greek letters (𝛼, 𝛽). Lowercase boldface
italics (𝒖 ,𝒗) refer to vectors. Uppercase boldface italics (𝑨,𝑩) are associated with
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matrices or linear maps. The symbol ∗ denotes the (conjugate) transpose of a vector or
matrix. The operator tr returns the trace of a square matrix.

Norms and pseudonorms are denoted with double bars: ∥·∥. We typically add a
subscript to refer to a specific norm, such as the Euclidean norm ∥·∥ℓ2 .

Probability
We write (Ω,F,ℙ) for the probability space with sample space Ω, with master 𝜎 -
algebra F, and with probability measure ℙ defined on F. The map ℙ(·) returns the
probability of an event in F. The operator 𝔼[·] returns the expectation of a random
variable (taking values in a linear space). We only include the brackets when it is
necessary for clarity, and we impose the convention that nonlinear functions bind
before the expectation. At rare times, we may also use ℙ to denote expectation with
respect to a probability measure ℙ.

Uppercase italic letters (near the end of the Roman alphabet) usually refer to
real random variables: 𝑆,𝑇 ,𝑊 , 𝑋 ,𝑌 , 𝑍 . We often write 𝜇𝑋 for the law of a random
variable 𝑋 , while 𝐹𝑋 denotes its (cumulative) distribution function.

We use small capitals for named distributions. For example, uniform or normal.
The symbol ∼ means “has the distribution.”

The sigma-algebra generated by a real random variable 𝑋 is defined as 𝜎 (𝑋 ) :=
{𝑋 −1(B) : B ∈ B(ℝ)}. Similar notations are in force for random variables taking
values in other measure spaces.

For each real number 𝑝 > 0, the space L𝑝 := L𝑝 (Ω,F,ℙ) contains all real random
variables 𝑋 whose 𝑝th absolute moment is finite:

L𝑝 := {𝑋 : 𝔼 |𝑋 |𝑝 < +∞}.

As usual, L∞ contains the random variables that meet a finite, uniform bound almost
everywhere. The operator Var[·] returns the variance of a random variable in L2, while
Cov(·, ·) computes the covariance of a pair of random variables in L2.

The symbol ⊥ means that two random variables in L2 are orthogonal: 𝑋 ⊥ 𝑌 if
and only if 𝔼[𝑋𝑌 ] = 0. In contrast, the notation 𝑋 ⫫ 𝑌 means that 𝑋 and 𝑌 are
independent random variables.

As usual, we write𝔼[𝑋 | G] for the conditional expectation of the random variable𝑋
with respect to the 𝜎 -algebra G. Related notations include the conditional expectation
with respect to a family of events or a family of random variables. For example,
𝔼[𝑋 | A,B] := 𝔼[𝑋 | 𝜎 ({A,B})] and 𝔼[𝑋 |𝑌 , 𝑍 ] := 𝔼[𝑋 | 𝜎 (𝑌 , 𝑍 )].



0. Probability + CMS

Agenda:
1. What is probability?
2. Probability models
3. Randomized trace estimators
4. Stochastic gradient
5. Markov chains
6. Probability and measure

“Jedenfalls bin ich überzeugt, daß der nicht würfelt.”
“I, at any rate, am convinced that [God] does not throw dice.”

—Albert Einstein, 1926

“The gods may throw a dice,
Their minds as cold as ice.”

—The Winner Takes it All, ABBA, 1980

Probability theory is the study of regular patterns that arise from random phenom-
ena. The field of statistics exploits this fact to make inferences about the state of the
world. These regularities can also be used to develop efficient algorithms for solving a
wide range of computational problems.

In this introductory section, we give a simple example of the patterns that can
emerge from a simple probability experiment. Then we discuss how probability models
can arise and some of the fields where they are in use. Afterward, we present several
applications of probability theory in contemporary computational mathematics. Last,
we summarize the concepts that are required to make sense of the application examples.
This motivation helps us appreciate why we need to understand measure theory to
work with probability models. In the first lecture, we enter into our treatment of
measure theory.

0.1 What is probability theory?
Even my 6-year-old thought that this
would be a surprising outcome.

Say that you flip a fair penny 100 times, and you observe that heads turns up 97 times.
Are you surprised? In a word, yes. While the outcome of this experiment is random,
you do not expect it to be totally irregular. In fact, you will probably take the result as
evidence that the coin is not fair after all.

When we say that the coin is fair, we mean that each sequence HTHHHTHHTH...
or HHHHHHHHHH... is equally likely to occur. So no particular sequence is very
common. Nevertheless, if we ask summary questions like “How many heads?”, then
we can offer informative answers. Indeed, we strongly suspect that, in the long-term,
the proportion of heads is close to one-half. We anticipate this pattern based on our
experience living in the world. When we observe a pattern that violates our intuition,
we may draw inferences about how that outcome arose.

Moving beyond coins, suppose that we perform a probabilistic experiment and
record the outcome. From the word probabilistic, we understand that repeating the
experiment gives an unpredictable result each time. Nevertheless, when we look at a
large number of experiments, we encounter predictable phenomena.

https://www.youtube.com/watch?v=92cwKCU8Z5c
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Probability is the study of the predictable patterns that arise from random phenom-
ena. For instance, it is predictable that a fair coin turns up heads about half the time,
and we will learn to quantify this statement precisely.

Inversely, statistics uses probability theory to infer the state of the world from
observed outcomes of probabilistic experiments. For example, if a coin turns up heads
97 times out of 100, we can be confident (but not certain) that the coin is unfair.

Our challenge is to develop the mathematical foundations for probability. Statistics
is a primary beneficiary of this effort, but probability also enriches the mathematical
sciences, computing, and engineering.

Activity 0.1 (Probability experiments). What are situations where probability arises in
your field? It is likely that your research program involves more than flipping coins. ■

0.2 Probability models
“All models are wrong, but some are
useful.”

—George E. P. Box, 1970s

The real world is complex and messy. To help us understand the world and make
predictions, we frame simplifying or reductive models. Probability models describe phe-
nomena that are not fully predictable. They encode our uncertainty using distributions,
rather than worst-case considerations.

0.2.1 Sources of randomness
Sources of randomness:
1. Uncertain initial conditions
2. Sensitivity to initial conditions
3. Measurement errors
4. Statistical mechanics
5. Quantum mechanics
6. Uncertain mechanisms
7. Sampling from a population
8. Random number generators
9. The whim of Tyche

So, how does randomness arise? Why might we want to use a probability model for
applications in science and engineering?

Since the laws of classical physics are deterministic, one may imagine that a classical
phenomenon becomes completely predictable if we know the state of the world. In
practice, however, we rarely have complete information about the initial conditions
(e.g., the starting position, velocity, and angular momentum of a tossed penny). We can
model this uncertainty using probability. Many phenomena (e.g., the weather) exhibit
a sensitive dependency on the initial conditions, so it may only be reasonable for us to
talk about a distribution of outcomes, some more likely than others. In a similar vein,
a system may be so complicated (e.g., the positions of all molecules in a cup of coffee)
that we must use probabilistic models to summarize its behavior; this is the insight
behind the field of statistical mechanics. Beyond that, measurements are inherently
inaccurate, and measurement errors are commonly modeled using probability.

To the best of our understanding, quantum mechanics gives a precise and accurate
description of the nanoscale. In the quantum world, probability is an irreducible
fact of life: Born’s rule tells us that every measurement of a quantum system yields
a random outcome. Nevertheless, at a macroscopic scale, the aggregation of many
random outcomes can lead to behavior that does not appear random at all. (We have
already seen a similar effect in long sequences of coin flips or the bulk behavior of
the molecules in a gas.) Indeed, the law of large numbers helps resolve the tension
between the randomness of the quantum world and the apparent determinism of the
classical world.

Physical laws often admit simple mathematical expressions that have been validated
by extensive experiments. In other human endeavors, we may not have a complete
understanding of mechanisms or even a collection of empirical laws that govern the
phenomena under investigation. This kind of challenge emerges in social sciences
(economics, sociology, psychology) or in hard sciences that involve complex systems
(cell biology, neuroscience). We can try to model our uncertainty using probability.

Another important source of randomness is sampling from a population. Suppose
that we isolate a number of individuals from a larger (perhaps infinite) group. If these
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individuals are not chosen in any particular fashion, then it may be reasonable to model
them as a random sample. This allows us to regard the individuals as representative
of the full population, so we can infer things about the population from the sample.
The fields of statistics and statistical learning theory are based on this idea. In fact,
rigorous statistical studies reinforce this model by randomly assigning participating
subjects to different treatment conditions.

Randomness also plays a central role in modern computational science. We can
design algorithms that exploit probability theory by making random choices during
their execution. A classic example is Monte Carlo integration, which approximates
an integral by averaging the values of the integrand at some randomly chosen points.
Another example is the stochastic gradient algorithm (Section 0.4), which minimizes a
function by taking small random steps that, on average, point in the direction of the
negative gradient of the objective. There are many more examples. We will leave aside
the question about how a computer can get hold of random numbers in the first place.

Activity 0.2 (Sources of randomness). Can you think of other ways that probability and
randomness arise in your research area? ■

Activity 0.3 (Validation). Models do not need to be perfect to be valuable, but they do
need to describe salient aspects of the phenomenon under study. When working with a
model, you must verify the assumptions and confirm the predictions by reference to
reality. In your field, what steps can you take to validate probability models? ■

0.2.2 Sequential probability models and applications
The full version of this course focuses on three particular types of probability models:

• A sum of independent random variables: This model can be used to study a sequence
of independent experiments (like our coin flips).

• A martingale sequence: This model describes a repeated game of chance where a
player’s strategy may depend on the past (like the stock market). The material on Markov chains has

been removed because of time
constraints.

• A Markov chain: This model describes random sequences where the next element
depends only on the current element (like a random walk).

Each of these stochastic processes has its own distinctive theory, as well as a wide range
of applications.

As mathematical scientists, applying for grants in the twenty-first century, we may
be particularly interested in using these probability models for

• statistics,
• signal and image processing,
• information theory,
• learning and decision-making,
• control theory,
• numerical analysis,
• uncertainty quantification,
• computer algorithms, or
• quantum information science.

We will continue our discussion with some contemporary applications of probability
theory in computational science. By the end of the course, we will understand our
probability models and a few of their applications well.
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0.3 Randomized trace estimators
In this section, our goal is to introduce a randomized algorithm for approximating the
trace of a positive-semidefinite matrix. This algorithm is a particular, but untraditional,
example of a Monte Carlo method. The method depends on properties of a sum of
independent random variables.

Let 𝑨 ∈ ℝ𝑛×𝑛 be a positive-semidefinite matrix. A positive-semidefinite matrix is a
(conjugate) symmetric matrix whose
eigenvalues are all positive.

If we can easily access individual
entries of the matrix, then there is no impediment to evaluating the trace directly:

tr𝑨 =
∑︁𝑛

𝑖=1
𝑎𝑖 𝑖 .

In other words, we compute and sum the diagonal entries of the matrix. Done.
In certain applications, we cannot easily access entries of the matrix. Nevertheless,

we may be able to compute the matrix–vector product 𝒖 ↦→ 𝑨𝒖 for an arbitrary vector
𝒖 ∈ ℝ𝑛 . Can we design an algorithm that approximates the trace using a small number
of applications of this primitive?

0.3.1 A Monte Carlo method
There is a beautiful and simple randomized method for trace estimation that operates
in this setting. We use highlighting to emphasize

important words that you should not
overlook.

Construct a random vector 𝒁 = (𝑍1, . . . , 𝑍𝑛) ∈ ℝ𝑛 with independent
entries where

𝑍𝑖 ∼ uniform{±1} for each 𝑖 = 1, . . . , 𝑛.

Note that the expectation 𝔼𝑍𝑖 = 0 for each 𝑖 . Using the matrix–vector multiplication
primitive, we can form the random quantity

𝑋 := 𝒁 ∗(𝑨𝒁 ).

Expanding the quadratic form, we have a detailed representation:

𝑋 =
∑︁𝑛

𝑖 ,𝑗=1
𝑍𝑖𝑍 𝑗𝑎𝑖 𝑗 =

∑︁𝑛

𝑖=1
𝑎𝑖 𝑖 +

∑︁
𝑖≠𝑗

𝑍𝑖𝑍 𝑗𝑎𝑖 𝑗 .

We quickly obtain the expectation of this random variable:

𝔼𝑋 =
∑︁𝑛

𝑖=1
𝑎𝑖 𝑖 +

∑︁
𝑖≠𝑗

(𝔼𝑍𝑖 ) (𝔼𝑍 𝑗 ) · 𝑎𝑖 𝑗 =
∑︁𝑛

𝑖=1
𝑎𝑖 𝑖 = tr𝑨.

Indeed, the expectation operator is linear, If you learn only one thing in this
class, then you should learn that
expectation is linear.

and the expectation of a product of indepen-
dent random variables equals the product of expectations. By a similar calculation, we
may also compute the variance:

Var[𝑋 ] := 𝔼[𝑋 2] − (𝔼𝑋 )2 =
∑︁

𝑖≠𝑗
𝑎2
𝑖 𝑗 < (tr𝑨)2.

This argument takes a little more work, and we leave it as an exercise. The final
inequality depends on the fact that 𝑨 is positive semidefinite.

The standard deviation is the
square-root of the variance.

Although the random variable 𝑋 is an unbiased estimator for the trace, it is not
an adequate estimate because its standard deviation may be on the same scale as the
trace, the thing we are trying to compute. We soon realize that we can enhance the
estimator by averaging independent copies:

𝑋𝑘 :=
1
𝑘

∑︁𝑘

𝑖=1
𝑋𝑖 where 𝑋1, . . . , 𝑋𝑘 are independent copies of 𝑋 . (0.1)

The estimator 𝑋𝑘 has the properties that

𝔼[𝑋𝑘 ] = tr𝑨 and Var[𝑋𝑘 ] ≤ 𝑘 −1(tr𝑨)2.
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Indeed, expectation is linear, and the variance of an independent sum is the sum of the
variances. By this device, we can reduce the variability of the estimator. With only a
constant (say, 𝑘 = 10) summands, we can achieve a result that is often within a factor
of two of the correct answer. The trace estimator (0.1) is a simple example of a Monte
Carlo method.

This discussion is based on the most elementary facts about expectation and
independence. Unfortunately, it does not tell us much about the probability that the
estimator achieves a desired level of precision at a given number 𝑘 of samples. To
address this task, we need to develop concentration inequalities that describe how
sharply a random variable peaks around its expectation. As the number 𝑘 of samples
grows without bound, the consistency of this estimator follows from the law of large
numbers, while the central limit theorem precisely describes the fluctuations of the
error.

0.3.2 *Application: Smoothed least squares

Figure 0.1 Smoothed least
squares

It may not be obvious why it would be valuable to estimate a trace by means of the
matrix–vector multiplication primitive. Let us give an example from computational
statistics. In fact, this is the original application of the randomized trace estimator.

Consider paired real-valued data {(𝑥𝑖 , 𝑦𝑖 ) : 𝑖 = 1, . . . , 𝑛} ⊆ ℝ × ℝ, where the
covariates 𝑥𝑖 are arranged in (strictly) increasing order. Suppose that we want to fit
a slowly varying function to the data. We can accomplish this task by discretizing
the function at the covariates. Then we formulate a least-squares problem with a
smoothness penalty:

minimize𝒇 ∈ℝ𝑛 ∥𝒚 − 𝒇 ∥2ℓ2 + 𝜁 · ∥𝑫𝒇 ∥2ℓ2 . (0.2)

The first term enforces fidelity between the approximation 𝒇 := ( 𝑓1, . . . , 𝑓𝑛) ∈ ℝ𝑛

and the observed data 𝒚 := (𝑦1, . . . , 𝑦𝑛) ∈ ℝ𝑛 . In the second term, the matrix
𝑫 ∈ ℝ(𝑛−1)×𝑛 is a (bidiagonal) first-difference operator, say

(𝑫𝒇 )𝑖 :=
𝑓𝑖+1 − 𝑓𝑖

𝑥𝑖+1 − 𝑥𝑖
for 𝑖 = 1, . . . , 𝑛 − 1.

As a consequence, the second term in (0.2) is small if and only if the fitted model 𝒇
varies slowly. The regularization parameter 𝜁 > 0 negotiates a tradeoff between the
fidelity and the smoothness.

Using calculus, we quickly determine that the solution to the smoothed least-squares
problem (0.2) takes the form

𝒇 = 𝑨𝜁𝒚 where 𝑨𝜁 = (I + 𝜁𝑫∗𝑫)−1.

The matrix I + 𝜁𝑫∗𝑫 is tridiagonal and positive definite, so we can apply its inverse 𝑨𝜁
with𝑂 (𝑛) arithmetic operations (for example, by Cholesky factorization and triangular
solves). On the other hand, we do not have direct access to entries of 𝑨𝜁 .

Why are we concerned about the trace of the matrix 𝑨𝜁 ? This question arises when
we try to select the best value of the regularization parameter 𝜁 . A standard approach
to this task is to minimize the generalized cross-validation functional:

gcv(𝜁 ) := 𝑛 ·
[ ∥(I − 𝑨𝜁 )𝒚 ∥ℓ2

tr(I − 𝑨𝜁 )

]2
.

This quantity reflects the “effective number of degrees of freedom” in the model, per
unit of approximation error, at the regularization level 𝜁 . The effective degrees of
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freedom measures the smoothness of the model. We prefer smooth models but allow
rougher models if warranted by a significant improvement in approximation quality.

In most cases, to minimize the gcv functional, we need to evaluate it numerically
for regularization parameters 𝜁 drawn from a grid of values. To do so, we need to
estimate the trace of I − 𝑨𝜁 for many choices of 𝜁 . But we can only access 𝑨𝜁 by
applying it to vectors. Therefore, randomized trace estimation is a natural tool for
accelerating generalized cross-validation.

0.4 Stochastic gradient algorithms
In many learning systems, the goal is to find a reductive model that minimizes the
error in explaining some observed data. In this section, we consider a basic least-
squares problem that arises in statistical learning theory. We show how to convert
this problem into a stochastic optimization problem. Then we introduce an algorithm,
called stochastic gradient iteration, for solving this problem. Stochastic gradient and
its variants are among the most widely used computational tools in modern machine
learning. One approach to studying these algorithms involves tools from martingale
theory.

0.4.1 From least squares to stochastic least squares
Suppose that we have acquired paired data {(𝒂 𝑖 , 𝑏𝑖 ) : 𝑖 = 1, . . . , 𝑛} ⊆ ℝ𝑑 × ℝ. We
might like to fit a model that approximates the responses 𝑏𝑖 as a (pure) linear function
of the covariates 𝒂 𝑖 . The most basic approach is the ordinary least squares formulation:

minimize𝒙 ∈ℝ𝑑

1
2𝑛

∑︁𝑛

𝑖=1

(
⟨𝒂 𝑖 , 𝒙 ⟩ − 𝑏𝑖

)2
.

As you know, this is among the simplest problems in statistical machine learning.
The normalized sum can be interpreted as an average. This observation suggests a

probabilistic interpretation. Introduce the empirical measure 𝜇 of the data set:

𝜇 = uniform{(𝒂 𝑖 , 𝑏𝑖 ) : 𝑖 = 1, . . . , 𝑛}.

Using the empirical measure, we can rewrite the least-squares problem as

The symbol ∼ means “has the
distribution.”

minimize𝒙 ∈ℝ𝑑 𝔼(𝒂 ,𝑏 )∼𝜇
[ 1
2

(
⟨𝒂 , 𝒙 ⟩ − 𝑏

)2]
. (0.3)

Defining the random vector 𝝃 = (𝒂 , 𝑏) ∼ 𝜇 and the bivariate function 𝑓 (𝒙 ; 𝝃) =
1
2

(
⟨𝒂 , 𝒙 ⟩ − 𝑏

)2, we arrive at the compact formulation

minimize𝒙 ∈ℝ𝑑 𝔼𝝃∼𝜇 𝑓 (𝒙 ; 𝝃). (0.4)

The expression (0.4) is a general way of writing a stochastic optimization problem. Our
example is just one instance from a broad class.

At this stage, one may wonder what kind of object is the empirical measure 𝜇. To
what extent can we pass between sums and expectations?

0.4.2 Stochastic gradients
How can we solve the stochastic optimization problem (0.3)? For an unconstrained
optimization problem with a continuous objective function defined on a Euclidean
space, the simplest solution concept is gradient descent: we repeatedly take small steps



Lecture 0: Probability + CMS 7

in the direction of the negative gradient of the objective function. To that end, let us
compute the gradient of the objective in (0.3)–(0.4):

∇𝒙 𝔼𝝃 𝑓 (𝒙 ; 𝝃) = 𝔼𝝃 ∇𝒙 𝑓 (𝒙 ; 𝝃)
= 𝔼𝜇 ∇𝒙

[ 1
2

(
⟨𝒂 , 𝒙 ⟩ − 𝑏

)2]
= 𝔼𝜇

[ (
⟨𝒂 , 𝒙 ⟩ − 𝑏

)
𝒂
]
.

For now, we blithely pass the gradient through the expectation, even though this
step requires justification. You may also realize that it is expensive to compute this
expectation. Even in our discrete setting, it involves iteration over the entire set of 𝑛
data pairs. In a more general case, where the support of the distribution 𝜇 has infinite
cardinality, the expectation might not be tractable at all.

The idea behind the stochastic gradient algorithm is simple. We replace the gradient
by an easily computable random variable 𝒈 ∈ ℝ𝑛 that gives an unbiased estimator for
the gradient:

𝔼 𝒈 = ∇𝒙 𝔼𝝃 𝑓 (𝒙 ; 𝝃) = 𝔼𝜇
[ (
⟨𝒂 , 𝒙 ⟩ − 𝑏

)
𝒂
]
.

For example, we can just take a random draw 𝝃 = (𝒂 , 𝑏) from the empirical distribution
𝜇 and form

𝒈 =
(
⟨𝒂 , 𝒙 ⟩ − 𝑏

)
𝒂 where (𝒂 , 𝑏) ∼ 𝜇.

In our discrete setting, this amounts to choosing one data point at random and
constructing the vector

𝒈 =
(
⟨𝒂 𝐼 , 𝒙 ⟩ − 𝑏𝐼

)
𝒂 𝐼 where 𝐼 ∼ uniform{1, . . . , 𝑛}.

Our randomized gradient approximation no longer requires us to compute an expec-
tation. But the stochastic gradient it is correct on average, and that turns out to be
enough.

0.4.3 The stochastic gradient iteration
To solve the optimization problem (0.3), we proceed as follows. Make an initial guess,
say 𝒙0 ∈ ℝ𝑑 , for the solution. At each iteration 𝑗 = 1, 2, 3, . . . , construct a randomized
gradient estimate:

𝒈 𝑗 =
(
⟨𝒂 , 𝒙 𝑗−1⟩ − 𝑏

)
𝒂 where (𝒂 , 𝑏) ∼ 𝜇.

Update the current iterate:

𝒙 𝑗 = 𝒙 𝑗−1 −𝜂 𝑗𝒈 𝑗 for a step size parameter 𝜂 𝑗 > 0.

This process repeats indefinitely.
In contrast to a classic optimization algorithm, the sequence (𝒙0, 𝒙1, 𝒙2, . . . ) of

iterates is composed of random elements. Under what conditions does this sequence
converge to a minimizer of the stochastic least-squares problem (0.3)? In what sense?
Does the initialization 𝒙0 matter? How should we select the step sizes? What is the
role of the distribution of the data, encapsulated in the measure 𝜇?

These questions seem daunting. Indeed, at each iteration, the random iterate
depends on the entire history of the algorithm. Yet we can easily prove finite-time
guarantees using maximal inequalities for martingales, while asymptotic guarantees
follow from the martingale convergence theorem.
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0.5 Markov chains
In computational mathematics, one of the basic challenges is to draw samples from a
complicated probability distribution. Although there are reliable routines for producing
uniform random variables or normal random variables, there may be no direct approach
by which we can sample from a more complicated model. A remarkable and powerful
idea is to construct a sequence of distributions that ultimately converges to the desired
distribution. This approach is calledMarkov chain Monte Carlo (MCMC). In this section,
we give a short description of an MCMC algorithm for drawing samples from a basic
model in statistical physics.

0.5.1 The Ising model on a graph
The Ising model was designed as a stylized description of ferromagnetism. We construct
a graph that reflects which atoms in a material, say a crystal lattice, are adjacent. We
assume that each atom can have a positive or negative spin. When most of the spins are
oriented the same way, the net magnetic moment is large and the material will generate
a significant magnetic field. On the other hand, when the spins are incoherent, there
is little magnetic effect. We may ask to sample a typical configuration of spins.

Formally, let G = (V, E) be an undirected combinatorial graph on a finite set V of
vertices with edge set E. To each vertex in the graph, we assign a positive spin (+1)
or a negative spin (−1). We can encode the family of assignments in a configuration
function 𝝈 : V → {±1}. The nearest-neighbor Ising model is a probability distribution
over these configurations:

𝜇(𝝈 ) := 1
𝑍𝛽

exp
(
𝛽
∑︁

{𝑢,𝑣 }∈E
𝜎 (𝑢)𝜎 (𝑣 )

)
for 𝝈 ∈ {±1}V. (0.5)

In this expression, 𝛽 > 0 is a fixed parameter called the inverse temperature, and 𝑍𝛽 is
a normalizing constant known as the partition function. This type of distribution 𝜇 is
usually called a Gibbs measure.

The intuition behind the formula (0.5) is that the probability of a configuration
is largest when neighboring vertices tend to share the same spin (either positive
or negative). If the parameter 𝛽 is large (i.e., the temperature is low), the model
places most of the probability mass on configurations where spins are aligned. When
the parameter 𝛽 is small (i.e., the temperature is high), we are more likely to see
heterogeneous configurations where spins at neighboring vertices differ.

For a more picayune example, imagine a social network G = (V, E) where the
edge set E reflects which members of the community V are friends. We may imagine
that each individual has a preference for Coke (+1) or for Pepsi (−1). While friends
tend to have similar preferences, their affinity depends on the interaction strength 𝛽 .
The probability 𝜇(𝝈 ) expresses the likelihood that the network exhibits a particular
configuration 𝝈 of tastes in soft drinks. Sampling this distribution is a pressing issue in
viral marketing.

0.5.2 The Metropolis–Hastings chain
For a general graph G, it is not obvious how we can draw a random sample from the
Gibbs measure 𝜇 of the Ising model (0.5). Indeed, the configuration space {±1}V may
be quite large. Individual spins have a complicated dependency because of the graph
structure. Moreover, it is challenging just to compute the partition function 𝑍𝛽 .

Instead, suppose that we start with an initial configuration 𝝈0. Is there some way to
make simple random updates to the configuration to obtain a sequence (𝝈𝑛 : 𝑛 ∈ ℕ)
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of random configurations that tends toward a sample from the Gibbs distribution 𝜇? In
fact, we can accomplish this task via an elegant method called the Metropolis–Hastings
algorithm.

At each iteration, the Metropolis–Hastings algorithm tells us to update the current
configuration 𝝈 ∈ {±1}V according to the following procedure.

1. Proposal: Choose a random vertex 𝑢 ∼ uniform(V). Form a candidate configu-
ration 𝝈 ? by flipping the spin at vertex 𝑢:

𝜎 ?(𝑣 ) :=
{
−𝜎 (𝑣 ), 𝑣 = 𝑢;
𝜎 (𝑣 ), 𝑣 ≠ 𝑢

for 𝑣 ∈ V.

2. Acceptance ratio: Compute the ratio 𝛼 of the Gibbs measure 𝜇 at the candidate
configuration 𝝈 ? and at the current configuration 𝝈 :

𝛼 :=
𝜇(𝝈 ?)
𝜇(𝝈 ) = exp

(
𝛽
∑︁

𝑣 :{𝑢,𝑣 }∈E
(−2𝜎 (𝑢))𝜎 (𝑣 )

)
.

This quantity reflects how much the probability increases or decreases by flipping
the spin at the site 𝑢 .

3. Update: Draw a random variable 𝑋 ∼ uniform[0, 1]. Update the current
configuration from 𝝈 to 𝝈 ′ according to the rule

𝝈 ′ :=

{
𝝈 ?, 𝑋 ≤ 𝛼;
𝝈 , 𝑋 > 𝛼.

In other words, we move to the candidate configuration 𝝈 ? with probability
1 ∧ 𝛼. Otherwise, we remain at the original configuration 𝝈 .

Let us point out a few key features of this algorithm. First, the candidate config-
uration 𝝈 ? is random, but it is easy to construct. Second, we do not need to know
the partition function 𝑍𝛽 to compute the acceptance ratio 𝛼, and we only need to
sum over vertices adjacent to the selected vertex 𝑢 . Third, we always move to the
candidate configuration 𝝈 ? if it has larger probability than the current configuration
𝝈 . We may elect to move to a less probable configuration, but we inject randomness
into this decision.

0.5.3 Markov chains
To recap, the Metropolis–Hastings algorithm generates a sequence of random con-
figurations taking values in the space {±1}V. At each step in the sequence, the next
configuration depends on the current configuration, but it is independent from the
trajectory of the algorithm before the current time. This kind of random sequence is
called a Markov chain.

In the theory of Markov chains, some of the basic questions center on their long-term
behavior. Does there exist a distribution that is stationary under the dynamics of the
Markov chain? Is this stationary distribution unique? Does the Markov chain converge
to a stationary distribution from any initialization? How long does it take before
the distribution of the chain is close to the stationary distribution? Can we compute
moments of the stationary distribution by averaging along the trajectory of the chain?

The Metropolis–Hastings algorithm emerged as general recipe for designing a
Markov chain with a given stationary distribution.
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Problem 0.4 (Metropolis–Hastings for Ising model: Gibbs measure is stationary). Suppose
that we draw 𝝈 from the distribution 𝜇 defined in (0.5). Show that the output 𝝈 ′ of
the Metropolis–Hastings algorithm in Section 0.5.2 also follows the distribution 𝜇.

In other words, the Gibbs measure 𝜇 is stationary under the Metropolis–Hastings
dynamics. This fact hints that the sequence of random configurations might converge
to a sample from the Gibbs measure. Indeed, it can be shown that Metropolis–Hastings
allows us to simulate the distribution of the Ising model on a graph.

Because of the fundamental importance of Markov chains, we used to introduce
some basic definitions and applications at the end of the course. Unfortunately, we
would need an entire term to fully address the questions that we posed in the earlier
paragraphs. ACM 216 takes up this study for Markov chains with discrete configuration
spaces, and ACM sometimes offer courses on Markov chains with continuous state
spaces.

0.6 Probability and measure
We have now encountered several different computational applications of probability.
These applications already raise a large number of questions about the foundations
of probability theory. To develop appropriate answers to these questions, we need to
learn about measure theory.

0.6.1 Probability concepts
Here are some of the questions that we must confront:

• What is a probability distribution? What events have probabilities?
• What is a random variable? Is it the same as a distribution?
• How do we define the expectation of a random variable? What properties does

expectation have?
• How do we bound the probability that a random variable takes values far from

its expectation?
• What does it mean for a pair of random variables to be similar? When does a

sequence of random variables converge?
• What does it mean for two probability distributions to be similar? When does a

sequence of distributions converge?
• How do we define independence? How do we condition on prior knowledge?
• How can we make sense of an infinite sequence of independent random variables?
• What behavior should we expect an independent sum to exhibit? What about a

martingale? A Markov chain?

0.6.2 The role of measure theory
To address these questions in a systematic way, we need to learn measure theory. There
are many reasons that measure theory is the appropriate language for talking about
probability.

1. What is an event? An event is a collection of outcomes of a probability experiment
to which we can ascribe a probability. In simple discrete settings (coins, dice,
etc.), all sets of outcomes are events. But as soon as we move to the continuous
setting (height, lifetimes, etc.), we encounter a problem. There is no way to
consistently assign probabilities to all subsets of the real line. We need a way to
delineate which events are legitimate and which are not.
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2. Discrete versus continuous: In elementary probability courses, we usually hone
our intuition with discrete probability models, and we develop a complete set
of definitions and formulas for this case. Afterward, we proceed to continuous
probability models, and we develop another complete set of definitions and
formulas for this case. Many students will perceive an analogy between these
situations. Measure theory allows us to treat all random variables (discrete,
continuous, mixed) on an equal footing, with one set of definitions that is valid
in all cases.

3. Univariate versus multivariate: Similarly, elementary probability courses begin
with treatments of individual random variables before proceeding to pairs of
random variables, random vectors, and so on. Each case is burdened with its
own terminology and formulas. Measure theory allows us to regard a family of
random variables as determining a distribution on a space of higher dimension.
There is no fundamental distinction between univariate and multivariate models.

4. Independence: What does it mean for two probabilistic events to be independent
from each other? In elementary courses, we typically define a pair of random
variables to be independent when the joint cumulative distribution function
factors. This definition is unintuitive and hard to work with. Measure theory
allows us to describe independence naturally through the construction of product
measures.

5. Conditioning: How does knowledge about the world inform our predictions?
Introductory probability courses also present a long catalog of formulas for
conditioning of discrete random variable and another catalog for conditioning
of continuous random variables. It is in no way clear, however, that we can mix
these ideas. Measure theory provides a natural set of tools for handling cases
that cannot be addressed by manipulation of probability masses or densities.

6. Approximation of distributions: In its most basic form, the central limit theorem
states that a standardized sum of independent uniform ±1 random variables
converges to a continuous normal distribution. But it must be perplexing to
contemplate discrete distributions that have a continuous limit. By treating all
probability distributions as measures, this conceptual difficulty evaporates.

At this stage, it may not be clear exactly what we mean by this encomium to
measure theory. Once we have finished the course, and you look back on this section,
you will appreciate how measure-theoretic probability resolves all of these issues.

In the first lecture, we will begin our study of measure theory. These concepts are
easier to understand without the added burden of a probabilistic interpretation, so we
will first introduce the major concepts in the comfortable setting of the integers and
then we will upgrade the basic ideas to the real line. Once the foundations are solid,
we will recast measure theory as a language for discussing probability.

Notes
Monte Carlo methods were invented to perform challenging integrations that arise in
computational physics. In practice, Monte Carlo methods are often enhanced with
more sophisticated sampling techniques (e.g., importance sampling or control variates).
For many problems, where it is intractable to produce unbiased samples, we can
implement a Markov chain that drives an initial distribution toward the desired target.
The resulting technique, called Markov Chain Monte Carlo (MCMC), has fundamental
importance in contemporary machine learning and computational science.
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MCMC was invented in the 1940s by the physicists Nick Metropolis and Stanislaw
Ulam, who were on the staff of the Manhattan Project. In the 1970s, MCMC was
revitalized by Hastings [Has70]. Image processing applications emerged in the 1980s
with the work of Geman & Geman [GG84]. MCMC methods entered the mainstream of
computational statistics in the 1990s; for example, see [Tie94]. They are now central
tools for Bayesian solution of inverse problems [Stu10]. For an accessible introduction
to Markov chains on discrete state spaces, see the book of Levin & Peres [LP17].

Randomized trace estimators were proposed by Girard [Gir89] for generalized
cross-validation of smoothed least-squares problems. The specific estimator that we
described was proposed by Hutchinson [Hut90]. See [MT20] for a more in-depth
discussion and more recent extensions.

The stochastic gradient algorithm was first proposed by Robbins and Monro [RM51]
for rootfinding problems that arise in statistics (quantile estimation, least-squares
computation). These methods have been rediscovered many times in other research
communities. Stochastic gradient achieved a renewed prominence in the machine
learning community after an influential paper [Bot98] of Bottou. At present, variants of
stochastic gradient are widely used in statistical machine learning and for the training
of artificial neural networks.

Our discussion of the importance of measure theory for probability theory owes a
great debt to Pollard’s book [Pol02].

We have presented the tired quotation of George Box about the fact that models are,
well, models. The discrepancy between reality, models of reality, and our perception of
reality is an ancient theme in philosophy. For example,

“Dao ke dao, fei chang dao. / Ming ke ming, fei chang ming.”

“The truth can be known, but it is not the truth known to you. / Things can be
named, but the names are not the things.”

—Laozi, Dao Deching, circa 400 BCE

You may also recall Plato’s “Allegory of the Cave,” where the prisoners imagine that the
shadows of objects are the reality of the objects. In his meditation on a ball of wax,
Descartes considered the falseness of our senses, and he argued that our knowledge
of the world is uncertain. He concluded that, on some level, models for reality can
capture truths that we cannot directly perceive.
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1. Measures on the Integers

Agenda:
1. Distributions of mass
2. Motivation for definition
3. Measures on the integers
4. Basic properties
5. Examples
6. Specifying a measure

“Truth is truth
To th’end of reck’ning.”

—William Shakespeare, Measure for Measure, Act V, Scene 1

Measure theory is a branch of mathematics that provides tools for describing
a “distribution of mass” over a domain. The mathematical abstraction is the same,
regardless of whether we are talking about distributions of physical mass or distributions
of probability or whatnot.

Modern probability is written in the language of measure theory, and we cannot
develop a mature understanding of the subject without it. Although there are more
elementary approaches, we really need the technical apparatus of measure theory
to properly build foundations (e.g., conditional expectations) and to pursue modern
applications (e.g., optimal transportation).

The first task of measure theory is to define a measure, which is the basic object
that describes a distribution of mass over a domain. Later, we will use measures to
introduce integrals, which allow us to add up the values of a function on the domain,
weighted by the distribution of mass.

We will begin our study in a drastically simplified setting, the case of distributions
over the integers. In this environment, we can develop intuitions without worrying
about technical matters. In the next lecture, we will expand on the basic ideas to give
the abstract definition of a measure. The abstraction is important for understanding
measures on the real line. As always, our goal is to be correct but never fussy.

1.1 Distributions on the integers
So, what does measure theory allow us to measure? All kinds of things. For instance,

• Combinatorial content, such as counting points.
• Geometric content, such as length, area, or volume.
• Physical content, such as mass or charge.
• Probability or likelihood, which is our main interest.

In each case, we can think about some kind of substance that is distributed over a
domain. We will use the word “mass” generically to refer to the substance that is being
distributed.

The first step in our program is to study mass distributions, or measures, on the
integers. The distribution simply places some amount of mass on each integer. This
model is not rich enough to support all of the examples that might interest us, but it
already allows us to identify some of the core properties of a measure. In the next few
lectures, we will gradually introduce the additional technical ideas that are required to
define measures on the real line.
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Example 1.1 (Counting). Let A ⊆ ℤ be a subset of the integers. We may be interested in
counting the number of points in the set A. To that end, define #A to be the number
of points in the set A. We will call # the counting measure (on the integers).

As a concrete example, consider an interval A = {𝑎 + 1, 𝑎 + 2, . . . , 𝑎 + 𝑘 } where
𝑎 ∈ ℤ. Then #A = 𝑘 is just the length of the interval. On the other hand, for a set A
that contains an infinite number of points, we set #A = +∞.

At first glance, counting may not seem to have much to do with distributions. In
fact, it is just an elementary example. Counting is associated with the distribution that
places one unit of mass on each integer. Thus, for a set A with finite cardinality,

#A =
∑︁

𝑖 ∈A
1.

If A has infinite cardinality, we can interpret the sum as the limit of an increasing
sequence of finite partial sums, which equals +∞.

It will be valuable to develop schematics that can give us intuition for distributions.
Here is a picture of the counting measure:

Each spike has height one, and it represents one unit of mass, concentrated at an
integer point. ■

Example 1.2 (Physical mass). Calder grew up in Pasadena. His
father, also named Alexander Calder,
was a prominent sculptor, who
designed the frieze over the original
Pasadena Hall in 1910. These
sculptures are now located on the
bridge between Church Hall and
Crellin Hall.

Alexander Stirling Calder was a mid-20th century American
sculptor, well-known for his whimsical constructions of measures. Here is an illustration
of a Calder mobile, along with an associated schematic that describes how the mass is
distributed over the integer points:

We imagine that the horizontal rod is massless and the strings have no width.

Warning: Recall that positive
always means ≥ 0! ■

It is natural to describe a general distribution of physical mass over the integers
using a sequence (𝑤𝑖 : 𝑖 ∈ ℤ) of positive real numbers. The number𝑤𝑖 specifies how
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much mass is placed at the integer 𝑖 . The total mass carried by a set A ⊆ ℤ is simply∑
𝑖 ∈A𝑤𝑖 . Here is a picture of what the distribution might look like.

As in Example 1.1, the spikes represent point masses, which have no spatial extent.
The center of mass𝑚 of the system is the location at which we must support the

number line to make it balance. In other words, the torque about the point𝑚 is zero:∑︁
𝑖 ∈ℤ

(𝑖 −𝑚)𝑤𝑖 = 0. (1.1)

We have added up the values of a function 𝑖 ↦→ 𝑖 −𝑚, weighted by the distribution
(𝑤𝑖 : 𝑖 ∈ ℤ) of mass. This is an explicit example of integrating a function against a
distribution, a task we will learn to accomplish in some generality. ■

Example 1.3 (Probability). A probabilistic experiment has a distribution of possible
outcomes, some more likely than others. For a truly boring instance, consider the
process of flipping a fair penny until we encounter the first heads. By elementary
reasoning, for each natural number 𝑖 ∈ ℕ, the probability that the first heads appears
on the 𝑖 th flip is 2−𝑖 . Here is an illustration of this distribution of probability:

This is a particular example of the geometric distribution, which is a family of probability
distributions that are supported on the natural numbers.

We can describe a general probability distribution over the integers via a sequence
(𝑝𝑖 : 𝑖 ∈ ℤ) of positive numbers that sums to one:

∑
𝑖 ∈ℤ 𝑝𝑖 = 1. The normalization

reflects the fact that the total probability of all the outcomes must equal one, or 100%.
The probability that the outcome lies in a set A ⊆ ℤ is just

∑
𝑖 ∈A 𝑝𝑖 , the total probability

mass carried by the set.
The expectation𝑚 of the probability distribution is given by the series You may notice the strong analogy

between (1.1) and (1.2), which
suggests a mechanical interpretation
of the expectation.

𝑚 =
∑︁

𝑖 ∈ℤ
𝑖 𝑝𝑖 . (1.2)
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In other words, we average the values of the function 𝑖 ↦→ 𝑖 , weighted by the
distribution (𝑝𝑖 : 𝑖 ∈ ℤ) of probability. This is another explicit example of an integral,
and we begin to see why probability theory demands a robust theory of integration. ■

Aside: (Signed distributions). We can consider a more general class of distributions
on the integers that may place either a positive or negative mass at each integer.
This situation arises in physics, where it models a distribution of electric charge
on the integers. Mathematically, we describe this kind of distribution using an
object called a signed measure. For the moment, however, we will only consider
distributions that are positive.

1.2 What properties should a measure have?
In the last section, we discussed several situations where we may encounter a dis-
tribution of mass over the integers. A measure is simply a mathematical object that
describes a distribution of mass. We will need this formalism to give a unified treatment
of distributions over domains that are more general than the integers.

Fortunately, we can use distributions over the integers to get acquainted with the
basic ingredients in the definition of a measure. The archetype of a measure on the
integers is the counting measure, which reports the number of points in a set (see
Example 1.1). From this example, we can identify some intuitive properties that all
measures should share.

1.2.1 Measures are defined on sets
What kind of function is the counting measure? After a moment of thought, we realize
that the counting measure reports the number of points in a set of integers. That is,
we have defined #A for a set A ⊆ ℤ. In contrast, it does not make any sense to talk
about the number of points in an individual integer 𝑎 ∈ ℤ, even though we can talk
about the Evidently, #{𝑎 } = 1.number of points in the singleton set {𝑎}. In other words, the domain of the
counting measure # on the integers is the power set P(ℤ), which contains all subsets
of integers.

This innocuous observation points to a central idea inmeasure theory:

A measure is a function, defined on sets, that reports the amount of mass carried by
each set.

Different measures describe different ways to assign mass to sets. In the subsequent
lectures, we will refine this idea in an essential way.

Aside: Although a measure is defined on subsets of the domain, it may not be
defined on every subset. This issue is truly fundamental, but we can ignore it until
the next lecture.

1.2.2 Measures take positive values, which may be infinite
What is the range of the counting measure? It is very easy to see that the cardinality of
a set of integers may take any value in ℤ+ ∪ {+∞}, the set of positive integers together
with +∞. By consideration of our other examples (physical mass, probability), we
quickly realize that it is too restrictive to require a measure to take integer values.

From these observations, we extract several conclusions. First, a measure should
assign a positive amount of mass to a set. Second, it is eminently reasonable for the
measure to assign an infinite amount of mass to some sets. In summary, the range of a
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measure is contained in ℝ+ := ℝ+ ∪ {+∞} = [0,+∞], the set of positive real numbers,
together with +∞.

1.2.3 Measures are finitely additive
A pair (A,B) of sets is disjoint when
they have a trivial intersection:
A ∩ B = ∅. In other words, disjoint
sets do not overlap.

At this stage, we have decided that a measure is a function that maps a set to a positive
number. But what kind of function? What is the core property of the counting measure
that other measures must share?

Observe that the total number of points in a union of two disjoint sets equals the
sum of the number of points in each of the sets:

The symbol ¤∪ denotes the union of
disjoint sets.

#(A ¤∪B) = (#A) + (#B) for disjoint A,B ⊆ ℤ. (1.3)

The formula (1.3) expresses the finite additivity of the counting measure. This is a very
natural requirement for any distribution of mass: the total mass carried by two disjoint
sets must equal the sum of the masses of the two sets.

Observe that the finite additivity property (1.3) has several formal implications.
First, it allows us to compute the number of points in a set difference:

#(A \ E) = (#A) − (#E) when E ⊆ A ⊆ ℤ.

The words family and collection are
alternative terms for “set.” For
euphony, they are often used to refer
to a set whose elements are sets.

Second, we can extend the additivity rule to a disjoint family containing a finite number
of sets:

#
( ¤⋃𝑛

𝑖=1A𝑖
)
=

∑𝑛
𝑖=1(#A𝑖 ) for disjoint sets A𝑖 ⊆ ℤ. (1.4)

A family of sets is disjoint when each
pair of sets in the family is disjoint.

This identity follows by iteration of (1.3).

1.2.4 Measures are countably additive
Measure theory demands that we upgrade the finite additivity rule (1.4) to a stronger
property called countable additivity. For the counting measure, countable additivity is
the trivial statement that

#
( ¤⋃∞

𝑖=1A𝑖
)
=

∑∞
𝑖=1(#A𝑖 ) for disjoint sets A𝑖 ⊆ ℤ. (1.5)

A set is countable if it can be placed in
one-to-one correspondence with a
subset of the natural numbers. For
example, finite sets are countable;
the integers are countable; and the
rational numbers are countable. The
real numbers are not countable.

Here, we may consider any countable family of disjoint sets.
We will require a similar property to hold for every measure. To see what this

looks like, consider a general mass distribution (𝑤𝑖 : 𝑖 ∈ ℤ) as in Example 1.2.
For any subset A ⊆ ℤ, we can unambiguously define the total mass in the set via
𝜇(A) := ∑

𝑖 ∈A𝑤𝑖 . It is not too hard to check that

𝜇
( ¤⋃∞

𝑖=1A𝑖
)
=

∑∞
𝑖=1 𝜇(A𝑖 ) for disjoint sets A𝑖 ⊆ ℤ. (1.6)

This identity expresses the countable additivity of𝜇. Since the integersℤ are countable,
we will often invoke this relation to translate information about the mass on singleton
sets to the mass on general sets of integers.

In a wider context, countable additivity allows us to effortlessly handle sequences of
sets, to perform limiting operations, and to construct integrals. In general, if we wish
to enjoy the fruits of the countable additivity property, we must enforce it explicitly
because it does not follow from finite additivity (!). The crucial role of countable
additivity is a brilliant technical insight that powers the entire field of measure theory.

Exercise 1.4 (Countable additivity). Verify that (1.6) holds for the function𝜇(A) = ∑
𝑖 ∈A𝑤𝑖

with𝑤𝑖 ≥ 0. Hint: A (countable) sum of positive numbers has an unambiguous value,
no matter the order of summation.
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1.3 Measures on the integers
In the last section, we explored the properties of the counting measure, and we argued
that any distribution of mass on the integers should share similar properties. In this
section, we will give a rigorous definition of a measure, which crystallizes these ideas.

1.3.1 Formal definition
Let us reiterate the key properties we have uncovered. First, a measure is defined
on sets of integers, and it reports the total mass carried by a set. Second, measures
are countably additive: the measure of a countable union of disjoint sets must equal
the sum of the measures of the sets. The definition of a measure just collects these
principles.

Definition 1.5 (Measure on the integers). A measure on the integers is a positive function
defined on sets of integers:

𝜇 : P(ℤ) → [0,+∞].

A measure has two distinguished properties:

1. Empty set: 𝜇(∅) = 0.
2. Countable additivity: If (A𝑖 : 𝑖 ∈ ℕ) is a countable sequence of disjoint sets in

P(ℤ), then the measure of the union is the sum of the measures:

𝜇
( ¤⋃∞

𝑖=1A𝑖
)
=

∑∞
𝑖=1 𝜇(A𝑖 ). (1.7)

Exercise 1.6 (Counting measure). Let us verify that Definition 1.5 is not vacuous. Show
that the counting measure # : P(ℤ) → [0,+∞] is a measure on the integers.

Exercise 1.7 (Set differences). Let 𝜇 be a measure on the integers. Confirm that 𝜇(A\E) =
𝜇(A) − 𝜇(E) when E ⊆ A ⊆ ℤ.

Warning 1.8 (Details, details). There are a number of pitfalls that often trip students
up when they first encounter the definition of a measure:

1. Measures assign mass to sets, not to points.
2. Measures can return the value +∞.
3. Measures are assumed to be countably additive.
4. The definition of countable additivity requires disjointess of the sets.

Be careful! ■

Problem 1.9 (*Finite additivity). A function 𝜇0 : P(ℤ) → [0,+∞] is finitely additive if it
satisfies

𝜇0
( ¤⋃𝑛

𝑖=1 A𝑖
)
=

∑𝑛
𝑖=1 𝜇0(A𝑖 ) for all disjoint A𝑖 ⊆ ℤ and 𝑛 ∈ ℕ. (1.8)

Confirm that a measure 𝜇 on the integers is always finitely additive. Exhibit a finitely
additive function 𝜇0 with 𝜇0(∅) = 0 that is not a measure.

Conclude that it is necessary to assume that a function on sets is countably additive
if we wish to use this property. The proof of Proposition 1.20 gives a first hint about
why countable additivity is so valuable.
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Aside: (Signed measures). More precisely, we have defined a positive measure on all
sets of the integers. We omit the qualification that the measure is positive because
this is the most common case by far. There is a related object, called a signed
measure, which can take negative values. In that case, we always use the word
“signed” to maintain the distinction.

1.3.2 Basic properties
Measures are required to satisfy the countable additivity property (1.7), which involves
disjoint sets. Even for sets that are not disjoint, the measure still satisfies some elegant
rules. As a first example, let us show that a measure is monotone.

Example 1.10 (Measure: Monotonicity). Let 𝜇 be a measure on the integers. Consider
nested sets A ⊆ B ⊆ ℤ. We have the disjoint decomposition

B = A ¤∪ (B \ A).

Using (countable) additivity and positivity of the measure, we find that

𝜇(B) = 𝜇(A) + 𝜇(B \ A) ≥ 𝜇(A).

In summary, the measure is monotone with respect to set inclusion: A ⊆ B implies that
𝜇(A) ≤ 𝜇(B). This fact gives additional support to the heuristic that measures model
distributions of mass. If you enlarge a set, the amount of mass that it carries can only
increase. ■

Exercise 1.11 (Measure: Properties). Let𝜇 be a measure on the integers. Prove the following
claims.

1. Inclusion–exclusion: For all sets A,B ⊆ ℤ,

𝜇(A ∪ B) + 𝜇(A ∩ B) = 𝜇(A) + 𝜇(B).

What happens when B ⊆ A?
2. Countable subadditivity: Consider a countable sequence (A𝑖 : 𝑖 ∈ ℕ) of sets of

integers, not necessarily disjoint. Show that

𝜇
( ⋃∞

𝑖=1 A𝑖
)
≤ ∑∞

𝑖=1 𝜇(A𝑖 ). (1.9)

Hint: Reason about the increasing sets B𝑛 :=
⋃𝑛
𝑖=1 A𝑖 for 𝑛 ∈ ℕ.

You may find that Venn diagrams are helpful here. In each case, the key idea is to
rewrite a set as the disjoint union of two or more subsets.

Exercise 1.12 (Measure: Monotone limits). Let 𝜇 be a measure on the integers. Verify that
the measure interacts well with monotone limits.

1. Increasing limits: For an increasing sequence A1 ⊆ A2 ⊆ A3 ⊆ · · · ⊆ ℤ, show that

𝜇
( ⋃∞

𝑖=1 A𝑖
)
= lim𝑖→∞ 𝜇(A𝑖 ).

2. Decreasing limits: For a decreasing sequence ℤ ⊇ A1 ⊇ A2 ⊇ A3 ⊇ · · · , show that

𝜇
( ⋂∞

𝑖=1 A𝑖
)
= lim𝑖→∞ 𝜇(A𝑖 ),

provided that 𝜇(A𝑖 ) < +∞ for some index 𝑖 . (*) Give an example to show that the
statement may fail without the qualification.
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1.3.3 Finite measures
It is useful to make a distinction among measures that distribute a finite amount of
mass and measures that distribute an infinite amount of mass.

Definition 1.13 (Finite measure). Let 𝜇 be a measure on the integers. We say that 𝜇 is
a finite measure if the total mass 𝜇(ℤ) < +∞. Otherwise, 𝜇 is not finite.

We will encounter examples of finite and non-finite measures in the next section.

1.4 Livestock
You cannot run a ranch without any cattle. Likewise, you need to become acquainted
with examples of measures if you want to develop an operational understanding of
measure theory. Furthermore, you need to become familiar with the methods for
transforming measures to obtain new measures.

1.4.1 Basic examples
Here are some of the basic classes of measures on the integers.

Example 1.14 (Dirac measure). Let us exhibit a family of measures that are simple but
very important. For a point 𝑘 ∈ ℤ, the Dirac measure 𝛿𝑘 is defined for each set A ⊆ ℤ

via the rule

𝛿𝑘 (A) := 1A(𝑘 ) :=
{
1, 𝑘 ∈ A;
0, 𝑘 ∉ A.

(1.10)

The measure 𝛿𝑘 is often called the point mass at 𝑘 . We illustrate 𝛿𝑘 as a “spike” at the
point 𝑘 with height 1. The Dirac measure is obviously a finite measure. ■

Exercise 1.15 (Weights and measures). Consider a sequence (𝑤𝑖 : 𝑖 ∈ ℤ) of positive
numbers that may be infinite; that is,𝑤𝑖 ∈ [0,+∞] for each 𝑖 . Define

𝜇(A) :=
∑︁

𝑖 ∈A
𝑤𝑖 for A ⊆ ℤ.

Verify that 𝜇 is a measure on the integers. Deduce that 𝜇 is the unique measure on the
integers with 𝜇({𝑖 }) = 𝑤𝑖 for each 𝑖 . Under what conditions is 𝜇 a finite measure?

1.4.2 Measures from measures
“Haste still pays haste, and leisure
answers leisure, / Like doth quit like,
and measure still for measure.”

—William Shakespeare

Next, let us explore some of the transformation rules that produce new measures from
existing measures.

Exercise 1.16 (Restriction of measures). Let 𝜇 be a measure on the integers, and fix a set
E ⊆ ℤ. We can define the restriction of the measure 𝜇 to the set E via

𝜈 (A) := 𝜇(A ∩ E) for A ⊆ ℤ.

Show that 𝜈 is a measure. In what circumstances is 𝜈 a finite measure?

Example 1.17 (Positive linear combinations). A measure on the integers is a particular type
of function that takes extended real values. As a consequence, we can scale a measure
by a positive number, and we can add measures. For instance, if 𝜇,𝜈 are measures
on the integers and 𝛼, 𝛽 ∈ ℝ+ are positive numbers, then we can define the measure
𝛼𝜇 + 𝛽𝜈 via the rule

(𝛼𝜇 + 𝛽𝜈) (A) := 𝛼𝜇(A) + 𝛽𝜈 (A) for all A ⊆ ℤ.
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For example, # + 𝛿0 is a measure (what is it?). More generally, we can form a positive
linear combination of (a finite number of) measures. ■

Example 1.18 (*Mapping). Another way to construct new measures is via mapping. Let 𝜇
be a measure on the integers, and let 𝑓 : ℤ → ℤ be a function. Then we can define a
measure 𝜈 , called the push-forward of the measure 𝜇 by the function 𝑓 :

𝜈 (A) := 𝜇( 𝑓 −1(A)) for each A ⊆ ℤ. (1.11)

We have written 𝑓 −1(A) := {𝑘 ∈ ℤ : 𝑓 (𝑘 ) ∈ A} for the preimage of the function. It is
common to denote the push-forward measure as 𝜈 = 𝑓∗𝜇. ■

Exercise 1.19 (*Preimages and mapping). Let 𝑓 : ℤ → ℤ be a function. Show that the
preimage of a union is the union of the preimages:

𝑓 −1
( ⋃

𝑖 ∈I A𝑖
)
=

⋃
𝑖 ∈I 𝑓

−1(A𝑖 ) where A𝑖 ⊆ ℤ for each 𝑖 ∈ I.

This statement is true for every index set I. In fact, it is valid for all functions 𝑓 ,
regardless of the domain and codomain.

Deduce that (1.11) defines a measure. Compute 𝑓∗𝛿0 and 𝑓∗#. Are there situations
where you can simplify the formulas?

1.5 Specifying a measure on the integers
What information do we need to completely describe a measure on the integers? A
priori, to specify a measure, we need to provide a rule that delivers the value of the
measure on every subset of integers. In some cases, it is natural to define the measure
directly on subsets (e.g., the counting measure or the Dirac measure). In other cases,
it may be more productive to pursue other representations.

We have already encountered a fully general construction of a measure on the
integers in Exercise 1.15. Indeed, we have the following converse result.

Proposition 1.20 (Integer measures: Characterization). Every measure 𝜇 on the integers can
be written uniquely in the form 𝜇(A) = ∑

𝑖 ∈A𝑤𝑖 where the weights𝑤𝑖 ∈ [0,+∞].

Proof. Define𝑤𝑖 := 𝜇({𝑖 }) for each 𝑖 ∈ ℤ. For each subset A ⊆ ℤ, we can evidently
write A = ¤⋃

𝑖 ∈A {𝑖 }. By countable additivity of the measure 𝜇, we have the identity
𝜇(A) = ∑

𝑖 ∈A 𝜇({𝑖 }) =
∑
𝑖 ∈A𝑤𝑖 . ■

When we study measures on more general domains, however, we may lack an
analog of Proposition 1.20. For instance, when the domain is uncountable, we cannot
decompose a set into a countable union of singleton sets as we did in the proof. In
these situations, we need to find more flexible classes of sets that we can use as building
blocks.

Let us see how we might design other kinds of representations for measures in
the present context. Suppose that we knew the measure of every interval (𝑗 , 𝑘 ] ∩ ℤ

where 𝑗 , 𝑘 ∈ ℤ. It seems as if this data should be adequate to determine the measure
of every set of integers. This intuition is correct.

There is a separate concern, however, that the measures of intervals need to be
self-consistent. For instance, we certainly cannot have 𝜇({0}) = 2 and 𝜇({0, 1}) = 1.
For finite measure on the integers, there is an easy way to guarantee consistency by
working with the distribution function of the measure.
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Definition 1.21 (Distribution function: Integer measure). Let 𝜇 be a finite measure on
the integers. The (cumulative) distribution function (abbreviated cdf or df) of the
measure is defined as

𝐹 (𝑘 ) := 𝜇((−∞, 𝑘 ] ∩ ℤ) for 𝑘 ∈ ℤ.

Distribution functions are useful tools for probability theory. We will spend more
time with them later on. For now, let us present some results, which state that a
distribution function characterizes a measure.

Proposition 1.22 (Distribution function on integers: Properties). Let 𝐹 : ℤ → ℝ+ be the
distribution function of a finite measure 𝜇 on the integers. Define𝑀 := 𝜇(ℤ) < +∞.
Then 𝐹 enjoys two properties:

1. Increasing: If 𝑗 ≤ 𝑘 , then 𝐹 (𝑗 ) ≤ 𝐹 (𝑘 ).
2. Asymptotic limits: We have lim𝑘↓−∞ 𝐹 (𝑘 ) = 0 and lim𝑘↑+∞ 𝐹 (𝑘 ) = 𝑀 .

Exercise 1.23 (Distribution function on integers). Prove Proposition 1.22.

Remarkably, the converse is also true. Any function on the integers with these two
properties is the distribution function of a unique finite measure.

Theorem 1.24 (Distribution function on integers = finite integer measure). Let 𝐹 : ℤ → ℝ+
be a function that satisfies Proposition 1.22(1)–(2). Then there is a unique finite
measure 𝜇 on the integers with

𝜇((𝑗 , 𝑘 ] ∩ ℤ) = 𝐹 (𝑘 ) − 𝐹 (𝑗 ) for all 𝑗 , 𝑘 ∈ ℤ with 𝑗 < 𝑘 .

Proof. Define𝑤𝑖 := 𝐹 (𝑖 ) − 𝐹 (𝑖 − 1) for each 𝑖 ∈ ℤ. Since 𝐹 is increasing and finite,
the weights𝑤𝑖 are positive. Construct the function

𝜇(A) :=
∑︁

𝑖 ∈A
𝑤𝑖 for all A ⊆ ℤ.

By a telescope, this function has the advertised property:

𝜇((𝑗 , 𝑘 ] ∩ ℤ) =
∑︁𝑘

𝑖=𝑗+1
𝑤𝑖 = 𝐹 (𝑘 ) − 𝐹 (𝑗 ) for 𝑗 , 𝑘 ∈ ℤ with 𝑗 < 𝑘 .

Taking limits as 𝑗 → −∞ and 𝑘 → +∞, we quickly determine that the total mass
𝜇(ℤ) = ∑

𝑖 ∈ℤ𝑤𝑖 = 𝑀 < +∞. According to Exercise 1.15, the function 𝜇 is indeed a
finite measure, which is uniquely determined by 𝐹 . ■

Problem 1.25 (*Discrete distribution functions). A measure 𝜇 on the integers is locally finite
if 𝜇({𝑖 }) < +∞ for each 𝑖 ∈ ℤ. Show that locally finite measures on the integers are
in one-to-one correspondence with the class of increasing functions 𝐹 : ℤ → ℝ that
satisfy 𝐹 (0) = 0.

Problems
Exercise 1.26 (Preimage: Set operations). Let 𝑓 : X → Y be a function. The preimage of a
subset of the codomain is defined as

𝑓 −1(B) := {𝑥 ∈ X : 𝑓 (𝑥) ∈ B} ⊆ X for all B ⊆ Y.
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1. Show that the preimage of a complement is the complement of the preimage:

𝑓 −1(Bc) = ( 𝑓 −1(B))c.

The complement of a subset of a domain is defined with respect to the domain.
For example, if B ⊆ Y, then Bc := Y \ B.

2. Verify that the preimage 𝑓 −1 distributes over unions, intersections, and set
differences. For example,

𝑓 −1(B ∪ C) = 𝑓 −1(B) ∪ 𝑓 −1(C) for all B,C ⊆ Y.

3. For functions 𝑓 and 𝑔 with compatible domains, confirm that ( 𝑓 ◦ 𝑔 )−1 =

𝑔 −1 ◦ 𝑓 −1.

Notes
The material in this lecture is standard, but it is not very common to emphasize
measures on the integers because there are more elementary ways to present these
ideas. We have chosen this introduction to help build intuition for the concept of a
measure in a concrete setting where there are no technicalities.



2. Abstract Measure Spaces

Agenda:
1. Measurable sets
2. Sigma-algebras
3. Measurable spaces
4. Measure spaces
5. Examples
6. How to specify a measure

“[Abstract art is] a product of the untalented, sold by the unprincipled to the utterly
bewildered.”

—Al Capp

We introduced the concept of a measure in the friendly territory of the integers.
This concrete setting helps us visualize a distribution of mass and intuit some of the
properties that a distribution of mass should have.

But the ambitious reader may wish to distribute mass over domains that are more
general than the integers (ℤ). The most important case is the real line (ℝ). Other
related examples include the plane (ℝ2) and ordinary space (ℝ3). Later, when we
enter into probability theory, we will want to assign likelihoods to the outcomes of
general probability experiments (e.g., coins, dice, card games, the Kentucky Derby...).

Although mathematicians are sometime accused of an excessive love of abstraction,
these examples intimate that we really do need to consider distributions of mass over
general domains. Abstraction allows us to isolate what is truly essential. We will see
the power of this approach in the next lecture when we discuss measures on the real
line. Later, it will provide a clean setting for developing probability theory.

The main goal of this lecture is to introduce a foundational concept from measure
theory, the notion of a 𝜎 -algebra of sets. After exploring this important idea, we will
give a general definition of a measure and present some examples. We dedicate the
next lecture to the study of measures on the real line.

2.1 Measurable sets
One of the core ideas behind measure theory is that we assign mass to subsets of the
domain, rather than to points. This raises the question: Which subsets?

2.1.1 Why is this an issue?
We ducked the question when we introduced measures on the integers ℤ. Indeed,
we defined these measures on the power set P(ℤ), which contains all subsets of
the integers. Recall that a countable set is in

one-to-one correspondence with a
subset of the natural numbers. An
uncountable set is not countable.

This approach is successful because the integers compose a countable
set, and so every subset of ℤ is also countable. Therefore, we can use countable
additivity to define a measure on singleton sets and to extend it to all subsets. (See
Proposition 1.20.)

This program crashes when we try to define measures on uncountable domains,
such as the real line ℝ. Roughly speaking, there is no way to break down an arbitrary
subset of the real line as a countable union of “nice” subsets. As a consequence, we
cannot hope to define a measure on “nice” subsets and extend it to all subsets via
countable additivity.
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The difficulty is both serious and inexorable. The essential example of a distribution
of mass on the real line is a uniform distribution. Under the uniform distribution,
the mass of each interval is proportional to its length. In the late 19th century,
mathematicians sought a way to define the “length” of an arbitrary subset of the real
line. After many failed attempts, they eventually realized that there is no consistent
definition of “length” that is valid for every subset of the real line. Shockingly, we
cannot break down a general set into pieces that have well-defined lengths. The field
of measure theory was invented at the outset of the 20th century as a way to resolve
the concept of length. We will discuss the history and the details in the next lecture.

For now, suppose that we want to define a distribution of mass over a domain. We
have argued that a measure is a countably additive function that reports the amount of
mass carried by subsets of the domain.

The key idea is that we should only try to define a measure on a “nice” class of
subsets of the domain, called measurable sets.

“If at first you don’t succeed, lower
your standards.”

—Tommy Boy, 1995

Only by ratcheting down our expectations can we design a successful theory.

2.1.2 Measurable sets
Let X be an abstract set, called the domain, whose elements are called points. The
domain is often a familiar environment (such as ℤ or ℝ or ℝ𝑛), but measure theory
does not require the domain to have any extra structure. A measure will describe a
distribution of mass over the domain X.

To that end, we equip the domain with a collection F⊆ P(X) of subsets, called
measurable sets. Measures only assign mass to measurable sets; other subsets of the
domain are out of bounds. The family Fof measurable sets cannot be totally arbitrary,
or else we cannot hope to define measures on the family F. In this context, some authors use the

word closed instead of the word stable.
Rather, the family Fmust

be stable under certain set operations. These set operations ensure that it makes sense
to define a countably additive function on F.

2.2 Measurable spaces
In this section, we rigorously define the concept of a measurable space, the arena where
measure theory takes place. A measurable space involves a domain and a collection of
measurable sets. Our first task is to develop the mathematical framework for describing
the measurable sets.

2.2.1 Sigma-algebras
Let us introduce the key definition underlying the construction of measurable sets. The prefix 𝜎 means “countable.”This
object is called a 𝜎 -algebra. It provides the scaffolding for abstract measure theory,
and we cannot overstate its importance for this class.

Definition 2.1 (Sigma-algebra of sets). Let X be a domain. A family F ⊆ P(X) of
subsets of X is called a 𝜎 -algebra on the domain X if it satisfies three properties.

Some authors use the term 𝜎 -field
instead of 𝜎 -algebra. The latter is
more better; see Problem 2.49.

1. Nothing and everything: The empty set ∅ and the domain X belong to F.
2. Complements: If a set A ∈ F, then its complement Ac := X \ A belongs to F.
3. Countable unions and intersections: The family is stable under countable unions
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and intersections:

A𝑖 ∈ F for 𝑖 ∈ ℕ implies that
⋃∞
𝑖=1 A𝑖 ∈ F and

⋂∞
𝑖=1 A𝑖 ∈ F.

Exercise 2.2 (Sigma-algebra: Minimal definition). Some of the requirements in Definition 2.1
are redundant. Which ones can be removed?

Here are some particular examples of 𝜎 -algebras.

Example 2.3 (Trivial 𝜎-algebra). The family F= {∅, X} is a 𝜎 -algebra on X. ■

Example 2.4 (Almost trivial 𝜎-algebra). Fix a set A ⊆ X. Then F = {∅,A,Ac,X} is a
𝜎 -algebra on X. ■

Example 2.5 (Complete 𝜎-algebra). The power set P(X) is a 𝜎 -algebra on X. ■

As we will see, the complete 𝜎 -algebra appears in the construction of measures on
the integers. We will also encounter the Borel 𝜎 -algebra, a more complicated object
that is essential for constructing measures on the real line.

Aside: Why not allow uncountable unions? That is a bridge too far. If we required
the measurable sets to be stable under uncountable unions, then we might end
up with so many measurable sets that we could not define measures consistently.
Sigma-algebras are designed to cooperate with the countable additivity of measures.

2.2.2 Algebraic properties of sigma-algebras
By construction, a 𝜎 -algebra is stable under complements, countable unions, and
countable intersections. We can deduce some additional stability properties directly
from the definition.

Exercise 2.6 (Sigma-algebra: Differences). Show that a 𝜎 -algebra is stable under set
differences. For sets A, B in the 𝜎 -algebra, the sets A \B and B \A and A△B also belong
to the 𝜎 -algebra.

The intersection of two 𝜎 -algebras is always a 𝜎 -algebra. This fact and its
generalizations play an important role in constructions of 𝜎 -algebras.

Exercise 2.7 (Sigma-algebra: Intersections). The intersection of two collections of
sets contains exactly those sets that
appear in both collections.

Let Fand Gbe 𝜎 -algebras on X. Show that
F∩ G is also a 𝜎 -algebra on X. Argue that the intersection of an arbitrary family of
𝜎 -algebras on X remains a 𝜎 -algebra.

Exercise 2.8 (Sigma-algebra: Restriction). Let Fbe a 𝜎 -algebra on a domain X, and let
E ∈ Fbe an element of the 𝜎 -algebra. Define the restriction of the 𝜎 -algebra to E:

F|E := {E ∩ F : F ∈ F}.

Show that F|E is a 𝜎 -algebra on E.

2.2.3 Generation of sigma-algebras
A collection of subsets of the domain may or may not be a 𝜎 -algebra. Nevertheless, we
can always construct a minimal 𝜎 -algebra that contains the collection.

Conceptually, it seems that we might want to repeatedly add subsets that are
missing and stop as soon as arrive at a 𝜎 -algebra. This approach, however, is hard
to make rigorous. Instead, we will begin with the complete 𝜎 -algebra and remove
as many subsets as possible, keeping the initial family of subsets and retaining the
𝜎 -algebra property.
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Definition 2.9 (𝜎-algebra: Generation). Similar constructions arise
throughout mathematics. For
example, the span of a set of vectors
is the smallest linear subspace that
contains those vectors. Likewise, the
convex hull is the smallest convex set
that contains a given set.

Let S ⊆ P(X) be a collection of subsets of X.
The family Sgenerates a unique minimal 𝜎 -algebra:

𝜎 (S; X) :=
{
A ⊆ X : A belongs to every 𝜎 -algebra Fon X with S ⊆ F

}
.

We often call 𝜎 (S; X) the smallest 𝜎 -algebra on X that contains S. The domain X is
omitted from the notation when it is clear from context: 𝜎 (S) := 𝜎 (S; X).

It remains to verify that Definition 2.9 actually produces a minimal 𝜎 -algebra.

Proposition 2.10 (Generated 𝜎-algebras). Let S ⊆ P(X) be a collection of subsets of X.
Then 𝜎 (S;X) is a 𝜎 -algebra on X. Moreover, if S ⊆ F for another 𝜎 -algebra Fon X,
then 𝜎 (S; X) ⊆ F.

Proof. We can interpret the definition of the generated 𝜎 -algebra 𝜎 (S;X) as the
intersection of all 𝜎 -algebras on X that contain the distinguished collection Sof sets.
The intersection is nonempty because the power set P(X) is a 𝜎 -algebra that contains
S. By Exercise 2.7, the intersection of 𝜎 -algebras remains a 𝜎 -algebra.

Finally, since 𝜎 (S) is the intersection of all 𝜎 -algebras that contain S, it must be
the case that 𝜎 (S) is a subset of any particular 𝜎 -algebra that contains S. ■

Here are some basic examples of generated 𝜎 -algebras.

Example 2.11 (Almost trivial 𝜎-algebra). Let A be a subset of the domain X. Then
𝜎 ({A}) = {∅,A,Ac, X}.

To see why, observe that this is the minimal list of sets that must appear in 𝜎 ({A}).
Indeed, every 𝜎 -algebra contains nothing (∅) and everything (X). The generated
𝜎 -algebra contains the set A, so it also contains the complement Ac. These four sets
already compose a 𝜎 -algebra, so they form the smallest 𝜎 -algebra generated by A. ■

Exercise 2.12 (Small 𝜎-algebras). Let A,B ⊆ X. What is 𝜎 ({A,B})?
Exercise 2.13 (Countable domains). Let X be a countable domain. Show that the singleton
sets generate the complete 𝜎 -algebra. That is, 𝜎 ({{𝑥} : 𝑥 ∈ X}) = P(X).
Problem 2.14 (**Uncountable domains). Let X be an uncountable domain. Show that the
singleton sets do not generate the complete 𝜎 -algebra. That is, 𝜎 ({{𝑥} : 𝑥 ∈ X}) ⫋
P(X).

Aside: The minimality property of a generated 𝜎 -algebra also provides a versatile
theoretical tool. Later on, we will use this fact to verify that particular set collections
are 𝜎 -algebras. This argument arises in the development of the integral and again
in the construction of product measures.

2.2.4 Borel sigma-algebras
Generated 𝜎 -algebras are a powerful mechanism for building classes of measurable
sets that contain specific families of “elementary sets.” An important example is the
Borel 𝜎 -algebra on the real line, which will play a central role in the definition of
measures on the real line.

Example 2.15 (Borel 𝜎-algebra on ℝ). On the real line ℝ, we may regard open intervals
(𝑎, 𝑏) as a class of elementary sets. We define the Borel 𝜎 -algebra on ℝ as

B(ℝ) := 𝜎 ({(𝑎, 𝑏) : 𝑎 < 𝑏 and 𝑎, 𝑏 ∈ ℝ}).
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As it happens, the Borel 𝜎 -algebra also contains all open subsets of the real line because
every open set in the line is a countable union of open intervals. ■

We can extend this example to a much wider setting. Here are two cases of
particular importance in probability theory.

Example 2.16 (Borel 𝜎-algebra on ℝ𝑛 ). In the Euclidean space ℝ𝑛 , we may regard open
Euclidean balls as a class of elementary sets. For reference, the open Euclidean balls
are the sets Recall that ∥ · ∥2 is the ordinary

Euclidean norm on ℝ𝑛 .D(𝒙 ; 𝑟 ) := {𝒚 ∈ ℝ𝑛 : ∥𝒚 − 𝒙 ∥2 < 𝑟 }.
We define the Borel 𝜎 -algebra on ℝ𝑛 as

B(ℝ𝑛) := 𝜎 ({D(𝒙 ; 𝑟 ) : 𝒙 ∈ ℝ𝑛 and 𝑟 > 0}),

As before, the Borel 𝜎 -algebra on ℝ𝑛 contains all the open subsets of ℝ𝑛 . ■

Example 2.17 (*Borel𝜎-algebra on a metric space). Let (X, dist) be a separablemetric space.
A separable metric space contains a
countable subset that is dense in the
whole space.

The Borel 𝜎 -algebra on X is defined as

B(X) := 𝜎 ({D(𝒙 ; 𝑟 ) : 𝒙 ∈ X and 𝑟 > 0}),

where the open ball D(𝒙 ; 𝑟 ) := {𝒚 ∈ X : dist(𝒚 , 𝒙 ) < 𝑟 }. As in the previous examples,
the Borel 𝜎 -algebra on X contains all the open subsets of X. This claim requires the
separability assumption. ■

2.2.5 Measurable spaces
To summarize, we have introduced the concept of a 𝜎 -algebra, which is a collection
of sets that includes the empty set and that is stable under complements, countable
unions, and countable intersections. We may now describe the stage where measure
theory plays out.

Definition 2.18 (Measurable space). Let X be a domain equipped with a 𝜎 -algebra F.
The pair (X,F) is called a measurable space. In this context, the elements of Fare
called measurable sets or F-measurable sets.

Here are some simple examples of measurable spaces that frequently arise.

Example 2.19 (The trivial measurable space). The pair (X, {∅,X}) is a measurable space.
The only measurable sets are the empty set and the whole domain. As we will see, this
trivial example plays a role in probability theory. ■

Example 2.20 (Finite measurable spaces). Let X be a finite set. Then (X,P(X)) is a
measurable space. ■

Example 2.21 (A countable measurable space). The space (ℤ,P(ℤ)) is a measurable space.
The measurable sets consist of all subsets of the integers. This is the measurable space
where we define measures on the integers, as in Lecture 1. ■

Example 2.22 (A multivariate measurable space). The space (ℕ2,P(ℕ2)) is a measurable
space. The measurable sets consist of all subsets of pairs of natural numbers. ■

Example 2.23 (The complete measurable space). In general, the space (X,P(X)) is a
measurable space where every subset of X is measurable. As we have seen, this
construction is useful when X is countable. On the other hand, when X is uncountable,
the power set contains too many measurable sets for us to build a successful theory. ■
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Example 2.24 (The real line with its Borel sets). The pair (ℝ,B(ℝ)) is a measurable space.
This construction will allow us to rigorously define distributions of mass over the real
line, including the uniform distribution of mass. We will wait until the next lecture to
elaborate on this example. ■

Warning 2.25 (“Measurable”). The data of a measurable space does not include a
measure. In a moment, we will define a measure to be a type of function whose
domain consists of measurable sets. In other words, the term “measurable” refers
to a potentiality. ■

2.3 Abstract measures
Wemay now introduce the notion of an abstract measure, which is a function that reports
the mass of a measurable set. This section presents the formal definition, recounts the
basic properties and examples, and introduces some additional terminology.

2.3.1 Measures
To reiterate, a measure is a function that reports the amount of mass carried by each
measurable set. As in the case of measures on the integers, we require that the measure
is countably additive.

Definition 2.26 (Measure). Let (X,F) be a measurable space. A (countably additive)
measure is a function 𝜇 : F→ [0,+∞] that satisfies two properties:

1. Empty set: 𝜇(∅) = 0.
Warning: See Warning 1.8! ■

2. Countable additivity: Let (A𝑖 ∈ F : 𝑖 ∈ ℕ) be a disjoint sequence of measurable
sets. Then

𝜇
( ¤⋃∞

𝑖=1 A𝑖
)
=

∑∞
𝑖=1 𝜇(A𝑖 ). (2.1)

Definition 2.27 (Measure space).
Warning: In contrast to a
measurable space, the data in a
measure space includes a
measure. ■

A measure space is a triple (X,F, 𝜇) where X is a
domain, F is a 𝜎 -algebra on X, and 𝜇 is a measure on F.

We have already seen the importance of countable additivity in the construction of
measures on the integers (Proposition 1.20). Countable additivity will be critical for
taking limits and for designing a theory of integration.

Problem 2.28 (*Finite additivity). Let (X,F) be a measurable space. A function 𝜇0 : F→
[0,+∞] is finitely additive if it satisfies

𝜇0
( ¤⋃𝑛

𝑖=1 A𝑖
)
=

∑𝑛
𝑖=1 𝜇0(A𝑖 ) for all disjoint A𝑖 ∈ Fand 𝑛 ∈ ℕ. (2.2)

Confirm that a measure 𝜇 on (X,F) is always finitely additive.
Show that the finite additivity property (2.2) follows from the simpler condition

𝜇0(A ¤∪B) = 𝜇0(A) + 𝜇0(B) for disjoint A,B ∈ F.

Why is this assumption inadequate to establish countable addivity (2.1)?
Assume that X is infinite. Exhibit a finitely additive function 𝜇0 with 𝜇0(∅) = 0

that is not a measure. Thus, we must enforce countable additivity if we want to use it.



Lecture 2: Abstract Measure Spaces 32

Aside: Why not uncountable additivity? You cannot add up an uncountable number
of positive quantities unless there are only countably many nonzero terms, so there
is no sensible notion of uncountable additivity.

2.3.2 Basic properties
Abstract measures satisfy the same properties that we established for integer measures.
The proofs are exactly the same. Let us set these statements down for reference.

Proposition 2.29 (Measure: Properties). Let (X,F, 𝜇) be a measure space.

1. Monotonicity: For nested F-measurable sets A ⊆ B, we have 𝜇(A) ≤ 𝜇(B).
2. Inclusion–exclusion: For all measurable sets A,B ∈ F,

𝜇(A ∪ B) + 𝜇(A ∩ B) = 𝜇(A) + 𝜇(B).

3. Countable subadditivity: Consider a countable sequence (A𝑖 : 𝑖 ∈ ℕ) of measurable
sets, not necessarily disjoint. Then

𝜇
( ⋃∞

𝑖=1 A𝑖
)
≤ ∑∞

𝑖=1 𝜇(A𝑖 ). (2.3)

Proposition 2.30 (Measure: Monotone limits). Let (X,F, 𝜇) be a measure space.

1. Increasing limits: For an increasing sequence A1 ⊆ A2 ⊆ A3 ⊆ · · · of measurable
sets,

𝜇
( ⋃∞

𝑖=1 A𝑖
)
= lim𝑖→∞ 𝜇(A𝑖 ).

2. Decreasing limits: For a decreasing sequence A1 ⊇ A2 ⊇ A3 ⊇ · · · of measurable
sets,

𝜇
( ⋂∞

𝑖=1 A𝑖
)
= lim𝑖→∞ 𝜇(A𝑖 ),

provided that 𝜇(A𝑖 ) < +∞ for some index 𝑖 .

Problem 2.31 (*Measure: Continuity at zero). Let (X,F) be a measurable space, and let
𝜇0 : F → [0,+∞] be a finitely additive function, as in (2.2). Prove that 𝜇0 is a
measure if and only if 𝜇0 satisfies the condition

𝜇0(A𝑖 ) ↓ 0 when A𝑖 ↓ ∅ and 𝜇0(A𝑖 ) < +∞ for some 𝑖 .

That is to say, a measure is continuous at zero. This property may feel more intuitive
than countable additivity.

2.3.3 Finite measures
Measures that we encounter in everyday life have either a finite amount of mass, or
they have an infinite amount of mass that is nicely distributed. We will give some
examples in the next subsection.

Definition 2.32 (Finite; 𝜎-finite). Let (X,F, 𝜇) be a measure space.

• Finite measure: If the total mass 𝜇(X) < +∞, then we say that 𝜇 is a finite
measure.

• Sigma-finite measure: We say that 𝜇 is a 𝜎 -finite measure if we can cover X by
countably many measurable sets A𝑖 , each with finite measure. That is,⋃∞

𝑖=1 A𝑖 = X and 𝜇(A𝑖 ) < +∞ for each 𝑖 ∈ ℕ.
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There is a special case of particular importance for us.

Definition 2.33 (Probability measure). A finite measure 𝜇 with total mass 𝜇(X) = 1 is
called a probability measure. It describes a distribution of probability mass over the
domain X.

Aside: Measures that are not 𝜎 -finite can exhibit counterintuitive behavior. We
will often exclude them from consideration.

2.3.4 Examples of measures
We may now explore some of the basic examples of measures.

Example 2.34 (Dirac measure). Let (X,F) be a measurable space. Let 𝑡 ∈ X be a fixed
point. The Dirac measure concentrated at 𝑡 is given by

𝛿𝑡 (A) := 1A(𝑡 ) :=
{
1, 𝑡 ∈ A;
0, 𝑡 ∉ A

for A ∈ F.

This measure is also called the point mass at 𝑡 . Clearly, 𝛿𝑡 is a probability measure. ■

Example 2.35 (Counting measure). Let (X,F) be a measurable space. The counting
measure # is defined as

#A :=

{
card(A), A is finite;
+∞, otherwise

for A ∈ F.

This measure reports the number of points in a measurable set. If X is finite, then # is
a finite measure. If X is countable, then # is a 𝜎 -finite measure. On the other hand, if
X is uncountable, then # is not 𝜎 -finite. ■

Example 2.36 (Uniform measure on a finite set). Let X be a finite set. Then (X,P(X)) is a
measurable space. We can define a measure 𝜇 where

𝜇(A) := #A
#X

for each A ⊆ X.

This is called the uniform measure on X. It is clearly a probability measure. ■

Example 2.37 (Measures on the integers). Consider the measurable space (ℤ,P(ℤ)). Fix
a sequence (𝑤𝑖 : 𝑖 ∈ ℕ) of positive numbers that may be infinite. We can define a
measure

𝜇(A) :=
∑︁

𝑖 ∈A
𝑤𝑖 for each A ⊆ ℤ.

In other words, we add up the masses𝑤𝑖 for the indices 𝑖 that appear in the set A. The
measure 𝜇 is finite if and only if

∑
𝑖 ∈ℤ𝑤𝑖 < +∞. The measure 𝜇 is 𝜎 -finite if and only

if𝑤𝑖 < +∞ for all 𝑖 . In what circumstances is 𝜇 a probability measure? ■

Exercise 2.38 (Measures on pairs of integers). Consider the measurable space (ℤ2,P(ℤ2)).
Show that measures are in one-to-one correspondence with functions 𝒘 : ℤ2 →
[0,+∞].

We can also define measures on domains with smaller 𝜎 -algebras. Let us give an
explicit example to show that it is not necessary for a measure to be defined on all
subsets of a domain.
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Example 2.39 (Measures on the trivial 𝜎-algebra). Consider a domain X equipped with the
trivial 𝜎 -algebra F= {∅, X}. There is a one-parameter family of measures defined on
this 𝜎 -algebra. For a positive 𝛼 ∈ [0,+∞], these measures take the form

𝜇(∅) = 0 and 𝜇(X) = 𝛼.

You can easily check that 𝜇 is countably additive on F. It is not defined on any
nontrivial subset of the domain. ■

Exercise 2.40 (Measures on small 𝜎-algebras). Consider the domain X equipped with the
almost trivial 𝜎 -algebra F := {∅,A,Ac, X} for a set A ⊆ X. Describe all of the measures
defined on the measurable space (X,F).

Now, consider the 𝜎 -algebra F := 𝜎 ({A,B}) generated by two sets A,B ⊆ X.
Describe all of the measures defined on (X,F). For simplicity, you may want to
consider the case of finite measures.

2.3.5 Measures from measures
As before, we can obtain new measures from old measures via the following transfor-
mations.

Exercise 2.41 (Restriction). Let (X,F, 𝜇) be a measure space, and let E be a measurable
set. Define the restriction of 𝜇 to E:

𝜈 (A) := 𝜇(A ∩ E) for measurable A ∈ F.

Confirm that the restriction is a measure on (X,F).
Exercise 2.42 (Positive combinations). Let (X,F) be a measurable space equipped with
two measures 𝜇 and 𝜈 . For positive scalars 𝛼, 𝛽 ≥ 0, define the function

(𝛼𝜇 + 𝛽𝜈) (A) := 𝛼𝜇(A) + 𝛽𝜈 (B) for measurable A ∈ F.

Check that the positive combination is a measure on (X,F).

Aside: You may notice that the push-forward 𝑓∗𝜇 has disappeared from this list.
The reason is that the construction requires further assumptions on the function 𝑓 .
We will turn back to this matter when we develop a theory of integration.

2.3.6 Negligible sets and almost-everywhere sets
We continue with a few more general definitions about measures. Let us introduce
some important terminology for sets that carry no mass or whose complement carries
no mass.

Definition 2.43 (Negligible; almost everywhere). Let (X,F, 𝜇) be a measure space. The term null set is more common,
but less informative, than the term
negligible set.• Negligible sets: A measurable set A is called a negligible set for the measure 𝜇

when 𝜇(A) = 0.
• Almost everywhere sets:

Warning: These concepts
depend on the measure! ■

We say that a measurable set A is 𝜇-almost everywhere
when its complement is a 𝜇-negligible set: 𝜇(Ac) = 0. You will often see the
abbreviations 𝜇-a.e. or just a.e.

Let us mention one of the major use cases for this definition. Consider a measure 𝜇
and two functions 𝑓 , 𝑔 : X → Y. We say that 𝑓 and 𝑔 are equal 𝜇-almost everywhere if

𝜇({𝑥 ∈ X : 𝑓 (𝑥) ≠ 𝑔 (𝑥)}) = 0.
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As we will see, functions that are equal almost everywhere often behave as if they were
the same function. The careful reader will realize that we must make further demands
on the functions 𝑓 , 𝑔 to be sure that the points where the functions differ compose a
measurable set. We will return to this issue when we develop a theory of integration.

Exercise 2.44 (Dirac almost everywhere). Consider the measurable space (ℤ,P(ℤ)). Let
𝛿0 be a Dirac measure at zero. Describe all negligible sets for 𝛿0. Describe all the
almost everywhere sets for 𝛿0.

Exercise 2.45 (Negligible sets: Countable union). For each 𝑖 ∈ ℕ, let A𝑖 be a negligible set
for a measure 𝜇. Show that

⋃∞
𝑖=1 A𝑖 is a negligible set for 𝜇.

2.3.7 Atoms
As we have seen, measures may concentrate mass on a point. There is special
terminology for describing this situation.

Definition 2.46 (Atom). Let (X,F, 𝜇) be a measure space. We say that 𝜇 has an atom
at the point 𝑥 ∈ X when 𝜇({𝑥}) > 0.

When we illustrate a measure that has an atom at a point, we use a spike to indicate
the location and strength of the atom. All of the measures we have considered so far
have atoms.

In the next lecture, we will introduce measures on the real line. For example, the
Lebesgue measure models a uniform distribution of mass, with no mass concentrated
at any point. In other words, the Lebesgue measure has no atoms, in contrast to the
examples we have studied so far.

2.4 How do we construct a measure?
What information do we need to completely describe a measure? As before, we may
give a rule that specifies the value of the measure on every measurable set. This is
straightforward for examples like the Dirac measure or the counting measure. Beyond
that, to define a measure on a countable domain, we can enumerate the values that
the measure assigns to each singleton set and invoke countable additivity to extend
the measure to all subsets. (See Proposition 1.20.)

In more general measurable spaces, however, life is hard. The measurable sets may
be very complicated, and they may not have any explicit description. What do we do
in these cases?

In many situations, we can begin with a small family of elementary sets that are easy
to describe (e.g., open intervals of the real line). The measurable sets are obtained as
the smallest 𝜎 -algebra that contains all of the elementary sets. We can try to construct
a measure by specifying its value on elementary sets (e.g., the lengths of the intervals)
and then extending the partial definition to the entire family of measurable sets. To
execute this program, we must also ensure that the partial data is consistent with a
unique measure.

This approach is called measure extension. Appendix A presents the statement and
proof of the Hahn–Kolmogorov theorem, a foundational result on measure extension.
This theorem is the main tool we use to verify that there exist measures that meet
various desiderata. Measure extension theorems are rarely needed for workaday
applications of measure theory. Theoretically minded readers will want to understand
how measures are constructed, but most users will not need to explore the guts of this
machinery.
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Problems
Exercise 2.47 (Indicators). Subsets of a domain are in one-to-one correspondence with
indicator functions. Each A ⊆ X is associated with the 0–1 indicator function
1A : X → ℝ defined by 1A(𝑥) = 1 when 𝑥 ∈ A and 1A(𝑥) = 0 when 𝑥 ∉ A. Set
operations have algebraic analogs for indicator functions. This observation is useful
because it is often easier to reason about indicators than about sets.

1. Show that 1A∩B = min{1A,1B} = 1A1B. Find similar formulas that express the
union, the complement with respect to X, the set difference, and the symmetric
difference in terms of indicators. How can you represent subset and superset
relations with indicators?

2. (Inclusion–exclusion). For arbitrary sets A,B ⊆ X, use indicator calculus to show
that

1A∪B = 1A + 1B − 1A∩B.

3. (Deep inclusion–exclusion). For arbitrary sets A1, . . . ,A𝑛 ⊆ X, show that

1⋃𝑛
𝑖=1 A𝑖 =

∑︁𝑛

𝑘=1
(−1)𝑘+1

∑︁
𝑖1<𝑖2<· · ·<𝑖𝑘

1A𝑖1∩···∩A𝑖𝑘 .

In the sum, each index 𝑖 𝑗 takes values 1, . . . , 𝑛, and the indices 𝑖1, 𝑖2, . . . , 𝑖𝑘 are
strictly increasing. Hint: Take the complement of the union.

4. (Set limits). For 𝑖 ∈ ℕ, let A𝑖 ⊆ ℝ be sets. Define the set limit superior and limit
inferior as

A := lim sup𝑖→∞ A𝑖 via 1A = lim sup𝑖→∞ 1A𝑖 ;
A := lim inf𝑖→∞ A𝑖 via 1A = lim inf𝑖→∞ 1A𝑖 .

Using indicator calculus, express the set limits using only set operations. One of
these sets is interpreted as “points that appear in an infinite number of the sets
A𝑖 ” and one of these sets is interpreted as “points that eventually appear in a set
A𝑖 .” Which is which?

5. Use indicator calculus to give short proofs of the following set identities. For all
sets A,B, E, F,

(A ∪ B)△(E ∪ F) ⊆ (A△E) ∪ (B△F);
(A ∩ B)△(E ∩ F) ⊆ (A△E) ∪ (B△F).

These identities play a role in the proof of the Hahn–Kolmogorov theorem
(Theorem A.12).

Exercise 2.48 (More inclusion–exclusion). The simple inclusion–exclusion rule for two sets
extends to a more general result. This fact has many applications in set theory and
combinatorics.

1. Let (X,F, 𝜇) be a measure space. For measurable sets A1, . . . ,A𝑛 ∈ F, each
with finite measure, establish the general inclusion–exclusion principle:

𝜇
(⋃𝑛

𝑖=1A𝑖
)
=
∑︁𝑛

𝑖=1
𝜇(A𝑖 ) −

∑︁
𝑖1<𝑖2

𝜇(A𝑖1 ∩ A𝑖2)

+
∑︁

𝑖1<𝑖2<𝑖3
𝜇(A𝑖1 ∩ · · · ∩ A𝑖3) − · · · + (−1)𝑛+1𝜇(A1 ∩ · · · ∩ A𝑛).

Each of the sums ranges over indices 𝑖 𝑗 = 1, . . . , 𝑛 where the indices 𝑖1, 𝑖2, . . . , 𝑖𝑘
are strictly increasing. Hint: You can prove this by induction on 𝑛.
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2. (**Valuation). Alternatively, define the function 𝜇(1A) ≔ 𝜇(A) for measurable
sets A ∈ F. Argue that 𝜇 extends to a linear functional on the linear space
lin{1A : A ∈ F}, which is a subset of the real-valued functions on X. This is not
easy; see Section 5.5.

3. (Keys). At a party, each of 𝑛 guests gives their car keys to the host (don’t drink
and drive!). How many ways can the keys be returned so that no guest receives
the correct set of keys? Can you make an approximation to simplify the result?
Hint: Choose the sets A𝑖 carefully, and use inclusion–exclusion for the counting
measure.

Exercise 2.49 (Set algebras). In this problem, we explore another important set-theoretic
notion. Let X be a domain. A family A ⊆ P(X) of subsets of X is called a set algebra
on the domain X if it satisfies three properties:

1. Nothing and everything: The empty set ∅ and the domain X belong to A.
2. Complements: If a set A ∈ A, then its complement Ac := X \ A belongs to A.
3. Unions and intersections: If A, B ∈ A, then the union and intersection belong to A:

A ∪ B ∈ A and A ∩ B ∈ A.

A 𝜎 -algebra upgrades the demands on an algebra by requiring stability under countable
unions and intersections.

1. Some of the requirements in the definition of an algebra are redundant. Which
ones can be removed?

2. Show that an algebra is stable under finite unions and intersections.
3. Show that a set algebra is stable under set differences.
4. Show that the intersection of an arbitrary family of set algebras on X remains a

set algebra on X.
5. (Generated algebras). For a familyS ⊆ P(X), we can construct the smallest algebra

on X containing S:

algebra(S; X) := {A ⊆ X : A belongs to every algebra Aon X with S ⊆ A}.

Show that algebra(S; X) is a well-defined set algebra.
6. (*Set algebras are algebras). As in Exercise 2.47, we can pass from the set algebra

A to a collection of indicator functions: {1A : A ∈ A}. Equip this collection
with the multiplication operation 1A ⊙ 1B := 1A∩B and the addition operation
1A ⊕ 1B := 1A△B. With these definitions, show that the indicators of a set algebra
compose an algebra of functions over the field 𝔽2.

7. (*Algebras are not always 𝜎-algebras). Let X be an infinite set. Find an example of
an algebra on X that is not a 𝜎 -algebra. Hint: One easy example is called the
co-finite algebra.

Notes
You can find the material in this lecture in any book on probability theory or measure
theory. For example, see Dudley [Dud02] or Folland [Fol99] for a treatment as part
of a real analysis course. For a presentation with a more probabilistic flavor, see
Billingsley [Bil12], Pollard [Pol02], or Williams [Wil91].



3. Measures on the Real Line

Agenda:
1. Distributions on the real line
2. Borel sets
3. Borel measures
4. Lebesgue measure
5. Support
6. Specifying a measure

“It is not length of life, but depth of life.”

—Ralph Waldo Emerson

“This report, by its very length, defends itself against the risk of being read.”

—Winston Churchill

As we have learned, a measure describes a distribution of mass over a domain. It
reports the mass that is carried by subsets of the domain. We started with the example
of a measure on the integers, which assigns mass to every subset of integers. In more
general settings, however, measures may not be defined on all subsets of the domain.
Rather, measures are only defined on a family of measurable sets. We introduced the
concept of a 𝜎 -algebra to formalize the properties of a family of measurable sets. This
definition dovetails with the countable additivity property of a measure.

The reason for all of this abstraction will now become clear. In this lecture, we will
turn to the problem of defining a distribution of mass over the real line. The archetype
of a measure on the real line is the uniform measure, which assigns a “length” to
certain subsets of the real line. As it happens, we cannot give a consistent meaning to
the concept of “length” for all subsets of the real line. Therefore, we must identify a
suitable class of measurable subsets of the real line for which length is meaningful.

To begin our investigation, we will discuss some simple examples of distributions
of mass over the real line, and we will present schematics that allow us to visualize
these distributions. Afterward, we introduce the Borel class of measurable subsets
of the real line, along with the related notion of a Borel measure defined on these
sets. This discussion culminates in the construction of the Lebesgue measure, which
reports the length of every Borel-measurable set. Afterward, we present more examples
of measures on the real line and talk about how we can specify a measure using a
distribution function.

3.1 Distributions on the real line
Measure theory allows us to model distributions of mass over very general domains.
In particular, we would very much like to describe distributions of mass over the real
line. Let us give some examples of how these distributions arise naturally in geometry,
mechanics, and probability.

Example 3.1 (Uniform distribution on the real line). The uniform distribution on the real
line places mass on the entire line with a constant density of mass per unit length. We
can visualize this distribution using a schematic:
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In contrast, we used a spike to
illustrate mass that is concentrated at
a point.

The shading indicates that the distribution has a density, and the height of the shaded
region reflects the local density of mass at each point. Since the density of mass is
constant, the top boundary of the region is a constant function.

We will construct a measure 𝜆 on certain subsets of the real line that models the
uniform distribution with a particular normalization. This measure has the distinctive
property that

𝜆((𝑎, 𝑏)) = |𝑏 − 𝑎 | for 𝑎, 𝑏 ∈ ℝ with 𝑎 < 𝑏 .

In other words, the measure 𝜆 reports the length of each open interval. More generally,
the measure 𝜆 assigns a well-determined length to every one of the measurable sets.

Mathematically, the term uniform
refers to any distribution that is
invariant under an appropriate class
of transformations.

The characteristic property of the uniform distribution on the real line is that it
is invariant under translation. If we shift the distribution to the left or right, it does
not change. Correspondingly, the length of an interval does not change if we shift the
interval. ■

Example 3.2 (Mass). Consider a homogeneous metal rod with weights hanging from
the ends. We can model the rod itself as a uniform distribution of mass. (The scaling
reflects the density of the rod, which depends on whether it is made of iron, aluminum,
etc.) The weights place a positive amount of mass at specific points.

This distribution has both a continuous component (the shaded region) and a discrete
component (the spikes). A measure on the real line can handle both of these features
with grace.

We have marked the center of mass 𝑚 of the system. This is the point 𝑚 about
which the total torque is zero. Heuristically, the torque at the position 𝑥 is the length
(𝑥 −𝑚) of the lever arm times the “local mass” at the point 𝑥 . To define the center of
mass of a general distribution, we must make sense of these concepts. To answer this
challenge, we will develop a theory of integration for general measures. ■

Example 3.3 (Probability). A probabilistic experiment has a distribution of possible
outcomes, some more likely than others. Here is an anodyne example. When we install
a new light bulb, we do not know how long it will last before it burns out. There is a
strictly positive possibility that it will burn out immediately. If not, the lifetime can be
modeled by an exponential distribution. The overall distribution is neither discrete nor
continuous.
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We can illustrate this probability distribution using a spike to represent the atom at
time zero and a shaded region to represent the density for positive times. Our theory
of integration will allow us to evaluate the expected lifetime of the lightbulb. ■

3.2 Borel sets and Borel measures
In this section, we will initiate our construction of measures on the real line. The main
challenge is to identify a suitable class of measurable sets. Fortunately, we can make
short work of this task using the abstraction of a measurable space.

3.2.1 Intervals
At a minimum, our general definition of measures on the real line must support the
construction of a uniform measure. As we have discussed, the uniform distribution on
the real line is associated with the concept of length. We may exploit this connection
to identify a family of elementary sets that had better be measurable.

Suppose that we want to construct a measure that generalizes the length to a wide
class of sets of real numbers. Where should we start? If all is right in the world, the
measure should be defined for all open intervals. Indeed,

length(𝑎, 𝑏) = |𝑏 − 𝑎 | for 𝑎, 𝑏 ∈ ℝ with 𝑎 < 𝑏 .

In view of this trivial observation, we may regard the open intervals as a class of
elementary sets that we absolutely cannot do without. Unfortunately, the open intervals
compose a rather small collection of sets. There are many other sets that ought to have
a well-defined length. For example, we can obviously assign a length to a finite union
of disjoint open intervals.

So what other sets should we include? This seems like a tricky matter. But we can
dispose of it efficiently by using the machinery of measurable spaces. We simply form
the minimal 𝜎 -algebra that contains all of the open intervals. This is a natural setting
for defining a uniform measure on the real line.

Aside: Why focus on open intervals? We could just as well start with closed
intervals or half-open intervals. But the choice of open intervals lends itself better
to generalization, and it is consistent with definitions that we will encounter later.

3.2.2 The collection of Borel sets
We are now prepared to reintroduce a fundamental collection of subsets in the real
line. This class will serve as the family of measurable sets that we use to construct
measures on the real line.
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Definition 3.4 (Borel sets). We define B(ℝ) to be the smallest 𝜎 -algebra of subsets
of ℝ that contains all the open intervals. That is,

B(ℝ) := 𝜎 ({(𝑎, 𝑏) ⊂ ℝ : 𝑎, 𝑏 ∈ ℝ and 𝑎 < 𝑏}).

The sets in B(ℝ) are called Borel-measurable sets or Borel sets in the real line.

The definition of Borel sets is not very explicit, so it is worth taking a moment to
investigate what kinds of sets are Borel.

Exercise 3.5 (Borel sets). Verify that the following sets are Borel.

• The empty set: The set ∅ is Borel.
• The real line: The set ℝ is Borel.
• Set differences: If A and B are Borel, then A \ B and A△B are Borel.
• Singletons: For each 𝑎 ∈ ℝ, the set {𝑎} is a Borel set. Hint: Represent the

singleton as a countable intersection of decreasing open intervals.
• Countable sets: Show that every countable subset of ℝ is Borel. In particular, the

integers ℤ and the rationals ℚ are Borel sets.
• Intervals: For 𝑎, 𝑏 ∈ ℝ, the half-open interval (𝑎, 𝑏], the closed interval [𝑎, 𝑏],

and the semi-infinite intervals (−∞, 𝑎] and (𝑏,+∞) are all Borel.
• Open sets: If G is an open subset of ℝ, then G is Borel. Hint: Every open set in ℝ

is a countable union of open intervals.
• Closed sets: If F is a closed subset of ℝ, then F is Borel. Hint: The complement of

a closed set is an open set.

Exercise 3.6 (Borel sets: Other generators). Definition 3.4 states that the Borel sets in the
real line are generated by the collection of finite open intervals. Show that we can
define the Borel class as the 𝜎 -algebra generated by any one of the following families.

• Half-open intervals: (𝑎, 𝑏] for 𝑎, 𝑏 ∈ ℝ.
• Closed intervals: [𝑎, 𝑏] for 𝑎, 𝑏 ∈ ℝ.
• Semi-infinite open intervals: (−∞, 𝑎) for 𝑎 ∈ ℝ.
• Semi-infinite closed intervals: (−∞, 𝑎] for 𝑎 ∈ ℝ.

Hint: Exercise 3.5 already implies that the Borel sigma-algebra contains all of these
types of intervals. For the reverse direction, you must argue that you can represent
open intervals using countable combinations from each of these classes.

Warning: There are subsets of ℝ
that are not Borel. ■

In the course of human events, practically every set of real numbers that you encounter
will be a Borel set. Nevertheless, you should keep in mind that there are (many!)
subsets of the real line that are not Borel.

Aside: The Borel sets are in one-to-one correspondence with the real numbers ℝ.
The power set P(ℝ), which contains all subsets of real numbers, has strictly larger
cardinality than B(ℝ). Surprisingly, there is a concrete construction of a non-Borel
set, due to Lusin. There are easier, but less explicit, constructions of non-Borel sets
that require the axiom of choice; see Appendix B.

3.2.3 Extended Borel sets
It is often necessary to work with functions taking extended values, and this fact of life
requires us to define an appropriate class of Borel sets.
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Definition 3.7 (Extended Borel sets). We define B(ℝ) to be the smallest 𝜎 -algebra of
subsets of ℝ that contains all the open intervals: That is,

B(ℝ) := 𝜎 ({(𝑎, 𝑏) : 𝑎, 𝑏 ∈ ℝ};ℝ).

The sets in B(ℝ) are called Borel sets in the extended real line.

Exercise 3.8 (Extended Borel sets). Confirm that {−∞} and {+∞} and ℝ are extended
Borel sets. Deduce that every Borel set in B(ℝ) also belongs to B(ℝ).

3.2.4 Borel measures
Now that we have constructed a 𝜎 -algebra of measurable sets in ℝ, we may introduce
a class of measures on ℝ.

Definition 3.9 (Borel measure on the real line). Consider themeasurable space (ℝ,B(ℝ)).
A measure 𝜇 : B(ℝ) → [0,+∞] is called a Borel measure on ℝ.

Unless otherwise noted, we always equipℝwith the classB(ℝ) of Borel measurable
sets, and all measures on ℝ are understood to be Borel measures. We often omit the
qualification “Borel”, and we simply refer to measurable subsets of the real line and
measures on the real line.

Activity 3.10 (Borel measures). Borel measures on the real line compose a particular class
of abstract measures that has special importance. As such, Borel measures enjoy all of
the same properties as an abstract measure. This is a good time to review the general
definitions and results presented in Section 2.3. Think concretely about what these
statements mean for measures on the real line. Draw some pictures! ■

3.2.5 Discrete Borel measures
Let us present a few simple examples of discrete Borel measures that are similar in
spirit to examples we have considered before.

Example 3.11 (Dirac measure on the real line). For a point 𝑡 ∈ ℝ, we can define the Dirac
measure 𝛿𝑡 . For each Borel set B ∈ B(ℝ),

𝛿𝑡 (B) := 1B(𝑡 ) :=
{
1, 𝑡 ∈ B;
0, 𝑡 ∉ B.

By general considerations, 𝛿𝑡 is a measure on (ℝ,B(ℝ)). It has an atom at 𝑡 . ■

Example 3.12 (Measure supported on the integers). Let (𝑤𝑖 ∈ [0,+∞] : 𝑖 ∈ ℤ) be a
sequence of positive weights. We can define a Borel measure

𝜇(B) :=
∑︁

𝑖 ∈B∩ℤ
𝑤𝑖 for each Borel set B ⊆ ℝ.

This measure has an atom at each integer 𝑖 where𝑤𝑖 > 0. When restricted to subsets
of the integers, the Borel measure 𝜇 coincides with a measure on the integers, as
defined in Lecture 1. Nevertheless, 𝜇 is defined on the entire class of Borel subsets of
the real line, which is larger than the collection P(ℤ) of subsets of the integers. ■

Example 3.13 (Discrete measure). We can extend Example 3.12 by considering a sequence
(𝑤𝑖 ∈ [0,+∞] : 𝑖 ∈ I) of positive weights indexed by a countable set I. Define a Borel
measure

𝜇(B) :=
∑︁

𝑖 ∈B∩I
𝑤𝑖 for each Borel set B ⊆ ℝ. (3.1)



Lecture 3: Measures on the Real Line 43

This measure has an atom at each point 𝑖 ∈ I where𝑤𝑖 > 0. If a Borel measure can be
expressed in the form (3.1), we say that the measure is discrete. ■

3.3 The Lebesgue measure
In the late 19th century, mathematicians began a serious attack on the following
question: “How do we define the length of a subset of the real line?” Our geometric
intuitions lead to some plausible definitions, but it turns out that these definitions are
fraught with peril. The field of measure theory was initially developed to resolve the
confusion about the meaning of the word “length.” The critical steps of this project
were completed in Henri Lebesgue’s 1902 doctoral dissertation.

We have already laid the groundwork for defining the length on Borel sets. In this
section, we will complete the construction.

3.3.1 The length of elementary sets
In this section, we outline some of the properties that the “length” should have. This
discussion is not rigorous because length is never defined. The formal construction of a
measure that models the length appears in the next subsection.

So, how might we assign a length to a subset of the real line? Let us start small.
In this construction, it is more
convenient to work with half-open
intervals rather than with open
intervals. Half-open intervals link
together more neatly, and the
complement of a half-open interval is
a half-open interval. As we saw in
Exercise 3.6, the half-open intervals
also generate the Borel sets.

Surely, the half-open interval (𝑎, 𝑏] must have length |𝑏 − 𝑎 | for all real numbers
𝑎 < 𝑏 . What about more complicated sets? Consider a finite union of disjoint half-open
intervals; for example,

A = (𝑎1, 𝑏1] ∪ (𝑎2, 𝑏2] ∪ · · · ∪ (𝑎𝑛 , 𝑏𝑛] with 𝑎𝑖 < 𝑏𝑖 ≤ 𝑎𝑖+1 for each 𝑖 .

We want the length to be finitely additive, so the length of this disjoint union should
equal the sum of the lengths of its components:

length(A) = ∑𝑛
𝑖=1 |𝑏𝑖 − 𝑎𝑖 |. (3.2)

This formula requires some thought because we have to affirm that it gives the same
result, no matter how we break up the set into subintervals.

If the length is to become a measure, then it must also be countably additive. Thus,
it also seems reasonable that we should be able to assign a length to a countable, disjoint
union of intervals, presumably by adding up the lengths of the intervals:

A = ¤⋃∞
𝑖=1 (𝑎𝑖 , 𝑏𝑖 ] implies length(A) = ∑∞

𝑖=1 |𝑏𝑖 − 𝑎𝑖 |. (3.3)

This expression takes a partial step toward countable additivity. As before, we need
to argue that the formula (3.3) gives a well-defined result. This is one of the core
technical challenges in constructing a measure that agrees with the length.

Exercise 3.14 (*Length: Finite additivity). Show that (3.2) does not depend on how we
decompose the set A as a finite union of disjoint half-open intervals.

3.3.2 Lebesgue measure
What about sets that are more complicated still? We may not be able to break up a
Borel set B ∈ B(ℝ) into a countable number of half-open intervals. Instead, we will
cover the set B by a countable union of (disjoint) half-open intervals. This union has
an unambiguous length, and it serves as an upper bound for the length of the set B.
Among all such covers, we search for the shortest one.

This approach results in the definition of the Lebesgue measure, which assigns a
well-determined length to each Borel set.
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Definition 3.15 (Lebesgue measure). The Lebesgue measure is the Borel measure
𝜆 : B(ℝ) → [0,+∞] given by the rule

𝜆(B) := inf
{ ∑∞

𝑖=1 |𝑏𝑖 − 𝑎𝑖 | : B ⊆ ¤⋃∞
𝑖=1 (𝑎𝑖 , 𝑏𝑖 ]

}
. (3.4)

The function that appears in (3.4) is called the exterior length of the Borel set. Let us
emphasize that the definition is sensible, even without proving that (3.3) is valid. The
construction is akin to shrink-wrapping a package:

You can easily confirm that the exterior length coincides with the elementary length
on a finite union of half-open intervals.

It is not evident that Definition 3.15 yields a reasonable construction of the length
for all Borel sets. Nor is it clear that the definition results in a Borel measure. Let us
state a major theorem that speaks to these concerns.

Theorem 3.16 (Lebesgue measure). The Lebesgue measure 𝜆 : B(ℝ) → [0,+∞],
defined in (3.4), has the following properties.

1. Measure: The Lebesgue measure 𝜆 is a Borel measure. In particular, it is
countably additive.

2. Intervals: Each interval has Lebesgue measure 𝜆((𝑎, 𝑏]) = |𝑏 − 𝑎 | for all real
numbers 𝑎 < 𝑏 . In particular, 𝜆((0, 1]) = 1.

3. Translation invariance: The Lebesgue measure is invariant under translation:
𝜆(B + 𝑡 ) = 𝜆(B) for all Borel B and all 𝑡 ∈ ℝ.

4. Uniqueness: The Lebesgue measure is the only Borel measure that satisfies
requirements (1)–(3).

Proof. The proof of Theorem 3.16 appears in Appendix A.3. You are invited to check
the length property and the translation invariance yourself. The remaining assertions
(countable additivity, uniqueness) are very difficult. ■

In summary, the Lebesgue measure 𝜆 reports the length of every Borel set. The
distinctive property of the Lebesgue measure is the translation invariance. This result
ensures that the Lebesgue measure models a uniform distribution of mass on the real
line. The normalization just establishes a particular scaling: the measure places one
unit of mass per unit of length.

Exercise 3.17 (Lebesgue measure: Singletons). For a point 𝑥 ∈ ℝ, use the definition of
the Lebesgue measure to compute the Lebesgue measure 𝜆({𝑥}) of the singleton set
containing 𝑥 .

Exercise 3.18 (Lebesgue almost everywhere). Let 𝜆 be the Lebesgue measure. Use the
definition to confirm that the empty set is negligible for 𝜆. Deduce that ℝ is an almost
everywhere set for 𝜆. Find two more examples of 𝜆-negligible sets and two more
examples of 𝜆-almost everywhere sets. Be creative!
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Exercise 3.19 (Lebesgue measure: 𝜎-finiteness). Explain why the Lebesgue measure 𝜆 is
𝜎 -finite.

Aside: At this stage, we can obtain a more concrete understanding of what Borel
sets look like. For each 𝜀 > 0, every Borel set with finite Lebesgue measure can be
expressed as a finite union of disjoint half-open intervals, united with a Borel set
that has Lebesgue measure less than 𝜀. Proving this fact is a challenging problem
that requires the machinery from Appendix A. See Problem A.19.

3.3.3 Looking ahead: Measures with density
A natural way to describe a distribution of mass on the real line is to start with the
local density, the mass per unit length.

Let ℎ : ℝ → ℝ+ be a positive function (say, bounded and continuous) that models
the local density. Formally, we can define a measure 𝜇 on each Borel set A via the
expression

“ 𝜇(A) :=
∫
A
ℎ (𝑥) d𝑥. ”

That is, the measure 𝜇 adds up the local density ℎ on the Borel set A. When A is a
finite union of intervals, we can simply use a Riemann integral here. Ahead of us,
we have a big job of understanding what the integral means for all Borel sets A. The
Lebesgue measure will play a central role in this construction.

Aside: It is not the case that all Borel measures are continuous (with a local density),
or discrete (point masses), or positive linear combinations thereof. There also exist
singular measures, such as the Cantor distribution, that have neither a density nor a
discrete distribution. Although these examples may seem exotic, singular measures
arise naturally in the study of continuous stochastic processes, such as Brownian
motion. Singular measures will not play a role in this course.

3.3.4 *Unmeasurable sets
The perspicacious reader will realize that the definition (3.4) of the exterior length
could be applied to any subset of the real line. Why have we restricted our attention to
the Borel sets?

Suppose that we use (3.4) to define the exterior length 𝜆∗ : P(ℝ) → [0,+∞] for
an arbitrary subset of the real line. Unfortunately, 𝜆∗ does not behave itself. Indeed,
there are (many!) disjoint pairs of sets for which the exterior length of the union is
strictly smaller than the sum of the exterior lengths of the sets:

𝜆∗(A ¤∪B) < 𝜆∗(A) + 𝜆∗(B) for certain disjoint subsets A,B of ℝ.
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This fact violates all our intuitions about the length: the parts are greater than the
whole. For Borel sets, however, the exterior length behaves in accordance with our
expectations about length.

We have averred that some subsets of the real line cannot be assigned a length in a
satisfactory way. This is the fundamental reason that we have to work with a smaller
collection of subsets, such as the Borel sets. For the assiduous student, Appendix B
contains a more in-depth discussion about sets that cannot be assigned a length.

3.4 Support
A Borel measure may only place its mass on a part of the real line. It is helpful to have
terminology and a rigorous definition to describe the locations where there is mass.

Definition 3.20 (Borel measure: Support). Let 𝜇 be a Borel measure on the real line.
The support of the measure 𝜇 is defined as the set of points where every open
neighborhood has strictly positive measure:

supp(𝜇) := {𝑥 ∈ ℝ : 𝜇(𝑥 − 𝜀, 𝑥 + 𝜀) > 0 for all 𝜀 > 0}.

The support is always a closed subset of ℝ, hence a Borel set.

Example 3.21 (Borel measure: Support). For the Lebesgue measure, supp(𝜆) = ℝ. Indeed,
every open interval satisfies 𝜆(𝑥 − 𝜀, 𝑥 + 𝜀) = 2𝜀 > 0, so every point 𝑥 ∈ ℝ belongs to
the support.

For the Dirac measure at zero, supp(𝛿0) = {0}. Indeed, every open interval about
zero satisfies 𝛿0(−𝜀,+𝜀) = 1. On the other hand, for each point 𝑎 ≠ 0, we can find an
open interval about 𝑎 with zero measure: 𝛿0(𝑎 − |𝑎 |/2, 𝑎 + |𝑎 |/2) = 0. ■

3.5 Specifying a Borel measure
Let us pose the same type of question that we asked at the end of each of the previous
two lectures: How can we specify a Borel measure on the real line?

In Lecture 1, we gave some specific answers that were tailored to the elementary
case of a measure on the integers. In Lecture 2, we outlined an abstract approach
that extends a partial definition from a class of elementary sets to the full class of
measurable sets. Here, we will unite these two perspectives to arrive at a powerful
approach for representing measures on the real line.

Definition 3.22 (Distribution function). Let 𝜇 be a finite Borel measure on the real
line. The (cumulative) distribution function (abbreviated cdf or df) of the measure is
defined as Note that the interval (−∞, 𝑎 ]

contains its right endpoint. This
convention ensures that the
distribution function is
right-continuous; see
Proposition 3.24.

𝐹𝜇 (𝑎) := 𝜇((−∞, 𝑎]) for 𝑎 ∈ ℝ.

Exercise 3.23 (Some distribution functions). What are the distribution functions of some
basic Borel measures?

1. Let 𝜇 = 𝛿𝑡 be the Dirac measure at the point 𝑡 ∈ ℝ. Compute the distribution
function.

2. Define 𝜇(B) := 𝜆(B ∩ (0, 1]) on the Borel sets B ∈ B(ℝ). This is the uniform
measure restricted to the interval (0, 1]. Compute its distribution function.
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At a basic level, we can appreciate how the distribution function might serve to
represent a Borel measure. Indeed, Exercise 3.6 shows that Borel sets are generated
by the class of semi-infinite intervals (−∞, 𝑎] for 𝑎 ∈ ℝ. As a consequence, it is easy
to imagine that knowledge of the measure on these elementary sets is necessary and
sufficient to determine its values on all of the Borel sets. This intuition is correct, but
the formal deduction is quite intricate. See Appendix A.

Distribution functions play an important role in probability theory. Anticipating
these developments, let us outline some useful results, which state that a distribution
function characterizes a finite Borel measure.

Proposition 3.24 (Distribution function: Properties). Let 𝐹 : ℝ → ℝ+ be the distribution
function of a finite Borel measure 𝜇 on the real line. Set𝑀 := 𝜇(ℝ) < +∞. Then 𝐹
enjoys three properties:

1. Increasing: If 𝑎 ≤ 𝑏 , then 𝐹 (𝑎) ≤ 𝐹 (𝑏).
2. Asymptotic limits: We have lim𝑎↓−∞ 𝐹 (𝑎) = 0 and lim𝑎↑+∞ 𝐹 (𝑎) = 𝑀 .
3. Right continuous: For each 𝑥 ∈ ℝ, we have lim𝑎↓𝑥 𝐹 (𝑎) = 𝐹 (𝑥).

Problem 3.25 (Distribution function). Prove Proposition 3.24.

Remarkably, the converse is also true. Any function with these distinguished
properties is the distribution function of a unique finite measure.

Theorem 3.26 (Distribution function = measure). Let 𝐹 : ℝ → ℝ+ be a function that
satisfies the properties listed in Proposition 3.24(1)–(3). Then there is a unique
finite measure 𝜇 for which

𝜇((𝑎, 𝑏]) = 𝐹 (𝑏) − 𝐹 (𝑎) for all 𝑎, 𝑏 ∈ ℝ with 𝑎 ≤ 𝑏 .

Proof. See Problem A.17 in Appendix A. ■

Quiz
Respond to the following questions with one of the alternatives: Always True (T) /
Always False (F).

1. The set {𝜋} is a Borel set.
2. Every subset of the real line is a Borel set.
3. If A,B are Borel sets, then A ∩ B is a Borel set.
4. The Lebesgue measure of (1, 2) ∪ [3, 4] is two.
5. A Borel measure 𝜇 is finitely additive:

A = ¤⋃𝑛
𝑖=1 A𝑖 implies 𝜇(A) = ∑𝑛

𝑖=1 𝜇(A𝑖 ) for Borel sets A𝑖 .

6. If the measure of a set is zero, then the set is empty.

Problems
Exercise 3.27 (Lebesgue measure: Rationals). Explain why the set ℚ of rational numbers is
countable. Show that ℚ is a Borel set. Confirm that the Lebesgue measure 𝜆(ℚ) = 0.

Problem 3.28 (*Lebesgue measure: Cantor set). Recall the construction of Cantor’s ternary
set. Begin with the unit interval. Remove the middle third. Remove the middle third of
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each of the two remaining subintervals. Repeat. This yields a sequence

T0 := [0, 1];
T1 := [0, 1/3] ∪ [2/3, 1];
T2 := [0, 1/9] ∪ [2/9 ∪ 1/3] ∪ [2/3, 7/9] ∪ [8/9, 1]; . . .

Cantor’s ternary set T is obtained as the (decreasing) set limit of this process. Equiva-
lently, T is the set of numbers in the interval [0, 1] whose base-three expansion does
not contain the numeral 1.

Prove that Cantor’s ternary set T is a Borel set. Explain why T is uncountable.
Confirm that the Lebesgue measure 𝜆(T) = 0.

Notes
You can find the material in this lecture in any book on probability theory or measure
theory. For example, see Billingsley [Bil12] or Folland [Fol99]. Probability texts focus
their attention on Borel sets and Borel measures, in part because probability involves
many different types of distributions. Real analysis and measure theory books place
more emphasis on Lebesgue sets, and the Lebesgue measure is often the main object
of study.

For an explicit example of non-Borel set, see the book [Kec95] by Caltech logician,
Alexander Kechris.
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4. Integration on the Real Line

Agenda:
1. Sums weighted by mass
2. Measurable functions
3. Integrating positive functions
4. Integrating signed functions
5. Examples
6. Riemann vs. Lebesgue

“There is nothing new under the sun, but there are new suns.”
—Octavia Butler

We have now completed our introduction to the concept of a measure, which
models a distribution of mass over a domain. Our next step is to develop a general
theory of integration, which allows us to add up the values of a function, weighted by
the local mass. We have seen hints that a flexible method for integration is valuable for
problems in geometry, mechanics, and probability.

This lecture begins with a geometric description of our new approach to integration.
Once we perceive the ideas, we can introduce the class of functions that we are allowed
to integrate. Afterward, we give a formal definition of the integral that comports with
our geometric picture. We discuss some of the basic properties of the new integral,
and we compare it with the familiar Riemann integral.

We will develop the basic concepts of integration in the concrete setting of Borel
measures on the real line. The next lecture will recapitulate these ideas in an abstract
setting. The abstract definitions are really no different, but the simpler presentation
here may help to build intuition.

4.1 Sums weighted by mass
To reiterate: an integral sums the values of a function, weighted by the local mass,
over a domain. Applications include

• Geometry: For a uniform distribution of mass on the real line (modeled by the
Lebesgue measure), the integral of a function computes the signed area enclosed
between a function and the horizontal axis.

• Mechanics: For a distribution of mass in a one-dimensional mechanical system,
we can define an integral that returns the center of mass of the distribution.

• Probability: For a distribution of probability, the integral can be used to find the
expected value of the distribution.

In this lecture, our goal is to develop a general method for integrating a real-valued
function against a distribution of mass on the real line, given by a Borel measure. In
particular, the Lebesgue measure 𝜆 describes a uniform distribution of mass over the
real line, where the mass of an interval equals its length. In this situation, the integral
computes the signed area between the function and the horizontal axis. To fix ideas,
you may wish to visualize this special case for the remainder of this lecture.

You can see that there is a potential mismatch in the definitions of functions and
measures. Indeed, functions take values at points, whereas the Lebesgue measure is
defined on sets. It may also be puzzling that the Lebesgue measure of a singleton set is
zero, which suggests that the uniform distribution does not put any mass anywhere.
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Figure 4.1 (The Riemann integral). The region under the curve is sliced into
narrow vertical bands.

To resolve this conflict, we first review the geometric construction of the Riemann
integral. This treatment reveals some shortcomings that we want to address. Then
we outline another approach to integration, called the Lebesgue integral, that will lead
to a more satisfactory theory. Lebesgue integrals provide the foundation for much of
modern analysis and for probability theory.

4.1.1 Riemann integrals
In the simplest case, the integral computes the area enclosed between a positive function
and the horizontal axis. You have learned to denote this quantity using the symbols We will color Riemann integrals to

emphasize that they are defined
using Riemann sums. This visual cue
helps distinguish Riemann integrals
from Lebesgue integrals.

∫ 𝑏

𝑎

𝑓 (𝑥) d𝑥 where 𝑓 : [𝑎, 𝑏] → ℝ+.

To define this object, we approximate the region under the curve by vertical rectangles
that do not overlap. The rough area under the curve is obtained by adding up the areas
of the rectangles (given by the length of the base times the height). See Figure 4.1.
By making the rectangles narrower, we can improve the quality of the approximation.
This geometric approach to integration dates back to the ancient Greeks (Eudoxus,
Archimedes) and the ancient Chinese (Liu Hui, Zu Chongzhi).

Bernhard Riemann, in the 19th century, was the first to give a rigorous treatment
of the integral. He formalized the notion of subdividing the area into rectangles of
increasingly small width. If the total area of the rectangles tends to a well-defined
limit as the width tends to zero, then the integral is declared to equal this limit. Most
real analysis books present a variant of Riemann’s approach, called a Darboux integral.
See Appendix C for an overview of this construction.

The Riemann integral weights function values by a uniform distribution of mass
over the real line. We can extend the Riemann integral to more general distributions
of mass. The heuristic approach is to multiply the height of each of the vertical panels
by the mass carried on its base, rather than the length of the base. This construction
can be made rigorous, and it leads to an object called the Riemann–Stieltjes integral.
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Figure 4.2 (The Lebesgue integral). The region under the curve is sliced into
narrow horizontal bands.

These intuitive ideas work well for some types of functions, such as continuous
functions on a compact interval. Nevertheless, we can easily escape from the class
of Riemann-integrable functions. For example, neither unbounded functions nor
functions on unbounded intervals are considered to be Riemann integrable, although
we can sometimes achieve satisfactory results for these examples by taking limits
(called improper Riemann integrals).

Unfortunately, when we start taking limits of Riemann integrals, we quickly run
into problems. There is no satisfactory theory that describes when we can interchange
a limit with a Riemann integral. This leads to vexing outcomes. For instance, we can
construct a pointwise-convergent sequence of Riemann-integrable functions whose
limit is not Riemann integrable. This difficulty remains even when we restrict our
attention to nice functions (e.g., bounded, continuous) or to gentle kinds of convergence
(e.g, monotone increase). Since limits are among the basic operations in analysis (and
probability!), this shortcoming of the Riemann integral is serious.

The construction of the Riemann integral also depends on being able to partition the
domain of the function into increasingly tiny, nonoverlapping pieces. As a consequence,
we cannot extend the Riemann integral naturally to functions defined on more general
domains. As we will see (Lecture 7), this issue makes Riemann integrals unsuitable for
serious probability.

4.1.2 Lebesgue integrals
Let us return to our motivating problem. How can we compute the area between a
positive function and the horizontal axis?

Lebesgue invented the concept of a
measure, constructed the Lebesgue
measure, and designed the new
integral in his 1902 doctoral thesis,
Intégrale, longeur, aire.

The simple, but astonishing, idea of Henri Lebesgue was to cut up the area under
the function horizontally instead of vertically. The content of each horizontal rectangle
is given by its height times the length of its base. By taking the limit as the height of
each rectangle tends to zero, we can compute the area under the curve. See Figure 4.2
for an illustration of this idea.

We can also realize this geometric idea using functions. Suppose that 𝑓 : ℝ → ℝ+
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Figure 4.3 (Decreasing rearrangement). For a positive-valued function 𝑓 :
ℝ → ℝ+, the decreasing rearrangement ℎ : ℝ+ → ℝ+, defined in (4.1),
returns the total length of the super-level set {𝑥 ∈ ℝ : 𝑓 (𝑥) > 𝑡 } for each
𝑡 ≥ 0. The rearrangement is positive and decreasing. The area under the
function 𝑓 is the same as the area under the rearrangement ℎ.

is a “nice” positive-valued function that we wish to integrate. Then we can construct
another function The function ℎ is sometimes called

the decreasing rearrangement of 𝑓 .
ℎ (𝑡 ) := 𝜆{𝑥 ∈ ℝ : 𝑓 (𝑥) > 𝑡 } for 𝑡 ≥ 0. (4.1)

Evidently, ℎ is positive and decreasing (why?). The strong inequality in (4.1) could
also be replaced by a weak inequality.
The strong inequality simplifies a few
technical arguments.

You can interpret the value ℎ (𝑡 ) as
the total length of the (broken) horizontal line, positioned at the location 𝑡 along the
vertical axis and lying beneath the function 𝑓 . See Figure 4.3 for a schematic.

Here is a second way to visualize the function ℎ. Suppose that we turn the
graph of the function 𝑓 clockwise by 90◦. At each point 𝑡 on the horizontal axis, we
consolidate the (broken) vertical line above 𝑡 inside the rotated curve by sliding the
pieces downward to form an interval sitting on the horizontal axis. This construction
indicates that the area under ℎ equals the area under the function 𝑓 .

We want to construct an integral that returns the area under the function 𝑓 induced
by a subdivision into horizontal panels. Therefore, we anticipate that the right approach
is to define this integral via the relation You should interpret the right-hand

side of the definition as an improper
Riemann integral.∫

ℝ

𝑓 (𝑥) 𝜆(d𝑥) :=
∫ ∞

0
𝜆{𝑥 ∈ ℝ : 𝑓 (𝑥) > 𝑡 } d𝑡 =

∫ ∞

0
ℎ (𝑡 ) d𝑡 . (4.2)

The notation for the integral is intended to suggest that each function value 𝑓 (𝑥)
is weighted by the local mass 𝜆(d𝑥) carried by an “infinitesimal” set at the point 𝑥 .
As we will discover, the formulation (4.2) leads to a well-defined integral with many
remarkable properties.

The definition (4.2) focuses our attention on the super-level sets of the integrand:
{𝑥 ∈ ℝ : 𝑓 (𝑥) > 𝑡 }. The Lebesgue measure 𝜆 simply computes the total length of
each super-level set. It should now be obvious that we can weight function values by a
different distribution of mass by replacing 𝜆 with another Borel measure. Furthermore,
we perceive that there is an opportunity to construct the integral of a real-valued
function defined on any domain that carries a measure (see Lecture 5).
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4.2 Borel measurable functions
Before we can define the integral properly, we need to take a step back again and
ask what kinds of functions we may try to integrate. Observe that the preliminary
definition (4.2) of the integral does not even make sense unless we can apply the
measure 𝜆 to the super-level sets. In other words, each super-level set of the integrand
must be a Borel set. Equivalently, Now is a good time to review the

definition of a preimage and its
properties (Exercise 1.26).𝑓 −1(𝑡 ,+∞) := {𝑥 ∈ ℝ : 𝑓 (𝑥) > 𝑡 } is Borel for each 𝑡 ∈ ℝ.

To attend to this the matter, we must introduce the concept of a (Borel) measurable
function.

4.2.1 Measurability
If we want to compute the measure of the super-level sets of the integrand, these sets
must be measurable. This important insight leads us to our next definition.

Definition 4.1 (Measurable function).
Warning: Measurability of a
function does not involve a
measure! ■

We say that a function 𝑓 : ℝ → ℝ is measurable
if the preimage of each semi-infinite interval (𝑡 ,+∞) is a Borel set. That is,

𝑓 −1(𝑡 ,+∞) := {𝑥 ∈ ℝ : 𝑓 (𝑥) > 𝑡 } ∈ B(ℝ) for all 𝑡 ∈ ℝ. (4.3)

For emphasis, we may refer to 𝑓 as a Borel-measurable function.

The condition (4.3) on super-level sets implies that a measurable function satisfies
an (apparently) much stronger property.

Proposition 4.2 (Borel measurability). A function 𝑓 : ℝ → ℝ is Borel measurable if and
only if

For comparison, recall that a function
is continuous if the preimage of every
open set is an open set.

𝑓 −1(B) := {𝑥 ∈ ℝ : 𝑓 (𝑥) ∈ B} ∈ B(ℝ) for all Borel B ∈ B(ℝ). (4.4)

That is, the preimage of every Borel set is a Borel set.

*Proof. This argument exhibits a fundamental technique for working with Borel sets.
It hinges on the fact that B(ℝ) is the smallest 𝜎 -algebra on ℝ that contains all
semi-infinite intervals.

It is clear that the condition (4.4) for Borel sets implies the condition (4.3) for
super-level sets because the semi-infinite interval (𝑡 ,+∞) is a Borel set for each 𝑡 ∈ ℝ.
See Exercise 3.5.

To prove the converse, suppose that the function 𝑓 : ℝ → ℝ satisfies the condi-
tion (4.3) on super-level sets. Introduce the collection C of sets whose preimage under
𝑓 is a Borel set:

C := {C ⊆ ℝ : 𝑓 −1(C) ∈ B(ℝ)}.
We claim that C is a 𝜎 -algebra. Given this claim, we may complete the argument. The
condition (4.3) ensures that C contains every semi-infinite interval (𝑡 ,+∞). According
to Exercise 3.6, the Borel class B(ℝ) is the smallest 𝜎 -algebra that contains the
semi-infinite intervals. Therefore, B(ℝ) ⊆ C. In particular, 𝑓 −1(B) is a Borel set for
every Borel set B.

To establish the claim, we first prove that the family C is stable under complements.
That is, if C ∈ C, then Cc ∈ C. Recall that C ∈ Cmeans that 𝑓 −1(C) ∈ B(ℝ). Since
the Borel sets are stable under complements,

𝑓 −1(Cc) = ( 𝑓 −1(C))c ∈ B(ℝ).
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We have used the fact (Exercise 1.26) that the preimage commutes with the complement.
Therefore, Cc ∈ C. A very similar argument establishes that C is stable under countable
unions. These two properties are enough to conclude that C is a 𝜎 -algebra. ■

Using Proposition 4.2, we can easily confirm that points where a measurable function
takes a specific value compose a measurable set. This is an important application.

Exercise 4.3 (Measurable function: Zero set). Let 𝑓 : ℝ → ℝ be a measurable function.
Then {𝑥 ∈ ℝ : 𝑓 (𝑥) = 0} and {𝑥 ∈ ℝ : 𝑓 (𝑥) ≠ 0} are both measurable sets.

The argument behind Proposition 4.2 can be used to establish many related
principles. For example, we can check the measurability of a function by examining
the preimages of finite half-open intervals.

Exercise 4.4 (*Measurability: Intervals). Let 𝑓 : ℝ → ℝ be a function. Suppose that
the preimage 𝑓 −1(𝑎, 𝑏] is measurable for all real numbers 𝑎 < 𝑏 . Deduce that 𝑓 is
measurable.

4.2.2 Extended values
Functions with extended real values can easily arise from limiting processes, so we
need an appropriate definition for measurability. (Sorry!)

Definition 4.5 (Measurable function: Extended values). We say that a function 𝑓 : ℝ →
ℝ with extended real values is measurable when

𝑓 −1(𝑡 ,+∞] := {𝑥 ∈ ℝ : 𝑓 (𝑥) > 𝑡 } ∈ B(ℝ) for all 𝑡 ∈ ℝ.

For emphasis, we may also say that 𝑓 is Borel measurable.

See Definition 3.7 of the extended
Borel sets.

Equivalently, 𝑓 : ℝ → ℝ is measurable when each extended Borel set B ∈ B(ℝ)
has a measurable preimage: 𝑓 −1(B) ∈ B(ℝ). There is no conceptual difference from
the case of real-valued functions.

We have chosen to allow extended-valued functions because they lead to a simpler
presentation of integration theory with fewer special cases and qualifications. It does
take some practice to get used to working with functions that take infinite values.
Keep in mind the conventions that 0/0 = 0 and 0 · (±∞) = 0. We never allow division
by ±∞. We must also avoid competing infinities: expressions of the form ∞ −∞ are
undefined.

There is a broad principle that we can deal with infinite numbers or signed numbers,
but not both at the same time. Thus, we will allow positive functions to take the
value +∞, but we will require signed functions to remain finite.

4.2.3 Examples
Our prospective definition (4.2) of the integral leads inexorably to the concept of a
measurable function. Let us give some important examples of measurable functions.
These results are a straightforward consequence of the definition.

Example 4.6 (Measurability: Indicators). Let B ∈ B(ℝ) be a Borel set. Then the indicator
1B : ℝ → ℝ is a measurable function. Conversely, if B ⊆ ℝ is not Borel, then the
indicator 1B is not measurable.

We just need to examine the semi-infinite intervals (𝑡 ,+∞) for each 𝑡 ∈ ℝ. The
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preimage is one of three alternatives:

(1B)−1(𝑡 ,+∞) =

ℝ, 𝑡 < 0;
B, 𝑡 ∈ [0, 1);
∅, 𝑡 ≥ 1.

Obviously, ∅ and ℝ are Borel sets. We see that the indicator 1B is measurable if and
only if the set B is Borel. ■

Exercise 4.7 (Measurability: Constant functions). Show that each constant function 𝑓 :
ℝ → ℝ is measurable. Recall that a constant function satisfies 𝑓 (𝑥) = 𝑐 for all 𝑥 ∈ ℝ,
where 𝑐 ∈ ℝ.

The next three examples show that many familiar classes of real-valued functions
are measurable.

Example 4.8 (Measurability: Continuous functions). Let 𝑓 : ℝ → ℝ be a continuous
function. Then 𝑓 is Borel measurable.

Indeed, for each 𝑡 ∈ ℝ, the preimage 𝑓 −1(𝑡 ,+∞) of the open interval (𝑡 ,+∞) is
an open set because 𝑓 is continuous. Finally, recall that every open set is a Borel set. ■

Exercise 4.9 (Measurability: Monotone functions). Let 𝑓 : ℝ → ℝ be a monotone function.
Prove that 𝑓 is Borel measurable.

Exercise 4.10 (Measurability: Convex functions). Let 𝑓 : ℝ → ℝ be a convex function on
the real line (Definition 9.15). Prove that 𝑓 is Borel measurable.

4.2.4 Stability properties
Next, we will argue that most set-theoretic, algebraic, and analytic combinations of
measurable functions remain measurable. This is basically all you need to know to work
with measurable functions. The proofs are not of great importance for this course.

Example 4.11 (Measurability: Composition). Let 𝑓 , 𝑔 : ℝ → ℝ be measurable functions.
Then the composition 𝑓 ◦ 𝑔 is measurable. See Problem 5.36 for an extension.

To prove this claim, recall that ( 𝑓 ◦ 𝑔 ) (𝑥) := 𝑓 (𝑔 (𝑥)) for 𝑥 ∈ ℝ. By Exercise 1.26,
the preimage of a set under composition satisfies

( 𝑓 ◦ 𝑔 )−1(A) = 𝑔 −1( 𝑓 −1(A)) for each A ⊆ ℝ.

If A is a Borel set, the preimage 𝑓 −1(A) under the measurable function 𝑓 is a Borel set,
and consequently the preimage 𝑔 −1( 𝑓 −1(A)) under the measurable function 𝑔 is also
Borel. ■

Example 4.12 (Measurability: Positive and negative part). Let 𝑓 : ℝ → ℝ be a function that
may take extended real values. Define the positive and negative parts:

Warning: Both the positive part
𝑓+ and the negative part 𝑓− are
positive-valued functions! ■

𝑓+(𝑥) := max{+𝑓 (𝑥), 0};
𝑓− (𝑥) := max{−𝑓 (𝑥), 0} for 𝑥 ∈ ℝ.

As an exercise, confirm that 𝑓 = 𝑓+ − 𝑓− and that | 𝑓 | = 𝑓+ + 𝑓−.
We assert that both the positive and negative parts of a measurable function are

measurable. For example, let us consider the positive part. Observe that

( 𝑓+)−1(𝑡 ,+∞] =
{
𝑓 −1(𝑡 ,+∞], 𝑡 ≥ 0;
ℝ, 𝑡 < 0.

Since 𝑓 is measurable, so is the positive part 𝑓+. ■
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Using the ideas from the last example, you can establish some related results.

Exercise 4.13 (Measurability: Abs, min, max). Let 𝑓 , 𝑔 : ℝ → ℝ be measurable functions.
Confirm that the following functions are measurable.

• Absolute value: By direct argument, prove that | 𝑓 | is measurable.
• Minimum: The pointwise minimum 𝑓 ∧ 𝑔 := min{𝑓 , 𝑔 } is measurable.
• Maximum: The pointwise maximum 𝑓 ∨ 𝑔 := max{𝑓 , 𝑔 } is measurable.

Next, we show that sums of measurable functions are measurable.

Example 4.14 (Measurability: Positive sums).
Warning: We require positive
values to avoid competing
infinities (∞ − ∞) . ■

Let 𝑓 , 𝑔 : ℝ → ℝ+ be positive, measurable
functions that may take the value +∞. Then 𝑓 + 𝑔 is measurable.

To check this statement, it suffices to show that the super-level set {𝑥 ∈ ℝ :
𝑓 (𝑥) + 𝑔 (𝑥) > 𝑡 } is measurable for each 𝑡 ∈ ℝ. Fix the level 𝑡 . Observe that

It is crucial that 𝑞 is a rational
number!

𝑓 (𝑥) + 𝑔 (𝑥) > 𝑡 if and only if 𝑓 (𝑥) > 𝑞 > 𝑡 − 𝑔 (𝑥) for some 𝑞 ∈ ℚ.

Using this observation, we can write the super-level set as a countable union over the
rationals: We can start to see why it is so

important that Borel sets are stable
over countable unions.{𝑥 ∈ ℝ : 𝑓 (𝑥) + 𝑔 (𝑥) > 𝑡 } =

⋃
𝑞∈ℚ

[
𝑓 −1(𝑞,+∞] ∩ 𝑔 −1(𝑡 − 𝑞,+∞]

]
.

By measurability of 𝑓 , 𝑔 , each element of the union is the intersection of two Borel
sets, so is a Borel set. Finally, a countable union of Borel sets is Borel. ■

Similar arguments allow us to show that algebraic combinations of signed functions
remain measurable.

Exercise 4.15 (Measurability: Algebraic combinations).
Warning: We require finite
values to avoid competing
infinities (∞ − ∞) . ■

Let 𝑓 , 𝑔 : ℝ → ℝ be finite-valued
measurable functions. Prove that the following functions are measurable.

• Sums: The sum 𝑓 + 𝑔 is measurable.
• Products: The product 𝑓 𝑔 is measurable.
• Linearity: Deduce that the set of finite-valued Borel measurable functions is a

linear space (in fact, an algebra).

4.2.5 Countable combinations and limits
Operations involving a countable number of measurable functions produce measurable
functions. These results allow us to form limits. By permitting functions to take
extended values, we can obtain clean statements without any extraneous conditions.
The fact that the Borel sets form a 𝜎 -algebra is also a crucial ingredient here.

Example 4.16 (Measurability: Countable infimum and supremum). For each 𝑗 ∈ ℕ, let
𝑓𝑗 : ℝ → ℝ be a measurable function that may take extended real values. This is the place where it is really

critical that measurable sets are stable
under countable unions.

Then the
pointwise infimum, inf 𝑗 ∈ℕ 𝑓𝑗 , and the pointwise supremum, sup𝑗 ∈ℕ 𝑓𝑗 , are measurable
functions.

Let us establish the result for the supremum. To do so, we write its super-level set
at 𝑡 ∈ ℝ as a countable union of Borel sets:

{𝑥 ∈ ℝ : sup𝑗 ∈ℕ 𝑓𝑗 (𝑥) > 𝑡 } =
⋃∞
𝑗=1 {𝑥 ∈ ℝ : 𝑓𝑗 (𝑥) > 𝑡 }.

Indeed, sup𝑗 𝑓𝑗 (𝑥) > 𝑡 if and only if 𝑓𝑗 (𝑥) > 𝑡 for at least one index 𝑗 . ■

The same approach applies to many related examples.
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Exercise 4.17 (Measurability: Limits). For each 𝑗 ∈ ℕ, let 𝑓𝑗 : ℝ → ℝ be a measurable
function that may take extended real values.

• Superior limit: The superior limit, lim sup𝑗→∞ 𝑓𝑗 , is a measurable function. Hint:
lim sup𝑗→∞ 𝑓𝑗 = inf 𝑗≥1 sup𝑘≥ 𝑗 𝑓𝑘 .

• Inferior limit: The inferior limit, lim inf 𝑗→∞ 𝑓𝑗 , is measurable.
• Limits: If the limit, lim𝑗→∞ 𝑓𝑗 , exists pointwise in ℝ, then it is measurable.
• Set of convergence: Deduce that the set {𝑥 ∈ ℝ : lim𝑗→∞ 𝑓𝑗 (𝑥) exists} is Borel.

Each of these results requires the stability of Borel sets under countable unions!

Exercise 4.18 (Measurability: Series). For each 𝑗 ∈ ℕ, let 𝑓𝑗 : ℝ → ℝ+ be a measurable
function that takes positive values. Verify that the series

∑∞
𝑗=1 𝑓𝑗 determines a mea-

surable function. The situation is more complicated for signed functions. Under what
conditions is an infinite sum of signed functions measurable?

Warning 4.19 (Non-measurability: Uncountable combinations). It is problematic to per-
form uncountably indexed operations with measurable functions. For example, the
supremum of an uncountable family of measurable functions may not be measurable.
This kind of function does arise in statistics and optimization. Take care! ■

Aside: If you have studied measure theory, you may have encountered Lebesgue-
measurable functions. These are functions 𝑓 : ℝ → ℝ for which the preimage
𝑓 −1(B) of each Borel set B is a Lebesgue set. A rather unpleasant feature of this
definition is that it does not interact neatly with composition. In particular, the
composition of a Lebesgue measurable function followed by a continuous function
need not be Lebesgue measurable.

4.2.6 The takeaway
Measurability is a fundamental concept that is crucial for defining integrals. At the
same time, the following principle suggests that we usually do not need to worry too
much about whether a real-valued function is Borel measurable.

If you encounter a function 𝑓 : ℝ → ℝ in applications, that function is quite likely
to be Borel measurable. Warning 4.19 outlines the main exceptions to this principle.

As a consequence, we will not place a lot of emphasis on measurability at this point. It
will become more important in probability theory when we study conditioning.

4.3 The Lebesgue integral on the real line
We are now prepared to give a rigorous definition of the integral of a function, weighted
by a distribution of mass on the real line. This construction was pioneered by Henri
Lebesgue in his doctoral thesis, so it is now called the Lebesgue integral in his honor.

The development of the Lebesgue integral proceeds in two stages. First, we define
the integral for positive functions. Second, we use the primitive definition to extend
the integral to signed functions.

4.3.1 The integral of a positive function
We begin with the simplest case: the integral of a positive function on the real line
with respect to a Borel measure. The definition matches the geometric picture we gave
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Figure 4.4 (Integral of a positive function). The integral weights the values 𝑓 (𝑥) of a
positive function by the local mass 𝜇(d𝑥) and sums over the real line ℝ.

in Figure 4.2. Just add up the measures of the horizontal bands.

Definition 4.20 (Lebesgue integral: Positive function). Fix a Borel measure 𝜇 on the
real line. Let 𝑓 : ℝ → ℝ+ be a positive measurable function that may take the
value +∞.

Warning: The Lebesgue integral
need not involve the Lebesgue
measure! ■

Define the Lebesgue integral of 𝑓 with respect to 𝜇 as∫
ℝ

𝑓 (𝑥) 𝜇(d𝑥) :=
∫ ∞

0
𝜇{𝑥 ∈ ℝ : 𝑓 (𝑥) > 𝑡 } d𝑡 . (4.5)

The right-hand side of (4.5) is a well-defined improper Riemann integral (see
Appendix C), which may take the value +∞.

Figure 4.4 illustrates what the Lebesgue integral is designed to do in the context of
the real line.

Warning: The d𝑥 is a piece of
notation, not a defined object. ■

Heuristically, we are weighting each value 𝑓 (𝑥) of the function by the
mass 𝜇(d𝑥) located near 𝑥 , and adding up these quantities. The notation 𝜇(d𝑥) is
designed to suggest the measure of an “infinitesimal set” containing the point 𝑥 , which
is something like the local density of mass at 𝑥 . In Lecture 22, we will see that there is
(sometimes) a deeper connection with densities.

To make complete sense of Definition 4.20, we need a few more observations.
First of all, our assumption that 𝑓 is measurable ensures that each super-level set
{𝑥 ∈ ℝ : 𝑓 (𝑥) > 𝑡 } is a Borel set. Therefore, the measure 𝜇 of the super-level set is
defined. Second, consider the function

ℎ𝜇 (𝑡 ) := 𝜇{𝑥 ∈ ℝ : 𝑓 (𝑥) > 𝑡 } for 𝑡 ≥ 0.

The function ℎ𝜇 is positive and decreasing. This type of function always has a well-
defined (improper) Riemann integral, although the value can equal +∞. See the
discussion in Appendix C.

In other words, what the integral is actually doing is computing the measure 𝜇 of
each super-level set {𝑥 ∈ ℝ : 𝑓 (𝑥) > 𝑡 } and summing over the levels 𝑡 . This is the
content of the rigorous definition.

4.3.2 Properties of the integral for positive functions
The Lebesgue integral for positive functions has a number of important properties
that are easy to verify. We simply need to refer back to the definition and the invoke
properties of the Riemann integral.
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Figure 4.5 (Integral of an indicator). The integral of an indicator function of a Borel set
equals the measure of the set.

Example 4.21 (Lebesgue integral: Indicators). Fix a Borel measure 𝜇 on the real line. Let
B ∈ B(ℝ) be a Borel set. We can easily calculate the integral of the indicator 1B of the
set. Referring back to Example 4.6, we find that∫

ℝ

1B(𝑥) 𝜇(d𝑥) =
∫ ∞

0
𝜇{𝑥 ∈ ℝ : 1B(𝑥) > 𝑡 } d𝑡

=

∫ 1

0
𝜇(B) d𝑡 +

∫ ∞

1
𝜇(∅) d𝑡 = 𝜇(B).

We will often use basic properties of the Riemann integral without comment (here,
domain decomposition). Thus, the integral of the indicator function of a set equals the
measure of the set. See Figure 4.5 for an illustration. In particular, the integral of the
zero function is zero. ■

Example 4.22 (Lebesgue integral: Dirac measure). For 𝑎 ∈ ℝ, consider the Dirac measure
𝛿𝑎 on the real line. It is illuminating to compute the integral of a positive, measurable
function 𝑓 : ℝ → ℝ+ with respect to the Dirac measure. Indeed,∫

ℝ

𝑓 (𝑥) 𝛿𝑎 (d𝑥) =
∫ ∞

0
𝛿𝑎 {𝑥 ∈ ℝ : 𝑓 (𝑥) > 𝑡 } d𝑡

=

∫ ∞

0
1[0,𝑓 (𝑎 ) ) (𝑡 ) d𝑡 = 𝑓 (𝑎).

Indeed, the Dirac measure 𝛿𝑎 of the super-level set {𝑥 ∈ ℝ : 𝑓 (𝑥) > 𝑡 } equals one if
and only if 0 ≤ 𝑡 < 𝑓 (𝑎). This identity motivates the use of a “spike” to illustrate the
Dirac measure. ■

Exercise 4.23 (Lebesgue integral: Monotonicity for positive functions). Fix a Borel measure
𝜇 on the real line. For positive measurable functions 𝑓 , 𝑔 : ℝ → ℝ+, show that the
integral is monotone:

0 ≤ 𝑓 ≤ 𝑔 pointwise implies
∫
ℝ

𝑓 (𝑥) 𝜇(d𝑥) ≤
∫
ℝ

𝑔 (𝑥) 𝜇(d𝑥).

In particular, the integral of a positive function is positive. Hint: At each fixed level
𝑡 ≥ 0, compare the super-level set of 𝑓 and 𝑔 .
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Figure 4.6 (Integral of a signed function). We define the integral of a signed function
by integrating its positive and negative parts and computing the difference. This figure
illustrates the case of an integral with respect to the Lebesgue measure 𝜆.

Exercise 4.24 (Lebesgue integral: Positive homogeneity). Fix a Borel measure 𝜇 on the real
line. Let 𝑓 : ℝ → ℝ+ be a positive, measurable function. Prove that∫

ℝ

𝛼𝑓 (𝑥) 𝜇(d𝑥) = 𝛼
∫
ℝ

𝑓 (𝑥) 𝜇(d𝑥) for positive 𝛼 ∈ ℝ+.

In particular, the integral of a positive constant 𝑐 equals 𝑐 · 𝜇(ℝ). Hint: Make a linear
change of variables in the definition of the integral.

4.3.3 The integral of a measurable function
To integrate a signed function, we just integrate the positive and negative parts
separately and then combine the results; see Figure 4.6. To avoid competing infinities,
we will require that the absolute value of the function has a finite integral.

Definition 4.25 (Integrable function). We say that a finite-valued measurable function
𝑓 : ℝ → ℝ is integrable with respect to the Borel measure 𝜇 when∫

ℝ

| 𝑓 (𝑥) | 𝜇(d𝑥) < +∞.

For brevity, we may also say that 𝑓 is 𝜇-integrable. The class of 𝜇-integrable
real-valued functions is often denoted as L1(𝜇).

Exercise 4.26 (Integrable function: Positive and negative parts). Suppose that 𝑓 : ℝ → ℝ is
integrable with respect to the Borel measure 𝜇. Deduce that the positive and negative
parts are integrable with respect to 𝜇:∫

ℝ

𝑓+(𝑥) 𝜇(d𝑥) < +∞ and
∫
ℝ

𝑓− (𝑥) 𝜇(d𝑥) < +∞.

Hint: Invoke Exercise 4.12 and Exercise 4.23.

With these preparations complete, we are prepared to define the Lebesgue integral
of a signed function.
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Definition 4.27 (Lebesgue integral). Let 𝑓 : ℝ → ℝ be a function that is integrable
with respect to the Borel measure 𝜇. Then we may define the Lebesgue integral of
𝑓 with respect to 𝜇 to be∫

ℝ

𝑓 (𝑥) 𝜇(d𝑥) :=
∫
ℝ

𝑓+(𝑥) 𝜇(d𝑥) −
∫
ℝ

𝑓− (𝑥) 𝜇(d𝑥).

Otherwise, the function 𝑓 does not admit a Lebesgue integral.

Definition 4.27 presents no new complications. Exercise 4.26 guarantees that both
the positive and negative parts of a measurable function have finite integrals, so there
is no possibility of competing infinities (∞−∞) when we subtract their values.

Exercise 4.28 (Lebesgue integral: Consistency). Let 𝑓 : ℝ → ℝ+ be a positive, measurable
function that is integrable with respect to the Borel measure𝜇. Show that Definition 4.20
and Definition 4.27 give the same value.

Exercise 4.29 (Lebesgue integral: Absolute value). Assuming that 𝑓 : ℝ → ℝ is integrable
with respect to the Borel measure 𝜇, check that����∫

ℝ

𝑓 (𝑥) 𝜇(d𝑥)
���� ≤ ∫

ℝ

| 𝑓 (𝑥) | 𝜇(d𝑥).

Hint: This argument only requires the definitions and monotonicity of the integral for
positive functions. In particular, it is not necessary to check that the integral is linear.

Exercise 4.30 (Lebesgue integral: Basic properties). Without restriction to positive functions,
show that the Lebesgue integral is monotone. Show that the integral is homogeneous:
we can pass any finite scalar through the integral.

4.3.4 Integration over a set
It is often the case that we want to integrate a function over a subset of the domain.
With Lebesgue integrals, this task can be accomplished in a straightforward way.

Definition 4.31 (Lebesgue integral: Subset). Fix a Borel measure 𝜇 on the real line and
a measurable function 𝑓 : ℝ → ℝ whose Lebesgue integral with respect to 𝜇 is
defined. For each Borel set B ∈ B(ℝ), we define the integral over the set via the
expression ∫

B
𝑓 (𝑥) 𝜇(d𝑥) :=

∫
ℝ

1B(𝑥) 𝑓 (𝑥) 𝜇(d𝑥).

4.3.5 Linearity
The critical fact about the Lebesgue integral is that it is linear: the integral of a sum is
the sum of the integrals.

Theorem 4.32 (Lebesgue integral: Linearity). Fix a Borel measure 𝜇 on the real line.
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Let 𝑓 , 𝑔 : ℝ → ℝ be 𝜇-integrable functions. Then∫
ℝ

(𝛼𝑓 + 𝛽𝑔 ) (𝑥) 𝜇(d𝑥)

= 𝛼

∫
ℝ

𝑓 (𝑥) 𝜇(d𝑥) + 𝛽
∫
ℝ

𝑔 (𝑥) 𝜇(d𝑥) for all 𝛼, 𝛽 ∈ ℝ.

In Lecture 5, we will prove Theorem 4.32 in a more general setting. The argument is
somewhat involved.

4.3.6 Negligible sets
Another basic fact about Lebesgue integrals is that they are insensitive to the values of
a function on a negligible set. The following result encapsulates the basic fact.

Proposition 4.33 (Lebesgue integral: Negligible sets). Let 𝑓 , 𝑔 : ℝ → ℝ be measurable
functions. If 𝑓 and 𝑔 are equal 𝜇-almost everywhere, then their integrals are equal:

𝜇{𝑥 ∈ ℝ : 𝑓 (𝑥) ≠ 𝑔 (𝑥)} = 0 implies
∫
ℝ

𝑓 (𝑥) 𝜇(d𝑥) =
∫
ℝ

𝑔 (𝑥) 𝜇(d𝑥).

In Lecture 5, we establish Proposition 4.33 in a more general setting.

Exercise 4.34 (Lebesgue integral: Rationals). For a positive, measurable function 𝑓 : ℝ →
ℝ+, compute the integral

∫
ℝ
1ℚ(𝑥) 𝑓 (𝑥) 𝜆(d𝑥) by pure thought.

4.3.7 Examples
As we have insinuated, the integral has a wide range of applications. Let us elaborate
on some of the examples we have already mentioned.

Example 4.35 (Center of mass). Suppose that 𝜇 is a finite Borel measure on the real line
that describes a distribution of physical mass (see Example 3.2). The center of mass𝑚
of the distribution is the point about which the total torque is zero:∫

ℝ

(𝑥 −𝑚) 𝜇(d𝑥) = 0.

Indeed, the torque at𝑚 due to the mass at a point 𝑥 ∈ ℝ is the length (𝑥 −𝑚) of the
lever arm times that local mass 𝜇(d𝑥) at the point 𝑥 . By the linearity property of the
integral (Theorem 4.32),

𝑚 =
1

𝜇(ℝ)

∫
ℝ

𝑥 𝜇(d𝑥).

This computation requires the assumption that the identity function 𝑥 ↦→ 𝑥 is integrable
with respect to 𝜇. Heuristically, the system cannot place too much mass at very long
distances from the origin.

The construction of the integral allows us to give a unified way to compute the
center of mass for any one-dimensional mechanical system, even if it involves both
extended mass (like a rod) and point masses (like hanging weights). ■

Example 4.36 (Expectation). Suppose that 𝜇 is a Borel probability measure on the real
line, so 𝜇(ℝ) = 1. See Example 3.3 for an illustration. The expected value𝑚 of the
distribution is the quantity

𝑚 =

∫
ℝ

𝑥 𝜇(d𝑥).
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In other words, we weight each outcome 𝑥 ∈ ℝ by the local probability mass 𝜇(d𝑥) and
sum. Once again, the computation requires the assumption that 𝑥 ↦→ 𝑥 is integrable
with respect to 𝜇. Heuristically, the probability of very large values must not be too
big. Note the analogy with the center of mass of a mechanical system.

The construction of the integral provides a unified way to compute the expectation
of any distribution of probability, even if the distribution has continuous parts and
point masses (like the lifetime of a lightbulb). ■

4.4 Riemann versus Lebesgue
Students often ask: What is the relationship between the Riemann integral and the
Lebesgue integral with respect to the Lebesgue measure? When we see an integral
sign, do we interpret it as a Riemann integral or a Lebesgue integral? How do we
calculate Lebesgue integrals in practice? This section speaks to these concerns.

The best way to think about the Lebesgue integral is to regard it as an upgrade of
the Riemann integral. We use similar notation because the approaches are designed to
accomplish the same goal. As with Riemann integrals, you can use calculus to evaluate
Lebesgue integrals. With Lebesgue integrals, we gain some additional tools: a clear
definition of the class of integrable functions and a suite of limit theorems (Lecture 5).
Moreover, we can define Lebesgue integrals in a wider setting.

4.4.1 Riemann implies Lebesgue
For both Riemann and Lebesgue integrals, the geometric purpose is similar: they are
designed to sum up function values. As a consequence, the two approaches usually
give the same answer when they are both valid. In particular, every function that is
(properly) Riemann integrable is also Lebesgue integrable.

Proposition 4.37 (Riemann implies Lebesgue). Suppose that 𝑓 : [𝑎, 𝑏] → ℝ is a (bounded)
Riemann integrable function. Then 𝑓 is also Lebesgue integrable with respect to the
Lebesgue measure 𝜆 on the interval [𝑎, 𝑏], and the integrals coincide:∫

[𝑎,𝑏 ]
𝑓 (𝑥) 𝜆(d𝑥) =

∫ 𝑏

𝑎

𝑓 (𝑥) d𝑥.

Proof. See Appendix C.10. ■

Proposition 4.37 gives us immediate access to familiar tools for working with the
Riemann integral, such as elementary antiderivatives, change of variables formulas,
and so forth. We will take these calculus rules for granted, but see the Problems section
for a taste. Similar results are valid for Riemann–Stieltjes integrals.

Warning 4.38 (Improper integrals). There are functions that are not Lebesgue integrable
but still have improper Riemann integrals. A classic example is∫ +∞

−∞

sin(𝜋𝑥)
𝜋𝑥

d𝑥 = 1.

The Lebesgue integral of the integrand 𝑓 does not exist because 𝑓+ and 𝑓− both
have infinite integrals with respect to Lebesgue measure. ■
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Aside: There is a more general construction, called the Denjoy–Perron–Henstock–
Kurzweil integral, that allows us to integrate a larger class of functions that
includes all (improperly) Riemann-integrable functions and all Lebesgue-integrable
functions on the real line.

4.4.2 All our integrals are Lebesgue integrals
In fact, once we are comfortable with Lebesgue integrals and their properties, we
can forget about Riemann integrals entirely. The next result recasts the formula in
Definition 5.11 purely in terms of Lebesgue integrals.

Proposition 4.39 (Integration by parts). Let 𝜇 be a Borel measure, and let 𝑓 : ℝ → ℝ+ be
a positive, measurable function. Then∫

ℝ

𝑓 (𝑥) 𝜇(d𝑥) :=
∫ ∞

0
𝜇{𝑥 ∈ ℝ : 𝑓 (𝑥) > 𝑡 } d𝑡

=

∫
ℝ+

𝜇{𝑥 ∈ ℝ : 𝑓 (𝑥) > 𝑡 } 𝜆(d𝑡 ).

In this expression, we interpret the right-hand side as a Lebesgue integral over the
positive real line!

Proof. This boils down to an application of Proposition 4.37. See Appendix C.11 for
the details. ■

As a consequence of this statement, you can regard every integral you see in
this class as a Lebesgue integral, unless explicitly stated otherwise. To perform
concrete computations, you may still rely on familiar calculus rules. Concerning the
terminology, Proposition 4.39 is the simplest case of the integration by parts formula;
see Problem 6.26 for a generalization.

4.4.3 Outlook
So what do we gain by using the Lebesgue integral? We obtain flexibility and tools
that are simply not available if we stick with Riemann integrals. In the next lecture, we
will give an abstract treatment of the Lebesgue integral that provides all these benefits.

First, we use the same procedure to define the Lebesgue integral on domains that
are more general than the real line. Then we will be able to integrate real-valued
functions defined on an arbitrary measure space. This extension is critical when we
develop an axiomatic model of probability theory (Lecture 7).

Second, Lebesgue integrals are equipped with a robust convergence theory, which
allows us to compute the integral of a sequence of functions. These results play a
crucial role in analysis, and they will also support the development of limit theorems
in probability.

Problems
Exercise 4.40 (Elementary antiderivatives). In integral calculus, we learn to compute
definite Riemann integrals using antiderivatives. Similar results hold for Lebesgue
integrals with respect to the Lebesgue measure. In this problem, we assume that 𝑎 ≤ 𝑏
and 𝑎, 𝑏 ∈ ℝ. In each case, first argue that the integrand is a measurable function.
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1. Powers: For real 𝑝 ≠ 1, use a direct argument to confirm that the Lebesgue
integral of the power function satisfies∫

[𝑎,𝑏 ]
𝑥𝑝 𝜆(d𝑥) = 1

𝑝 + 1
(𝑏𝑝+1 − 𝑎𝑝+1) assuming 0 < 𝑎 ≤ 𝑏 .

Hint: Use Definition 4.20 to refer the matter back to a familiar Riemann integral.
2. Reciprocals: By direct argument, show that the Lebesgue integral of the reciprocal

function satisfies∫
[𝑎,𝑏 ]

𝑥−1 𝜆(d𝑥) = log(𝑏) − log(𝑎) provided that 0 < 𝑎 ≤ 𝑏 .

3. Exponentials By direct argument, show that the Lebesgue integral of the exponen-
tial function satisfies∫

[𝑎,𝑏 ]
e𝜃𝑥 𝜆(d𝑥) = 𝜃 −1(e𝜃𝑏 − e𝜃𝑎 ) for 𝜃 ≠ 0.

4. *Cosines: By direct argument, show that the Lebesgue integral of the cosine
function satisfies∫

[𝑎,𝑏 ]
cos(𝜃𝑥) 𝜆(d𝑥) = 𝜃 −1(sin(𝜃𝑏) − sin(𝜃𝑎)) for 𝜃 ≠ 0.

Hint: Decompose the domain [𝑎, 𝑏] of integration into regions where cos is
monotone.

5. FTC: From these examples, you can see that the direct approach to computing
Lebesgue integrals can be inefficient or difficult. Fortunately, there is a general
result. Suppose that 𝑓 : [𝑎, 𝑏] → ℝ is a continuous function. Let 𝐹 : [𝑎, 𝑏] →
ℝ be an antiderivative; that is, 𝐹 ′ = 𝑓 on (𝑎, 𝑏). Use Proposition 4.37 to check
that the Lebesgue integral satisfies the Fundamental Theorem of Calculus (FTC):∫

[𝑎,𝑏 ]
𝑓 (𝑥) 𝜆(d𝑥) = 𝐹 (𝑏) − 𝐹 (𝑎).

Explain how this result yields all of the previous statements.
6. Change of variables: Let 𝑢 : [𝐴,𝐵] → [𝑎, 𝑏] be a strictly increasing, continuously

differentiable function, and suppose that 𝑓 : [𝑎, 𝑏] → ℝ is continuously
differentiable. Use the FTC to confirm that∫

[𝐴,𝐵 ]
𝑓 ′ (𝑢 (𝑥))𝑢 ′ (𝑥) 𝜆(d𝑥) =

∫
[𝑎,𝑏 ]

𝑓 ′ (𝑥) 𝜆(d𝑥).

Exercise 4.41 (Powers: Integrability). Let 𝑝 be a real number. Consider the functions
𝑓𝑝 , 𝑔𝑝 : ℝ → ℝ defined by

𝑓𝑝 (𝑥) =
{
𝑥𝑝 , 𝑥 ≥ 1
0, otherwise;

𝑔𝑝 (𝑥) =
{
𝑥𝑝 , 0 < 𝑥 < 1
0, otherwise.

Convince yourself that 𝑓𝑝 and 𝑔𝑝 are measurable. For which values of 𝑝 are the
functions 𝑓𝑝 integrable with respect to 𝜆? What about 𝑔𝑝?

Exercise 4.42 (Layer-cake representation). Let 𝑓 : ℝ → ℝ+ be a positive, measurable
function. Show that

𝑓 (𝑎) =
∫
ℝ+

1{𝑥∈ℝ:𝑓 (𝑥 )>𝑡 } (𝑎) 𝜆(d𝑡 ).

Hint: Apply Proposition 4.39 with the Dirac measure 𝛿𝑎 .
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Notes
The quotation at the head of this chapter is from the wonderful speculative fiction
writer, Octavia Butler. She was born and raised here in Pasadena and Altadena. Her
work received multiple Hugo and Nebula prizes, and she was the first speculative fiction
author to be awarded a MacArthur Fellowship. Her archive is held by the Huntington
Library. I particularly recommend Kindred [But03].

Our presentation of the Lebesgue integral, using super-level sets, is adapted from
the analysis textbook [LL01] of Lieb & Loss. This approach has several benefits. It gives
a clear geometric picture of what the Lebesgue integral is doing, and it motivates the
definition of the class of measurable functions. On the other hand, this construction
requires the use of the improper Riemann integral, and we will need to rely on
theoretical facts about the Riemann integral.

Most books on probability theory and measure theory define the Lebesgue integral
using approximation by simple functions (Section 5.6). This approach is more self-
contained because it does not rely on properties of the Riemann integral, and it also
extends more readily to functions that take values in a linear space. On the other hand,
it also has some deficiencies. The construction based on simple functions makes it hard
to appreciate where measurability comes from and why it is essential for the integral.
(Roughly, the positive measurable functions are the increasing limits of positive simple
functions.) Furthermore, it also requires a nontrivial argument to prove that the
integral of a positive simple function is well-defined.

Altogether, the approach via super-level sets seems more intuitive. The mathemat-
ically oriented reader should understand both perspectives, in part because simple
functions play an important role in proving facts about integrals.

There are at least two more approaches to defining the Lebesgue integral, using
ideas from functional analysis. This perspective originally emerged from Bourbaki’s
program. It has been championed by Peter Lax [Lax02] and Barry Simon [Sim15];
David Pollard [Pol02] also expresses admiration.

Here is the first approach. Suppose that we want to construct the Lebesgue integral
with respect to the Lebesgue measure on the compact interval [0, 1]. The first approach
begins with the linear space of continuous functions on [0, 1], equipped with the L1(𝜆)
norm. In this special case, the L1 norm can be defined using an ordinary Riemann
integral. This normed linear space is completed to obtain the Banach space L1(𝜆)
of equivalence classes of 𝜆-integrable functions. We can extend this idea to other
measures by using the Riemann–Stieltjes integral.

The second approach begins with the convex cone M+(X) of positive measurable
functions on ameasurable space (X,F). An integral is defined to be a positive functional
onM+(X) that is positive homogeneous, additive, and satisfies a monotone convergence
rule. By the Riesz–Kakutani representation theorem, these positive functions are in
one-to-one correspondence with positive measures. This approach places the abstract
properties of an integral front and center, although the construction is not particularly
concrete. See [Pol02, Sec. 2.3] and Problem 5.45.

Although these ideas are elegant, they demand comfort with functional analysis.
For this course, we prefer to start with a more elementary construction of the integral.
This approach helps us gain intuition for functional analysis in a relatively simple
setting.
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5. Abstract Integration

Agenda:
1. Measurable functions
2. The Lebesgue integral
3. Convergence theorems
4. Almost everywhere

convergence
5. Proof of integral properties

“Agent Dale Cooper: Wait a minute, wait a minute. You know, this is—excuse
me—a damn fine cup of coffee. I’ve had I can’t tell you how many cups of coffee in
my life, and this... this is one of the best.”

—Twin Peaks, 2001

In the last lecture, we introduced the Lebesgue integral with respect to a Borel
measure on the real line. This integral adds up the values of a function, weighted by a
distribution of mass. From the construction, we can perceive an opportunity to define
the integral of a real-valued function on a measure space. In this lecture, we will give a
complete treatment of integration on an abstract measure space, along with the major
convergence theorems for integrals. These foundations are essential for an axiomatic
treatment of probability theory.

For most readers, the key concepts are the properties of the integral, packaged in
Theorem 5.14, and the three major convergence theorems (monotone convergence,
Fatou’s lemma, and dominated convergence). The proofs in this lecture are not
particularly hard, but they are somewhat involved. The technical details are not really
necessary for a working understanding of the subject, so most of the material is starred.
More mathematically oriented reader will want to understand the arguments, which is
why they are included here.

In this lecture, we fix a general measure space (X,F, 𝜇) with domain X, sigma-
algebra F, and measure 𝜇. This is all of the structure that we need to develop a theory
of integration.

5.1 Compact notation for set-builder
We will often be working with functions. The standard set-builder notation for sets of
function values quickly becomes cumbersome. This seems like a good time to introduce
a more efficient script.

Our new notation delineates the set of points where a function satisfies some
condition. For example, suppose that 𝑓 , 𝑔 : X → ℝ. Then we may write things like

{𝑓 > 𝑔 } := {𝑥 ∈ X : 𝑓 (𝑥) > 𝑔 (𝑥)};
{𝑓 = 𝑔 } := {𝑥 ∈ X : 𝑓 (𝑥) = 𝑔 (𝑥)}.

We will use many similar expressions without further comment. It takes a little practice
to get used to this convention. But it saves a lot of letters, which ultimately makes
things easier to understand.

https://www.youtube.com/watch?v=Uvs7pmISe8I
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5.2 The space of measurable functions
As before, we can only integrate measurable functions. In this section, we quickly
introduce the appropriate definitions and summarize the stability properties of mea-
surable functions. Last, we describe how to approximate positive measurable functions
by means of positive simple functions.

5.2.1 Measurable functions
To begin, we need to introduce the appropriate concept of a measurable function on
the domain. See Problem 5.36 for more context and further extensions.

Definition 5.1 (Measurable function).
Warning: The definition of a
measurable function does not
involve a measure. ■

Let (X,F) be a measurable space. A function
𝑓 : X → ℝ taking extended real values is measurable when

𝑓 −1(𝑡 ,+∞] ∈ F for all 𝑡 ∈ ℝ.

In other words, the preimage of each semi-infinite interval must be a measurable
set. For emphasis, we may say that 𝑓 is an F-measurable function.

Exercise 5.2 (*Measurability). Prove that a function 𝑓 : X → ℝ is F-measurable if and
only if

𝑓 −1(B) ∈ F for all extended Borel sets B ∈ B(ℝ).
Hint: See the proof of Proposition 4.2.

Exercise 5.3 (*Measurability: Continuous functions). Suppose that the measurable space
(X,F) is also a topological space where every open set belongs to F. Verify that each
continuous function 𝑓 : X → ℝ is measurable.

Although the definition of an F-measurable function is similar to the definition of
an (extended) Borel measurable function (Definition 4.5), we would like to inject a
note of caution in this general setting.

Warning 5.4 (Measurability: Role of measurable sets). The definition of a measurable
function depends on the class Fof measurable sets. When F is a small 𝜎 -algebra,
the stock of measurable functions may be limited. This point is not central right
now, but it will play a role in probability theory when we discuss conditioning. ■

Exercise 5.5 (*Measurability: Trivial 𝜎-algebra). Consider a domain X equipped with the
trivial 𝜎 -algebra F= {∅,X}. Give a complete description of the class of measurable
functions 𝑓 : X → ℝ.

Repeat this exercise for the almost trivial 𝜎 -algebra F= {∅,A,Ac, X} where A ⊆ X
is a subset of the domain.

5.2.2 Stability properties and limits
As with Borel measurable functions, the measurable functions on a measurable space
are stable under a wide range of operations. The proofs parallel those in Sections 4.2.4
and 4.2.5, so we simply collect the results.

Proposition 5.6 (Measurable functions: Algebraic operations). Fix a measurable space (X,F).
Let 𝑓 , 𝑔 : X → ℝ be measurable functions.

1. Constants: Constant functions are measurable.
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2. Indicators: For a measurable set A ∈ F, the indicator function 1A is a measurable
function.

3. Sign parts: The positive part 𝑓+, the negative part 𝑓−, and the absolute value | 𝑓 |
are measurable functions.

4. Min and max: The minimum 𝑓 ∧ 𝑔 and the maximum 𝑓 ∨ 𝑔 are measurable.
5. Sum: The sum 𝑓 + 𝑔 is measurable, provided that 𝑓 , 𝑔 are both positive or both

finite-valued.
6. Product: The product 𝑓 𝑔 is measurable, provided that 𝑓 , 𝑔 are both positive or

both finite-valued.
7. Linear space: The notation for this linear space is

not standardized.
In particular, the finite-valued measurable functions compose a

linear space (in fact, an algebra).

Proposition 5.7 (Measurable functions: Countable operations). Fix ameasurable space (X,F).
For each 𝑗 ∈ ℕ, let 𝑓𝑗 : X → ℝ be a measurable function.

1. Infimum and supremum: The infimum, inf 𝑗 ∈ℕ 𝑓𝑗 , and the supremum, sup𝑗 ∈ℕ 𝑓𝑗 ,
are measurable.

2. Inferior and superior limits: The inferior limit, lim inf 𝑗→∞ 𝑓𝑗 , and the superior limit,
lim sup𝑗→∞ 𝑓𝑗 , are measurable.

3. Limits: If lim𝑗→∞ 𝑓𝑗 exists pointwise, then it is measurable.
4. Set of convergence: The set {𝑥 ∈ X : lim𝑗→∞ 𝑓𝑗 (𝑥) exists} is measurable.

Exercise 5.8 (Measurable functions). Prove Proposition 5.6 and Proposition 5.7.

5.2.3 *Positive simple functions
To establish properties of the integral, it is helpful to start with functions where we
can compute the value of the integral with our bare hands. To that end, we introduce
the class of positive linear combinations of indicator functions:

SF+ := SF+(F) :=
{∑︁𝑛

𝑖=1
𝛼𝑖1A𝑖 : 𝛼𝑖 ∈ ℝ+ and A𝑖 ∈ Fand 𝑛 ∈ ℕ

}
. (5.1)

The elements of the class SF+ are called positive simple functions. The key property of
a simple function is that it takes only a finite number of values. We anticipate that the
integral of a positive simple function satisfies the linearity relation

“
∫
X

(∑︁𝑛

𝑖=1
𝛼𝑖1A𝑖

)
𝜇(d𝑥) =

∑︁𝑛

𝑖=1
𝛼𝑖𝜇(A𝑖 ). ”

Our construction of the integral leads to this result, but it is not a triviality.

Exercise 5.9 (Simple functions: Limit superior). Confirm that each positive simple function
is measurable. For a sequence (𝑠𝑗 : 𝑗 ∈ ℕ) of positive simple functions, explain why
lim sup𝑗→∞ 𝑠𝑗 is measurable.

Simple functions are important because we can approximate every positive mea-
surable function by a simple function that is pointwise smaller; see Figure 5.1. To
establish this fact, we introduce the staircase maps𝑄 𝑗 : ℝ+ → ℝ+ for each 𝑗 ∈ ℕ:

𝑄 𝑗 (𝑥) :=

𝑗 , 𝑥 > 𝑗 ;
(𝑖 − 1)2−𝑗 , (𝑖 − 1)2−𝑗 < 𝑥 ≤ 𝑖2−𝑗 ≤ 𝑗 for 𝑖 ∈ ℕ;
0, 𝑥 = 0.

(5.2)

The function𝑄 𝑗 quantizes and thresholds positive, extended real numbers.
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Figure 5.1 (Staircase approximation). Every positive measurable function can be
approximated by a positive simple function.

Exercise 5.10 (Staircase approximation). Let 𝑓 : X → ℝ+ be a positive, measurable
function.

1. Prove that𝑄 𝑗 ◦ 𝑓 is a positive simple function for each 𝑗 ∈ ℕ.
2. Check that𝑄 𝑗 ◦ 𝑓 ≤ 𝑓 pointwise for each 𝑗 ∈ ℕ.
3. Show that (𝑄 𝑗 ◦ 𝑓 ) ↑ 𝑓 pointwise as 𝑗 → ∞.

Later, we will use the staircase approximation in conjunction with a fundamental
limit theorem to extend results for the integral on positive simple functions to all
positive measurable functions.

5.3 The Lebesgue integral
In this section, we begin the development of the Lebesgue integral on the measure
space (X,F, 𝜇). We first consider the integral of a positive function. Then we extend
the integral to signed functions by passing to the positive and negative parts. Afterward,
we outline the main properties of the integral.

5.3.1 Positive functions
To integrate a positive-valued function over a measure space, we simply compute the
total measure of the super-level sets of the function.

Definition 5.11 (Lebesgue integral: Positive functions). Consider a positive, measurable
function 𝑓 : X → ℝ. The Lebesgue integral of 𝑓 with respect to 𝜇 is defined as∫

X
𝑓 (𝑥) 𝜇(d𝑥) :=

∫ ∞

0
𝜇{𝑥 ∈ X : 𝑓 (𝑥) > 𝑡 } d𝑡 .

The right-hand side is an improper Riemann integral (Appendix C), and it is always
well-defined.

As before, the right-hand side gives sense to the Lebesgue integral. It allows us to
apply familiar tools for Riemann integrals, such as elementary antiderivatives, change
of variables, and so forth.
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5.3.2 Signed functions
To integrate a signed function over a measure space, we first define the class of
integrable functions.

Definition 5.12 (Integrable function). We say that a finite-valued measurable function
𝑓 : X → ℝ is integrable with respect to the measure 𝜇 when∫

X
| 𝑓 (𝑥) | 𝜇(d𝑥) < +∞.

In this case, we may also say that 𝑓 is 𝜇-integrable.

The positive and negative parts of an integrable function are also integrable.
Therefore, we may define the integral of a signed function by integrating the positive
and negative parts separately.

Definition 5.13 (Lebesgue integral). Let 𝑓 : X → ℝ be a function that is integrable
with respect to the measure 𝜇. Then we may define the Lebesgue integral to be∫

X
𝑓 (𝑥) 𝜇(d𝑥) :=

∫
X
𝑓+(𝑥) 𝜇(d𝑥) −

∫
X
𝑓− (𝑥) 𝜇(d𝑥).

In this case, we may also say that 𝑓 is 𝜇-integrable.

As before, the integrability assumption ensures that the integral is well-defined.
For positive functions, Definition 5.13 is consistent with Definition 5.11.

5.3.3 Notation for integrals
There are many common notations for Lebesgue integrals, and you should be familiar
with them so that you can fluently read the mathematical literature. First, there are
several alternative expressions for the differential:∫

X
𝑓 (𝑥) 𝜇(d𝑥) =:

∫
X
𝑓 (𝑥) d𝜇(𝑥) =:

∫
X
𝑓 d𝜇 =:

∫
𝑓 d𝜇.

These expressions all mean the same thing. As in the last term, we may omit the
domain of integration, in which case the integration takes place over the full domain
of the integrand 𝑓 . We introduce parallel notation for the integral over a subdomain:∫

A
𝑓 (𝑥) 𝜇(d𝑥) :=

∫
X
1A(𝑥) 𝑓 (𝑥) 𝜇(d𝑥) for measurable A ∈ F.

The left-hand integral may be abbreviated further, as in the penultimate display. It is
also very convenient to use functional notation:

𝜇( 𝑓 ) :=
∫
X
𝑓 (𝑥) 𝜇(d𝑥) or 𝜇( 𝑓 ;A) :=

∫
A
𝑓 (𝑥) 𝜇(d𝑥).

Throughout these notes, we vary how we write the integral, depending on what part
of the formula requires your attention.

For integrals with respect to the Lebesgue measure 𝜆 on the measurable space
(ℝ,B(ℝ)), the differential 𝜆(d𝑥) is often written more compactly as d𝑥 . Thus,∫

A
𝑓 (𝑥) 𝜆(d𝑥) =

∫
A
𝑓 (𝑥) d𝜆(𝑥) =

∫
A
𝑓 d𝜆 =

∫
A
𝑓 (𝑥) d𝑥.

These notations are consistent with the familiar notation for Riemann integrals.



Lecture 5: Abstract Integration 73

5.3.4 Structural properties
We have developed the Lebesgue integral in two stages. First, we defined the integral
for all positive functions. Second, we defined the integral for all measurable functions,
with some restrictions to avoid problems with infinities.

In parallel, we will generally present facts about integrals in two parts, one for
positive functions (that may have integral +∞) and one for signed functions (requiring
the integral to be finite).

We may now state an omnibus theorem that describes the major properties of the
Lebesgue integral. For succinctness, we include results for both positive and integrable
functions together, but we emphasize that these cases are slightly different in spirit.

Theorem 5.14 (Lebesgue integral: Properties). Let (X,F, 𝜇) be a measure space. Let
𝑓 , 𝑔 : X → ℝ be measurable functions Refer back to Section 5.3.3 for the

functional notation for integrals.
whose integrals 𝜇( 𝑓 ) and 𝜇(𝑔 ) are defined.

1. Zero: The integral of the zero function is zero: 𝜇(0) = 0.
2. Indicators: For a measurable set A ∈ F, the integral 𝜇(1A) = 𝜇(A).
3. Positivity: For a positive function 𝑓 ≥ 0, the integral is positive: 𝜇( 𝑓 ) ≥ 0.
4. Monotonicity: If 𝑓 ≤ 𝑔 , then 𝜇( 𝑓 ) ≤ 𝜇(𝑔 ).
5. Positive linearity: For positive functions 𝑓 , 𝑔 and positive scalars 𝛼, 𝛽 ≥ 0,

𝜇(𝛼𝑓 + 𝛽𝑔 ) = 𝛼𝜇( 𝑓 ) + 𝛽𝜇(𝑔 ).

6. Linearity: For 𝜇-integrable functions 𝑓 , 𝑔 and all scalars 𝛼, 𝛽 ∈ ℝ,

𝜇(𝛼𝑓 + 𝛽𝑔 ) = 𝛼𝜇( 𝑓 ) + 𝛽𝜇(𝑔 ).

7. Almost definite: For a positive function 𝑓 ≥ 0, a zero integral 𝜇( 𝑓 ) = 0 implies
that 𝑓 = 0 𝜇-almost everywhere.

8. Almost equal: If 𝑓 = 𝑔 𝜇-almost everywhere, then 𝜇( 𝑓 ) = 𝜇(𝑔 ).

Proof. See Section 5.5 for a complete proof of Theorem 5.14. ■

Let us take a moment to discuss the contents of Theorem 5.14. First, we remark
that the results are not independent from each other; some of them can easily be
deduced from others. Second, keep in mind that positive functions and their integrals
are allowed to take the value +∞, while signed functions and their integrals must
remain finite.

Properties (1) and (2) allow us to evaluate specific elementary Lebesgue integrals.
The key fact here is that the integral of the indicator of a measurable set equals the
measure of the set. This always remains true—even for very complicated sets.

Properties (3) and (4) concern the interaction between the integral and the
pointwise order on functions. Point (3) states that the integral is a positive operator: it
maps positive functions to positive numbers. Point (4) shows that the integral respects
the pointwise partial order relation on functions.

Properties (5) and (6) are both related to the homogeneity and additivity of the
integral. We can pass scalars through the integral, and the integral of a sum is the sum
of the integrals. Note that there is a subtle distinction between the statements that
reflects the differences between positive and signed functions. Linearity is the single
most important property of the Lebesgue integral.

Last, Properties (7) and (8) state that the integral is insensitive to the value of
a function on a negligible set. In particular, for a function 𝑓 that is zero 𝜇-almost
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everywhere, the integral 𝜇( 𝑓 ) = 0. For positive functions only, the converse of the
latter statement is also true.

Most of the results in Theorem 5.14 are easy to derive from Definitions 5.11
and 5.13 of the Lebesgue integral. The two results on linearity make for a striking
exception. They require a significant number of intermediate steps, and they hinge on
the monotone convergence theorem (Theorem 5.18).

Exercise 5.15 (Integral properties). Try to prove items (1)–(4) and (7)–(8) in Theorem 5.14.
Hint: See Section 4.3.2.

5.3.5 The linear space of integrable functions
It is valuable to develop notation for the class of signed functions whose Lebesgue
integral is defined.

Definition 5.16 (Space of integrable functions). Let (X,F, 𝜇) be a measure space. Define
the functional

∥ 𝑓 ∥L1 (𝜇) :=
∫
X
| 𝑓 (𝑥) | 𝜇(d𝑥) for measurable 𝑓 : X → ℝ.

Introduce the class of finite-valued functions with a finite integral:

L1(𝜇) :=
{
𝑓 : X → ℝ measurable : ∥ 𝑓 ∥L1 (𝜇) < +∞

}
.

The class L1(𝜇) is called the space of 𝜇-integrable functions.

Exercise 5.17 (The space of integrable functions). Explain in detail why L1(𝜇) is a linear
space. A pseudonorm is a positive function

that is positive homogeneous and
satisfies the triangle inequality. The
pseudonorm of a nonzero function
may be equal to zero.

Show that ∥·∥L1 (𝜇) is a pseudonorm on L1(𝜇).
The linear space L1(𝜇) has central importance in functional analysis and probability
theory. We postpone a detailed discussion to Lecture 11.

5.4 Convergence theorems
A core technical problem in analysis is to understand when we can interchange two
limiting processes. In particular, we may ask when we can pass a limit through an
integral. A major deficiency of the Riemann integral is the lack of a crisp answer to
this question. In contrast, the Lebesgue integral is designed so that limits behave
predictably. It is not true that we can always swap a Lebesgue integral with a limit, but
we can perform this operation under simple and easily verified conditions.

5.4.1 Monotone convergence
Levi’s monotone convergence theorem is the central fact in the theory of Lebesgue
integration. An increasing sequence of functions

satisfies

𝑓𝑗+1 (𝑥 ) ≥ 𝑓𝑗 (𝑥 )

for all 𝑥 ∈ X and 𝑗 ∈ ℕ. An
increasing sequence always has a
pointwise limit 𝑓 : X → ℝ that can
take the value +∞.

For an increasing sequence of positive functions, the limit of the integrals
equals the integral of the limit. We can use this result to establish more flexible
convergence theorems, and it also plays a critical role in developing other properties of
the integral (including linearity!). See the Problems section for some applications.

Theorem 5.18 (Lebesgue integral: Monotone convergence). Let (X,F, 𝜇) be a measure
space. Consider a pointwise increasing sequence ( 𝑓𝑗 : X → ℝ+)𝑗 ∈ℕ of positive,
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measurable functions. That is,

𝑓𝑗 (𝑥) ↑ 𝑓 (𝑥) for each 𝑥 ∈ X.

Then the sequence of Lebesgue integrals increases, converging to its limiting value:

𝜇( 𝑓𝑗 ) ↑ 𝜇( 𝑓 ).

Let us emphasize that the proof of Theorem 5.18 only depends on Definition 5.11.
It uses none of the properties listed in Theorem 5.14.

Proof. Since the functions are increasing, the limiting function 𝑓 = sup𝑗 𝑓𝑗 is positive
and measurable (Example 4.16). Therefore, its integral 𝜇( 𝑓 ) is defined.

The super-level sets of the functions 𝑓𝑗 compose an increasing sequence of sets:

{𝑓𝑗 > 𝑡 } ↑ {𝑓 > 𝑡 } as 𝑗 → ∞ for each 𝑡 ≥ 0.

Indeed, the increase follows from the fact that 𝑓𝑗 (𝑥) > 𝑡 implies that 𝑓𝑗+1(𝑥) > 𝑡 . We
obtain the limit from the observation that 𝑓 (𝑥) > 𝑡 if and only if sup𝑗 𝑓𝑗 (𝑥) > 𝑡 .

On the interval 𝑡 ≥ 0, define the positive, decreasing functions

ℎ 𝑗 (𝑡 ) := 𝜇{𝑓𝑗 > 𝑡 } for 𝑗 ∈ ℕ;
ℎ (𝑡 ) := 𝜇{𝑓 > 𝑡 }.

By the increasing limit property of a measure (Proposition 2.30), we see that ℎ 𝑗 (𝑡 ) ↑
ℎ (𝑡 ) for each 𝑡 ≥ 0. We may conclude that

𝜇( 𝑓𝑗 ) =
∫ ∞

0
ℎ 𝑗 (𝑡 ) d𝑡 ↑

∫ ∞

0
ℎ (𝑡 ) d𝑡 = 𝜇( 𝑓 ),

via doubly monotone convergence of Riemann integrals (Theorem C.8). ■

Exercise 5.19 (Monotone convergence: Integrable functions). Extend Theorem 5.18 to the
setting where ( 𝑓𝑗 : 𝑗 ∈ ℕ) is a pointwise increasing sequence of 𝜇-integrable functions.
Hint: Use linearity, which itself is a consequence of Theorem 5.18.

5.4.2 Fatou’s lemma
We continue with another convergence result, which gives a lower bound on the
smallest values attained by a sequence of integrals.

Theorem 5.20 (Lebesgue integral: Fatou’s lemma).
Warning: This result is false
without the positivity
assumption! ■

Let (X,F, 𝜇) be a measure space.
Consider a sequence ( 𝑓𝑗 : X → ℝ+)𝑗 ∈ℕ of positive, measurable functions. Then the
inferior limit of integrals is bounded below:

lim inf 𝑗→∞ 𝜇( 𝑓𝑗 ) ≥ 𝜇
(
lim inf 𝑗→∞ 𝑓𝑗

)
.

This argument uses some of the simpler properties of the integral from Theorem 5.14.

Proof. The function 𝑓 := lim inf 𝑗→∞ 𝑓𝑗 is positive and measurable (Exercise 4.17), so
its integral 𝜇( 𝑓 ) is defined.

Recall that the inferior limit can be expressed as

𝑓 = lim inf 𝑗→∞ 𝑓𝑗 = lim𝑗→∞ inf𝑘≥ 𝑗 𝑓𝑘 =: lim𝑗→∞ 𝑔 𝑗 .
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For each 𝑗 ∈ ℕ, we have introduced the positive, measurable function 𝑔 𝑗 := inf𝑘≥ 𝑗 𝑓𝑘 .
By construction, the sequence (𝑔 𝑗 : 𝑗 ∈ ℕ) is pointwise increasing. Furthermore,
𝜇(𝑔 𝑗 ) ≤ 𝜇( 𝑓𝑘 ) for each 𝑘 ≥ 𝑗 by the monotonicity of the integral (Theorem 5.14).

An application of monotone convergence (Theorem 5.18) delivers

𝜇( 𝑓 ) = 𝜇(lim𝑗→∞ 𝑔 𝑗 ) = lim𝑗→∞ 𝜇(𝑔 𝑗 )
≤ lim𝑗→∞ inf𝑘≥ 𝑗 𝜇( 𝑓𝑘 ) = lim inf 𝑗→∞ 𝜇( 𝑓𝑗 ).

This is the required result. ■

A convenient feature of Theorem 5.20 is that it requires neither the sequence of
functions nor their integrals to have a limit. As such, we can apply it impulsively,
without stopping to check that the limits exist. The cost for this flexibility is that the
theorem only yields a lower bound.

Exercise 5.21 (Fatou gap). Find a sequence ( 𝑓𝑗 : ℝ → ℝ)𝑗 ∈ℕ of positive functions on the
real line where lim inf 𝑗→∞ 𝜆( 𝑓𝑗 ) > 𝜆(lim inf 𝑗→∞ 𝑓𝑗 ). Hint: The mass can “leak out” at
±∞.

Aside: Fatou’s lemma states that the Lebesgue integral is lower semicontinuous on
the class of positive, measurable functions.

5.4.3 Dominated convergence
The dominated convergence theorem is our main workhorse when we need to take
limits of Lebesgue integrals. It gives a simple sufficient condition under which we can
exchange the integral with a limit. See the Problems section for some applications.

Theorem 5.22 (Lebesgue integral: Dominated convergence). Let (X,F, 𝜇) be a measure
space. Consider a pointwise convergent sequence ( 𝑓𝑗 : X → ℝ)𝑗 ∈ℕ of measurable
functions: 𝑓𝑗 → 𝑓 . Suppose that each function in the sequence is dominated

Warning: The dominating
function 𝑔 cannot depend on the
index 𝑗 . ■

by a
fixed, integrable function:

| 𝑓𝑗 | ≤ |𝑔 | for each 𝑗 ∈ ℕ where 𝑔 ∈ L1(𝜇).

Then we can exchange the limit with the integral:

lim𝑗→∞ 𝜇( 𝑓𝑗 ) = 𝜇
(
lim𝑗→∞ 𝑓𝑗

)
.

That is, 𝜇( 𝑓𝑗 ) → 𝜇( 𝑓 ).

Unlike monotone convergence, the proof of dominated convergence depends on
the integral properties obtained in Theorem 5.14. In particular, it relies on linearity.

Proof. First, assume that 𝑓𝑗 ≥ 0 for each index 𝑗 . By monotonicity of the integral, the
functions 𝑓𝑗 and the limit function 𝑓 are integrable because the dominating function
|𝑔 | is integrable. Recall that integrable functions only take finite values.

By Fatou’s lemma (Theorem 5.20),

lim inf 𝑗→∞ 𝜇( 𝑓𝑗 ) ≥ 𝜇(lim inf 𝑗→∞ 𝑓𝑗 ) = 𝜇( 𝑓 ).

For each index 𝑗 , we have |𝑔 | − 𝑓𝑗 ≥ 0. Another application of Fatou’s lemma yields

lim inf 𝑗→∞ 𝜇( |𝑔 | − 𝑓𝑗 ) ≥ 𝜇( |𝑔 | − lim sup𝑗→∞ 𝑓𝑗 ) = 𝜇( |𝑔 | − 𝑓 ).
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Using the linearity of the integral, we can simplify this inequality to read

lim sup𝑗→∞ 𝜇( 𝑓𝑗 ) ≤ 𝜇( 𝑓 ).

Combining these bounds, we find that

lim inf 𝑗→∞ 𝜇( 𝑓𝑗 ) ≥ 𝜇( 𝑓 ) ≥ lim sup𝑗→∞ 𝜇( 𝑓𝑗 ).

The inferior and superior limits coincide, so the limit exists. We deduce that the
integrals satisfy 𝜇( 𝑓𝑗 ) → 𝜇( 𝑓 ).

Now, suppose that the functions 𝑓𝑗 are merely integrable. Both the sequence of
positive parts (( 𝑓𝑗 )+ : 𝑗 ∈ ℕ) and the sequence of negative parts (( 𝑓𝑗 )− : 𝑗 ∈ ℕ) are
dominated by |𝑔 |. Using Definition 5.13 and applying the result for positive functions
twice, we reach the conclusion that 𝜇( 𝑓𝑗 ) → 𝜇( 𝑓 ). ■

Exercise 5.23 (Lebesgue integral: Continuity fails). Find a sequence ( 𝑓𝑗 : ℝ → ℝ)𝑗 ∈ℕ where
𝑓𝑗 → 𝑓 pointwise but 𝜆( 𝑓𝑗 ) ↛ 𝜆( 𝑓 ). Hint: The mass can “leak out” at ±∞.

5.4.4 Convergence pointwise and convergence almost everywhere
As a general principle, Lebesgue integrals have no interest in what a function does on
a negligible set. We can apply this intuition to extend the convergence theorems to the
case where the sequences converge almost everywhere.

First, we take a moment to elaborate on the difference between pointwise con-
vergence and almost-everywhere convergence. Consider a measure space (X,F, 𝜇).
Let ( 𝑓𝑗 : X → ℝ)𝑗 ∈ℕ be a sequence of measurable functions, and let 𝑓 : X → ℝ be
another measurable function. We compare two convergence concepts:

Pointwise convergence: 𝑓𝑗 (𝑥) → 𝑓 (𝑥) for every 𝑥 ∈ X.
Almost-everywhere convergence: 𝑓𝑗 (𝑥) → 𝑓 (𝑥) for 𝜇-almost every 𝑥 ∈ X.

Warning: The practical import of
almost-everywhere convergence
depends on the measure. ■

More precisely, almost-everywhere convergence means that

𝜇{𝑥 ∈ X : 𝑓𝑗 (𝑥) ↛ 𝑓 (𝑥)} = 0.

That is, the set of points where the sequence fails to converge is a negligible set for 𝜇.
It is clear that pointwise convergence implies almost-everywhere convergence, but the
converse is not true.

It may helpful to examine some simple examples.

Figure 5.2 (Pw versus ae).
On the interval [0, 1], the
functions 𝑓𝑗 (𝑥 ) = 𝑥 𝑗

converge pointwise to a
nonzero function, but they
converge 𝜆-almost every-
where to zero.

Let 𝜆 be the Lebesgue measure
on the real line. Consider the functions

𝑓𝑗 (𝑥) =
{
𝑥 𝑗 , 0 ≤ 𝑥 ≤ 1
0, otherwise

for 𝑗 ∈ ℕ.

The function 𝑓 = 1{1} is a pointwise limit and a 𝜆-almost-everywhere limit. The zero
function 𝑓 = 0 is another 𝜆-almost-everywhere limit but not a pointwise limit. Of
course, the two 𝜆-almost everywhere limits agree 𝜆-almost everywhere.

It is not hard to construct sequences that converge almost everywhere but fail to
converge pointwise. A very simple example is

𝑓𝑗 (𝑥) =
{
(−1) 𝑗𝑥 𝑗 , 0 ≤ 𝑥 ≤ 1
0, otherwise

for 𝑗 ∈ ℕ.

Indeed, since 𝑓𝑗 (1) oscillates between ±1, the sequence fails to converge at the point
𝑥 = 1. But it still converges 𝜆-almost everywhere to the zero function.
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Exercise 5.24 (Almost everywhere for 𝛿0). Consider the measurable space (ℝ,B(ℝ)).
Let 𝛿0 be the Dirac measure at zero. Let 𝑓𝑗 : ℝ → ℝ be measurable functions.
Find a simple characterization of what if means for ( 𝑓𝑗 : 𝑗 ∈ ℕ) to converge almost
everywhere for 𝛿0.

Exercise 5.25 (Monotone convergence, almost everywhere). Prove that Theorem 5.18 re-
mains valid under the weaker condition that the functions are increasing almost
everywhere. That is, we assume that {𝑥 ∈ X : 𝑓𝑗 (𝑥) is increasing} is a 𝜇-almost-
everywhere set.

Exercise 5.26 (Dominated convergence, almost everywhere). Prove that Theorem 5.22
remains valid under the weaker condition that the functions are convergent almost
everywhere. That is, we assume that {𝑥 ∈ X : lim𝑗→∞ 𝑓𝑗 (𝑥) exists} is a 𝜇-almost-
everywhere set.

5.5 *Properties of the integral: Proofs
In this section, we give a complete proof of Theorem 5.14. We rely on monotone
convergence (Theorem 5.18), whose proof is already finished. Throughout this section,
(X,F, 𝜇) is a fixed measure space.

5.5.1 Indicators
We begin with the easy fact that the 𝜇-integral of the indicator function of a set
coincides with the measure of the set. Let A ∈ Fbe a measurable set with indicator
1A. The super-level sets of this function satisfy

{1A > 𝑡 } =
{
A, 0 ≤ 𝑡 < 1;
∅, 1 ≤ 𝑡 .

By Definition 5.11 of the integral of a positive function,

𝜇(1A) =
∫ ∞

0
𝜇{1A > 𝑡 } d𝑡 =

∫ 1

0
𝜇(A) d𝑡 = 𝜇(A).

In particular, taking A = ∅, we confirm that the integral of the zero function is zero.

5.5.2 Monotonicity properties
The fact that a positive function has a positive integral is obvious. Just glance at
Definition 5.11 (the Lebesgue integral of a positive function), and recall that the
improper Riemann integral of a positive, decreasing function is a positive number
(Theorem C.7).

Next, we develop monotonicity properties for positive, measurable functions 𝑓 , 𝑔 :
X → ℝ+. Suppose that 0 ≤ 𝑓 ≤ 𝑔 . For each 𝑡 ≥ 0,

𝜇{𝑓 > 𝑡 } ≤ 𝜇{𝑔 > 𝑡 }.
Indeed, the super-level sets satisfy the containment {𝑓 > 𝑡 } ⊆ {𝑔 > 𝑡 }, and measures
are monotone (Proposition 2.29). The result follows from Definition 5.11 and the
monotonicity of the improper Riemann integral (Theorem C.7).

Last, we consider integrable functions 𝑓 , 𝑔 : X → ℝ. Suppose that 𝑓 ≤ 𝑔 . The
positive and negative parts satisfy

𝑓+ ≤ 𝑔+ and 𝑓− ≥ 𝑔− .

Use Definition 5.13 (the Lebesgue integral of a signed function) and the monotonicity
of the Lebesgue integral for positive functions (obtained in the previous paragraph).
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5.5.3 Linearity properties
The proof that the integral is linear is surprisingly involved. We begin with the
case where the functions are positive; we remove the restriction afterward. It is
straightforward to check that the integral is (positively) homogeneous; the major effort
arises in the proof of additivity.

Positive homogeneity
First, we check that the integral is positively homogeneous. Fix a positive, measurable
function 𝑓 : X → ℝ+ and a positive scalar 𝛼 ∈ ℝ+. Calculate

𝜇(𝛼𝑓 ) =
∫ ∞

0
𝜇{𝛼𝑓 > 𝑡 } d𝑡 = 𝛼

∫ ∞

0
𝜇{𝑓 > 𝑡 } d𝑡 = 𝛼𝜇( 𝑓 ). (5.3)

We have used the linear change of variables 𝑡 ↦→ 𝛼𝑡 in the Riemann integral. (This
fact can be established by direct examination of the lower and upper sums. Otherwise,
take limits in Corollary C.6.)

Additivity for positive simple functions
Next, we establish that the integral is additive for positive, measurable functions that
take a finite number of values. This is the class SF+ := SF+(F) we encountered in (5.1).
This result takes several steps, which we parcel into propositions.

Proposition 5.27 (Positive simple function: Standard form). A positive simple function
𝑓 ∈ SF+ can always be written in standard form:

𝑓 =
∑︁𝑛

𝑖=0
𝛼𝑖1A𝑖 where 𝛼𝑖 ≥ 0 and the A𝑖 ∈ Fare disjoint sets.

We can also upgrade the representation to canonical form where the coefficients are
distinct and the sets cover the domain: 0 = 𝛼0 < 𝛼1 < · · · < 𝛼𝑛 and ¤⋃𝑛

𝑖=0 A𝑖 = X.

Proof. By definition, the range of a positive simple function 𝑓 contains a finite number
of distinct values. We may construct the canonical representation as follows.

𝑓 =
∑︁

𝛼∈range 𝑓
𝛼 1{ 𝑓 =𝛼 } .

Since 𝑓 is measurable, the level set {𝑓 = 𝛼} is measurable for each 𝛼. For distinct
values of 𝛼, the level sets {𝑓 = 𝛼} are disjoint. Finally, the level sets cover the whole
domain. ■

Proposition 5.28 (Lebesgue integral: Positive simple function). Let 𝑓 ∈ SF+ be a positive
simple function, presented in standard form (Proposition 5.27). Then

𝑓 =
∑︁𝑛

𝑖=0
𝛼𝑖1A𝑖 implies 𝜇( 𝑓 ) =

∑︁𝑛

𝑖=0
𝛼𝑖𝜇(A𝑖 ).

In particular, the value of the integral does not depend on the choice of the standard
form representation of the simple function 𝑓 .

Proof. Let 𝑓 =
∑𝑛
𝑖=0 𝛼𝑖1A𝑖 , where the A𝑖 are disjoint. Suppose that 𝑓 takes on the

distinct values 0 ≤ 𝑡1 < · · · < 𝑡𝑟 . Write 𝑡0 = 0.
Introduce the decreasing mass rearrangement ℎ (𝑡 ) := 𝜇{𝑓 > 𝑡 } for 𝑡 ≥ 0. From

its definition, we see that the function ℎ is constant on each interval [𝑡𝑗−1, 𝑡𝑗 ) for
𝑗 = 1, . . . , 𝑟 , and ℎ is zero on the interval [𝑡𝑟 ,+∞). Furthermore, since the sets A𝑖 are
disjoint, 𝑓 exceeds 𝑡 on the set A𝑖 if and only if 𝛼𝑖 > 𝑡 . Thus,

ℎ (𝑡 ) = 𝜇
( ¤⋃

𝑖 :𝛼𝑖>𝑡 A𝑖
)
=

∑︁
𝑖 :𝛼𝑖>𝑡

𝜇(A𝑖 ).
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We have used (finite) additivity of the measure.
With this information, we can now compute the integral of 𝑓 using our bare hands:

𝜇( 𝑓 ) =
∫ ∞

0
ℎ (𝑡 ) d𝑡 =

∑︁𝑟

𝑗=1
(𝑡𝑗 − 𝑡𝑗−1) · ℎ (𝑡𝑗−1)

=
∑︁𝑟

𝑗=1
(𝑡𝑗 − 𝑡𝑗−1)

∑︁
𝑖 :𝛼𝑖>𝑡𝑗−1

𝜇(A𝑖 )

=
∑︁𝑟

𝑗=1
𝑡𝑗

∑︁
𝑖 :𝛼𝑖=𝑡𝑗

𝜇(A𝑖 ) =
∑︁𝑛

𝑖=0
𝛼𝑖𝜇(A𝑖 ).

The second relation holds because ℎ is constant on each interval [𝑡𝑗−1, 𝑡𝑗 ). We have
used summation by parts to pass from the second line to the third. ■

Proposition 5.29 (Lebesgue integral: Additivity for positive simple functions). Let 𝑓 , 𝑔 ∈ SF+
be positive simple functions. Then 𝜇( 𝑓 + 𝑔 ) = 𝜇( 𝑓 ) + 𝜇(𝑔 ).

Proof. Let 𝑓 and 𝑔 be presented in canonical form:

𝑓 =
∑︁𝑚

𝑖=0
𝛼𝑖1A𝑖 and 𝑔 =

∑︁𝑛

𝑗=0
𝛽𝑗1B𝑗 .

As usual, the coefficients 𝛼𝑖 , 𝛽𝑗 ≥ 0. The argument hinges on the disjoint cover
property:

¤⋃𝑚
𝑖=0 A𝑖 = X and ¤⋃𝑛

𝑗=0 B𝑗 = X.

This representation makes it easy to write the sum 𝑓 + 𝑔 in standard form:

𝑓 + 𝑔 =
∑︁𝑚

𝑖=0

∑︁𝑛

𝑗=0
(𝛼𝑖 + 𝛽𝑗 ) 1A𝑖∩B𝑗 .

Indeed, the family {A𝑖 ∩ B𝑗 for all 𝑖 , 𝑗 } is a disjoint cover of X. Therefore, every point
𝑥 ∈ X belongs to exactly one of these sets, and ( 𝑓 + 𝑔 ) (𝑥) = 𝛼𝑖 + 𝛽𝑗 when 𝑥 ∈ A𝑖 ∩ B𝑗 .

Proposition 5.28 now delivers the integral of the sum:

𝜇( 𝑓 + 𝑔 ) =
∑︁𝑚

𝑖=0

∑︁𝑛

𝑗=0
(𝛼𝑖 + 𝛽𝑗 ) 𝜇(A𝑖 ∩ B𝑗 )

=
∑︁𝑚

𝑖=0
𝛼𝑖

[∑︁𝑛

𝑗=0
𝜇(A𝑖 ∩ B𝑗 )

]
+

∑︁𝑛

𝑗=0
𝛽𝑗

[∑︁𝑚

𝑖=0
𝜇(A𝑖 ∩ B𝑗 )

]
=

∑︁𝑚

𝑖=0
𝛼𝑖𝜇(A𝑖 ) +

∑︁𝑛

𝑗=0
𝛽𝑗𝜇(B𝑗 ) = 𝜇( 𝑓 ) + 𝜇(𝑔 ).

To compute the first large bracket, we used the fact that {A𝑖 ∩ B𝑗 for all 𝑗 } is a disjoint
family with union A𝑖 , and we used the additivity of the measure. The second bracket
is computed in an analogous fashion. Finally, we applied Proposition 5.28 again to
recognize the integrals 𝜇( 𝑓 ) and 𝜇(𝑔 ). ■

Additivity for positive functions
To derive additivity for positive functions, we use approximation by simple functions.
This argument relies on monotone convergence (Theorem 5.18)!

Proposition 5.30 (Lebesgue integral: Additivity for positive functions). Let 𝑓 , 𝑔 : X → ℝ+ be
positive, measurable functions. Then 𝜇( 𝑓 + 𝑔 ) = 𝜇( 𝑓 ) + 𝜇(𝑔 ).

Proof. In (5.2), we introduced the sequence (𝑄 𝑗 : 𝑗 ∈ ℕ) of staircase maps. According
to Exercise 5.10, these maps have two key properties. First,𝑄 𝑗 ◦ 𝑓 is a positive simple
function for each 𝑗 ∈ ℕ. Second, the sequence 𝑄 𝑗 ◦ 𝑓 ↑ 𝑓 pointwise. An evident
consequence is that (𝑄 𝑗 ◦ 𝑓 ) + (𝑄 𝑗 ◦ 𝑔 ) ↑ 𝑓 + 𝑔 pointwise.
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By Proposition 5.29,

𝜇((𝑄 𝑗 ◦ 𝑓 ) + (𝑄 𝑗 ◦ 𝑔 )) = 𝜇(𝑄 𝑗 ◦ 𝑓 ) + 𝜇(𝑄 𝑗 ◦ 𝑔 ).

To conclude, apply monotone convergence (Theorem 5.18) three times. ■

Positive linearity
At this point, we stop to collect our results in an important theorem. This result is
significant because it holds for all positive functions, regardless of whether they have
finite integrals.

Theorem 5.31 (Lebegue integral: Positive linearity). Let 𝑓 , 𝑔 : X → ℝ+ be positive,
measurable functions, and let 𝛼, 𝛽 ≥ 0 be positive scalars. Then

𝜇(𝛼𝑓 + 𝛽𝑔 ) = 𝛼𝜇( 𝑓 ) + 𝛽𝜇(𝑔 ).

Proof. Combine the additivity of the integral for positive functions, Proposition 5.30,
with the positive homogeneity property (5.3). ■

Linearity for integrable functions
Finally, we arrive at the last step in our proof that the Lebesgue integral is linear. Let
us emphasize again that linearity is the most important property of an integral.

Theorem 5.32 (Lebesgue integral: Linearity). Let 𝑓 , 𝑔 : X → ℝ be 𝜇-integrable func-
tions, and let 𝛼, 𝛽 ∈ ℝ be scalars. Then

𝜇(𝛼𝑓 + 𝛽𝑔 ) = 𝛼𝜇( 𝑓 ) + 𝛽𝜇(𝑔 ).

Proof. First, we check homogeneity. Note that scaling preserves the integrability of the
function 𝑓 . Indeed, by the positive homogeneity property (5.3),

𝜇( |𝛼𝑓 |) = 𝜇( |𝛼 | · | 𝑓 |) = |𝛼 | · 𝜇( | 𝑓 |) < +∞ for 𝛼 ∈ ℝ.

Restrict attention to the case 𝛼 ≥ 0. Using the Definition 5.13 of the Lebesgue integral
and (5.3), we see that

𝜇(𝛼𝑓 ) = 𝜇(𝛼𝑓+ − 𝛼𝑓−) = 𝜇(𝛼𝑓+) − 𝜇(𝛼𝑓−) = 𝛼𝜇( 𝑓+) − 𝛼𝜇( 𝑓−) = 𝛼𝜇( 𝑓 ).

The case 𝛼 < 0 is similar.
Next, we prove that the integral is additive. To that end, note that a sum of integral

functions remains integrable:

𝜇( | 𝑓 + 𝑔 |) ≤ 𝜇( | 𝑓 | + |𝑔 |) ≤ 𝜇( | 𝑓 |) + 𝜇( |𝑔 |) < +∞.

The first relation follows from the triangle inequality for |·| and the monotonicity of
the integral (Section 5.5.2). By Definition 5.13 and Theorem 5.31 on positive linearity,

𝜇( 𝑓 + 𝑔 ) = 𝜇(( 𝑓+ + 𝑔+) − ( 𝑓− + 𝑔−))
= 𝜇( 𝑓+ + 𝑔+) − 𝜇( 𝑓− + 𝑔−)
= [𝜇( 𝑓+) + 𝜇(𝑔+)] − [𝜇( 𝑓−) + 𝜇(𝑔−)] = 𝜇( 𝑓 ) + 𝜇(𝑔 ).

We have used the fact that the positive and negative parts of an integrable function are
integrable, as are sums of integrable functions.

Together, additivity and the homogeneity readily imply linearity. ■
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5.5.4 Negligible sets
In this section, we establish that negligible sets do not play a role in determining the
value of the integral.

First, assume that 𝑓 : X → ℝ+ is a positive function. We will verify that 𝜇( 𝑓 ) = 0
if and only if 𝑓 = 0 𝜇-almost everywhere. For the reverse direction, assume that
𝑓 = 0 𝜇-almost everywhere. Equivalently, E := {𝑓 > 0} has measure 𝜇(E) = 0. By
monotonicity, the set {𝑓 > 𝑡 } ⊆ E has measure zero for each 𝑡 > 0. By Definition 5.11
of the integral,

𝜇( 𝑓 ) =
∫ ∞

0
𝜇{𝑓 > 𝑡 } d𝑡 = 0.

For the forward direction, suppose that 𝜇{𝑓 > 0} > 0. It follows that 𝜇{𝑓 > 𝜀} > 𝜀
for some 𝜀 > 0. (Why?) Therefore,

𝜇( 𝑓 ) =
∫ ∞

0
𝜇{𝑓 > 𝑡 } d𝑡 ≥

∫ 𝜀

0
𝜇{𝑓 > 𝑡 } d𝑡 ≥

∫ 𝜀

0
𝜇{𝑓 > 𝜀} d𝑡 ≥ 𝜀2.

In particular, the integral 𝜇( 𝑓 ) ≠ 0.
Next, suppose that 𝑓 , 𝑔 : X → ℝ+ are positive functions that are equal 𝜇-almost

everywhere. The reader may verify that the pointwise minimum 𝑓 ∧ 𝑔 coincides
with both 𝑓 and 𝑔 𝜇-almost everywhere. In particular, 𝑓 − ( 𝑓 ∧ 𝑔 ) = 0 𝜇-almost
everywhere. By the first part,

𝜇( 𝑓 ) = 𝜇
(
𝑓 − ( 𝑓 ∧ 𝑔 ) + ( 𝑓 ∧ 𝑔 )

)
= 𝜇

(
𝑓 − ( 𝑓 ∧ 𝑔 )

)
+ 𝜇( 𝑓 ∧ 𝑔 ) = 𝜇( 𝑓 ∧ 𝑔 ).

We have used the fact (Theorem 5.31) that the integral is additive for positive functions.
By the same argument, 𝜇(𝑔 ) = 𝜇( 𝑓 ∧ 𝑔 ). We conclude that 𝜇( 𝑓 ) = 𝜇(𝑔 ).

Finally, suppose that 𝑓 , 𝑔 : ℝ → ℝ are 𝜇-integrable functions that are equal
𝜇-almost everywhere. The reader may verify that 𝑓+ = 𝑔+ and 𝑓− = 𝑔− almost
everywhere for 𝜇. Thus,

𝜇( 𝑓 ) = 𝜇( 𝑓+) − 𝜇( 𝑓−) = 𝜇(𝑔+) − 𝜇(𝑔−) = 𝜇(𝑔 ).

We have used Definition 5.13 of the Lebesgue integral and the result from the last
paragraph on positive functions that are equal almost everywhere.

Exercise 5.33 (Negligible sets: Without additivity). It is possible to prove these results
without using the fact that the integral is additive for positive functions. Give it a try.

5.6 *The Lebesgue integral via simple functions
The most important property of an integral is linearity. Although our construction
of the Lebesgue integral via super-level sets is geometrically intuitive, the linearity
property does not follow easily (see Section 5.5.3). Moreover, our treatment of the
Lebesgue integral relies heavily on properties of the Riemann integral.

The approach in this section is the
standard way to introduce Lebesgue
integrals. Mathematically inclined
readers should become familiar with
these ideas.

In this section, we explore another approach to defining the Lebesgue integral
that makes the linearity property more-or-less obvious. We will confirm that the two
definitions are equivalent. With extra work (not included here), the approach in this
section can also be used to develop the Lebesgue integral without any reference to the
Riemann integral.
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5.6.1 From indicators to positive simple functions
Let (X,F, 𝜇) be a measure space. For now, let us forget that we have already defined
the Lebesgue integral and start from scratch. If all is right in the world, the 𝜇-integral
of the indicator 1A of a measurable set A should equal the measure of the set. Thus,
we begin by defining the integral for the class of indicator functions:∫

X
1A d𝜇 := 𝜇(A) for all A ∈ F.

Note that we allow the integral to take the value +∞ when the set A has infinite
measure.

Next, we wish to extend the integral to the class SF+ of positive simple func-
tions (5.1). We do so by forcing the integral to be linear:∫

X

(∑︁𝑛

𝑖=1
𝛼𝑖1A𝑖

)
d𝜇 :=

∑︁𝑛

𝑖=1
𝛼𝑖

∫
X
1A𝑖 d𝜇 =

∑︁𝑛

𝑖=1
𝛼𝑖𝜇(A𝑖 ). (5.4)

Since we have insisted that the coefficients 𝛼𝑖 are positive, the integral may take the
value +∞, but the definition cannot produce any competing infinities (∞−∞). The
major difficulty is to confirm that (5.4) is a legal definition.

Problem 5.34 (*Lebesgue integral: Well-definition for simple functions). Prove that (5.4)
gives a well-defined result. That is, the value of the integral does not depend on
how we write the simple function as a positive linear combination of indicators. Hint:
We may require the 𝛼𝑖 to be distinct and the A𝑖 to be disjoint sets that cover ℝ; see
Proposition 5.28.

5.6.2 The integral of a positive function
Our next goal is to extend the integral to all positive, measurable functions. To do so,
we approximate measurable functions by simple functions that are pointwise smaller;
see Figure 5.1. This illustration suggests how to construct the integral. For a positive
measurable function 𝑓 : X → ℝ+, define∫

X
𝑓 d𝜇 := sup

{∫
X
𝑠 d𝜇 : 𝑠 ∈ SF+ and 𝑠 ≤ 𝑓 pointwise

}
. (5.5)

This formula obviously produces a well-defined result in the range [0,+∞]. To work
with this definition, you may recall that Exercise 5.10 provides a concrete mechanism
for approximating a positive, measurable function below by a positive simple function.

The integral defined in (5.5) inherits positive linearity and other properties from
the definition of the integral for simple functions. A direct proof of this claim requires
some effort. In our setting, an alternative approach to establishing integral properties
is to verify that the new definition of the integral agrees with the old definition.

Proposition 5.35 (Lebesgue integral: Equivalence of definitions). For all positive, measurable
functions, the definition (5.5) of the Lebesgue integral via simple functions agrees with
Definition 5.11 via super-level sets.

Proof. Let (X,F, 𝜇) be a measure space, and let 𝑓 : X → ℝ+ be a positive, measurable
function. We need notation to distinguish the two integrals from each other. To
that end, let 𝜇( 𝑓 ) denote the integral obtained from Definition 5.11, for which
we have established monotone convergence (Theorem 5.18) plus monotonicity and
linearity (Theorem 5.14). In contrast, let 𝜇0( 𝑓 ) denote the integral (5.5) obtained by
approximation with simple functions.
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The goal is to prove that 𝜇( 𝑓 ) = 𝜇0( 𝑓 ). We already know that 𝜇(𝑠 ) = 𝜇0(𝑠 ) for
every positive simple function 𝑠 ∈ SF+. Indeed, the value of 𝜇0(𝑠 ) in definition (5.4)
agrees with the value of 𝜇(𝑠 ) computed in Proposition 5.28.

Recall the definition (5.2) of the staircase map𝑄 𝑗 . According to Exercise 5.10, the
positive simple functions𝑄 𝑗 ◦ 𝑓 increase pointwise to 𝑓 . Thus,

𝜇0( 𝑓 ) ≥ sup𝑗 𝜇0(𝑄 𝑗 ◦ 𝑓 ) = sup𝑗 𝜇(𝑄 𝑗 ◦ 𝑓 ) = 𝜇( 𝑓 ).

The last relation is monotone convergence for 𝜇.
On the other hand, let (𝑠𝑗 ∈ SF+ : 𝑗 ∈ ℕ) be a maximizing sequence In this context, a maximizing sequence

has the property that 𝜇0 (𝑠𝑗 ) ↑ 𝜇 ( 𝑓 ) .
for the

supremum in (5.5). In particular, 𝑠𝑗 ≤ 𝑓 for all 𝑗 ∈ ℕ. Then

𝜇0( 𝑓 ) = sup𝑗 𝜇0(𝑠𝑗 ) = sup𝑗 𝜇(𝑠𝑗 )
≤ sup𝑗 𝜇(sup𝑘≤ 𝑗 𝑠𝑘 ) = 𝜇(sup𝑗 sup𝑘≤ 𝑗 𝑠𝑘 ) ≤ 𝜇( 𝑓 ).

The two inequalities rely on the fact that 𝜇 is monotone; the last equality holds by
monotone convergence for 𝜇. ■

5.6.3 The integral of a measurable function
Finally, to integrate a measurable function 𝑓 : X → ℝ that may take positive and
negative values, we split it into positive and negative parts, as before. Assume that∫
X | 𝑓 | d𝜇 < +∞. Then we set∫

X
𝑓 d𝜇 :=

∫
X
𝑓+ d𝜇 −

∫
𝑓− d𝜇. (5.6)

This formula produces a well-defined, finite value. It is not hard to see that the
integral (5.6) inherits linearity from the integral (5.5) for positive functions.

Problems
Problem 5.36 (Measurability). Let (X,F) and (Y, G) be measurable spaces. We say that
a function 𝑓 : X → Y is measurable if

𝑓 −1(G) ∈ F for all G ∈ G. (5.7)

1. Consider the special case where (Y, G) = (ℝ,B(ℝ)). Confirm that the defini-
tion (5.7) is consistent with Definition 5.1 of a measurable function.

2. Suppose that G = 𝜎 (S; Y) is the 𝜎 -algebra generated by a family S ⊆ P(Y).
Prove that a function 𝑓 : X → Y is measurable if and only if

𝑓 −1(S) ∈ F for each S ∈ S.

In other words, we only need to check the sets that generate the 𝜎 -algebra for
the codomain of 𝑓 . Hint: See the proof of Proposition 4.2.

3. Deduce Proposition 4.2 directly from (2).
4. Let 𝑓 : X → Y and 𝑔 : Y → Z be measurable functions defined on suitable

measurable spaces. Show that the composition 𝑔 ◦ 𝑓 is measurable.
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Aside: In categorical terms, measurable functions are the morphisms between
measurable spaces. For an analogy, recall that continuous functions are the
morphisms between topological spaces.

Exercise 5.37 (Yet more inclusion–exclusion). Let (X,F, 𝜇) be a measure space. Let
A1, . . . ,A𝑛 be measurable sets, each with finite measure. In Exercise 2.47, we derived
the inclusion–exclusion identity

1⋃𝑛
𝑖=1 A𝑖 =

∑︁𝑛

𝑘=1
(−1)𝑘+1

∑︁
𝑖1<𝑖2<· · ·<𝑖𝑘

1A𝑖1∩···∩A𝑖𝑘 .

Deduce that

𝜇
(⋃𝑛

𝑖=1 A𝑖
)
=

∑︁𝑛

𝑘=1
(−1)𝑘+1

∑︁
𝑖1<𝑖2<· · ·<𝑖𝑘

𝜇(A𝑖1 ∩ · · · ∩ A𝑖𝑘 ).

Hint: The integral is a linear functional.

Exercise 5.38 (Lebesgue integral: Downward monotone convergence). Let (X,F, 𝜇) be a
measure space. Consider a decreasing sequence ( 𝑓𝑗 : X → ℝ+) of positive, integrable
functions: 𝑓𝑗 ↓ 𝑓 . Prove that 𝜇( 𝑓𝑗 ) ↓ 𝜇( 𝑓 ).
Exercise 5.39 (Lebegue integral: Tonelli’s theorem for sums). Let (X,F, 𝜇) be a measure
space. Let ( 𝑓𝑗 : X → ℝ+)𝑗 ∈ℕ be a sequence of positive, measurable functions. Show
that, without further qualification,∫

X

(∑︁∞
𝑗=1

𝑓𝑗

)
d𝜇 =

∑︁∞
𝑗=1

∫
X
𝑓𝑗 d𝜇.

Hint: Use monotone convergence!

Exercise 5.40 (Lebesgue integral: Domain decomposition). Let (X,F, 𝜇) be a measure
space. Suppose that X = ¤⋃∞

𝑗=1 E𝑗 for measurable sets E𝑗 . If the measurable function
𝑓 : X → ℝ is either positive or integrable, then∫

X
𝑓 d𝜇 =

∑︁∞
𝑗=1

∫
E𝑗
𝑓 d𝜇.

Problem 5.41 (Borel–Cantelli I). Let (X,F, 𝜇) be a measure space. For a sequence
( 𝑓𝑗 : X → ℝ+)𝑗 ∈ℕ of positive, measurable functions, prove that∑︁∞

𝑗=1
𝜇( 𝑓𝑗 ) < +∞ implies 𝜇

(
lim sup𝑗→∞ 𝑓𝑗

)
= 0.

Specialize this result to indicator functions, and then write the statement in terms of
sets. What is the interpretation? Hint: Write the limit superior as an inf–sup. Note that
the integral of the supremum tends to zero.

Problem 5.42 (Lebesgue integral: Differentiation under the integral). We often encounter
integrals that are parameterized by a real variable. Under modest conditions, we
can differentiate the integral with respect to the parameter by passing the derivative
through the integral.

Let 𝜇 be a Borel measure on ℝ, and let 𝑓 : ℝ× (𝑎, 𝑏) → ℝ be a bivariate function,
where 𝑎, 𝑏 ∈ ℝ. Fix a point 𝑦0 ∈ (𝑎, 𝑏). Assume that 𝑓 (·, 𝑦 ) is 𝜇-integrable for each
𝑦 ∈ (𝑎, 𝑏). Define

𝐹 (𝑦 ) :=
∫
ℝ

𝑓 (𝑥, 𝑦 ) 𝜇(d𝑥) for 𝑦 ∈ (𝑎, 𝑏).
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1. Assume that lim𝑦→𝑦0 𝑓 (𝑥, 𝑦 ) = 𝑓 (𝑥, 𝑦0) for every 𝑥 ∈ ℝ. Suppose that
| 𝑓 (𝑥, 𝑦 ) | ≤ |𝑔 (𝑥) | for all 𝑦 ∈ (𝑎, 𝑏), where 𝑔 is 𝜇-integrable. Use dominated
convergence to conclude that

lim𝑦→𝑦0 𝐹 (𝑦 ) = 𝐹 (𝑦0).
In particular, if 𝑓 (𝑥, ·) is continuous for each 𝑥 , then 𝐹 is continuous at 𝑦0. Hint:
You can interpret the limit as the limit of a sequence.

2. Suppose the partial derivative 𝜕𝑦 𝑓 : ℝ × (𝑎, 𝑏) → ℝ exists. Assume that
| (𝜕𝑦 𝑓 ) (𝑥, 𝑦 ) | ≤ |𝑔 (𝑥) | for each 𝑦 ∈ (𝑎, 𝑏), where 𝑔 is a fixed 𝜇-integrable
function. Deduce that 𝐹 is differentiable at 𝑦0, and

𝐹 ′ (𝑦0) =
∫
ℝ

(𝜕𝑦 𝑓 ) (𝑥, 𝑦0) 𝜇(d𝑥).

Hint: Use the mean-value theorem to argue that 𝑔 also dominates the difference
quotients of 𝑓 (𝑥, ·).

3. For 𝑎 > 0, consider the parameterized integral

𝐹 (𝑎) :=
∫
ℝ+

e−𝑎𝑥 𝜆(d𝑥) = 1
𝑎
.

Compute two alternative expressions for the 𝑛th derivative 𝐹 (𝑛 ) (𝑎) by differ-
entiating this relation repeatedly with respect to 𝑎 . Specialize this formula to
𝑎 = 1, and discuss the result.

4. (*) Here is another example that can be treated by the same approach:

𝐹 (𝑎) :=
∫
ℝ+

e−𝑎𝑥
sin(𝑥)
𝑥

𝜆(d𝑥) = 𝜋

2
− arctan(𝑎) for 𝑎 > 0.

Verify the identity by differentiating under the integral sign and using standard
tools from calculus.

Problem 5.43 (Densities). Let (X,F, 𝜇) be a measure space, and let 𝑓 : X → ℝ+ be
a positive, measurable function. We can define a function 𝜈 : F → [0,+∞] on
measurable sets via

𝜈 (A) :=
∫
A
𝑓 d𝜇 for all A ∈ F.

The function 𝑓 is called the density of𝜈 with respect to 𝜇. It is often written 𝑓 = d𝜈/d𝜇.
See Exercise 6.27 for an explanation of this notation.

1. Prove that 𝜈 is a measure with 𝜈 (X) = 𝜇( 𝑓 ).
2. From the definition of the integral, show that two positive functions 𝑓 and 𝑔 are

both densities of 𝜇 if and only if 𝑓 = 𝑔 𝜆-almost everywhere. Hint: Prove the
forward direction by contraposition. For the reverse direction, first establish the
case 𝑓 = 0. Then consider the measurable function 𝑓 − 𝑓 ∧ 𝑔 .

3. The converse of (3) is called the
Radon–Nikodým theorem: 𝜈 Î 𝜇
implies that 𝜈 has a density with
respect to 𝜇. See Lecture 22.

Explain why 𝜇(A) = 0 implies that 𝜈 (A) = 0 for every measurable set A. We
write this condition as 𝜈 Î 𝜇, and we say that 𝜈 is absolutely continuous with
respect to 𝜇.

4. Consider the measure space (ℝ,B(ℝ), 𝜆). Define

𝛾 (B) := 1
√
2𝜋

∫
B
e−𝑥

2/2 𝜆(d𝑥) for Borel B ∈ B(ℝ).

Show that 𝛾 is a measure, which is called the standard Gaussian measure. What
is its density with respect to the Lebesgue measure 𝜆? (*) What is the total mass
of the measure?
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5. Consider the measure space (ℕ,P(ℕ),#). Define

𝜇(A) := 1
e

∫
A

1
𝑘 !

#(d𝑘 ) =
∑︁

𝑘 ∈A
1

e𝑘 !
for A ⊆ ℕ.

Show that 𝜇 is a probability measure on ℕ, called the standard Poisson measure.
What is its density with respect to the counting measure #?

Problem 5.44 (Push-forward of a measure). Let (X,F, 𝜇) be a measure space, and let
𝑓 : X → ℝ be a measurable function on the domain X. Define a function 𝜈 : B(ℝ) →
[0,+∞] via

𝜈 (B) := 𝜇( 𝑓 −1(B)) for all B ∈ B(ℝ).
The measure 𝜈 is called the push-forward of the measure 𝜇 by the function 𝑓 . It is
commonly denoted 𝜈 = 𝑓∗𝜇.

1. Prove that 𝜈 is a Borel measure on ℝ. Hint: Use the definition of measurability
and the properties of the preimage.

2. Establish the change of variables formula:

𝜈 (𝑔 ) = 𝜇(𝑔 ◦ 𝑓 ). (5.8)

Hint: Start with the case where 𝑔 is positive and use Definition 5.11 of the
Lebesgue integral. This problem becomes much harder if you define the integral
as a limit of simple functions.

Problem 5.45 (*Measures from positive operators). Let (X,F) be a measurable space.
Introduce the set of positive, measurable functions: L+ := {𝑓 : X → ℝ+ measurable}.
Let𝑻 : L+ → [0,+∞] be an operator that satisfies

1. Monotonicity: 𝑓 ≤ 𝑔 implies that𝑻 ( 𝑓 ) ≤ 𝑻 (𝑔 ) for all 𝑓 , 𝑔 ∈ L+.
2. Positive linearity: 𝑻 (𝛼𝑓 + 𝛼𝑔 ) = 𝛼𝑻 ( 𝑓 ) + 𝛽𝑻 (𝑔 ) for all 𝑓 , 𝑔 ∈ L+ and 𝛼, 𝛽 ≥ 0.
3. Monotone convergence: For every increasing sequence ( 𝑓𝑗 : 𝑗 ∈ ℕ) of functions in
L+ with pointwise limit 𝑓 , we have𝑻 ( 𝑓𝑗 ) ↑𝑻 ( 𝑓 ).

Define a function 𝜇 : F→ [0,+∞] on measurable sets via

𝜇(A) := 𝑻 (1A) for all A ∈ F.

Prove that 𝜇 is a measure. Deduce that measures are in one-to-one correspondence
with these positive operators.

Notes
All of this material is standard, and some version of these results may be found in any
book on real analysis. Nevertheless, the construction of the integral using super-level
sets is an unusual choice; it is motivated by the presentation in Lieb & Loss [LL01]. The
problem on differentiation under the integral sign is drawn from Folland’s book [Fol99],
while the examples of this method are extracted from Conrad’s note [Con]. The
problem on constructing measures from positive operators is adapted from Pollard’s
book [Pol02].
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6. Product Measures

Agenda:
1. Products of measurable spaces
2. Product measure
3. Fubini–Tonelli
4. Integration by parts

“Don’t find customers for your products, find products for your customers.”

—Seth Godin

“Tout dans la nature se modèle sur la sphère, le cône et le cylindre, il faut apprendre
à peindre sur ces figures simples, on pourra ensuite faire tout ce qu’on voudra.”

“Everything in nature is modeled on the sphere, the cone, and the cylinder. You
must learn to paint these simple figures. You will then be able to paint anything
that you want.”

—Paul Cézanne, 1904

The theory of measure and integrals was initially developed to clarify the notion of
“length”. We outlined these ideas in Lecture 3, where we encountered the construction
of the Borel sets and the definition of the Lebesgue measure.

In this lecture, we turn to another classic problem: How can we assign a consistent
notion of “area” to subsets of the real plane? We know that the area of a rectangle
should equal the product of its width and its height, and our goal is to extend this
elementary idea to a wider class of sets. This labor requires the machinery of abstract
measure theory (Lecture 2) and abstract integration (Lecture 5).

Related questions arise in probability theory. Given two “independent” probabilistic
experiments, the probability that the pair of outcomes is in a set A × B equals the
product of the probability that the first outcome belongs to A and the probability that
the second outcome belongs to B. The problem is to determine the probability that the
pair of outcomes belongs to a set that is not “rectangular”. We will spend some energy
on the probabilistic interpretation later.

After developing a way to assign areas in the plane, we turn to the problem of
integrating a function on the plane. This investigation is tied to the question about
when we can interchange two integrals, which is addressed by the fundamental
theorem of Fubini and Tonelli.

6.1 Products of measurable space
A geometric rectangle is the product of a horizontal line segment and a vertical line
segment. The area of a rectangle is the product of the length of the horizontal segment
and the vertical segment. It stands to reason that we must begin with Cartesian
products of sets if we want to understand area and its generalizations.
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Figure 6.1 (Cylinders and rectangles). The preimage 𝜋−1
1 (E) of a set E ⊆ X1 under the

coordinate projection 𝜋1 onto X1 is called a Cartesian cylinder. Similarly, the preimage
of a measurable set in X2 under the coordinate projection 𝜋2 is a Cartesian cylinder.
The intersection of two Cartesian cylinders forms a Cartesian rectangle.

6.1.1 Cylinders and rectangles
Consider two domains X1 and X2. Recall that the (Cartesian) product of the domains is

X := X1 × X2 = {(𝑥1, 𝑥2) : 𝑥1 ∈ X1 and 𝑥2 ∈ X2}.

For arbitrary subsets E, F ⊆ X, we can construct the (Cartesian) rectangle E × F ⊆ X.
Associated with the product space are the two coordinate projection maps:

𝜋1 : X → X1 where 𝜋1 : (𝑥1, 𝑥2) ↦→ 𝑥1;
𝜋2 : X → X2 where 𝜋2 : (𝑥1, 𝑥2) ↦→ 𝑥2.

Using the coordinate projection maps, we can lift arbitrary sets in the factor spaces to
obtain (Cartesian) cylinders.

𝜋−1
1 (E) = {(𝑥1, 𝑥2) ∈ X : 𝑥1 ∈ E} for E ⊆ X1;
𝜋−1
2 (F) = {(𝑥1, 𝑥2) ∈ X : 𝑥2 ∈ F} for F ⊆ X2.

In the two-dimensional product X, the intersection of a horizontal and vertical cylinder
yields a Cartesian rectangle. See Figure 6.1 for an illustration.

6.1.2 Measurable cylinders and product-measurable sets
Consider two measurable spaces (X1,F1) and (X2,F2). We would like to construct a
natural product of these measurable spaces. To do so, we must decide which sets will
be measurable in the product domain X = X1 × X2.

Right now, we only have a notion of what sets are measurable in X1 and in X2. As
we have seen, we can lift the measurable sets in each domain to obtain cylinders:

𝜋−1
1 (E) for measurable E ∈ F1;

𝜋−1
2 (F) for measurable F ∈ F2.
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A cylinder obtained from a measurable set is called a measurable cylinder. It is
reasonable to insist that every measurable cylinder should be a measurable set in the
product space. To achieve this goal, we simply define the measurable sets in the product
to be the elements of the 𝜎 -algebra generated by all measurable cylinders.

Let us formalize this construction.

Definition 6.1 (Product of measurable spaces). Let (X𝑖 ,F𝑖 ) be measurable spaces for
𝑖 = 1, 2. The product of the measurable spaces

(X,F) := (X1,F1) × (X2,F2) :=
∏

𝑖=1,2
(X𝑖 ,F𝑖 )

is the measurable space with the domain X = X1 × X2. We equip it with the product
𝜎 -algebra F, which is generated by all measurable cylinders:

F := F1 ×𝜎 F2 := 𝜎
(
{𝜋−1

1 (E) : E ∈ F1} ∪ {𝜋−1
2 (F) : F ∈ F2}; X

)
.

We abbreviate (X1,F1)2 for the product of a measurable space with itself.

This construction is analogous to the
product topology, which is the
smallest topology on the product
where each coordinate projection is a
continuous function.

By construction, the product 𝜎 -algebra is the smallest 𝜎 -algebra on the product
space X1 × X2 in which the coordinate projections 𝜋1, 𝜋2 are measurable functions
(see Problem 5.36). This is the key reason that we construct the measurable sets using
cylinders.

Exercise 6.2 (Products of measurable spaces). In some instances, we can compute the
product of measurable spaces easily. Let (X𝑖 ,F𝑖 ) be a measurable spaces for 𝑖 = 1, 2.

• Trivial 𝜎-algebras: Suppose that F𝑖 = {∅,X𝑖 } for 𝑖 = 1, 2. What is the product
𝜎 -algebra?

• Finite 𝜎-algebras: Suppose that F𝑖 has finite cardinality for 𝑖 = 1, 2. Show that
the product 𝜎 -algebra has finite cardinality.

• Complete𝜎-algebras: Suppose that X𝑖 is countable, and let F𝑖 = P(X𝑖 ) for 𝑖 = 1, 2.
Show that the product 𝜎 -algebra is the complete 𝜎 -algebra on X1 × X2.

Exercise 6.3 (*Products: Associativity). Let (X𝑖 ,F𝑖 ) be measurable spaces for 𝑖 = 1, 2, 3.
Check that the product is associative:

((X1,F1) × (X2,F2)) × (X3,F3) = (X1,F1) × ((X2,F2) × (X3,F3)).

As a consequence, we can write the product measurable space without parentheses:

(X1,F1) × (X2,F2) × (X3,F3).

Hint: Show that the product 𝜎 -algebra is

𝜎 ({𝜋−1
𝑖 (E𝑖 ) : E𝑖 ∈ F𝑖 and 𝑖 = 1, 2, 3}).

By iterating this construction, we can define 𝑛-fold products.

6.1.3 Measurable rectangles
Consider a Cartesian rectangle E × F obtained from two measurable sets E ∈ F1 and
F ∈ F2. This rectangle is the intersection of two measurable cylinders:

E × F = 𝜋−1
1 (E) ∩ 𝜋−1

2 (F).

Since the measurable cylinders generate the 𝜎 -algebra of measurable sets, the rectangle
E × F must also be measurable. Indeed, 𝜎 -algebras are stable under (countable)
intersection. See Section 6.1.6 for further discussion.
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Exercise 6.4 (Rectangles generate the product-measurable sets in two dimensions). Let (X𝑖 ,F𝑖 )
be measurable spaces for 𝑖 = 1, 2. Show that the rectangles generate the product
𝜎 -algebra:

F= F1 ×𝜎 F2 = 𝜎{E × F : E ∈ F1 and F ∈ F2}.
Let us note that this example only involves the product of two measurable spaces.

6.1.4 Example: Borel sets in Euclidean spaces
On the real line, the length is associated with the uniform distribution of mass, which
places one unit of mass per unit of length on the entire line. Similarly, the concept of
area is associated with a uniform distribution of mass over the Euclidean plane (ℝ2).
This distribution should place one unit of mass per unit of area on the entire plane.
Before we turn to the construction, we need to introduce an appropriate measurable
space. Let us introduce and reconcile two possible approaches.

We reasoned that we should be able to define the length of any open interval in the
real line ℝ. This led to the definition of the Borel sets B(ℝ) as the smallest 𝜎 -algebra
generated by the open intervals of ℝ. Similarly, we should be able to define the area of
any open Euclidean ball in the plane ℝ2. This idea leads to the definition of the Borel
measurable sets in the plane.

Definition 6.5 (Borel sets: Euclidean plane). The class B(ℝ2) of Borel sets in the
Euclidean plane ℝ2 is the smallest 𝜎 -algebra generated by open Euclidean balls:

B(ℝ2) := 𝜎{D(𝒙 ; 𝑟 ) : 𝒙 ∈ ℝ2 and 𝑟 > 0}.

As usual, ∥ · ∥2 denotes the Euclidean
norm.

We have written D(𝒙 ; 𝑟 ) := {𝒚 ∈ ℝ2 : ∥𝒚 − 𝒙 ∥2 < 𝑟 } for the open ball centered at
𝒙 ∈ ℝ2 with radius 𝑟 > 0.

Exercise 6.6 (*Borel sets: Euclidean plane). Show that B(ℝ2) is the 𝜎 -algebra generated
by open subsets of the Euclidean plane ℝ2. Hint: Every open set in the plane is a
countable union of open Euclidean balls. Look up “second-countable space.”

Just now, we have introduced the notion of a product of two measurable spaces. In
particular, we can consider the product (ℝ,B(ℝ))2 of the real line with itself. The
basic idea here is that every (measurable) cylinder in the plane is product-measurable,
and this gives rise to another class B(ℝ)2 of measurable sets. How can we reconcile
these two constructions?

Proposition 6.7 (Product of Borel sets: Euclidean plane). Consider the measurable space
(ℝ,B(ℝ)) given by the real line equipped with its Borel sets. Then

(ℝ,B(ℝ))2 = (ℝ2,B(ℝ2)).

In other words, if we “square” the real line with its Borel sets, we obtain the real plane
equipped with its Borel sets.

*Proof. First, observe that the coordinate projections 𝜋𝑖 : ℝ2 → ℝ are continuous
with respect to the Euclidean topology (generated by open balls in ℝ2). Therefore,
Exercise 5.3 implies that 𝜋𝑖 is a B(ℝ2)-measurable function because B(ℝ2) is also
generated by open balls in ℝ2. In detail,

𝜋−1
𝑖 (B) ∈ B(ℝ2) for each B ∈ B(ℝ) and 𝑖 = 1, 2.
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As a consequence,

B(ℝ)2 = 𝜎{𝜋−1
𝑖 (B) : B ∈ B(ℝ) and 𝑖 = 1, 2} ⊆ B(ℝ2).

For the converse, recall that the Borel setsB(ℝ2) in the plane are generated by open
sets (Exercise 6.6). Every open set G in the plane is a countable union of open rectangles
of the form (𝑎, 𝑏) × (𝑐 , 𝑑). Now, each of these open rectangles is the intersection of
two cylinders, namely (𝑎, 𝑏) ×ℝ and ℝ × (𝑐 , 𝑑). As a consequence, G is a countable
combination of cylinders, so G ∈ B(ℝ)2. We deduce that B(ℝ2) ⊆ B(ℝ)2. ■

Activity 6.8 (Borel sets: Euclidean plane). For E, F ∈ B(ℝ), note that the rectangle E × F
is a Borel set in the plane. Deduce that each singleton {𝒙 } ⊆ ℝ2 is Borel. Check that
geometric rectangles, like (𝑎, 𝑏) × (𝑐 , 𝑑) and (𝑎, 𝑏] × (𝑐 , 𝑑], are Borel. Note that
semi-infinite rectangles (−∞, 𝑏] × (−∞, 𝑑] are Borel. Explain why every open set and
every closed set in the plane is Borel. Check that each half-space {𝒙 ∈ ℝ2 : 𝒂 ᵀ𝒙 ≤ 𝑏}
is Borel. What about convex sets? Can you think of more examples? ■

We can extend these notions to higher-dimensional Euclidean spaces.

Definition 6.9 (Borel sets: Euclidean space). For 𝑛 ∈ ℕ, the class B(ℝ𝑛) of Borel sets
in the Euclidean space ℝ𝑛 is the smallest 𝜎 -algebra generated by open Euclidean
balls:

B(ℝ𝑛) := 𝜎{D(𝒙 ; 𝑟 ) : 𝒙 ∈ ℝ𝑛 and 𝑟 > 0}.
We have written D(𝒙 ; 𝑟 ) := {𝒚 ∈ ℝ𝑛 : ∥𝒚 − 𝒙 ∥2 < 𝑟 } for the open ball centered
at 𝒙 ∈ ℝ𝑛 with radius 𝑟 > 0.

Exercise 6.10 (*Product of Borel sets: Euclidean space). For 𝑛 ∈ ℕ, show that the 𝑛-fold
product of the real line satisfies (ℝ,B(ℝ))𝑛 = (ℝ𝑛 ,B(ℝ𝑛)).

Warning 6.11 (*Borel sets: Infinite products). The statement analogous to Exercise 6.10
fails for an infinite product. Indeed, the open sets in B(ℝℕ) may only contain
the intersections of a finite number of cylinders induced by open sets in the factor
spaces. ■

6.1.5 Measurable functions on product spaces
Suppose that (X,F) is a product of measurable spaces (X𝑖 ,F𝑖 ) for 𝑖 = 1, 2. We can
specialize the Definition 5.1 of a measurable function to this setting. In detail, let
𝑓 : X1 × X2 → ℝ be a bivariate function. Then 𝑓 is (product) measurable when

𝑓 −1(𝑡 ,+∞] = {(𝑥, 𝑦 ) ∈ X1 × X2 : 𝑓 (𝑥, 𝑦 ) > 𝑡 } ∈ F for each 𝑡 ∈ ℝ.

What kind of functions are product measurable? As usual, the indicator function 1A of
a product-measurable set A ∈ F is measurable. All linear combinations and products
of measurable functions are measurable. All countable combinations of measurable
functions are measurable. See Section 5.2.1 for general principles.

Exercise 6.12 (Product functions). Suppose that (X,F) is a product of measurable spaces
(X𝑖 ,F𝑖 ) for 𝑖 = 1, 2. Let 𝑓 : X1 → ℝ and 𝑔 : X2 → ℝ be measurable functions. Show
that the function (𝑥, 𝑦 ) ↦→ 𝑓 (𝑥)𝑔 (𝑦 ) is product measurable.

Exercise 6.13 (*Measurable functions on ℝ𝑛 ). Consider the product space (ℝ𝑛 ,B(ℝ𝑛)).
Show that every continuous function 𝑓 : ℝ𝑛 → ℝ is product measurable. Show that
every lower-semicontinuous convex function 𝑓 : ℝ𝑛 → ℝ is product measurable.
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In the particular case of (ℝ𝑛 ,B(ℝ𝑛)), we have the same principle about measurable
functions as we did in (ℝ,B(ℝ)). Indeed, most functions 𝑓 : ℝ𝑛 → ℝ that you
encounter in practice are product measurable.

6.1.6 *General products of measurable spaces
For an arbitrary index set I, we can construct the product of an indexed family
{(X𝑖 ,F𝑖 ) : 𝑖 ∈ I} of measurable spaces by adapting Definition 6.1. First, form the
Cartesian product X =

∏
𝑖 ∈I X𝑖 of the domains. Equip the product domain X with the

𝜎 -algebra
F := 𝜎

(
𝜋−1
𝑖 (E𝑖 ) : E𝑖 ∈ F𝑖 for some 𝑖 ∈ I

)
.

In other words, F is generated by all measurable cylinders 𝜋−1
𝑖

(E𝑖 ) induced by all
measurable sets E𝑖 in the factor spaces X𝑖 .

Now, consider a Cartesian rectangle R :=
∏

𝑖 ∈I E𝑖 formed as a product of measurable
sets E𝑖 ∈ F𝑖 . When the index set I is countable, every such rectangle R is a measurable
set in the product.

In contrast, when I is uncountable, this rectangle R need not be measurable because
the 𝜎 -algebra is only guaranteed to contain countable intersections of cylinders!
Although this technicality is sometimes inconvenient, the construction we have given
(starting with cylinders, not rectangles) is the mathematically natural one. Indeed, it
is the smallest family of measurable sets for which the coordinate projections are all
measurable functions.

This issue may seem esoteric, but it can arise in the study of continuous stochastic
processes. These processes contain an uncountable number of random variables. We
cannot simultaneously constrain the value of each random variable and be confident
that these outcomes compose a measurable set (called an event in this context). More
advanced probability courses address this matter, but we will not discuss it further in
this class.

Aside: For a comparison, consider a family of topological spaces equipped with the
product topology. In this setting, an open cylinder is defined as the preimage under
the coordinate projection of an open set in one of the factor spaces. The product
topology is the (smallest) topology generated by the open cylinders. Meanwhile,
consider a Cartesian rectangle obtained as the product of one open set from each
factor space. When we form the product of an infinite number of topological spaces,
the product topology may not contain all such rectangles because the topology
only contains finite intersections of open cylinders. Be careful!

6.2 Product measures
Consider two measure spaces (X1,F1, 𝜇1) and (X2,F2, 𝜇2). Let (X,F) be the product
of the associated measurable spaces. Our next job is to equip the product measurable
space with a canonical product measure 𝜇 = 𝜇1 × 𝜇2.

6.2.1 Existence and uniqueness of product measure
For measurable rectangles, the value of the product measure should certainly equal
the product of the measures of the sides:

𝜇(E × F) := (𝜇1 × 𝜇2) (E × F) := 𝜇1(E) · 𝜇2(F) for E ∈ F1 and F ∈ F2. (6.1)

This definition agrees with our elementary concept of area. Indeed, when 𝜇1 = 𝜇2 = 𝜆
is the Lebesgue measure, then the product measure 𝜇 = 𝜆 × 𝜆 of a Borel rectangle is
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the length subtended in its first coordinate times the length subtended in the second
coordinate.

Of course, the problem remains that measurable sets in the product space are more
complicated than simple rectangles. Indeed, the product 𝜎 -algebra contains countable
unions and intersections of rectangles, which can be very intricate. The next result
guarantees that there is a unique measure on the product space that satisfies (6.1).

Theorem 6.14 (Product measure: Existence and uniqueness).
Warning: The construction of
product measures fails without
𝜎 -finiteness! ■

Let (X𝑖 ,F𝑖 , 𝜇𝑖 ) be 𝜎 -finite
measure spaces for 𝑖 = 1, 2. The product (X,F) := (X1,F1) × (X2,F2) carries a
unique measure 𝜇 := 𝜇1 × 𝜇2, called the product measure, that satisfies

𝜇(E × F) = 𝜇1(E) · 𝜇2(F) for all E ∈ F1 and F ∈ F2. (6.2)

The triple (X,F, 𝜇) is called the product of the measure spaces.

The proof of Theorem 6.14 appears in Appendix D. The argument appeals to the
Hahn–Kolmogorov theorem and some tools from integration theory. Exercise 6.19
shows that we can also construct the product of a finite number of measures in the
natural way.

Example 6.15 (Product of Lebesgue measures). Consider the measure space (ℝ,B(ℝ), 𝜆),
the real line equipped with Borel sets and the Lebesgue measure. According to
Proposition 6.7, the product of this space with itself is (ℝ2,B(ℝ2), 𝜆 × 𝜆). By
construction, the product measure satisfies

(𝜆 × 𝜆) (A × B) = 𝜆(A) · 𝜆(B) for Borel A,B ⊆ ℝ.

For example, when the sets are half-open intervals,

(𝜆 × 𝜆) ((𝑎, 𝑏] × (𝑐 , 𝑑]) = 𝜆((𝑎, 𝑏]) · 𝜆((𝑐 , 𝑑]) = |𝑏 − 𝑎 | · |𝑑 − 𝑐 |.

This formula is valid for all real numbers that satisfy 𝑎 < 𝑏 and 𝑐 < 𝑑 . Thus, the area
of a rectangle is the product of side lengths.

For an arbitrary Borel set B ∈ B(ℝ2), we interpret (𝜆 × 𝜆) (B) as the area of the
set B. Since the Borel 𝜎 -algebra contains all open sets and all closed sets, we may
assign an area to every subset of the plane that is either open or closed, and many
more besides.

We usually write 𝜆2 := 𝜆 × 𝜆 for the Lebesgue product measure on (ℝ2,B(ℝ2)).
The formation of products may be iterated. For 𝑛 ∈ ℕ, we will write 𝜆𝑛 := 𝜆 × · · · × 𝜆
for the 𝑛-fold product of the Lebesgue measure, defined on the measurable space
(ℝ𝑛 ,B(ℝ𝑛)). For a Borel set B ∈ B(ℝ𝑛), we interpret 𝜆𝑛 (B) as the 𝑛-dimensional
volume of B. ■

Exercise 6.16 (Product measure: Dirac measures). Consider measure spaces (ℝ,B(ℝ), 𝛿𝑥 )
and (ℝ,B(ℝ), 𝛿𝑦 ) for points 𝑥, 𝑦 ∈ ℝ. What is the product space? Compute the
product measure of a measurable rectangle.

Exercise 6.17 (Product measure: Line measure). Consider measure spaces (ℝ,B(ℝ), 𝛿𝑥 )
and (ℝ,B(ℝ), 𝜆) for a point 𝑥 ∈ ℝ. What is the product space? Compute the product
measure of a measurable rectangle.

Exercise 6.18 (Product measure: Counting measures). Consider the discrete measure space
(ℕ,P(ℕ),#). What is the product of this measure space with itself? Compute the
product measure of a measurable rectangle. Can you compute the product measure of
a general product-measurable set? Hint: Reduce to singleton sets by using countable
additivity.
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Figure 6.2 (Integration over a product space). On a product space X1 × X2, the integral
sums the values of a bivariate function 𝑓 : X1 × X2 → ℝ weighted by the local product
measure (𝜇1 ×𝜇2) (d𝑥 × d𝑦 ) = 𝜇1 (d𝑥) 𝜇2 (d𝑦 ). The function 𝑓 does not need to have
a product structure.

Exercise 6.19 (Product measure: Properties). Consider measure spaces (X𝑖 ,F𝑖 , 𝜇𝑖 ) for
𝑖 = 1, 2, 3. Show that the formation of product measures is associative:

(𝜇1 × 𝜇2) × 𝜇3 = 𝜇1 × (𝜇2 × 𝜇3).

In particular, the product 𝜇1 × 𝜇2 × 𝜇3 is well defined, and it has the property that

(𝜇1 × 𝜇2 × 𝜇3) (E1 × E2 × E3) = 𝜇1(E1) · 𝜇2(E2) · 𝜇3(E3)

for all measurable sets E𝑖 ∈ F𝑖 for 𝑖 = 1, 2, 3.
Define the exchange operator 𝑹 : (𝑥, 𝑦 ) ↦→ (𝑦 , 𝑥). Show that product measures

are commutative, in the sense that

(𝜇1 × 𝜇2) (A) = (𝜇2 × 𝜇1) (𝑹A) for measurable A ∈ F1 × F2.

The action of an operator on a set is understood to mean the set obtained by applying
the operator to each element.

Aside: We cannot necessarily construct the product of an infinite number of
measures without further assumptions. The Kolmogorov extension theorem
(Appendix D) describes one important situation where the infinite product of
measures is meaningful.

6.2.2 Integration over product measure spaces
A product of measure spaces is just another measure space, so we can compute
integrals with respect to the product measure. As usual, the integral sums the values
of a measurable function, weighted by the local mass given by the product measure,
over the product domain. See Figure 6.2.

For integrals over product spaces, the notation is a little different from the univariate
case. Form the product (X,F, 𝜇) of two measure spaces (X1,F1, 𝜇1) and (X2,F2, 𝜇2).
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For a measurable function 𝑓 : X → ℝ whose integral is defined, we use the notation∫
X
𝑓 (𝒙 ) 𝜇(d𝒙 ).

The variable of integration 𝒙 = (𝑥1, 𝑥2) is written in boldface to emphasize that it is a
pair of coordinates rather than a single coordinate. We think about the differential d𝒙
as an infinitesimal rectangle at the point 𝒙 .

We may also write out the product measure 𝜇 = 𝜇1 × 𝜇2 in full, in which case it is
common to use other notations for the differential. For a function 𝑓 : X1 × X2 → ℝ

where the integral is defined,∫
X
𝑓 (𝒙 ) 𝜇(d𝒙 ) =:

∫
X1×X2

𝑓 (𝑥, 𝑦 ) (𝜇1 × 𝜇2) (d𝑥 × d𝑦 )

=:
∫
X1×X2

𝑓 (𝑥, 𝑦 ) (𝜇1 × 𝜇2) (d𝑥 d𝑦 ).

These expressions suggest that the two variables may change independently. We can
think about the differential as representing an infinitesimal box at (𝑥, 𝑦 ) that has
infinitesimal width d𝑥 and infinitesimal height d𝑦 . The second notation has the same
interpretation. For the Lebesgue measure 𝜆2, it is quite common to drop the measure
from the notation, so d𝒙 := 𝜆2(d𝒙 ).
Example 6.20 (Product of Lebesgue measures). Let B ∈ B(ℝ2) be a Borel set in the plane.
As always, the integral of the indicator function of a set is the measure of the set. For
the product of Lebesgue measures,∫

ℝ2
1B(𝒙 ) 𝜆2(d𝒙 ) = 𝜆2(B).

We interpret the right-hand side as the area of the Borel set B. ■

6.3 Interchange of integrals

Figure 6.3 (Slicing area).
We can compute the area of
a plane region by summing
the areas of vertical slices
or the areas of horizontal
slices.

As you know, we can also compute the area of a plane region by slicing it into thin
vertical strips and summing the areas of the strips along the horizontal direction.
Likewise, we can compute the area by slicing the region into thin horizontal strips and
summing the areas of the strips along the vertical direction. Similarly, if a function
describes the density of mass in a plane region, we can find the total mass by adding
up the mass of vertical strips or by adding up the mass of horizontal strips.

These geometric principles are intuitive. They suggest that we can compute the
integral of a bivariate function with respect to the Lebesgue product measure 𝜆2 = 𝜆×𝜆
by integrating with respect to one coordinate and then the other, in either order. More
generally, we would like to understand when we can compute integrals with respect to
a product measure 𝜇1 × 𝜇2 by integrating along one coordinate and then the other.

6.3.1 *Measurability of sections
We can only integrate functions that are measurable. Therefore, the first step in
our investigation requires us to understand some properties of measurable bivariate
functions defined on a product space. In particular, we must verify that the univariate
sections of these functions remain measurable. The key fact is a related section property
for sets; see Figure 6.4.
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Figure 6.4 (Sections). Given a measurable set A in the product space X1 × X2, each
section A𝑥 and A𝑦 is a measurable set in the factor space.

Proposition 6.21 (Product space: Section property for sets). Let (X𝑖 ,F𝑖 ) be measurable
spaces for 𝑖 = 1, 2. For a set A ⊆ X1 × X2, define the sections

A𝑥 := {𝑦 ∈ X2 : (𝑥, 𝑦 ) ∈ A} for 𝑥 ∈ X1;
A𝑦 := {𝑥 ∈ X1 : (𝑥, 𝑦 ) ∈ A} for 𝑦 ∈ X2.

If the set A ∈ F1 ×𝜎 F2 belongs to the product 𝜎 -algebra, then each section A𝑥 is a
measurable set in F2 and each section A𝑦 is a measurable set in F1.

*Proof. This argument hinges on the fact that the product F := F1 ×𝜎 F2 is the
smallest 𝜎 -algebra that contains all measurable cylinders. Introduce the family Fsect
that contains each product-measurable set whose sections are all measurable:

Fsect := {A ∈ F : all sections A𝑥 and A𝑦 are measurable} ⊆ F.

Clearly, the empty set ∅ and the product domain X1 × X2 belong to Fsect. In addition,
everymeasurable cylinder belongs toFsect. The familyFsect is stable under complements
because

(Ac)𝑥 = (A𝑥 )c and (Ac)𝑦 = (A𝑦 )c.
Likewise, the family Fsect is stable under (countable) unions because( ⋃∞

𝑖=1 A𝑖
)
𝑥 =

⋃∞
𝑖=1 (A𝑖 )𝑥 and

( ⋃∞
𝑖=1 A𝑖

)𝑦
=

⋃∞
𝑖=1 (A𝑖 )𝑦 .

In summary, Fsect is a 𝜎 -algebra that contains all measurable cylinders. Therefore,
Fsect must contain the product 𝜎 -algebra F. We conclude that Fsect = F. ■

With this result at hand, we can easily derive an analogous section property for
functions.
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Exercise 6.22 (Product space: Section property for functions). Let (X𝑖 ,F𝑖 ) be measurable
spaces for 𝑖 = 1, 2. For a function 𝑓 : X1 × X2 → ℝ on the product, define the sections

𝑓𝑥 : 𝑦 ↦→ 𝑓 (𝑥, 𝑦 ) for each 𝑥 ∈ X1;
𝑓 𝑦 : 𝑥 ↦→ 𝑓 (𝑥, 𝑦 ) for each 𝑦 ∈ X2.

If 𝑓 is measurable with respect to the product 𝜎 -algebra F1 ×𝜎 F2, then the section 𝑓𝑥
is F2-measurable for each 𝑥 and the section 𝑓 𝑦 is F1-measurable for each 𝑦 .

6.3.2 The Fubini–Tonelli theorem
The notorious Fubini–Tonelli theorem states that we can integrate a bivariate mea-
surable function with respect to a product measure by arranging the integrals in any
order we like. This result is true under, essentially, minimal conditions.

Theorem 6.23 (Fubini–Tonelli). Consider
Warning: This result can fail for
measures that are not 𝜎 -finite! ■

𝜎 -finite measure spaces (X𝑖 ,F𝑖 , 𝜇𝑖 ) for
𝑖 = 1, 2. Let 𝑓 : X1 × X2 → ℝ be a Borel measurable function.

1.
Warning: Confirm that the
function 𝑓 is either positive or
integrable before applying this
result! ■

Positive case: For a positive function 𝑓 ≥ 0,∫
X1×X2

𝑓 (𝑥, 𝑦 ) (𝜇1 × 𝜇2) (d𝑥 × d𝑦 )

=

∫
X1

(∫
X2
𝑓 (𝑥, 𝑦 ) 𝜇2(d𝑦 )

)
𝜇1(d𝑥)

=

∫
X2

(∫
X1
𝑓 (𝑥, 𝑦 ) 𝜇1(d𝑥)

)
𝜇2(d𝑦 ).

(6.3)

2. Integrable case: The identities (6.3) also hold for a finite-valued function 𝑓
that is integrable with respect to 𝜇1 × 𝜇2. In detail, integrability means that∫

X
| 𝑓 (𝑥, 𝑦 ) | (𝜇1 × 𝜇2) (d𝑥 × d𝑦 ) < +∞.

The proof of Theorem 6.23 involves some new set theoretic tools. We postpone the
argument to Appendix D.4.

Let us emphasize that the statement of Theorem 6.23 only makes sense because of
the section property (Exercise 6.22). Indeed, the univariate integrals are understood
to mean ∫

X1
𝑓 (𝑥, 𝑦 ) 𝜇1(d𝑥) :=

∫
X1
𝑓 𝑦 (𝑥) 𝜇1(d𝑥);∫

X2
𝑓 (𝑥, 𝑦 ) 𝜇2(d𝑦 ) :=

∫
X2
𝑓𝑥 (𝑦 ) 𝜇2(d𝑦 ).

These definitions require that all sections are measurable.
In the special case of the product 𝜆 × 𝜆 of Lebesgue measure on ℝ2, the Fubini–

Tonelli theorem implies that the area of a measurable set in the plane equals both the
integral of the lengths of the horizontal slices and the integral of the lengths of the
vertical slices. We can obtain this statement by applying the theorem to the indicator
function 1B of a Borel set B ∈ B(ℝ2).
Exercise 6.24 (Product measure: Dirac measures). Consider measure spaces (ℝ,B(ℝ), 𝛿𝑥 )
and (ℝ,B(ℝ), 𝛿𝑦 ) for points 𝑥, 𝑦 ∈ ℝ. Compute the product measure (𝛿𝑥 × 𝛿𝑦 ) (B) of



Lecture 6: Product Measures 100

an arbitrary Borel set B ∈ B(ℝ2). Hint: Write the measure of the set as an integral,
and invoke Fubini–Tonelli.

Exercise 6.25 (Product measure: Line measure). Consider measure spaces (ℝ,B(ℝ), 𝛿𝑥 )
and (ℝ,B(ℝ), 𝜆) for a point 𝑥 ∈ ℝ. Compute the product measure (𝛿𝑥 × 𝜆) (B) of an
arbitrary Borel set B ∈ B(ℝ2).

6.4 Integration by parts
The Fubini–Tonelli theorem is an essential tool. One of the most important applications
of this result is a generalized integration by parts formula.

Problem 6.26 (Integration by parts). Let (X,F, 𝜇) be a 𝜎 -finite measure space. Let
𝑓 : X → ℝ+ be a positive measurable function. Consider an increasing, continuously
differentiable function 𝜑 : ℝ+ → ℝ+ with 𝜑 (0) = 0. Establish the identity∫

X
(𝜑 ◦ 𝑓 ) (𝑥) 𝜇(d𝑥) =

∫
ℝ+

𝜇{𝑥 ∈ ℝ : 𝑓 (𝑥) > 𝑡 } 𝜑 ′ (𝑡 ) 𝜆(d𝑡 ).

Instantiate the cases 𝜑 (𝑡 ) = 𝑡 and 𝜑 (𝑡 ) = 𝑡𝑝 for 𝑝 > 0 and 𝜑 (𝑡 ) = e𝑡 − 1. Hint:
On the right-hand side, write the measure of the super-level set as the integral of an
indicator function, and invoke Fubini–Tonelli. You will also need the fundamental
theorem of calculus.

(*) What happens if 𝜑 (0) ≠ 0? Can you modify this result to handle the case where
𝜑 is not necessarily increasing? What about the situation where 𝜑 is increasing but
may not be differentiable?

Problems
Exercise 6.27 (Densities). Let 𝜇 be a 𝜎 -finite measure, and let 𝑓 : ℝ → ℝ+ be a positive,
measurable function. Recall that there is a measure 𝜈 : B(ℝ) → [0,+∞] on Borel
sets, determined by

𝜈 (B) :=
∫
B
𝑓 d𝜇 for all B ∈ B(ℝ).

For a 𝜈 -integrable function 𝑔 : ℝ → ℝ, show that∫
ℝ

𝑔 d𝜈 =

∫
ℝ

𝑔 𝑓 d𝜇.

This formulation explains the notation 𝑓 = d𝜈/d𝜇 for the density 𝑓 . There is a direct proof of this formula
using approximation of 𝑔 by simple
functions; see Proposition 9.5. This
approach may be less natural, given
our definition of the integral in terms
of super-level sets.

Hint: Start with
the case where 𝑔 is positive. Write out the definition of the integral on the left-hand
side. Express the measure of the super-level set as the integral of an indicator so that
we have access to Fubini–Tonelli.

Problem 6.28 (*Linear transformations). Let 𝑻 : ℝ2 → ℝ2 be an invertible linear map
with (nonzero) determinant, det(𝑻 ). For each 𝜆2-integrable function 𝑓 : ℝ2 → ℝ, we
will argue that ∫

ℝ2
𝑓 (𝒙 ) 𝜆2(d𝒙 ) =

∫
ℝ2
𝑓 (𝑻𝒙 ) · |det(𝑻 ) | 𝜆2(d𝒙 ). (6.4)

This formula implements the linear change of variables 𝒙 ↦→ 𝑻𝒙 .
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1. (*) Show that every invertible linear map 𝑻 : ℝ2 → ℝ2 can be written as the
product of finitely many row-reduction operations of the form

𝑻 0 : (𝑥1, 𝑥2) ↦→ (𝑥2, 𝑥1);
𝑻 1 : (𝑥1, 𝑥2) ↦→ (𝛼𝑥1, 𝑥2) for 𝛼 ≠ 0;
𝑻 2 : (𝑥1, 𝑥2) ↦→ (𝑥1 + 𝛽𝑥2, 𝑥2) for 𝛽 ∈ ℝ.

2. Show that the result (6.4) holds when 𝑻 is any one of 𝑻 0,𝑻 1,𝑻 2. Hint: Use
Fubini–Tonelli, one-dimensional change of variables formulas (see Exercise 4.40),
and the translation invariance (Theorem 3.16) of the Lebesgue measure 𝜆.

3. Deduce that the result (6.4) holds for every invertible linear map𝑻 . Hint: The
determinant of a product is the product of determinants.

4. Conclude that the Lebesgue measure 𝜆2 is invariant under orthogonal linear
transformations. Hint: The determinant of an orthogonal matrix equals one.

5. A fortiori, show that the Lebesgue measure 𝜆2 is invariant under all rigid motions
(i.e., an orthogonal linear transformation followed by a translation).

6. Consider a Borel set B ∈ B(ℝ) in the real line. We can form another Borel set
C = B × {0} ⊆ ℝ2 that lies on the horizontal axis in the plane.

Warning: A subset of a line in ℝ2

need not be a Borel set in ℝ2. ■

Explain why
𝜆2(C) = 0. Deduce that 𝜆2(𝑻C) = 0 for each rigid motion 𝑻 . Conclude that
“one-dimensional” Borel sets in the plane are negligible with respect to 𝜆2.

7. (*Multivariate case). Formulate and prove an extension of (6.4) for invertible linear
transformations on ℝ𝑛 .

Problem 6.29 (**Bivariate change of variables). Let𝑮 : Ω → ℝ2 be a diffeomorphism on
an open subset Ω ⊆ ℝ2. That is,𝑮 is an injective function with a continuous derivative
D𝑮 : Ω → ℝ2×2 that is everywhere invertible: |det(D𝑮 (𝒙 )) | > 0 for all 𝒙 ∈ ℝ2. For
each 𝜆2-integrable function 𝑓 : Ω → ℝ, we will prove that The image of the set Ω under the

function𝑮 is defined as

𝑮 (Ω) := {𝑮𝒚 : 𝒚 ∈ Ω}.
∫
𝑮 (Ω)

𝑓 (𝒙 ) 𝜆2(d𝒙 ) =
∫
Ω
𝑓 (𝑮 (𝒙 )) · |det(D𝑮 (𝒙 )) | 𝜆2(d𝒙 ). (6.5)

This formula implements the nonlinear change of variables 𝒙 ↦→ 𝑮 (𝒙 ). The (absolute
value of the) determinant of the derivative is often called the Jacobian of the transfor-
mation. We begin with a sequence of standard reductions. This pattern of argument is
common when proving facts about Lebesgue integrals.

1. If the identity (6.5) holds for each positive, measurable function 𝑓 : Ω → ℝ+,
deduce that it holds for all 𝜆2-integrable functions.

2. If the identity (6.5) holds for each positive, simple function 𝑓 : Ω → ℝ+, use
monotone convergence (Theorem 5.18) to argue that it holds for each positive,
measurable function.

3. If the identity (6.5) holds when 𝑓 = 1B, the indicator of a Borel set B ⊆ Ω,
confirm that it holds for all positive, simple functions.

4. It is helpful to assume that D𝑮 is a bounded function. To do so, we restrict
attention to a compact set Ω′ ⊂ Ω. Verify that𝑮 (Ω′) is compact, and check that
the restriction D𝑮 : Ω′ → ℝ2×2 is bounded.

5. (*) This method is called exhaustion by
compact sets.

Show that there is an increasing sequence Ω1 ⊆ Ω2 ⊆ · · · ⊂ Ω of compact
sets Ω𝑖 for which

⋃∞
𝑖=1 Ω𝑖 = Ω.

6. Fix an arbitrary compact subset Ω′ ⊂ Ω. Suppose that (6.5) holds when 𝑓 = 1B′ ,
the indicator of an arbitrary Borel set B′ ⊆ 𝑮 (Ω′). Using exhaustion by compact
sets, invoke monotone convergence to show that the identity (6.5) remains valid
for the indicator 1B of each Borel set B ⊆ Ω.
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7. (**) A half-open geometric rectangle is a set of the form R = (𝑎, 𝑏] × (𝑐 , 𝑑] where
𝑎 < 𝑏 and 𝑐 < 𝑑 . Fix a parameter 𝜀 > 0. Using the machinery from Appendix A,
show that each bounded Borel set B ∈ B(ℝ2) can be written as a finite union
of half-open geometric rectangles plus a set E ⊆ ℝ2 with Lebesgue measure
𝜆2(E) < 𝜀:

B = R1 ¤∪R2 ¤∪ · · · ¤∪R𝑚 ¤∪ E.
Hint: Show that B(ℝ2) is the “completion” of the algebra generated by the family
{(𝑎, 𝑏] × (𝑐 , 𝑑] : 𝑎 < 𝑏, 𝑐 < 𝑑} of half-open rectangles.

8. Using the last two parts, show that it is enough to prove that∫
ℝ2
1R(𝒙 ) 𝜆2(d𝑥) =

∫
ℝ2
1R(𝑮 (𝒙 )) · |det(D𝑮 (𝒙 )) | 𝜆2(d𝒙 ) (6.6)

where R ⊆ Ω is an arbitrary half-open geometric rectangle.
9. Let R ⊆ Ω be any half-open geometric rectangle. Consider the function

𝐽 (R) :=

∫
𝑮 −1 (R) |det(D𝑮 (𝒙 )) | 𝜆2(d𝒙 )

𝜆2(R) .

We can interpret 𝐽 (R) as the average value of the Jacobian over the set R. By
subdividing the rectangle into a large number of tiny, congruent rectangles,
argue that 𝐽 (R) = 1. Deduce that (6.6) is valid. Hint: The derivative D𝑮 is
bounded and continuous, so it is essentially a linear map on a small rectangle.
Invoke (6.4) to handle this case.

10. (*) Formulate and prove an extension of (6.5) for integrals with respect to the
Lebesgue measure 𝜆𝑛 on the 𝑛-dimensional Euclidean space ℝ𝑛 . Hint: There is
no conceptual difference from the two-dimensional case.

Exercise 6.30 (Polar coordinates). In two dimensions, one of the most valuable transfor-
mations replaces Cartesian coordinates (𝑥, 𝑦 ) with polar coordinates (𝑟 cos 𝜃 , 𝑟 sin 𝜃 )
where 𝑟 > 0 and 𝜃 ∈ (0, 2𝜋). Use the formula (6.5) and Fubini–Tonelli to show that∫

ℝ×ℝ
𝑓 (𝑥, 𝑦 ) 𝜆(d𝑥) 𝜆(d𝑦 ) =

∫
𝜃 ∈[0,2𝜋 ]

∫
𝑟 ∈ℝ+

𝑓 (𝑟 cos 𝜃 , 𝑟 sin 𝜃 ) 𝑟 𝜆(d𝑟 ) 𝜆(d𝜃 ).

This expression is valid for any measurable function 𝑓 : ℝ2 → ℝ that is either positive
of 𝜆2-integrable.

Exercise 6.31 (Gaussian integrals). This exercise outlines the classic calculation of a
Gaussian integral. Define

𝐼 :=
∫
ℝ

e−𝑥
2
𝜆(d𝑥).

1. By applying Fubini–Tonelli (with justification), confirm that

𝐼 2 =

∫
ℝ×ℝ

e−(𝑥2+𝑦 2 ) (𝜆 × 𝜆) (d𝑥 × d𝑦 ).

2. Use Exercise 6.30 to change to polar coordinates.
3. Compute the resulting integral with Fubini–Tonelli. What is the value of 𝐼 ?
4. Recall that the standard Gaussian measure on the real line takes the form

𝛾 (B) := 1
√
2𝜋

∫
B
e−𝑥

2/2 𝜆(d𝑥) for all Borel B ∈ B(ℝ).

Confirm that 𝛾 is a Borel probability measure on the real line.
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5. The standard Gaussian measure on ℝ𝑛 takes the form

𝛾𝑛 (B) := 1
(2𝜋)𝑛/2

∫
B
e−∥𝒙 ∥22/2 𝜆𝑛 (d𝒙 ) for all Borel B ∈ B(ℝ𝑛).

Confirm that 𝛾𝑛 is a Borel probability measure on ℝ𝑛 .

Problem 6.32 (*Sinc). For a parameter𝑀 > 0, observe that∫
[0,𝑀 ]

sin(𝑥)
𝑥

𝜆(d𝑥) =
∫
𝑥∈[0,𝑀 ]

sin(𝑥)
(∫

𝑎∈ℝ+

e−𝑎𝑥𝜆(d𝑎)
)
𝜆(d𝑥).

1. Compute the limiting value of this integral as 𝑀 → ∞. Hint: In sequence,
use Fubini–Tonelli, the fundamental theorem of calculus (FTC), dominated
convergence, and then the FTC again.

2. Prove that 𝑥 ↦→ sin(𝑥)/𝑥 is not Lebesgue integrable with respect to 𝜆 on ℝ+.
3. For a parameter 𝑎 > 0, confirm the following identity:∫

ℝ+

sin(𝑥)
𝑥

e−𝑎𝑥 𝜆(d𝑥) = 𝜋

2
− arctan(𝑎).

Use Fubini–Tonelli here, rather than differentiating under the integral.

Notes
This lecture is based on [LL01, Chap. 1] and [Tao11, Sec. 1.7]. The discussion of
Borel sets is adapted from [Wil91]. The change of variables theorems are adapted
from Folland’s book [Fol99], but the proof here is somewhat different in detail. For
nonlinear transformations, the key step in the argument is extracted from [Sch15].
Some of the applications of Fubini–Tonelli are drawn from Folland’s book [Fol99] and
Driver’s notes [Dri12].
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7. Probability Spaces

Agenda:
1. Kolmogorov’s model
2. The sample space
3. The 𝜎 -algebra of events
4. Probability measures

“The purpose of this monograph is to give an axiomatic foundation for the
theory of probability. The author set himself the task of putting in their natural
place, among the general notions of modern mathematics, the basic concepts of
probability theory—concepts which until recently were considered to be quite
peculiar.

“This task would have been a rather hopeless one before the introduction
of Lebesgue’s theories of measure and integration. However, after Lebesgue’s
publication of his investigations, the analogies between measure of a set and
probability of an event, and between integral of a function and mathematical
expectation of a random variable, became apparent. These analogies allowed of
further extensions; thus, for example, various properties of independent random
variables were seen to be in complete analogy with the corresponding properties
of orthogonal functions. But if probability theory was to be based on the above
analogies, it still was necessary to make the theories of measure and integration
independent of the geometric elements which were in the foreground with Lebesgue.
This has been done by Fréchet.

“While a conception of probability theory based on the above general viewpoints
has been current for some time among certain mathematicians, there was lacking
a complete exposition of the whole system, free of extraneous complications...”

—A. N. Kolmogorov (1933), transl. Morrison (1950)

Kolmogorov reportedly wrote this
book to fund repairs on the roof of
his dacha.

In today’s lecture, we will introduce Kolmogorov’s axiomatic model for probability
theory, laid out in his 1933 monograph, Grundbegriffe der Wahrscheinlichkeitsrechnung
or Foundations of Probability Calculus.

So, what was going on before 1933? Was the world deterministic? No! In
fact, Palamedes was said to be rolling dice during the Siege of Troy. The point of
Kolmogorov’s formulation was to ground probability firmly in measure theory, providing
a mathematical unity to concepts that previously were disparate and vague.

With our knowledge of measure theory, we can easily state Kolmogorov’s model for
probability theory. But this model comes along with new terminology and interpreta-
tions that take some practice to acquire. The power and richness of this formulation
will reveal itself gradually as we proceed.

7.1 Kolmogorov’s model
A probabilistic experiment has an unpredictable result, although one often has prior
knowledge about the probability of particular outcomes occurring.

Example 7.1 (Basic probabilistic experiments). We consider four examples:

1. One coin: We flip a fair coin once. Is the outcome heads or tails?
2. First heads: We flip a fair coin repeatedly until the first heads turns up. How

many flips does it take?



Lecture 7: Probability Spaces 106

3. Linear darts:

Figure 7.1 (Linear darts).
The dart strikes the unit in-
terval at a uniformly ran-
dom position.

We throw a dart at the unit interval [0, 1] in the real line. The dart
always strikes the interval, and all positions are “equally likely”. Where does the
dart hit?

4. Square darts: We throw a dart at the unit square [0, 1]2 in the real plane. The
dart always strikes the square, and all positions are “equally likely”. Where does
the dart hit?

In this lecture, we will use these experiments as running examples. ■

Activity 7.2 (Mumblety-peg). Look
up “mumblety-peg” in the dictionary.
Please do not attempt to play
mumblety-peg. ■

We can treat the two examples involving coins using elementary notions of discrete
probability, grounded in combinatorial reasoning. Each individual outcome can
be assigned a probability, which gives rise to a distribution of probability over the
individual outcomes of the experiment. Unfortunately, this is the wrong way to think
about probability.

To find the right path, we look to the third experiment on linear darts. How do we
make sense of a “uniform distribution” of probability? Indeed, the probability that the
dart strikes any particular point is zero. Eventually, we realize the correct way to think
about this experiment. The probability that the dart strikes a subset E of the interval
[0, 1] should equal the length of the set E. Once we achieve this enlightenment, it
becomes clear that we need measure theory to formalize linear darts, because measure
theory allows us to define length rigorously. The square darts experiment requires
measure theory as well.

As Kolmogorov explains, in the early 20th century, mathematicians gradually
realized that measure theory provides a grand unification of all of probability theory.
The key insight is to shift our attention to sets of outcomes of a probabilistic experiment
and to construct a distribution of probability mass over these sets of outcomes. This
idea leads to the central definition in modern probability theory.

Definition 7.3 (Probability space). A probability space is a measure space (Ω,F,ℙ).

1. The sample space Ω is an abstract set of points, called sample points.
2. The master 𝜎 -algebra Fcontains some subsets of Ω, called events.
3. The probability measure ℙ : F → [0, 1] is a finite measure that satisfies

ℙ(Ω) = 1. It assigns a probability to each event.

In elementary examples, the sample space contains the possible outcomes of a
probability experiment. The master 𝜎 -algebra contains sets of outcomes, called events.
The probability measure reports how probable it is that the outcome of the experiment
is contained in each event. Performing the experiment amounts to observing the
particular outcome 𝜔0 ∈ Ω.

In the rest of this lecture, we will unpack this definition, providing concrete
examples and interpretations. Probability theory replaces the dry language of measure
theory with vivid words that suggest high-stakes wagers in the smoky back room of a
Macau casino. One of the early challenges in probability theory is to become fluent
with this new terminology.

7.2 The sample space
Probability theory is built on top of measure theory. We work with a fixed domain,
which we glorify with its own name.
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Definition 7.4 (Sample space). The sample space is a fixed set Ω whose elements 𝜔
are called sample points or outcomes. This notation is standard.

In the simplest examples, the sample space provides a direct description of a
probability experiment. Each sample point 𝜔 ∈ Ω is a possible outcome of the
experiment. Performing the experiment amounts to distinguishing a particular outcome
𝜔0 ∈ Ω. You can think about Tyche, the Greek

goddess of chance, electing the
outcome 𝜔0 according to her divine
whim. Tyche’s Roman counterpart is
named Fortuna.

Example 7.5 (Basic experiments). In our four experiments, it is easy to identify the sample
points and the sample space.

1. One coin: Recall that we flip a single fair coin. The sample space Ω = {H, T}
consists of the outcomes H = heads and T = tails. The outcome 𝜔0 of the
experiment is the (random) outcome of the coin flip.

2. First heads: We flip a fair coin until it turns up heads. The sample space
Ω = {1, 2, 3, . . . } = ℕ. The outcome 𝜔0 of the experiment is the (random)
number of flips that we perform before we see the first heads.

3. Linear darts: We throw a dart, which strikes the unit interval [0, 1] at a uniformly
random location. The sample space Ω = [0, 1]. The outcome 𝜔0 of the
experiment is the random point in [0, 1] where the dart strikes.

4. Square darts: We throw a dart, which strikes the unit square [0, 1]2 at a uniformly
random location. The sample space Ω = [0, 1]2. The outcome 𝝎0 of the
experiment is the random point in [0, 1]2 where the dart strikes.

In each of these cases, the sample space is simply the collection of possible outcomes
of the experiment. ■

It is productive to take a broader view of the sample space. In many circumstances,
we are not performing a single experiment (or sequence of experiments) that we can
easily describe with a list of concrete outcomes. Rather, we may want to think about a
sample point 𝜔 as describing the complete state of the system we are studying. The
sample space Ω contains all possible states that could occur. If we knew the actual
state 𝜔0 of the system, then we would know the outcome of every possible experiment
that we might perform.

Example 7.6 (Statistical mechanics). Suppose that we measure the temperature of my
morning coffee at the beginning of class. This is a probabilistic experiment. One
natural sample space is just the set of positive numbers, which corresponds to the
temperature in degrees Kelvin.

But we might also want the sample space to include more information. For example,
a sample point might list the position, momentum, and type of each molecule in the
cup at each point in time. The sample space then consists of all possible sample points
of this type. Of course, some sample points are more likely than others. In a classic thought experiment,

Maxwell’s demon is able to move all of
the molecules to to the top half of the
cup. This is a possible, but extremely
unlikely, state for the system.

Given a sample point, we can indeed compute the temperature of the coffee. We
can also compute other thermodynamic quantities, such as the viscosity (!). The
temperature alone gives us a very limited picture of the system, and we cannot ask
more complicated questions if this is the only piece of information that we have.

Even though a sample point gives a fundamental description of the state of the
system, it is not necessarily something that we can observe. ■

Example 7.7 (Random number generator). A random number generator (RNG) is a mecha-
nism that takes a finite input, called a random seed, and produces a long (but finite)
sequence of pseudorandom bits. Computer scientists study the setting where the
random seed contains a small number of truly random bits that the RNG expands
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into a much longer sequence of pseudorandom bits. If we do not know the random
seed, then a (computationally bounded) statistical test cannot distinguish the list of
pseudorandom bits from an independent sequence of truly random bits.

We can model an RNG using a sample space Ω whose points are all possible values
of the random seed. The RNG is a function that maps a random seed to a (finite)
binary sequence. Once we select a particular random seed 𝜔0, the output of the RNG
is deterministic. ■

The RNG example suggests a useful way to think about other kinds of probability
models. Tyche chooses the state 𝜔0 of the world. This determines the outcomes of
all (classical) experiments. To the observer, who does not know the exact state, the
experimental outcomes appear random. Performing a large number of experiments
can provide information about the state, but we may never be able to determine the
state completely from a limited family of experiments.

In elementary probability theory, the sample space plays a central role because it
lists the specific outcomes of a well-defined experiment. In more advanced applications,
the sample space recedes in importance. The identity 𝜔0 of the distinguished sample
point also has limited significance (and we may not know 𝜔0 in any case).

7.3 The 𝜎-algebra of events
The main insight behind modern probability theory is to assign probabilities to sets
of outcomes of an experiment, not to individual outcomes. This shift in perspective is
crucial.

When we studied measure theory on the real line, we learned that it is not possible
to assign a consistent length to each subset of the real line. This led us to introduce
the family of Borel sets in the real line, which are sets that have a well-defined length.
Not every subset of the real line is a Borel set.

In the same way, we may not be able to assign a probability to every subset of the
sample space. Instead, we isolate a collection of subsets of the sample space that will
have well-defined probabilities. This collection must form a 𝜎 -algebra, so that we can
define a (probability) measure on it.

Warning: In general, not every
subset of the sample space is an
event. ■

Definition 7.8 (Master 𝜎-algebra of events). The master 𝜎 -algebra F is a 𝜎 -algebra on
the sample space Ω. The sets E that belong to Fare called events. Each event E is
a collection of sample points.

We use special language to talk about events. Suppose that 𝜔0 ∈ Ω is the
distinguished sample point. If 𝜔0 ∈ E, we say that the event E occurs. If 𝜔0 ∉ E, we
say that the event E does not occur. We will present more terminology in a minute.

Example 7.9 (Basic experiments). Let us describe the master 𝜎 -algebra Fof events that
we use for each of our experiments.

1. One coin: Recall that the sample space Ω = {H, T}. The master 𝜎 -algebra F

contains all subsets of the sample space:

F=
{
∅, {H}, {T}, {H, T}

}
.

For example, if the outcome 𝜔0 = T, then the events {T} and {H, T} occur. The
events ∅ and {H} do not occur.

2. First heads: Recall that the sample spaceΩ = ℕ. Once again, the master 𝜎 -algebra
Fcontains all subsets of the sample space: F= P(ℕ). Particular events include
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things like

E = {𝑛 ∈ ℕ : 𝑛 is even} and F = {𝑛 ∈ ℕ : 𝑛 ≤ 10}.

For example, if the outcome 𝜔0 = 7, then the event F occurs but E does not.
3. Linear darts:

Figure 7.2 (An event in lin-
ear darts).

The sample space Ω = [0, 1]. The master 𝜎 -algebra of events is
F= B( [0, 1]), the collection of Borel sets in [0, 1]. In other words, events are
subsets of [0, 1] that have a well-defined length. The distinguished sample point
𝜔0 ∈ [0, 1] is the location where the dart strikes. An event E occurs when the
dart lands in the set E; that is, 𝜔0 ∈ E.

4. Square darts: Now, the sample space Ω = [0, 1]2. The master 𝜎 -algebra of
events is F= B( [0, 1]2), the collection of Borel sets in [0, 1]2. Events are those
subsets of [0, 1]2 that have a well-defined area. The distinguished sample point
𝜔0 ∈ [0, 1]2 is the location where the dart strikes. An event E occurs when the
dart lands in the set E; that is, 𝜔0 ∈ E.

In these situations, we can identify the master 𝜎 -algebra using considerations from
basic measure theory. It is not always so obvious. ■

Since F is a 𝜎 -algebra, countable combinations of events are always events. When
we talk about events, we replace the abstract language of set theory with more concrete
terminology. Here are some of the most important examples. In the following, E, F ∈ F

are events.

• ∅ is called the impossible event. This event cannot occur because the distinguished
sample point 𝜔0 ∉ ∅.

• Ω is called the certain event. This event always occurs because the distinguished
sample point 𝜔0 ∈ Ω.

• The event Ec := Ω \ E is the event that E does not occur.
• The event E ∩ F is the event that both E and F occur.
• If the events E and F are disjoint (E ∩ F = ∅), then we say that E and F are

mutually exclusive.
• The event E ∪ F is the event that E or F occurs. This includes the possibility that

both E and F occur.
• The event E△F is the event that exactly one of E or F occurs.
• The event E \ F is the event that E occurs but F does not.

Further terminology will be introduced as needed.
When constructing a probability space, we generally prefer the master 𝜎 -algebra F

to be as large as possible. We want as many events as we can get. This choice helps us
ensure that all sets that arise from our considerations remain events. This principle is
limited by the fact that we also need to construct interesting probability measures.

The reason for making the master 𝜎 -algebra Fas large as possible is so that we
do not have to think about it very often. Later, we will see that smaller 𝜎 -algebras,
contained in F, play an important role in probability theory.

In detail, for a Borel set Ω ⊆ ℝ𝑛 ,

B(Ω) := {B ∩ Ω : B ∈ B(ℝ𝑛 ) }.

As a rule of thumb, if the sample space Ω is finite or countable, then the master
𝜎 -algebra F= P(Ω), the collection of all subsets of the sample space. If Ω is (a
Borel subset of) the Euclidean space ℝ𝑛 , then the master 𝜎 -algebra F = B(Ω),
the Borel sets in ℝ𝑛 intersected with Ω.
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Aside: More generally, if the sample space Ω is a separable metric space, then we
can equip Ω with the master 𝜎 -algebra F= B(Ω) of Borel sets, generated by the
open metric balls. In still more general settings, additional care may be warranted.

7.4 The probability measure
We have intimated that Tyche designates a “random” sample point 𝜔0 ∈ Ω. So far, we
do not have a way to model what sample points are more or less likely. The probability
measure ℙ encapsulates this information.

Warning: A probability measure
assigns probabilities to events,
not sample points! ■

Definition 7.10 (Probability measure). Let Ω be a sample space, equipped with a
master 𝜎 -algebra F. A probability measure ℙ : F→ [0, 1] is a function with three
properties:

1. Impossible event: The probability ℙ(∅) = 0. The probability of nothing happening
is zero, or 0%. The probability of
something happening is one, or
100%.

2. Certain event: The probability ℙ(Ω) = 1.
3. Countable additivity: For a countable sequence (A𝑖 ∈ F : 𝑖 ∈ ℕ) of mutually

exclusive events,
ℙ
( ¤⋃∞

𝑖=1 A𝑖
)
=

∑∞
𝑖=1 ℙ(A𝑖 ).

Activity 7.11 (Probability measures). Since a probability measure is just a finite measure,
it satisfies all of the usual properties of a measure (Propositions 2.29 and 2.30).
In particular, we can use monotonicity, the inclusion–exclusion law, the countable
subadditivity property (called Boole’s law in this context), and the results on limits
of increasing and decreasing sequences of sets. Write out each of these results using
probabilistic notation and language.

In addition, check that ℙ(Ec) = 1 − ℙ(E) for each event E ∈ F. What does this
statement mean in words? ■

For simple probability models, we can give an explicit description of the probability
measure.

Example 7.12 (Basic experiments). Here are the natural probability measures for our
experiments.

1. One coin: Recall that the sample space Ω = {H, T} and the master 𝜎 -algebra
F = P(Ω). Since the coin is fair, the probability measure ℙ assigns equal
probability to each singleton outcome:

ℙ{H} := 1
2 and ℙ{T} := 1

2 .

Of course, ℙ(∅) = 0 and ℙ({H, T}) = 1.
2. First heads: Recall that Ω = ℕ and F= P(ℕ). Since the coin is fair, we can use

combinatorial reasoning to determine the probability of each singleton outcome:

ℙ({𝑛}) := 2−𝑛 for 𝑛 ∈ ℕ.

The probability of a general event E ⊆ ℕ is now determined by countable
additivity:

ℙ(E) =
∑︁

𝑛∈E
ℙ{𝑛} =

∑︁
𝑛∈E

2−𝑛 .

You may want to verify that this approach leads to a well-defined probability
measure on F.
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3. Linear darts: Recall that Ω = [0, 1] and F= B( [0, 1]). For an event E ∈ F, the
probability is determined by geometric reasoning:

ℙ(E) := length(E)
length( [0, 1]) = 𝜆(E).

In other words, the probability that the dart lands in a (Borel) subset E of
the interval [0, 1] is equal to its length 𝜆(E). Since the Lebesgue measure 𝜆
is translation invariant, this is the natural model for a uniform distribution of
probability. Theorem 3.16, on the properties of the Lebesgue measure, ensures
that ℙ is a probability measure.

4. Square darts: Recall that Ω = [0, 1]2 and F= B( [0, 1]2). For an event E ∈ F,
the probability is again determined by geometric reasoning:

ℙ(E) := area(E)
area( [0, 1]2) = 𝜆2(E).

The probability that the dart lands in a (Borel) subset E of the unit square [0, 1]2
is equal to its area 𝜆2(E). The Lebesgue measure 𝜆2 on the plane is translation
invariant, so this is the natural model for a uniform distribution of probability.
Theorem 6.14, on the product measure, ensures that ℙ is a probability measure.

In each of these cases, the probability measure is determined by direct reasoning. ■

The linear darts example confirms that we need to use measure theory to develop a
rigorous account of probability. These examples also show that we can describe discrete
probability models using exactly the same measure-theoretic framework. When viewed
in this light, the difference between discrete and continuous probability blurs. Both
cases are unified.

Keep in mind that the probability ℙ is a measure, even though we are using a
different notation now. As a consequence, you will sometimes see the probability of an
event E ∈ Fwritten in terms of an integral:

ℙ(E) =
∫
Ω
1E(𝜔) ℙ(d𝜔) =

∫
Ω
1E dℙ =

∫
E
dℙ.

You may encounter other similar notations.
Finally, one more piece of terminology. In probability theory, we generally replace

the term “almost everywhere” with the term “almost sure”. Thus, an event E with
ℙ(E) = 1 is called an almost sure event or, for emphasis, a ℙ-almost sure event.

Aside: How much information do we need to determine a probability measure?
Let A be an algebra of events that generates the master 𝜎 -algebra: 𝜎 (A) = F.
If we can define a premeasure ℙ0 on A that satisfies ℙ0(Ω) = 1, then the Hahn–
Kolmogorov theorem (Appendix A) yields a unique probability measure ℙ that
extends ℙ0 to F. We will mostly construct probability measures from measures
that we have already defined.

Quiz
You should take the opportunity to construct a few probability models of your own.

Activity 7.13 (Probability spaces). What are the natural probability spaces for describing
the following probability experiments?
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1. Roll one fair die.
2. Roll two fair dice.
3. Flip 10 fair coins.
4. Flip a fair coin a countably infinite number of times.
5. A lightbulb has an exponential lifetime, with mean lifetime of 1000 hours.

Make sure to list the sample space, the master 𝜎 -algebra of events, and a rule for
determining the probability of every event. ■

This activity suggests that simple discrete probability spaces are easy to identify. It
is much less clear, however, how to construct a probability model for an infinite number
of coin flips. (Each infinite sequence of outcomes HTHTHHTT . . . seems to have zero
probability!) Similarly, you may not find it obvious how to define a probability measure
that describes the exponential lifetime of a lightbulb. We will start working toward
these goals in the next lecture.

Applications
Application 7.14 (Probabilistic method). The probabilistic method is a fundamental ap-
proach for establishing the existence of an object that satisfies some property. In this
exercise, we will present some simple examples of this rich methodology. In particular,
we will consider applications to coding theory and combinatorics.

1. Let (Ω,F,ℙ) be a probability space. For an event E ∈ F, show that the condition
ℙ(E) > 0 implies that E ≠ ∅. In other words, an event with strictly positive
probability contains a sample point 𝜔 ∈ E that witnesses the property described
by the event.

2. (Warmup: Street art). Sometime during the night, Banksy paints the unit circle The unit circle is the set

{ (𝑥, 𝑦 ) ∈ ℝ2 : 𝑥2 + 𝑦2 = 1}.

in
the plane so that a (measurable) subset of 23% of the circle is red and the rest is
blue. Regardless of the artistic quality, show that we can inscribe a square in the
circle so that all four vertices are blue. Hint: Choose the square at random, and
show that there is a positive probability that its vertices are all blue.

3. (Kraft inequality). A finite collection Cof binary strings with finite lengths is called
a prefix-free code if no string in C is a prefix of another string in C. For example, the string “11” is a

prefix of the strings “1100” and
“1111”.

For each
𝑖 ∈ ℕ, let 𝑁𝑖 denote the number of strings of length 𝑖 in C. Establish the Kraft
inequality, a limit on the number of codewords in a prefix-free code:∑︁

𝑖 ∈ℕ
𝑁𝑖

2𝑖
≤ 1.

Hint: Flip a fair coin until the first time that the sequence of outcomes appears as
a string in C. What is the probability that this event occurs on the 𝑖 th flip?

4. (**Kraft–McMillan inequality). A finite collection C of binary strings with finite
lengths is called a uniquely decipherable code if no pair of strings in Cconcatenates
to form another string that appears in C. For example, the concatenation “11”

+ “00” = “1100”. A uniquely
decipherable code cannot contain all
three of these strings.

For each 𝑖 ∈ ℕ, let 𝑁𝑖 denote the
number of strings of length 𝑖 in the code C. Establish the Kraft–McMillan
inequality, a limit on the number of codewords in a uniquely decipherable code:∑︁

𝑖 ∈ℕ
𝑁𝑖

2𝑖
≤ 1.

5. (*Diagonal Ramsey numbers). Consider a complete graph K𝑛 on 𝑛 vertices. The complete graph K𝑛 is an
undirected combinatorial graph on 𝑛
vertices, and there is an edge
connecting each pair of distinct
vertices.

Assign
each edge a color, either red or blue. A subgraph on 𝑟 vertices is monochromatic
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if its edges are all red or all blue. The (diagonal) Ramsey number 𝑅 (𝑟 ) is the
least value of 𝑛 for which the graph must contain a monochromatic subgraph on
𝑟 vertices, regardless of the choice of coloring. Ramsey (1929) showed that 𝑅 (𝑟 )
is finite. We will develop a lower bound on the Ramsey number. Prove that(

𝑛

𝑟

)
< 2(

𝑟
2)−1 implies 𝑅 (𝑟 ) > 𝑛.

In particular, 𝑅 (𝑟 ) > ⌊2𝑟 /2⌋. Hint: Choose the coloring at random. For each
fixed set S of 𝑟 vertices, consider the event that S is monochromatic.

Notes
The axiomatic foundation of probability theory can be traced back to Kolmogorov’s
work. You may find a similar account in any serious book on probability. For example,
see Billingsley [Bil12] or Durrett [Dur19]. Our focus here is to connect probability
theory with the measure theory foundations we have already developed. We also hope
to build intuition about the role of the sample space, the master 𝜎 -algebra of events,
and the probability measure.

For a survey of the probabilistic method, see the book of Alon & Spencer [AS16].
Most of our examples are drawn from their work. The geometric example of the
probabilistic method is adapted from Grimmett & Stirzaker [GS01]. We will explore a
few more examples in upcoming lectures as we develop additional tools. Unfortunately,
the most interesting applications of the probabilistic method involve elaborate domain-
specific reasoning that is outside the scope of this course.



8. Random Variables

Agenda:
1. Random variables
2. The law of a random variable
3. Distribution functions
4. Types of random variables

“I took the law and threw it away.
There’s nothing wrong, it’s just for play.
There’s no law, no law anymore.
I want to steal from the rich and give to the poor.”

—Howling at the Moon (Sha-La-La), The Ramones (1984)

In the last lecture, we introduced the concept of a probability space. This is the
arena where probability theory takes place. In this lecture, we will develop the concept
of a real random variable, which you can think about as a single real-valued observation
of a probabilistic system. In the next lecture, we will introduce the expectation, which
gives the average value of a real random variable.

For motivation, recall that a probability space is a measure space (Ω,F,ℙ). The
sample space Ω is a set of sample points. The master 𝜎 -algebra F contains events,
which are sets of sample points. The probability measure ℙ assigns a probability to
each event.

In simple examples, the sample space is just the collection of possible outcomes of
a concrete experiment. Before performing the experiment, we only have a probabilistic
description of the outcomes, represented by the probability measure on events. Once
we perform the experiment, we can observe the specific outcome 𝜔0 ∈ Ω. Tyche, the
goddess of chance, elects the outcome 𝜔0 at random. The prior probability that 𝜔0
belongs to any particular event is governed by the probability measure ℙ.

In more sophisticated examples, the points in the sample space are interpreted as
possible states of the world. Each sample point gives the complete description, or state,
of a system that may be very complicated. A priori, the probability measure describes
what subsets of states are more or less likely. As before, chance determines what state
actually occurs. But the state itself may not be observable because of the complexity of
the model.

So, what do we observe? It is productive to think about experiments as measure-
ments that deliver pieces of information about the world. The outcomes of these
experiments are determined by the (inaccessible) state. This intuition leads us to
introduce the idea of a random variable, which is a function of the state. Since the
state is random, the outcome of the experiment is also random. The difference is
that we can observe the values of the random variables, but we may not be able to
observe the underlying state. Nevertheless, we can learn something about the state by
collecting observations.

8.1 Real random variables
We would like a formalism for describing a real-valued observable of a system that
exhibits probabilistic behavior. The following definition captures this idea.

https://www.youtube.com/watch?v=xFh4_Xj5z7o
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Definition 8.1 (Real random variable). Let (Ω,F,ℙ) be a probability space. A real
random variable is a measurable function 𝑋 : Ω → ℝ.

In other words, a random variable 𝑋 maps each sample point 𝜔 ∈ Ω to a real value
𝑋 (𝜔). Once Tyche designates a particular sample point 𝜔0 ∈ Ω, the value 𝑋 (𝜔0) of
the random variable is completely determined. In fact, the choice 𝜔0 of the sample
point determines the value of every random variable.

At first, this definition can be very confusing. A random variable is a fixed function
on the sample space; there is nothing random about it. All of the randomness comes
from the distribution of the sample point, which is modeled by the probability measure
ℙ on the sample space.

Example 8.2 (Basic experiments). For the basic probability experiments we discussed last
time, each sample space can be placed in correspondence with a subset of the real line.
Therefore, we do not have to look very far to find random variables.

1. One coin: The sample space Ω = {H, T}, the 𝜎 -algebra F = P(Ω), and the
probability measure ℙ is the uniform measure (ℙ{𝜔} is constant for all 𝜔 ∈ Ω).
We can define the random variable

𝑋 (𝜔) :=
{
1, 𝜔 = H;
0, 𝜔 = T.

This is the indicator random variable of the event that the coin turns up heads.
2. Head count: Suppose we flip a fair coin 𝑛 times. We may consider the sample

space Ω = {H, T}𝑛 with the 𝜎 -algebra F= P(Ω). The probability measure on
Ω is uniform; it satisfies ℙ{𝝎} = 2−𝑛 for each 𝝎 ∈ Ω. We can define a random
variable

𝑋 (𝝎) = #{𝑖 ∈ {1, . . . , 𝑛} : 𝜔𝑖 = H} for each 𝝎 ∈ Ω.

This random variable reports the number of heads that turn up in 𝑛 coin flips.
3. First heads: Suppose we flip a fair coin 𝑛 times. The sample space Ω = ℕ, and the
𝜎 -algebra F= P(ℕ). The probability measure satisfies ℙ{𝜔} = 2−𝜔 for 𝜔 ∈ ℕ.
We can obviously define the random variable

𝑋 (𝜔) = 𝜔 for 𝜔 ∈ Ω.

This random variable counts the number of flips before the first heads turns up.
4. Linear darts: The probability space ( [0, 1],B( [0, 1]), 𝜆). We can obviously define

the random variable
𝑋 (𝜔) = 𝜔 for 𝜔 ∈ [0, 1].

This random variable reports the position where the dart strikes.

More interesting probability experiments lead to more interesting random variables. ■
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Measurability is a crucial feature of the definition of a random variable. Recall that
a function 𝑋 : Ω → ℝ is measurable when

𝑋 −1(B) := {𝜔 ∈ Ω : 𝑋 (𝜔) ∈ B} ∈ F for all Borel B ∈ B(ℝ).

In words, the preimage of every Borel set is an event.

This construction will allow us to use the probability measure on the sample space to
determine the distribution of values of the random variable.

Remark 8.3 (*Random variables with extended values). It is sometimes convenient to work
with a random variable 𝑋 that takes extended real values. That is, 𝑋 : Ω → ℝ is
measurable with respect to B(ℝ). In this course, random variables take finite values
unless extended values are explicitly allowed.

Aside: It is easy to extend the definition of a random variable beyond the real case.
Let (M, G) be a measurable space. An M-valued random variable is a measurable
function 𝑋 : Ω → M. That is,

𝑋 −1(G) := {𝜔 ∈ Ω : 𝑋 (𝜔) ∈ G} ∈ F for all G ∈ G.

The preimage of every G-measurable set is an event. For the time being, when we
say “random variable,” we are always referring to a real random variable.

8.2 The law of a random variable
As we have noted, all of the randomness in a random variable comes from the
randomness inherent in the selection of the sample point. The probability distribution
on the sample space induces a distribution over the values of a random variable.

To see how this works, let 𝑋 : Ω → ℝ be a real random variable. For each Borel
set B ∈ B(ℝ) in the real line, we can compute the probability

ℙ
(
𝑋 −1(B)

)
= ℙ {𝜔 ∈ Ω : 𝑋 (𝜔) ∈ B} = ℙ {𝑋 ∈ B} .

This is eminently reasonable because the preimage 𝑋 −1(B) is an event, so it has a
well-defined probability. This approach allows us to define a measure on the real line.

Definition 8.4 (Law of a random variable). Let (Ω,F,ℙ) be a probability space, and
let 𝑋 : Ω → ℝ be a real-valued random variable. The law of the random variable
is the Borel measure 𝜇𝑋 on the real line defined by

𝜇𝑋 (B) := ℙ
(
𝑋 −1(B)

)
= ℙ {𝑋 ∈ B} for all Borel B ∈ B(ℝ).

The law of the random variable is also called the distribution of the random variable.
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Exercise 8.5 (The law is a probability measure). Check that the law 𝜇𝑋 of a real random
variable 𝑋 is a Borel probability measure. That is, 𝜇𝑋 is a Borel measure on ℝ with
𝜇𝑋 (ℝ) = 1.

Here is an illustration of the relationship between the probability measure ℙ and
the law 𝜇𝑋 of the random variable 𝑋 :

This is an example of the
push-forward of a measure that we
encountered in Problem 5.44.

The random variable 𝑋 pushes the distribution ℙ of probability on the sample space
Ω forward to a distribution 𝜇𝑋 of probability on the real line ℝ. For each Borel set
B ∈ B(ℝ), the law tells us the probability 𝜇𝑋 (B) that the random variable 𝑋 takes a
value in B.

Since the measure of a set is the integral of the indicator, we can represent the
probability of an event involving a random variable by integrating the law. For each
Borel set B ∈ B(ℝ),

ℙ {𝑋 ∈ B} = 𝜇𝑋 (B) =
∫
ℝ

1B(𝑥) 𝜇𝑋 (d𝑥) =
∫
ℝ

1B d𝜇𝑋 =

∫
B
d𝜇𝑋 .

This relation is an example of the change of variables formula (5.8). Each of the
integrals represents the same thing, and you may encounter any one of these notations
out in the wild.

Example 8.6 (Basic experiments). Let us describe the probability laws for the random
variables arising from our basic experiments.

1. One coin: The indicator random variable 𝑋 that the coin turns up heads follows
that bernoulli(1/2) distribution:

𝜇𝑋 = 1
2𝛿0 +

1
2𝛿1

See Definition 3.20 of the support of a
Borel measure on the real line.

The support of the law 𝜇𝑋 is the Borel set {0, 1}.
2. Head count: The random variable that counts the number of heads follows the

binomial(1/2, 𝑛) distribution.

𝜇𝑋 = 2−𝑛
∑𝑛
𝑖=0

(𝑛
𝑖

)
𝛿𝑖
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The support of the law 𝜇𝑋 is the Borel set {0, 1, 2, . . . , 𝑛}.
3. First heads: The random variable 𝑋 that reports the number of coin flips before

we see the first heads follows the geometric(1/2) distribution.

𝜇𝑋 =
∑∞
𝑛=1 2

−𝑛𝛿𝑛

The support of the law 𝜇𝑋 is the Borel set ℕ.
4. Linear darts: The random variable 𝑋 that describes the position of the dart follows

the uniform[0, 1] distribution.

𝜇𝑋 = 𝜆( · ∩ [0, 1])

The support of the law 𝜇𝑋 is the Borel set [0, 1].

It usually takes more effort to ascertain the law, but it is always determined by pushing
forward the probability measure by the random variable. ■

In practice, it is often the case that the probability space (Ω,F,ℙ) fades into the
background. Instead, we may focus on the random variable 𝑋 and its law 𝜇𝑋 without
worrying too much about the underlying probability model. Furthermore, it is usually
not important to have an exact description of the function 𝑋 : Ω → ℝ, because we
can pass to the distribution 𝜇𝑋 on the real line and work there instead.

8.3 Distribution functions
There is an alternative way to represent the law of a real random variable that can be
more convenient in some circumstances. Instead of working with the law of the random
variable, we can work with the real-valued function that tabulates the cumulative
distribution of probability.

Definition 8.7 (Distribution function). Let 𝑋 be a real random variable. Define the
function

𝐹𝑋 (𝑎) := ℙ {𝑋 ≤ 𝑎} = 𝜇𝑋 (−∞, 𝑎] for 𝑎 ∈ ℝ.

The function 𝐹𝑋 is called the (cumulative) distribution function of the random
variable, often abbreviated cdf or df.

Proposition 8.8 (Distribution function: Properties). The distribution function 𝐹𝑋 : ℝ →
[0, 1] of a real random variable 𝑋 has the following properties.

1. Monotonicity: If 𝑎 ≤ 𝑏 , then 𝐹𝑋 (𝑎) ≤ 𝐹𝑋 (𝑏).
2. Asymptotes: We have lim𝑎↓−∞ 𝐹𝑋 (𝑎) = 0 and lim𝑎↑+∞ 𝐹𝑋 (𝑎) = 1.
3. Right continuity: We have lim𝑥↓𝑎 𝐹𝑋 (𝑥) = 𝐹𝑋 (𝑎) for each 𝑎 ∈ ℝ.
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4. Law: For 𝑎 ≤ 𝑏 , we have 𝜇𝑋 (𝑎, 𝑏] = 𝐹𝑋 (𝑏) − 𝐹𝑋 (𝑎).

Exercise 8.9 (Distribution functions). Prove Proposition 8.8.

As we discussed in Lecture 3, every function that has properties (1)–(3) defines a
unique Borel probability measure that satisfies (4). This claim requires a somewhat
involved argument based on the Hahn–Kolmogorov theorem (Problem A.17).

Example 8.10 (Basic experiments). Here are the distribution functions associated with
the random variables in our basic experiments.

1. One coin: Here is an illustration of the distribution function 𝐹𝑋 of the random
variable 𝑋 that indicates whether the coin comes up heads.

2. Head count: Here is an illustration of the distribution function 𝐹𝑋 of the random
variable 𝑋 that counts the number of heads in 𝑛 tosses.

3. First heads: Here is an illustration of the distribution function 𝐹𝑋 of the random
variable 𝑋 that counts the number of flips before a coin turns up heads.

4. Linear darts: Here is an illustration of the distribution function 𝐹𝑋 of the random
variable 𝑋 that describes where the dart strikes.

You can see that each of these distribution functions has the properties outlined in
Proposition 8.8. ■

In summary, the law provides a complete description of the distribution of a real
random variable. The distribution function also provides a complete description of
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the distribution of a real random variable. It is easy to write the distribution function
in terms of the law. The distribution function also determines the law, but it only
gives an explicit expression for the measure of a (half-open) interval. As such, you
can always use the representation of the distribution that is most convenient for a
particular problem.

8.4 Livestock
As we say, you cannot run a ranch without any cattle. In this section, we will describe
the main breeds of random variables, and then we will introduce some specific animals
from these varieties. You should be familiar with these examples from previous courses;
they are listed here primarily for reference.

8.4.1 Flavors of random variables
The examples of random variables and distribution functions that we have seen suggest
a taxonomy of basic real random variables.

1. Indicator random variables: A fundamentally important random variable is the
indicator that an event occurs. Let E ∈ Fbe an event. The associated indicator
random variable is

1E(𝜔) :=
{
1, 𝜔 ∈ E;
0, 𝜔 ∉ E

for 𝜔 ∈ Ω.

An example of an indicator random variable is the indicator that a coin comes up
heads. An indicator follows a bernoulli(𝑝) distribution where 𝑝 = ℙ(E).

2. Discrete random variables: A random variable 𝑋 is discrete if its law 𝜇𝑋 can be
written as a countable sum of Dirac point masses:

𝜇𝑋 =
∑︁∞

𝑖=1
𝑝𝑖𝛿𝑎𝑖 where 𝑎𝑖 ∈ ℝ and 𝑝𝑖 ≥ 0 and

∑︁∞
𝑖=1

𝑝𝑖 = 1.

For an example of a discrete random variable, consider the random variable
that counts the number of flips before we see the first heads. Indicator random
variables are also discrete.

3. Absolutely continuous random variables: A random variable 𝑋 is absolutely contin-
uous if its law 𝜇𝑋 has a density 𝑓𝑋 with respect to the Lebesgue measure (see
Problem 5.43, Exercise 6.27). That is,

𝜇𝑋 (B) =
∫
B
𝑓𝑋 (𝑥) 𝜆(d𝑥) for all B ∈ B(ℝ), (8.1)

where 𝑓𝑋 : ℝ → ℝ+ is a positive, measurable function with integral 𝜆( 𝑓𝑋 ) = 1.
For an example of an absolutely continuous random variable, consider the
random variable that describes the position where the linear dart strikes the
interval [0, 1]. It is common to refer simply to “continuous” random variables,
even though this terminology is inaccurate.

4. Mixed random variables: A random variable 𝑋 is called mixed if it is a mixture of a
discrete random variable and a continuous random variable. The law 𝜇𝑋 has the
form

𝜇𝑋 = 𝛼𝜇𝑌 + (1 − 𝛼)𝜇𝑍 for 𝛼 ∈ [0, 1],
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where 𝜇𝑌 is the law of a discrete random variable and 𝜇𝑍 is the law of a
continuous random variable. For example, consider the random variable

𝜇𝑋 (B) = 0.001𝛿0(B) + 0.999
∫
B
e−𝑡1ℝ+ (𝑡 ) 𝜆(d𝑡 ).

This random variable models an electronic component that, with probability 0.1%,
burns out immediately when it is activated and otherwise has an exponential
lifetime with mean one.

5. Singular continuous: Not all random variables have mixed distributions. A random
variable 𝑋 is said to be singular continuous if its distribution function 𝐹𝑋 is
continuous, but its law 𝜇𝑋 does not have a density with respect to the Lebesgue
measure. For an example, consider the Cantor distribution. Singular continuous
distributions also arise naturally in the study of particles undergoing Brownian
motion. It is good to be aware that this type of random variable exists, but we
will not discuss them again.

Let us emphasize that each of these random variables is modeled by its law, which
is a Borel measure on the real line. In this sense, measure theory provides a unified
view of discrete and continuous probability. Of course, when we make practical
calculations with random variables, we may still rely on different methods for discrete
and continuous examples.

8.4.2 Discrete random variables: Examples
We briefly introduce the main examples of discrete real random variables, with a few
comments on their applications.

Example 8.11 (Bernoulli). Let 𝑝 ∈ [0, 1]. A real random variable 𝑋 ∼ bernoulli(𝑝)
has the law

𝜇𝑋 = (1 − 𝑝)𝛿0 + 𝑝𝛿1.
Bernoulli random variables model an experiment that succeeds with probability 𝑝 .
The coin flip experiment provides an example. Every indicator random variable has a
Bernoulli distribution, so Bernoulli random variables arise when counting how many
events occur.

It is also common to encounter a signed Bernoulli random variable 𝑌 , which has
law 𝜇𝑌 = (1 − 𝑝)𝛿−1 + 𝑝𝛿+1. ■

Example 8.12 (Discrete uniform). For a finite subset S ⊆ ℕ, a random variable 𝑋 ∼
uniform(S) follows the law

𝜇𝑋 =
∑︁

𝑘 ∈S
1
#S

𝛿𝑘 .

The uniform distribution models a situation where the random variable takes each
value in the set S with equal probability. Think about rolling a die or drawing a card
from a shuffled deck.

The entropy of a distribution is a
measure of how “random” it is; see
Problem 8.33. Entropy arises in
information theory and in statistical
physics.

Among distributions supported on the finite set S, the distribution uniform(S) has
the maximum entropy. ■

Example 8.13 (Binomial). Let 𝑝 ∈ [0, 1] and 𝑛 ∈ ℕ. A real random variable 𝑋 ∼
binomial(𝑛,𝑝) has the law

𝜇𝑋 =
∑︁𝑛

𝑘=0
𝑝𝑘 (1 − 𝑝)𝑛−𝑘 𝛿𝑘 .
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Binomial random variables model the total number of successes in a sequence of
independent experiments, each with success probability 𝑝 . The head count experiment
provides an example. ■

Example 8.14 (Geometric). Let 𝑝 ∈ (0, 1). A random variable 𝑋 ∼ geometric(𝑝) has
the law

𝜇𝑋 =
∑︁∞

𝑘=1
𝑝 (1 − 𝑝)𝑘−1 𝛿𝑘 .

If we perform independent trials of an experiment with success probability 𝑝 , the
geometric random variable models the time at which the first success occurs. The first
heads experiment provides an example.

Geometric random variables have the special property of being A proper definition of the term
“memoryless” requires the concept of
conditioning. See Exercise 20.27.

memoryless: the
distribution of the waiting time for a success does not depend on how much time
has already elapsed. Among distributions supported on ℕ with mean 𝑚 > 0, the
geometric(1/𝑚) distribution has the maximum entropy. ■

Example 8.15 (Poisson). A Poisson random variable 𝑋 ∼ poisson(𝛽) with mean 𝛽 > 0
has the law

𝜇𝑋 =
∑︁∞

𝑘=0

𝛽𝑘e−𝛽

𝑘 !
𝛿𝑘 .

A Poisson random variable models rare events. It describes the number of successes in
a sequence of independent trials with success probability 𝑝 = 𝛽/𝑛 as the number 𝑛 of
trials increases.

We will discuss methods for
establishing stability in Lecture 21.

Poisson random variables have the lovely stability property that a sum of indepen-
dent Poisson random variables remains Poisson.

I cannot resist sharing some classic examples where the Poisson distribution arises.
It has been used to describe the number of misprints on a page of the newspaper, the
number of Prussian cavalry officers kicked to death by their horses in a given year, and
the number of bombs that fell on a given district in London during the Blitz. ■

8.4.3 Absolutely continuous random variables: Examples
Now, we turn to some of the main examples of continuous real random variables. Recall
that a continuous variable is determined by its density (with respect to the Lebesgue
measure); see the definition in (8.1).

Example 8.16 (Uniform). Let S ∈ B(ℝ) be a bounded Borel set. A real random variable
𝑋 ∼ uniform(S) has the density

𝑓𝑋 (𝑥) =
1

𝜆(S)1S(𝑥) for 𝑥 ∈ ℝ.

Uniform random variables model the situation when a value is equally likely to be
anywhere in the set S. Linear darts provides an example.

See Problem 8.34.Among continuous distributions supported on a bounded interval, say [𝑎, 𝑏], the
uniform( [𝑎, 𝑏]) distribution has the maximum entropy. ■

Example 8.17 (Exponential and Laplace). A random variable 𝑋 ∼ exponential(𝛽) with
rate 𝛽 > 0 has the density

𝑓𝑋 (𝑥) = 𝛽e−𝛽𝑥 1ℝ+ (𝑥) for 𝑥 ∈ ℝ.

The exponential distribution arises in queueing theory and other problems involving
continuous waiting times. Exponential distributions have the elegant property of being
memoryless: See Exercise 20.27.the distribution of the waiting time does not depend on how much time
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has already elapsed. Among continuous distributions supported on ℝ+ with mean𝑚,
the exponential(1/𝑚) distribution has the maximum entropy.

A random variable 𝑌 ∼ laplace(𝛽) with rate 𝛽 > 0 has the density

𝑓𝑌 (𝑦 ) =
𝛽

2
e−𝛽 |𝑦 | for 𝑦 ∈ ℝ.

Laplace random variables can arise from Bayesian regression models, and they now
play a role in the theory of differential privacy. ■

Example 8.18 (Normal). A real random variable 𝑋 ∼ normal(𝑚,𝜎2) with mean𝑚 ∈ ℝ

and variance 𝜎2 > 0 has the density

𝑓𝑋 (𝑥) =
e−(𝑥−𝑚 )2/(2𝜎2 )

√
2𝜋𝜎2

for 𝑥 ∈ ℝ.

A normal random variable is also called a Gaussian random variable. When𝑚 = 0 and
𝜎2 = 1, we refer to this distribution as the standard normal distribution.

The normal distribution is the single most important continuous distribution because
of its role in the central limit theorem (Lecture 18). Normal random variables have the
remarkable stability property that an independent sum of normal random variables
remains normal. Among continuous distributions on ℝ with mean𝑚 and variance 𝜎2,
the distribution normal(𝑚,𝜎2) has the maximum entropy. ■

Example 8.19 (Gamma and Beta). A random variable 𝑋 ∼ gamma(𝛼, 𝛽) with shape
parameter 𝛼 > 0 and rate parameter 𝛽 > 0 has the density

As usual, Γ denotes Euler’s gamma
function, a kind of generalized
factorial.

𝑓𝑋 (𝑥) =
𝑥𝛼−1e−𝛽𝑥𝛽𝛼

Γ(𝛼) 1ℝ+ (𝑥) for 𝑥 ∈ ℝ.

Gamma distributions can arise from sums of exponential random variables and from
sums of squared Gaussian random variables, and they play a role in Bayesian inference.

A random variable𝑌 ∼ beta(𝛼, 𝛽) with shape parameters 𝛼, 𝛽 > 0 has the density

As usual, B denotes the beta function,
a kind of generalized binomial
coefficient.

𝑓𝑌 (𝑦 ) =
𝑦𝛼−1(1 − 𝑦 )𝛽−1

B(𝛼, 𝛽) 1(0,1) (𝑦 ) for 𝑦 ∈ ℝ.

Beta distributions arise from geometric problems involving volumes of sections of
Euclidean balls, and they also play a role in Bayesian inference. ■

Example 8.20 (Cauchy). A random variable 𝑋 ∼ cauchy(𝑚,𝛾 ) with location 𝑚 ∈ ℝ

and scale 𝛾 > 0 has the density

𝑓𝑋 (𝑥) =
1
𝜋𝛾

· 1
1 + ((𝑥 −𝑚)/𝛾 )2 for 𝑥 ∈ ℝ.

Cauchy random variables have very heavy tails. In fact, they do not even have a defined
expectation, so they are an extreme example that is useful to keep in mind. They have
the remarkable stability property that an independent sum of Cauchy random variables
remains Cauchy. ■

8.5 *Joint distributions
It is common to encounter multiple random variables at once, so we need a framework
for studying them. For example, in the square darts example, we throw a dart at a
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square target [0, 1]2 and record the position (𝑋 ,𝑌 ) where it hits. Both the horizontal
coordinate 𝑋 and the vertical coordinate 𝑌 are real random variables. How are they
related? What is the analog of the law of a single random variable? How can we
characterize the joint distribution?

In this section, we will show how to use measures to describe the distribution of a
pair of random variables. The extension to more random variables is straightforward,
at least in concept.

8.5.1 Pairs of random variables
We begin with the definition of a pair of random variables and some measurability
properties.

Definition 8.21 (Pair of random variables). Let (Ω,F,ℙ) be a probability space. Con-
sider two random variables 𝑋 : Ω → ℝ and 𝑌 : Ω → ℝ. Then (𝑋 ,𝑌 ) is called a
pair of real random variables.

Although we only assumed that the individual random variables are real-valued
measurable functions on the sample space, the pair is also a measurable function taking
values in the plane.

Exercise 8.22 (*Pair of random variables: Measurability). Consider two functions 𝑋 ,𝑌 :
Ω → ℝ. Show that (𝑋 ,𝑌 ) : Ω → ℝ2 is a measurable function if and only if 𝑋 and 𝑌
are both random variables. For the pair, measurability means that

{(𝑋 ,𝑌 ) ∈ B} := {𝜔 ∈ Ω : (𝑋 (𝜔),𝑌 (𝜔)) ∈ B} ∈ F for all B ∈ B(ℝ2).

That is, the preimage of a Borel set in the plane is an event. Hint: One direction depends
on the fact that the coordinate projections are measurable. The other direction uses the
fact that the 𝜎 -algebra B(ℝ2) is generated by measurable rectangles (Proposition 6.7);
see Proposition 4.2 for the pattern of argument.

8.5.2 Joint and marginal laws
Since (𝑋 ,𝑌 ) is a measurable function, we are licensed to compute the probability of
any Borel set in B(ℝ2). This leads to the notion of a joint distribution.

Definition 8.23 (Pair of random variables: Joint law and marginal laws). Let (𝑋 ,𝑌 ) be a
pair of real random variables. The joint law is the Borel probability measure on
B(ℝ2) defined by

𝜇𝑋𝑌 (B) := ℙ {(𝑋 ,𝑌 ) ∈ B} for all Borel B ∈ B(ℝ2).

The law of the pair is also called the joint distribution. In this context, the
distributions of the individual random variables are called the marginal laws:

𝜇𝑋 (B) := ℙ {𝑋 ∈ B} and 𝜇𝑌 (B) := ℙ {𝑌 ∈ B} for each B ∈ B(ℝ).

The marginal distributions are defined without reference to each other.

Example 8.24 (Square darts). Recall the setting for the square darts example. We
equip the sample space Ω = [0, 1]2 with its Borel 𝜎 -algebra F= B( [0, 1]2) and the
Lebesgue measure 𝜆2 restricted to [0, 1]2. The distinguished sample point 𝝎0 ∈ Ω
describes the location where the dart strikes.
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In this context, the most natural random variables are the coordinate projections,
which describe the horizontal and vertical position of the dart:

𝑋 (𝝎) := 𝜋1(𝝎) = 𝜔1;
𝑌 (𝝎) := 𝜋2(𝝎) = 𝜔2

for 𝝎 = (𝜔1, 𝜔2) ∈ [0, 1]2.

Since (𝑋 ,𝑌 ) is the identity map on [0, 1]2, the joint law is simply the Lebesgue
measure on the unit square:

𝜇𝑋𝑌 (B) = 𝜆2(B) for all B ∈ B( [0, 1]2).

By elementary geometric reasoning, we can see that the marginal laws are the Lebesgue
measures on the unit intervals:

𝜇𝑋 (B) = 𝜆(B);
𝜇𝑌 (B) = 𝜆(B)

for all B ∈ B( [0, 1]).

For instance, the probability that 𝑋 ∈ B is the probability that (𝑋 ,𝑌 ) ∈ B × [0, 1],
which we can compute in terms of areas.

We can consider other pairs of random variables in this setting. For illustration,
consider the pair that repeats the horizontal location of the dart twice:

(𝑊 (𝝎), 𝑍 (𝝎)) := (𝜋1(𝝎), 𝜋1(𝝎)) for 𝝎 = (𝜔1, 𝜔2) ∈ [0, 1]2.

The joint law is a “diagonal” measure:

𝜇𝑊𝑍 (B) = 𝜆{𝑥 ∈ ℝ : (𝑥, 𝑥) ∈ B} for B ∈ B( [0, 1]2).

Once again, the marginal laws are both Lebesgue measure on the unit interval:

𝜇𝑊 (B) = 𝜆(B) and 𝜇𝑍 (B) = 𝜆(B) for all B ∈ B( [0, 1]).

This discussion warns us that the marginal laws do not determine the joint law. ■

8.5.3 Independence
As we saw in Example 8.24, the marginal laws are not enough to determine the joint
law. Nevertheless, there is a special case that merits attention.

Definition 8.25 (Pair of random variables: Independence). Let (𝑋 ,𝑌 ) be a pair of real
random variables. We say that 𝑋 and 𝑌 are independent if and only if the joint law
is the product of the marginal laws:

𝜇𝑋𝑌 = 𝜇𝑋 × 𝜇𝑌 .

In terms of the probability measure, independence means that

ℙ {(𝑋 ,𝑌 ) ∈ A × B} = ℙ {𝑋 ∈ A} · ℙ {𝑌 ∈ B} for A,B ∈ B(ℝ).

Example 8.26 (Square darts). In the square darts example, the horizontal position 𝑋 and
the vertical position 𝑌 of the dart are independent random variables. ■

We will have much more to say about independence later (Lecture 13).



Lecture 8: Random Variables 126

8.5.4 Probability and integral
As with a single random variable, the joint law is simply the push-forward of the
probability measure by a function. As always, the measure of a set is the integral of
the indicator. Thus, for each plane Borel set B ∈ B(ℝ2),

ℙ {(𝑋 ,𝑌 ) ∈ B} = 𝜇𝑋𝑌 (B)

=

∫
ℝ2
1B(𝑥, 𝑦 ) 𝜇𝑋𝑌 (d𝑥 × d𝑦 ) =

∫
ℝ2
1B d𝜇𝑋𝑌 =

∫
B
d𝜇𝑋𝑌 .

(8.2)

All the notations mean the same thing. In case the random variables 𝑋 and 𝑌 are
independent, Fubini–Tonelli (Theorem 6.23) helps us compute these integrals.

We can connect the marginal laws with the joint law by integrating over a cylinder.
For example,

𝜇𝑋 (B) =
∫
B×ℝ

d𝜇𝑋𝑌 for a real Borel set B ∈ B(ℝ). (8.3)

This type of formula leads to concrete tools for working with joint distributions.

8.5.5 Specifying the joint distribution
A measure on the plane is a complicated thing. So we may ask whether there are
alternative mechanisms for specifying a joint distribution. In fact, there is a natural
analog of the distribution function.

Definition 8.27 (Joint distribution function). Let (𝑋 ,𝑌 ) be a pair of real random
variables. The joint distribution function 𝐹𝑋𝑌 : ℝ2 → ℝ+ is defined as

𝐹𝑋𝑌 (𝑎, 𝑏) := ℙ {𝑋 ≤ 𝑎 and 𝑌 ≤ 𝑏}
= 𝜇𝑋𝑌 ((−∞, 𝑎] × (−∞, 𝑏]) for 𝑎, 𝑏 ∈ ℝ.

Theorem 8.28 (Joint distribution function). The joint law 𝜇𝑋𝑌 determines the joint
distribution function 𝐹𝑋𝑌 . The joint distribution function 𝐹𝑋𝑌 is increasing and
right-continuous in each variable separately. As 𝑎, 𝑏 ↓ −∞, the limiting value of
𝐹𝑋𝑌 (𝑎, 𝑏) is zero. As 𝑎, 𝑏 ↑ +∞, the limiting value is one.

Conversely, any function 𝐹 with these properties determines a unique Borel
probability measure 𝜇 on ℝ2 with distribution function 𝐹 .

*Proof. We omit the proof. It follows from the Hahn–Kolmogorov theorem (The-
orem A.12) in the same fashion as the construction of measures from distribution
functions on the line (Problem A.17). In this setting, we start with the algebra gen-
erated by half-open geometric rectangles (𝑎, 𝑏] × (𝑐 , 𝑑] because we can compute its
measure easily from 𝐹𝑋𝑌 . ■

Problems
Exercise 8.29 (Sums of measures). Measures are just positive functions on a 𝜎 -algebra,
so we can form linear combinations. Suppose that 𝜇,𝜈 are Borel probability measures
on (ℝ,B(ℝ)).

1. For 𝛼 ∈ [0, 1], show that 𝛼𝜇 + (1 − 𝛼)𝜈 is a Borel probability measure.
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2. Show that the integral is positive-linear in the measure. For 𝛼, 𝛽 ≥ 0,∫
ℝ

ℎ (𝑥) (𝛼𝜇 + 𝛽𝜈) (d𝑥) = 𝛼
∫
ℝ

ℎ (𝑥) 𝜇(d𝑥) + 𝛽
∫
ℝ

ℎ (𝑥) 𝜈 (d𝑥).

What assumptions are required on the function ℎ : ℝ → ℝ?

Exercise 8.30 (Algebras generated by random variables). Let 𝑋 be a real random variable
on a probability space (Ω,F,ℙ). The 𝜎 -algebra generated by the random variable 𝑋
is

𝜎 (𝑋 ) := 𝜎{𝑋 −1(B) : B ∈ B(ℝ)}.
We can decide whether each event in 𝜎 (𝑋 ) occurs, given only the value of 𝑋 (𝜔). In
other words, 𝜎 (𝑋 ) reflects the knowledge we gain about the sample point by observing
the value of the random variable 𝑋 .

1. Suppose that we flip a fair coin twice. What is the natural probability space?
2. Define a random variable 𝑋 = 1 if the first coin comes up heads and 𝑋 = 0

if the first coin comes up tails. What are the events in 𝜎 (𝑋 )? What are their
probabilities?

3. Define a random variable 𝑌 = 1 if both coins show the same face and 𝑌 = 0 if
the coins show different faces. What are the events in 𝜎 (𝑌 )? What are their
probabilities?

4. How do the observations in the last two parts support the interpretation in the
problem statement?

Exercise 8.31 (Median). Let 𝑋 be a real random variable on a probability space. Amedian
of the random variable is a number𝑀 ∈ ℝ with the property that

ℙ {𝑋 ≤ 𝑀 } ≥ 1
2 and ℙ {𝑋 ≥ 𝑀 } ≥ 1

2 .

As a warning, there could be more than one choice of𝑀 that satisfies this definition.

1. Compute the median value of a uniform[0, 1] random variable.
2. For each 𝑝 ∈ [0, 1], compute a median value of a bernoulli(𝑝) random

variable.
3. Prove that every real random variable has at least one median.
4. Show that the set of all medians of a random variable 𝑋 composes an interval.

Problem 8.32 (*Skorokhod). Let 𝑋 be a real random variable on an arbitrary probability
space with (cumulative) distribution function 𝐹𝑋 . We can also realize 𝑋 as a random
variable on the “universal” probability space U := ( [0, 1],B( [0, 1]), 𝜆), where 𝜆 is the
Lebesgue measure restricted to [0, 1]. To do so, we define an (extended) real random
variable on U by the formula

𝑆 (𝑢) :=

inf{𝑎 ∈ ℝ : 𝐹𝑋 (𝑎) ≥ 𝑢}, 0 < 𝑢 < 1;
−∞, 𝑢 = 0;
+∞, 𝑢 = 1.

This is essentially the functional inverse of the cdf 𝐹𝑋 . We call 𝑆 a Skorokhod
representation of the random variable 𝑋 .

1. Why is 𝑆 a random variable? Hint: In the infimum, we can replace ℝ with ℚ.
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2. Show that the distribution function 𝐹𝑆 coincides with 𝐹𝑋 . Hint: Do the endpoints
matter? Note that the infimum is attained for 𝑢 ∈ (0, 1), and 𝑆 is an increasing
function on [0, 1].

3. Let𝑈 ∼ uniform[0, 1]. Explain why 𝑆 (𝑈 ) has the same distribution as 𝑋 .

Problem 8.33 (*Maximum entropy: Discrete case). Let 𝑋 be a discrete, real random variable
with law

𝜇𝑋 =
∑︁

𝑖 ∈ℤ
𝑝𝑖𝛿𝑎𝑖 for 𝑎𝑖 ∈ ℝ and 𝑝𝑖 ≥ 0 and

∑︁
𝑖 ∈ℤ

𝑝𝑖 = 1.

The entropy of the discrete variable 𝑋 is defined as Throughout this course, the
logarithm is the natural logarithm.
We enforce the convention that
0 log 0 = 0.

entropy(𝑋 ) := −
∑︁

𝑖 ∈ℤ
𝑝𝑖 log𝑝𝑖 .

Note that the entropy does not depend on the support, just the probabilities. As we
will see, the entropy is a measure of the amount of “randomness” in the distribution.

1. Check that the entropy of a discrete random variable is a positive number.
2. (*) Show that 𝒑 ↦→ −∑

𝑖 ∈ℤ 𝑝𝑖 log𝑝𝑖 is a concave function for 𝒑 ∈ ℝ𝑛
+ .

3. Compute the entropy of 𝑋 ∼ bernoulli(𝑝) for 𝑝 ∈ [0, 1]. For what choice of 𝑝
is the entropy maximized? Minimized? Given an interpretation of these results.

4. Compute the entropy of 𝑋 ∼ uniform{0, 1, 2, . . . , 𝑛}.
5. Show that the uniform distribution is themaximum entropy distribution supported

on {0, 1, 2, . . . , 𝑛}. Hint: Reparameterize 𝑝𝑖 = e𝛼𝑖 for 𝛼𝑖 ∈ ℝ, and use Lagrange
multipliers.

6. Compute the entropy of 𝑋 ∼ geometric(𝑝) for 𝑝 ∈ [0, 1] in closed form. For
what choice of 𝑝 is the entropy maximized? Minimized?

7. Recall that the mean𝑚 of a
distribution on ℤ+ is defined as

𝑚 :=
∑︁

𝑖 ∈ℤ+
𝑖 𝑝𝑖 .

Among those distributions supported on ℕ that have mean 𝑚 > 0, show that
geometric(1/𝑚) is the maximum entropy distribution.

Problem 8.34 (*Maximum entropy: Continuous case). Let 𝑋 be a continuous, real random
variable with density 𝑓𝑋 : ℝ → ℝ+. The entropy of the continuous variable 𝑋 is
defined as

entropy(𝑋 ) := −
∫
ℝ

( 𝑓𝑋 log 𝑓𝑋 ) d𝜆.

As before, the entropy does not depend on the support, just the density. As we will see,
the entropy is a measure of the “randomness” in the distribution.

1. Compute the entropy of 𝑋 ∼ uniform( [0, 𝑎]) for 𝑎 > 0.
2. Show by example that the entropy of a continuous random variable can be a

negative number.
3. (*) Show that the uniform distribution is the maximum entropy distribution

supported on {0, 1, 2, . . . , 𝑛}. Hint: Reparameterize 𝑓𝑋 = e𝑔 for measurable
𝑔 : ℝ → ℝ, and use the Euler–Lagrange equations.

4. Compute the entropy of 𝑋 ∼ exponential(𝛽) for 𝛽 > 0.
5. (*)

Recall that the mean𝑚 and variance
𝜎2 of a continuous distribution are
defined as

𝑚 :=
∫
ℝ

𝑥 𝑓𝑋 (𝑥 )𝜆(d𝑥 );

𝜎2 :=
∫
ℝ

(𝑥 −𝑚 )2 𝑓𝑋 (𝑥 )𝜆(d𝑥 ) .

Among continuous distributions supported on ℝ+ with mean 𝑚 > 0, show
that the exponential(1/𝑚) distribution has the maximum entropy.

6. Compute the entropy of 𝑋 ∼ normal(𝑚,𝜎2) for𝑚 ∈ ℝ and 𝜎2 > 0.
7. (*) Among continuous distributions supported on ℝ with mean zero and variance

one, show that the standard normal distribution, normal(0, 1), is the maximum
entropy distribution.
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Aside: It is possible to define entropy-like quantities for more general classes of real
random variables. In particular, the information divergence between two random
variables is defined whenever one distribution has a density with respect to the
other (Exercise 6.27). We omit this development because it is outside the scope of
our course.

Applications
A basic challenge in computational mathematics is to generate random variables that
have a specified distribution. While a full discussion of this topic falls outside of the
scope of this course, the material in this lecture gives us the tools we need to explore
some of the basic methodologies for generating random variables.

Application 8.35 (Quantile sampling). Most programming languages have in-built function-
ality for generating uniform random variables: 𝑈 ∼ uniform[0, 1]. In this problem,
we will investigate how to use this source of randomness to generate other types of
random variables.

According to Problem 8.32, if 𝑋 is a real random variable with cumulative distri-
bution function 𝐹𝑋 , then the random variable 𝑆 (𝑈 ) has the same distribution as 𝑋 .
Generating other types of (non-uniform) random variables thus reduces to finding a
formula for the function 𝑆 . This approach is called quantile sampling, and it is the
preferred methodology when it can be implemented.

1. Find a formula for 𝑆 for 𝑋 ∼ uniform( [𝑐 , 𝑑]) when 𝑐 < 𝑑 and 𝑐 , 𝑑 ∈ ℝ.
2. Find 𝑆 for a random variable 𝑋 ∼ bernoulli(𝑝) with success rate 𝑝 ∈ [0, 1].
3. A Cauchy random variable 𝑋 is a continuous real random variable with density
𝑓𝑋 and distribution function 𝐹𝑋 :

𝑓𝑋 (𝑥) =
1
𝜋

· 1
1 + 𝑥2 and 𝐹𝑋 (𝑎) =

1
𝜋

arctan(𝑎) for 𝑥, 𝑎 ∈ ℝ.

Find 𝑆 for a Cauchy random variable.
4. Find 𝑆 for a Laplace random variable 𝑋 , which has density 𝑓𝑋 (𝑥) = e−|𝑥 |/2 for
𝑥 ∈ ℝ.

5. (*) Use quantile sampling to generate 1000 realizations of each one of these
random variables, and plot a histogram of the values.

Application 8.36 (Getting used to rejection). Another standard methodology for generating
random variables is the technique of rejection sampling. In this case, suppose that
we would like to draw a sample from the distribution of a continuous, real random
variable 𝑋 with density 𝑓𝑌 and law 𝜇𝑋 .

Instead, we have access to samples from the distribution of another continuous,
real random variable 𝑌 with density 𝑔𝑌 and law 𝜇𝑌 . We require that the likelihood
ratio satisfies a uniform bound. That is, for a constant𝑀 > 0,

𝑓𝑋 (𝑎)
𝑔𝑌 (𝑎)

≤ 𝑀 for all 𝑎 ∈ ℝ.

For simplicity, you may assume that the proposal density is strictly positive: 𝑔𝑌 > 0.
Rejection sampling proceeds as follows. We independently draw a random variable

𝑌 and a uniform random variable𝑈 ∼ uniform[0, 1] with law 𝜇𝑈 . Therefore, (𝑌 ,𝑈 )
has the joint law 𝜇𝑌𝑈 = 𝜇𝑌 × 𝜇𝑈 . Define the acceptance event

E := {𝑈 ·𝑀𝑔𝑌 (𝑌 ) < 𝑓𝑋 (𝑌 )}.
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If the event E occurs, then we report the value 𝑌 of the proposal. Otherwise, we
reject the sample from 𝑌 and start over. We will show that, in case of acceptance, the
reported sample value𝑌 follows the same distribution as the target random variable 𝑋 .

1. Explain why the probability of the acceptance event E can be computed by
evaluating the measure of a plane region under the joint law:

ℙ(E) = ℙ {𝑈 ·𝑀𝑔𝑌 (𝑌 ) < 𝑓𝑋 (𝑌 )}
= 𝜇𝑌𝑈

{
(𝑦 ,𝑢) ∈ ℝ2 : 𝑢 ·𝑀𝑔𝑌 (𝑦 ) < 𝑓𝑋 (𝑦 )

}
.

Draw a sketch of this plane region.
2. Prove that ℙ(E) = 1/𝑀 . Hint: Write the measure of the plane region as an

integral, and use Fubini–Tonelli. Proposition 9.5 is also relevant.
3. Elementary notions of conditional probability yield a formula for the distribution

of an accepted sample. For each Borel set B ∈ B(ℝ), prove that

ℙ {𝑌 ∈ B | E} :=
ℙ {𝑌 ∈ B and (𝑌 ,𝑈 ) ∈ E}

ℙ(E) = ℙ {𝑋 ∈ B} .

In other words, an accepted sample has the same law as the target random
variable. Hint: The pattern of argument is very similar to the computation of the
acceptance probability ℙ(E).

4. What is the probability that it takes exactly 𝑘 repetitions of the rejection sampling
procedure before we accept a sample? What is the expected number of repetitions
required to accept a sample? What kind of random variable models this situation?

5. The normal law is described in
Example 8.18, and the Cauchy law is
described in Example 8.20.

Suppose we wish to generate a standard normal variable 𝑋 using the random
variable 𝑌 ∼ cauchy(0, 1) as the proposal. Compute the maximum value of
the likelihood ratio. On average, what is the expected number of repetitions
required to accept a sample?

6. The Laplace law is described in
Example 8.17.

Suppose that we wish to generate a standard normal variable 𝑋 using the random
variable 𝑌 ∼ laplace(1) as the proposal. Compute the maximum value of the
likelihood ratio. On average, what is the expected number of repetitions required
to accept a sample? Which proposal is better, Cauchy or Laplace?

7. (*) Describe two algorithms that use uniform random variables to generate
standard normal variables by combining quantile sampling (Application 8.35)
and rejection sampling. Implement your algorithms. Use each one to draw 1000
realizations of a standard normal variable, and plot a histogram. In each case,
how many uniform random variables did it take to complete the experiment?

Application 8.37 (*Box–Muller). Recall that a standard normal random variable 𝑍 variable
is a continuous distribution with density

𝜑𝑍 (𝑧) :=
1

√
2𝜋

e−𝑧
2/2 for 𝑧 ∈ ℝ.

As an illustration of the rejection sampling methodology (Application 8.36), we showed
that it is possible to generate normal distributions from Cauchy or Laplace random
variables. These methods are both a bit wasteful because we have to reject some of the
samples. In this problem, we will describe a methodology for using two independent
uniform random variables to generate two independent standard normal random
variables. This is called the Box–Muller transform.
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1. A pair (𝑋 ,𝑌 ) of independent standard normal random variables has the joint
probability density function

𝑓𝑋𝑌 (𝑥, 𝑦 ) :=
1
2𝜋

e−(𝑥2+𝑦 2 )/2 for (𝑥, 𝑦 ) ∈ ℝ2.

For the nonzero values of (𝑋 ,𝑌 ), we can transform to polar coordinates (𝑅,Θ) ∈
ℝ++ × [0, 2𝜋) by the rule (𝑋 ,𝑌 ) = (𝑅 cosΘ, 𝑅 sinΘ). Find the joint law of
(𝑅,Θ) using the nonlinear transformation rule (Problem 6.29). Don’t forget the
Jacobian!

2. Changing variables again, calculate the joint probability density of the pair
(𝑈 ,Θ) where𝑈 = 1

2𝑅
2. What is the marginal distribution of𝑈 ? The marginal

distribution of Θ? Are they independent?
3. Consider an independent pair (𝑈1,𝑈2) of uniform random variables: 𝑈𝑖 ∼

uniform( [0, 1]) for 𝑖 = 1, 2. Explain how to transform (𝑈1,𝑈2) to obtain a
pair (𝑋 ,𝑌 ) of independent standard normal variables.

Application 8.38 (Generative modeling). By pushing a random variable forward through a
function, we can obtain very complicated distributions. In particular, we have seen
that we can transform𝑈 ∼ uniform( [0, 1]) to any real probability distribution on
the line if we know its quantile function 𝑆 ; see Application 8.35.

The idea behind generative modeling is to use data to learn a function ℎ that
transforms a simple random variable (e.g., 𝑈 ) to a sample from the (approximate)
empirical distribution of the data. In this problem, we will explore a rudimentary
version of this idea. We will see how a simple artificial neural network can represent a
histogram distribution, but we will not consider the problem of training the network to
learn the histogram.

We say that a random variable 𝑋 has a (finite) histogram distribution if it is an
absolutely continuous random variable with a piecewise constant density 𝑓𝑋 with a finite
number of pieces. That is, there is an increasing real sequence 𝑎1 < 𝑎2 < · · · < 𝑎𝑛+1
and a positive real sequence 𝑐𝑖 ≥ 0 with

∑𝑛
𝑖=1 𝑐𝑖 = 1 for which

𝑓𝑋 (𝑥) :=
𝑐𝑖

𝑎𝑖+1 − 𝑎𝑖
for 𝑥 ∈ (𝑎𝑖 , 𝑎𝑖+1] and 𝑖 = 0, 1, 2, . . . , 𝑛.

We set 𝑓𝑋 (𝑥) = 0 for 𝑥 ≤ 𝑎1 and 𝑥 > 𝑎𝑛+1, so the density has compact support. Each
interval (𝑎𝑖 , 𝑎𝑖+1] is called a bin, and we allow the bins to have different widths. The
height 𝑐𝑖 reflects the frequency with which we see items in the 𝑖 th bin, relative to the
width of the bin.

An artificial neural network is simply a composition of structured functions, called
layers. In a basic feed-forward neural network, it is common that each layer is the
composition of an affine An affine function is the composition

of a linear map and a translation.
function with a nonlinearity. In this problem, we consider a

two-layer ReLU neural network with a single real input and a single real output, which
can be written compactly as

𝑔 (𝑥) := 𝛼 +
∑︁𝑘

𝑖=1
𝛽𝑖 (𝛾𝑖 (𝑥 −𝑚𝑖 ))+. (8.4)

In this expression, 𝛼, 𝛽𝑖 ,𝛾𝑖 ,𝑚𝑖 ∈ ℝ for 𝑖 = 1, . . . , 𝑘 .

1. Sketch an example of a histogram distribution.
2. Find the distribution function 𝐹𝑋 of a histogram random variable. Note that 𝐹𝑋

is piecewise affine, increasing, and continuous.
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3. Compute the Skorokhod representation 𝑆 of the the histogram random variable;
see Problem 8.32. Note that 𝑆 is piecewise affine and increasing. Moreover, when
the frequencies 𝑐𝑖 are strictly positive, the function 𝑆 is continuous on (0, 1).

4. (*) Argue the following converse: Suppose that ℎ : [0, 1] → ℝ is a piecewise
affine function with finitely many pieces, none constant. Prove that ℎ (𝑈 ) follows
a finite histogram distribution. (This is true regardless of whether ℎ is increasing
or continuous.)

5. Show that (8.4) describes a continuous, piecewise affine function on ℝ with a
finite number of pieces. How many?

6. (*) Show that every continuous, piecewise affine function on ℝ with a finite
number of pieces can be written in the form (8.4) for some 𝑘 ∈ ℕ. What is the
minimal value of 𝑘 possible? Hint: Observe that we can represent each of the
following hinge functions using a single term from the sum:

𝑞1(𝑥) :=
{
0, 𝑥 ≤ 𝑎𝑖 ;
𝑟 (𝑥 − 𝑎𝑖 ), 𝑥 > 𝑎𝑖 ;

and 𝑞2(𝑥) :=
{
𝑟 (𝑥 − 𝑎𝑖 ), 𝑥 ≤ 𝑎𝑖 ;
0, 𝑥 > 𝑎𝑖 .

In this expression, 𝑟 ∈ ℝ and the 𝑎𝑖 are the edges of the bins in the histogram.
7. Conclude that we can represent each histogram distribution 𝑋 with strictly

positive frequencies by passing a uniform variable 𝑈 through an appropriate
neural network of the form (8.4).

8. (*) Conclude that we can approximate any histogram distribution 𝑋 arbitrarily
well by passing a uniform variable𝑈 through a neural network (8.4). Can we
bound the coefficients 𝛽𝑖 and 𝛾𝑖?

Notes
All of the material in this lecture is standard, and you will find similar presentations in
any book on probability theory. See Cover & Thomas [CT06] for an introduction to
information theory and entropy. The problems on quantile sampling, rejection sampling,
and the Box–Muller transform were adapted from Owen’s manuscript [Owe13] by Rob
Webber and Ethan Epperly. I learned about the generative modeling idea from Helmut
Bölcskei. For the result that two-layer ReLU networks can represent an arbitrary
piecewise affine function, see the paper [Aro+18], for example.
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9. Expectation & Jensen’s Inequality

Agenda:
1. Expectation
2. Convex functions
3. Jensen’s inequality
4. Beyond the real line

“Take nothing on its looks; take everything on evidence. There’s no better rule.”

—Great Expectations, Charles Dickens

In the last lecture, we introduced the concept of a real random variable, which we
can think of as a single numerical observation of a probabilistic system. We will review
these ideas again at the beginning of this lecture.

In this lecture, we turn to another important question: What is the average value of
a real random variable? The average sums the values of the random variable, weighted
by the probability that it takes on a particular value. As a consequence, defining this
average properly requires an integral.

In probability theory, we refer to the expectation of a real random variable, rather
than the integral of the random variable. We will introduce the concept of expectation
for real random variables, and we will explore its properties. For the most parts, facts
about the expectation are simply translations of analogous facts about the integral.

Since the expectation is a type of weighted average, it enjoys some extra features
that a general integral does not. In pursuit of these results, we will define convex
functions and develop some of their basic properties. Then we will present Jensen’s
inequality, which describes how expectation interacts with a convex function.

9.1 Recap
A probability space (Ω,F,ℙ) is a triple, consisting of a sample space Ω, a 𝜎 -algebra F

of events, and a probability measure ℙ defined on these events. It is fruitful to think
about a probability space as a model for a very complex system that has unpredictable
behavior. The sample points 𝜔 ∈ Ω capture all the possible states of the system, and
the probability measure ℙ describes which sets of states are more or less likely.

A real random variable 𝑋 : Ω → ℝ is a real-valued measurable function on the
sample space. We can think about 𝑋 as a real-valued observable of the complex system.
Since 𝑋 is a function, the value 𝑋 (𝜔) of a random variable is determined by the sample
point 𝜔. Since we think about the sample point 𝜔 as random, we also think about
the value 𝑋 (𝜔) as being random. When you see the symbol 𝑋 , you should imagine a
randomly distributed real number.

To describe the distribution of a real random variable 𝑋 , we introduced the law
𝜇𝑋 : F→ [0, 1] of the random variable. The law is a Borel probability measure on
the real line that indicates what sets of real values are more or less likely:

𝜇𝑋 (B) := ℙ {𝑋 ∈ B} for each Borel set B ∈ B(ℝ) in the real line.

Once we know the law 𝜇𝑋 of a random variable, we can make probability calculations
involving the (individual) random variable 𝑋 without reference back to the original
probability space.
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The distribution function 𝐹𝑋 : ℝ → [0, 1] provides an alternative representation
of the law of the random variable. It is defined as

𝐹𝑋 (𝑎) := ℙ {𝑋 ≤ 𝑎} = 𝜇𝑋 (−∞, 𝑎] for each 𝑎 ∈ ℝ.

Like the law, the distribution function also contains a complete description of the
distribution of the random variable.

In case the random variable 𝑋 is continuous, it also has a density 𝑓𝑋 : ℝ → ℝ+ that
models the amount of probability mass per unit length on the real line. The density
provides another formula for the law:

𝜇𝑋 (B) =
∫
B
𝑓𝑋 (𝑥) 𝜆(d𝑥). for each Borel set B.

Do not confuse the density function 𝑓𝑋 with the distribution function 𝐹𝑋 . You should
also be alert that a random variable that is not continuous does not admit a density.

On many probability spaces, we have an abundant collection of real random
variables. In particular, for every event E ∈ F, we can define the indicator random
variable 1E. Random variables are just (measurable) real-valued functions, so we can
scale them, add them, and multiply them together to produce more random variables.

In general, two real random variables 𝑋 ,𝑌 can interact in complicated ways. To
describe the interaction completely, it is not enough to consider the marginal laws 𝜇𝑋
and 𝜇𝑌 . Rather, we need to evaluate the joint law

𝜇𝑋𝑌 (B) := ℙ {(𝑋 ,𝑌 ) ∈ B} for each Borel set B ∈ B(ℝ2) in the plane.

The joint law contains all of the information we need to understand the distribution of
outcomes of the pair (𝑋 ,𝑌 ). We can define the joint law of any (finite) family of real
random variables in a similar fashion.

9.2 Expectation
What is the average value of a random variable? In analogy with a mechanical system,
we want to sum up the values of the random variable weighted by the probability that
it takes a particular value. In other words, we want to compute an integral.

9.2.1 Expectation and integration
By definition, a real random variable 𝑋 : Ω → ℝ is a measurable function on the
sample space Ω. Therefore, we can integrate the random variable with respect to the
probability measure ℙ using the Lebesgue integral defined in Lecture 2.

We often write expectation without
brackets (𝔼𝑋 ) . In this case,
nonlinear functions bind before the
expectation. For example,
𝔼𝑋 2 := 𝔼[𝑋 2 ]. The notation ℙ(𝑋 )
is analogous to the functional
notation for integrals, but we prefer
to write 𝔼[𝑋 ].

Definition 9.1 (Expectation). Let (Ω,F,ℙ) be a probability space, and let 𝑋 : Ω → ℝ

be a real random variable that may take extended values. The expectation of the
random variable is the number

𝔼[𝑋 ] := ℙ(𝑋 ) :=
∫
Ω
𝑋 (𝜔) ℙ(d𝜔) :=

∫
Ω
𝑋 dℙ,

provided either that 𝑋 is positive or that 𝑋 is finite and ℙ-integrable.

Keep in mind that Definition 9.1 involves a Lebesgue integral. Therefore, for
positive random variables,

𝔼[𝑋 ] :=
∫ ∞

0
ℙ {𝑋 > 𝑡 } d𝑡 =

∫
ℝ+

ℙ {𝑋 > 𝑡 } 𝜆(d𝑡 ) when 𝑋 ≥ 0. (9.1)
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Proposition 4.39 confirms the equivalence of the Riemann and Lebesgue integrals in
the last display. For finite-valued, integrable random variables,

𝔼[𝑋 ] := 𝔼[𝑋+] − 𝔼[𝑋−] when 𝔼 |𝑋 | < +∞. (9.2)

Following our standard practice, let us carve out the class of random variables that
have finite expectation.

Definition 9.2 (Integrable random variables). We define the linear space of integrable
random variables:

L1 := L1(Ω,F,ℙ) :=
{
𝑋 : Ω → ℝ measurable : 𝔼 |𝑋 | < +∞

}
.

Warning 9.3 (Non-integrable random variables). Not every real random variable has
an expectation! For instance, a Cauchy random variable (Example 8.20) is not
integrable because the distribution has too much mass away from zero. In other
terms, a Cauchy variable has very heavy tails. Non-integrable random variables have
some unintuitive behavior, but they are not just a curiosity because they arise in
many applied problems. Nevertheless, we will focus on integrable random variables
in this course. ■

9.2.2 Change of variables
Integration on an abstract space probably remains a little mysterious, but we can shift
our attention to the real line by means of the following result.

Proposition 9.4 (Law of the unconscious statistician). Less frivolous authors call this result
the change of variables formula.

Let 𝑋 be a real random variable
defined on a probability space, and let ℎ : ℝ → ℝ be a measurable function. Then

𝔼[ℎ (𝑋 )] =
∫
ℝ

ℎ (𝑥) 𝜇𝑋 (d𝑥),

provided either that ℎ is positive or that ℎ is 𝜇𝑋 -integrable. See Figure 9.1 for an
illustration.

Proof. This is just the change of variables formula from Problem 5.44. Now is the time
to make sure the details are clear.

First, we assume that ℎ : ℝ → ℝ+ is a positive, measurable function. The
composition ℎ ◦ 𝑋 is positive and measurable, hence a positive random variable. By
definition, the integral on the right-hand side satisfies∫

ℝ

ℎ (𝑥) 𝜇𝑋 (d𝑥) =
∫
ℝ+

𝜇𝑋 {𝑥 ∈ ℝ : ℎ (𝑥) > 𝑡 } 𝜆(d𝑡 )

=

∫
ℝ+

ℙ
(
𝑋 −1{𝑥 ∈ ℝ : ℎ (𝑥) > 𝑡 }

)
𝜆(d𝑡 )

=

∫
ℝ+

ℙ {𝜔 ∈ Ω : ℎ (𝑋 (𝜔)) > 𝑡 } 𝜆(d𝑡 )

=

∫
ℝ+

ℙ {ℎ (𝑋 ) > 𝑡 } 𝜆(d𝑡 ) = 𝔼[ℎ (𝑋 )].

We have used Definition 8.4 of the law 𝜇𝑋 and the definition (9.1) of the expectation
of the positive random variable ℎ (𝑋 ).
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Figure 9.1 (Change of variables). To compute the expectation of a function ℎ (𝑋 ) of a
random variable 𝑋 , we can integrate the function ℎ with respect to the law 𝜇𝑋 .

In case ℎ : ℝ → ℝ is 𝜇𝑋 -integrable, its positive part ℎ+ and negative part ℎ− have
finite integrals with respect to 𝜇𝑋 . By definition of the integral of a signed function,∫

ℝ

ℎ (𝑥) 𝜇𝑋 (d𝑥) :=
∫
ℝ

ℎ+(𝑥) 𝜇𝑋 (d𝑥) −
∫
ℝ

ℎ− (𝑥) 𝜇𝑋 (d𝑥)

= 𝔼[ℎ+(𝑋 )] − 𝔼[ℎ− (𝑋 )] = 𝔼[ℎ (𝑋 )].

We have applied the change of variables formula from the last paragraph twice, once
for ℎ+ and once for ℎ−. Last, we use the definition (9.2) of the expectation of the
signed random variable ℎ (𝑋 ). ■

For a striking example of Proposition 9.4, we can choose ℎ : 𝑥 ↦→ 𝑥 to obtain

𝔼[𝑋 ] =
∫
ℝ

𝑥 𝜇𝑋 (d𝑥). (9.3)

This accords with our familiar notions of expectation on the line. Heuristically, we
sum the value 𝑥 of the random variable weighted by the probability 𝜇𝑋 (d𝑥) that the
random variable takes the value 𝑥 . See Figure 9.1.

It is instructive to instantiate the formula (9.3) for particular types of random
variables. When the random variable 𝑋 is discrete,

𝜇𝑋 =
∑︁∞

𝑖=1
𝑝𝑖𝛿𝑎𝑖 implies 𝔼[𝑋 ] =

∑︁∞
𝑖=1

𝑎𝑖𝑝𝑖 . (9.4)

When the random variable 𝑋 is continuous with density 𝑓𝑋 ,

𝜇𝑋 (B) =
∫
B
𝑓𝑋 (𝑥) 𝜆(d𝑥) implies 𝔼[𝑋 ] =

∫
ℝ

𝑥 𝑓𝑋 (𝑥) 𝜆(d𝑥). (9.5)

This calculation requires Proposition 9.5 below (see also Exercise 9.6). In other
words, (9.3) captures the familiar formulas from elementary probability and more.

9.2.3 Continuous random variables
For continuous random variables, there is an extension of Proposition 9.4 that displays
the role of the density more clearly.
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Proposition 9.5 (Expectation: Continuous random variable). Let 𝑋 be a continuous real
random variable with density 𝑓𝑋 and with law 𝜇𝑋 . For a measurable function
ℎ : ℝ → ℝ,

𝔼[ℎ (𝑋 )] =
∫
ℝ

ℎ (𝑥) 𝜇𝑋 (d𝑥) =
∫
ℝ

ℎ (𝑥) 𝑓𝑋 (𝑥) 𝜆(d𝑥),

provided that ℎ is positive or that the integral on the right-hand side is finite.

*Proof. We may assume that ℎ : ℝ → ℝ+ is a positive, measurable function. The
result for signed functions follows by splitting ℎ into its positive and negative parts.

By definition (8.1) of the law 𝜇𝑋 in terms of the density 𝑓𝑋 , we have∫
ℝ

1B(𝑥) 𝜇𝑋 (d𝑥) = 𝜇𝑋 (B) =
∫
ℝ

1B(𝑥) 𝑓𝑋 (𝑥) 𝜆(d𝑥).

Recall that a positive simple function
is a (finite) linear combination of
indicator functions with positive
coefficients.

By linearity of the integral, the same relation holds for each positive simple function
𝑠 : ℝ+ → ℝ: ∫

ℝ

𝑠 (𝑥) 𝜇𝑋 (d𝑥) =
∫
ℝ

𝑠 (𝑥) 𝑓𝑋 (𝑥) 𝜆(d𝑥).

Last, we use the staircase maps (5.2) to approximate ℎ by an increasing limit of simple
functions: (𝑄 𝑗 ◦ ℎ) ↑ ℎ. Apply the last display to the simple function 𝑠 = 𝑄 𝑗 ◦ ℎ.
Invoke monotone convergence (Theorem 5.18) on reach the result for ℎ. ■

Exercise 9.6 (*Expectation: Continuous random variable). Give an alternative proof of
Proposition 9.5 based on the definition (4.5) of the integral, the definition (8.1) of the
law 𝜇𝑋 , and Fubini–Tonelli (Theorem 6.23). See also Exercise 6.27.

9.2.4 Properties of expectation
Since expectation is just a Lebesgue integral, it inherits all of the basic properties of
the Lebesgue integral.

Theorem 9.7 (Expectation: Properties). Let (Ω,F,ℙ) be a probability space, and
consider integrable real random variables 𝑋 ,𝑌 ∈ L1.

1. Indicators: The expectation of the indicator of an event equals the probability
of the event:

𝔼[1E] = ℙ(E) for each event E ∈ F.

2. Unital: 𝔼[1] = 1.
3. Positive: If 𝑋 ≥ 0, then 𝔼[𝑋 ] ≥ 0.
4. Monotone: If 𝑋 ≤ 𝑌 , then 𝔼[𝑋 ] ≤ 𝔼[𝑌 ].
5. Linear: For all scalars 𝛼, 𝛽 ∈ ℝ,

𝔼[𝛼𝑋 + 𝛽𝑌 ] = 𝛼 𝔼[𝑋 ] + 𝛽 𝔼[𝑌 ].

6. Negligible sets: If 𝑋 = 𝑌 ℙ-almost surely, then 𝔼[𝑋 ] = 𝔼[𝑌 ]. Recall that probabilists say “almost
sure” instead of “almost everywhere”.

Proof. This is just a restatement of Theorem 5.14. ■

The only statement here that is special for the expectation is the unital property (2)
that the expectation reproduces the constant 1. This point reflects the interpretation of
the expectation is a (weighted) average. Another distinctive property of the expectation
is Jensen’s inequality, which we will discuss in Section 9.4.
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The most important single property of expectation is linearity (4). Let us emphasize
that this result holds for all (integrable) random variables, regardless of how they are
related to each other. This innocuous result has extensive implications.

The statement (1) that the expectation of the indicator of an event is the probability
of the event also has many useful consequences. For arbitrary events E𝑖 ∈ Fwith
𝑖 ∈ ℕ, we can compute

𝔼
[
#{𝑖 ∈ ℕ : E𝑖 occurs}

]
= 𝔼

[ ∑∞
𝑖=1 1E𝑖

]
=

∑∞
𝑖=1 ℙ(E𝑖 ).

The first relation is a reinterpretation, and the second relation is Tonelli’s theorem
for sums. In other words, we can use indicators to count how many events in a given
family actually occur.

Activity 9.8 (Expectation: Positive random variables). As usual, results for the expectation
can be divided into results for positive random variables and results for integrable
random variables. We have not stated the specialized results for positive random
variables here, but they can be extracted from Theorem 5.14. Write out these results
using probabilistic language and terminology. ■

Exercise 9.9 (Expectation: Range). Fix extended real numbers 𝑎, 𝑏 ∈ ℝ. Let 𝑋 : Ω →
[𝑎, 𝑏] be a real random variable that takes values in an interval, possibly infinite.
Assuming that the expectation 𝔼𝑋 is defined, show that

𝑎 ≤ 𝔼𝑋 ≤ 𝑏.

In other words, the expectation of 𝑋 remains inside the range of possible values of 𝑋 .
Hint: Use monotonicity of the expectation.

9.2.5 Convergence theorems
Since the expectation is just a Lebesgue integral, it also comes equipped with a family
of convergence theorems. These results follow from the analogous results for Lebesgue
integrals with only a change of notation.

Theorem 9.10 (Expectation: Monotone convergence). Let (𝑋𝑖 : 𝑖 ∈ ℕ) be a pointwise
increasing sequence of positive random variables that may take extended values.
Then In detail, 𝑋𝑖+1 (𝜔 ) ≥ 𝑋𝑖 (𝜔 ) for each

𝑖 ∈ ℕ and each 𝜔 ∈ Ω. The random
variable 𝑋 : Ω → ℝ+ is defined as
the limit of the increasing sequence.

𝑋𝑖 ↑ 𝑋 implies 𝔼[𝑋𝑖 ] ↑ 𝔼[𝑋 ].

Theorem 9.10 is just a restatement of Theorem 5.18. It holds without any further
qualification on the random variables. Indeed, an increasing sequence of positive
random variables has a limit, which is always a positive random variable (that may
take the value +∞).

Theorem 9.11 (Expectation: Fatou’s lemma). Let (𝑋𝑖 : 𝑖 ∈ ℕ) be a sequence of positive
random variables that may take extended values. Then

lim inf𝑖→∞ 𝔼[𝑋𝑖 ] ≥ 𝔼
[
lim inf𝑖→∞ 𝑋𝑖

]
.

Theorem 9.11 is just a restatement of Theorem 5.20. It holds without any
qualification, except that the random variables must be positive.

Theorem 9.12 (Expectation: Dominated convergence). Let (𝑋𝑖 : 𝑖 ∈ ℕ) be a sequence
of random variables. Assume that the sequence is dominated by a fixed, integrable
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random variable:
Warning: The dominating
random variable 𝑌 cannot
depend on the index 𝑖 . ■|𝑋𝑖 | ≤ |𝑌 | for all 𝑖 ∈ ℕ, where 𝑌 ∈ L1(ℙ).

Then
𝑋𝑖 → 𝑋 implies 𝔼[𝑋𝑖 ] → 𝔼[𝑋 ].

Theorem 9.12 is a specialization of Theorem 5.22. It is essential that the random
variables be dominated by a single random variable 𝑌 that is integrable.

For the expectation, a special case of Theorem 9.12 is often easier to use.

Corollary 9.13 (Expectation: Bounded convergence). Let (𝑋𝑖 : 𝑖 ∈ ℕ) be a sequence of
random variables. Assume that the sequence is uniformly bounded by a constant:

Warning: The constant𝑀
cannot depend on the index 𝑖 . ■|𝑋𝑖 | ≤ 𝑀 for all 𝑖 ∈ ℕ, where𝑀 ∈ ℝ+.

Then
𝑋𝑖 → 𝑋 implies 𝔼[𝑋𝑖 ] → 𝔼[𝑋 ].

Proof. Apply Theorem 9.12 with the random variable 𝑌 (𝜔) = 𝑀 for all 𝜔 ∈ Ω.
Constants are integrable with respect to a probability measure. ■

All of these convergence theorems have counterparts, assuming only convergence
ℙ-almost surely. We omit explicit statements.

9.2.6 *Expectation in the plane
We have defined the expectation of a real-valued random variable. The definition can
be extended to pairs of real-valued random variables in an obvious way.

Definition 9.14 (Pairs of real random variables: Expectation). Let (𝑋 ,𝑌 ) be a pair of
(finite-valued) real random variables. If both 𝑋 and 𝑌 are ℙ-integrable, we define

𝔼(𝑋 ,𝑌 ) := (𝔼𝑋 ,𝔼𝑌 ).

That is, the expectation of the random vector (𝑋 ,𝑌 ) ∈ ℝ2 is simply the vector of
the expectations.

Given a pair (𝑋 ,𝑌 ) of real random variables with joint law 𝜇𝑋𝑌 , we can compute
the expectation of a bivariate measurable function ℎ : ℝ2 → ℝ using the law of the
unconscious statistician:

𝔼[ℎ (𝑋 ,𝑌 )] =
∫
ℝ2
ℎ (𝑥, 𝑦 ) 𝜇𝑋𝑌 (d𝑥 × d𝑦 ). (9.6)

This formula is valid when ℎ is positive or when ℎ is 𝜇𝑋𝑌 -integrable. The proof is the
same as Proposition 9.4.

When (𝑋 ,𝑌 ) is an independent pair, the joint law 𝜇𝑋𝑌 = 𝜇𝑋 × 𝜇𝑌 . Therefore,
we can invoke Fubini–Tonelli (Theorem 6.23) to pass from the double integral to an
iterated integral.

Similar results are valid for any random vector (𝑋1, . . . , 𝑋𝑛) ∈ ℝ𝑛 whose compo-
nents 𝑋𝑖 are real random variables.
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Figure 9.2 (Convex functions). Left: A convex function 𝜑 lies below its secants.
Right: A convex function 𝜑 lies above its tangents.

9.3 Convex functions on the real line
As we have seen, the expectation of a random variable is just the integral with respect
to the measure of probability. The expectation inherits all of the properties of the
integral, but it enjoys a few additional perquisites because it is a weighted average.
For example, we have already shown that the expectation reproduces constants.

For related reasons, expectation also interacts elegantly with convex functions. To
develop this idea, we first define the concept of a convex function, and we establish
some of the key properties. The proofs are included here for completeness, but the
reader may focus on the statements rather than the arguments.

9.3.1 Convex functions
Linear functions preserve linear equality relations. When we consider linear inequality
relations, we soon encounter convex functions. The following humble definition is
central to a large part of applied mathematics.

Definition 9.15 (Convex function). Let I ⊆ ℝ be an interval of the real line, not
necessarily finite. A (finite-valued) function 𝜑 : I → ℝ is convex if

𝜑
(
(1 − 𝜏)𝑥 + 𝜏𝑦

)
≤ (1 − 𝜏) 𝜑 (𝑥) + 𝜏 𝜑 (𝑦 ) for all 𝜏 ∈ [0, 1]

and all points 𝑥, 𝑦 ∈ I. A function 𝜓 : I → ℝ is called concave if its negation −𝜓 is
convex.

In words, a convex function lies below its secants. Dually, a convex function lies
above its tangents, as we will prove below in Proposition 9.19. The illustrations in
Figure 9.2 capture these two ideas.

Example 9.16 (Convex functions). Many familiar functions are convex or concave.

1. Affine functions: For 𝑎, 𝑏 ∈ ℝ, the affine function 𝑡 ↦→ 𝑎 + 𝑏𝑡 is convex on ℝ.
2. Absolute powers: For 𝑝 ≥ 1, the function 𝑡 ↦→ |𝑡 |𝑝 is convex on ℝ.
3. Inverse powers: For 𝑝 > 0, the function 𝑡 ↦→ 𝑡 −𝑝 is convex on ℝ++.
4. Exponential: For 𝜃 ∈ ℝ, the function 𝑡 ↦→ e𝜃𝑡 is convex on ℝ.
5. Powers: For 0 < 𝑝 ≤ 1, the function 𝑡 ↦→ 𝑡𝑝 is concave on ℝ+.
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6. Logarithm: The function 𝑡 ↦→ log 𝑡 is concave on ℝ++.
7. Entropy: The function 𝑡 ↦→ −𝑡 log 𝑡 is concave on ℝ+.

You can verify these results using the tools from Section 9.3.4. We will encounter more
examples of convex functions later. ■

Aside: We say that a function 𝜑 : I → ℝ is strictly convex when

𝜑
(
(1 − 𝜏)𝑥 + 𝜏𝑦

)
< (1 − 𝜏) 𝜑 (𝑥) + 𝜏 𝜑 (𝑦 ) for all 𝜏 ∈ (0, 1)

and all distinct points 𝑥, 𝑦 ∈ I. Strict convexity means that the graph of the function
does not contain any affine segments. Which of the functions in Example 9.16 are
strictly convex?

9.3.2 Continuity and subgradients
The key property of a convex function on the real line is that its secants are increasing.
This point is evident from Figure 9.2.

Lemma 9.17 (*Convex function: Secants). Let 𝜑 : I → ℝ be a convex function on an
interval I of the real line. For each 𝑎 ∈ I, introduce the secant function:

(D𝜑 ) (𝑎;ℎ) := 𝜑 (𝑎 + ℎ) − 𝜑 (𝑎)
ℎ

when ℎ ≠ 0 and 𝑎 + ℎ ∈ I.

For fixed 𝑎 ∈ I, the function ℎ ↦→ D(𝑎; ·) is increasing:

ℎ ≤ ℎ′ implies (D𝜑 ) (𝑎;ℎ) ≤ (D𝜑 ) (𝑎;ℎ′).

*Proof. This statement is an algebraic consequence of Definition 9.15. For example,
whenℎ > 0, choose 𝑥 = 𝑎 and 𝑦 = 𝑎+ℎ′, and set𝜏 = ℎ/ℎ′ so that (1−𝜏)𝑥+𝜏𝑦 = 𝑎+ℎ.
The other cases are similar. ■

Lemma 9.17 has several significant consequences. First of all, convex functions are
essentially continuous.

Proposition 9.18 (Convex function: Continuity). A convex function 𝜑 : U → ℝ
Warning: A convex function on a
closed interval need not be
continuous at the endpoints. ■

on an open
interval U ⊆ ℝ is continuous. In particular, 𝜑 is Borel measurable.

*Proof. Fix 𝑎 ∈ U, and let 𝑘 > ℎ > 0 be sufficiently small that 𝑎 ±𝑘 ∈ U. Lemma 9.17
implies that

(D𝜑 ) (𝑎;−𝑘 ) ≤ (D𝜑 ) (𝑎;ℎ) ≤ (D𝜑 ) (𝑎;+𝑘 ).
It follows that

| (D𝜑 ) (𝑎;ℎ) | ≤ max
{
| (D𝜑 ) (𝑎;+𝑘 ) |, | (D𝜑 ) (𝑎;−𝑘 ) |

}
=: 𝐶 .

Writing out the secant function on the left-hand side and rearranging, we see that 𝜑 is
right-continuous at 𝑎 . That is,

|𝜑 (𝑎 + ℎ) − 𝜑 (𝑎) | ≤ 𝐶ℎ as ℎ ↓ 0.

A similar argument shows that 𝜑 is left-continuous at 𝑎 . ■

Second, let us demonstrate that a convex function lies above its tangents in the
following sense.
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Proposition 9.19 (Convex function: Subgradient inequality). Let 𝜑 : U → ℝ be a convex
function on an open interval U ⊆ ℝ. For each 𝑎 ∈ U, there is a number 𝑔 ∈ ℝ such
that

𝜑 (𝑦 ) ≥ 𝜑 (𝑎) + 𝑔 · (𝑦 − 𝑎) for all 𝑦 ∈ U. (9.7)

The subgradient 𝑔 is not necessarily
unique.

The number 𝑔 appearing in (9.7) is called a subgradient of the convex function 𝜑
at the point 𝑎 . If 𝜑 is differentiable at 𝑎 , then 𝑔 = 𝜑 ′ (𝑎) is uniquely determined.

*Proof. Fix a point 𝑎 ∈ U. Let 𝑘 > ℎ > 0 be sufficiently small that 𝑎 ± 𝑘 ∈ U.
Lemma 9.17 implies that

(D𝜑 ) (𝑎;−𝑘 ) ≤ (D𝜑 ) (𝑎;ℎ) ≤ (D𝜑 ) (𝑎;+𝑘 ).

As ℎ decreases to zero, the secant (D𝜑 ) (𝑎;ℎ) is decreasing and bounded below by
the left-hand side. Therefore,

𝑔+ := infℎ>0 (D𝜑 ) (𝑎;ℎ) = limℎ↓0 (D𝜑 ) (𝑎;ℎ) ≤ (D𝜑 ) (𝑎;+𝑘 ).

Writing out the secant (D𝜑 ) (𝑎;+𝑘 ) and rearranging,

𝜑 (𝑎 + 𝑘 ) ≥ 𝜑 (𝑎) + 𝑔+𝑘 for all 𝑘 > 0 with 𝑎 + 𝑘 ∈ U.

A parallel argument shows that 𝑔− := limℎ↑0 (D𝜑 ) (𝑎;ℎ) satisfies

𝜑 (𝑎 − 𝑘 ) ≥ 𝜑 (𝑎) − 𝑔−𝑘 for all 𝑘 > 0 with 𝑎 − 𝑘 ∈ U.

Lemma 9.17 also guarantees that 𝑔− ≤ 𝑔+. Combining the last two displays, we realize
that the inequality (9.7) holds for any number 𝑔 ∈ [𝑔− , 𝑔+]. ■

9.3.3 Dual representation
The supremum of affine functions is always a convex function.

Proposition 9.20 (Supremum of affine functions). Let 𝑎 𝑗 , 𝑏 𝑗 ∈ ℝ for each 𝑗 ∈ J in an
arbitrary index set. Define a function 𝜑 : ℝ → ℝ by the rule

𝜑 (𝑥) := sup{𝑎 𝑗 + 𝑏 𝑗𝑥 : 𝑗 ∈ J} for each 𝑥 ∈ ℝ.

The domain of an extended function
is the set of places where it is finite:

dom(𝜑 ) := {𝑥 ∈ ℝ : |𝜑 (𝑥 ) | < +∞}.

Then 𝜑 is a convex function on its domain.

*Proof. Choose 𝑥, 𝑦 ∈ dom(𝜑 ) and 𝜏 ∈ [0, 1]. Calculate that

𝜑 ((1 − 𝜏)𝑥 + 𝜏𝑦 ) = sup{(1 − 𝜏) (𝑎 𝑗 + 𝑏 𝑗𝑥) + 𝜏 (𝑎 𝑗 + 𝑏 𝑗 𝑦 ) : 𝑗 ∈ J}
≤ (1 − 𝜏) sup{𝑎 𝑗 + 𝑏 𝑗𝑥 : 𝑗 ∈ J} + 𝜏 sup{𝑎 𝑗 + 𝑏 𝑗 𝑦 : 𝑗 ∈ J}
= (1 − 𝜏)𝜑 (𝑥) + 𝜏𝜑 (𝑦 ).

Indeed, the supremum is subadditive and positively homogeneous. ■

We may ask whether the converse holds. Can we write a convex function as the
supremum of affine functions? We can answer this question in the affirmative by
invoking the subgradient inequality. This result will play a role in our discussion of
conditional expectation.

Corollary 9.21 (Convex function: Dual representation). Let 𝜑 : U → ℝ be a convex function
on an open interval U of ℝ. Then there is a countable set J ⊆ ℝ2 for which

𝜑 (𝑦 ) = sup{𝜑 (𝑎) + 𝑔 · (𝑦 − 𝑎) : (𝑎, 𝑔 ) ∈ J} for all 𝑦 ∈ U.
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*Proof. For each rational 𝑎 ∈ U ∩ ℚ, the subgradient inequality (9.7) furnishes a
subgradient 𝑔𝑎 for which

𝜑 (𝑦 ) ≥ 𝜑 (𝑎) + 𝑔𝑎 · (𝑦 − 𝑎) for all 𝑦 ∈ U.

For rational 𝑦 ∈ U ∩ℚ, we see that

𝜑 (𝑦 ) = sup{𝜑 (𝑎) + 𝑔𝑎 · (𝑦 − 𝑎) : 𝑎 ∈ U ∩ℚ}.

Proposition 9.18 states that 𝜑 is continuous, so the same formula is valid for all 𝑦 ∈ U
because the rationals are dense in U. ■

9.3.4 Sufficient conditions
How can we confirm that a real-valued function is convex? From a vast arsenal of
methods, let us select a few that are particularly useful. If you want, you can develop
proofs of these results from the material presented above.

Fact 9.22 (Convex functions: Closed convex cone). Let I ⊆ ℝ be an interval. If 𝑓 , 𝑔 : I → ℝ

are convex functions and 𝛼, 𝛽 ≥ 0, then 𝛼𝑓 + 𝛽𝑔 is a convex function. Suppose that
𝑓 := lim𝑖 𝑓𝑖 is the pointwise limit of a sequence 𝑓𝑖 : I → ℝ of convex functions for
𝑖 ∈ ℕ. Then the limit 𝑓 : I → ℝ remains a convex function. ■

Fact 9.23 (Convex function: First-derivative test). Suppose that 𝜑 : U → ℝ is a differen-
tiable function on an open interval U of the real line. If the derivative 𝜑 ′ : U → ℝ is
an increasing function, then 𝜑 is convex. ■

Fact 9.24 (Convex function: Second-derivative test). Suppose that 𝜑 : U → ℝ is a twice-
differentiable function on an open interval U of the real line. If the second derivative
𝜑 ′′ : U → ℝ is a positive-valued function, then 𝜑 is convex. ■

Another powerful method is to exhibit a dual representation of a function as the
supremum of affine functions. Then Proposition 9.20 guarantees convexity.

Exercise 9.25 (Convex functions: Examples). Use these methods to confirm that each of
the functions listed in Example 9.16 is a convex function.

9.4 Jensen’s inequality
We are now prepared to prove Jensen’s inequality, which describes how the expectation
interacts with a convex function.

The definition of a convex function 𝜑 : U → ℝ involves a two-point inequality. In
particular,

1
2𝜑 (𝑎) + 1

2𝜑 (𝑏) ≥ 𝜑
( 1
2𝑎 + 1

2𝑏
)

for all 𝑎, 𝑏 ∈ U. (9.8)

That is, the simple average of function values exceeds the function at the simple average
of the arguments.

Jensen’s inequality shows that the definition of convexity is self-improving. For
every probability measure, the expectation of the function exceeds the function of the
expectation. This result is an immediate consequence of the subgradient inequality.

Theorem 9.26 (Jensen’s inequality). Let 𝜑 : U → ℝ be a convex function on an open
interval U ⊆ ℝ, and assume that 𝜑 Jensen’s inequality requires mild

conditions to ensure that all of the
expectations are defined. As we will
see, there are several ways to achieve
this goal.

is bounded below. For each ℙ-integrable random
variable 𝑋 : Ω → U that takes values in U,

𝔼 𝜑 (𝑋 ) ≥ 𝜑 (𝔼𝑋 ). (9.9)
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It is possible that the left-hand side equals +∞.

The two-point inequality (9.8) is exactly the statement of Jensen’s inequality (9.9)
for the random variable 𝑋 with the discrete law 𝜇𝑋 = 1

2𝛿𝑎 +
1
2𝛿𝑏 .

Proof. Without loss of generality, we may assume that the convex function 𝜑 : U → ℝ+
takes positive values by adding a constant, since it is bounded below. Thus, the
expectation 𝔼 𝜑 (𝑋 ) is defined, although it may equal +∞.

Instantiate the subgradient inequality (9.7) with the value 𝑎 = 𝔼𝑋 . There is a
fixed number 𝑔 ∈ ℝ, depending on 𝑎 , for which

𝜑 (𝑋 (𝜔)) ≥ 𝜑 (𝑎) + 𝑔 · (𝑋 (𝜔) − 𝑎) for each 𝜔 ∈ Ω.

Take the expectation of this inequality using monotonicity and linearity:

𝔼 𝜑 (𝑋 ) ≥ 𝔼[𝜑 (𝑎) + 𝑔 · (𝑋 − 𝑎)]
= 𝜑 (𝑎) + 𝑔 · (𝔼[𝑋 ] − 𝑎) = 𝜑 (𝔼𝑋 ).

We have used the fact that 𝔼𝑋 = 𝑎 , and the expectation preserves constants. ■

For concave functions, Jensen’s inequality is reversed.

Corollary 9.27 (Jensen’s inequality: Concave function). Let 𝜓 : U → ℝ be a concave
function on an open interval U ⊆ ℝ, and assume that 𝜓 is bounded above. For each
ℙ-integrable random variable 𝑋 : Ω → U that takes values in U,

𝔼𝜓 (𝑋 ) ≤ 𝜓 (𝔼𝑋 ).

Exercise 9.28 (Jensen’s inequality: Concave function). Prove Corollary 9.27. Show that
Jensen’s inequality for concave functions is also valid under the assumption that 𝜓 is
bounded below, rather than bounded above.

Exercise 9.29 (Jensen’s inequality: Integrable case). Assume that 𝜑 : U → ℝ is a convex
function on an open interval. Let 𝑋 : Ω → U be a ℙ-integrable random variable, and
further assume that 𝜑 (𝑋 ) is ℙ-integrable. Establish that (9.9) is valid. What is the
analogous result for concave functions?

Exercise 9.30 (Jensen’s strict inequality). Jensen’s inequality holds with a strict inequality
if we add some additional assumptions. Assume that 𝜑 : U → ℝ is strictly convex, and
the support of the law 𝜇𝑋 of the random variable 𝑋 contains at least two values. Then

𝔼 𝜑 (𝑋 ) > 𝜑 (𝔼𝑋 ),

provided that all of the expectations exist. Prove it.

Aside: The proof of Jensen’s inequality relies on the observation that a convex
function lies above one of its tangents. It is occasionally useful to extract this
argument in its pure form. Consider a function 𝜑 : U → ℝ and a ℙ-integrable
random variable 𝑋 : Ω → U. Suppose that there exists 𝑔 ∈ ℝ for which

𝜑 (𝑦 ) ≥ 𝜑 (𝔼𝑋 ) + 𝑔 · (𝑦 − 𝔼𝑋 ) for all 𝑦 ∈ U.

Then 𝔼 𝜑 (𝑋 ) ≥ 𝜑 (𝔼𝑋 ).
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9.4.1 Example: The GM–AM inequality
As a first example of the power of Jensen’s inequality, we will establish the basic
inequality between the generalized geometric mean (GM) and the arithmetic mean
(AM) of two numbers.

Proposition 9.31 (GM–AM inequality). Fix positive numbers 𝑝1, . . . , 𝑝𝑛 ≥ 0 with sum∑𝑛
𝑖=1 𝑝𝑖 = 1. Then∏𝑛

𝑖=1
𝑥
𝑝𝑖
𝑖

≤
∑︁𝑛

𝑖=1
𝑝𝑖𝑥𝑖 for all positive 𝑥𝑖 ∈ ℝ+. (9.10)

The left-hand side is a generalized geometric mean, while the right-hand side is a
generalized arithmetic mean.

In particular, for 𝜏 ∈ [0, 1], we deduce that

𝑥𝜏𝑦 1−𝜏 ≤ 𝜏𝑥 + (1 − 𝜏)𝑦 for all 𝑥, 𝑦 ≥ 0. (9.11)

This is the usual statement of the GM–AM inequality for two variables.

Proof. The proof combines the fact that the exponential function is convex (Exam-
ple 9.16) with Jensen’s inequality (Theorem 9.26).

If 𝑥𝑖 = 0 for any index 𝑖 , then the inequality (9.10) obviously holds. Therefore, we
may assume that each 𝑥𝑖 > 0. Let us rewrite the quantity of interest:∏𝑛

𝑖=1
𝑥
𝑝𝑖
𝑖

= exp
(∑︁𝑛

𝑖=1
𝑝𝑖 log(𝑥𝑖 )

)
.

In light of this expression, we introduce the random variable 𝑋 that takes the values
log(𝑥𝑖 ) with probability 𝑝𝑖 . The law is 𝜇𝑋 =

∑𝑛
𝑖=1 𝑝𝑖𝛿log(𝑥𝑖 ) .

Using the formula (9.4) for the expectation of a discrete random variable, we can
reinterpret the last expression:

exp
(∑︁𝑛

𝑖=1
𝑝𝑖 log(𝑥𝑖 )

)
= exp (𝔼𝑋 ) ≤ 𝔼 exp(𝑋 ) =

∑︁𝑛

𝑖=1
𝑝𝑖elog 𝑥𝑖 .

The inequality is Jensen’s. Simplify both sides to reach the stated result. ■

Exercise 9.32 (Young’s inequality). From (9.11), deduce Young’s inequality. Let 𝑝 > 1,
and define 𝑞 > 1 by the conjugacy relation 1/𝑝 + 1/𝑞 = 1. Then

|𝑥𝑦 | ≤ 1
𝑝
· |𝑥 |𝑝 + 1

𝑞
· |𝑦 |𝑞 for all 𝑥, 𝑦 ∈ ℝ.

Exercise 9.33 (Continuous GM–AM inequality). Let 𝑋 be a strictly positive real random
variable. Check that

exp(𝔼 log(𝑋 )) ≤ 𝔼𝑋 .

Explain why this is a “continuous” analog of the GM–AM inequality.

9.5 *Convexity: Beyond the real line
We have introduce convex functions and Jensen’s inequality on the real line, but these
ideas have a wider ambit. In this section, we give a brief presentation of convex
functions on the 𝑛-dimensional Euclidean space ℝ𝑛 . Then we note that the analog of
Jensen’s inequality holds in this setting as well.
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9.5.1 Convex sets and functions
On the real line, we defined a convex function on an interval. In higher dimensions, a
convex function is defined on a domain called a convex set.

Definition 9.34 (Convex set). Let C ⊆ ℝ𝑛 . The set C is convex when

(1 − 𝜏)𝒙 + 𝜏𝒚 ∈ C for each 𝜏 ∈ [0, 1] and all 𝒙 , 𝒚 ∈ C.

In other words, the set C contains the line segment connecting each pair of points
in the set.

There are many familiar examples of convex sets. For instance, in the plane, a
solid rectangle and a solid disc are both convex. In ℝ𝑛 , the set of vectors with positive
entries is convex.

As in the univariate setting, a multivariate convex function is a function on a convex
set that lies below its secants.

Definition 9.35 (Convex function: Euclidean space). Let C ⊆ ℝ𝑛 be a convex set. A
real-valued function 𝜑 : C → ℝ is called convex if

𝜑
(
(1 − 𝜏)𝒙 + 𝜏𝒚

)
≤ (1 − 𝜏)𝜑 (𝒙 ) + 𝜏𝜑 (𝒚 ) for all 𝜏 ∈ [0, 1] and all 𝒙 , 𝒚 ∈ C.

A function 𝜓 : C → ℝ is called concave if its negation −𝜓 is convex.

Example 9.36 (Convex functions: Euclidean space). Many popular functions on ℝ𝑛 are
convex or concave. Here are some examples, without proof.

1. Affine functions: For 𝑎 ∈ ℝ and 𝒃 ∈ ℝ𝑛 , the affine function 𝒙 ↦→ 𝑎 + 𝒃 ᵀ𝒙 is
convex on ℝ𝑛 .

2. Positive quadratic forms: Recall that 𝑨 ∈ ℝ𝑛×𝑛 is
positive-semidefinite if and only if
𝒖ᵀ𝑨𝒖 ≥ 0 for each 𝒖 ∈ ℝ𝑛 .

For a positive-semidefinitematrix 𝑨 ∈ ℝ𝑛×𝑛 , the quadratic
function 𝒙 ↦→ 𝒙 ᵀ𝑨𝒙 is convex on ℝ𝑛 .

3. Norm powers: For a power 𝑝 ≥ 1, the function 𝒙 ↦→ ∥𝒙 ∥𝑝2 is convex on ℝ𝑛 .
4. Sum of exponentials: For 𝛼𝑖 ∈ ℝ, the function 𝒙 ↦→ ∑𝑛

𝑖=1 e
𝛼𝑖𝑥𝑖 is convex on ℝ𝑛 .

5. Entropy: The function 𝒙 ↦→ −∑𝑛
𝑖=1 𝑥𝑖 log 𝑥𝑖 is concave on ℝ𝑛

+ .
6. Geometric mean: For 𝜏 ∈ [0, 1], the function (𝑥, 𝑦 ) ↦→ 𝑥𝜏𝑦 1−𝜏 is concave on ℝ2

+.

The menagerie of additional examples is vast. ■

9.5.2 Dual representation
As in the univariate case, every multivariate convex function lies above its tangents,
and these tangents provide a dual representation of the function.

Fact 9.37 (Convex function: Subgradients and dual representation). Let 𝜑 : C → ℝ be a
convex function on an open convex set C ⊆ ℝ𝑛 . For each 𝒂 ∈ C, there is a subgradient
vector 𝒈 ∈ ℝ𝑛 such that

𝜑 (𝒚 ) ≥ 𝜑 (𝒂) + 𝒈 ᵀ(𝒚 − 𝒂) for all 𝒚 ∈ C.

Furthermore, there is a countable set J ⊆ ℝ2𝑛 for which

𝜑 (𝒚 ) = sup{𝜑 (𝒂) + 𝒈 ᵀ(𝒚 − 𝒂) : (𝒂 , 𝒈 ) ∈ J}.

This expression represents the convex function as a supremum of affine functions. ■



Lecture 9: Expectation & Jensen’s Inequality 147

9.5.3 Jensen’s inequality
Jensen’s inequality remains valid for multivariate convex functions.

Theorem 9.38 (Jensen’s inequality). Let 𝜑 : C → ℝ be a convex function on an open
convex set C ⊆ ℝ𝑛 , and assume that 𝜑 is bounded below. For each ℙ-integrable
random vector 𝑿 = (𝑋1, . . . , 𝑋𝑛) : Ω → C that takes values in C,

𝔼 𝜑 (𝑿 ) ≥ 𝜑 (𝔼𝑿 ).

It is possible that the left-hand side equals +∞ or that both sides equal +∞.

*Proof sketch. Follow the pattern of the proof of Theorem 9.38. Use the multivariate
subgradient inequality (Fact 9.37) in place of the univariate form. ■

Problems
Linearity of expectation is a powerful tool for solving problems. We begin with
several examples where this principle allows us to make short work of an potentially
challenging computation.

Exercise 9.39 (Inclusion–exclusion again). Let E1, . . . , E𝑛 be events in a probability space.
From Exercise 2.47, recall the identity

1⋃𝑛
𝑖=1 E𝑖 =

∑︁𝑛

𝑘=1
(−1)𝑘+1

∑︁
𝑖1<· · ·<𝑖𝑘

1E𝑖1∩···∩E𝑖𝑘 .

Prove that

ℙ
(⋃𝑛

𝑖=1 E𝑖
)
=

∑︁𝑛

𝑘=1
(−1)𝑘+1

∑︁
𝑖1<· · ·<𝑖𝑘

ℙ(E𝑖1 ∩ . . . E𝑖𝑘 ).

Hint: Expectation is linear.

Exercise 9.40 (Derangements). A permutation 𝜋 : {1, . . . , 𝑛} → {1, . . . , 𝑛} is a bijective
function. A fixed point of a permutation𝜋 is a letter 𝑖 for which𝜋 (𝑖 ) = 𝑖 . By elementary
counting arguments, there are a total of 𝑛! permutations on 𝑛 letters. We may choose
one of these 𝑛! permutations uniformly at random.

1. For a random permutation on 𝑛 letters, what is the expected number of fixed
points? Hint: For each 𝑖 = 1, . . . , 𝑛, consider the indicator of the event that 𝑖 is a
fixed point.

2. What is the probability that a random permutation on 𝑛 letters has no fixed
point? Hint: This is the keys problem (Problem 2.48).

3. What is the probability that a random permutation on 𝑛 letters has 𝑘 fixed
points?

4. *Ménages: Suppose that 𝑛 man–woman couples attend a dinner party. They are
seated around a circular table, alternating between men and women. If one
such configuration is chosen uniformly at random, what is the probability that
no person is seated next to their partner?

Exercise 9.41 (Collect them all!). A certain brand of confection prints a joke on the inside
of each wrapper. You eagerly purchase one confection every day after lunch so that
you can share the joke with your officemates (who are equally enthusiastic about your
obsession, I’m sure). There are 𝑛 distinct jokes, and each confection is equally likely
to contain each one of the jokes.
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1. Compute the expected number of days between reading the 𝑖 th novel joke and
the (𝑖 + 1)th novel joke for each 𝑖 = 0, . . . , 𝑛 − 1.

2. Compute the expected number of days that it takes to encounter all 𝑛 jokes.

Exercise 9.42 (Expectation and values). Information about the expectation of a random
variable can translate into information about its values. Let 𝑋 be a positive, real random
variable.

1. Assume that 𝔼𝑋 = 0. Deduce that 𝑋 = 0 almost surely. Recall that an event E is almost sure
when ℙ(E) = 1.

Hint: This is a
transliteration of one of the integral properties (Theorem 5.14).

2. Assume that 𝔼𝑋 < +∞. Deduce that 𝑋 < +∞ almost surely.

Problem 9.43 (Borel–Cantelli I). Let (𝑋𝑛 : 𝑛 ∈ ℕ) be an arbitrary sequence of positive
random variables. If the sum of expectations is finite, we can reach very strong
conclusions about the limit of the sequence. This result is a core tool for proving
almost-sure convergence.

1. Establish that∑︁∞
𝑛=1

𝔼[𝑋𝑛] < +∞ implies 𝔼
[
lim sup𝑛→∞ 𝑋𝑛

]
= 0.

In particular, lim sup𝑛→∞ 𝑋𝑛 = 0 almost surely. Hint: Recall that lim sup𝑛→∞ 𝑋𝑛 =

inf𝑛∈ℕ sup𝑖≥𝑛 𝑋𝑖 . It is also convenient to make the simple bound sup𝑖≥𝑛 𝑋𝑖 ≤∑
𝑖≥𝑛 𝑋𝑖 .

2. The classic formulation of the first Borel–Cantelli lemma follows when the random
variables are indicators. Translate the result for indicators into a statement about
events and the probability of the limit superior of a sequence of events. What
does this result mean in words? (How many of the events can occur?)

Exercise 9.44 (Mengoli). Use Jensen’s inequality to prove Mengoli’s inequality:

1
𝑥 − 1

+ 1
𝑥
+ 1
𝑥 + 1

>
3
𝑥

for 𝑥 > 1.

(*) Define the harmonic number H𝑛 :=
∑𝑛
𝑖=1 𝑖

−1 for 𝑛 ∈ ℕ. Use Mengoli’s inequality to
prove that H𝑛 → ∞ as 𝑛 → ∞.

Exercise 9.45 (*Isoperimetry for rectangles). The GM–AM inequality (Proposition 9.31)
admits an elegant geometric interpretation.

1. Among all plane rectangles with fixed perimeter, prove that a square has the
maximum area.

2. Equivalently, among all plane rectangles with fixed area, prove that a square has
the least perimeter.

3. Among all rectangular parallelopipeds in ℝ𝑛 whose total side length is fixed,
prove that a regular cube has the maximum volume.

4. Equivalently, among all rectangular parallelopipeds with fixed volume, prove
that a regular cube has the minimum total side length.

Problem 9.46 (*Isoperimetry for polygons). Fix a natural number 𝑛 ≥ 3. Consider a
convex polygon with 𝑛 sides with all 𝑛 vertices on the unit circle. Among all such
polygons, prove that the regular 𝑛-gon has the maximum area. Hint: Use elementary
geometry, trigonometric identities, and Jensen’s inequality.

Next, we discuss some other results about convex functions.
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Problem 9.47 (*Fenchel and Young). Let ℎ : ℝ → ℝ ∪ {+∞} be an arbitrary function.
Define the Fenchel–Young conjugate:

The choice of the letter 𝑠 reflects its
role as the slope of a line.

ℎ∗(𝑠 ) := sup{𝑠𝑥 − ℎ (𝑥) : 𝑥 ∈ ℝ} for 𝑠 ∈ ℝ.

We explicitly allow both ℎ and ℎ∗ to take on the value +∞. This construction can be
extended to functions in higher dimensions, where it is also an invaluable tool.

1. For every function ℎ, prove that ℎ∗ is a lower-semicontinuous convex function. As
a consequence, if we can show that a function 𝜑 is the Fenchel–Young conjugate
of some other function, then it must be the case that 𝜑 is convex.

2. For 𝑎, 𝑏 ∈ ℝ, consider the affine function ℎ (𝑥) = 𝑎 + 𝑏𝑥 for 𝑥 ∈ ℝ. Compute
the conjugate ℎ∗.

3. For 𝑝 > 1, consider the power function ℎ (𝑥) = |𝑥 |𝑝 for 𝑥 ∈ ℝ. Compute ℎ∗.
4. For 𝜃 ∈ ℝ, consider the exponential function ℎ (𝑥) = exp(𝜃𝑥). Compute ℎ∗.
5. Consider the negative entropy function ℎ (𝑥) = 𝑥 log 𝑥 for 𝑥 ≥ 0; set ℎ (𝑥) = +∞

for 𝑥 < 0. Compute ℎ∗.
6. Establish the Fenchel–Young inequality. For every function ℎ : ℝ → ℝ ∪ {+∞},

𝑠𝑥 ≤ ℎ∗(𝑠 ) + ℎ (𝑥) for all 𝑠 , 𝑥 ∈ ℝ. (9.12)

(*) When ℎ is a differentiable convex function, find conditions under which (9.12)
holds with equality.

7. Instantiate the Fenchel–Young inequality (9.12) for the power function ℎ (𝑥) =
|𝑥 |𝑝 with 𝑝 > 1. Compare with Exercise 9.32.

8. Instantiate the Fenchel–Young inequality (9.12) for the negative entropy function
ℎ (𝑥) = 𝑥 log 𝑥 . The result is not so interesting in one dimension, but it is a
precursor to the Boltzmann–Gibbs variational principle.

9. For every function ℎ, confirm that ℎ∗∗ := (ℎ∗)∗ ≤ ℎ.
10. (**) If ℎ is a lower-semicontinuous (lsc) convex function, prove that ℎ∗∗ = ℎ.

Hint: There is a graphical proof based on studying the epigraphs.

Problem 9.48 (*Perspectives). Let 𝜑 : I → ℝ be a function on an interval I of the real
line. We can define a bivariate function

ℎ𝜑 (𝑥 ; 𝑠 ) := 𝑠 · 𝜑 (𝑥/𝑠 ) for 𝑥 ∈ I and 𝑠 ∈ ℝ++.

The function ℎ is called the perspective transform of 𝜑 . The perspective transform can
also be extended to higher dimensions.

1. Assuming that 𝜑 is convex, prove that the perspective transform ℎ𝜑 is a convex
function on I ×ℝ++. In detail, show that

ℎ𝜑 (𝜏𝑥 + (1 − 𝜏)𝑦 ;𝜏𝑠 + (1 − 𝜏)𝑡 ) ≤ 𝜏 · ℎ𝜑 (𝑥 ; 𝑠 ) + (1 − 𝜏) · ℎ𝜑 (𝑦 ; 𝑡 )
for all 𝜏 ∈ [0, 1], for all 𝑥, 𝑦 ∈ I, and for all 𝑠 , 𝑡 ∈ ℝ++.

2. Consider the quadratic-over-linear function ℎ : (𝑥, 𝑦 ) ↦→ 𝑥2/𝑦 . Prove that ℎ is
convex on ℝ+ ×ℝ++.

3. Consider the divergence function ℎ : (𝑥, 𝑦 ) ↦→ 𝑥 (log 𝑥 − log 𝑦 ). Prove that ℎ is
convex on ℝ++ ×ℝ++.

4. Fix 𝜏 ∈ [0, 1]. Consider the Heinz mean ℎ : (𝑥, 𝑦 ) ↦→ 𝑥𝜏𝑦 1−𝜏 . Prove that ℎ is
concave on ℝ++ ×ℝ++.

5. Fix 𝜏 ∈ [0, 1]. Let 𝑋 ,𝑌 be strictly positive random variables. Using Jensen’s
inequality (Theorem 9.38), deduce that

𝔼[𝑋 𝜏𝑌 1−𝜏 ] ≤ (𝔼𝑋 )𝜏 (𝔼𝑌 )1−𝜏 .
Explain how to derive Hölder’s inequality (Theorem 11.5) from this statement.
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Algorithm 9.1 (Randomized Quicksort). A recursive, randomized algorithm that sorts a
finite set of distinct real numbers in increasing order.

Input: The input S = {𝑎1, . . . , 𝑎𝑚} consists of𝑚 distinct real numbers
Output: The output 𝒚 = (𝑦1, . . . , 𝑦𝑚) is a list of the input elements in increasing order

1 function RandQuicksort(S = {𝑎1, . . . , 𝑎𝑚})
2 if S = ∅ then return the empty list 𝒚 = ().
3 Draw a random pivot 𝐾 ∼ uniform{1, . . . ,𝑚}
4 By comparing each element in S to 𝑎𝐾 , form two subsets

S− = {𝑎𝑖 : 𝑎𝑖 < 𝑎𝐾 }
S+ = {𝑎𝑖 : 𝑎𝑖 > 𝑎𝐾 }

5 Recursively sort these two subsets:

𝒚 − = RandQuicksort(S−)
𝒚 + = RandQuicksort(S+)

6 return the ordered list 𝒚 = (𝒚 − , 𝑎𝐾 , 𝒚 +)

Applications
Application 9.49 (First-moment method). Application 7.14 introduced the probabilistic
method, a foundational technique that uses probability to establish the existence of a
mathematical object with a distinguished property. In this application, we continue the
development by introducing the first-moment method, a mechanism where we compute
an expectation to demonstrate that a mathematical object exists. In these problems,
linearity of expectation is a useful tool to keep in mind.

1. Let 𝑋 be a real random variable, and fix 𝑎 ∈ ℝ. Prove that 𝔼𝑋 > 𝑎 implies that
𝑋 (𝜔) > 𝑎 for some 𝜔 ∈ Ω. In other words, a bound on the expectation ensures
the existence of a particular type of sample point.

2. With a more careful argument, prove that 𝔼𝑋 ≥ 𝑎 implies that 𝑋 (𝜔) ≥ 𝑎 for
some 𝜔 ∈ Ω.

3. Suppose that a circular corral has 17 fenceposts, but exactly 5 of them are rotten.
Prove that there exists a consecutive sequence of 7 fenceposts that contains at
least 3 rotten posts. Hint: For each 𝑘 , define the indicator that post 𝑘 is rotten.
Consider a random set of 7 consecutive fenceposts.

4. Graph cuts: Let G = (V, E) be an undirected combinatorial graph. A cut is a subset
S of the vertices. The weight of a cut S is the number of edges 𝑒 = {𝑢,𝑣 } ∈ E
with 𝑢 ∈ S and 𝑣 ∈ Sc or vice versa. Show that there is a cut whose weight is at
least (#E)/2.

5. Vector balancing: Suppose that (𝒖1, . . . ,𝒖𝑛) are unit-norm vectors in ℝ𝑑 . Show
that there is a sequence (𝜀1, . . . , 𝜀𝑛) ∈ {±1}𝑛 of signs for which


∑︁𝑛

𝑖=1
𝜀𝑖𝒖 𝑖





2
≤
√
𝑛.

Application 9.50 (Randomized Quicksort). For some computational problems, the most
elegant approach may involve a randomized algorithm, a procedure that makes random
choices during its execution. Surprisingly, randomized algorithms can arise in settings
(apparently) distant from probability theory.
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For instance, a fundamental challenge in computer science is to sort a list
(𝑎1, 𝑎2, . . . , 𝑎𝑛) of 𝑛 real numbers in increasing order. For simplicity, we will as-
sume that the numbers are all distinct. There is a beautiful randomized recursive
algorithm for this problem, called randomized quicksort; see Algorithm 9.1. In this
application, we will analyze the algorithm.

1. Explain why RandQuicksort is a correct algorithm for sorting. More precisely,
suppose that the initial input is a set {𝑥1, . . . , 𝑥𝑛} of 𝑛 distinct real numbers.
Prove that the output 𝒚 = (𝑦1, . . . , 𝑦𝑛) is an ordered list with the properties that
𝑦1 < 𝑦2 < · · · < 𝑦𝑛 and that each element 𝑦𝑖 = 𝑥𝜋 (𝑖 ) for a permutation 𝜋 on
{1, . . . , 𝑛}.

2. Without loss of generality, you may assume that the initial input is already
ordered: 𝑥1 < 𝑥2 < · · · < 𝑥𝑛 . Why?

3. Argue that the algorithm (including the full recursion) compares a given pair 𝑥𝑖
and 𝑥𝑗 with indices 𝑖 < 𝑗 either zero times or one time.

4. To analyze RandQuicksort, we need to count the number 𝑅 of comparisons that
it makes. For indices 𝑖 < 𝑗 , let E𝑖 𝑗 be the event that the algorithm compares 𝑥𝑖
and 𝑥𝑗 at some point during the execution. Verify that

𝔼[𝑅] =
∑︁

𝑖<𝑗
ℙ(E𝑖 𝑗 ).

Hint: Write 𝑅 as a sum of indicators.
5. Establish that ℙ(E𝑖 𝑗 ) = 2/(𝑗 − 𝑖 + 1) for each pair of indices with 𝑖 < 𝑗 . Hint:

The algorithm compares 𝑥𝑖 and 𝑥𝑗 if and only if (a) both 𝑥𝑖 and 𝑥𝑗 are in the
input of a recursive execution of the algorithm and (b) one of 𝑥𝑖 or 𝑥𝑗 is selected
as the pivot.

6. Deduce that 𝔼[𝑅] < 2𝑛 log𝑛. Hint: The harmonic number H𝑛 ≤ log(𝑛) + 1.
7. For context, what is the maximum number of comparisons that the algorithm

can make if it is most unlucky in the choice of pivots?
8. (*) Implement RandQuicksort. For each 𝑛 = 2𝑖 with 8 ≤ 𝑖 ≤ 16, generate a list

of 𝑛 distinct numbers. For each fixed choice of 𝑛, run randomized quicksort
100 times. Plot a histogram of the number of comparisons made. Compute the
empirical mean𝑚 (𝑛) and standard deviation 𝑠 (𝑛) of the number of comparisons.
Now, as a function of 𝑛, plot error bands 𝑚 (𝑛) ± 𝑠 (𝑛). Compare against the
trend 𝑓 (𝑛) = 2𝑛 log𝑛. A log–log scale is appropriate here.

Notes
The treatment of convex functions follows Gruber [Gru07, Chap. 1]. For more about
convex functions, see books of Boyd & Vandenberghe [BV04] and Rockafellar [Roc70].
The treatment of Jensen’s inequality is adapted from Williams’s book [Wil91]. For
more learning about heavy-tailed random variables, see the book of Nair, Wierman, &
Zwart [NWZ22].

Some of the problems in this lecture are drawn from Alon & Spencer [AS16], from
Grimmett & Stirzaker [GS01], and from Steele [Ste04]. For an overview of randomized
algorithms in computer science, including randomized quicksort, see the book of
Motwani & Raghavan [MR95].



10. Moments & Tails

Agenda:
1. Moments
2. Tails
3. Markov’s inequality
4. Integration by parts
5. *Duality

“ ‘Hallo, Pooh,’ [Owl] said. ‘How’s things?’
‘Terrible and Sad,’ said Pooh, ‘because Eeyore, who is a friend of mine, has lost his
tail. And he’s Moping about it. So could you very kindly tell me how to find it for
him?’
‘Well,’ said Owl, ‘the customary procedure in such cases is as follows.’
‘What does Crustimoney Proseedcake mean?’ said Pooh. ‘For I am a Bear of Very
Little Brain, and long words Bother me.’ ”

—Winnie-The-Pooh, A. A. Milne

A real random variable induces a distribution of probability on the real line. This
distribution is described by its law, which is a Borel probability measure. Equivalently,
the law is captured by its (cumulative) distribution function. These are complicated
objects. The law assigns a probability to every Borel set, while the distribution function
is a function on the entire real line. How can we acquire information about how the
probability is distributed?

The basic idea is that we can collect data about a probability distribution by
integrating it against test functions. This is a form of tomography:

Indeed, we can think about a skeleton as a distribution of bone mass in space. An
X-ray machine sends a beam of particles from a source through the skeleton onto an
exposure screen. The attenuation of the beam depends on the total amount of mass
that it passes through along the way. In other words, we can model the intensity at a
point on the exposure screen in terms of a line integral of the distribution.

In this lecture, we will see that we can perform a similar operation to collect
information about the law of a random variable. To do so, we compute the expectations
of functions of the random variable. Every such expectation provides a piece of data
about the law of the random variable. In particular, we will see that certain expectations
control the probability that the random variable takes large values.
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10.1 Moments
We formalize this discussion using the concept of a moment of a random variable.

Definition 10.1 (Moment). Let 𝑋 be a real random variable with law 𝜇𝑋 . A moment
of the random variable 𝑋 is the integral of a test function ℎ against the law 𝜇𝑋 .
Each moment takes the form

𝔼[ℎ (𝑋 )] =
∫
ℝ

ℎ (𝑥) 𝜇𝑋 (d𝑥) for measurable ℎ : ℝ → ℝ. (10.1)

In case ℎ ≥ 0, we allow the moment to take the value +∞. For signed ℎ, we require
that ℎ is 𝜇𝑋 -integrable.

Note that the formula (10.1) for the moment depends on Proposition 9.4, the law
of the unconscious statistician. Section 10.4 offers a more refined interpretation of a
moment as a linear functional of the law of the random variable.

10.1.1 Examples
Each moment provides a piece of information about the law 𝜇𝑋 of the random variable.
The more moments we collect, the more data we have. Here are some examples of
moments and what we can do with them.

Figure 10.1 (Moment of an
indicator).

Example 10.2 (Indicators). Let ℎ = 1B for a Borel set B ∈ B(ℝ). The associated moment

𝔼[1B(𝑋 )] =
∫
ℝ

1B(𝑥) 𝜇𝑋 (d𝑥) = 𝜇𝑋 (B) = ℙ {𝑋 ∈ B} .

In other words, the moment reports the probability that the random variable takes
a value in the Borel set B. On the Borel set B, the average amount of probability per
unit length is 𝑐 = 𝜇𝑋 (B)/𝜆(B). The number 𝑐 provides a coarse approximation of the
distribution over the set B. ■

Example 10.3 (Intervals).

Figure 10.2
(Approximation via
moments).

By extending Example 10.2, we can see that moments of
intervals allow us to produce a piecewise constant approximation to the law of the
random variable. For example, consider the function ℎ𝑛 = 1[𝑛,𝑛+1) for 𝑛 ∈ ℤ. Thus,

𝑐𝑛 := 𝔼[1[𝑛,𝑛+1) (𝑋 )] = ℙ {𝑋 ∈ [𝑛, 𝑛 + 1)} .

Using this information, we can form an approximation 𝑓 of the law:

𝑓 :=
∑︁

𝑛∈ℕ
𝑐𝑛1[𝑛,𝑛+1) .

On each interval, the value 𝑓 (𝑛) = 𝑐𝑛 of the approximation equals the probability that
𝑋 ∈ [𝑛, 𝑛 + 1). The piecewise constant approximation of the law is called a histogram,
and it is usually estimated from data. ■

The most important classical moment is the first moment, or the center of mass.

Example 10.4 (First moment).

Figure 10.3 (Ants on a
log).

Themoment associatedwith the identity functionℎ (𝑥) = 𝑥
is often called the first moment of the random variable:

𝑚1 = 𝔼[𝑋 ] =
∫
ℝ

𝑥 𝜇𝑋 (d𝑥).

Note that the first moment may not be defined if 𝑥 ↦→ 𝑥 is not 𝜇𝑋 -integrable.
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The first moment has a mechanical interpretation. It is the point where we need to
place a fulcrum to balance the distribution of mass. Indeed, the local mass 𝜇𝑋 (d𝑥) at
a point 𝑥 induces torque (𝑥 −𝑚1) 𝜇𝑋 (d𝑥) around the point𝑚1. The system balances
because the total torque at𝑚1 is zero:∫

ℝ

(𝑥 −𝑚1) 𝜇𝑋 (d𝑥) =
∫
ℝ

𝑥 𝜇𝑋 (d𝑥) −𝑚1 = 𝑚1 −𝑚1 = 0.

In sequence, we have used the linearity of expectation, the fact that the expectation
reproduces constants, and the definition of the first moment. ■

10.1.2 Moments in probability theory
There are a number of other moments that play an important role in probability theory.

Example 10.5 (𝑛th polynomial moment). For a natural number 𝑛 ∈ ℕ, the 𝑛th polynomial
moment of a real random variable 𝑋 is

𝔼[𝑋 𝑛] =
∫
ℝ

𝑥𝑛 𝜇𝑋 (d𝑥).

This moment may not be defined if the Lebesgue integral does not exist. It is common
to refer the the 𝑛th polynomial moment simply as the 𝑛th moment of the random
variable. ■

Example 10.6 (𝑝th absolute polynomial moment). For a real number 𝑝 > 0, the 𝑝th
absolute polynomial moment of a real random variable 𝑋 is

𝔼[|𝑋 |𝑝 ] =
∫
ℝ

|𝑥 |𝑝 𝜇𝑋 (d𝑥).

This moment is always defined since |𝑋 |𝑝 ≥ 0, but it may take the value +∞. ■

Example 10.7 (Exponential moment). For a parameter 𝜃 ∈ ℝ, the exponential moment of
a real random variable 𝑋 is

𝔼[e𝜃𝑋 ] =
∫
ℝ

e𝜃𝑥 𝜇𝑋 (d𝑥).

This moment is always defined since e𝜃𝑋 ≥ 0, but it may take the value +∞. ■

You may have encountered the exponential moment in the guise of the moment
generating function, which we will discuss later. The following exercise justifies this
terminology.

Exercise 10.8 (Moment generating function). Let 𝑋 be a bounded real random variable.
For all 𝜃 ∈ ℝ, prove that

𝔼[e𝜃𝑋 ] =
∑︁∞

𝑛=0

𝜃𝑛

𝑛!
· 𝔼[𝑋 𝑛].

In combinatorics, the right-hand side is called the exponential generating function of
the polynomial moments. Hint: Use dominated convergence.

There are some other fundamental classes of moments that are used to characterize
the distribution of a real random variable. These examples will not play a central role
in this class, but you may wish to be aware of the definitions.
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Example 10.9 (*Characteristic function). The characteristic function of a real random
variable 𝑋 is a complex-valued function 𝜒𝑋 : ℝ → ℂ on the real line. It is defined as

𝜒𝑋 (𝜃 ) := 𝔼[ei𝜃𝑋 ] :=
∫
ℝ

ei𝜃𝑥 𝜇𝑋 (d𝑥)

:=
∫
ℝ

cos(𝜃𝑥) 𝜇𝑋 (d𝑥) + i
∫
ℝ

sin(𝜃𝑥) 𝜇𝑋 (d𝑥).

The characteristic function 𝜒𝑋 (𝜃 ) is defined and finite for all 𝜃 ∈ ℝ because the
sine and cosine functions are bounded and measurable. The characteristic function
describes the global “frequency content” of the law 𝜇𝑋 at real frequencies 𝜃 ∈ ℝ. Like
the distribution function 𝐹𝑋 , the characteristic function contains enough information
to determine the law 𝜇𝑋 . We postpone a full discussion until Lecture 21. ■

Example 10.10 (*Stieltjes transform). The Stieltjes transform of a real random variable 𝑋
is a complex-valued function𝐺𝑋 : ℂ → ℂ on the complex plane. It is defined as

𝐺𝑋 (𝑧) := 𝔼[(𝑋 − 𝑧)−1] :=
∫
ℝ

(𝑥 − 𝑧)−1 𝜇𝑋 (d𝑥) for 𝑧 ∈ ℂ.

The Stieltjes transform is finite for all 𝑧 ∈ ℂ whose imaginary part is nonzero. To
understand this function, observe that its imaginary part satisfies

1
𝜋

Im𝐺𝑋 (𝑠 + i𝜂) = 1
𝜋

∫
ℝ

𝜂

(𝑠 − 𝑥)2 +𝜂2 𝜇𝑋 (d𝑥) for 𝑠 ,𝜂 ∈ ℝ.

The integrand is a Cauchy density centered at 𝑠 with scale 𝜂, so the integral is a
convolution of this Cauchy distribution with the law 𝜇𝑋 . In other words, you can think
about the Stieltjes transform as a family of smoothed versions of the law. The Stieltjes
transform plays an important role in random matrix theory, but we will not discuss it
further. ■

Aside: Some authors reserve the term “moment” specifically for polynomial mo-
ments. Throughout this course, we use the more general Definition 10.1.

10.1.3 Tails
Among many questions we may ask about a random variable, we can investigate the
probability that it takes a large value.

Definition 10.11 (Tails). Let 𝑋 be a real random variable.

• The right tail probability at level 𝑡 ∈ ℝ is ℙ {𝑋 ≥ 𝑡 }.
• The left tail probability at level 𝑡 ∈ ℝ is ℙ {𝑋 ≤ −𝑡 }.
• The tail probability at level 𝑡 ∈ ℝ+ is ℙ {|𝑋 | ≥ 𝑡 }.

The right tail probability at level 𝑡 is the moment associated with the indicator
1[𝑡 ,+∞) . Similar interpretations apply to the other tail probabilities. See Figure 10.4.

Example 10.12 (Tails: Earthquakes). The Richter–Gutenberg scale for
measuring the magnitude of an
earthquake was invented by Charles
Francis Richter and Beto Gutenberg
in 1935 as part of a project sponsored
by the Caltech Seismology laboratory.
Richter became Professor at Caltech
in 1952.

The right tail ℙ {𝑋 ≥ 𝑡 } describes the probability
that the magnitude exceeds a level 𝑡 . Let 𝑋 be a random variable that models the
magnitude of an earthquake in Southern California, measured on the Richter scale.

For both scientists and insurance conglomerates, it is a matter of significant interest
to understand how the tail probability decays as the level 𝑡 increases. Do the tail
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Figure 10.4 (Tails). The tails of a random variable capture the probability that the
random variable takes on a large value.

probabilities decay exponentially, so that the probability of seeing an earthquake with
large magnitude is exceptionally rare? Or do the tail probabilities decay polynomially
(according to a power law), so that the probability of a large-magnitude earthquake is
significant? ■

The object of today’s lecture is to establish a near-equivalence between polynomial
decay of tail probabilities and the size of absolute polynomial moments:

1. Polynomial moments control tail decay.
2. Tail decay controls polynomial moments.

These claims depend on some very important tools that have wide application in
probability theory. We establish the first statement in Section 10.2.1 as a consequence
of Markov’s inequality. We establish the second statement in Section 10.3.1 as a
consequence of the integration by parts formula.

10.2 From polynomial moments to tails
In this section, we will show how to use moment information to extract information
about tail decay.

10.2.1 Markov’s inequality
There is a very simple technique for bounding the right tail probability of a random
variable using the expectation of its positive part.

Theorem 10.13 (Markov’s inequality). Markov’s inequality is often stated for
positive random variables, in which
case it is redundant to take the
positive part.

For every real random variable 𝑋 , the right tail
probability satisfies

ℙ {𝑋 ≥ 𝑡 } ≤ 𝔼[𝑋+]
𝑡

for all 𝑡 > 0.

Note that the right-hand side is always defined, but may equal +∞.

The result is named after A. A. Markov, although it was discovered by his adviser
P. L. Chebyshev. The terminology, however, has become standard. Markov’s inequality
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is what a Russian mathematician would call a “trivial but useful observation”, which is
considered high praise.

Proof. The idea behind the proof of Markov’s inequality is best captured with a picture:

In words, the indicator 1{𝑋 ≥ 𝑡 } is dominated by the hinge function 𝑋+/𝑡 .
More formally, let us fix a strictly positive level 𝑡 > 0. We calculate that

ℙ {𝑋 ≥ 𝑡 } = 𝔼[1{𝑋 ≥ 𝑡 }] ≤ 𝔼[𝑋+/𝑡 ] = 𝔼[𝑋+]/𝑡 .
We have used the basic property that the expectation of an indicator coincides with
the probability of the event. The second bound follows from the monotonicity of
expectation and the fact that the indicator is bounded by the linear function. Last, we
use the linearity of expectation. ■

Exercise 10.14 (Markov: Extreme examples). Find a nontrivial random variable for which
Markov’s inequality holds with equality. Hint: Look closely at the graphical proof.

Markov’s inequality can be used directly, but its full power arises when we apply it to
(monotone) transformations of a random variable. This result bounds tail probabilities
in terms of moments.

Corollary 10.15 (Markov’s inequality). Let 𝑋 be a random variable, and let 𝜑 : ℝ → ℝ+
be an increasing, positive function. Then

ℙ {𝑋 ≥ 𝑡 } ≤ 𝔼[𝜑 (𝑋 )]
𝜑 (𝑡 ) when 𝜑 (𝑡 ) > 0.

Proof. Since the function 𝜑 is increasing, we have the containment of events

{𝑋 ≥ 𝑡 } ⊆ {𝜑 (𝑋 ) ≥ 𝜑 (𝑡 )} for each 𝑡 ∈ ℝ.

By monotonicity of the probability measure,

ℙ {𝑋 ≥ 𝑡 } ≤ ℙ {𝜑 (𝑋 ) ≥ 𝜑 (𝑡 )} for each 𝑡 ∈ ℝ.

Apply Theorem 10.13 to the (positive) random variable 𝜑 (𝑋 ) at any strictly positive
level 𝜑 (𝑡 ) > 0. ■

10.2.2 Polynomial moments control tail decay
We will use a particular instance of Markov’s inequality. Let 𝑋 be any real random
variable. For all 𝑝 > 0,

ℙ {|𝑋 | ≥ 𝑡 } ≤ 𝔼 |𝑋 |𝑝
𝑡𝑝

for all 𝑡 > 0. (10.2)

This result follows when we apply Corollary 10.15 to the positive random variable |𝑋 |
with the increasing function 𝜑 : 𝑡 ↦→ (𝑡+)𝑝 .

Let us reinterpret the inequality (10.2):
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If 𝔼 |𝑋 |𝑝 < +∞, then the tail probability ℙ {|𝑋 | ≥ 𝑡 } decays at least as fast as
Const · 𝑡 −𝑝 as 𝑡 → ∞.

In other words, the absolute polynomial moments of a random variable give upper
bounds on the rate at which the tail probability decays. In fact, the converse of this
statement is almost true. This is the object of the next section.

10.3 From tails to polynomial moments
In the last section, we used Markov’s inequality to bound a tail probability in terms
of a polynomial moment. In this section, we will show how to bound a polynomial
moment in terms of the tail probability.

10.3.1 Integration by parts
The key to this argument is the integration by parts formula. This result expresses
moments of a random variable in terms of tail probabilities.

Theorem 10.16 (Integration by parts). Let 𝑋 be a positive real random variable. Let
𝜑 : ℝ+ → ℝ be an increasing, continuously differentiable function. Then

𝔼[𝜑 (𝑋 )] = 𝜑 (0) +
∫
ℝ+

ℙ {𝑋 ≥ 𝑡 } 𝜑 ′ (𝑡 ) 𝜆(d𝑡 ).

We can remove the assumption that 𝜑 is increasing, provided that the integral on
the right-hand side is defined.

Proof. This result is an easy exercise. See Problem 6.26 for a precursor to this result.
We will provide a complete proof because of its importance for us.

We can compute the expectation of 𝔼[𝜑 (𝑋 )] via the law of the unconscious
statistician (Proposition 9.4). As usual, we write 𝜇𝑋 for the law of 𝑋 . Then

𝔼[𝜑 (𝑋 )] =
∫
ℝ

𝜑 (𝑥) 𝜇𝑋 (d𝑥) = 𝜑 (0) +
∫
ℝ

[𝜑 (𝑥) − 𝜑 (0)] 𝜇𝑋 (d𝑥)

= 𝜑 (0) +
∫
ℝ

[∫
[0,𝑥 ]

𝜑 ′ (𝑡 ) 𝜆(d𝑡 )
]
𝜇𝑋 (d𝑥)

The notation for the indicator
functions is abbreviated for legibility.

= 𝜑 (0) +
∫
ℝ

[∫
ℝ+

1{𝑡 ≤𝑥 }𝜑
′ (𝑡 ) 𝜆(d𝑡 )

]
𝜇𝑋 (d𝑥)

= 𝜑 (0) +
∫
ℝ+

[∫
ℝ

1{𝑥≥𝑡 } 𝜇𝑋 (d𝑥)
]
𝜑 ′ (𝑡 ) 𝜆(d𝑡 )

= 𝜑 (0) +
∫
ℝ+

𝜇𝑋 {𝑋 ≥ 𝑡 } 𝜑 ′ (𝑡 ) 𝜆(d𝑡 ).

In the first line, we have added and subtracted 𝜑 (0), using the linearity of the integral
and the fact that 𝜇𝑋 (ℝ) = 1. To pass to the second line, we apply the fundamental
theorem of calculus. We introduce an indicator function to represent the domain [0, 𝑥]
of integration for the variable 𝑡 . Next, we invoke Fubini–Tonelli (Theorem 6.23) to
interchange the integrals, which is justified when 𝜑 ′ is positive or the resulting integral
is finite. Finally, we rewrite the indicator function in terms of the variable 𝑥 and use
the fact that the integral of an indicator is the measure of the set. ■
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Observe that the special case 𝜑 (𝑥) = 𝑥 coincides with the definition of the
expectation of a positive random variable:

𝔼[𝑋 ] =
∫
ℝ+

ℙ {𝑋 ≥ 𝑡 } 𝜆(d𝑡 ).

There is a typographical difference between this expression and the definition (9.1) of
the expectation, owing to the change from a strict inequality (>) to a weak inequality
(≥) in the tail. In fact, both expressions are equivalent because the Lebesgue measure
is insensitive to the values of the integrand on singletons. Have a close look at the
proof to confirm this point.

Problem 10.17 (*Integration by parts: Without derivatives). Find an extension of the integra-
tion by parts formula (Theorem 10.16) that holds when 𝜑 : ℝ+ → ℝ+ is positive and
increasing, but not necessarily differentiable. Hint: Consider the Borel measure 𝜈 on
ℝ+ that satisfies 𝜈 ( [0, 𝑡 ]) = 𝜑 (𝑡 ) for 𝑡 ≥ 0.

10.3.2 From tail decay to polynomial moments
We will use another consequence of integration by parts. For an arbitrary real random
variable 𝑋 and a positive number 𝑞 > 0, Theorem 10.16 implies that

𝔼[|𝑋 |𝑞 ] =
∫
ℝ+

ℙ {|𝑋 | ≥ 𝑡 } · 𝑞𝑡 𝑞−1 𝜆(d𝑡 ). (10.3)

This statement follows by considering the positive random variable |𝑋 | and the
increasing function 𝜑 : 𝑡 ↦→ 𝑡 𝑞 . It is possible that both sides of this expression equal
+∞ in case the tail probability decays slowly.

Now, suppose that 𝑋 is a random variable whose tail probability satisfies

ℙ {|𝑋 | ≥ 𝑡 } ≤ Const · 𝑡 −𝑝 for all 𝑡 > 0. (10.4)

Let us calculate the 𝑞th absolute moment, assuming that 𝑞 < 𝑝 .

𝔼 |𝑋 |𝑞 =

∫
ℝ+

ℙ {|𝑋 | ≥ 𝑡 } · 𝑞𝑡 𝑞−1 𝜆(d𝑡 )

=

∫
[0,1]

ℙ {|𝑋 | ≥ 𝑡 } · 𝑞𝑡 𝑞−1 𝜆(d𝑡 ) +
∫
(1,+∞)

ℙ {|𝑋 | ≥ 𝑡 } · 𝑞𝑡 𝑞−1 𝜆(d𝑡 )

≤
∫
[0,1]

1 · 𝑞𝑡 𝑞−1 𝜆(d𝑡 ) +
∫
(1,+∞)

Const · 𝑡 −𝑝 · 𝑞𝑡 𝑞−1 𝜆(d𝑡 )

= 1 + Const · 𝑞
𝑝 − 𝑞 .

The first relation is (10.3). In the second, we split the domain of integration at 𝑡 = 1.
In the first integral, we use the trivial bound ℙ {|𝑋 | ≥ 𝑡 } ≤ 1; in the second integral,
we use the assumption (10.4) about the tail decay. To evaluate the integrals, we use
standard calculus (antiderivatives and the fundamental theorem of calculus).

Let us reinterpret the computation in the last paragraph.

If the tail probability ℙ {|𝑋 | ≥ 𝑡 } decays as least as fast as Const · 𝑡 −𝑝 as 𝑡 → ∞,
then the 𝑞th absolute moment 𝔼 |𝑋 |𝑞 < +∞ for all 𝑞 < 𝑝 .

In other words, control on the rate of tail decay implies that some absolute polynomial
moments are finite.
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Along with the discussion in Section 10.2.1, we see that polynomial tail decay at
rate 𝑡 −𝑝 is almost equivalent to the moment 𝔼 |𝑋 |𝑝 being finite. We will build on this
insight in the next lecture, on L𝑝 spaces.

Another way to understand these facts is to think about the alternative representa-
tion of the absolute moment as an integral:

𝔼 |𝑋 |𝑝 =

∫
ℝ

|𝑥 |𝑝 𝜇𝑋 (d𝑥).

The integral is finite precisely when the tail probability 𝑡 ↦→ 𝜇𝑋 {|𝑥 | ≥ 𝑡 } of the
random variable decays fast enough to counteract the growth of the polynomial
function 𝑥 ↦→ |𝑥 |𝑝 as |𝑥 | → ∞. We need Markov’s inequality (10.2) and the
integration by parts formula (10.3) to make this intuition rigorous.

10.4 *Duality between functions and measures
We conclude with some additional context for the concept of a moment. Later, these
ideas will resurface when we talk about how to define distances between probability
distributions.

10.4.1 A measure induces a linear functional on functions
Consider a measurable space (X,F). In our study of integration, we have seen that
each (finite) measure 𝜇 on Fdefines a real-valued functional on the linear space of
measurable, 𝜇-integrable functions:

⟨𝜇, ·⟩ : ℎ ↦→
∫
X
ℎ d𝜇 for 𝜇-integrable ℎ : X → ℝ.

This notation is similar to our notation for integrals, 𝜇(ℎ) :=
∫
X ℎ d𝜇. Theorem 5.14

shows that the integral is a linear functional on the class of 𝜇-integrable functions.
Using the bracket, we can write

⟨𝜇, 𝛼𝑔 + 𝛽ℎ⟩ = 𝛼⟨𝜇, 𝑔 ⟩ + 𝛽 ⟨𝜇, ℎ⟩ for 𝛼, 𝛽 ∈ ℝ and 𝑓 , 𝑔 ∈ L1(𝜇).

Note that the class L1(𝜇) of integrable functions depends on the measure 𝜇, so the
linearity property is not valid for the same functions for all measures.

10.4.2 A function induces a positive-linear functional on measures
Dually, a measurable function induces a real-valued functional on finite measures.
Formally, a measurable function ℎ : X → ℝ defines a map

⟨·, ℎ⟩ : 𝜇 ↦→
∫
X
ℎ d𝜇 for finite Borel measures 𝜇 : F→ ℝ+.

This construction requires more thought, however, because the integral may not be
defined for all such measures.

To that end, we need to restrict our attention to a smaller class of measurable
functions. Consider the linear space The notation C𝑏 is temporary, and it

is at variance with standard
notations!C𝑏 := C𝑏 (X;ℝ) := {ℎ : X → ℝ bounded and measurable}.

For every function ℎ ∈ C𝑏 (X;ℝ), we can reliably define 𝜇(ℎ) for every finite Borel
measure 𝜇 on F. (Why?) In this case, 𝜇(ℎ) must take a finite value.
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As we saw in Exercise 8.29, measures are just functions that take positive real
values, so we can scale them by positive numbers and add them. For finite Borel
measure 𝜇,𝜈 : F→ ℝ+,

(𝛼𝜇 + 𝛽𝜈) (E) = 𝛼𝜇(E) + 𝛽𝜈 (E) for 𝛼, 𝛽 ≥ 0 and E ∈ F.

Furthermore, we can extend this relation from sets to functions. Using the bracket, we
can write

⟨𝛼𝜇 + 𝛽𝜈, ℎ⟩ = 𝛼⟨𝜇, ℎ⟩ + 𝛽 ⟨𝜈, ℎ⟩ for 𝛼, 𝛽 ≥ 0 and ℎ ∈ C𝑏 (X;ℝ).

In other words, a function ℎ ∈ C𝑏 (X;ℝ) induces a positive-linear functional ⟨·, ℎ⟩ on
finite Borel measures.

Aside: If the test function ℎ is positive, we can even drop the requirement that it is
bounded. In this case, the functional ⟨·, ℎ⟩ on measures takes only positive values,
including perhaps +∞.

10.4.3 The linear space of signed measures
For many purposes, the results in the last paragraph are sufficient. Nevertheless, they
are not entirely satisfactory because they tempt us to form general linear combinations
of measures, such as 𝛼𝜇 + 𝛽𝜈 for real numbers 𝛼, 𝛽 ∈ ℝ. This is problematic because
the resulting object may assign negative values to some measurable sets.

To patch this hole, we must generalize the definition of a measure to allow it to
take positive and negative values.

Definition 10.18 (Signed measure). Let (X,F) be a measurable space. A signed measure

Warning: A signed measure can
only take finite values. ■

is a function 𝜇 : F→ ℝ taking finite real values and with the properties

1. Empty set: 𝜇(∅) = 0.
2. Countable additivity: For each sequence (A𝑖 ∈ F : 𝑖 ∈ ℕ) of disjointmeasurable

sets, We require the series on the
right-hand side to converge
absolutely.𝜇

( ¤⋃∞
𝑖=1 A𝑖

)
=

∑∞
𝑖=1 𝜇(A𝑖 ).

A signed measure that only takes positive values is called a positive measure. A positive measure is what we
formerly called a finite measure.

A signed measure describes a distribution of mass on measurable sets, but it can
place negative mass on some sets. It may be helpful to think about a signed measure as
a model for a distribution of electric charge, since charge can be positive or negative.

It is easy to see that the signed measures form a (real) linear space under the usual
rules for scaling and addition of functions:

(𝛼𝜇 + 𝛽𝜈) (E) = 𝛼𝜇(E) + 𝛽𝜈 (E) for 𝛼, 𝛽 ∈ ℝ and E ∈ F.

We introduce notation for the linear space of signed measures:

M1 := M1(X;ℝ) := {𝜇 : F→ ℝ is a signed measure}.

This notation is fairly common, but not universal.
What does a signed measure look like? The answer is quite simple.
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Theorem 10.19 (Hahn–Jordan). Let 𝜇 be a signed measure on measurable space (X,F).
Then the signed measure can be decomposed as 𝜇 = 𝜇+ − 𝜇− where both 𝜇+ and
𝜇− are (finite) positive measures on (X,F).

Problem 10.20 (Hahn–Jordan decomposition). Prove Theorem 10.19. Hint: Construct the
“maximal” set P ∈ F for which 𝜇(P) ≥ 0. Define

𝜇+(E) := 𝜇(E ∩ P) and 𝜇− (E) := 𝜇(E ∩ Pc) for all measurable E ∈ F.

The decomposition is essentially unique in the sense that any other maximal positive
set P′ ∈ Fhas the property that 𝜇(P△P′) = 0.

With this fact at hand, we can define the integral with respect to a signed measure
𝜇. For all ℎ ∈ C𝑏 (X;ℝ),∫

X
ℎ d𝜇 := 𝜇(ℎ) := 𝜇+(ℎ) − 𝜇− (ℎ),

where 𝜇± are the positive and negative parts of the signed measure 𝜇 provided by the
Hahn–Jordan decomposition. Since the decomposition is unique up to negligible sets,
the integral is well defined.

It is also easy to check that the integral with respect to a signed measure 𝜇 ∈
M1(X;ℝ) is a linear function of the integrand:

𝜇(𝛼𝑔 + 𝛽ℎ) = 𝛼𝜇(𝑔 ) + 𝛽𝜇(ℎ) for all 𝛼, 𝛽 ∈ ℝ and 𝑔 ,ℎ ∈ C𝑏 (X;ℝ).

Dually, for a function ℎ ∈ C𝑏 (X;ℝ),

(𝛼𝜇 + 𝛽𝜈) (ℎ) = 𝛼𝜇(ℎ) + 𝛽𝜈 (ℎ) for all 𝛼, 𝛽 ∈ ℝ and 𝜇,𝜈 ∈ M1(X;ℝ).

You should verify that this statement is correct.
In other words, we can define a duality pairing:

⟨𝜇, ℎ⟩ := 𝜇(ℎ) :=
∫
X
ℎ d𝜇

where 𝜇 ∈ M1(X;ℝ) is a signed measure;
where ℎ ∈ C𝑏 (X;ℝ) is a function.

For each signed measure, ⟨𝜇, ·⟩ is a linear functional on functions. For each function,
⟨·, ℎ⟩ is a linear functional on signed measures.

Aside: This presentation describes an algebraic duality of linear spaces. To extend
to a topological duality, we would need to equip the spaces with a notion of
convergence.

10.4.4 Perspective
We now have a more complete appreciation for the idea that a moment is a linear
functional of the law of a random variable. Indeed, with our new notation, a moment
takes the form ⟨·, ℎ⟩ for a function ℎ. We have also seen that this construction is dual
to the fact that an integral with respect to a (signed) measure 𝜇 is a linear functional
⟨𝜇, ·⟩ that acts on functions. Both of these perspectives are fundamental.

First, for a fixed positive measure 𝜇, we can use the integral with respect to the
measure 𝜇 to define a distance on 𝜇-integrable functions 𝑔 ,ℎ ∈ L1(𝜇). For example, As before, we warn the reader that

this is a pseudonorm, not a norm.

∥𝑔 − ℎ∥L1 (𝜇) :=
∫
ℝ

|𝑔 − ℎ | d𝜇.
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In the next lecture, we will generalize this idea to define other kinds of distances
between functions.

Second, by considering an appropriate class of test functions ℎ, we can also use
integrals with respect to test functions to define a distance between signed measures
𝜇,𝜈 ∈ M1. This requires some work, and we will take up this challenge in Lecture 17.

The alert reader may wonder why we have restricted our attention to the class C𝑏
of bounded functions, even though the definition of a moment explicitly allows more
general functions. The simple reason is that we need ℎ ∈ C𝑏 to define ⟨𝜇, ℎ⟩ for every
signed measure 𝜇 ∈ M1.

If we consider test functions ℎ from a larger class, then we must restrict our
attention to a smaller family of signed measures. This is precisely the point of the
discussion in this lecture. If the test function ℎ grows like |𝑥 |𝑝 as |𝑥 | → ∞, then the
associated moment

∫
ℎ d𝜇𝑋 is finite when the tail probability 𝜇𝑋 {|𝑥 | ≥ 𝑡 } decays at

least as fast as |𝑡 |−𝑝 . In other words, test functions that grow are paired with measures
that decay at infinity at a complementary rate.

Problems
Exercise 10.21 (Normal tails). It is useful to have simple and accurate approximations for
the upper tail of the normal random variable. Let 𝑍 ∼ normal(0, 1).

1. Show that ℙ {𝑍 ≥ 𝑡 } ≤ 1
2e

−𝑡 2/2 for 𝑡 ≥ 0. Hint: Write the left-hand side as an
integral. Maximize the difference between the left-hand side and right-hand
side using calculus.

2. Show that ℙ {𝑍 ≥ 𝑡 } ≤ 1
𝑡
√
2𝜋

e−𝑡
2/2 for 𝑡 > 0. Hint: Write the left-hand side as

an integral, and introduce the extra factor 1 ∧ 𝑡 .

Exercise 10.22 (Gaussian IBP). This innocuous exercise is very important for some parts
of probability theory. Let 𝑍 ∼ normal(0, 𝜎2).

1. Let 𝑓 : ℝ → ℝ be a bounded function with a bounded, continuous derivative.
Prove the Gaussian integration by parts formula:

𝔼[𝑍 𝑓 (𝑍 )] = 𝜎2 · 𝔼[ 𝑓 ′ (𝑍 )]. (10.5)

Hint: This is really just ordinary integration by parts from calculus.
2. (*) Extend the formula (10.5) to all 𝑓 with 𝑓 ′ ∈ L1(𝛾 ).
3. For 𝑝 ∈ ℕ, evaluate 𝔼[𝑍 2𝑝 ] = 𝔼[𝑍 · 𝑍 2𝑝−1] by iterative application of Gaussian

integration by parts.
4. Deduce that (𝔼 |𝑍 |𝑝 )1/𝑝 ≤ Const ·𝜎√𝑝 for all even 𝑝 = 2, 4, 6, . . . . Hint: Stirling.
5. (*) Extend the bound in the last part to all 𝑝 > 0. Hint: Use the fact that

homogeneous moments are increasing (Theorem 11.4).

Problem 10.23 (Reconstruction). If we collect enough moment information, then we can
sometimes determine the distribution of a random variable completely.

1. Let 𝑋 be a real random variable that takes values in {0, 1, 2, . . . , 𝑛}. Suppose that
we know 𝔼𝑋 𝑝 for 𝑝 = 1, 2, . . . , 𝑛. Explain how to reconstruct the distribution of
𝑋 . Hint: A moment is a linear functional of the law 𝜇𝑋 . When is a Vandermonde
matrix nonsingular?

2. Continue with the assumptions from the previous part. Define the moment
generating function𝑚𝑋 (𝜃 ) := 𝔼 e𝜃𝑋 for 𝜃 ∈ ℝ. Explain how to reconstruct the
distribution of 𝑋 from the function𝑚𝑋 . Hint: Look at the derivatives at zero!



Lecture 10: Moments & Tails 164

Exercise 10.24 (Moment growth and tails). The rate of tail decay can also be captured
by the growth of polynomial moments. Here is an important example that arises in
high-dimensional probability and geometry.

1. Let 𝑋 be a real random variable whose homogeneous moments grow at a rate no
faster than the square root. That is, assume there is a constant 𝐶1 > 0 for which

(𝔼 |𝑋 |𝑝 )1/𝑝 ≤ 𝐶1
√
𝑝 for each 𝑝 > 0.

Develop a bound for ℙ {|𝑋 | ≥ 𝑡 } using Markov’s inequality with the best choice
of the power 𝑝 .

2. Conversely, suppose that 𝑋 is a real random variable whose tail probability
satisfies the bound

ℙ {|𝑋 | ≥ 𝑡 } ≤ 𝐶2 · e−𝑐3 ·𝑡
2

for all 𝑡 ≥ 0.

The constants 𝐶2, 𝑐3 > 0 do not depend on 𝑡 , but will depend on 𝑋 . Using
integration by parts, prove that the homogeneous moments of |𝑋 | satisfy the
bound in (a). Hint: Look up Euler’s integral for the gamma function, and make a
change of variables.

3. Explain why the random variables in (a)–(b) are called subgaussian. Give an
example of a subgaussian random variable that is not a Gaussian (or a constant).

4. (*) Show that the equivalent conditions in (a) and (b) are also equivalent to a
bound on the mgf:

𝑚 |𝑋 | (𝜃 ) := 𝔼 e𝜃 |𝑋 | ≤ 𝐶3 · e𝐶4 ·𝜃2
.

The constants 𝐶3,𝐶4 > 0 are independent of 𝜃 , but depend on 𝑋 .
5. (*) Repeat parts (1) and (2) under the alternative assumption that

(𝔼 |𝑋 |𝑝 )1/𝑝 ≤ 𝐶𝑝 for each 𝑝 > 0.

These random variables are called subexponential. What is the analog of (4) in
this case?

Notes
In the literature, there is some inconsistency in the definition of the term “moment”,
and we have opted for the most expansive definition. The definition of the term
“tail” also varies somewhat, but the general idea is to capture the probability that a
random variable takes large or small values. The material on Markov’s inequality and
integration by parts is standard fare for a probability course. The discussion of duality
between measures and functions is adapted from the functional analysis literature; for
example, see Rudin [Rud91].

The term “moment” appears to derive from a 1565 Latin translation of Archimedes
by Federico Commandino; see Figure 10.5. Commandino writes, “The center of gravity
of each solid figure is that point within it, about which, on all sides, parts of equal
moment stand.” Moment is being used in the sense of importance or “momentousness”.
Jeremy Bernstein tracked down this etymology while preparing notes for the 2019
implementation of this class.
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Figure 10.5 (Moment: Etymology). The term “moment” originates from Federico
Commandino’s 1565 book Liber de centro gravitatis solidorum. The sentence of
interest is “Centrum gravitatis ... momentorum consistunt.”



11. L𝑝 Spaces

Agenda:
1. L𝑝 spaces
2. Inequalities
3. Convergence
4. Completeness

“My reputation is far bigger than my sales. . . I was talking to Lou Reed the other day,
and he said that the first Velvet Underground record sold only 30,000 copies in its
first five years. Yet, that was an enormously important record for so many people. I
think everyone who bought one of those 30,000 copies started a band! So I console
myself in thinking that some things generate their rewards in second-hand ways.”

—Brian Eno, qtd. in “Lots of aura, no air play”
by Kristine McKenna, Los Angeles Times, 23 May 1982

Figure 11.1 (An LP space).
This is the first Velvet Un-
derground record.

In the last lecture, we saw that the polynomial moments of a random variable are
closely related to the decay of tail probabilities. This observation leads us to define the
space L𝑝 , which consists of all random variables whose 𝑝th moment is finite.

These spaces play a central role in probability theory. We have already encountered
the L1 space of integrable random variables. As we will see in the next lecture, the
L2 space is very important because it allows us to place the notions of variance and
covariance in an appropriate context. Other L𝑝 spaces also arise from time to time,
and it is valuable to understand their properties all at once.

To begin our study, we will use Jensen’s inequality repeatedly to derive some basic
inequalities that are used to understand the structure of the L𝑝 spaces. Afterward, we
will develop the a notion of convergence in L𝑝 , and we will argue that L𝑝 spaces are
complete.

11.1 L𝑝 spaces
In the last lecture, we proved that polynomial moments are related to the decay of tail
probabilities. Let 𝑋 be a real random variable, and let 𝑝 > 0.

• If the polynomial moment 𝔼 |𝑋 |𝑝 < +∞, then the tail probability decays like
ℙ {|𝑋 | ≥ 𝑡 } ≤ Const · 𝑡 −𝑝 for all 𝑡 > 0.

• If the tail probability decays like ℙ {|𝑋 | ≥ 𝑡 } ≤ Const · 𝑡 −𝑝 , then the polynomial
moment 𝔼 |𝑋 |𝑞 < +∞ when 0 < 𝑞 < 𝑝 .

In this section, we study the class of random variables whose 𝑝th moment is finite.

11.1.1 The space of 𝑝-integrable random variables
We begin by carving out some collections of random variables.

Definition 11.1 (L𝑝 space). For 𝑝 > 0, the space L𝑝 := L𝑝 (ℙ) := L𝑝 (Ω,F,ℙ) is

L𝑝 := {𝑋 : Ω → ℝ is a random variable with 𝔼 |𝑋 |𝑝 < +∞}.
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We call L𝑝 the space of 𝑝-integrable random variables or the space of random
variables with 𝑝 moments.

We have already encountered the space L1, which is now subsumed under Defi-
nition 11.1. By the considerations above, the random variables in L𝑝 have tail decay
with rate at least 𝑡 −𝑝 . Conversely, every random variable with tail decay 𝑡 −𝑞 for 𝑞 > 𝑝
belongs to L𝑝 . The most basic fact is that L𝑝 is a linear space.

Proposition 11.2 (L𝑝 is a linear space). For any probability space (Ω,F,ℙ) and for all𝑝 > 0,
the set L𝑝 (Ω,F,ℙ) becomes a linear space with the standard scalar multiplication and
addition of functions.

Proof. Let 𝑋 ,𝑌 ∈ L𝑝 . For 𝛼 ∈ ℝ, it is clear that 𝛼𝑋 ∈ L𝑝 because

𝔼 |𝛼𝑋 |𝑝 = |𝛼 | · 𝔼 |𝑋 |𝑝 < +∞.

Now, to verify that the sum 𝑋 +𝑌 ∈ L𝑝 , we first calculate that

|𝑋 +𝑌 |𝑝 ≤
(
2max{|𝑋 |, |𝑌 |}

)𝑝
= 2𝑝 max{|𝑋 |𝑝 , |𝑌 |𝑝 } ≤ 2𝑝 ·

(
|𝑋 |𝑝 + |𝑌 |𝑝

)
.

This inequality holds pointwise. Using linearity, we take the expectation:

𝔼 |𝑋 +𝑌 |𝑝 ≤ 2𝑝 ·
(
𝔼 |𝑋 |𝑝 + 𝔼 |𝑌 |𝑝

)
< +∞.

Thus, L𝑝 is stable under scalar multiplication and sums. It is a linear space. ■

Aside: Many authors write L𝑝 for the space of 𝑝-integrable random variables, with
the power 𝑝 in the superscript. Some mathematicians (including the ones who
taught me) reserve superscripts in function spaces for differentiability properties,
while subscripts reflect integrability properties. These notes follow the latter
convention.

11.1.2 Homogeneous moments
It is productive to introduce a measure of the size of a random variable that belongs
to L𝑝 . To do so, we will adjust the 𝑝th moment to obtain a positively homogeneous
functional.

Definition 11.3 (𝑝th homogeneous moment). Let 𝑋 be a real random variable.
Warning: In spite of the notation,
∥ · ∥𝑝 is only a pseudonorm. See
Corollary 11.13. ■

The
𝑝th homogeneous moment is

∥𝑋 ∥𝑝 := ∥𝑋 ∥L𝑝 := (𝔼 |𝑋 |𝑝 )1/𝑝 . (11.1)

For every real random variable 𝑋 , this functional is positively homogeneous:

∥𝛼𝑋 ∥𝑝 = |𝛼 | · ∥𝑋 ∥𝑝 for all 𝛼 ∈ ℝ. (11.2)

This result follows immediately from the linearity of expectation. We will collect some
less trivial properties of the homogeneous moments and then present an omnibus result
about the functional ∥·∥𝑝 .

11.1.3 Monotonicity of homogeneous moments
Our next result describes the relationships among the homogeneous moments of
different orders.
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Theorem 11.4 (Homogeneous moments: Monotonicity). For 0 < 𝑝 ≤ 𝑞 , we have the
relation

Warning: The order of the norms
is reverse to the order of
inclusions. See Warning 11.22 for
additional context. ■

∥𝑋 ∥𝑝 ≤ ∥𝑋 ∥𝑞 for each random variable 𝑋 .

In particular, for 𝑝 ≤ 𝑞 , we have L𝑞 ⊆ L𝑝 .

In words, there are fewer random variables with tails that decay quickly than
random variables with tails that decay slowly.

Proof. This result a direct consequence of Jensen’s inequality. When 0 < 𝑝 ≤ 𝑞 , the
ratio 𝑟 := 𝑞/𝑝 ≥ 1. Recall that the function 𝜑 (𝑡 ) := |𝑡 |𝑟 is convex for 𝑟 ≥ 1 and
bounded below by zero. Theorem 9.26 implies that

𝔼 |𝑋 |𝑞 = 𝔼
[
|𝑋 |𝑝 · (𝑞/𝑝 )

]
≥

(
𝔼 |𝑋 |𝑝

)𝑞/𝑝
.

This relation is valid, even when the left-hand side or both sides are infinite. Take the
1/𝑞 power to see that ∥𝑋 ∥𝑞 ≥ ∥𝑋 ∥𝑝 . ■

11.1.4 Hölder’s inequality
To better understand the behavior of the homogeneous moments, let us develop a
bound for the homogeneous moments of a product.

Theorem 11.5 (Hölder’s inequality). Fix a probability space (Ω,F,ℙ). Consider
positive numbers 𝑝, 𝑞 > 1 with 𝑝−1 + 𝑞−1 = 1. For real random variables 𝑋 ∈ L𝑝
and 𝑌 ∈ L𝑞 , the product 𝑋𝑌 ∈ L1, and

∥𝑋𝑌 ∥1 ≤ ∥𝑋 ∥𝑝 · ∥𝑌 ∥𝑞 < +∞. (11.3)

Hölder’s inequality expresses a duality relation between L𝑝 and L𝑞 for dual indices
1/𝑝 + 1/𝑞 = 1. We will give a standard proof based on a sequence of numerical
inequalities.

Proof. We recall the GM–AM inequality from (9.11):

𝑥𝜏𝑦 1−𝜏 ≤ 𝜏𝑥 + (1 − 𝜏)𝑦 for 𝜏 ∈ [0, 1] and 𝑥, 𝑦 ≥ 0.

This result is an instant consequence of the fact that exp(·) is a convex function. By
the change of variables 𝜏 = 1/𝑝 and 1 − 𝜏 = 1/𝑞 , we arrive at Young’s inequality:

|𝑥𝑦 | ≤ 1
𝑝
· |𝑥 |𝑝 + 1

𝑞
· |𝑦 |𝑞 for 𝑥, 𝑦 ∈ ℝ. (11.4)

Hölder’s inequality follows easily from this statement.
The key idea is to rescale the random variables 𝑋 and𝑌 to make full use of Young’s

inequality (11.4). Indeed, we have the pointwise inequality

|𝑋𝑌 |
∥𝑋 ∥𝑝 ∥𝑌 ∥𝑞

≤ 1
𝑝
· |𝑋 |𝑝

∥𝑋 ∥𝑝𝑝
+ 1
𝑞
· |𝑌 |𝑞

∥𝑌 ∥𝑞𝑞
.

Since both sides are positive, we may take the expectation without further justification:

𝔼

[
|𝑋𝑌 |

∥𝑋 ∥𝑝 ∥𝑌 ∥𝑞

]
≤ 𝔼

[
1
𝑝
· |𝑋 |𝑝

∥𝑋 ∥𝑝𝑝
+ 1
𝑞
· |𝑌 |𝑞

∥𝑌 ∥𝑞𝑞

]
=

1
𝑝
· 𝔼 |𝑋 |𝑝

∥𝑋 ∥𝑝𝑝
+ 1
𝑞
· 𝔼 |𝑌 |𝑞

∥𝑌 ∥𝑞𝑞
= 1.
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We have applied linearity of expectation and the definition (11.1) of the 𝑝th homoge-
neous moment. By assumption, 1/𝑝 + 1/𝑞 = 1. To complete the argument, we invoke
linearity of expectation on the left-hand side of the previous display, and we multiply
through by ∥𝑋 ∥𝑝 ∥𝑌 ∥𝑞 . ■

Exercise 11.6 (Hölder’s equality). Under what conditions does (11.3) hold with equality?

Exercise 11.7 (Geometric means: Concavity). Let 𝑋 ,𝑌 be positive random variables. For
each 𝜏 ∈ [0, 1], show that

𝔼[𝑋 𝜏𝑌 1−𝜏 ] ≤ (𝔼𝑋 )𝜏 · (𝔼𝑌 )1−𝜏 .

Deduce that (𝑥, 𝑦 ) ↦→ 𝑥𝜏𝑦 1−𝜏 is a concave function onℝ+×ℝ+. Hint: Change variables
in Hölder’s inequality.

Exercise 11.8 (Moments: Log-Convexity). Derive Lyapunov’s inequality. Let 𝑋 be a positive
random variable. For real parameters 0 < 𝑝 ≤ 𝑟 ≤ 𝑞 < +∞,

𝔼𝑋 𝑟 ≤ (𝔼𝑋 𝑝 )𝜏 · (𝔼𝑋 𝑞 )1−𝜏 where 𝑟 = 𝜏𝑝 + (1 − 𝜏)𝑞.

Equivalently, the function 𝑝 ↦→ log(𝔼𝑋 𝑝 ) is convex for 𝑝 > 0.
(*) Deduce that the logarithm of Euler’s gamma function is convex. Hint: Consider

an exponential random variable.

11.1.5 Minkowski’s inequality
Next, we consider how the homogeneous moments of a sum compare with the
homogeneous moments of the summands.

Theorem 11.9 (Minkowski’s inequality). Fix 𝑝 ≥ 1.
Warning: This result does not
hold for 0 < 𝑝 < 1. ■

Let 𝑋 ,𝑌 ∈ L𝑝 . Then

∥𝑋 +𝑌 ∥𝑝 ≤ ∥𝑋 ∥𝑝 + ∥𝑌 ∥𝑝 . (11.5)

In other words, the 𝑝th homogeneous moment obeys the triangle inequality when
𝑝 ≥ 1.

Proof. Following Riesz, we derive Minkowski’s inequality from Hölder’s inequality. The
triangle inequality for real numbers implies the pointwise inequality

|𝑋 +𝑌 |𝑝 = |𝑋 +𝑌 | · |𝑋 +𝑌 |𝑝−1 ≤ |𝑋 | · |𝑋 +𝑌 |𝑝−1 + |𝑌 | · |𝑋 +𝑌 |𝑝−1.

Take the expectation to obtain

∥𝑋 +𝑌 ∥𝑝𝑝 ≤ 𝔼
[
|𝑋 | · |𝑋 +𝑌 |𝑝−1

]
+ 𝔼

[
|𝑌 | · |𝑋 +𝑌 |𝑝−1

]
.

Apply Hölder’s inequality to each term on the right, noting that the exponent 𝑞 =

𝑝/(𝑝 − 1) is conjugate to the exponent 𝑝 . We reach

∥𝑋 +𝑌 ∥𝑝𝑝 ≤ ∥𝑋 ∥𝑝 ∥𝑋 +𝑌 ∥𝑝−1𝑝 + ∥𝑌 ∥𝑝 ∥𝑋 +𝑌 ∥𝑝−1𝑝 .

This statement readily implies Minkowski’s inequality (11.5). ■

Exercise 11.10 (Triangle equality). Under what conditions does (11.5) hold with equality?

Exercise 11.11 (Lower triangle inequality). Fix 𝑝 ≥ 1. Let 𝑋 ,𝑌 ∈ L𝑝 . Verify that

∥𝑋 +𝑌 ∥𝑝 ≥
��∥𝑋 ∥𝑝 − ∥𝑌 ∥𝑝

�� .
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Problem 11.12 (*The quasi-triangle inequality). For 0 < 𝑝 < 1, the homogeneous moment
∥·∥𝑝 does not satisfy the triangle inequality. Nevertheless, it does satisfy a quasi-triangle
inequality:

∥𝑋 +𝑌 ∥𝑝 ≤ 2(1/𝑝 )−1
(
∥𝑋 ∥𝑝 + ∥𝑌 ∥𝑝

)
.

Verify this statement. Hint: Show that |𝑥 + 𝑦 |𝑝 ≤ |𝑥 |𝑝 + |𝑦 |𝑝 for 𝑥, 𝑦 ∈ ℝ.

11.1.6 The L𝑝 pseudonorm
We can summarize our discussion about the homogeneous moments for 𝑝 ≥ 1 in the
following result.

Corollary 11.13 (L𝑝 pseudonorm). Fix 𝑝 ≥ 1. Then ∥·∥𝑝 : L𝑝 → ℝ+ satisfies the properties
of a pseudonorm, (1)–(3) below, for all random variables 𝑋 ,𝑌 ∈ L𝑝 .

1. Positive semidefinite: ∥𝑋 ∥𝑝 ≥ 0 and ∥0∥𝑝 = 0.
2. Positive homogeneous: ∥𝛼𝑋 ∥𝑝 = |𝛼 | · ∥𝑋 ∥𝑝 for all 𝛼 ∈ ℝ.
3. Triangle inequality: ∥𝑋 +𝑌 ∥𝑝 ≤ ∥𝑋 ∥𝑝 + ∥𝑌 ∥𝑝 .
4. Almost positive: If ∥𝑋 ∥𝑝 = 0, then 𝑋 = 0 almost surely.

Proof. The first and last statements are a direct consequence of expectation properties
(Theorem 9.7). The second statement appears in (11.2). The third statement is
Minkowski’s inequality (Theorem 11.9). ■

As usual, the pseudonorm induces a pseudometric on random variables in L𝑝 . For
𝑋 ,𝑌 ∈ L𝑝 , we can consider the distance

dist𝑝 (𝑋 ,𝑌 ) := ∥𝑋 −𝑌 ∥𝑝 .

This function satisfies most of the properties (positivity, symmetry, triangle inequality)
of a metric. On the other hand, dist𝑝 (𝑋 ,𝑌 ) = 0 only implies that 𝑋 = 𝑌 almost surely.

As we will discuss in Section 11.2, the L𝑝 pseudonorm allows us to make the linear
space L𝑝 into a pseudo-Banach space.

11.1.7 L∞ spaces
We supplement our collection of L𝑝 (Ω,F,ℙ) with one more important example.

Definition 11.14 (Essential supremum; essentially bounded). For a real random variable
𝑋 , define the essential supremum:

ess sup(𝑋 ) := inf{𝑀 ∈ ℝ : 𝑋 ≤ 𝑀 almost surely}.

A random variable with ess sup( |𝑋 |) < +∞ is said to be essentially bounded.

Definition 11.15 (L∞ space; pseudonorm). The space L∞ := L∞(ℙ) := L∞(Ω,F,ℙ)
consists of random variables that are essentially bounded:

L∞ := {𝑋 : Ω → ℝ is a random variable with ess sup( |𝑋 |) < +∞}.

For a real random variable 𝑋 , we write

∥𝑋 ∥∞ := ∥𝑋 ∥L∞ := ess sup( |𝑋 |).
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Thus, L∞ = {𝑋 : ∥𝑋 ∥∞ < +∞}.

Exercise 11.16 (L∞ is a linear space). By direct argument, confirm that L∞ is a linear space
of real random variables.

The next problem explains the notation and the relationship between L∞ and the
other L𝑝 spaces.

Problem 11.17 (Essential supremum). Prove that the essential supremum of the absolute
value is the limit of the L𝑝 pseudonorms:

∥𝑋 ∥∞ = lim
𝑝→∞

∥𝑋 ∥𝑝 .

Deduce that ∥·∥∞ : L∞ → ℝ+ is a pseudonorm on the linear space L∞.

The space L∞ is conjugate to the space L1. This is the extreme case of Hölder’s
inequality.

Exercise 11.18 (Hölder’s inequality). For random variables 𝑋 ∈ L1 and 𝑌 ∈ L∞, show that
𝑋𝑌 ∈ L1, and

∥𝑋𝑌 ∥1 ≤ ∥𝑋 ∥1∥𝑌 ∥∞.

11.1.8 *More L𝑝 spaces
There are some other spaces of random variables that are related to L𝑝 spaces. You
may encounter these from time to time, but they are less important in practice. First,
we introduce weak L𝑝 spaces, which are defined in terms of tail decay.

Definition 11.19 (Weak L𝑝 space). For 𝑝 > 0, the weak L𝑝 space L𝑝,∞ := L𝑝,∞(Ω,F,ℙ)
consists of the random variables 𝑋 : Ω → ℝ whose tail probability decays at the
rate 𝑡 −𝑝 . The condition that defines the space

does not satisfy the triangle
inequality, so it is not a pseudonorm.

L𝑝,∞ :=
{
𝑋 : sup𝑡 ≥0 𝑡

𝑝 ℙ {|𝑋 | ≥ 𝑡 } < +∞
}
.

Exercise 11.20 (Weak L𝑝 spaces). Fix 𝑝 > 0. Show that L𝑝 ⊆ L𝑝,∞ ⊆ L𝑞 for all 𝑞 < 𝑝 .

Aside: You will sometimes encounter the space L0 := L0(Ω,F,P), which consists
of all random variables on the probability space (Ω,F,P). The notation is
problematic, and it is probably best avoided. In particular, there seems to be a
range of opinions about what topology L0 carries.

11.1.9 *Probability versus functional analysis: Two warnings
If you have taken a functional analysis course, you have encountered variants of the L𝑝
spaces that we have discussed. There are some intrinsic differences in these definitions
that can cause dizziness, confusion, and blood loss. Let us present two warnings that
describe the main differences between our approach to L𝑝 spaces and the functional
analysis approach.

Warning 11.21 (Functions versus equivalence classes). In functional analysis, it is common
to identify functions that are equal almost everywhere as the same function. In the
present context, here is the analogous approach. Define an equivalence class of
real random variables:

[𝑋 ] := {𝑌 : Ω → ℝ is a random variable : 𝑌 = 𝑋 almost surely}.
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We can collect the equivalence classes of 𝑝-integrable random variables:

L𝑝 := {[𝑋 ] : 𝔼 |𝑋 |𝑝 < +∞}.

The collection L𝑝 is a linear space (formed as a quotient of L𝑝). We can define

∥ [𝑋 ] ∥𝑝 := (𝔼 |𝑋 |𝑝 )1/𝑝 for [𝑋 ] ∈ L𝑝 .

On L𝑝 , the function ∥·∥𝑝 is actually a norm, rather than a pseudonorm.
Many probabilists prefer to treat random variables as ordinary functions (not

equivalence classes). We will do so in this class, in large part because functions are
more concrete objects for us to think about. This choice has some consequences.
For instance, we have to live with linear spaces equipped with pseudonorms, rather
than norms. Furthermore, many statements in probability have to be understood
as holding almost surely. ■

Warning 11.22 (Inclusion of L𝑝 spaces). In functional analysis, we encounter sequence
spaces and function spaces that superficially resemble our L𝑝 spaces. For 𝑝 > 0, we
may define

ℓ𝑝 (ℕ) :=
{
𝒂 : ℕ → ℝ with

∑︁∞
𝑖=1

|𝑎𝑖 |𝑝 < +∞
}
;

𝐿𝑝 (ℝ) :=
{
𝑓 : ℝ → ℝ with

∫
ℝ

| 𝑓 |𝑝 d𝜆 < +∞
}
.

In words, the sequence space ℓ𝑝 (ℕ) contains sequences that are 𝑝-integrable with
respect to the counting measure. The function space 𝐿𝑝 (ℝ) contains real functions
that are 𝑝-integrable with respect to the Lebesgue measure. Neither the counting
measure nor the Lebesgue measure is a probability measure, so these two spaces
have a different flavor from the L𝑝 spaces that arise in probability.

Indeed, the sequence spaces satisfy an inclusion that is reverse to the one in
Theorem 11.4:

0 < 𝑝 ≤ 𝑞 implies ℓ𝑝 (ℕ) ⊆ ℓ𝑞 (ℕ).
The function spaces satisfy no containments at all: 𝐿𝑝 (ℝ) ⊈ 𝐿𝑞 (ℝ) for any𝑝, 𝑞 > 0.
Be careful! ■

11.2 Convergence in L𝑝 spaces
For 𝑝 ≥ 1, the L𝑝 pseudonorm allows us to equip L𝑝 with a notion of convergence,
just as we do in a normed space. In this section, we briefly discuss what this type of
convergence means. Then we turn to the problem of showing that L𝑝 is complete:
every Cauchy sequence converges.

11.2.1 Convergence
We begin with the definition of convergence in L𝑝 . From now on, we focus on the case
𝑝 ∈ [1,∞] so that we can benefit from the pseudonorm structure.

Definition 11.23 (L𝑝 convergence). Fix 𝑝 ∈ [1,∞]. A sequence (𝑋 𝑗 ∈ L𝑝 : 𝑗 ∈ ℕ) of
random variables converges in L𝑝 when there is a random variable 𝑋 ∈ L𝑝 for which

∥𝑋 𝑗 − 𝑋 ∥𝑝 → 0 as 𝑖 → ∞.
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We may also write 𝑋 𝑗 → 𝑋 in L𝑝 .

By monotonicity (Theorem 11.4), it is easy to see that

∥𝑋 𝑗 − 𝑋 ∥𝑝 → 0 implies ∥𝑋 𝑗 − 𝑋 ∥𝑞 → 0 for all 𝑞 ≤ 𝑝 .

In other words, convergence in L𝑝 implies convergence in L𝑞 for all 𝑞 ≤ 𝑝 . Convergence
in L𝑝 is sometimes called convergence of 𝑝th moments.

Activity 11.24 (Convergence in L𝑝 ). What does convergence in L𝑝 mean? Draw some
pictures to illustrate the concept. Hint: Recall that moments control tail decay and vice
versa. ■

Unfortunately, convergence in L𝑝 is incomparable with the notions of pointwise
convergence and almost-sure convergence.

Problem 11.25 (*Convergence failures). Let us consider the “universal” probability space
( [0, 1],B( [0, 1]), 𝜆).

1. Construct a sequence (𝑋 𝑗 : 𝑗 ∈ ℕ) of random variables that converges almost
surely but does not converge in L1.

2. Construct a sequence (𝑌𝑗 : 𝑗 ∈ ℕ) of random variables that converges in L1 but
does not converge almost surely.

Recall that pointwise convergence always implies almost-sure convergence.

Warning 11.26 (L𝑝 limits are not necessarily unique). In contrast to the situation in
functional analysis, the limit of a convergent sequence in L𝑝 may not be unique.
Indeed, it is possible that 𝑋 𝑗 → 𝑌 and 𝑋 𝑗 → 𝑌 ′ in L𝑝 , where the limits 𝑌 ≠ 𝑌 ′.
Nevertheless, by the triangle inequality, we can quickly verify that the two limits
satisfy

∥𝑌 −𝑌 ′∥𝑝 = 0.

As a consequence, 𝑌 = 𝑌 ′ almost surely. ■

11.2.2 Cauchy sequences
Next, we introduce a class of sequences of random variables with the property that
the tail of the sequence eventually enters an arbitrarily small ball and remains there.
These sequences are candidates for convergent sequences, but the definition does not
require us to identify the actual limit.

Definition 11.27 (L𝑝 Cauchy sequence). Fix 𝑝 ∈ [1,∞]. Let (𝑋 𝑗 : 𝑗 ∈ ℕ) be a sequence
of random variables in L𝑝 . We say that the sequence is Cauchy when

sup𝑖 ,𝑗≥𝑁 ∥𝑋𝑖 − 𝑋 𝑗 ∥𝑝 → 0 as 𝑁 → ∞.

See Figure 11.2 for an illustration.

It is common to say that a Cauchy sequence “converges inside itself” or that it
“wants to converge.” The next exercise justifies the language.

Exercise 11.28 (Convergent sequences are Cauchy). Let (𝑋 𝑗 : 𝑗 ∈ ℕ) be a sequence of
random variables in L𝑝 that converges to a limit 𝑋 ∈ L𝑝 . That is, ∥𝑋 𝑗 − 𝑋 ∥𝑝 → 0.
Show that (𝑋 𝑗 ) is a Cauchy sequence.
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Figure 11.2 (Cauchy sequence). For each 𝜀 > 0, a Cauchy sequence (𝑋 𝑗 : 𝑗 ∈ ℕ) in L𝑝
eventually enters an L𝑝 ball of radius 𝜀 about an element 𝑋𝑘 where 𝑘 = 𝑘 (𝜀). The
entire tail of the sequence (𝑋𝑖 : 𝑖 ≥ 𝑘 ) remains in that ball.

11.2.3 Completeness
In a general (pseudo)normed space, it is not always the case that a Cauchy sequence
converges. Instead, it is possible for the sequence to “slip through the cracks,”
approaching a limit that does not belong to the space. For example, the decimal
approximations 1, 1.4, 1.41, 1.414, . . . are rational numbers that approach

√
2. This

Cauchy sequence does not converge in ℚ, but it does converge in ℝ.
This observation motivates the next definition, which is a standard concept from

functional analysis.

Definition 11.29 (Completeness). We say that a (pseudo)normed linear space is
complete when every Cauchy sequence converges to a limit in the space. A complete
(pseudo)normed space is called a (pseudo-)Banach space.

“You complete me.”

—Jerry Maguire (1991)
Theorem 11.30 (L𝑝 is complete). Fix 𝑝 ∈ [1,∞]. Let (𝑋 𝑗 ∈ L𝑝 : 𝑗 ∈ ℕ) be a Cauchy
sequence in L𝑝 . Then there is a random variable𝑌 ∈ L𝑝 for which ∥𝑋 𝑗 −𝑌 ∥𝑝 → 0.
In other words, L𝑝 is complete.

*Proof. We will extract a subsequence (𝑋𝑘𝑛 : 𝑛 ∈ ℕ) from the original sequence that
converges within itself so fast that it is easy to produce a limit 𝑋𝑘𝑛 → 𝑌 in L𝑝 . Then
we will demonstrate that the entire sequence converges to this limit: 𝑋 𝑗 → 𝑌 in L𝑝 .

Since (𝑋 𝑗 : 𝑗 ∈ ℕ) is Cauchy, we can select an increasing sequence (𝑘𝑛 : 𝑛 ∈ ℕ) of
indices for which

∥𝑋𝑖 − 𝑋 𝑗 ∥𝑝 ≤ 2−𝑛 for all 𝑖 , 𝑗 ≥ 𝑘𝑛 .

Then
𝔼 |𝑋𝑘𝑛+1 − 𝑋𝑘𝑛 | = ∥𝑋𝑘𝑛+1 − 𝑋𝑘𝑛 ∥1 ≤ ∥𝑋𝑘𝑛+1 − 𝑋𝑘𝑛 ∥𝑝 ≤ 2−𝑛 .

By Tonelli’s theorem for series (Exercise 5.39),

𝔼
[∑︁∞

𝑛=1
|𝑋𝑘𝑛+1 − 𝑋𝑘𝑛 |

]
=

∑︁∞
𝑛=1

𝔼 |𝑋𝑘𝑛+1 − 𝑋𝑘𝑛 | < +∞.
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In particular, the series on the left-hand side converges almost surely because every
integrable (positive) random variable is almost surely finite (Exercise 9.42). As a
consequence,∑︁∞

𝑛=1
(𝑋𝑘𝑛+1 − 𝑋𝑘𝑛 ) converges (absolutely) almost surely.

The sum telescopes, and we see that lim𝑛→∞ 𝑋𝑘𝑛 (𝜔) exists for almost every 𝜔 ∈ Ω.
Define the random variable

𝑌 (𝜔) := lim sup𝑛→∞ 𝑋𝑘𝑛 (𝜔) for each 𝜔 ∈ Ω.

Indeed, the limit superior yields a measurable function. We recognize that 𝑋𝑘𝑛 → 𝑌
almost surely because the limit coincides with the limit superior whenever the limit
exists.

We have now produced a tentative limit 𝑌 for the original sequence (𝑋 𝑗 : 𝑗 ∈ ℕ).
Our next task is to verify that the random variable 𝑌 belongs to L𝑝 and is indeed the
limit of the original sequence. By construction,

𝔼 |𝑋 𝑗 − 𝑋𝑘𝑛 |𝑝 = ∥𝑋 𝑗 − 𝑋𝑘𝑛 ∥
𝑝
𝑝 ≤ 2−𝑚𝑝 for all 𝑗 ≥ 𝑘𝑛 and 𝑛 ≥ 𝑚.

Using Fatou’s lemma (Theorem 9.11), for fixed 𝑗 ≥ 𝑘𝑚 ,

2−𝑚𝑝 ≥ lim inf𝑛→∞ 𝔼 |𝑋 𝑗 − 𝑋𝑘𝑛 |𝑝

≥ 𝔼
[
lim inf𝑛→∞ |𝑋 𝑗 − 𝑋𝑘𝑛 |𝑝

]
= 𝔼 |𝑋 𝑗 −𝑌 |𝑝 .

Indeed, 𝑋𝑘𝑛 → 𝑌 almost surely, and the expectation is insensitive to the negligible set
where the sequence does not converge. This calculation ensures that 𝑋 𝑗 −𝑌 ∈ L𝑝 for
each 𝑗 ∈ ℕ. From Minkowski’s inequality, we deduce that 𝑌 ∈ L𝑝 . Finally, we observe
that

lim sup𝑗→∞ ∥𝑋 𝑗 −𝑌 ∥𝑝 ≤ 2−𝑚 .

Take𝑚 → ∞ to confirm that 𝑋 𝑗 → 𝑌 in L𝑝 . ■

Exercise 11.31 (*L𝑝 is complete for0 < 𝑝 < 1.). Extend Theorem 11.30 to the case 0 < 𝑝 < 1.
Hint: You only need to use the quasi-triangle inequality in place of the triangle inequality.

Problem 11.32 (Closure and completeness). A linear subspace K ⊆ L𝑝 is closed in L𝑝 if it
contains all its limit points. More precisely, suppose (𝑋𝑖 ∈ K : 𝑖 ∈ ℕ) is a sequence in
K that converges in L𝑝 to a limit point 𝑋 ∈ L𝑝 . Then K is closed if and only if the limit
𝑋 ∈ K. Prove that a subspace K of L𝑝 is closed if and only if the subspace K is complete.
Hint: You need to use the fact that convergent sequences are Cauchy and the theorem
that L𝑝 itself is complete.

Problems
Exercise 11.33 (Moments: Interpolation). Consider real parameters 1 ≤ 𝑝 ≤ 𝑟 ≤ 𝑞 ≤ +∞.
Derive Littlewood’s inequality:

∥𝑋 ∥𝑟 ≤ ∥𝑋 ∥𝜃𝑝 · ∥𝑋 ∥1−𝜃𝑞 where
1
𝑟
=
𝜃

𝑝
+ 1 − 𝜃

𝑞
.

In other words, a homogeneous moment whose order 𝑟 lies between 𝑝 and 𝑞 is
bounded by an appropriate geometric mean of the 𝑝th and 𝑞 th homogeneous moments.
The weight 𝜃 in the geometric mean is computed by writing 1/𝑟 as a weighted average
of 1/𝑝 and 1/𝑞 .
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Problem 11.34 (L𝑝 pseudonorm: Duality). For 𝑝 ≥ 1, we can find an alternative “dual”
representation for the L𝑝 pseudonorm. Prove that

∥𝑋 ∥𝑝 = sup{𝔼[𝑋𝑌 ] : ∥𝑌 ∥𝑞 ≤ 1} where
1
𝑝
+ 1
𝑞

= 1.

Hint: One direction follows from Hölder’s inequality. The other direction requires the
selection of an appropriate random variable 𝑌 that depends on 𝑋 .

Problem 11.35 (Hölder: Beyond two factors). Hölder’s inequality can be extended to
products of more than two random variables.

1. Consider a family (𝑋1, 𝑋2, . . . , 𝑋𝑛) of real random variables. Fix numbers 𝑝𝑖 ≥ 1
with the property that 𝑝−1

1 + · · · + 𝑝−1
𝑛 = 1. Establish that

∥𝑋1𝑋2 · · ·𝑋𝑛 ∥1 ≤ ∥𝑋1∥𝑝1 · ∥𝑋2∥𝑝2 · · · ∥𝑋𝑛 ∥𝑝𝑛 .

Hint: You can prove this quickly by induction.
2. Deduce that the weighted geometric mean is a concave function. For positive

numbers 𝜏𝑖 ≥ 0 with
∑𝑛
𝑖=1 𝜏𝑖 = 1, show that

(𝑥1, 𝑥2, . . . , 𝑥𝑛) ↦→ 𝑥𝜏11 𝑥
𝜏2
2 · · · 𝑥𝜏𝑛𝑛

is a concave function on the set ℝ𝑛
+ of positive vectors. Hint: Change variables

in Hölder’s inequality, and interpret the statement as an invocation of Jensen’s
inequality.

Problem 11.36 (**Uniform smoothness and convexity). There are some beautiful geometric
inequalities that hold for random variables in L𝑝 spaces. These results are related to
the familiar parallelogram law in Euclidean space (Exercise 12.10), but they reflect the
fact that L𝑝 balls have varying curvature. The properties encoded by these results are
called uniform smoothness (𝑝 ≥ 2) and uniform convexity (1 ≤ 𝑝 ≤ 2). They play an
important role in more advanced studies of martingales.

1. For 𝑝 ≥ 2, prove the Gross’s two-point inequality: For all 𝑥, 𝑦 ∈ ℝ,[ 1
2 ·

(
|𝑥 + 𝑦 |𝑝 + |𝑥 − 𝑦 |𝑝

) ]2/𝑝 ≤ 𝑥2 + (𝑝 − 1) · 𝑦 2

Show that the inequality is reversed for 1 ≤ 𝑝 ≤ 2. Hint: Define the function

𝑢 (𝑡 ) := 1
2 ·

(
|𝑥 +

√
𝑡 𝑦 |𝑝 + |𝑥 −

√
𝑡 𝑦 |𝑝

)
for 𝑡 ∈ [0, 1].

To control 𝑢 (1) − 𝑢 (0), develop a bound on the derivative 𝑢 ′ (𝑡 ). Exploit the
fact that 𝑡 ↦→ 𝑡𝑝−1 is convex for 𝑝 ≥ 2.

2. For 𝑝 ≥ 2, extend this result to real random variables 𝑋 ,𝑌 ∈ L𝑝 :[ 1
2 ·

(
∥𝑋 +𝑌 ∥𝑝𝑝 + ∥𝑋 −𝑌 ∥𝑝𝑝

) ]2/𝑝 ≤ ∥𝑋 ∥2𝑝 + (𝑝 − 1) · ∥𝑌 ∥2𝑝 .

Show that the inequality is reversed for 1 ≤ 𝑝 ≤ 2.
3. For 𝑝 ≥ 2, use Jensen’s inequality to derive that

1
2 ·

(
∥𝑋 +𝑌 ∥2𝑝 + ∥𝑋 −𝑌 ∥2𝑝

)
≤ ∥𝑋 ∥2𝑝 + (𝑝 − 1) · ∥𝑌 ∥2𝑝 .

Draw a picture to illustrate what this inequality means.
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Notes
Our development of L𝑝 spaces is inspired by Williams [Wil91, Chap. 6]; in particular,
we have used his proof of Theorem 11.30.

For more results on L𝑝 spaces, see the books of Garling [Gar07], Lieb & Loss [LL01],
and Steele [Ste04]. The proof strategy for the uniform smoothness inequality is drawn
from [Tro22].
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12. L2 Spaces & Orthogonality

Agenda:
1. L2 spaces
2. Cauchy–Schwarz
3. Inner-product geometry
4. Covariance
5. Orthogonal projection

“Scarecrow: The sum of the square roots of any two sides of an isosceles triangle is
equal to the square root of the remaining side. Oh joy, rapture! I’ve got a brain!
How can I ever thank you enough?

“Wizard: Well, you can’t.”

—The Wizard of Oz, 1939

In the last lecture, we introduced the scale of L𝑝 (Ω;F;ℙ) spaces associated with a
probability space (where 𝑝 > 0). These are linear spaces containing random variables
that have finite 𝑝th absolute polynomial moments. We saw that these spaces decrease
in size as the power 𝑝 increases.

For 𝑝 ≥ 1, the L𝑝 space is equipped with a pseudonorm ∥·∥𝑝 . The pseudonorm
induces a notion of convergence, and we saw that each L𝑝 space is complete. That is,
every Cauchy sequence in L𝑝 converges to a limit in L𝑝 .

In this lecture, we undertake a deeper investigation of the space L2. In addition
to all the properties outlined above, the L2 space is equipped with a pseudo-inner
product. This structure allows us to define orthogonal random variables, and it is the
right context for introducing the variance and covariance.

The inner-product geometry also permits us to define the orthogonal projection of
a random variable onto a subspace. Later, we will see that the orthogonal projection
serves as the foundation for the concept of conditional expectation, which is one of the
most important ideas in probability theory.

12.1 Square-integrable random variables
To begin, let us set the stage with the formal definitions, which specialize the more
general notions from Lecture 11.

Definition 12.1 (L2 space). The space L2 := L2(ℙ) := L2(Ω,F,ℙ) is defined as

L2 := {𝑋 : Ω → ℝ is a random variable with 𝔼 |𝑋 |2 < +∞}.

For a random variable 𝑋 ∈ L2, the L2 pseudonorm is defined as

∥𝑋 ∥2 := ∥𝑋 ∥L2 := (𝔼 |𝑋 |2)1/2.

We refer to L2 as the space of square-integrable random variables.

According to Proposition 11.2, the space L2 is a linear space. Corollary 11.13
ensures that ∥·∥2 is a pseudonorm on L2; in particular, it satisfies the triangle inequality.
Theorem 11.30 states that L2 is complete: every Cauchy sequence in L2 converges to a
random variable in L2.



Lecture 12: L2 Spaces & Orthogonality 179

12.2 The Cauchy–Schwarz inequality
“May the Schwartz be with you!”

—Spaceballs (1987)

The most basic fact about the space L2 is an inequality that gives a bound for the
expectation of a product of square-integrable random variables. This result specializes
Hölder’s inequality (Theorem 11.5). Because of its importance, we will give an
independent proof.

Theorem 12.2 (Cauchy–Schwarz).
Warning: This “Schwarz” is
spelled without a “t”! ■

For square-integrable, real random variables 𝑋 ,𝑌 ∈
L2, the product 𝑋𝑌 ∈ L1. Furthermore,

|𝔼[𝑋𝑌 ] | ≤ 𝔼 |𝑋𝑌 | = ∥𝑋𝑌 ∥1 ≤ ∥𝑋 ∥2∥𝑌 ∥2. (12.1)

Proof. This argument is due to Schwarz. For any parameter 𝜉 ∈ ℝ, observe that

0 ≤ 𝔼 (𝜉𝑋 +𝑌 )2 = 𝜉 2 · (𝔼𝑋 2) + 2𝜉 · 𝔼[𝑋𝑌 ] + (𝔼𝑌 2).

The left-hand inequality holds because the expectation of a positive random variable is
positive. The expectation is finite because L2 is a linear space. To obtain the equality,
we expand the square and invoke the linearity of expectation.

According to the quadratic formula, a quadratic polynomial 𝜉 2𝑎 + 2𝜉𝑏 + 𝑐 ≥ 0 for
all 𝜉 ∈ ℝ if and only if the discriminant (2𝑏)2 − 4𝑎𝑐 ≤ 0. That is,

(𝔼[𝑋𝑌 ])2 ≤ (𝔼𝑋 2) · (𝔼𝑌 2)

To obtain the (stricter) result with absolute values, simply make the change of variables
𝑋 ↦→ |𝑋 | and 𝑌 ↦→ |𝑌 |. ■

Exercise 12.3 (Cauchy–Schwarz: Equality). Suppose that the Cauchy–Schwarz inequality
holds with equality:

|𝔼[𝑋𝑌 ] | = ∥𝑋 ∥2∥𝑌 ∥2.
What can we deduce about the relationship between 𝑋 and 𝑌 ? Hint: Under what
circumstances is 𝔼(𝜉𝑋 +𝑌 )2 > 0 for all 𝜉 ∈ ℝ?

Exercise 12.4 (L2 triangle inequality). Use the Cauchy–Schwarz inequality (Theorem 12.2)
to verify that

∥𝑋 +𝑌 ∥2 ≤ ∥𝑋 ∥2 + ∥𝑌 ∥2 for 𝑋 ,𝑌 ∈ L2.

Hint: Specialize the proof of Minkowski’s inequality (Theorem 11.9).

12.3 The L2 pseudo-inner product
The Cauchy–Schwarz inequality (Theorem 12.2) allows us to introduce an inner-product
geometry on the space of square-integrable random variables.

Definition 12.5 (L2 pseudo-inner product). For square-integrable, real random variables
𝑋 ,𝑌 ∈ L2, define

⟨𝑋 , 𝑌 ⟩ := ⟨𝑋 , 𝑌 ⟩L2 := 𝔼[𝑋𝑌 ].
In particular, ⟨𝑋 , 𝑋 ⟩ = ∥𝑋 ∥22.

The Cauchy–Schwarz inequality ensures that the pairing ⟨·, ·⟩ : L2 × L2 → ℝ is
defined for all square-integrable random variables.

Exercise 12.6 (L2 pseudo-inner product: Properties). Show that the pairing ⟨·, ·⟩ on L2
meets the definition of a pseudo-inner product, (1)–(3) below. Let 𝑋 ,𝑌 , 𝑍 ∈ L2.
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1. Positive semidefinite: ⟨𝑋 , 𝑋 ⟩ ≥ 0.
2. Symmetric: ⟨𝑋 , 𝑌 ⟩ = ⟨𝑌 , 𝑋 ⟩.
3. Bilinear: For all real scalars 𝛼, 𝛽 ∈ ℝ,

⟨𝛼𝑋 + 𝛽𝑌 , 𝑍 ⟩ = 𝛼⟨𝑋 , 𝑍 ⟩ + 𝛽 ⟨𝑌 , 𝑍 ⟩;
⟨𝑍 , 𝛼𝑋 + 𝛽𝑌 ⟩ = 𝛼⟨𝑍 , 𝑋 ⟩ + 𝛽 ⟨𝑍 , 𝑌 ⟩.

4. Almost positive: If ⟨𝑋 , 𝑋 ⟩ = 0, then 𝑋 = 0 almost surely.

Exercise 12.6 tells us that ⟨·, ·⟩ behaves almost exactly like the inner products
that we encounter in linear algebra and functional analysis. The only caveat is that
⟨𝑋 , 𝑋 ⟩ = 0 only allows us to conclude that 𝑋 = 0 almost surely.

Aside from the latter point, we can now think about random variables in L2
geometrically, exploiting intuitions we have already developed. Indeed, the pseudo-
inner product gives us a notion of the “alignment” between two random variables. This
brings us to the next definition.

Warning: Orthogonality random
variables need not be
“independent”. ■

Definition 12.7 (Orthogonality). Let 𝑋 ,𝑌 ∈ L2. If ⟨𝑋 , 𝑌 ⟩ = 0, then we say that 𝑋 and
𝑌 are orthogonal random variables. We may write 𝑋 ⊥ 𝑌 to denote orthogonality.

Example 12.8 (Indicators: Orthogonality). Suppose that A and B are mutually exclusive
events. Then the indicator random variables are orthogonal:

𝔼[1A1B] = 𝔼[1∅] = 0.

More generally, if A ∩ B = E, then the indicators 1A and 1B are orthogonal if and only
if E is a negligible event: ℙ(E) = 0. ■

Geometrically, orthogonal random variables behave like vectors at right angles to
each other. In particular, they enjoy a Pythagorean relation.

Exercise 12.9 (L2 Pythagorean theorem). Let 𝑋 ,𝑌 ∈ L2. Then

Figure 12.1 (Pythagorean
relation).

⟨𝑋 , 𝑌 ⟩ = 0 implies ∥𝑋 +𝑌 ∥22 = ∥𝑋 ∥22 + ∥𝑌 ∥22.

Hint: Use bilinearity of the pseudo-inner product.

Even without orthogonality, we have an identity for the squared lengths of two
random variables.

Exercise 12.10 (L2 parallelogram law). Let 𝑋 ,𝑌 ∈ L2.

Figure 12.2 (Parallelogram
law).

Then

∥𝑋 +𝑌 ∥22 + ∥𝑋 −𝑌 ∥22 = 2∥𝑋 ∥22 + 2∥𝑌 ∥22.

In other words, the total squared length of the diagonals of a parallelogram equals the
total squared length of the four sides.

The Pythagorean relation and the parallelogram law depend crucially on the fact
that we are using the L2 pseudonorm to measure magnitudes. These results fail in
other L𝑝 spaces (𝑝 ≠ 2), although there are some very interesting substitutes (see
Problem 11.36).

We have already seen that L2 is complete (Theorem 11.30), so the pseudo-inner
product structure makes L2 into a pseudo-Hilbert space.
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12.4 Covariance and variance
The space L2 of square-integrable random variables supports another pseudo-inner
product structure that plays a special role in probability theory. One reason that two
random variables may have a large pseudo-inner product is that they both have large
expectations. It can be valuable to subtract the expectations before asking how closely
the random variables are aligned with each other.

Definition 12.11 (Covariance). Let 𝑋 ,𝑌 ∈ L2. Define the covariance

Cov(𝑋 ,𝑌 ) := ⟨𝑋 − 𝔼𝑋 , 𝑌 − 𝔼𝑌 ⟩ = 𝔼[𝑋𝑌 ] − (𝔼𝑋 ) (𝔼𝑌 ).

Warning: Uncorrelated random
variables need not be
“independent”, which is a
stronger requirement. See
Lecture 13. ■

If Cov(𝑋 ,𝑌 ) = 0, then we say that 𝑋 and 𝑌 are uncorrelated.

Example 12.12 (Indicators: Covariance). For two events A and B, the covariance of the
indicators satisfies

Cov(1A,1B) = 𝔼[1A∩B] − 𝔼[1A] 𝔼[1B]
= ℙ(A ∩ B) − ℙ(A) · ℙ(B).

If A and B are mutually exclusive events, then the covariance is always negative. If
A ⊆ B, then the covariance is always positive. ■

Exercise 12.13 (Covariance pseudo-inner product). Show that Cov defines a pseudo-inner
product on L2. That is, Cov is positive semidefinite, symmetric, and bilinear. What can
we conclude about 𝑋 when Cov(𝑋 , 𝑋 ) = 0?

The pseudonorm associated with the covariance form should be familiar to you.

Definition 12.14 (Variance). Let 𝑋 ∈ L2. The variance of 𝑋 is defined as

Var[𝑋 ] := Cov(𝑋 , 𝑋 ).

Exercise 12.15 (Variance). Check that the variance satisfies the familiar definitions:

Var[𝑋 ] = 𝔼[(𝑋 − 𝔼𝑋 )2] = 𝔼𝑋 2 − (𝔼𝑋 )2.

Confirm that the square-root of the variance is a pseudonorm on L2. Establish the
variational formulation:

Var[𝑋 ] = inf𝛼∈ℝ 𝔼[(𝑋 − 𝛼)2] = inf𝛼∈ℝ ∥𝑋 − 𝛼∥22. (12.2)

In words, the variance computes the expected squared deviation of a random
variable 𝑋 from its average value 𝔼𝑋 . So the variance is a summary quantity
that describes how much a random variable fluctuates around its mean value. The
relation (12.2) gives us an important new insight about the expectation. Indeed, 𝔼𝑋
is the constant (random variable) that best approximates the random variable 𝑋 with
respect to the L2 pseudo-norm. This innocent observation will turn out to be very
important.

Since the variance is the quadratic form induced by a bilinear form, we can
decompose the variance of a sum in terms of the covariances of the summands.

Proposition 12.16 (Variance: Pythagorean relation). Consider square-integrable real random
variables 𝑋1, . . . , 𝑋𝑛 ∈ L2. Then

Var
[∑︁𝑛

𝑖=1
𝑋𝑖

]
=

∑︁𝑛

𝑖=1
Var[𝑋𝑖 ] + 2

∑︁
1≤𝑖<𝑗≤𝑛

Cov(𝑋𝑖 , 𝑋 𝑗 ).
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In particular,

Cov(𝑋𝑖 , 𝑋 𝑗 ) = 0 when 𝑖 ≠ 𝑗 implies Var
[∑︁𝑛

𝑖=1
𝑋𝑖

]
=

∑︁𝑛

𝑖=1
Var[𝑋𝑖 ].

In other words, the variance of a sum of mutually uncorrelated random variables equals
the sum of the variances.

Exercise 12.17 (Variance: Pythagorean relation). Verify Proposition 12.16.

A valuable feature of the Pythagorean relation (Proposition 12.16) is the relatively
weak hypothesis of mutual uncorrelation. It does not require “independence”, a much
stronger property that we will discuss in the next lecture.

Since the covariance is a pseudo-inner product, it satisfies its own Cauchy–Schwarz
relation.

Exercise 12.18 (Covariance: Cauchy–Schwarz). Let 𝑋 ,𝑌 ∈ L2. Prove the Cauchy–Schwarz
inequality for the covariance.

|Cov(𝑋 ,𝑌 ) |2 ≤ Var[𝑋 ] · Var[𝑌 ].

Hint: This is an immediate consequence of Theorem 12.2.

Last, we define the correlation between two random variables. This quantity
reflects whether two random variables have the same trend, opposite trends, or no
relationship on average.

Definition 12.19 (Correlation). Let 𝑋 ,𝑌 ∈ L2. The correlation between 𝑋 and 𝑌 is

𝜚(𝑋 ,𝑌 ) := Cov(𝑋 ,𝑌 )√︁
Var[𝑋 ] · Var[𝑌 ]

∈ [−1,+1].

We use the convention that 𝜚(𝑋 ,𝑌 ) = 0 if either Var[𝑋 ] = 0 or Var[𝑌 ] = 0.

The upper and lower bounds on correlation derive from the Cauchy–Schwarz
inequality (Exercise 12.18) for the covariance.

Activity 12.20 (Correlation). If |𝜚(𝑋 ,𝑌 ) | = 1, what can we deduce about 𝑋 and 𝑌 ?
Sketch pairs of random variables whose correlation is maximal (+1) and minimal (−1).
Draw a picture of two uncorrelated random variables, each with nonzero variance. ■

12.5 Orthogonal projection
In Exercise 12.15, we saw that the expectation 𝔼𝑋 is the constant random variable
that is closest to 𝑋 with respect to the L2 pseudonorm. In this section, we generalize
this observation by showing that every (complete) linear subspace in L2 contains a
random variable 𝑌 at minimal distance from 𝑋 .

Recall that a subspace of L2 is
complete if and only if it is closed
(Problem 11.32).

Theorem 12.21 (L2 orthogonal projection). Let K ⊆ L2 be a complete linear subspace.
For each random variable 𝑋 ∈ L2, there is a random variable 𝑌 ∈ K with two
properties:

1. Minimal distance: ∥𝑋 −𝑌 ∥2 = inf{∥𝑋 −𝑊 ∥ :𝑊 ∈ K}.
2. Orthogonal error: 𝑋 −𝑌 ⊥ 𝑍 for all 𝑍 ∈ K.

Moreover, each of the properties (1) or (2) implies the other.
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Figure 12.3 (Orthogonal projection). The primal characterization (1) states that an
orthogonal projection achieves the minimal distance 𝑑 from 𝑋 to the subspace K. The
dual characterization (2) states that the residual vector 𝑋 − 𝑌 from an orthogonal
projection is orthogonal to the subspace K.

Warning: Orthogonal projections
are not necessarily unique! ■

The random variable 𝑌 ∈ K promised by Theorem 12.21 is called (a version of)
the orthogonal projection of 𝑋 onto the subspace K. In general, there may be many
versions of the orthogonal projection. Fortunately, if 𝑌 ,𝑌 ′ are both versions, then
∥𝑌 −𝑌 ′∥2 = 0 so that 𝑌 = 𝑌 ′ almost surely.

Modulo the latter point, Theorem 12.21 indicates that the geometry of orthogonal
projection in L2 is similar to orthogonal projection in inner-product spaces you have
encountered before. See Figure 12.3.

Warning 12.22 (Completeness). We must confirm that the subspace K is complete
before we can be confident that the orthogonal projection onto K exists. In our
context, the easiest way to do so is to argue that K = L𝑝 (Ω′,F′,ℙ′) for some other
probability space (Ω′,F′,ℙ′) and invoke Theorem 11.30. ■

12.5.1 Proof of the orthogonal projection theorem
The main challenge in proving the result on orthogonal projection, Theorem 12.21, is
to find a candidate 𝑌 for an orthogonal projection of 𝑋 onto the subspace K. To do so,
we construct a minimizing sequence. Then we prove that this minimizing sequence is
Cauchy, and we extract its limit.

A minimizing sequence
Define the distance 𝑑 := inf{∥𝑋 −𝑊 ∥2 : 𝑊 ∈ K} from 𝑋 to the subspace K. By
definition of the infimum, there is a sequence (𝑌𝑛 ∈ K : 𝑛 ∈ ℕ) that approaches the
minimum distance from 𝑋 to K. That is,

∥𝑋 −𝑌𝑛 ∥2 ↓ inf{∥𝑋 −𝑊 ∥2 :𝑊 ∈ K} = 𝑑 as 𝑛 → ∞.

See Figure 12.4. Our first task is to prove that the minimizing sequence (𝑌𝑛) has a
limit in K.

The minimizing sequence is Cauchy
Let us argue that the minimizing sequence is Cauchy. We need to obtain detailed
information about the distance ∥𝑌𝑖 −𝑌𝑗 ∥2 for large indices 𝑖 , 𝑗 . Since we only have
information about the distances ∥𝑋 −𝑌𝑖 ∥2 and ∥𝑋 −𝑌𝑗 ∥2, it is natural to invoke the
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Figure 12.4 (Minimizing sequence). A minimizing sequence (𝑌1,𝑌2,𝑌3, . . . ) has the
property that ∥𝑋 −𝑌𝑛 ∥2 approaches the infimal value 𝑑 := inf𝑌 ∈K ∥𝑋 −𝑌 ∥2.

parallelogram law (Exercise 12.10) to understand the geometry of these random
variables.

Fix indices 𝑖 , 𝑗 ∈ ℕ. Apply the parallelogram law to the random variables 1
2 (𝑋 −𝑌𝑖 )

and 1
2 (𝑋 −𝑌𝑗 ) to obtain

 1

2 (𝑌𝑖 −𝑌𝑗 )


2
2 = 1

2 ∥𝑋 −𝑌𝑖 ∥22︸        ︷︷        ︸
→𝑑2/2

+ 1
2 ∥𝑋 −𝑌𝑗 ∥22︸        ︷︷        ︸

→𝑑2/2

−


𝑋 − 1

2 (𝑌𝑖 +𝑌𝑗 )


2
2︸                 ︷︷                 ︸

≥ 𝑑2

.

The first two members of the right-hand side tend to 𝑑2/2 as 𝑖 , 𝑗 → ∞ because
(𝑌𝑛) is a minimizing sequence. To see that the last member exceeds 𝑑2, note that
1
2 (𝑌𝑖 − 𝑌𝑗 ) ∈ K because 𝑌𝑖 and 𝑌𝑗 belong to the subspace K. The number 𝑑2 is the
minimum squared distance from 𝑋 to any point in K. Thus,

sup𝑖 ,𝑗≥𝑁 ∥𝑌𝑖 −𝑌𝑗 ∥2 → 0 as 𝑁 → ∞.

Indeed, the previous argument shows that this limit cannot be strictly positive, but it
most certainly cannot be strictly negative.

The limit of the minimizing sequence
We determine that (𝑌𝑛 : 𝑛 ∈ ℕ) is a Cauchy sequence contained in the complete
subspace K. As a consequence, there is a random variable𝑌 ∈ K for which ∥𝑌𝑛 −𝑌 ∥2 →
0 as 𝑛 → ∞. We must demonstrate that this random variable 𝑌 is a version of the
orthogonal projection of 𝑋 onto K.

The limit achieves the minimal distance
First, let us show that 𝑌 achieves the minimum distance from 𝑋 to the subspace K.
This is intuitively clear; the proof involves the triangle inequality:

∥𝑋 −𝑌 ∥2 ≤ ∥𝑋 −𝑌𝑛 ∥2 + ∥𝑌𝑛 −𝑌 ∥2 → 𝑑 as 𝑛 → ∞.

Indeed, the quantity ∥𝑋 −𝑌𝑛 ∥2 → 𝑑 because (𝑌𝑛) is a minimizing sequence. The
quantity ∥𝑌𝑛 −𝑌 ∥2 → 0 because 𝑌 is an L2 limit of (𝑌𝑛). In summary, ∥𝑋 −𝑌 ∥2 = 𝑑 .

Minimal distance implies orthogonality of error
Next, we check that the residual 𝑋 −𝑌 is orthogonal to every random variable 𝑍 ∈ K.
This requires a variational argument. We perturb 𝑌 slightly in the direction 𝑍 , and we
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note that the distance to 𝑋 must increase. By a close analysis of the change in distance,
we can extract an orthogonality relation.

Fix 𝑍 ∈ K. For each real number 𝜉 ∈ ℝ, the random variable 𝑌 + 𝜉𝑍 ∈ K because
K is a subspace. Since 𝑌 minimizes the distance from 𝑋 to K,

∥𝑋 − (𝑌 + 𝜉𝑍 )∥22 ≥ ∥𝑋 −𝑌 ∥22.

Write the squared pseudonorms as pseudo-inner products, and use bilinearity to expand
and cancel terms. By choosing sgn(𝜉 ) = sgn(⟨𝑍 , 𝑋 −𝑌 ⟩), we arrive at the relation

−2|𝜉 | · |⟨𝑍 , 𝑋 −𝑌 ⟩| + |𝜉 |2 · ∥𝑍 ∥22 ≥ 0.

Divide through by |𝜉 |, and take the limit as |𝜉 | ↓ 0 to determine that |⟨𝑍 , 𝑋 −𝑌 ⟩| = 0.

Orthogonality of residual implies minimal distance
To show that the primal and dual characterizations of the orthogonal projection
are equivalent, it remains to show that the dual characterization implies the primal.
This result uses the Pythagorean relation (Exercise 12.9) to exploit the orthogonality
between the residual and the subspace.

Suppose that 𝑌 ∈ K and 𝑍 ⊥ (𝑋 − 𝑌 ) for all 𝑍 ∈ K. For each random variable
𝑊 ∈ K,

∥𝑋 −𝑊 ∥22 = ∥(𝑋 −𝑌 ) + (𝑌 −𝑊 )∥22 = ∥𝑋 −𝑌 ∥22 + ∥𝑌 −𝑊 ∥22 ≥ ∥𝑋 −𝑌 ∥22.

Indeed, since K is a subspace, the random variable 𝑍 := 𝑌 −𝑊 belongs to K. By
assumption, 𝑍 ⊥ 𝑋 −𝑌 . Therefore, we can apply the Pythagorean relation. The last
inequality holds because the L2 pseudonorm is positive. Finally, by taking the infimum
of the last display over𝑊 ∈ K, we realize that

inf{∥𝑋 −𝑊 ∥2 :𝑊 ∈ K} ≥ ∥𝑋 −𝑌 ∥2.

This is the primal characterization of the orthogonal projection.

Uniqueness
Finally, we must show that every version of the orthogonal projection is equal almost
surely. To that end, suppose that there are two distinct versions𝑌 ,𝑌 ′ of the orthogonal
projection of 𝑋 onto K. Define the residual random variables 𝐸 := 𝑋 − 𝑌 and
𝐸 ′ := 𝑋 −𝑌 ′. According to the parallelogram law (Exercise 12.10),

𝑑2 = 2∥ 1
2𝐸 ∥

2
2 + 2∥ 1

2𝐸
′∥22 = ∥ 1

2 (𝐸 + 𝐸 )∥22 + ∥ 1
2 (𝐸 − 𝐸 ′)∥22

= ∥𝑋 − 1
2 (𝑌 +𝑌 ′)∥22 + ∥ 1

2 (𝑌 −𝑌 ′)∥22 ≥ 𝑑2 + 1
4 ∥𝑌 −𝑌 ′∥22.

Indeed, ∥𝐸 ∥22 = 𝑑2 = ∥𝐸 ′∥22 by the primal characterization of the orthogonal projection.
Since 1

2 (𝑌 +𝑌 ′) ∈ K, this random variable lies at least a distance of 𝑑 away from 𝑋 .
We must conclude that

∥𝑌 −𝑌 ′∥2 = 0.

As a consequence, 𝑌 = 𝑌 ′ almost surely.

Problems
Exercise 12.23 (Chebyshev i druz’ya). Beyond Markov’s inequality, there are many useful
probability inequalities. Here are some basic results that often arise in practice.
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1. Chebyshev: Use Markov’s inequality to prove Chebyshev’s inequality. For each
𝑋 ∈ L2,

ℙ {|𝑋 − 𝔼𝑋 | ≥ 𝑡 } ≤ Var[𝑋 ]
𝑡 2

for each 𝑡 > 0.

(*) For fixed 𝑡 > 0, find a random variable with 𝔼𝑋 = 0 where Chebyshev’s
inequality holds with equality. Hint: Look at the graphical proof of Markov’s
inequality.

2. For each positive random variable 𝑋 ∈ L2 with 𝔼𝑋 > 0, use Chebyshev’s
inequality to deduce that

ℙ {𝑋 = 0} ≤ Var[𝑋 ]
(𝔼𝑋 )2 .

3. *Paley–Zygmund: Prove the Paley–Zygmund inequality, which complements the
last result. For positive 𝑋 ∈ L2,

ℙ {𝑋 > 𝜃 (𝔼𝑋 )} ≥ (1 − 𝜃 )2(𝔼𝑋 )2
𝔼[𝑋 2] for 𝜃 ∈ [0, 1].

Hint: Consider complementary events {𝑋 > 𝜃 𝔼𝑋 } and {𝑋 ≤ 𝜃 𝔼𝑋 }.
4. *Chebyshev–Cantelli: For 𝑋 ∈ L2, establish a one-sided version of Chebyshev’s

inequality:

ℙ {𝑋 − 𝔼𝑋 ≥ 𝑡 } ≤ Var[𝑋 ]
Var[𝑋 ] + 𝑡 2 for 𝑡 ≥ 0.

Problem 12.24 (*Reverse Cauchy–Schwarz). In general, there is no complementary lower
bound to the Cauchy–Schwarz inequality. Nevertheless, if we assume that two random
variables are almost proportional, it is possible to obtain a satisfactory reversal.

1. Let 𝑋 ,𝑌 ∈ L2 be positive random variables that satisfy the pointwise inequality

0 < 𝑚 ≤ 𝑋

𝑌
≤ 𝑀 for fixed numbers𝑚,𝑀 > 0.

Prove the reverse Cauchy–Schwarz inequality:

𝔼[𝑋𝑌 ] ≥ 𝐺

𝐴
· ∥𝑋 ∥2 · ∥𝑌 ∥2.

where 𝐴 := (𝑚 +𝑀 )/2 and𝐺 :=
√
𝑚𝑀 . Recall that the ratio𝐺/𝐴 ≤ 1 by the

GM–AM inequality (9.11). Hint: The key observation is the positivity relation
(𝑀 − 𝑋 /𝑌 ) (𝑋 /𝑌 −𝑚) ≥ 0.

2. Deduce Kantorovich’s inequality: For a positive random variable 𝑍 that satisfies
the pointwise inequality 0 < 𝑚 ≤ 𝑍 ≤ 𝑀 ,

𝔼[𝑍 ] · 𝔼[𝑍 −1] ≤
(
𝐴

𝐺

)2
where 𝐴 = (𝑚 +𝑀 )/2 and𝐺 =

√
𝑚𝑀 , as above.

Problem 12.25 (*Jensen defect). In general, there is no lower bound complementary to
Jensen’s inequality. Nevertheless, for functions that are “moderately” convex, we can
obtain an elegant expression for the gap between the two sides of Jensen’s inequality.
This result is due to Hölder.
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Let 𝜑 : U → ℝ be a twice-differentiable convex function on an open interval U of
the real line. Assume that

𝑚 ≤ 𝑓 ′′ (𝑡 ) ≤ 𝑀 for all 𝑡 ∈ U.

Prove that there is a value 𝜉 ∈ [𝑚,𝑀 ] for which

𝔼[𝜑 (𝑋 )] − 𝜑 (𝔼𝑋 ) = 1
2𝜉 · Var[𝑋 ].

Hint: Apply Jensen’s inequality to the two convex functions

𝜑0(𝑡 ) := 1
2𝑀𝑡 2 − 𝜑 (𝑡 );

𝜑1(𝑡 ) := 𝜑 (𝑡 ) − 1
2𝑚𝑡

2.

Problem 12.26 (Madame Covary). In this problem, we will explore the geometry of
covariance and correlation. Let K ⊆ L2 be the set of real random variables in L2 with
expectation zero.

1. Explain why K is a linear subspace. (*) Argue that K is complete.
2. For 𝑋 ∈ L2, find an explicit, simple formula for an orthogonal projection of 𝑋

onto K.
3. Use (2) to define an orthogonal projection map 𝑷 : L2 → K. Verify that 𝑷 is

linear, idempotent (𝑷 2 = 𝑷 ), and self-adjoint with respect to the L2 pseudo-inner
product (⟨𝑷𝑋 , 𝑌 ⟩ = ⟨𝑋 , 𝑷𝑌 ⟩).

4. For 𝑋 ,𝑌 ∈ L2, express the covariance Cov(𝑋 ,𝑌 ) and variance Var[𝑋 ] in terms
of the L2 pseudo-inner product and the map 𝑷 .

5. Sketch a pair of random variables with strictly positive variance that have
𝜚(𝑋 ,𝑌 ) = 0.

6. Confirm that |𝜚(𝑋 ,𝑌 ) | ≤ 1. (*) Determine conditions for equality.

Problem 12.27 (Pavlov). Orthogonal projection is closely connected with conditional
expectation. This problem begins to develop your intuition. Let 𝑋 ,𝑌 ∈ L2. Define

K := K𝑌 := {𝑍 ∈ L2 : 𝑍 = ℎ (𝑌 ) for measurable ℎ : ℝ → ℝ}.

The orthogonal projection of 𝑋 onto K𝑌 provides a first definition of the conditional
expectation 𝔼[𝑋 |𝑌 ]. Technical details will appear in Lecture 19.

1. Show that K is a complete linear subspace of L2. Hint: Show that K𝑌 is isomorphic
to L2(𝜇𝑌 ), which is complete.

2. Let 𝑋 = 𝑔 (𝑌 ) ∈ L2 for a measurable function 𝑔 : ℝ → ℝ. Find an orthogonal
projection of 𝑋 onto K.

3. If the pair (𝑋 ,𝑌 ) is independent, find an orthogonal projection of 𝑋 onto K.
4. (*) Assume that 𝑋 is a discrete random variable that takes integer values. Then
𝑋 has the law 𝜇𝑋 =

∑
𝑖 ∈ℤ 𝑝𝑖𝛿𝑖 where

∑
𝑖 ∈ℤ 𝑝𝑖 = 1 and 𝑝𝑖 ≥ 0. Consider the

random variable 𝑌 = |𝑋 |. Find an orthogonal projection of 𝑋 onto K.
5. (*) Let 𝑌 = 𝑔 (𝑋 ) for measurable 𝑔 . Find an orthogonal projection of 𝑋 onto K.

Problem 12.28 (Orthogonal projection: Properties). Orthogonal projection of random vari-
ables shares many properties with orthogonal projection in a finite-dimensional linear
space. Let K be a complete linear subspace of L2, and define the orthogonal complement

K⊥ := {𝑌 ∈ L2 : ⟨𝑌 , 𝑋 ⟩ = 0 for all 𝑋 ∈ K}.

Properly speaking, 𝑷 and 𝑷⊥ are not
functions, so you should use this
notation with caution.

For a random variable 𝑋 ∈ L2, let𝑷 (𝑋 ) := 𝑷 K(𝑋 ) denote any version of the orthogonal
projection of 𝑋 onto K. Define 𝑷⊥(𝑋 ) := 𝑋 − 𝑷 (𝑋 ) to be a version of the error in the
orthogonal projection.
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1. Orthogonal complement: Show that K⊥ is a complete linear subspace of L2. Show
that 𝑷⊥(𝑋 ) is a version of the orthogonal projection of 𝑋 onto K⊥.

2. Linearity: Let 𝑋 ,𝑌 ∈ L2 and 𝛼, 𝛽 ∈ ℝ. Show that 𝛼𝑷 (𝑋 ) + 𝛽𝑷 (𝑌 ) is a version
of the orthogonal projection of 𝛼𝑋 + 𝛽𝑌 onto K. Show that 𝛼𝑷⊥(𝑋 ) + 𝛽𝑷⊥(𝑌 )
is a version of the orthogonal projection of 𝛼𝑋 + 𝛽𝑌 onto K⊥.

3. Idempotency: Show that 𝑷 (𝑷 (𝑋 )) = 𝑷 (𝑋 ) almost surely. Establish the same
property for 𝑷⊥.

4. Orthogonality: Show that ⟨𝑷 (𝑋 ), 𝑷⊥(𝑋 )⟩ = 0.
5. Orthogonal decomposition: Confirm that 𝑷 (𝑋 ) + 𝑷⊥(𝑋 ) = 𝑋 almost surely.
6. Pythagorean theorem: Show that ∥𝑷 (𝑋 )∥22 + ∥𝑷⊥(𝑋 )∥22 = ∥𝑋 ∥22.
7. Contraction: Deduce that

sup{∥𝑷 (𝑋 )∥2 : ∥𝑋 ∥2 ≤ 1} = 1;
sup{∥𝑷⊥(𝑋 )∥2 : ∥𝑋 ∥2 ≤ 1} = 1.

8. Nesting: Suppose that M ⊆ K is a complete linear subspace. Show that the
orthogonal projection of 𝑋 onto M coincides with the orthogonal projection of
𝑷 K(𝑋 ) onto M. That is, 𝑷M ◦ 𝑷 K = 𝑷M. In addition, show that 𝑷 K ◦ 𝑷M = 𝑷M.

Problem 12.29 (Riesz representation). A linear functional on L2 is a linear map 𝜑 : L2 → ℝ

that takes real values. The Riesz representation theorem states that every bounded
linear functional can be represented as an inner product. That is, there is a random
variable 𝑌 ∈ L2, depending only on 𝜑 , for which 𝜑 (𝑋 ) = ⟨𝑌 , 𝑋 ⟩. The purpose of this
problem is to establish this important fact.

1. Uniqueness: Suppose that there are random variables 𝑌 ,𝑌 ′ ∈ L2 that both
represent the linear functional: 𝜑 (𝑋 ) = ⟨𝑌 , 𝑋 ⟩ and 𝜑 (𝑋 ) = ⟨𝑌 ′, 𝑋 ⟩. Show
that 𝑌 = 𝑌 ′ almost surely. Hint: Consider 𝑋 = 𝑌 −𝑌 ′.

2. Trivial case: If 𝜑 (𝑋 ) = 0 for all 𝑋 ∈ L2, find a representation of 𝜑 as an inner
product. From now on, assume that 𝜑 ≠ 0.

3. Continuity: The norm of the linear functional is defined as

∥𝜑 ∥ := sup{|𝜑 (𝑋 ) | : ∥𝑋 ∥2 ≤ 1}.
We say that 𝜑 is bounded when ∥𝜑 ∥ < +∞. Show that 𝜑 is continuous if and
only if it is bounded.

4. Null space: Introduce the null space K := {𝑋 ∈ L2 : 𝜑 (𝑋 ) = 0} of the linear
functional. Show that K is a complete linear subspace of L2. Hint: K is the inverse
image of a closed set under a bounded linear map.

5. Orthogonal complement: Show that K⊥ is a complete linear subspace of L2. Argue
that K⊥ contains a nontrivial random variable 𝑍 . More precisely, “nontrivial”
means that {𝑍 ≠ 0} is an event with strictly positive probability.

6. A projection onto the kernel: Fix a random variable 𝑍 ∈ K⊥ with ∥𝑍 ∥2 = 1.
For another fixed random variable 𝑋 ∈ L2, define the random variable𝑊 :=
𝑊 (𝑋 ) := 𝜑 (𝑋 )𝑍 − 𝜑 (𝑍 )𝑋 . Show that𝑊 ∈ K. (*) In fact,𝑊 (𝑋 ) is a version
of the orthogonal projection of 𝑋 onto K. Why?

7. Representation: Continuing from the last part, use the observation that ⟨𝑍 , 𝑊 ⟩ =
0 to deduce that 𝜑 (𝑋 ) = ⟨𝑌 , 𝑋 ⟩ for a random variable 𝑌 ∈ L2 that does not
depend on 𝑋 .

8. Norm: Show that ∥𝑌 ∥2 = ∥𝜑 ∥.
Problem 12.30 (*Orthogonal projection: Convex set). A nonempty set K ⊆ L2 of random
variables is convex if

𝑋 ,𝑌 ∈ K implies (1 − 𝜏)𝑋 + 𝜏𝑌 ∈ K for all 𝜏 ∈ [0, 1].
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We say that a (convex) subset K ⊆ L2 is closed if every Cauchy sequence in K converges
to a limit in K.

Let 𝑋 ∈ L2 be a random variable, and let K ⊆ L2 be closed and convex. A random
variable 𝑌 ∈ K is called an orthogonal projection of 𝑋 onto K if

∥𝑋 −𝑌 ∥2 = inf{∥𝑋 −𝑊 ∥2 :𝑊 ∈ K}.

1. Show that a linear subspace in L2 is convex.
2. Show that {𝑍 ∈ L2 : ∥𝑍 ∥𝑝 ≤ 1} is convex and closed for 𝑝 ≥ 2.
3. If K is closed and convex, prove that every random variable 𝑋 ∈ L2 has an

orthogonal projection onto K.
4. What is the dual characterization of an orthogonal projection? In other words,

what can we say about ⟨𝑍 , 𝑋 −𝑌 ⟩ for 𝑍 ∈ K?
5. Show that any point𝑌 ∈ K that satisfies the dual characterization is an orthogonal

projection.

Applications
Application 12.31 (Gauss & Markov). Suppose that we observe paired real-valued data
((𝑥𝑖 , 𝑦𝑖 ) : 𝑖 = 1, . . . , 𝑛). For unknown 𝑎★ ∈ ℝ, suppose that the responses follow the
linear model

𝑦𝑖 = 𝑎★𝑥𝑖 +𝜂𝑖 for 𝑖 = 1, . . . , 𝑛.

We assume that the random errors satisfy 𝔼[𝜂𝑖 ] = 0 and Var[𝜂𝑖 ] = 𝜎2 for all 𝑖 and
Cov(𝜂𝑖 ,𝜂 𝑗 ) = 0 for all 𝑖 ≠ 𝑗 . We can estimate the true model by means of an ordinary
least-squares (OLS) problem:

minimize𝑎∈ℝ
1
2

∑︁𝑛

𝑖=1
(𝑦𝑖 − 𝑎𝑥𝑖 )2.

Let 𝑎 be the solution to the OLS problem. This problem explores the motivation for
using OLS.

1. By direct calculation, confirm that the estimator 𝑎 is a linear function of the
observed responses (𝑦𝑖 ). In this context, we think about the covariates (𝑥𝑖 ) as
fixed numbers.

2. Check that the estimator is unbiased: 𝔼[𝑎] = 𝑎★.
3. Among unbiased estimators for 𝑎★ as a linear function of (𝑦𝑖 ), prove that the

OLS estimator 𝑎 has minimum variance. This fact is called the Gauss-Markov
theorem.

Let us upgrade to a multivariate linear model. Consider paired data (𝒙 𝑖 , 𝑦𝑖 ) ∈ ℝ𝑛 ×ℝ

for 𝑖 = 1, . . . , 𝑛. For an (unknown) vector 𝒂★ ∈ ℝ𝑛 , suppose that the responses follow
the linear model

𝑦𝑖 = 𝒂 ᵀ
★𝒙 𝑖 +𝜂𝑖 for 𝑖 = 1, . . . , 𝑛.

Maintain the same assumptions on the random errors 𝜂𝑖 . We can estimate the true
model by means of the ordinary least-squares problem:

minimize𝒂∈ℝ𝑛
1
2

∑︁𝑛

𝑖=1
(𝑦𝑖 − 𝒂 ᵀ𝒙 𝑖 )2.

Let 𝒂 be the solution to the OLS problem.

4. Show that 𝒂 is the minimum-variance unbiased estimator of 𝒂★.
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Application 12.32 (*Cramér, Rao, and Fisher). In statistics, we try to construct methods for
making inferences from data. Consider a distribution that is specified by one or more
parameters. For instance, a normal distribution normal(𝑚,𝜎2) depends on the mean
𝑚 ∈ ℝ and the variance 𝜎2 > 0. Given some samples drawn from the distribution, we
may try to estimate one of the parameters of the distribution.

There are two simple quantities that reflect the quality of an estimator. The bias
measures how far, on average, the parameter estimate lies from the true parameter
value. The variance measures how much the parameter estimate fluctuates, on average,
over the choice of a random sample. Among all estimators with a given bias, we prefer
the one with the lowest variability. Therefore, to evaluate the quality of a particular
estimator, it is helpful to have a lower bound on the variance of the estimator. This
problem explores a fundamental method for producing such a bound.

Consider a parameterized family of probability density functions 𝑓𝜃 : ℝ𝑑 → ℝ+
For simplicity, we assume that the parameter 𝜃 ∈ U, an open interval of the real line,
and that 𝜃 ↦→ 𝑓𝜃 (𝒙 ) is differentiable for each 𝒙 ∈ ℝ𝑑 . Define the score function

𝑠 (𝜃 ; 𝒙 ) := 𝜕𝜃
(
log 𝑓𝜃 (𝒙 )

)
for 𝜃 ∈ U and 𝒙 ∈ ℝ𝑑 .

The logarithm of the density reflects the likelihood that the parameter value is 𝜃 , given
an observed value 𝒙 ∈ ℝ𝑑 . The score function measures how quickly this likelihood
changes as we vary the parameter 𝜃 .

1. Let𝑊 ,𝑆 ∈ L2. Show that

Var[𝑊 ] ≥ |Cov(𝑊 ,𝑆) |
Var[𝑆] .

2. Compute the score function of the density 𝑓𝜃 of a normal(𝜃 , 𝜎2) distribution on
ℝ. Compute the score function of the density of a normal(𝑚, 𝜃 ) distribution
on ℝ where 𝜃 > 0.

3. The score function is very useful for working with complicated densities that are
hard to normalize. For a bounded, measurable function ℎ : ℝ → ℝ, consider
the Gibbs distribution:

𝑓𝜃 (𝑥) :=
1
𝑍𝜃

e−𝜃ℎ (𝑥 ) for 𝑥 ∈ ℝ.

The constant 𝑍𝜃 is chosen to ensure that 𝑓𝜃 is a density. Compute the score
function.

4. Consider a family (𝑿 𝜃 : 𝜃 ∈ U) of random variables taking values in ℝ𝑑 .
Suppose that 𝑿 𝜃 has density 𝑓𝜃 : ℝ𝑑 → ℝ+. Under appropriate regularity
conditions, show that the expected score is zero:

𝔼[𝑠 (𝜃 ;𝑿 𝜃 )] = 0.

Hint: Differentiate the relation
∫
𝑓𝜃 (𝒙 ) 𝜆𝑑 (d𝒙 ) = 1, and use dominated conver-

gence to draw the derivative through the integral.
5. Define the Fisher information that 𝑿 𝜃 contains about the parameter 𝜃 :

𝐼 (𝜃 ) := Var[𝑠 (𝜃 ;𝑿 𝜃 )].

Confirm that

𝐼 (𝜃 ) =
∫
ℝ𝑑

(
(𝜕𝜃 𝑓𝜃 ) (𝒙 )
𝑓𝜃 (𝒙 )

)2
𝑓𝜃 (𝒙 ) 𝜆𝑑 (d𝒙 ).



Lecture 12: L2 Spaces & Orthogonality 191

6. Calculate the Fisher information for 𝑋𝜃 ∼ normal(𝜃 , 𝜎2). Calculate the Fisher
information for 𝑋𝜃 ∼ normal(𝑚, 𝜃 ).

7. Let 𝑊 : ℝ𝑑 → ℝ be a measurable function. Under appropriate regularity
conditions, show that

Cov
(
𝑊 (𝑿 𝜃 ), 𝑠 (𝜃 ;𝑿 𝜃 )

)
= 𝜕𝜃

(
𝔼[𝑊 (𝑿 𝜃 )]

)
.

This is essentially just integration by parts. You can discover the definitions of
score functions and Fisher information if you start at the right-hand side of this
relation and work backward.

8. Define the mean function 𝜏 (𝜃 ) := 𝔼[𝑊 (𝑿 𝜃 )]. Establish the Cramér–Rao
inequality:

Var[𝑊 (𝑿 𝜃 )] ≥
|𝜕𝜃𝜏 (𝜃 ) |
𝐼 (𝜃 ) .

What does this have to do with statistics? Suppose that𝑊 (𝑿 𝜃 ) is an estimator for
the parameter 𝜃 . That is, given an observation 𝑿 𝜃 , the function𝑊 (𝑿 𝜃 ) produces an
approximation for the parameter 𝜃 . Since the data 𝑿 𝜃 is random, the value𝑊 (𝑿 𝜃 )
of the estimator is random too. Define the bias of the estimator:

bias(𝑊 (𝑿 𝜃 )) := 𝜏 (𝜃 ) − 𝜃 .

We say that𝑊 (𝑿 𝜃 ) is an unbiased estimator of 𝜃 if the bias equals zero.

9. For an unbiased estimator, find a simplification of the Cramér–Rao inequality.
10. Let 𝑋 ∼ normal(𝜃 , 𝜎2) where 𝜎2 is known. Given this single observation,

find an unbiased estimator 𝑊 (𝑋 ) for the mean 𝜃 . Compute the variance,
Var[𝑊 (𝑋 )], of the estimator. Compare the result with the Cramér–Rao bound.

11. For 𝜃 > 0, suppose we know that 𝑋 ∼ normal(0, 𝜃 ). Find an unbiased estimator
𝑊 (𝑋 ) for the variance parameter 𝜃 . Compute the variance Var[𝑊 (𝑋 )] of the
estimator. Compare the result with the Cramér–Rao bound.

12. (*) Suppose that 𝑋 is a continuous real random variable with density 𝑓𝜃 . Let
(𝑋1, . . . , 𝑋𝑛) be an independent family where each 𝑋𝑖 has the same distribution
as 𝑋 . Show that 𝐼 (𝑋1, . . . , 𝑋𝑛) = 𝑛 · 𝐼 (𝑋 ). In particular, we can simplify the
Cramér–Rao bound when we collect i.i.d. data. Recall that “i.i.d.” stands for

independent and identically
distributed.

13. (*) There is nothing special about continuous random variables. Develop an
analog of this theory in case that 𝑿 𝜃 has a density with respect to some other
measure 𝜇 on ℝ𝑑 .

In Application 7.14, we saw that probability can be used to verify the existence
of objects that have distinguished properties. Application 9.49 showed how we can
implement this program by computing the expectation of a random variable. There is
a further extension called the second-moment method, which uses information about
the first two moments in combination with the inequalities from Exercise 12.23. The
second-moment method is a useful tool in graph theory, number theory, additive
combinatorics, algorithms (e.g., constraint satisfaction problems), and other areas.
Most interesting applications of the second-moment method are a bit complicated, but
we can offer an elegant example from analytic number theory.

Application 12.33 (Second-moment method: Prime factors). A powerful intuition from
number theory is that prime numbers are “randomly distributed”. Of course, this
statement is not literally true, but it underlies applications of prime numbers in
computer science (including crytography, fingerprinting, etc.). It also invites the use of
probabilistic methods in number theory.
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In this problem, we establish a special case of the Turán–Kubilius inequality. Given
a random integer from a finite interval, this result provides an estimate for the number
of prime factors contained in a given set.

Define the set N := {1, 2, 3, . . . , 𝑁 } of natural numbers; assume 𝑁 ≥ 6. Fix an
arbitrary finite set P ⊂ ℕ of prime numbers, each smaller than 𝑃 , where 𝑃 ≤ 𝑁 . We
define the logarithmic size of the set P to be

ℓ (P) :=
∑︁

𝑝∈P
𝑝−1.

Draw a random number 𝐼 ∼ uniform(N). The random number 𝐼 has a random
number𝑊 of prime factors in the set P:

For natural numbers 𝑎, 𝑏 ∈ ℕ, recall
that 𝑎 | 𝑏 means that 𝑎 divides 𝑏 .

𝑊 := #{𝑝 ∈ P : 𝑝 | 𝐼 }.

Our goal is to study the behavior of𝑊 and deduce number-theoretic conclusions.

1. For each natural number𝑑 ≤ 𝑁 , define the indicator random variable𝑋𝑑 := 1𝑑 | 𝐼 .
Prove that ��𝔼[𝑋𝑑 ] − 𝑑−1�� ≤ 1

𝑁
;��Var[𝑋𝑑 ] − 𝑑−1(1 − 𝑑−1)

�� ≤ 1
𝑁
.

Hint: In the interval N, how many numbers are divisible by 𝑑?
2. Observe that the random variable𝑊 =

∑
𝑝∈P 𝑋𝑝 . Calculate that the expectation

satisfies the bound
|𝔼𝑊 − ℓ (P) | ≤ 𝑃

𝑁
.

Recall that ℓ (P) is the logarithmic size of the set P.
3. Show that there exists a number 𝑛 ∈ N with at least ℓ (P) − 1 prime factors from

the set P. Show that there is a number 𝑛 ∈ N with at most ℓ (P) + 1 prime factors
from P.

4. For distinct prime numbers 𝑝, 𝑞 ∈ ℕ, show that

|Cov(𝑋𝑝 , 𝑋𝑞 ) | ≤
1
𝑁
.

Hint: Note that 𝑝 | 𝐼 and 𝑞 | 𝐼 if and only if 𝑝𝑞 | 𝐼 .
5. Calculate the variance of𝑊 :

Var[𝑊 ] ≤ ℓ (P) + 𝑃 2

2𝑁
.

Hint: Use the fact that𝑊 is a sum to write the variance as a (double) sum of
covariances.

6. For 𝑡 > 0, verify that

ℙ
{
|𝑊 − ℓ (P) | ≥ 𝑡

√︁
ℓ (P)

}
≤ 1
𝑡 2

[
1 + 𝑃 2

2𝑁 ℓ (P)

]
.

7. Suppose that 𝑃 2 ≤ 𝑁 ≤ 𝑃 3. Argue that an integer 𝑛 ≤ 𝑁 can have at most two
prime factors larger than 𝑃 .

8. (***Mertens) Consider the set P = {2, 3, 5, 7, 11, . . . , 𝑃 }. Prove Mertens’s second
theorem:

|ℓ (P) − log log𝑃 | ≤ Const.

Hint: There is an elementary argument; see [YY87, Probs. 171–174].
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9. For large 𝑁 , deduce that most numbers in {1, . . . , 𝑁 } have about log log𝑁
distinct prime factors. Give a formal mathematical statement of this result.

10. (*) There is nothing special about the set N = {1, . . . , 𝑁 }. Extend these results
to any interval of the natural numbers with cardinality 𝑁 .

Notes
Our development of L2 spaces is also inspired by Williams [Wil91, Chap. 6]. The proof
of Theorem 12.21 is drawn from his book, although the argument is standard.

For more on inequalities in L2 spaces, see the books of Garling [Gar07], Lieb &
Loss [LL01], and Steele [Ste04]. The treatment of the Cramér–Rao inequality is
adapted from [CB90; LC98]. The example of the second-moment method is adapted
from treatments by Alon & Spencer [AS16] and by Tao [Taob].
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13. Independence

Agenda:
1. Elementary independence
2. Independence of 𝜎 -algebras
3. Independence and product

measure
4. Kolmogorov extension

theorem

“When in the Course of human events, it becomes necessary for one people to
dissolve the political bands which have connected them with another, and to assume
among the powers of the earth, the separate and equal station to which the Laws
of Nature and of Nature’s God entitle them, a decent respect to the opinions of
mankind requires that they should declare the causes which impel them to the
separation.”

—The Declaration of Independence, 4 July 1776

One of the features of probability theory that distinguishes it from ordinary measure
theory is the idea of independence and the related idea of conditioning. In this lecture,
we will begin to explore what it means for a collection of probabilistic experiments to
be independent from each other.

So, what do we mean when we say that two experiments are independent?
Heuristically, the outcome of one experiment has no bearing on the outcome of the
second. If we know the outcome of the first experiment, the distribution of outcomes
of the second experiment remains unchanged.

More concretely, suppose that I flip a coin and you roll a die. If these experiments
are independent, then we anticipate that...

1. The face of the coin has no influence on the value of the die.
2. No event involving the coin informs us about any event involving the die.
3. No random variable determined only by the outcome of the coin flip is correlated

with any random variable determined only by the outcome of the die.

You can start to appreciate that these desiderata are much stronger than the assumption
that two particular random variables are uncorrelated.

In this lecture, we first summarize the elementary notions of independence from
basic probability theory. Afterward, we discuss how to generalize these ideas to reach
a definition of what it means for two collections of events to be independent from each
other. We will see that this general definition subsumes all of the elementary notions of
independence. Last, we will explore the connection between independence of random
variables and product measures.

13.1 Elementary independence
We begin with the definition of the elementary conditional probability, which is the
probability that one event occurs, given that another event has occurred. Two events
are independent if the occurrence of one event does not change the probability that
the other event occurs. Afterward, we discuss what it means for two random variables
to be independent.
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Figure 13.1 (Conditional probability). Given that the event E occurs, the event A occurs
if and only if A ∩ E occurs (red). Meanwhile, the event A does not occur if and only if
Ac ∩ E occurs (blue).

13.1.1 Conditional probability
As usual, we fix a master probability space (Ω,F,ℙ). Consider an event E ∈ Fwith
strictly positive probability: ℙ(E) > 0. Suppose that we have knowledge that the event
E occurs. That is, the distinguished sample point 𝜔0 ∈ E. In general, this piece of
information is not sufficient to determine the sample point 𝜔0 completely. Nevertheless,
it does allow us to update our prior knowledge of the probability that another event,
say A ∈ F, occurs. If E occurs, then the only way for A to occur is for A ∩ E to occur.
Likewise, the only way for A not to occur is for Ac ∩ E to occur. In other words, we
want to restrict our attention to events of the form B ∩ E for B ∈ F. See Figure 13.1.

This observation suggests that we need to consider a new distribution of probability
over events B∩ E with B ∈ F. Each of these events has an a priori probability ℙ(B∩ E).
But these values may not compose a probability distribution because ℙ(Ω∩ E) = ℙ(E),
which may not equal one. Therefore, we need to rescale the prior probabilities to
obtain a new probability distribution over the events restricted to E. These arguments
lead to an important elementary definition.

Definition 13.1 (Elementary conditional probability: Events). Let E ∈ Fbe an event with
strictly positive probability: ℙ(E) > 0. The probability that an event A ∈ Foccurs,
given that E occurs, is defined as

ℙ(A | E) := ℙ(A ∩ E)
ℙ(E) .

In other words, the conditional probability ℙ(A | E) is the proportion of the
probability ℙ(E) that is attributable to the event ℙ(A ∩ E) occurring.
Exercise 13.2 (Elementary conditional probability: Events). With the assumptions of Defi-
nition 13.1, confirm that {B ∩ E : B ∈ F} is a 𝜎 -algebra contained in F, called the
restriction of F to the event E. Check that ℙ(· | E) is a probability distribution on the
restricted 𝜎 -algebra.
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13.1.2 Independence of events
The definition of conditional probability leads directly to the notion of independence.
Two events A,B with strictly positive probability are independent when knowledge
that B occurs does not change the probability that A occurs, and conversely:

ℙ(A | B) = ℙ(A) and ℙ(B | A) = ℙ(B).

Using Definition 13.1, we quickly see that each one of these relations is equivalent to
the condition that ℙ(A ∩ B) = ℙ(A) · ℙ(B). We enshrine this formula in a definition.

Definition 13.3 (Elementary independence: Events). Two events A,B ∈ Fare indepen-
dent when

ℙ(A ∩ B) = ℙ(A) · ℙ(B). (13.1)

Note that Definition 13.3 no longer requires an assumption that the probability of
each event is strictly positive. Indeed, if either event has zero probability, then both
sides of the relation (13.1) equal zero. Definition 13.3 agrees with the elementary
notion of independence of events.

Exercise 13.4 (Independence: Complements). Show that the events A,B are independent
if and only if the events A,Bc are independent.

13.1.3 Independence of random variables
Next, we turn to a definition of independence for random variables. To say that two
random variables are independent, we want to make sure that neither one of the
random variables provides information about the value of the other. We can formulate
this idea in terms of the events associated with the random variables.

Definition 13.5 (Elementary independence: Random variables). In Section 13.2, we will connect this
definition with the previous
Definition 8.25 of independent
random variables.

Let 𝑋 ,𝑌 be real random
variables on a probability space. The random variables 𝑋 and 𝑌 are independent
when

ℙ {𝑋 ∈ A and 𝑌 ∈ B} = ℙ {𝑋 ∈ A} · ℙ {𝑌 ∈ B} for all A,B ∈ B(ℝ). (13.2)

Warning: Do not conflate
orthogonality (𝑋 ⊥ 𝑌 ) with
independence (𝑋 ⫫ 𝑌 )! ■

We sometimes write 𝑋 ⫫ 𝑌 to mean that 𝑋 and 𝑌 are independent random
variables. See Figure 13.2.

In other words, two random variables𝑋 and𝑌 are independent when the probability
that (𝑋 ,𝑌 ) ∈ A × B equals the product of the probabilities that 𝑋 ∈ A and 𝑌 ∈ B
for all Borel sets A,B. From this fact, independence appears to be related to product
measures; we will pursue this observation in Section 13.2.

Definition 13.5 involves a lot of events, but this is inevitable because we must be
sure that no set of values of 𝑋 informs us about the probability of any set of values of
𝑌 occurring. As a particular consequence,

ℙ {𝑋 ≤ 𝑎 and 𝑌 ≤ 𝑏} = ℙ {𝑋 ≤ 𝑎} · ℙ {𝑌 ≤ 𝑏} for all 𝑎, 𝑏 ∈ ℝ. (13.3)

The formulation (13.3) is the standard way of defining independence of random
variables in introductory courses.

In fact, the relation (13.3) implies that the apparently stronger relation (13.2) holds.
This claim requires Dynkin’s theorem on intersection-stable systems; see Example E.7.

Exercise 13.6 (Independence: Indicators). Check that two events A,B are independent if
and only if their indicator random variables 1A and 1B are independent.
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Figure 13.2 (Independence: Random variables). A pair (𝑋 ,𝑌 ) of random variables
is independent when the probability that (𝑋 ,𝑌 ) ∈ A × B equals the product of the
probability that 𝑋 ∈ A and the probability that 𝑌 ∈ B.

13.2 Independence and product measures
The elementary definition of independence for random variables (Definition 13.5)
suggests a connection between independence and product measure. This insight is
valid, and it works both directions.

13.2.1 The joint distribution of an independent pair of random variables
Suppose that 𝑋 and𝑌 are independent random variables. According to Definition 13.5,
this statement means precisely that

ℙ {𝑋 ∈ A,𝑌 ∈ B} = ℙ {𝑋 ∈ A} · ℙ {𝑌 ∈ B} for all A,B ∈ B(ℝ).

This relation determines the (joint) distribution 𝜇𝑋𝑌 of the pair (𝑋 ,𝑌 ) ∈ ℝ2 on
rectangles in terms of the marginal distributions 𝜇𝑋 and 𝜇𝑌 :

𝜇𝑋𝑌 (A × B) = 𝜇𝑋 (A) · 𝜇𝑌 (B) for all A,B ∈ B(ℝ).

Theorem 6.14 states that the distribution 𝜇𝑋𝑌 has a unique extension to the product
𝜎 -algebra B(ℝ) × B(ℝ) = B(ℝ2). This extension is the product measure given by
the marginal distributions. That is,

𝜇𝑋𝑌 = 𝜇𝑋 × 𝜇𝑌 .

We encapsulate this argument in a proposition.

Proposition 13.7 (Independent random variables: Joint distribution). Consider independent
real random variables 𝑋 and 𝑌 with distributions 𝜇𝑋 and 𝜇𝑌 on the Borel sets of
the real line. Then the joint distribution of the pair (𝑋 ,𝑌 ) is the product measure
𝜇𝑋𝑌 = 𝜇𝑋 × 𝜇𝑌 on the Borel sets in ℝ2. That is, Definition 8.25 is consistent with
Definition 13.5.

13.2.2 The product measure defines an independent pair of random variables
Conversely, suppose that 𝜇𝑋 and 𝜇𝑌 are probability distributions on the Borel sets of
the real line. Our goal is to build a probability space that supports two independent
random variables 𝑋 and 𝑌 with marginal laws 𝜇𝑋 and 𝜇𝑌 .
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To do so, we simply construct the product probability space (ℝ2,B(ℝ2), 𝜇𝑋 ×𝜇𝑌 ).
Introduce the coordinate functions:

𝑋 = 𝜋1(𝜔1, 𝜔2) = 𝜔1 and 𝑌 = 𝜋2(𝜔1, 𝜔2) = 𝜔2 for 𝝎 ∈ ℝ2.

You should check that the marginal distribution of 𝑋 is 𝜇𝑋 , while the marginal
distribution of 𝑌 is 𝜇𝑌 . The pair (𝑋 ,𝑌 ) obviously has the joint distribution 𝜇𝑋𝑌 =

𝜇𝑋 × 𝜇𝑌 , so

ℙ {(𝑋 ,𝑌 ) ∈ A × B} = ℙ {𝑋 ∈ A} · ℙ {𝑌 ∈ B} for all A,B ∈ B(ℝ).

In other words, the random variables 𝑋 and 𝑌 are independent. We will generalize
this result below in Theorem 13.24.

13.2.3 Expectation and independence
The connection between independence and product measures tells us how to compute
the expectation of a function ℎ (𝑋 ,𝑌 ). In particular, we have an elegant result for the
expectation of a product function.

Proposition 13.8 (Independent random variables: Expectation). Suppose that (𝑋 ,𝑌 ) is an
independent pair of real random variables with marginal laws 𝜇𝑋 and 𝜇𝑌 . Suppose
that 𝑓 ∈ L1(𝜇𝑋 ) and 𝑔 ∈ L1(𝜇𝑌 ). Then

𝔼[ 𝑓 (𝑋 )𝑔 (𝑌 )] = 𝔼[ 𝑓 (𝑋 )] · 𝔼[𝑔 (𝑌 )]. (13.4)

Proof. The result is just an application of Fubini–Tonelli (Theorem 6.23). Indeed,

𝔼[ 𝑓 (𝑋 )𝑔 (𝑌 )] =
∫
ℝ2
𝑓 (𝑥)𝑔 (𝑦 ) 𝜇𝑋𝑌 (d𝑥 × d𝑦 )

=

∫
ℝ2
𝑓 (𝑥)𝑔 (𝑦 ) (𝜇𝑋 × 𝜇𝑌 ) (d𝑥 × d𝑦 )

=

(∫
ℝ

𝑓 (𝑥) 𝜇𝑌 (d𝑦 )
) (∫

ℝ

𝑔 (𝑦 ) 𝜇𝑌 (d𝑦 )
)
= 𝔼[ 𝑓 (𝑋 )] · 𝔼[𝑔 (𝑌 )].

The first relation is (9.6), the (multivariate) law of the unconscious statistician. We
have used Proposition 13.7 to see that the joint distribution is the product of the
marginal distributions. Then we invoked Fubini–Tonelli to replace the integral over
the product measure with an iterated integral. The last relation is Proposition 9.4, the
law of the unconscious statistician. ■

Exercise 13.9 (Independence and expectation). Let 𝑋 and 𝑌 be real random variables with
marginal laws 𝜇𝑋 and 𝜇𝑌 . For all bounded, measurable functions 𝑓 , 𝑔 : ℝ → ℝ,
suppose that

𝔼[ 𝑓 (𝑋 )𝑔 (𝑌 )] = 𝔼[ 𝑓 (𝑋 )] · 𝔼[𝑔 (𝑌 )]
Prove that 𝑋 and 𝑌 are independent. Hint: Consider indicator functions.

Exercise 13.10 (Independence and functions). Let 𝑋 and𝑌 be real random variables. Prove
that the pair (𝑋 ,𝑌 ) is independent if and only if the pair ( 𝑓 (𝑋 ), 𝑔 (𝑌 )) is independent
for all measurable functions 𝑓 , 𝑔 : ℝ → ℝ.
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13.2.4 Independence versus uncorrelation
For comparison, recall that two real random variables 𝑋 ,𝑌 ∈ L2 are uncorrelated when

𝔼[𝑋𝑌 ] = 𝔼[𝑋 ] · 𝔼[𝑌 ].

This is the very simplest case of the calculation (13.4). On the other hand, uncorrelation
does not allow us to extend this result to any other functions. We can now appreciate
that it is far easier for two random variables to be uncorrelated than for two random
variables to be independent.

This discussion hints at the strength of the independence assumption. Even if we
process each of the independent random variables in an arbitrary way (but without
reference to the other), we cannot make them correlated with each other!

Exercise 13.11 (Independence: Expectation of a product). Let 𝑋 ,𝑌 ∈ L1 be independent
random variables, not necessarily in L2. Show that 𝔼[𝑋𝑌 ] = 𝔼[𝑋 ] · 𝔼[𝑌 ].
Exercise 13.12 (Independence: Variance). Suppose that 𝑋 ,𝑌 ∈ L2 are independent random
variables. Show that Var[𝑋 +𝑌 ] = Var[𝑋 ] + Var[𝑌 ].

13.3 Independence and 𝜎-algebras
We can think about 𝜎 -algebras as carrying information. If we know whether each
event in a 𝜎 -algebra occurs, then we have acquired some information about the
distinguished sample point 𝜔0. It is natural to extend the concept of independence
from events and random variables to a general notion of independence of 𝜎 -algebras.
This definition is flexible enough to subsume the elementary definitions of independence
from before—and more things besides.

13.3.1 Example: Coin flips
Consider the elementary probability experiment where we flip two fair coins. To model
this experiment, we introduce the sample space Ω = {HH,HT, TH, TT}, the 𝜎 -algebra
F= P(Ω), and the uniform probability measure ℙ on the sample space.

Let us extract a sub-𝜎 -algebra that contains the events that are determined by the
first coin flip:

G1 := {∅, {HH,HT}, {TH, TT},Ω}.
You may check that G1 is a 𝜎 -algebra contained in F. If we see that the first coin turns
up H, say, we can decide whether each of the events in G1 has occurred or not. So G1
captures the knowledge we attain by observing the value of the first coin flip.

Likewise, we can extract a sub-𝜎 -algebra that contains the events that are deter-
mined by the second coin flip:

G2 := {∅, {HH, TH}, {HT, TT},Ω}.

If we observe that the second coin turns up T, say, we can decide whether each of
the events in G2 has occurred or not. The knowledge about the second coin does not
determine whether either of the nontrivial events in G1 has occurred.

Now, consider a pair of events, each drawn from one of the sub-𝜎 -algebras. For
instance, let G1 = {HH,HT} and G2 = {HH, TH}. Observe that

ℙ {G1 ∩ G2} = 1
4 = ℙ {G1} · ℙ {G2} .

In other words, the events G1 and G2 are independent. By further investigation, we
can see that every event in G1 is independent from every event in G2. In other words,
G1 and G2 provide independent pieces of information about the experiment.
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13.3.2 Independent 𝜎-algebras
We want to capture the idea that one 𝜎 -algebra provides no information about the
events in another 𝜎 -algebra.

Definition 13.13 (Independence: 𝜎-algebras). Let (Ω,F,ℙ) be a probability space. Let
G𝑖 ⊆ Fbe a 𝜎 -algebra contained in F for each 𝑖 = 1, 2. We say that the two 𝜎
algebras G1 and G2 are independent when

ℙ(G1 ∩ G2) = ℙ(G1) · ℙ(G2) for all G1 ∈ G1 and all G2 ∈ G2.

In words, independence means that every event in the first 𝜎 -algebra G1 is in-
dependent from every event in the second 𝜎 -algebra G2. Let us emphasize that
Definition 13.13 involves not only events but also the probability measure. Indepen-
dence reflects how the probabilities are assigned to events in the two 𝜎 -algebras.

13.3.3 Independent events
As a first application of Definition 13.13, let us explain how it captures the elementary
notion of independence of events. Recall that an event A ∈ Fgenerates the 𝜎 -algebra
𝜎 ({A}) = {∅,A,Ac,Ω}.

Definition 13.14 (Independence: Events). Let A,B ∈ F be events. We say that the
events A and B are independent when the events generate 𝜎 -algebras 𝜎 ({A}) and
𝜎 ({B}) that are independent.

Exercise 13.15 (Independence: Events). Confirm that Definition 13.14 is equivalent with
the elementary Definition 13.3.

Activity 13.16 (Sigma-algebra generated by events). Propose a definition of the 𝜎 -algebra
generated by a countable family (A𝑖 : 𝑖 ∈ ℕ) of events. ■

13.3.4 Sigma-algebras generated by random variables
Before we continue, let us give a formal definition of the 𝜎 -algebra generated by some
random variables.

Definition 13.17 (Sigma-algebra generated by a random variable). For a real random
variable 𝑋 , define

𝜎 (𝑋 ) := 𝜎 ({𝑋 −1(B) : B ∈ B(ℝ)}).
More generally, for a countable family (𝑋𝑖 : 𝑖 ∈ ℕ) of real random variables, define

𝜎 (𝑋𝑖 : 𝑖 ∈ ℕ) := 𝜎{𝑋 −1
𝑖 (B) : B ∈ B(ℝ) and 𝑖 ∈ ℕ}.

In other words, the 𝜎 -algebra generated by a random variable 𝑋 consists of all
events that are the preimages of Borel sets. If we know the value 𝑋 (𝜔) of the random
variable, then we can determine whether or not an arbitrary event in 𝜎 (𝑋 ) has
occurred. The general definition is similar in spirit.

13.3.5 Independent random variables
Definition 13.13 also contains the notion of independence for random variables.

Definition 13.18 (Independence: Random variables). Let 𝑋 ,𝑌 be real random variables.
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We say that the random variables 𝑋 and 𝑌 are independent when they generate
𝜎 -algebras 𝜎 (𝑋 ) and 𝜎 (𝑌 ) that are independent.

Exercise 13.19 (Independence: Random variables). Confirm that Definition 13.18 is equiva-
lent with the elementary Definition 13.5.

Problem 13.20 (Dependence and measurability). Let 𝑋 ,𝑌 be real random variables. Show
that 𝑌 is measurable with respect to the 𝜎 -algebra 𝜎 (𝑋 ) if and only if 𝑌 = 𝑓 (𝑋 ) for a
Borel measurable function 𝑓 : ℝ → ℝ.

13.3.6 Independent families of 𝜎-algebras
We can generalize Definition 13.13 further to address the independence of larger
families of 𝜎 -algebras.

Definition 13.21 (Independence: Sequence of 𝜎-algebras). Consider a countable collec-
tion (G𝑖 ⊆ F : 𝑖 ∈ ℕ) of sub-𝜎 -algebras in F. These 𝜎 -algebras are independent
when

ℙ(G𝑖1 ∩ · · · ∩ G𝑖𝑛 ) =
∏𝑛

𝑗=1
ℙ(G𝑖 𝑗 )

whenever 𝑛 ∈ ℕ, and 𝑖1 < · · · < 𝑖𝑛 are distinct indices, and G𝑖 𝑗 ∈ G𝑖 𝑗 for each
𝑗 = 1, . . . , 𝑛.

Activity 13.22 (Independence: Countable collections). Develop a definition of what it means
for a countable family of events to be independent. Develop a definition of what it
means for a countable family of random variables to be independent. ■

Warning 13.23 (Pairwise independence). Consider a family (𝑋𝑖 : 𝑖 ∈ I) of real random
variables. Suppose that we know that each pair (𝑋𝑖 , 𝑋 𝑗 ) is independent. This
property is called pairwise independence. Unfortunately, pairwise independence does
not even imply that a triple (𝑋𝑖 , 𝑋 𝑗 , 𝑋ℓ) of distinct random variables is independent!

Similarly, for𝑘 ≥ 3, the assumption that each sub-family of 𝑘 random variables is
independent does not imply that any set of (𝑘 +1) random variables is independent.
In particular, if you want to know that the entire collection of random variables is
independent, you must enforce this property explicitly.

Although this may seem like a technicality, it is a common source of errors.
Moreover, the concept of 𝑘 -wise independence plays an important role in the theory
of algorithms. For example, see Application 13.36. ■

13.3.7 Why?
This abstract perspective would be sterile if it only allowed us to talk about things
that we already understand, such as independent events and independent random
variables. Even without further applications, it is useful for us to start thinking about
𝜎 -algebras as carrying information about the state of the world. From this point of
view, independent 𝜎 -algebras carry independent information.

In fact, there are relatively simple things that are hard to describe accurately
without this machinery. For example, consider three real random variables 𝑋 ,𝑌 , 𝑍 .
We can easily define what it means for the pair (𝑋 ,𝑌 ) to be independent from the
random variable 𝑍 . Indeed, we just require that 𝜎 (𝑋 ,𝑌 ) is independent from 𝜎 (𝑍 ).

In fact, there are even settings where independence of 𝜎 -algebras models something
that we cannot easily describe using only events or random variables. For an example,
see Section E.2, on the Kolmogorov 0–1 law.
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13.4 Kolmogorov’s extension theorem
In Section 13.2.2, we saw that it is possible to build a probability space that supports two
independent random variables with specified marginal laws. We would like to perform
the same feat with a countable list of marginal laws to construct an independent
sequence of random variables. The next result asserts that we can always achieve
this goal. It provides a technical foundation for the theory of discrete-time stochastic
processes.

Theorem 13.24 (Kolmogorov extension). Let (𝜇1, 𝜇2, 𝜇3, . . . ) be a sequence of proba-
bility measures defined on the Borel sets of the real line. There exists a probability
space (Ω,F,ℙ) on which we can define an independent sequence (𝑋1, 𝑋2, 𝑋3, . . . )
of real random variables where the law of 𝑋𝑖 is 𝜇𝑖 for each index 𝑖 ∈ ℕ. That is,

ℙ
{
(𝑋𝑖1 , . . . , 𝑋𝑖𝑛 ) ∈ B𝑖1 × · · · × B𝑖𝑛

}
=

∏𝑛

𝑗=1
ℙ

{
𝑋𝑖 𝑗 ∈ B𝑖 𝑗

}
=

∏𝑛

𝑗=1
𝜇𝑖 𝑗 (B𝑖 𝑗 )

for all 𝑛 ∈ ℕ, and distinct indices 𝑖1 < · · · < 𝑖𝑛 ∈ ℕ, and Borel sets B𝑖 𝑗 ∈ B(ℝ)
for 𝑗 = 1, . . . , 𝑛.

See Appendix E for the proof of the Kolmogorov extension theorem.
The key point here is that Theorem 13.24 furnishes a probability space containing

a (countable) sequence of independent random variables. The precise construction is
not important—just the fact that the probability space exists. The probability measure
ℙ packs up all the information about the joint distribution of the random variables,
so we can use ℙ to compute the probability of any event in F, which happens to be
the product 𝜎 -algebra B(ℝ)ℕ. At the same time, when we study an independent
sequence, we will typically focus on the individual random variables 𝑋𝑖 and their laws
𝜇𝑖 , rather than the underlying probability space.

Example 13.25 (A sequence of coin flips). Suppose that we want to exhibit a model for
a countable sequence of independent fair coin flips. In this case, we consider laws
𝜇𝑖 ∼ bernoulli(1/2) for each 𝑖 ∈ ℕ. Kolmogorov’s extension theorem yields a
probability space (Ω,F,ℙ) that supports an independent family (𝑋𝑖 : 𝑖 ∈ ℕ) of real
random variables, where each 𝑋𝑖 ∼ bernoulli(1/2). ■

Example 13.26 (A sequence of normal variables). Another important example involves the
sequence 𝜇𝑖 ∼ normal(0, 1) for each 𝑖 ∈ ℕ. In this case, Kolmogorov’s extension
theorem yields a probability space (Ω,F,ℙ) that supports an independent family
(𝑍𝑖 : 𝑖 ∈ ℕ) of real random variables where 𝑍𝑖 ∼ normal(0, 1) for each 𝑖 ∈ ℕ. ■

Warning 13.27 (*Countable product of Borel 𝜎-algebra). Unlike the case of a finite
product, B(ℝℕ) ≠ B(ℝ)ℕ. The reason is a mismatch between the definitions of
the product topology and the product 𝜎 -algebra. Indeed, the product 𝜎 -algebra
B(ℝ)ℕ contains all countable intersections of measurable cylinders. But the product
topology on ℝℕ only contains finite intersections of open cylinders. The Borel
𝜎 -algebra B(ℝℕ) is generated by the product topology, and the product topology
has only a limited stock of open sets. ■

Problems
Exercise 13.28 (Mixture). Let 𝑋 and 𝑌 be real random variables on a probability space.
For 𝛼 ∈ [0, 1], let 𝐼 be a bernoulli(𝛼) random variable that is independent from 𝑋
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and 𝑌 . Define the random variable

𝑍 =

{
𝑋 , if 𝐼 = 1;
𝑌 , if 𝐼 = 0.

Express the law of 𝑍 in terms of the laws of 𝑋 and 𝑌 .

Problem 13.29 (Poisson coin flips). Suppose that we flip a fair coin 𝑁 times, where
𝑁 ∼ poisson(𝛽). Let 𝑋 denote the number of heads that turn up, and let 𝑌 denote
the number of tails that turn up. Show that the pair (𝑋 ,𝑌 ) is independent. Bizarrely,
if we are given the number 𝑁 of flips, then the pair (𝑋 ,𝑌 ) is no longer independent.

Exercise 13.30 (Minimum and maximum). Consider an i.i.d. family (𝑋1, . . . , 𝑋𝑛) of random
variables where 𝑋𝑖 ∼ 𝑋 . In this exercise, we explore the distribution of the maximum
and minimum.

1. Let 𝑌 = max𝑖 𝑋𝑖 . Show that the distribution function 𝐹𝑌 of the maximum
satisfies

𝐹𝑌 (𝑎) = 𝐹𝑋 (𝑎)𝑛 for 𝑎 ∈ ℝ.

2. Let 𝑍 = min𝑖 𝑋𝑖 . Show that the distribution function 𝐹𝑍 of the minimum satisfies

𝐹𝑍 (𝑎) = 1 − (1 − 𝐹𝑋 (𝑎))𝑛 for 𝑎 ∈ ℝ.

3. Suppose that 𝑋 ∼ exponential(𝛽), an exponential random variable with rate
𝛽 > 0. Determine the distribution of the maximum and the minimum of 𝑛
i.i.d. copies of 𝑋 .

Exercise 13.31 (Variance representations). There are several ways to write the variance of a
random variable 𝑋 ∈ L2 That is, 𝑌 has the same law as 𝑋 , and

the pair (𝑋 ,𝑌 ) is independent.
by introducing an independent copy 𝑌 of the random variable

𝑋 . Verify that

Var[𝑋 ] = 1
2 𝔼[(𝑋 −𝑌 )2] = 𝔼[(𝑋 −𝑌 )2+] = 𝔼[(𝑋 −𝑌 )2−].

Problem 13.32 (*Mutual information). Let 𝑋 and 𝑌 be discrete random variables taking
values in ℕ. Write 𝑓𝑋 and 𝑓𝑌 for the marginal probability mass functions and 𝑓𝑋𝑌 for
the joint mass function. Define the mutual information

𝐼 (𝑋 ;𝑌 ) := 𝔼 log
(

𝑓𝑋𝑌 (𝑋 ,𝑌 )
𝑓𝑋 (𝑋 ) · 𝑓𝑌 (𝑌 )

)
.

We can interpret the mutual information as the amount of randomness in 𝑌 that is
explained by 𝑋 , or vice versa.

1. Observe that 𝐼 (𝑋 ,𝑌 ) = 0 when the pair (𝑋 ,𝑌 ) is independent.
2. Show that

𝑎 (log𝑎 − logℎ) ≥ 𝑎 − ℎ for all 𝑎,ℎ > 0.

Under what condition does equality hold? Hint: Apply the subgradient inequality
(Proposition 9.19) to the negative logarithm.

3. Argue that 𝐼 (𝑋 ,𝑌 ) ≥ 0 with equality only if (𝑋 ,𝑌 ) is independent.

Exercise 13.33 (Chebyshev correlation inequalities). These results are often called
Chebyshev’s “other” inequalities.

Let 𝑋 be a real random variable with
law 𝜇𝑋 . Consider 𝜇𝑋 -integrable functions 𝑓 , 𝑔 : ℝ → ℝ. In this problem, we will
show that it is possible to bound expectations 𝔼[ 𝑓 (𝑋 )𝑔 (𝑋 )] when the functions 𝑓 , 𝑔
are monotone. These inequalities are often used in statistical physics applications. The
results appear here because the proof relies on independence.
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1. First, assume that 𝑓 and 𝑔 both are increasing. Let 𝑌 be an independent copy of
𝑋 , and verify that

𝔼
[
( 𝑓 (𝑋 ) − 𝑓 (𝑌 )) · (𝑔 (𝑋 ) − 𝑔 (𝑌 ))

]
≥ 0.

2. Deduce the Chebyshev correlation inequality:

𝔼[ 𝑓 (𝑋 )𝑔 (𝑋 )] ≥ 𝔼[ 𝑓 (𝑋 )] · 𝔼[𝑔 (𝑋 )].

3. Now, assume that 𝑓 is increasing and 𝑔 is decreasing. Establish a complementary
rearrangement inequality:

𝔼[ 𝑓 (𝑋 )𝑔 (𝑋 )] ≤ 𝔼[ 𝑓 (𝑋 )] · 𝔼[𝑔 (𝑋 )].

4. As an example, confirm that

𝔼[𝑋 e−𝜃𝑋 ] ≤ 𝔼[𝑋 ] · 𝔼[e−𝜃𝑋 ] for 𝜃 > 0.

This inequality arises when bounding the derivative of a moment generating
function.

Problem 13.34 (Generalized Minkowski). Consider independent real random variables 𝑋
and 𝑌 with laws 𝜇𝑋 and 𝜇𝑌 . For a measurable function 𝑓 : ℝ2 → ℝ and a power
𝑝 ≥ 1, the generalized Minkowski inequality states that[∫

ℝ

����∫
ℝ

𝑓 (𝑥, 𝑦 ) 𝜇𝑌 (d𝑦 )
����𝑝 𝜇𝑋 (d𝑥)]1/𝑝 ≤

∫
ℝ

(∫
ℝ

| 𝑓 (𝑥, 𝑦 ) |𝑝 𝜇𝑋 (d𝑥)
)1/𝑝

𝜇𝑌 (d𝑦 ).

This relation holds whenever the integrals are defined.

1. If we define the partial expectation 𝔼𝑋 with respect to 𝑋 and the partial
expectation 𝔼𝑌 with respect to 𝑌 , show that we can rewrite the inequality in the
compact form[

𝔼𝑋 |𝔼𝑌 𝑓 (𝑋 ,𝑌 ) |𝑝
]1/𝑝 ≤ 𝔼𝑌

[ (
𝔼𝑋 | 𝑓 (𝑋 ,𝑌 ) |𝑝

)1/𝑝 ]
.

2. Show how to derive Minkowski’s inequality (Theorem 11.9) as a consequence of
this relation. Hint: Let 𝑌 be a Bernoulli random variable.

3. Establish the generalized Minkowski inequality. Hint: Introduce an independent
copy 𝑌 ′ of 𝑌 , and note that

|𝔼𝑌 𝑓 (𝑋 ,𝑌 ) |𝑝 = |𝔼𝑌 𝑓 (𝑋 ,𝑌 ) |𝑝−1 · |𝔼𝑌 ′ 𝑓 (𝑋 ,𝑌 ′) |.

Proceed in the same manner as Riesz’s proof of the simpler Minkowski inequality.

Problem 13.35 (*Pairwise independence: Subset sums). In this problem, we show that it is
possible to construct 2𝑚 − 1 random variables that are pairwise independent, given a
family of𝑚 fully independent random variables.

Consider an i.i.d. family (𝑋1, . . . , 𝑋𝑛) of bernoulli(1/2) random variables. For
each nonempty subset S ⊆ {1, 2, 3, . . . , 𝑛}, define

𝑌S :=
(∑︁

𝑖 ∈S
𝑋𝑖

)
mod 2.

It is clear that each random variable YS is Bernoulli because it takes values in {0, 1}.

1. For each set S, prove that 𝑌S ∼ bernoulli(1/2).
2. For two distinct sets S, T, prove that the pair (𝑌S,𝑌T) is independent.
3. Find three random variables (𝑌R,𝑌S,𝑌T) that are not independent. Hint: Consider

the case R ¤∪ S = T.
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Applications
Application 13.36 (*Hashing and pairwise independence). Hashing is a method for taking a
long string and mapping it to a short “key” that can be used as a summary of the string.
Hashing maps are often chosen randomly with the intention that two input strings
are very unlikely to map to the same key value. At the same time, it is important to
construct and apply the hashing map quickly. These desiderata lead us to consider
random variables that have limited randomness and limited independence.

In this problem, we use a small dose of number theory to construct pairwise
independent random variables and an associated hashing scheme. Fix a (large) prime
number 𝑝 . Let 𝑋1, 𝑋2 ∼ uniform{0, 1, 2, 3, . . . , 𝑝 − 1} be independent. Construct
the random variables

𝑌𝑗 = (𝑋1 + 𝑗𝑋2) mod 𝑝 for 𝑗 = 0, 1, 2, . . . , 𝑝 − 1.

It takes approximately 2 log2 𝑝 random bits to form 𝑋1 and 𝑋2, so we obtain 𝑝 random
variables𝑌𝑗 from a modest number of coin flips. As we will see, these random variables
can be used to construct a hashing scheme.

1. Show that 𝑌𝑗 ∼ uniform{0, 1, 2, . . . , 𝑝 − 1}.
2. For each pair (𝑖 , 𝑗 ) of distinct indices, show that the pair (𝑌𝑖 ,𝑌𝑗 ) is independent.
3. Show that there is a triple (𝑌𝑖 ,𝑌𝑗 ,𝑌𝑘 ) that is not independent.

What does this have to do with hashing? We would like to summarize each potential
input value in {0, 1, 2, . . . , 𝑝 − 1} by a short key. To that end, fix a natural number
𝑛 ≪ 𝑝 . Let H be a (small) family of functions with domain {0, 1, 2, . . . , 𝑝 − 1} and
codomain {0, 1, 2, . . . , 𝑛 − 1}. The functions in H are called hash functions.

Draw a hash function ℎ uniformly at random from the family H. For this choice of
ℎ, we say that a pair (𝑖 , 𝑗 ) of inputs collides when ℎ (𝑖 ) = ℎ (𝑗 ). A good family of hash
functions will limit the probability of a collision.

We say that the family H of hash functions is 2-universal when each pair (𝑖 , 𝑗 ) of
values has a small collision probability:

ℙ {ℎ (𝑖 ) = ℎ (𝑗 )} ≤ 1
𝑛

for all distinct 𝑖 , 𝑗 ∈ {0, 1, 2, . . . , 𝑝 − 1}.

The idea is that the hash is very likely to map two distinct inputs 𝑖 , 𝑗 to two distinct
keys ℎ (𝑖 ), ℎ (𝑗 ). Therefore, we can use the key as a summary of the input.

4. Consider a 2-universal family H. Let S ⊆ {0, 1, 2, . . . , 𝑝 − 1} be a fixed, but
unknown, set of inputs. Choose an input 𝑖 ∈ S, and bound the expected number
of 𝑗 ∈ S that collide with 𝑖 if we pick ℎ ∈ H uniformly at random. How big
should the set {0, 1, 2, . . . , 𝑛 − 1} of keys be in comparison with #S?

Here is a simple construction of a 2-universal hash function, based on pairwise
independence. We construct a family H of hash functions that is indexed by values
𝑎, 𝑏 ∈ {0, 1, 2, . . . , 𝑝 − 1}. The associated function is defined as

ℎ𝑎𝑏 (𝑗 ) := [(𝑎 + 𝑗𝑏) mod 𝑝] mod 𝑛.

We draw a hash ℎ randomly by picking 𝑎, 𝑏 independently and uniformly at random,
with the constraint that 𝑏 ≠ 0.

5. Show that H is 2-universal.
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Application 13.37 (*Second-moment method: Graph thresholds). As another application of
the second-moment method, we will show that a certain class of random graphs is
either very likely or very unlikely to contain a clique containing four vertices, depending
on the exact parameter choices.

An Erdős–Rényi graph G(𝑛,𝑝) is an undirected, combinatorial graph drawn at
random from the following distribution. The graph has 𝑛 vertices, and each edge
appears independentlywith probability𝑝 . A clique is a set C of vertices that is completely
connected; that is, the graph contains the edge connecting each pair of vertices in the
clique C.

We may ask about whether it is probable that an Erdős–Renyí graph G(𝑛,𝑝)
contains a clique on four vertices. The answer depends on how the edge probability
𝑝 scales with the number 𝑛 of vertices. Problems like this arise when studying the
connectivity properties of networks. For example, is it likely that there are four
individuals in a social network where each pair is friends with each other?

1. Let S be a fixed set of four vertices in G(𝑛,𝑝). Show that the probability that S
is a clique is exactly 𝑝6.

2. Let 𝑋𝑛 denote the number of cliques on four vertices in a random instance of
G(𝑛,𝑝). Deduce that

𝔼[𝑋𝑛] =
(
𝑛

4

)
· 𝑝6 ≈ 𝑛4𝑝6

24
.

The notation ≪ means “much less
than”, but it does have a formal
definition.

In particular, if 𝑝 ≪ 𝑛2/3, then it is likely that the graph contains no clique on
four vertices.

3. (*) Consider the asymptotic setting where 𝑝 = 𝑝 (𝑛). Assume that 𝑝/𝑛2/3 → 0.
Argue that ℙ {𝑋𝑛 = 0} → 1 as 𝑛 → ∞. What does this statement mean?

4. Suppose that 𝑍 is a positive, real random variable. If Var[𝑍 ] ≪ (𝔼𝑍 2), show
that ℙ {𝑍 > 0} ≫ 0.

5. (**) Assume that𝑝 ≫ 𝑛2/3. Show that Var[𝑋𝑛] ≪ (𝔼𝑋𝑛)2. Hint: Subsets sharing
two or more vertices are not independent, so you have to make conditional
variance computations. Unfortunately, this is not trivial.

6. If 𝑝 ≫ 𝑛2/3, deduce that G(𝑛,𝑝) is very likely to contain a clique on four
vertices.

7. (*) In the asymptotic setting where 𝑝/𝑛2/3 → ∞, show that ℙ {𝑋𝑛 ≥ 1} → 1 as
𝑛 → ∞. What does this statement mean? In fact, 𝑋𝑛 ≈ 𝔼𝑋𝑛 for large 𝑛.

Notes
The overarching discussion of independence is adapted from Williams [Wil91]. See
Motwani & Raghavan [MR95] for some discussion of 𝑘 -wise independence and its
applications. For more information about correlation inequalities, see [AS16]. Some
of the problems are drawn from Grimmett & Stirzaker [GS01]. The example of the
second-moment method is from Alon & Spencer [AS16].
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14. Independent Sums

Agenda:
1. Stochastic processes
2. Independent sums
3. Model applications
4. Empirical behavior
5. Weak law of large numbers

“Les dieux avaient condamné Sisyphe à rouler sans cesse un rocher jusqu’au sommet
d’une montagne d’où la pierre retombait par son propre poids. Ils avaient pensé
avec quelque raison qu’il n’est pas de punition plus terrible que le travail inutile et
sans espoir...

“La lutte elle-même vers les sommets suffit à remplir un couer d’homme. Il faut
imaginer Sisyphe heureux.”

“The gods had condemned Sisyphus to ceaselessly roll a boulder up to the summit
of a mountain, at which point the stone would fall back down because of its
own weight. They had thought, with some reason, that there is no more terrible
punishment than useless and hopeless labor...

“The struggle itself toward the heights suffices to fill a man’s heart. One must
imagine Sisyphus happy.”

—Albert Camus, Le Mythe de Sisyphe, 1942

So far, we have been focusing onmeasure theory and probability foundations. In this
lecture, we begin our study of stochastic processes, which are collections of (dependent)
random variables. Stochastic processes are used to model probabilistic phenomena in
computational mathematics, engineering, statistics, and other disciplines. Therefore,
insights about the behavior of stochastic processes have a wide range of implications.

This course covers three types of sequential stochastic processes. In this lecture,
we will start to investigate the behavior of the partial sums of a sequence of inde-
pendent random variables, also known as an independent sum. Among other things,
independent sums can be used to model random walks, statistical experiments, and
Monte Carlo integration. Later, we will consider a more sophisticated type of stochastic
process, called a martingale, that models the payoff in a repeated sequence of fair
games, where the strategy can evolve depending on historical outcomes.

14.1 Stochastic processes
First, we introduce the concept of a general stochastic process.

The Greek word stokhazomai means
“to aim at a target.”Definition 14.1 (Stochastic process). Let (Ω,F,ℙ) be a probability space. A stochastic

process is a family (𝑋𝑡 : 𝑡 ∈ T) of real random variables defined on the probability
space. The set T is called the index set. Stochastic processes are often called random
processes.

Let us emphasize that the random variables that compose a stochastic process are
typically not independent from each other. It is hard to say much about a stochastic
process without adding some kind of additional structure. To that end, we will
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impose assumptions about how the random variables interact with each other. These
assumptions allow us to model particular phenomena, and they allow us to develop a
richer understanding of these examples.

Historically, the index set was denoted by the letter T because it usually models
time. In particular, we may consider discrete-time and continuous-time models, but
there are other possibilities.

• Discrete-time process: The index set T equals ℕ or ℤ+ or ℤ.
• Continuous-time process: The index set T equals ℝ+ or ℝ.
• Spatial process: The index set T ⊆ ℝ𝑛 . These examples are often called random

fields.

In this course, we will focus on discrete-time stochastic processes, which we will usually
denote by (𝑋𝑛 : 𝑛 ∈ ℕ) or something similar. The letter 𝑛 reminds us that the index
is an integer. Continuous-time processes require much more technical machinery, and
it is best to acquire a firm understanding of the discrete-time setting before turning
to this subject (e.g., in ACM 118). Stochastic processes with a spatial index, such as
Gaussian processes, are also very important in applications (ACM 118 or ACM 217).

14.2 Independent sums
We begin our study of discrete-time stochastic processes with a particularly simple
class of models, based on independent random variables.

14.2.1 The probability space
First, let us recall Kolmogorov’s extension theorem (Theorem 13.24). Consider a
sequence (𝜇𝑖 : 𝑖 ∈ ℕ) of probability distributions on the Borel sets in ℝ. Then there
exists a probability space (Ω,F,ℙ) that supports an independent sequence (𝑌𝑖 : 𝑖 ∈ ℕ)
of real random variables, where the marginal law of 𝑌𝑖 is 𝜇𝑖 for each index 𝑖 ∈ ℕ.

This fact serves as the technical foundation for the theory of discrete-time stochastic
processes, because it ensures that we can construct an independent sequence of random
variables with arbitrary distributions. We usually do not lavish much attention on
the underlying probability space, preferring to operate with the random variables
themselves.

14.2.2 Some random processes
Given an independent sequence of real random variables, we can construct a new
random sequence from the partial sums.

Definition 14.2 (Independent sum). Consider an independent sequence (𝑌𝑖 : 𝑖 ∈ ℕ)
of real random variables. Define the random variables

𝑋0 := 0 and 𝑋𝑛 :=
∑︁𝑛

𝑖=1
𝑌𝑖 for 𝑛 ∈ ℕ.

That is, (𝑋𝑛 : 𝑛 ∈ ℤ+) is the sequence of partial sums of the sequence (𝑌𝑖 : 𝑖 ∈ ℕ).
The family (𝑋𝑛 : 𝑛 ∈ ℤ+) is a discrete-time stochastic process, called an independent
sum process or a partial sum process.

The random variables in a partial sum process are not independent from each other.
Indeed, 𝑋𝑛 and 𝑋𝑘 both involve the summands 𝑌𝑖 for 𝑖 ≤ 𝑛 ∧ 𝑘 . Nevertheless, the
dependency among the 𝑋𝑛 is both simple and manageable.
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It is also productive to consider some related random processes, obtained by
rescaling the partial sum process. In particular, we define the running average.

Definition 14.3 (Running average). Consider an independent sequence (𝑌𝑖 : 𝑖 ∈ ℕ) of
real random variables. Define the random variables

𝑋𝑛 :=
1
𝑛

∑︁𝑛

𝑖=1
𝑌𝑖 for 𝑛 ∈ ℕ.

Then (𝑋𝑛 : 𝑛 ∈ ℕ) is a discrete-time stochastic process, called the running average
of the process (𝑌𝑖 : 𝑖 ∈ ℕ).

14.3 Applications
Independent sums and running averages are simple models, but they have a wide
range of applications. In this section, we outline some of the main examples.

14.3.1 Random walks
Consider a particle that begins its life at the origin of the real line. Every second, the
particle jumps to a new location by adding a random increment to its current location.
In the most basic setting, each increment is independent from all previous increments
and from the current location of the particle. This stochastic process is called a random
walk on the real line.

Formally, we consider an independent sequence (𝑌𝑖 : 𝑖 ∈ ℕ) of random increments.
Then the partial sum process 𝑋𝑛 =

∑𝑛
𝑖=1𝑌𝑖 describes the position of the particle after

𝑛 steps.
In the simplest case, the increments are chosen to be independent and identically

distributed (i.i.d.) random variables. The symbol ∼ means “has the
distribution.”

It is common to express this condition by writing
𝑌𝑖 ∼ 𝑌 i.i.d., where 𝑌 is some fixed random variable. We also say that the 𝑌𝑖 are
i.i.d. copies of 𝑌 .

In particular, we may consider the distribution 𝑌 ∼ uniform{±1} for the incre-
ments. Then the particle travels on the integers, at each time moving randomly left or
right by one position. This process is called the simple random walk on the integers
ℤ. At time 𝑛, the random location 𝑋𝑛 of the particle has the marginal distribution
𝑋𝑛 ∼ 2 binomial(𝑛, 1/2) − 𝑛.

The random walk is a discrete model for diffusion that tracks individual particles,
rather than the density of particles. For example, you can imagine a single molecule of
a chemical diffusing in a solvent.

14.3.2 Renewals
Consider (real-world) events that happen periodically after some random interval of
time. For example, a decaying radioactive mass might omit a photon. Or a customer
might arrive at the cash register of a convenience store to purchase a highly caffeinated
energy shot. These are examples of renewal processes.

We can model the arrivals by an independent sequence (𝑌𝑖 : 𝑖 ∈ ℕ). The random
variable 𝑌𝑖 describes the time between events 𝑖 and 𝑖 − 1. The partial sum process
𝑋𝑛 =

∑𝑛
𝑖=1𝑌𝑖 is the total amount of time that elapses before 𝑛 events occur.

Themost commonmodel for renewals takes the interarrival times𝑌𝑖 to be i.i.d. copies
of an exponential random variable 𝑌 ∼ exponential(𝜆) with rate 𝜆 ∈ ℝ+. In this
case, the partial sum process 𝑋𝑛 has the marginal distribution 𝑋𝑛 ∼ gamma(𝑛, 𝜆) with
shape parameter 𝑛 ∈ ℕ and rate 𝜆.
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14.3.3 Independent experiments
Consider a sequence of independent experiments that may succeed or fail. For example,
you flip a coin repeatedly and declare success each time the coin turns up heads.
Another example: every summer, you apply to a funding agency for money to support
your latest brilliant research idea; you record a success if you are awarded the grant.
Another example: Every day, a man named Sisyphus attempts to push a large boulder
to the top of a hill. In some of these cases, the assumption of independence is perhaps
questionable.

We can model the success or failure of these trials using an independent sequence
𝑌𝑖 of Bernoulli random variables, where 𝑌𝑖 = 1 if the 𝑖 th trial succeeds and 𝑌𝑖 = 0 if
the 𝑖 th trial fails. The partial sum process 𝑋𝑛 =

∑𝑛
𝑖=1𝑌𝑖 describes the total number of

successes in the first 𝑛 trials. Similarly, the running average process 𝑋𝑛 = 𝑛−1 ∑𝑛
𝑖=1𝑌𝑖

describes the proportion of successes during the first 𝑛 trials.
When we repeat the same experiment over and over again, then we can model the

successes 𝑌𝑖 as i.i.d. copies of a Bernoulli random variable 𝑌 ∼ bernoulli(𝑝). In this
case, the partial sum process𝑋𝑛 follows themarginal distribution𝑋𝑛 ∼ binomial(𝑛,𝑝).
The running average 𝑋𝑛 has expectation 𝑝 , and it serves as an empirical estimate for
the success probability 𝑝 .

14.3.4 Statistical estimation
Suppose that we randomly select a member from a population and enroll them in
a study. Perhaps, we administer each participant an experimental treatment for
cholesterol and measure the reduction in cholesterol levels after two months. Perhaps,
the tech overload administering an influential website would like to assess whether a
new content selection algorithm increases the amount of time a typical visitor spends
watching capybara videos.

When the experiment has a real-valued outcome, we can model the response 𝑌𝑖 of
each subject as a real-valued random variable. Since we have randomized the choice
of participants in the study, the responses (𝑌𝑖 : 𝑖 ∈ ℕ) form an independent sequence.
The running average 𝑋𝑛 = 𝑛−1 ∑𝑛

𝑖=1 serves as an empirical estimate for the expected
response. When participants are registered sequentially, the running average provides
an evolving picture of our current estimate for the expected response.

In statistical estimation, it is also common to model the responses as i.i.d. copies
of a fixed random variable 𝑌 . In this setting, however, we may not have strong prior
knowledge about the properties of the random variable 𝑌 . Therefore, it is desirable to
develop results about the running average that hold under weak assumptions.

14.3.5 Monte Carlo integration
Independent sums also arise in the design of computer algorithms. Here is a basic exam-
ple that is the starting point for a very important class of techniques in computational
mathematics and statistics.

Suppose that we wish to approximate the integral
∫
Ω
𝑓 d𝜇, where 𝜇 is a probability

measure onΩ and 𝑓 ∈ L1(𝜇) is integrable. This problem is called numerical quadrature.
When Ω = ℝ and 𝜇 is a standard distribution (e.g., Gaussian or Laplace), there are
very effective quadrature methods based on deterministic rules. On the other hand,
when Ω is a high-dimensional space or 𝜇 is a complicated distribution, it can be tricky
to evaluate the integral using a fixed rule. Instead, we may turn to a probabilistic
method called Monte Carlo integration.

Draw an independent sequence (𝑍𝑖 ∈ Ω : 𝑖 ∈ ℕ) of random variables, each with
the distribution 𝜇. In practice, this step can be very challenging, but we shall assume
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that it has been accomplished.
For each index 𝑖 ∈ ℕ, we compute 𝑌𝑖 = 𝑓 (𝑍𝑖 ). The sequence (𝑌𝑖 : 𝑖 ∈ ℕ) is

independent, and the marginal distribution of 𝑌𝑖 is the push-forward of 𝜇 by the
function 𝑓 . (See Problem 5.44.) Therefore, the running average of the 𝑌𝑖 serves as an
empirical approximation of the integral:

𝑋𝑛 =
1
𝑛

∑︁𝑛

𝑖=1
𝑌𝑖 ≈

∫
Ω
𝑓 d𝜇.

The question, of course, is how many samples 𝑛 we need to approximate the integral
to a certain tolerance and with a specified probability of error. The answer depends on
both the probability measure 𝜇 and the function 𝑓 .

14.4 Empirical behavior of independent sums
Now that we are persuaded of the potential utility of the partial sum model, we
can start to ask how this stochastic process behaves. The independence of the
underlying sequence leads to some simple observations. We will also exhibit some
simple experiments that motivate the technical questions we will pursue.

14.4.1 Mean and variance
Consider a sequence (𝑌𝑖 : 𝑖 ∈ ℕ) consisting of independent copies of a real random
variable 𝑌 . Form the partial sum process 𝑋𝑛 =

∑𝑛
𝑖=1𝑌𝑖 for 𝑖 ∈ ℤ+. Using linearity, we

quickly determine the expectation:

𝔼[𝑋𝑛] =
∑︁𝑛

𝑖=1
𝔼[𝑌𝑖 ] = 𝑛 · 𝔼[𝑌 ] if 𝑌 ≥ 0 or 𝑌 ∈ L1.

Since independent random variables are uncorrelated (Exercise 13.11), the Pythao-
gorean relation (Proposition 12.16) implies that the variance of the independent sum
is additive. We find that

Var[𝑋𝑛] =
∑︁𝑛

𝑖=1
Var[𝑌𝑖 ] = 𝑛 · Var[𝑌 ] if 𝑌 ∈ L2.

In other words, the average value of the 𝑛th partial sum 𝑋𝑛 is just 𝑛 times the average
of the increment 𝑌 . Recall that stdev(𝑌 ) :=

√︁
Var[𝑌 ].The standard deviation of 𝑋𝑛 is just

√
𝑛 times the standard

deviation stdev(𝑌 ) of the increment 𝑌 ; this is the typical scale for fluctuations around
the mean.

We remark that neither of the calculations uses the full power of the independence
assumption. To compute the mean, we do not need any assumptions beyond integra-
bility. To compute the variance, we only require mutual uncorrelation, which is far
weaker than independence. In later investigations, however, independence will play a
stronger role.

14.4.2 Sample paths
Probabilists use sample paths to picture the evolution of a random process. Recall that
a real random variable is a real-valued function on the sample space. Therefore, each
sample point 𝜔 ∈ Ω determines the trajectory of the partial sum process for all times:
(𝑋𝑛 (𝜔) : 𝑛 ∈ ℕ). A priori, the sample point is random, and so the trajectory of the
stochastic process is random. Once Tyche distinguishes a sample point 𝜔0, the entire
history of the partial sum process is sealed.

For discrete-time processes, it is convenient to illustrate the sample paths using a
piecewise linear interpolant of the discrete values. Figure 14.1 contains an illustration.
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Figure 14.1 (Sample paths). The trajectory (𝑋𝑛 (𝜔) : 𝑛 ∈ ℕ) of a discrete-time random
process is a function of the sample point 𝜔 ∈ Ω. The (random) trajectory is called a
sample path. You can see that different sample points 𝜔 and 𝜔′ result in different
trajectories.

Figure 14.2 (Sample paths for the running average). This plot displays the first 500 time
steps of 500 sample paths of the running average 𝑋𝑛 of a series of coin flips, taking
values ±1. The orange line marks the expected value: 𝔼[𝑋𝑛 ] = 0.

14.4.3 Sample paths of the running average
We can perform computer experiments to get a picture of the random distribution of
sample paths. This project requires a particular choice of distribution for the increment
𝑌 . Let us consider 𝑌 ∼ uniform{±1}, which we can regard as a model for a single
flip of a fair coin (+1 = heads and −1 = tails). More topically, it models a vote
in an election where each candidate is equally favored (+1 = Gryffindor and −1 =
Slytherin).

The running average 𝑋𝑛 = 𝑛−1 ∑𝑛
𝑖=1𝑌𝑖 is the total of the first 𝑛 outcomes, relative

to the number 𝑛 of trials. For coins, 𝑋𝑛 is the difference between the proportion of
heads and the proportion of tails in the first 𝑛 coin flips. For votes, 𝑋𝑛 is the difference
between the proportion of votes in favor of Gryffindor and the proportion of votes in
favor of Slytherin after 𝑛 ballots have been cast.

Figure 14.2 displays the first 500 time steps of 500 random sample paths of the
running average. The orange line marks the expected value: 𝔼[𝑋𝑛] = 0 for all 𝑛 ∈ ℕ.
We can see that the collection of sample paths forms a funnel that tapers inward toward
the expectation as the time horizon 𝑛 increases. This plot raises some questions:
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Figure 14.3 (Sample paths of the standardized sum). This plot displays the first 500
time steps of 500 sample paths of the standardized sum 𝑇𝑛 of a series of coin flips,
taking values ±1. The orange line marks the expected value: 𝔼[𝑇𝑛 ] = 0. The blue
envelope marks the long-term extreme values, as predicted by theory.

• Limits: As 𝑛 → ∞, it appears that most of the sample paths tend toward zero.
Does the limit of the running average indeed approach the expectation? In what
sense do we understand this limit?

• Concentration: At a given time 𝑛, how unlikely is it to see a value of 𝑋𝑛 that
differs substantially from the expectation? What is the probability that 𝑋𝑛 takes
a value in the typical range?

Our challenge is to produce good concentration bounds for the running average at
a given time 𝑛 and to prove limit theorems as 𝑛 → ∞.

14.4.4 Sample paths of the standardized sum
By choosing an alternative scaling of the partial sum process, we can explore how
much the partial sums fluctuate around the mean value. We continue to work with the
distribution 𝑌 ∼ uniform{±1}. Observe that

Var[𝑋𝑛] =
∑︁𝑛

𝑖=1
Var[𝑌𝑖 ] = 𝑛.

In other words, the typical scale for fluctuations of the 𝑛th partial sum about the mean
is
√
𝑛. Therefore, we consider the standardized sum

𝑇𝑛 :=
1
√
𝑛

∑︁𝑛

𝑖=1
𝑌𝑖 for 𝑛 ∈ ℕ.

By construction, 𝔼[𝑇𝑛] = 0 and Var[𝑇𝑛] = 1. Thus, each of the standardized sums has
the same scale, and they are comparable with each other.

Figure 14.3 displays the first 500 time steps of 500 random sample paths of the
standardized sum. The orange line marks the expectation value: 𝔼[𝑇𝑛] = 0 for
all 𝑛 ∈ ℕ. We can see that the collection of sample paths quickly settle down to a
consistent profile. At a given time 𝑛, the shade of gray reflects how many sample paths
are passing through a given value. There are more near the expectation, and fewer
farther away. The density (along a vertical line at a given time) appears to be stable as
time evolves. This plot raises some questions:

• Distribution: As 𝑛 → ∞, does the density of sample paths settle down to a
limiting distribution?



Lecture 14: Independent Sums 216

• Envelope: Sample paths occasionally stray away from the bulk, taking unusually
large values. Can we quantify the extreme values that a sample path is likely to
achieve?

To answer the first question, we need to decide what it means for a sequence of
distributions to converge to another distribution. The second question has a beautiful
answer (called the law of the iterated logarithm), but it requires a delicate analysis
that we will not pursue in this class (but see Lecture 26).

14.5 Independent sums: Overview
In the last section, we have raised a number of questions about independent sums. In
this part of the class, we will develop good (but not always optimal) answers to these
questions. The investigation splits into two parts:

1. Nonasymptotic results: Wewill be interested in methods for describing the behavior
of a particular sum 𝑋𝑛 for a fixed value of 𝑛. These results are very useful in
practice because they apply to explicit sums that we have in our hands.

2. Asymptotic results: We will also derive information about the long-time behavior
of a rescaled sum, such as the running average 𝑋𝑛 or the standardized sum𝑇𝑛 , as
the time horizon 𝑛 tends to infinity. These results are valuable because they are
very clean, and they provide powerful heuristics for thinking about independent
sums with many terms.

As it happens, there is a deep relationship between nonasymptotic results and
asymptotic results. Indeed, our primary strategy for proving limit laws is to establish
an appropriate result for a finite sum and take the limit. This idea is summarized in a
quotation that is attributed to Kolomogorov:

“Behind every limit theorem is an inequality.” —A. N. Kolmogorov

Our results for independent sums share another common feature that is worth
emphasis. Because of the independence assumption, we can use simple properties of
the individual summands to derive strong conclusions about the behavior of the entire
sum. This approach is exemplified in the computation of the mean and variance in
Section 14.4.1, but it holds more widely. You can think about this idea as a kind of
“local to global” principle. It highlights the power of the independence assumption.

Problems
Exercise 14.4 (Independent sums). Let 𝑋 and 𝑌 be independent, real random variables.
Suppose that 𝑋 and 𝑌 have marginal laws 𝜇𝑋 and 𝜇𝑌 . Define the sum 𝑍 = 𝑋 +𝑌 .

1. Show that the law of 𝑍 satisfies

𝜇𝑍 (B) =
∫
ℝ

[∫
ℝ

1B(𝑥 + 𝑦 ) 𝜇𝑌 (d𝑦 )
]
𝜇𝑋 (d𝑥) for all B ∈ B(ℝ).

2. Deduce that the distribution function of 𝑍 satisfies

𝐹𝑍 (𝑎) =
∫
ℝ

𝐹𝑌 (𝑎 − 𝑥) 𝜇𝑋 (d𝑥) =
∫
ℝ

𝐹𝑋 (𝑎 − 𝑦 ) 𝜇𝑌 (d𝑦 ) for 𝑎 ∈ ℝ.
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3. Now, assume that 𝑌 is a continuous random variables with density 𝑓𝑌 . Show
that 𝑍 is a continuous random variable with density

𝑓𝑍 (𝑎) =
∫
ℝ

𝑓𝑌 (𝑎 − 𝑥) 𝜇𝑋 (d𝑥) for 𝑎 ∈ ℝ.

Hint: Start with (1) and invoke Fubini–Tonelli (Theorem 6.23). Although you
might be tempted to differentiate the formula in (2), this approach requires a
hard technical argument.

4. Specialize the last formula to the case where both 𝑋 and 𝑌 are continuous.

Exercise 14.5 (Some stable random variables). There are some very special classes of
random variables that are stable under addition. In this problem, you are invited to
confirm stability in three cases. These results can be obtained more simply using the
methods from Lecture 21.

1. Let 𝑋 and 𝑌 be independent random variables with poisson(1) distributions.
Show that 𝑍 = 𝑋 +𝑌 follows the poisson(2) distribution.

2. Let 𝑋 and 𝑌 be independent random variables with normal(0, 1) distributions.
Show that 𝑍 = 𝑋 +𝑌 follows the normal(0, 2) distribution.

3. (*) Let𝑋 and𝑌 be independent random variables with cauchy(0, 1) distributions.
Show that 𝑍 = 𝑋 +𝑌 follows the cauchy(0, 2) distribution.

Notes
Independent sums are one of the primary objects of study in elementary probability
and in probability theory. You will find some presentation of this material in almost
any probability book that you open.



15. The Law of Large Numbers

Agenda:
1. Chebyshev’s weak law
2. Almost-sure convergence
3. Kolmogorov’s strong law
4. Cantelli’s strong law

“A-breaking rocks in the hot sun.
I fought the law, and the law won.”

—I Fought the Law by Sonny Curtis
The Crickets (1960); Bobby Fuller Four (1966); The Clash (1977)

In many contexts, we perform repeated trials of an experiment that produces a
real-valued result. The goal of this process is to observe the outcomes of experiments
so that we can make inferences about the probability distribution underlying the
sequence of outcomes. In particular, we may want to estimate the expected value of
the distribution by averaging the observed outcomes. The law of large numbers asserts
that this approach is valid.

15.1 The law of large numbers
Suppose that 𝑌 is a real random variable. Let (𝑌𝑖 : 𝑖 ∈ ℕ) be independent, identical
copies of 𝑌 . Our goal is to estimate the expectation 𝔼𝑌 from the observed values
𝑌1,𝑌2,𝑌3, . . . .

A natural approach is to form the running average 𝑋𝑛 := 𝑛−1 ∑𝑛
𝑖=1𝑌𝑖 of the first

𝑛 observations. For a fixed number 𝑛 of observations, statisticians often call 𝑋𝑛 the
sample average. Using linearity of expectation, it is easy to see that

𝔼𝑋𝑛 = 𝔼𝑌 for each 𝑛 ∈ ℕ, provided that 𝑌 ∈ L1.

Using additivity of variance for independent random variables, we find that

Var[𝑋𝑛] =
1
𝑛

Var[𝑌 ] for each 𝑛 ∈ ℕ, provided that 𝑌 ∈ L2.

In other words, the running average is an unbiased estimator for the expectation of 𝑌 ,
and the variance of the estimator declines as the number 𝑛 of observations increases.
These arguments suggest that the running average serves as an increasingly accurate
estimate for 𝔼𝑌 as we increase the number 𝑛 of observations.

We would like to quantify this intuition about the long-run behavior of the running
average with a result like “𝑋𝑛 → 𝔼𝑌 as 𝑛 → ∞”. A statement of this form is called a
law of large numbers (LLN) for the running average.

There are many different kinds of LLNs for the running average. One major
dichotomy reflects the type of convergence that we establish. Weak LLNs assert that
the running average converges in probability to the expectation. Strong LLNs assert
that the running average converges almost surely to the expectation. We will elaborate
on this distinction below.

https://www.youtube.com/watch?v=NDUFBt8Ue0A
https://www.youtube.com/watch?v=OgtQj8O92eI
https://www.youtube.com/watch?v=AL8chWFuM-s
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LLNs also differ in the precise assumptions that they place on the underlying
distribution of the family (𝑌𝑖 : 𝑖 ∈ ℕ). For example, some LLNs concern the case
where each of the summands follows the same distribution, while other results allow
the summands to follow dissimilar distributions. LLNs also proceed from particular
hypotheses about the integrability of the summands (e.g., L1 or L2), and the difficulty
of the proof is usually inverse to the strength of the assumptions.

15.2 Chebyshev’s weak law of large numbers
The weak law of large numbers (WLLN) is a limit theorem that describes the running
average of a sequence of i.i.d. copies of a random variable 𝑌 . This result tells us that
the running average 𝑋𝑛 of the sequence provides a sequence of point estimates for the
expectation 𝔼𝑌 .

15.2.1 Convergence in probability
To state the result, let us introduce a new mode of convergence for random variables.

Definition 15.1 (Convergence in probability). A sequence (𝑊𝑛 : 𝑛 ∈ ℕ) of real random
variables converges in probability to a real random variable𝑊 when

lim
𝑛→∞

ℙ {|𝑊𝑛 −𝑊 | > 𝑡 } = 0 for each 𝑡 > 0.

Roughly, convergence in probability means that is eventually unlikely for𝑊𝑛 to
differ from𝑊 by more than any positive threshold 𝑡 > 0.

Aside: Convergence in probability is closely related to convergence in L1. In
general, these two modes of convergence are incomparable. Nevertheless, under an
additional assumption that the random variables (𝑊𝑛 : 𝑛 ∈ ℕ) form a “uniformly
integrable” family, the two modes of convergence coincide. See Lecture 25.

15.2.2 Chebyshev’s variance inequality
The key to proving our first LLN is a fundamental variance inequality. This result was
originally framed by Bienaymé. Chebyshev apparently provided the first proof, and his
name is now associated with the statement. Chebyshev’s inequality controls the tail
decay of a random variable in terms of its variance. This result is a powerful tool for
studying independent sums because the variance of an independent sum is additive.

Proposition 15.2 (Chebyshev’s variance inequality). Let 𝑋 ∈ L2 be a real random variable.
Then

ℙ {|𝑋 − 𝔼𝑋 | ≥ 𝑡 } ≤ Var[𝑋 ]
𝑡 2

for all 𝑡 > 0.

Proof. This is an instant consequence of Markov’s inequality (Theorem 10.13). ■

15.2.3 The weak law
The simplest version of the WLLN follows as an immediate consequence of Chebyshev’s
inequality.

Theorem 15.3 (Chebyshev’s WLLN). Let𝑌 ∈ L2 be a real random variable, and consider
an i.i.d. sequence (𝑌𝑖 : 𝑖 ∈ ℕ) of copies of 𝑌 . The running averages 𝑋𝑛 of the
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Figure 15.1 (Weak law of large numbers). The weak law of large numbers concerns the
running average 𝑋𝑛 of an i.i.d. sequence of copies of 𝑌 . It asserts that the sample
paths of 𝑋𝑛 converge in probability to the expectation 𝔼𝑌 . The blue sample paths lie
within the band 𝔼[𝑌 ] ± 𝑡 . The red sample path has escaped from the band.

sequence converge in probability to 𝔼𝑌 . Explicitly,

lim𝑛→∞ ℙ
{
|𝑋𝑛 − 𝔼𝑌 | > 𝑡

}
= 0 for each 𝑡 > 0.

The argument depends heavily on the assumption that 𝑌 ∈ L2, so that we can
compute variances.

Proof. We can apply Chebyshev’s variance inequality to the running average 𝑋𝑛 using
the calculations at the start of Section 15.1. Indeed,

𝔼𝑋𝑛 = 𝔼𝑌 and Var[𝑋𝑛] =
1
𝑛

Var[𝑌 ].

Invoke Proposition 15.2 to reach the bound

ℙ
{
|𝑋𝑛 − 𝔼𝑌 | > 𝑡

}
≤ Var[𝑌 ]

𝑛𝑡 2
for all 𝑡 > 0. (15.1)

Last, take the limit of (15.1) as 𝑛 → ∞. ■

See Figure 15.1 for an illustration of what the WLLN means for the sample paths of
the running average. In words, we fix a level 𝑡 > 0 for the deviations of the running
average away from the expectation 𝔼𝑌 . At a given time 𝑛, a large proportion (blue)
of the sample paths are likely to fall within the band 𝔼𝑌 ± 𝑡 , but a small proportion
(red) may escape. As the time horizon 𝑛 → ∞, the proportion of paths within the
band at time 𝑛 increases to 100%.

On the positive side, the proof of Theorem 15.3 is very easy. On the negative side,
the assumption that 𝑌 ∈ L2 seems unnecessarily strict (maybe 𝑌 ∈ L1 is enough?).
Furthermore, convergence in probability is not a very impressive type of convergence.
In the next section, we will discuss an improvement.

Problem 15.4 (*WLLN: Integrable distribution). Prove that the conclusion of Theorem 15.3
holds when 𝑌 ∈ L1. Hint: For each level 𝑡 > 0, you can approximate the random
variable 𝑌 by a bounded random variable 𝑌𝐵 that satisfies |𝑌𝐵 | ≤ 𝐵 .

Problem 15.5 (WLLN: Non-identical distributions). Formulate and prove a WLLN for the
running average that holds when the family (𝑌𝑖 : 𝑖 ∈ ℕ) is not necessarily identically
distributed. What are natural assumptions on the variances?
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Exercise 15.6 (*WLLN: Pairwise independence). Show that the WLLN holds under the
weaker assumption that (𝑌𝑖 : 𝑖 ∈ ℕ) is pairwise independent. That is, the pair (𝑌𝑖 ,𝑌𝑗 )
is independent for all 𝑖 , 𝑗 . See Warning 13.23 for a brief discussion.

15.3 Kolmogorov’s strong law of large numbers
In this section, we will discuss a better class of result, called the strong law of large
numbers (SLLN).

15.3.1 Almost-sure convergence
Before we can present the strong law, it is productive to elaborate on the type of
convergence involved.

Definition 15.7 (Almost-sure event). Let A ∈ Fbe an event with ℙ(A) = 1. This kind
of event is called ℙ-almost sure or almost sure or just a.s.

The notion of an almost-sure event in probability theory is the companion to the
notion of an almost-everywhere set in measure theory. The terminology changes to
reflect the probabilistic setting.

Of course, the certain event Ω is an almost-sure event. In contrast, an almost-sure
event does not necessarily occur. We usually do not specify the probability distribution
ℙ when discussing almost-sure events unless it is required for clarity. The concept
leads to a mode of convergence.

Definition 15.8 (Almost-sure convergence). Consider a sequence (𝑊𝑛 : 𝑛 ∈ ℕ) of real
random variables defined on the same probability space (Ω,F,ℙ). We say that
𝑊𝑛 converges almost surely to a random variable𝑊 when

ℙ {𝜔 ∈ Ω :𝑊𝑛 (𝜔) →𝑊 (𝜔)} = 1.

We often write𝑊𝑛 →𝑊 a.s. to denote this type of convergence.

In other words, for a randomly chosen sample point 𝜔, there is a 100% chance that
the associated sample path𝑊𝑛 (𝜔) converges to the limiting value𝑊 (𝜔). Equivalently,
almost-sure convergence asserts that

ℙ {𝜔 ∈ Ω :𝑊𝑛 (𝜔) ↛𝑊 (𝜔)} = 0.

The limit superior is defined as

lim sup𝑛→∞ 𝑎𝑛

:= lim𝑛→∞ sup𝑗≥𝑛 𝑎 𝑗

= inf𝑛∈ℕ sup𝑗≥𝑛 𝑎 𝑗 .

We can also express this relation as

ℙ {lim sup𝑛→∞ |𝑊𝑛 −𝑊 | > 0} = 0.

The compact set-builder notation suppresses the role of the sample point in the last
expression.

From this relation, we can start to see that almost-sure convergence is a stronger
notion that convergence in probability. Recall that𝑊𝑛 →𝑊 in probability when

sup𝑡>0 lim𝑛→∞ ℙ {|𝑊𝑛 −𝑊 | > 𝑡 } = 0.

The time variable 𝑛 and the level 𝑡 appear outside the probability, whereas they appear
inside for almost-sure convergence.
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Figure 15.2 (Strong law of large numbers). The strong law of large numbers concerns
the running average 𝑋𝑛 of an i.i.d. sequence of copies of 𝑌 . It asserts that the running
average converges almost surely to the expectation 𝔼𝑌 . There is a zero probability
that a sample path fails to converge to the expectation.

Problem 15.9 (Convergence: Implications). Show that𝑊𝑛 →𝑊 pointwise implies that
𝑊𝑛 → 𝑊 almost surely. Show that𝑊𝑛 → 𝑊 almost surely implies𝑊𝑛 → 𝑊 in
probability. By example, argue that neither of these implications can be reversed in
general.

15.3.2 The SLLN
With this preparation, we can state an optimal version of the strong law of large
numbers.

Theorem 15.10 (Kolmogorov’s SLLN). Let 𝑌 ∈ L1 be a real random variable, and
consider an i.i.d. sequence (𝑌𝑖 : 𝑖 ∈ ℕ) of copies of 𝑌 . The running averages
𝑋𝑛 = 𝑛−1 ∑𝑛

𝑖=1𝑌𝑖 of the sequence converge almost surely to 𝔼𝑌 . Explicitly,

ℙ
{
𝑋𝑛 → 𝔼𝑌

}
= 1.

Figure 15.2 illustrates what almost-sure convergence means in this context. In
words, the probability of encountering a stray sample path that does not converge to
the expectation is zero.

A direct proof of Theorem 15.10 is delicate, and we prefer to spend our effort on
other things. You may find the argument in many textbooks on probability theory,
such as [Shi96, Sec. IV.3]. For a sketch of the proof, see Problem 15.21. We will prove
a variant (Theorem 15.11) of the SLLN later in this lecture.

Instead, let us discuss what Kolmogorov’s SLLN means. First of all, the assumption
that𝑌 ∈ L1 is necessary to ensure that its expectation 𝔼𝑌 is finite. Under this minimal
assumption, the result states that the running averages converge almost surely to the
expectation. For a randomly chosen sample point 𝜔 ∈ Ω, there is a 100% chance
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that the sample path 𝑋𝑛 (𝜔) → 𝔼𝑌 . (In particular, the running averages converge in
probability because of Exercise 15.9.)

15.3.3 Implications of the SLLN
The SLLN has important implications for statistics and for probability theory.

The sample average estimator
First, the SLLN gives an asymptotic justification for the sample average estimator for
the population mean. Let 𝑌 be a real random variable that describes the distribution
of some variable associated with a population. Suppose that we sample 𝑛 individuals
independently at random from the population (with replacement), and we record the
values 𝑌𝑖 of their responses. By construction of the sample, the 𝑌𝑖 are i.i.d. copies of 𝑌 .

For example, 𝑌 might model the number of “friends” that a member of a social
networking site has. We select 𝑛 random members of the site, and we inquire about
the number 𝑌𝑖 of “friends” that each of these individuals has.

We can estimate the population mean 𝔼𝑌 using the sample mean 𝑋𝑛 = 𝑛−1 ∑𝑛
𝑖=1𝑌𝑖 .

The SLLN tells us that, as we sample more and more individuals, we can have 100%
confidence that 𝑋𝑛 → 𝔼𝑌 . In other words, the SLLN gives a long-run guarantee that
the sample average estimator tends to the population mean under the weakest possible
assumption (𝑌 ∈ L1).

Aside: In some applications, we may encounter “heavy-tailed” random variables
that do not have an expectation. The SLLN does not apply in these cases. Potential
examples include things like the magnitude of earthquakes or the value of certain
financial assets.

Frequentist interpretation of probabilities
Second, the SLLN justifies the frequentist interpretation of probabilities. Let (Ω,F,ℙ)
be a probability space. Let A be an event with probability 𝑝 = ℙ(A). How can we
understand what this probability means? Here is one approach.

Imagine that we can perform an experiment and observe whether or not the event
A occurs. Let𝑌 = 1A be the indicator random variable that the event occurs. Of course,
𝔼𝑌 = ℙ(A) = 𝑝 .

Now, suppose that we can perform repeated independent trials of this experiment
and observe whether A occurs in each trial. If so, we obtain a sequence (𝑌𝑖 : 𝑖 ∈ ℕ) of
i.i.d. copies of the indicator 𝑌 = 1A. The running average 𝑋𝑛 gives the proportion of
the first 𝑛 trials in which the event A occurs. The SLLN states that, with probability
one, 𝑋𝑛 → 𝔼𝑌 = 𝑝 . In other words, we can think about the probability 𝑝 of the event
A as the long-run proportion of times that the event occurs.

Aside: Some philosophers question whether it even makes sense to talk about
repeated experiments. For example, the 2020 US presidential election only
happened one time, in all its awful glory. Does it make sense to talk about the
“probability” of an outcome of the election in the frequentist sense? Bayesians
would argue that, instead, probabilities reflect our prior assumptions, updated
based on available evidence. There is also a school of thought that probabilities
are “degrees of belief.” Other authors regard probabilities as a reflection of one’s
willingness to wager on the outcome. These debates are extra-mathematical.

15.4 Cantelli’s SLLN
We will prove another strong law of large numbers, due to Cantelli.
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Theorem 15.11 (Cantelli’s SLLN). Let 𝑌 ∈ L4, and consider an i.i.d. sequence (𝑌𝑖 : 𝑖 ∈
ℕ) of copies of 𝑌 . Then the running average 𝑋𝑛 → 𝔼𝑌 almost surely.

In contrast with Kolmogorov’s SLLN (Theorem 15.10), the hypotheses of Cantelli’s
SLLN are more generous. The assumption that 𝑌 ∈ L4 allows us to give a short,
transparent proof. The approach extends the argument behind Chebyshev’s WLLN
(Theorem 15.3) by using some stronger tail bounds.

Problem 15.12 (Cantelli: Non-identical distributions). Formulate and prove a version of
Cantelli’s strong law when (𝑌𝑖 : 𝑖 ∈ ℕ) are independent but may not have the same
distribution.

Exercise 15.13 (*Cantelli: Four-wise independence). Show that Cantelli’s strong law holds
when (𝑌𝑖 : 𝑖 ∈ ℕ) under the weaker assumption of four-wise independence. That
is, (𝑌𝑖 ,𝑌𝑗 ,𝑌𝑘 ,𝑌ℓ) is independent for all indices 𝑖 , 𝑗 , 𝑘 , ℓ. See Warning 13.23 for some
discussion.

15.4.1 The lemmata of Borel & Cantelli
An important ingredient in the proof of Cantelli’s strong law is a classic result, called
the first Borel–Cantelli lemma.

Proposition 15.14 (Borel–Cantelli I). Let (A𝑛 : 𝑛 ∈ ℕ) be a sequence of events. Then∑︁∞
𝑛=1

ℙ(A𝑛) < +∞ implies ℙ(lim sup𝑛→∞ A𝑛) = 0.

Recall that lim sup𝑛→∞ A𝑛 :=
⋂∞
𝑛=1

⋃
𝑖≥𝑛 A𝑖 .

The limit superior, lim sup𝑛→∞ A𝑛 , is the event that an infinite number of the events
A𝑛 occur. The Borel–Cantelli lemma concerns the case where the total probability∑
𝑛 ℙ(A𝑛) is finite. In this situation, with probability one, only a finite number of the

events A𝑖 occur.

Proof. This result follows when we apply Problem 5.41 to the indicator random variables
of the events. We can also give a direct proof.

Fix an index 𝑛 ∈ ℕ. By definition of the limit superior and the union bound,

ℙ
(
lim sup𝑛→∞ A𝑛

)
≤ ℙ

(⋃
𝑖≥𝑛 A𝑖

)
≤

∑︁
𝑖≥𝑛

ℙ(A𝑖 ).

As 𝑛 → ∞, the latter sum converges to zero because the entire sequence of probabilities
is summable. ■

Problem 15.15 (*Borel–Cantelli II). There is a partial converse of Proposition 15.14 under
an additional independence assumption.

1. For numbers 0 ≤ 𝑝𝑛 < 1, demonstrate that∏∞
𝑛=1

(1 − 𝑝𝑛) = 0 if and only if
∑︁∞

𝑛=1
𝑝𝑛 = +∞.

2. Assume that the family (A𝑛 : 𝑛 ∈ ℕ) of events is independent. Prove the second
Borel–Cantelli lemma:∑︁∞

𝑛=1
ℙ(A𝑛) = +∞ implies ℙ

(
lim sup𝑛→∞ A𝑛

)
= 1.

Hint: Take complements and use the first part.
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Figure 15.3 (The funnel). At time 𝑛 ∈ ℕ, a sample path 𝑋𝑛 (𝜔) of the running average
is very likely to lie inside the “funnel” with envelope ±𝑛−1/8.

15.4.2 Proof of Cantelli’s strong law
To simplify matters, we can and will assume that the random variable 𝑌 is centered.

Exercise 15.16 (Cantelli: Centering). Prove that we can take 𝔼𝑌 = 0 without loss of
generality.

The main technical ingredient in the proof of Cantelli’s theorem is the following
claim, which we establish in Section 15.4.3.

Claim 15.17 (Cantelli: Tail bounds). Assume that 𝔼𝑌 = 0, and abbreviate 𝑀 := 𝔼 |𝑌 |4.
For all 𝑛 ∈ ℕ, we have

ℙ
{
|𝑋𝑛 | ≥ 𝑛−1/8} ≤ 3𝑀 · 𝑛−3/2.

In other words, as the time 𝑛 increases, the running average 𝑋𝑛 is increasingly
unlikely to fall outside a “funnel” around zero. See Figure 15.3. The key facts are that
the funnel narrows to zero and that the probabilities are summable over time. You
should compare this bound with the one that arises in the proof of Chebyshev’s WLLN.

Proof of Theorem 15.11. Without loss, assume that 𝔼𝑌 = 0, and grant that Claim 15.17
is valid. We must show that 𝑋𝑛 → 0 almost surely.

For each 𝑛 ∈ ℕ, define the event A𝑛 that the sample path
(
𝑋𝑘 (𝜔) : 𝑘 ∈ ℕ

)
lies

outside the “funnel” at time 𝑛. That is,

A𝑛 :=
{
𝜔 ∈ Ω : |𝑋𝑛 (𝜔) | ≥ 𝑛−1/8}.

Claim 15.17 implies that∑︁∞
𝑛=1

ℙ(A𝑛) ≤ 3𝑀
∑︁∞

𝑛=1
𝑛−3/2 < +∞.

The Borel–Cantelli lemma (Proposition 15.14) yields

ℙ
(
lim sup𝑛→∞ A𝑛

)
= 0. (15.2)

With probability one, only a finite number of the events A𝑛 occur. As a consequence,
𝑋𝑛 → 0 almost surely.
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Here are the details. For each sample point 𝜔 ∈ Ω, we can define the number

We explicitly allow 𝑁 (𝜔 ) = +∞.𝑁 (𝜔) := sup{𝑛 ∈ ℕ : 𝜔 ∈ A𝑛} = sup{𝑛1A𝑛 (𝜔) : 𝑛 ∈ ℕ}.

In other words, 𝑁 (𝜔) is the last time 𝑛 that the sample point 𝜔 belongs to an event
A𝑛 . The function 𝜔 ↦→ 𝑁 (𝜔) is measurable because it is a countable supremum of
measurable functions. The relation (15.2) ensures that the (extended) random variable
𝑁 < +∞ with probability one. Furthermore,

ℙ
{
𝜔 ∈ Ω : 𝑁 (𝜔) < +∞ and |𝑋𝑛 (𝜔) | < 𝑛−1/8 for all 𝑛 > 𝑁 (𝜔)

}
= 1.

As a particular consequence of the last display, it holds that

ℙ
{
𝜔 ∈ Ω : |𝑋𝑛 (𝜔) | → 0

}
= 1.

We conclude that 𝑋𝑛 → 0 almost surely. ■

15.4.3 Cantelli tail bounds: Proof
Finally, we must establish Claim 15.17. This result uses Markov’s inequality to convert
moment information into tail information, and it relies on independence to obtain a
good bound for the moment.

Assume that 𝔼𝑌 = 0, and write𝑀 := 𝔼 |𝑌 |4. Markov’s inequality (Theorem 10.13)
applied to |𝑋𝑛 |4 ensures that

ℙ
{
|𝑋𝑛 | ≥ 𝑛−1/8} ≤ 𝑛1/2 · 𝔼 |𝑋𝑛 |4 = 𝑛−3.5 · 𝔼 |𝑋𝑛 |4,

where 𝑋𝑛 :=
∑𝑛
𝑖=1𝑌𝑖 is the (unnormalized) partial sum.

We bound the fourth moment of the partial sum by direct computation:

𝔼 |𝑋𝑛 |4 = 𝔼
[∑︁𝑛

𝑖 ,𝑗 ,𝑘 ,ℓ=1
𝑌𝑖𝑌𝑗𝑌𝑘𝑌ℓ

]
=

∑︁𝑛

𝑖=1
𝔼𝑌 4

𝑖 + 6
∑︁

𝑖<𝑘
𝔼[𝑌 2

𝑖 𝑌
2
𝑘 ]

= 𝑛 · 𝔼𝑌 4 + 3𝑛 (𝑛 − 1) · (𝔼𝑌 2)2

≤ 𝑛 · 𝔼𝑌 4 + 3𝑛 (𝑛 − 1) · 𝔼𝑌 4 ≤ 3𝑛2𝑀.

To reach the first relation, we expand the fourth power of the sum. Since the sequence
(𝑌𝑖 : 𝑖 ∈ ℕ) consists of independent random variables with mean zero, the summands
with an unpaired index have expectation zero. What remains are the terms where
all indices are the same: 𝑖 = 𝑗 = 𝑘 = ℓ. Also remaining are the terms where
𝑖 = 𝑗 < 𝑘 = ℓ or one of the other five other permutations of the letters in this
formula. By independence and identical distribution, since 𝑖 < 𝑘 , we can see that
𝔼[𝑌 2

𝑖
𝑌 2
𝑘
] = (𝔼𝑌 2)2 ≤ 𝔼𝑌 4, where the last relation is Jensen’s inequality. Finally, we

write𝑀 := 𝔼𝑌 4 and combine terms.

Problems
Problem 15.18 (Kolmogorov’s maximal inequality). Kolmogorov improved Chebyshev’s
inequality as follows. Consider an independent family (𝑌1, . . . ,𝑌𝑛) of zero-mean
random variables in L2. Introduce the partial sums 𝑋𝑘 =

∑𝑘
𝑖=1 𝑋𝑖 for 𝑘 = 1, . . . , 𝑛.

Then
ℙ {max𝑘≤𝑛 |𝑋𝑘 | ≥ 𝑡 } ≤ 1

𝑡 2
· Var[𝑋𝑛] for 𝑡 > 0.

This bound is called Kolmogorov’s maximal inequality. In Lecture 26, we will develop
some far-reaching generalizations using martingale methods.
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1. Use the union bound and Chebyshev’s inequality to obtain a (much) weaker tail
bound for max𝑘≤𝑛 |𝑋𝑘 |.

2. For each 𝑘 = 1, . . . , 𝑛, define the event E𝑘 that |𝑋𝑘 | ≥ 𝑡 while |𝑋 𝑗 | < 𝑡 for all
𝑗 < 𝑘 . Show that these events are mutually exclusive.

3. Argue that (𝑋𝑛 − 𝑋𝑘 ) is independent from the family (𝑌1, . . . ,𝑌𝑘 ). Hence,
(𝑋𝑛 − 𝑋𝑘 ) is independent from 𝑋𝑘 and from E𝑘 .

4. Verify that 𝔼[𝟙E𝑘𝑋𝑘 (𝑋𝑛 − 𝑋𝑘 )] = 0.
5. For each 𝑘 = 1, . . . 𝑛, show that

ℙ(E𝑘 ) ≤
1
𝑡 2

𝔼[𝟙E𝑘𝑋 2
𝑘 ] ≤

1
𝑡 2

𝔼[𝟙E𝑘𝑋 2
𝑛 ].

6. Sum these inequalities to conclude that the maximal inequality holds.

Problem 15.19 (*Independent sums in L2: Convergence theory). Consider an independent
sequence (𝑌1,𝑌2,𝑌3, . . . ) ∈ L2 of square-integrable random variables. We assume that
the random variables are centered and have controlled variance:

𝔼[𝑌𝑖 ] = 0 for 𝑖 ∈ ℕ and
∑︁∞

𝑖=1
Var[𝑌𝑖 ] < +∞.

Define the partial sums 𝑋𝑛 :=
∑𝑛
𝑖=1𝑌𝑖 for 𝑛 ∈ ℕ. By direct arguments, we can show

that the partial sums converge to a limit in L2 and almost surely. Later, in Lecture 25,
we will learn how to obtain the same results from a martingale argument.

1. L2 convergence: Show that (𝑋𝑛 : 𝑛 ∈ ℕ) is a Cauchy sequence in L2, so it
converges to a limit in L2.

2. *Almost-sure convergence: A fortiori, demonstrate that (𝑋𝑛 : 𝑛 ∈ ℕ) converges
almost surely. Hint: It suffices to prove that max𝑚,𝑛≥𝑁 |𝑋𝑚 − 𝑋𝑛 | → 0 almost
surely as 𝑁 → ∞. For this purpose, you can apply the Kolmogorov maximal
inequality (Problem 15.18) to max𝑘≤𝑛 |𝑋𝑁+𝑘 − 𝑋𝑁 | and take a limit as 𝑛 → ∞.

Problem 15.20 (*Kronecker’s lemma). Consider two sequences (𝑎𝑛 : 𝑛 ∈ ℕ) and (𝑥𝑛 :
𝑛 ∈ ℕ) of real numbers. Assume that 0 < 𝑎𝑛 ↑ +∞. Prove the following statement:∑︁∞

𝑖=1

𝑥𝑖

𝑎𝑖
converges implies

1
𝑎𝑛

∑︁𝑛

𝑖=1
𝑥𝑖 → 0 as 𝑛 → ∞.

Hint: Use summation by parts.

Problem 15.21 (**Slytherins). In this problem, we will establish two versions of the strong
law of large numbers (SLLN). These results have weaker hypotheses than Cantelli’s
SLLN (Theorem 15.11), but the proofs are commensurately harder. See Lecture 25 for
some alternative approaches using martingale methods.

Consider an independent sequence (𝑌1,𝑌2,𝑌3, . . . ) ∈ L2 of square-integrable random
variables. We assume that the random variables are centered and have controlled
variance:

𝔼[𝑌𝑖 ] = 0 for 𝑖 ∈ ℕ and
∑︁∞

𝑖=1

Var[𝑌𝑖 ]
𝑖 2

< +∞.

We do not assume identical distribution at this point. Define the partial sums 𝑋𝑛 :=∑𝑛
𝑖=1𝑌𝑖 for 𝑛 ∈ ℕ.

1. L2 SLLN: The L2 SLLN is about as good as it
gets unless we make stronger
hypotheses to link the summands,
such as an i.i.d. assumption.

Use Problem 15.19 to establish that
∑𝑛
𝑖=1𝑌𝑖/𝑖 converges almost surely as

𝑛 → ∞. Apply Kronecker’s lemma (Problem 15.20) to conclude that 𝑋𝑛/𝑛 → 0
almost surely. Formulate a SLLN for the running average of independent,
square-integrable real random variables.
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2. **Kolmogorov’s SLLN: Now, assume that (𝑌𝑖 : 𝑖 ∈ ℕ) are i.i.d. copies of an
integrable random variable 𝑌 ∈ L1. Prove Kolmogorov’s SLLN (Theorem 15.10).
Hint: Apply the L2 SLLN to the truncated random variables 𝑌𝑖1 |𝑌𝑖 | ≤𝑖 .

Problem 15.22 (Renewal theorem). Independent sums arise in the study of waiting times
for (real-world) events to occur, such as emission of a photon from a radioactive mass
or the completion of a task by a computer server. In this problem, we establish the
renewal theorem, a fundamental result that describes how many events occur per unit
time in the long run. This result has many practical applications (e.g., in queuing), as
well as theoretical application (e.g., in the study of Markov chains).

Let 𝑌 ∈ L1 be positive random variable that models the waiting time, and write
𝑚 = 𝔼𝑌 for the expected waiting time. Now, consider an i.i.d. sequence (𝑌1,𝑌2,𝑌3, . . . )
of copies 𝑌 . For each time 𝑡 ≥ 0, define a random variable 𝑁𝑡 that counts the total
number of events that have occurred up to time 𝑡 :

𝑁𝑡 := sup{𝑛 ∈ ℕ : 𝑌1 +𝑌2 + · · · +𝑌𝑛 ≤ 𝑡 }.

If no event has occurred by time 𝑡 , then 𝑁𝑡 = 0. We will prove that

𝑁𝑡

𝑡
→ 1

𝑚
almost surely. (15.3)

In words, in the long-run, the number of events per unit time is the reciprocal of the
wait time with probability one.

1. For each 𝑡 ∈ ℝ, explain why 𝑁𝑡 is a (finite) real random variable.
2. As usual, define the partial sums 𝑋𝑛 :=

∑𝑛
𝑖=1𝑌𝑖 . Explain why 𝑋𝑛/𝑛 → 𝑚 almost

surely as 𝑛 → ∞.
3. Show that 𝑁𝑡 → ∞ almost surely as 𝑡 → ∞. Hint: For each 𝑛 ∈ ℕ, the event

{𝑁𝑡 ≥ 𝑛} = {𝑋𝑛 ≤ 𝑡 }.
4. Deduce that

ℙ

{
𝑋𝑁𝑡
𝑁𝑡

→ 𝑚 and
𝑋1+𝑁𝑡
1 +𝑁𝑡

→ 𝑚 as 𝑡 → ∞
}
= 1.

5. Verify the pair of inequalities

𝑋𝑁𝑡
𝑁𝑡

≤ 𝑡

𝑁𝑡
<
𝑋1+𝑁𝑡
𝑁𝑡

.

6. Confirm that the upper and lower bounds in the last display converge almost
surely to𝑚. Conclude that the renewal theorem (15.3) is valid.

Applications
Application 15.23 (Monte Carlo integration). Monte Carlo integration is a fundamental
computational method for approximating integrals. It is most suitable for high-
dimensional integrals and for integrals with respect to a distribution that may be hard
to sample directly. We explore the simplest form of the method.

Abstractly, suppose that 𝜇 is a probability measure on ℝ𝑑 . Let 𝑓 : ℝ𝑑 → ℝ be a
𝜇-integrable function. We would like to evaluate the integral

𝐼 =

∫
ℝ𝑑

𝑓 d𝜇.
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The Monte Carlo approach proceeds by drawing independent random samples
𝑌1,𝑌2,𝑌3, . . . from the distribution 𝜇. Then we compute 𝑋𝑘 = 𝑓 (𝑌𝑘 ), and we form the
approximation

𝐼𝑛 =
1
𝑛

∑︁𝑛

𝑘=1
𝑋𝑘 .

1. For each 𝑛, show that 𝐼𝑛 is an unbiased estimator. That is, 𝔼 𝐼𝑛 = 𝐼 .
2. Use Kolmogorov’s SLLN to explain what happens as 𝑛 → ∞. (Does Cantelli’s

SLLN apply?)
3. From now on, assume that 𝑓 2 is 𝜇-integrable. Give a bound for the variance

Var[𝐼𝑛]. (*) Use the central limit theorem (Lecture 18) to describe the fluctuations
of the error |𝐼𝑛 − 𝐼 | as 𝑛 → ∞.

4. In practice, we only get a finite number of samples. For 𝑛 samples, about how
big do you anticipate the error |𝐼𝑛 − 𝐼 | will be? Does the ambient dimension 𝑑
play a direct role?

5. Explain how to use Monte Carlo integration to estimate two numerical constants
via the formulas

𝜋 = 4
∫
[0,1]2

1{𝑥2 + 𝑦 2 ≤ 1} 𝜆2(d𝑥 × d𝑦 ) = 3.14159 26535 89793 23846 . . .

𝛾 = −
∫
(0,∞)

log(𝑥) e−𝑥 𝜆(d𝑥) = 0.57721 56649 01532 86060 . . . .

6. For each integral, perform the following computer experiment. Let 𝑛 = 10𝑖 for
𝑖 = 1, 2, 3, 4, 5. Estimate the integral using 𝑛 samples. Repeat 1000 times. Make
a histogram of the estimates. Report the mean and variance of the distribution.
Discuss.

7. For each integral, perform the following computer experiment. Draw 1000
samples 𝑋𝑘 . Compute the sample path 𝑛 ↦→ 𝐼𝑛 . Repeat this process 100 times.
Plot all 100 sample paths on the same graph with translucent lines. Discuss.

8. (*) Approximate the integral for 𝛾 using Gauss–Laguerre quadrature with 𝑛 = 2𝑖

samples for 𝑖 = 1, . . . , 8. Estimate the convergence rate. Discuss.

Notes
You will find similar material on laws of large numbers in any book on probability
theory.



16. Concentration Inequalities

Agenda:
1. Chebyshev’s inequality
2. Exponential moments
3. The Laplace transform method
4. Hoeffding’s inequality
5. Bernstein’s inequality

“Concentrate all your thoughts upon the work at hand. The sun’s rays do not burn
until brought to a focus.”

—Alexander Graham Bell

A concentration inequality bounds the probability that a random variable takes a
value that is significantly different from its expectation:

ℙ {|𝑋 − 𝔼𝑋 | ≥ 𝑡 } ≤ . . . .

Concentration inequalities are nonasymptotic: they deliver concrete information about
particular random variables, so they are well suited for applications. Indeed, con-
centration inequalities are among the most widely used tools in modern statistics,
mathematics of data science, and related fields.

In this lecture, we develop the basic theory of concentration inequalities for
independent sums. These results give very strong bounds on the tail probabilities of
an independent sum with a fixed number of terms. In many situations, we can obtain
tail bounds with exponential decay—or sometimes even better.

16.1 Example: Chebyshev’s inequality
We have already encountered the simplest concentration result. Indeed, Chebyshev’s
variance inequality provides a bound for the tail probability of a random variable in
terms of its variance.

Recall that the variance may be defined as the expected squared deviation of a
random variable from its expectation:

Var[𝑌 ] := 𝔼(𝑌 − 𝔼𝑌 )2.

Thus, we can think about the standard deviation, stdev(𝑌 ) :=
√︁
Var[𝑌 ], as the scale

on which the random variable typically fluctuates around its expectation. Note that
the standard deviation has the same units as the random variable. We can restate
Chebyshev’s inequality as follows.

Proposition 16.1 (Chebyshev). Let 𝑋 ∈ L2 be a real random variable. Then Recall that ∧ denotes the minimum of
two numbers.

ℙ {|𝑋 − 𝔼𝑋 | ≥ stdev[𝑋 ] · 𝑡 } ≤ 1 ∧ 𝑡 −2 for all 𝑡 > 0.

Chebyshev’s inequality is a natural tool for studying a sum of mutually uncorrelated
random variables. In this case, the variance of the sum is the sum of the variances.
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Example 16.2 (Concentration: Uncorrelated sum). Consider a family (𝑌1, . . . ,𝑌𝑛) ∈ L2 of
mutually uncorrelated real random variables that are square integrable. Introduce the
ordinary sum 𝑋 :=

∑𝑛
𝑖=1𝑌𝑖 . By the Pythagorean relation (Proposition 12.16),

𝜎2 := Var[𝑋 ] =
∑︁𝑛

𝑖=1
Var[𝑌𝑖 ].

Chebyshev’s inequality yields the tail bound

ℙ {|𝑋 − 𝔼𝑋 | ≥ 𝜎 · 𝑡 } ≤ 1 ∧ 𝑡 −2 for 𝑡 > 0.

This is a concentration inequality for a sum of uncorrelated random variables. ■

Let emphasize again that Proposition 16.2 holds whenever the summands are
mutually uncorrelated. We need neither independence nor identical distribution.
Furthermore, the standard deviation 𝜎 is a natural scale for studying the deviation of
𝑋 from its expectation. On this scale, the tail probability decays at least as fast as 𝑡 −2

for all 𝑡 > 0. See Figure 16.1 for an illustration.

Example 16.3 (Concentration: Running average). As a particular example, consider an
independent sequence (𝑌1,𝑌2,𝑌3, . . . ) of copies of a random variable 𝑌 ∈ L2. Let
𝑋𝑛 := 𝑛−1 ∑𝑛

𝑖=1𝑌𝑖 be the running average. Since independent random variables are
uncorrelated (Exercise 13.11), Example 16.2 implies that

ℙ

{��𝑋𝑛 − 𝔼𝑌
�� ≥ stdev[𝑌 ] · 𝑡

√
𝑛

}
≤ 1
𝑡 2

for 𝑡 > 0.

A striking feature of this formulation is that the scale for concentration decreases as the
number 𝑛 of summands grows. Making the change of variables 𝑡 ↦→ 𝑡

√
𝑛, we have the

alternative expression

ℙ
{��𝑋𝑛 − 𝔼𝑌

�� ≥ stdev[𝑌 ] · 𝑡
}
≤ 1
𝑛𝑡 2

for 𝑡 > 0.

In other words, the probability of a fluctuation larger than a fixed size decreases as the
number of summands grows. ■

We may summarize the key points. Chebyshev’s inequality is a concentration
inequality: it gives a bound for the probability that a random variable is far from its
expected value. For uncorrelated sums, Chebyshev’s inequality exploits the fact that
the variance is additive. The resulting bound only involves the coarsest features of the
individual summands (that is, their variances). It operates under weak assumptions
(square-integrability), and it is very easy to use.

On the other hand, Chebyshev’s inequality gives rather limited information on the
tail decay. If we want to improve, we need to pose further assumptions. In the rest of
this lecture, we will see that we can obtain much steeper concentration if we require
that the summands are independent and bounded.

16.2 Exponential moments
As we saw in Lecture 10, bounds on polynomial moments are roughly equivalent to
polynomial bounds on tail decay. In this section, we take this idea to an extreme by
introducing the concept of an exponential moment. Exponential moments provide a
way to check that the tails of a random variable decay exponentially fast.
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Figure 16.1 (Chebyshev’s inequality). This diagram depicts the bound produced by
Chebyshev’s inequality. It shows that the probability of a deviation on the scale of the
standard deviation 𝜎 decays at least quadratically.

16.2.1 Moment and cumulant generating functions
To begin, let us introduce two functions that pack up information about the exponential
moments of a random variable.

Definition 16.4 (Mgf and cgf). Let 𝑋 be a real random variable. Define the moment
generating function (mgf):

𝑚𝑋 (𝜃 ) := 𝔼 e𝜃𝑋 for each 𝜃 ∈ ℝ.

Define the cumulant generating function (cgf):

𝜉𝑋 (𝜃 ) := log𝑚𝑋 (𝜃 ) = log𝔼 e𝜃𝑋 for each 𝜃 ∈ ℝ.

The mgf and cgf are always defined, but they can take extended real values.

The mgf and cgf are useful only for random variables that have very rapidly decaying
tails. In particular, observe that, for an a.s. bounded random variable 𝑋 ∈ L∞, the
mgf 𝑚𝑋 (𝜃 ) and cgf 𝜉𝑋 (𝜃 ) take finite values for all 𝜃 ∈ ℝ. The mgf and cgf are
also valuable for random variables that have exponential tail decay, in which case the
generating functions may not be finite on the whole real line (Exercise 16.11).

16.2.2 Properties of exponential moments
Let us summarize some of the basic properties of the mgf and cgf.

Exercise 16.5 (Mgf: Convexity). Prove that𝑚𝑋 is a positive, convex function. Hint: The
mgf is an average of positive, convex functions.

Exercise 16.6 (Cgf: Shifts). Show that 𝜉𝑋 +𝑎 (𝜃 ) = 𝜉𝑋 (𝜃 ) + 𝑎𝜃 for each scalar 𝑎 ∈ ℝ.
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Problem 16.7 (Cgf: Convexity and exponential means). For simplicity, assume that 𝑋 is a
bounded, nonconstant random variable. Similar results hold for random variables
whose cgf 𝜉𝑋 (𝜃 ) is finite on a neighborhood of 𝜃 = 0.

1. Observe that 𝜉𝑋 (0) = 0 without qualification.
2. Using bounded convergence, compute the first and second derivative of 𝜉𝑋 (𝜃 ).
3. Deduce that 𝜉 ′

𝑋
(0) = 𝔼[𝑋 ] and 𝜉 ′′

𝑋
(0) = Var[𝑋 ].

4. (*) Prove that 𝜉𝑋 is a strictly convex function. Hint: Rewrite 𝜉 ′′
𝑋
(𝜃 ) as the variance

of a nonconstant random variable related to 𝑋 . Recall that a function with two
continuous derivatives is convex if
and only if the second derivative is
positive.

5. (*) Using Jensen’s inequality, verify that

inf 𝑋 ≤ 1
(−𝜃 ) 𝜉𝑋 (−𝜃 ) ≤ 𝔼𝑋 ≤ 1

𝜃
𝜉𝑋 (𝜃 ) ≤ sup𝑋 for 𝜃 > 0.

Note that lim𝜃→0 𝜃
−1𝜉𝑋 (𝜃 ) = 𝔼[𝑋 ].

6. (*) More generally, show that 𝜃 ↦→ 𝜃 −1𝜉𝑋 (𝜃 ) is an increasing function. These
results support the interpretation of 𝜃 −1𝜉𝑋 (𝜃 ) as an exponential mean of the
random variable 𝑋 , which is a type of weighted average parameterized by 𝜃 .

16.2.3 Examples
In this section, we undertake mgf and cgf calculations for some important classes
of random variables. We typically use cgfs to study the concentration of a random
variable about its mean, so it is often more natural to study the cgf of a centered
random variable.

Exercise 16.8 (Cgf: Bernoulli distribution). Let 𝑌 ∼ bernoulli(𝑝) be a Bernoulli random
variable with mean 𝑝 ∈ [0, 1]. Calculate that the mgf takes the form

𝑚𝑌 (𝜃 ) = 1 + 𝑝 · (e𝜃 − 1) for all 𝜃 ∈ ℝ.

Deduce that cgf satisfies the bound 𝜉𝑌 (𝜃 ) ≤ 𝑝 · (e𝜃 − 1) for all 𝜃 ∈ ℝ.

Exercise 16.9 (Cgf: Poisson distribution). Let 𝑌 ∼ poisson(𝛽) be a Poisson random
variable with mean 𝛽 ∈ ℝ+. Calculate that the cgf of the centered variable 𝑍 = 𝑌 −𝔼𝑌
takes the form

𝜉𝑍 (𝜃 ) = e𝛽𝜃 − 𝛽𝜃 − 1 for all 𝜃 ∈ ℝ.

This is an example of an unbounded random variable whose cgf is finite on the whole
real line. How fast does 𝜉𝑍 (𝜃 ) grow as 𝜃 → −∞ and as 𝜃 → +∞?

Exercise 16.10 (Cgf: Normal distribution). Let 𝑍 ∼ normal(0, 𝜎2) be a centered normal
random variable with variance 𝜎2 ∈ ℝ+. Calculate that the cgf takes the form

𝜉𝑍 (𝜃 ) =
𝜎2𝜃 2

2
for all 𝜃 ∈ ℝ.

This is another example of an unbounded random variable whose cgf is finite on the
whole real line. Hint: Complete the square in the exponential, change variables, and
use the fact that the standard normal density has total mass one.

Exercise 16.11 (Cgf: Exponential distribution). Let 𝑌 ∼ exponential(𝛽) be an exponential
random variable with mean 𝛽 ∈ ℝ+. This is an example of an unbounded random
variable whose cgf is only finite on part of the real line.

1. Calculate that the cgf takes the form

𝜉𝑌 (𝜃 ) = − log(1 − 𝛽𝜃 ) for all 𝜃 < 𝛽−1.
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2. Show that the cgf of the centered random variable 𝑍 = 𝑌 − 𝔼𝑌 satisfies

𝜉𝑍 (𝜃 ) ≤
𝛽2𝜃 2/2
1 − 𝛽𝜃+

for all 𝜃 < 𝛽−1.

The factor 𝛽2 in the numerator is the variance of 𝑍 . Hint: For 𝜃 > 0, compare
the full Taylor series. For 𝜃 < 0, use a second-order Taylor expansion with exact
remainder.

3. Plot the cgf 𝜉𝑍 (𝜃 ) and the upper bound. Observe that they agree to second order
at 𝜃 = 0.

Exercise 16.12 (Tails control exponential moments). Let 𝑋 be a real random variable.
Suppose that there are strictly positive constants 𝑎, 𝑏 > 0 for which

ℙ {|𝑋 | ≥ 𝑡 } ≤ 𝑎e−𝑏𝑡 for all 𝑡 ≥ 0.

Find an upper bound for𝑚𝑋 (𝜃 ), and deduce that𝑚𝑋 (𝜃 ) is finite on an open interval
containing 𝜃 = 0. Hint: Use integration by parts (Theorem 10.16).

16.2.4 Cumulants are additive
The cgf is an ideal tool for studying independent sums because the cgf of an independent
sum is the sum of the cgfs. This property will serve as a powerful substitute for the
additivity of the variance for an uncorrelated sum (Proposition 12.16).

Proposition 16.13 (Cgf: Additivity). Consider an independent family (𝑌1, . . . ,𝑌𝑛) of real
random variables, and form the sum 𝑋 =

∑𝑛
𝑖=1𝑌𝑖 . Then

𝑚𝑋 (𝜃 ) =
∏𝑛

𝑖=1
𝑚𝑌𝑖 (𝜃 ) for each 𝜃 ∈ ℝ.

In particular, taking logarithms,

𝜉𝑋 (𝜃 ) =
∑︁𝑛

𝑖=1
𝜉𝑌𝑖 (𝜃 ) for each 𝜃 ∈ ℝ.

Proof. This result follows from a short, magical calculation:

𝑚𝑋 (𝜃 ) = 𝔼 e𝜃𝑋 = 𝔼
∏𝑛

𝑖=1
e𝜃𝑌𝑖 =

∏𝑛

𝑖=1
𝔼 e𝜃𝑌𝑖 =

∏𝑛

𝑖=1
𝑚𝑌𝑖 (𝜃 ).

Of course, the exponential of a sum is the product of the exponentials. Since the
family (𝑌𝑖 : 𝑖 = 1, . . . , 𝑛) of random variables is independent, the expectation of a
product of functions of independent random variables is the product of the expectations
(Proposition 13.8). Since all the exponentials are positive, there are no concerns about
integrability. ■

Exercise 16.14 (Cgf: Binomial distribution). Using Exercise 16.8 and Proposition 16.13,
deduce that the cgf of a random variable 𝑋 with the binomial(𝑛,𝑝) distribution
satisfies

𝜉𝑋 (𝜃 ) ≤ 𝑛𝑝 · (e𝜃 − 1) for all 𝜃 ∈ ℝ.

Consider the centered binomial variable 𝑍 = 𝑋 − 𝔼[𝑋 ]. Confirm that

𝜉𝑍 (𝜃 ) ≤ 𝑛𝑝 · (e𝜃 − 𝜃 − 1).

The similarity with the Poisson cgf bound (Exercise 16.9) is no accident!
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Exercise 16.15 (Cgf: Gamma distribution). Consider the gamma random variable 𝑋 ∼
gamma(𝑛, 𝛽) with shape 𝑛 ∈ ℕ and scale 𝛽 ∈ ℝ+. Form the centered random variable
𝑍 = 𝑋 − 𝔼𝑋 . Show that the cgf satisfies

𝜉𝑍 (𝜃 ) ≤
𝑛𝛽2𝜃 2/2
1 − 𝛽𝜃+

for 𝜃 < 𝛽−1.

Hint: When the shape parameter 𝑛 is a natural number, the gamma(𝑛, 𝛽) random
variable is a sum of i.i.d. exponential random variables with mean 𝛽 .

16.2.5 *Generating functions
You may wonder about the “generating function” terminology. As you saw in Prob-
lem 10.23, the derivatives of the mgf at zero deliver the polynomial moments of the
random variable:

(D𝑝𝑚𝑋 ) (0) = 𝔼𝑋 𝑝 for each 𝑝 ∈ ℤ+.

In words,𝑚𝑋 is the exponential generating function of the sequence (𝔼𝑋 𝑝 : 𝑝 ∈ ℤ+)
of polynomial moments. See also Exercise 10.8.

Similarly, we define the 𝑝th cumulant 𝜅𝑝 of the random variable to be

(D𝑝𝜉𝑋 ) (0) =: 𝜅𝑝 (𝑋 ) for each 𝑝 ∈ ℕ.

In words, 𝜉𝑋 is the exponential generating function of the sequence (𝜅𝑝 (𝑋 ) : 𝑝 ∈ ℕ)
of cumulants of 𝑋 .

What are these cumulants? The first two are familiar: 𝜅1(𝑋 ) = 𝔼𝑋 and
𝜅2(𝑋 ) = Var[𝑋 ]. Higher-order cumulants are harder to write down and inter-
pret. Although cumulants are less intuitive than moments, they have a number of
algebraic properties that make them more fundamental objects. We have glimpsed
this fact in Proposition 16.13. See also Problem 16.37.

16.3 The Laplace transform method
We have used Markov’s inequality several times to obtain tail bounds when we
control polynomial moments. Chebyshev’s inequality provides one immediate example.
Likewise, we can use Markov’s inequality to obtain tail bounds when we control
exponential moments.

16.3.1 Tail bounds via cgfs
Let us show how to use the cumulant generating function to derive tail bounds with
exponential decay (or better!). To use this result, it suffices to have good upper bounds
on the cgf.

Theorem 16.16 (Laplace transform method). Let 𝑋 be a real random variable. Then,
for each 𝑡 ∈ ℝ,

ℙ {𝑋 ≥ 𝑡 } ≤ exp
(
− sup𝜃>0(𝜃𝑡 − 𝜉𝑋 (𝜃 ))

)
;

ℙ {𝑋 ≤ 𝑡 } ≤ exp
(
− sup𝜃<0(𝜃𝑡 − 𝜉𝑋 (𝜃 ))

)
.

Proof. Fix a parameter 𝜃 > 0. Note that the function 𝑥 ↦→ e𝜃𝑥 is strictly increasing
and strictly positive. Therefore,

ℙ {𝑋 ≥ 𝑡 } = ℙ
{
e𝜃𝑋 ≥ e𝜃𝑡

}
≤ e−𝜃𝑡 · 𝔼 e𝜃𝑋 = e−𝜃𝑡 ·𝑚𝑋 (𝜃 ).
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The inequality is Markov’s. Combining the terms on the right-hand side in the exponent
and recognizing the cgf, we arrive at the bound

ℙ {𝑋 ≥ 𝑡 } ≤ exp (−(𝜃𝑡 − 𝜉𝑋 (𝜃 ))) .

Since the parameter 𝜃 > 0 is arbitrary, we can take the infimum of the right-hand side
over 𝜃 > 0. This leads to the first inequality in the statement.

For the second inequality, fix 𝜃 < 0, and note that 𝑥 ↦→ e𝜃𝑥 is strictly decreasing
and strictly positive. Thus,

ℙ {𝑋 ≤ 𝑡 } = ℙ
{
e𝜃𝑋 ≥ e𝜃𝑡

}
.

The rest of the argument is the same. ■

As a first example, let us devise a clean tail bound for a normal random variable.

Example 16.17 (Normal random variable: Tail bounds). Let 𝑍 ∼ normal(0, 𝜎2) be a cen-
tered normal random variable with variance 𝜎2. Using the Laplace transform method
(Theorem 16.16) and the normal cgf calculation (Exercise 16.10),

ℙ {𝑍 ≥ 𝑡𝜎} ≤ exp
(
− sup𝜃>0(𝑡𝜎𝜃 − 𝜎2𝜃 2/2)

)
= e−𝑡

2/2 for all 𝑡 > 0.

Indeed, the supremum is achieved when 𝜃 = 𝑡 /𝜎 . We can obtain a parallel bound for
the lower tail via the same method. Alternatively, note that 𝑍 and −𝑍 have the same
distribution. Compare with Exercise 10.21. ■

Exercise 16.18 (Exponential moments control tails). Suppose that 𝜉𝑋 (𝜃 ) is finite on an open
interval containing 𝜃 = 0. Argue that the upper tail probability decays at least as fast
as an exponential function. That is, there exist strictly positive constants 𝑎, 𝑏 > 0 for
which

ℙ {𝑋 ≥ 𝑡 } ≤ 𝑎e−𝑏𝑡 for all 𝑡 ≥ 0.

Formulate and prove an analogous result for the lower tail. This is the converse of
Exercise 16.12.

Aside: The Laplace transform method is so called because the mgf is the Laplace
transform of the distribution 𝜇𝑋 of the random variable 𝑋 . The idea of using
Laplace transforms to produce tail bounds appears in Bernstein’s 1927 probability
text (in Russian). In the West, this idea is often associated with the names Cramér,
Chernoff, and Hoeffding, but the works that support this attribution were not
written until somewhat later.

16.3.2 Tail bounds for independent sums
Owing to the additivity of cgfs, the Laplace transform method yields particularly
elegant bounds for an independent sum.

Corollary 16.19 (Laplace transform: Independent sum). Consider an independent family
(𝑌1, . . . ,𝑌𝑛) of real random variables. Form the sum 𝑋 =

∑𝑛
𝑖=1𝑌𝑖 . For 𝑡 ∈ ℝ,

ℙ {𝑋 ≥ 𝑡 } ≤ exp
(
− sup𝜃>0

(
𝜃𝑡 − ∑𝑛

𝑖=1 𝜉𝑌𝑖 (𝜃 )
) )

;

ℙ {𝑋 ≤ 𝑡 } ≤ exp
(
− sup𝜃<0

(
𝜃𝑡 − ∑𝑛

𝑖=1 𝜉𝑌𝑖 (𝜃 )
) )
.

Proof. Combine Theorem 16.16 and Proposition 16.13. ■

As a simple example, we can work out tail bounds for a centered binomial random
variable. Related calculations are widely applicable (Problem 16.38).
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Example 16.20 (Binomial random variable: Tail bounds). Let 𝑋 ∼ binomial(𝑛,𝑝) be a
binomial random variable, for which 𝔼[𝑋 ] = 𝑛𝑝 . Using Corollary 16.19 and the
binomial cgf bound (Exercise 16.14), we find that

ℙ {𝑋 − 𝔼[𝑋 ] ≥ 𝑡 · 𝔼[𝑋 ]} ≤ exp
(
−𝑛𝑝 · sup𝜃>0

(
𝜃𝑡 − (e𝜃 − 𝜃 − 1)

) )
= exp (−𝑛𝑝 · ((1 + 𝑡 ) log(1 + 𝑡 ) − 𝑡 ))

=

(
e𝑡

(1 + 𝑡 )1+𝑡

)𝑛𝑝
for 𝑡 > 0.

The supremum is attained at 𝜃 = log(1 + 𝑡 ). Similarly,

ℙ {𝑋 − 𝔼[𝑋 ] ≤ −𝑡 · 𝔼[𝑋 ]} ≤
(

e−𝑡

(1 − 𝑡 ) (1−𝑡 )

)𝑛𝑝
for 𝑡 ∈ (0, 1).

These results provide elegant bounds on the probability that a binomial random
variable is significantly larger or smaller than its expected value. It is no coincidence
that the cgf of a centered Poisson variable (Exercise 16.9) appears in the calculation! ■

16.3.3 *The rate function
For the Laplace transform method, the most common use case occurs when 𝔼𝑋 = 0.
Under this assumption, we can express the result in a more compact way. Define the
rate function of the centered random variable 𝑋 :

Λ𝑋 (𝑡 ) := sup𝜃 ∈ℝ(𝜃𝑡 − 𝜉𝑋 (𝜃 )) for 𝑡 ∈ ℝ. (16.1)

Then, for each 𝑡 ≥ 0,
ℙ {𝑋 ≥ +𝑡 } ≤ e−Λ𝑋 (+𝑡 ) ;

ℙ {𝑋 ≤ −𝑡 } ≤ e−Λ𝑋 (−𝑡 ) .
(16.2)

Thus, the rate function Λ𝑋 contains a full spectrum of tail bounds for 𝑋 .

Problem 16.21 (Rate function). Let 𝑋 be a real random variable with 𝔼[𝑋 ] = 0. For
simplicity, you may assume that 𝑋 is bounded and nonconstant, so the cgf 𝜉𝑋 is finite
and strictly convex. This problem relies on the results from Problem 16.7.

1. Check that the supremum in the definition (16.1) of the rate function Λ𝑋 (𝑡 ) is
attained at the (unique) value 𝜃 = 𝜃 (𝑡 ) that solves 𝜉 ′

𝑋
(𝜃 ) = 𝑡 .

2. When 𝑡 > 0, confirm that 𝜃 (𝑡 ) > 0. When 𝑡 < 0, confirm that 𝜃 (𝑡 ) < 0. Hint:
Recall that 𝜉 ′

𝑋
is increasing and 𝜉 ′

𝑋
(0) = 0.

3. Explain how (16.2) follows from Theorem 16.16 and item (2).
4. Show that the rate function Λ𝑋 is a convex function. Hint: Note that Λ𝑋 is a

supremum of affine functions.
5. Deduce that Λ𝑋 is a positive function whose minimal value Λ𝑋 (0) = 0.
6. Argue that Λ𝑋 (𝑡 )/|𝑡 | is bounded away from zero as 𝑡 → −∞ or 𝑡 → +∞. Hint:

See Exercise 16.18.

Aside: If you are familiar with convex analysis, you will recognize that the rate
function Λ𝑋 is the Fenchel–Young conjugate (or the Legendre transform) of the cgf
𝜉𝑋 . See Problem 9.47.
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16.3.4 *Cramér’s theorem
Although it may seem that the Laplace transform approach is merely a clever trick, it
actually results in sharp (asymptotic) bounds for the tails of an i.i.d. sum. This is the
foundational result in the study of large-deviation principles.

Theorem 16.22 (Cramér). Consider a sequence (𝑌𝑖 : 𝑖 ∈ ℕ) of i.i.d. copies of a
bounded random variable 𝑌 ∈ L∞ with 𝔼𝑌 = 0. Form the running averages
𝑋𝑛 := 𝑛−1 ∑𝑛

𝑖=1𝑌𝑖 for 𝑛 ∈ ℕ. For all 𝑡 ≥ 0,

lim
𝑛→∞

1
𝑛

logℙ
{
𝑋𝑛 ≥ 𝑡

}
= −Λ𝑌 (𝑡 ).

Parallel statements hold for the lower tail at each level 𝑡 < 0.

Corollary 16.19 already yields the upper bound −Λ𝑌 (𝑡 ) for the limit appearing in
Cramér’s theorem. The lower bound takes a substantial amount of extra work. See the
problems section of Lecture 18 for a proof sketch.

16.4 Example: Hoeffding’s inequality
So far, our presentation does not make a very strong case for the utility of the Laplace
transform method. To illustrate the wider implications of this approach, we present
a powerful concentration inequality, due to Hoeffding. This result shows that an
independent sum of bounded random variables has Gaussian tail decay.

16.4.1 The Hoeffding inequality
We begin with a statement of the result and some discussion. Then we turn to the
proof.

Theorem 16.23 (Hoeffding). Consider an independent family (𝑌1, . . . ,𝑌𝑛) of real
random variables that satisfy uniform bounds

|𝑌𝑖 − 𝔼𝑌𝑖 | ≤ 𝑎𝑖 for each index 𝑖 = 1, . . . , 𝑛.

Form the sum 𝑋 =
∑𝑛
𝑖=1𝑌𝑖 . Then, for all 𝑡 ≥ 0,

ℙ
{
|𝑋 − 𝔼𝑋 | ≥ 𝑡

√
𝑣
}
≤ 2 e−𝑡

2/2, where 𝑣 :=
∑︁𝑛

𝑖=1
𝑎2
𝑖 .

Exercise 16.24 (Hoeffding: Centering). Without loss of generality, we can prove Hoeffding’s
inequality with the extra assumption that 𝔼𝑌𝑖 = 0 for each 𝑖 = 1, . . . , 𝑛. Check this
claim.

Hoeffding’s inequality states that an independent sum 𝑋 of bounded random
variables is extremely unlikely to take a value far from its expectation. The tail
probability of the variable 𝑋 has a profile similar to a Gaussian random variable with
expectation 𝔼𝑋 and variance 𝑣 .

For this reason, the number 𝑣 is sometimes called the variance proxy. It is always
an upper bound for the actual variance:

Var[𝑋 ] =
∑︁𝑛

𝑖=1
Var[𝑌𝑖 ] =

∑︁𝑛

𝑖=1
𝔼(𝑌𝑖 − 𝔼𝑌𝑖 )2

≤
∑︁𝑛

𝑖=1
∥𝑌𝑖 − 𝔼𝑌𝑖 ∥2∞ ≤

∑︁𝑛

𝑖=1
𝑎2
𝑖 = 𝑣.
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There are situations where the variance proxy coincides with the true variance. For
example, if each 𝑌𝑖 ∼ uniform{±1}, then Var[𝑋 ] = 𝑣 . On the other hand, the
difference between Var[𝑋 ] and 𝑣 can be arbitrarily large (when the variance of 𝑌𝑖 is
much smaller than the upper bound 𝑎𝑖 ).

Example 16.25 (Concentration: Running average). Consider an independent sequence
(𝑌1,𝑌2,𝑌3, . . . ) of copies of a random variable 𝑌 ∈ L∞. Let 𝑋𝑛 := 𝑛−1 ∑𝑛

𝑖=1𝑌𝑖 be the
running average. Then Theorem 16.23 implies that

ℙ
{��𝑋𝑛 − 𝔼𝑌

�� ≥ 𝑡 · ∥𝑌 − 𝔼𝑌 ∥∞
}
≤ 2e−𝑛𝑡

2/2 for 𝑡 > 0.

Assuming that 𝑌 ∈ L∞, we achieve concentration on the scale of ∥𝑌 − 𝔼𝑌 ∥∞ with
Gaussian tail decay. Notice that the number 𝑛 of summands appears in the exponent!
Compare this result with Example 16.3, where we achieved concentration on the scale
of

√︁
Var[𝑌 ] with the paltry tail decay (𝑛𝑡 )−2. ■

In the next section, we will establish Bernstein’s inequality, which yields better
control on the variance with worse control on the tails.

Warning 16.26 (Independence). In theoretical probability, it is quite common to place
independence assumptions on families of random variables. These assumptions
lead to very powerful outcomes, such as Gaussian tail behavior for an independent
sum. This is the conclusion of Hoeffding’s inequality (Theorem 16.23). For random
variables that are uncorrelated (but not necessarily independent), we can only
achieve the weaker conclusions of Chebyshev’s inequality (Proposition 15.2).

In applications, onemust take great care to check that independence assumptions
are warranted. For example, the financial crisis of 2008 occurred, in part, because
lenders assumed that mortgage failures were independent events, whereas the
failures were actually strongly correlated with each other.

Personally, I believe that independence is a very dangerous hypothesis. It is quite
difficult to check independence empirically. Yet we can easily gull ourselves into a
false sense of confidence about theoretical predictions made using independence.
This complaint is defanged only in settings whether it is possible to engineer
independence (e.g., in randomized study design or in computer algorithms). ■

16.4.2 Hoeffding cgf bound
Aside from the Laplace transform method, the key technical ingredient in the proof of
Hoeffding’s theorem is an estimate for the cgf of a bounded random variable.

Lemma 16.27 (Hoeffding: Cgf bound). Let 𝑌 be a real random variable with 𝔼𝑌 = 0 and
|𝑌 | ≤ 𝑎 . Then 𝜉𝑌 (𝜃 ) ≤ 𝜃 2𝑎2/2.

You can see a strong parallel between Lemma 16.27 and the cgf bound for a normal
random variable (Exercise 16.10).

Proof. As with Markov’s inequality, this result is best understood graphically. We bound
the exponential function 𝑦 ↦→ e𝜃𝑦 on the interval [−𝑎,+𝑎] above by a straight line.
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Let us use this idea to control the mgf:

𝑚𝑌 (𝜃 ) = 𝔼 e𝜃𝑌 ≤ 𝔼

[
e−𝜃𝑎 + (𝑌 + 𝑎) · e

+𝜃𝑎 − e−𝜃𝑎

2𝑎

]
= e−𝜃𝑎 + (𝔼𝑌 + 𝑎) · e

+𝜃𝑎 − e−𝜃𝑎

2𝑎
= e−𝜃𝑎 + 1

2 (e
+𝜃𝑎 − e−𝜃𝑎 ) = cosh(𝜃𝑎).

The first inequality is monotonicity of expectation. We have represented the line in
point–slope form, using the left endpoint −𝑎 of the interval. Then we applied linearity
of expectation, along with the assumption that 𝔼𝑌 = 0. Finally, we recognize the
hyperbolic cosine.

By comparing the Taylor series (exercise!), you may confirm that

𝑚𝑌 (𝜃 ) ≤ cosh(𝜃𝑎) ≤ exp(𝜃 2𝑎2/2).

Take the logarithm to complete the proof. ■

Problem 16.28 (*Asymmetric Hoeffding: Cgf bound). The full statement of Hoeffding’s
inequality involves a more refined cgf bound. Suppose that 𝔼𝑌 = 0 and 𝑎 ≤ 𝑌 ≤ 𝑏 .
Prove that 𝜉𝑌 (𝜃 ) ≤ (𝑏 −𝑎)2/8. Hint: This computation requires some insight. You can
realize the second derivative of the cgf as the variance of a bounded random variable
and control the second derivative using an elementary bound for the variance.

16.4.3 Hoeffding inequality: Proof
We may now complete the proof of Hoeffding’s inequality, Theorem 16.23.

Without loss of generality, assume that 𝔼𝑌𝑖 = 0 for each index 𝑖 , so that 𝔼𝑋 = 0. By
the additivity of cgfs (Proposition 16.13) and the Hoeffding cgf bound (Lemma 16.27),
we find that

𝜉𝑋 (𝜃 ) =
∑︁𝑛

𝑖=1
𝜉𝑌𝑖 (𝜃 ) ≤

∑︁𝑛

𝑖=1
𝜃 2𝑎2

𝑖 /2 = 𝜃 2𝑣/2.

For 𝑡 > 0, we may apply the Laplace transform method (Theorem 16.16) to 𝑋 to
obtain

ℙ {𝑋 ≥ 𝑡 } ≤ exp
(
− sup𝜃>0

(
𝜃𝑡 − 𝜃 2𝑣/2

) )
= e−𝜃

2/(2𝑣 ) .

The supremum is attained when 𝜃 = 𝑡 /𝑣 . Similarly,

ℙ {𝑋 ≤ −𝑡 } ≤ e−𝑡
2/(2𝑣 ) .
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Altogether, for 𝑡 > 0,

ℙ {|𝑋 | ≥ 𝑡 } = ℙ {𝑋 ≥ 𝑡 } + ℙ {𝑋 ≤ −𝑡 } ≤ 2e−𝑡
2/(2𝑣 ) .

Make the change of variables 𝑡 ↦→ 𝑡
√
𝑣 to arrive at the stated result.

Exercise 16.29 (Asymmetric Hoeffding inequality). Formulate and prove a version of Ho-
effding’s inequality under the assumption that 𝑎𝑖 ≤ 𝑌𝑖 ≤ 𝑏𝑖 for each index 𝑖 .

16.5 Example: Bernstein’s inequality
In this section, we present another powerful concentration inequality, due to Bernstein.
This result gives an excellent tail bound for an independent sum of bounded random
variables. Although there are many other concentration inequalities, this is the single
most useful example.

16.5.1 The Bernstein inequality
We begin with the statement and some discussion. Then we turn to the proof.

Theorem 16.30 (Bernstein’s inequality). Consider an independent family (𝑌1, . . . ,𝑌𝑛)
of real random variables, each subject to the uniform bound

|𝑌𝑖 − 𝔼𝑌𝑖 | ≤ 𝐵 for each index 𝑖 = 1, . . . , 𝑛.

Form the sum 𝑋 =
∑𝑛
𝑖=1𝑌𝑖 , and set 𝜎2 = Var[𝑋 ] = ∑𝑛

𝑖=1 Var[𝑌𝑖 ]. Then

ℙ {|𝑋 − 𝔼𝑋 | ≥ 𝑡 } ≤ 2 exp
(
−𝑡 2/2
𝜎2 + 𝐵𝑡

)
for all 𝑡 ≥ 0.

Exercise 16.31 (Bernstein: Centering). Without loss of generality, we can assume that
𝔼𝑌𝑖 = 0 for each 𝑖 = 1, . . . , 𝑛 in the proof of Bernstein’s inequality. Explain how this
reduction works.

Like most concentration inequalities for independent sums, Bernstein’s inequality
exploits simple information about the summands (here, the mean, variance, and a
uniform bound) to obtain incredibly strong information about the concentration of the
sum around its mean. Figure 16.2 illustrates the bound from Theorem 16.30.

It is informative to rewrite the bound in Bernstein’s inequality on the scale 𝜎 of the
standard deviation:

ℙ {|𝑋 − 𝔼𝑋 | ≥ 𝑡𝜎} ≤ 2 exp
(

−𝑡 2/2
1 + (𝐵/𝜎) · 𝑡

)
for all 𝑡 ≥ 0. (16.3)

The expression (16.3) indicates that the tail decay can be separated into two regimes:

1. Moderate deviations: When the level 𝑡 ≪ 𝜎/𝐵 , then the tail bound (16.3) is
roughly equal to e−𝑡

2/(2𝜎2 ) . At this scale, the tail decay of the independent sum
resembles that of a Gaussian random variable with the same variance.

2. Large deviations: When the level 𝑡 ≫ 𝜎/𝐵 , then the tail bound (16.3) is roughly
equal to e−𝑡 /(2𝐵 ) . At this larger scale, the tail decay of the independent sum
resembles that of an exponential random variable with mean 2𝐵 .

The level 𝑡 = 𝜎/𝐵 where we see the (soft) transition between the two regimes depends
on the ratio between the standard deviation 𝜎 and the uniform bound 𝐵 . Here is an
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Figure 16.2 (Bernstein’s inequality). This figure depicts Bernstein’s inequality for an
independent sum. For moderate deviations, it produces Gaussian tail decay on the scale
of the standard deviation 𝜎 of the sum. For large deviations, it produces exponential
tail decay on the scale of the upper bound 𝐵 on the summands.

interpretation. An independent sum whose terms are all small relative to the variance
behaves like a Gaussian random variable. On the other hand, when terms can be large
relative to the variance, the sum behaves more like an exponential random variable.
These are real phenomena that you can see in simulations.

16.5.2 The Bernstein cgf bound
Aside from the Laplace transform method, the key technical ingredient in the proof
of Bernstein’s inequality is an alternative estimate for the cgf of a bounded random
variable.

Lemma 16.32 (Bernstein: Cgf bound). Let 𝑌 be a real random variable with 𝔼𝑌 = 0 and
|𝑌 | ≤ 𝐵 . Then

𝜉𝑌 (𝜃 ) ≤
𝜃 2/2

1 − 𝐵 |𝜃 | · Var[𝑌 ] when |𝜃 | < 1/𝐵 .

Observe the strong parallel between the Bernstein cgf bound and the cgf bound for a
centered exponential random variable (Exercise 16.11). We can understand Bernstein’s
inequality as a comparison between an independent sum of bounded random variables
and an independent sum of exponential random variables. Exercise 16.34 extends
this approach to study an independent sum of random variables with exponential tail
decay.

Proof. The idea behind this proof is to expand the exponential function in the mgf as a
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Taylor series. Assume that |𝜃 | < 1/𝐵 . First,

𝑚𝑌 (𝜃 ) = 𝔼[e𝜃𝑌 ] = 𝔼

[
1 + 𝜃𝑌 +

∑︁∞
𝑝=2

𝜃𝑝

𝑝!
𝑌 𝑝

]
.

To continue, we make a simple pointwise bound on the sum:∑︁∞
𝑝=2

𝜃𝑝

𝑝!
𝑌 𝑝 ≤ 𝜃 2

2

∑︁∞
𝑝=2

|𝜃𝐵 |𝑝−2 ·𝑌 2 =
𝜃 2/2

1 − 𝐵 |𝜃 | ·𝑌
2.

We have identified a geometric series. Next, combine the last two displays. Using
monotonicity and linearity of expectation,

𝑚𝑌 (𝜃 ) ≤ 𝔼

[
1 + 𝜃𝑌 + 𝜃 2/2

1 − 𝐵 |𝜃 | ·𝑌
2
]
= 1 + 𝜃 2/2

1 − 𝐵 |𝜃 | · Var[𝑌 ].

Take the logarithm to identify the cgf 𝜉𝑌 (𝜃 ). Finally, invoke the numerical inequality
log(1 + 𝑎) ≤ 𝑎 , valid for 𝑎 > −1. ■

16.5.3 Bernstein’s inequality: Proof
We may now complete the proof of Bernstein’s inequality, Theorem 16.30.

Without loss of generality, assume that 𝔼𝑌𝑖 = 0 for each index 𝑖 , so that 𝔼𝑋 = 0. By
the additivity of cgfs (Proposition 16.13) and the Bernstein cgf bound (Lemma 16.32),
we find that

𝜉𝑋 (𝜃 ) =
∑︁𝑛

𝑖=1
𝜉𝑌𝑖 (𝜃 ) ≤

𝜃 2/2
1 − 𝐵 |𝜃 | ·

∑︁𝑛

𝑖=1
Var[𝑌𝑖 ] =

𝜃 2/2
1 − 𝐵 |𝜃 | · 𝜎

2.

Now, apply the Laplace transform method (Theorem 16.16) to 𝑋 to obtain

ℙ {𝑋 ≥ 𝑡 } ≤ exp

(
− sup

0<𝜃<1/𝐵

(
𝜃𝑡 − 𝜃 2𝜎2/2

1 − 𝐵 |𝜃 |

))
for 𝑡 > 0.

Although it is possible to evaluate the supremum exactly, we instead select a clever
value of the parameter: 𝜃 = 𝑡 /(𝜎2 + 𝐵 |𝑡 |) < 1/𝐵 . After some algebra, it emerges that

ℙ {𝑋 ≥ 𝑡 } ≤ exp
(
−𝑡 2/2
𝜎2 + 𝐵𝑡

)
.

By essentially the same argument,

ℙ {𝑋 ≤ −𝑡 } ≤ exp
(
−𝑡 2/2
𝜎2 + 𝐵𝑡

)
.

Altogether, for 𝑡 > 0,

ℙ {|𝑋 | ≥ 𝑡 } = ℙ {𝑋 ≥ 𝑡 } + ℙ {𝑋 ≤ −𝑡 } ≤ 2 exp
(
−𝑡 2/2
𝜎2 + 𝐵𝑡

)
.

This is the required result.
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16.5.4 *Refinements
There are several variants of Bernstein’s inequality that follow from closely related
arguments.

Exercise 16.33 (Bernstein cgf: Improvement). The bound in Lemma 16.32 may be refined
to

𝜉𝑌 (𝜃 ) ≤
𝜃 2/2

1 − 𝐵 |𝜃 |/3 · Var[𝑌 ] when |𝜃 | < 3/𝐵 .

Verify this claim. What is the consequence for Bernstein’s inequality?

Exercise 16.34 (Bernstein cgf: Exponential tails). Let 𝑌 be a real random variable with
𝔼𝑌 = 0 and exponential tail decay. For 𝛽 > 0,

ℙ {|𝑌 | ≥ 𝑡 } ≤ e−𝑡 /𝛽 for all 𝑡 ≥ 0.

1. Using integration by parts, confirm that the polynomial moments satisfy

𝔼 |𝑌 |𝑝 ≤ 𝛽𝑝𝑝! for all 𝑝 ∈ ℕ.

2. Verify that the cgf satisfies

𝜉𝑌 (𝜃 ) ≤
𝜃 2

1 − 𝛽 |𝜃 | when |𝜃 | < 𝛽−1.

3. Formulate and prove an extension of Bernstein’s inequality for an independent
sum of random variables with uniform exponential tail decay.

4. Formulate and prove an extension of Bernstein’s inequality for independent sum
of random variables that satisfy the moment conditions in item (1).

Problems
Exercise 16.35 (Mean and median). From Exercise 8.31, recall that every real random
variable has a median𝑀 ∈ ℝ, a number for which

ℙ {𝑋 ≥ 𝑀 } ≥ 1
2 and ℙ {𝑋 ≤ 𝑀 } ≥ 1

2 .

For every square-integrable random variable, the mean and the median are close to
each other.

1. Let 𝑋 ∈ L2 be a real random variable. Show that

|𝑀 − 𝔼𝑋 | ≤
√︁
2 Var[𝑋 ].

Hint: Use Chebyshev’s inequality (Proposition 15.2).
2. (*) Remove the factor two from the right-hand side of the last result. Hint: Use

the Chebyshev–Cantelli inequality (Exercise 12.23).

Problem 16.36 (Maximal inequalities). The mgf can be used to obtain elegant bounds for
the expected maximum of a family of random variables with sufficiently fast tail decay.
Surprisingly, these results do not require independence.

1. Consider a family (𝑋1, . . . , 𝑋𝑛) of random variables. Show that

𝔼max𝑖=1,...,𝑛 𝑋𝑖 ≤ 𝜃 −1 log
(∑︁𝑛

𝑖=1
𝔼[e𝜃𝑋𝑖 ]

)
for 𝜃 > 0.

Hint: See Problem 16.7.
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2. Consider the case where 𝑍𝑖 ∼ normal(0, 𝜎2) for each 𝑖 = 1, . . . , 𝑛. We do not
assume that the family of random variables is independent. Show that

𝔼max𝑖=1,...,𝑛 𝑍𝑖 ≤
√︁
2𝜎2 log𝑛.

3. (**) Consider the case where 𝑍𝑖 ∼ normal(0, 𝜎2) for each 𝑖 = 1, . . . , 𝑛, and the
family of random variables is independent. For sufficiently large 𝑛, show that

𝔼max𝑖=1,...,𝑛 𝑍𝑖 ≥ const ·
√︁
𝜎2 log𝑛.

Hint: By rescaling, assume that 𝜎2 = 1. Find a lower bound on the normal tail,
say ℙ {𝑍1 ≥ 𝑡 } ≥ const · e−𝑡 2 for 𝑡 ≥ 0. You will also need Exercise 13.30.

4. (**) Consider the case where each 𝑋𝑖 ∼ exponential(𝛽), an exponential random
variable with mean 𝛽 > 0. Show that

𝔼max𝑖=1,...,𝑛 (𝑋𝑖 − 𝛽) ≤ 𝛽
(
log𝑛 +

√︁
2 log𝑛

)
.

Problem 16.37 (**Cumulants and independence). In spite of the strange definition, cumu-
lants are both beautiful and powerful. This problem explores some of the key properties
of these objects that illuminates their significance. For a real random variable 𝑋 , recall
that the moments are defined by the series

𝔼[e𝜃𝑋 ] =
∑︁∞

𝑝=0

𝜃𝑝

𝑝!
· 𝔼[𝑋 𝑝 ] =:

∑︁∞
𝑝=0

𝜃𝑝

𝑝!
·𝑚𝑝 (𝑋 ).

The cumulants are defined by the series

log𝔼[e𝜃𝑋 ] =
∑︁∞

𝑝=1

𝜃𝑝

𝑝!
· 𝜅𝑝 (𝑋 ).

These series may be interpreted formally, or you can require all random variables to be
bounded to avoid convergence issues.

1. Homogeneity: Check that the cumulants are homogeneous:

𝜅𝑝 (𝛼𝑋 ) = 𝛼𝑝𝜅𝑝 (𝑋 ) for complex 𝛼 ∈ ℂ.

2. Independence: If the pair (𝑋 ,𝑌 ) is independent, show that

𝜅𝑝 (𝑋 +𝑌 ) = 𝜅𝑝 (𝑋 ) + 𝜅𝑝 (𝑌 ).

3. *Cumulant–moment relation: Show that the cumulants can be defined recursively
in terms of the moments:

𝜅𝑝 (𝑋 ) = 𝑚𝑝 (𝑋 ) −
∑︁𝑝−1

𝑖=1

(
𝑝 − 1
𝑖 − 1

)
· 𝜅𝑖 (𝑋 )𝑚𝑝−𝑖 (𝑋 ).

4. Moment–cumulant relation: Show that the moments can be represented in terms
of the cumulants:

𝑚𝑝 (𝑋 ) = 𝜅𝑝 (𝑋 ) + 𝜑𝑝 (𝜅1(𝑋 ), . . . , 𝜅𝑝−1(𝑋 ))

where 𝜑𝑝 is a multivariate polynomial without a constant term. (**) Can you
find an explicit form for the polynomial?
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5. *Good’s formula: Let 𝑋 (1) , . . . , 𝑋 (𝑝 ) be i.i.d. copies of 𝑋 . Let 𝜁𝑝 be a primitive
𝑝th root of unity. Define the random variable

𝑋 (𝜁𝑝 ) :=
∑︁𝑝

𝑖=1
𝜁 𝑖𝑝𝑋

(𝑖 ) .

Verify that

𝜅𝑝 (𝑋 ) =
1
𝑝
𝔼[𝑋 (𝜁𝑝 )𝑝 ].

Hint: There is a short argument using all four of the previous statements. Recall
that

∑𝑝

𝑖=1 𝜁
𝑚
𝑝 = 0 when 𝑝 does not divide𝑚.

6. Mixed cumulants: Consider an arbitrary family (𝑋1, . . . , 𝑋𝑝 ) of real random
variables. Define the mixed cumulant

𝜅𝑝 [𝑋1, . . . , 𝑋𝑝 ] :=
1
𝑝
𝔼[𝑋1(𝜁𝑝 ) · 𝑋2(𝜁𝑝 ) · · ·𝑋𝑝 (𝜁𝑝 )].

Observe that the mixed cumulant is a multilinear function. This function can
also be obtained by polarizing the 𝑝-homogeneous polynomial 𝜅𝑝 (·).

7. *Mixed cumulants detect independence: Suppose that there is a nontrivial, proper
subset S ⊂ {1, . . . , 𝑝} where (𝑋𝑖 : 𝑖 ∈ S) and (𝑋 𝑗 : 𝑗 ∉ S) are independent.
Prove that

𝜅𝑝 [𝑋1, . . . , 𝑋𝑝 ] = 0.

8. Mixed cumulants are additive: Suppose that the family (𝑋1, . . . , 𝑋𝑛) is independent
from the family (𝑌1, . . . ,𝑌𝑛). Show that

𝜅𝑝 [𝑋1 +𝑌1, . . . , 𝑋𝑝 +𝑌𝑝 ] = 𝜅𝑝 [𝑋1, . . . , 𝑋𝑝 ] + 𝜅𝑝 [𝑌1, . . . ,𝑌𝑝 ].

Problem 16.38 (Chernoff inequalities). Chernoff’s inequalities control the tails of an
independent sum of bounded positive random variables. These results are commonly
applied to study an independent sum of indicator random variables, which counts
the total number of independent events that occur. When the events have different
probabilities, we cannot use a binomial random variable as a model. Nevertheless,
Chernoff’s bounds show that these sums behave much like binomial random variables.

Consider an independent family (𝑌1, . . . ,𝑌𝑛) of random variables that satisfy
0 ≤ 𝑌𝑖 ≤ 1. In particular, indicator random variables fulfill the latter condition. Let
𝑋 =

∑𝑛
𝑖=1𝑌𝑖 , and define 𝑎 = 𝔼[𝑋 ] = ∑𝑛

𝑖=1 𝔼𝑌𝑖 .

1. Establish the Chernoff mgf bound:

log𝔼 e𝜃𝑌𝑖 ≤ (e𝜃 − 1) (𝔼𝑌𝑖 ) for all 𝜃 ∈ ℝ.

Hint: Bound the exponential function above by its secant on [0, 1].
2. Prove the upper Chernoff inequality via the Laplace transform method:

ℙ
{∑︁𝑛

𝑖=1
𝑋𝑖 ≥ (1 + 𝑡 )𝑎

}
≤

(
e𝑡

(1 + 𝑡 )1+𝑡

)𝑎
≤

( e
1 + 𝑡

) (1+𝑡 )𝑎
for 𝑡 > 0.

The last inequality follows from a simple bound.
3. Apply the same ideas to obtain the lower Chernoff inequality:

ℙ
{∑︁𝑛

𝑖=1
𝑋𝑖 ≤ (1 − 𝑡 )𝑎

}
≤

(
e−𝑡

(1 − 𝑡 )1−𝑡

)𝑎
≤ e−𝑡

2𝑎/2 for 𝑡 ∈ [0, 1].

The last inequality follows from the more accurate tail bound by taking a
second-order Taylor expansion with exact remainder.
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4. Compare these results with Example 16.20.
5. Balls & bins: Suppose that we toss 𝑛 balls independently at random into𝑚 bins,

where each ball lands in a uniformly random bin. What is the expected number
of balls in the first bin? Bound the probability that there are at least twice as
many balls as expected. Bound the probability that there are fewer than half as
many balls as expected. How do these results depend on𝑚 and 𝑛?

6. Amplification: Some decision problems (e.g., “Is a given integer composite?”)
admit efficient randomized algorithms. Imagine that a randomized algorithm
returns the correct answer with probability 𝑝 , where 𝑝 > 1/2. We can run the
algorithm repeatedly and take a majority vote to enhance the success probability.
To obtain a failure probability below 𝜀, how many times should we run the
algorithm?

Problem 16.39 (*Gaussian chaos). Let 𝑨 ∈ ℝ𝑛×𝑛 be a symmetric matrix. Draw a vector
𝒁 = (𝑍1, . . . , 𝑍𝑛) whose entries are i.i.d. standard normal random variables. Define
the random variable

𝑋 := 𝒁 ᵀ𝑨𝒁 =
∑︁𝑛

𝑖 ,𝑗=1
𝑎𝑖 𝑗𝑍𝑖𝑍 𝑗 .

This type of random variable is called a second-order Gaussian chaos. We will develop a
concentration inequality using special properties of the Gaussian distribution.

1. Show that the standard normal vector 𝒁 = (𝑍1, . . . , 𝑍𝑛) is rotationally invariant.
That is, 𝑼𝒁 ∼ 𝒁 for each fixed orthogonal matrix 𝑼 ∈ ℝ𝑛×𝑛 . Hint: Use the
multivariate change of variables formula (Problem 6.28).

2. The symmetric matrix 𝑨 has an eigenvalue decomposition: 𝑨 =𝑼𝑫𝑼 ᵀ where
𝑫 = diag(𝑑1, . . . , 𝑑𝑛) and 𝑼 ∈ ℝ𝑑×𝑑 is orthogonal. Verify that the squared
Frobenius norm ∥𝑨∥2F =

∑𝑛
𝑖=1 𝑑

2
𝑖
and the ℓ2 operator norm ∥𝑨∥ = max𝑖 |𝑑𝑖 |.

3. Deduce that the chaos has the same distribution as a simpler random variable:

𝑋 ∼
∑︁𝑛

𝑖=1
𝑑𝑖𝑍

2
𝑖 .

In particular, 𝑋 − 𝔼𝑋 ∼ ∑𝑛
𝑖=1 𝑑𝑖 (𝑍 2

𝑖
− 1)

4. Show that the cgf of the centered random variable 𝑌 = 𝑍 2
1 − 1 satisfies

𝜉𝑌 (𝜃 ) = − 1
2 [log(1 − 2𝜃 ) + 2𝜃 ] ≤ 𝜃 2

1 − 2𝜃
when 2𝜃 < 1.

5. Derive that

𝜉𝑋 −𝔼𝑋 (𝜃 ) ≤
𝜃 2∥𝑨∥2F

1 − 2𝜃 ∥𝑨∥ when 2𝜃 ∥𝑨∥ < 1.

6. For all 𝑡 > 0, establish the Bernstein-type concentration inequality

ℙ {|𝑋 − 𝔼𝑋 | ≥ 𝑡 } ≤ exp
(

−𝑡 2/4
∥𝑨∥2F + ∥𝑨∥ · 𝑡

)
.

Problem 16.40 (Bennett’s inequality). For an independent sum of random variables that
admit one-sided bounds, we can obtain a refinement of Bernstein’s inequality that
yields slightly better tail behavior.

Consider an independent family (𝑌1, . . . ,𝑌𝑛) of independent random variables,
subject to 𝔼[𝑌𝑖 ] = 0 and the one-sided bound𝑌𝑖 ≤ 𝐵 for each index 𝑖 . Let 𝑋 =

∑𝑛
𝑖=1𝑌𝑖 ,

and define 𝜎2 = Var[𝑋 ].
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1. Establish the Bennett cgf inequality. For each index 𝑖 ,

𝜉𝑌𝑖 (𝜃 ) ≤
e𝜃𝐵 − 𝜃𝐵 − 1

𝐵2 · Var[𝑌 ] for all 𝜃 ∈ ℝ.

Hint: The function 𝑥 ↦→ (e𝑥 − 𝑥 − 1)/𝑥2 is increasing.
2. Derive Bennett’s inequality. For all 𝑡 ≥ 0,

ℙ {𝑋 ≥ 𝑡 } ≤ exp
(
−𝜎

2

𝐵2ℎ

(
𝐵𝑡

𝜎2

))
,

where ℎ (𝑢) := (1 + 𝑢) log(1 + 𝑢) − 𝑢 for all 𝑢 > −1.
3. Compare and contrast Bennett’s inequality with the upper Chernoff inequality

(Problem 16.38).

Applications
Application 16.41 (Trace estimation). Let 𝑨 ∈ ℝ𝑑×𝑑 be a nonzero, (symmetric) positive-
semidefinite (psd) matrix. Suppose that we only have access to the matrix via
matrix–vector products: 𝒖 ↦→ 𝑨𝒖 . This situation can arise in statistics or in numerical
analysis. Our goal is to estimate the trace, tr(𝑨), using a small number of matrix–
vector products with random vectors. The original application of this method was for
cross-validation with smoothing splines (Lecture 0).

Draw a random vector 𝜺 = (𝜀1, . . . , 𝜀𝑑 ) whose entries are A uniform{±1} random variable is
often called a Rademacher random
variable.

i.i.d. uniform{±1}
random variables. Introduce the random variable

𝑌 = 𝜺 ∗(𝑨𝜺 ) =
∑︁𝑑

𝑖 ,𝑗=1
𝑎𝑖 𝑗 𝜀𝑖 𝜀𝑗 .

The Hutchinson trace estimator with 𝑛 samples is the random variable

𝑋𝑛 =
1
𝑛

∑︁𝑛

𝑘=1
𝑌𝑘 where 𝑌𝑘 ∼ 𝑌 i.i.d.

1. Confirm that 𝔼𝑌 = tr(𝑨) > 0. Show that

Var[𝑌 ] = 2
∑︁

𝑖≠𝑗
𝑎2
𝑖 𝑗 < 2 tr(𝑨)2.

The second inequality requires the assumption that 𝑨 is psd.
2. Calculate 𝔼𝑋𝑛 and Var[𝑋𝑛].
3. Using only the results from (a) and (b), bound the probability that the relative

error is large:

ℙ
{
|𝑋𝑛 − tr(𝑨) |/tr(𝑨) ≥ 𝜀

}
for 𝜀 ∈ [0, 1].

4. How many samples 𝑛 suffice so the relative error is less than 𝜀 with probability at
least 1 − 𝛿? For concreteness, instantiate your bound for 𝜀 = 10% and 𝛿 = 10%.

5. (*) Implement the Hutchinson trace estimator. Consider (large) psd matrices 𝑨
with various distributions of eigenvalues (say, flat, power-law decay, exponential
decay). For each instance and for a range of values of 𝑛, run the trace estimator
100 times. For each instance, plot the average relative error with error bars as a
function of 𝑛. Are the theoretical bounds accurate?

6. (**) Implement the smoothing splines described in Section 0.3. Use the ran-
domized trace estimator to approximate the generalized cross-validation (gcv)
functional. Fit some smoothing splines to some data, using the gcv functional to
select the proper amount of smoothing.
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7. (**) Develop a sharper error bound for the Hutchinson trace estimator via the
Laplace transform method. This problem is much easier if you use Gaussian
random variables instead of Rademacher variables in the trace estimator; see
Problem 16.39 for the analysis. To deal with Rademachers, you will need the
Hanson–Wright inequality (or elements from its proof).

Application 16.42 (The sample average estimator: Confidence intervals). In statistics, a basic
task is to infer the mean of an observable from an (independent) sample. We can
model this situation using an independent sum. Let 𝑌 be a real random variable that
describes the distribution of an observable of the population (say, height or income),
so 𝔼[𝑌 ] is the population mean of the observable. Draw an iid family (𝑌1, . . . ,𝑌𝑛)
of copies of 𝑌 , called a sample, and form the sample average 𝑋 := 𝑛−1 ∑𝑛

𝑖=1𝑌𝑖 . We
regard 𝑋 as an estimator for the population mean 𝔼[𝑌 ]. For this problem, we will
assume that |𝑌 − 𝔼𝑌 | ≤ 𝐵 . (Is this assumption reasonable? Is the independence
assumption reasonable?)

1. We may want to ensure the sample average 𝑋 is an accurate estimate for the
mean 𝔼[𝑌 ]:

ℙ
{
|𝑋 − 𝔼𝑌 | ≥ stdev(𝑌 ) · 𝜀

}
≤ 𝛿 where 𝜀, 𝛿 ∈ (0, 1).

Using Bernstein’s inequality (Theorem 16.30), check that it enough to take 𝑛
samples where

𝑛 ≥ max
{
4𝜀−2 log(2/𝛿 ), 4𝜀−1(𝐵/stdev(𝑌 )) log(2/𝛿 )

}
.

When is the first term larger? The second? What are the implications if we try
to make 𝜀 small? Look at a few particular values, say, 𝜀 = 0.1, 0.01, 0.001. Is it
hard to achieve a small failure probability 𝛿?

2. For 𝐵 = 1 and large 𝑛, instantiate Bernstein’s inequality to control

ℙ
{
|𝑋 − 𝔼𝑌 | ≥ stdev(𝑌 ) · 𝑛−1/2 · 𝑡

}
≤ . . .

Give rough numerical bounds for the tail when 𝑡 = 1, 2, 3.
3. (*) A confidence interval for the mean 𝔼[𝑌 ] is a (random) interval [𝑎, 𝑏], de-

pending on observed data, that contains the mean 𝔼𝑌 with probability 1 − 𝛿 .
The probability is with respect to the randomness in the sample. Explain how to
interpret this calculation as providing a confidence interval for the mean.

Application 16.43 (Median-of-means estimator). For natural numbers 𝑘 , 𝑛 ∈ ℕ, consider
an independent family (𝑌1, . . . ,𝑌𝑘𝑛) of copies of a square-integrable real random
variable 𝑌 ∈ L2. From Example 16.3, we know that the sample average 𝑋𝑘𝑛 satisfies

ℙ
{��𝑋𝑘𝑛 − 𝔼𝑌

�� > 𝑡√︁Var[𝑌 ]
}
≤ 1
𝑘𝑛𝑡 2

for 𝑡 > 0.

In contrast, Example 16.25 yields much sharper concentration e−𝑘𝑛𝑡
2/2, provided that

𝑌 is bounded: 𝑌 ∈ L∞. Is there a way to get the best of both worlds? That is, can
we estimate the mean under weak integrability assumptions and still obtain sharp
concentration?

One approach is called the median-of-means estimator. Maintain the square-
integrability assumption: 𝑌 ∈ L2. We form 𝑘 sample averages:

𝑋
(𝑖 )
𝑛 =

1
𝑛

∑︁𝑖𝑛

𝑗=(𝑖−1)𝑛+1
𝑌𝑗 for 𝑖 = 1, . . . , 𝑘 .



Lecture 16: Concentration Inequalities 250

Then, we find a median𝑀 ∈ ℝ of the family of sample averages:

#{𝑖 : 𝑋 (𝑖 )
𝑛 ≤ 𝑀 } ≥ 𝑘/2 and #{𝑖 : 𝑋 (𝑖 )

𝑛 ≥ 𝑀 } ≥ 𝑘/2.

We will argue that the median-of-means is a reliable estimator of the central tendency
with extremely high probability.

1. Use Chebyshev’s inequality (Proposition 15.2) to establish a concentration in-
equality for each 𝑋 (𝑖 )

𝑛 . That is, provide a bound for the probability

ℙ
{���𝑋 (𝑖 )

𝑛 − 𝔼𝑌
��� > 𝑡 } .

2. Observe that the family
(
𝑋

(𝑖 )
𝑛 : 𝑖 = 1, . . . , 𝑘

)
is statistically independent.

3. Use Chernoff’s inequality (Problem 16.38) to bound the probability that

ℙ {|𝑀 − 𝔼𝑌 | > 𝑡 } .

Hint: For each 𝑖 , introduce the indicator of the event {|𝑋 (𝑖 )
𝑛 − 𝔼𝑌 | > 𝑡 }. Use

Chernoff’s inequality to control the probability that more than 1/4 of these
events occur.

4. Compare the result with Examples 16.3 and 16.25.
5. (*) If we wish to achieve approximation error 𝜀

√︁
Var[𝑌 ] with probability 1 − 𝛿 ,

how should we optimize (𝑘 , 𝑛) to minimize the total number of samples required?
6. (*) Show how to improve the analysis using the one-sided tail bound from

Cantelli’s inequality (Exercise 12.23).

Application 16.44 (*Johnson & Lindenstrauss). Randomized dimension reduction is a popu-
lar method in computational data science. Let (𝒂 𝑖 : 𝑖 = 1, . . . , 𝑁 ) be a family of distinct
vectors inℝ𝑑 . Draw a matrix𝑮 ∈ ℝ𝑚×𝑑 whose entries are i.i.d. normal(0,𝑚−1), and
form the vectors 𝒗 𝑖 = 𝑮𝒂 𝑖 ∈ ℝ𝑚 for 𝑖 = 1, . . . , 𝑁 . We want to choose the embedding
dimension𝑚 so that, with high probability,

1
2
∥𝒂 𝑖 − 𝒂 𝑗 ∥22 ≤ ∥𝒗 𝑖 − 𝒗 𝑗 ∥22 ≤ 3

2
∥𝒂 𝑖 − 𝒂 𝑗 ∥22 for all 𝑖 , 𝑗 . (16.4)

That is, the low-dimensional vectors (𝒗 𝑖 ) have geometry comparable with the (𝒂 𝑖 ).

1. For a unit vector 𝒖 ∈ ℝ𝑑 and a standard normal random vector 𝒈 ∈ ℝ𝑑 , explain
why |⟨𝒈 , 𝒖⟩|2 ∼ 𝑋1. Hint: See Lecture 21.

2. Let 𝑋1 = 𝑔 2 where 𝑔 ∼ normal(0, 1). Show that the mgf takes the form
𝑚𝑋1 (𝜃 ) = (1 − 2𝜃 )−1/2 for 𝜃 < 1/2. Hint: Unconscious statistician.

3. What is the mgf of 𝑋𝑚 = 𝑚−1 ∑𝑚
𝑖=1 𝑔

2
𝑖

where the family (𝑔𝑖 ) consists of
i.i.d. standard normal random variables?

4. Deduce that

ℙ {𝑋𝑚 − 𝔼𝑋𝑚 ≥ +𝑡 } ≤ [(1 + 𝑡 ) e−𝑡 ]𝑚/2 for 𝑡 ≥ 0;

ℙ {𝑋𝑚 − 𝔼𝑋𝑚 ≤ −𝑡 } ≤ [(1 − 𝑡 ) e+𝑡 ]𝑚/2 for 𝑡 ∈ [0, 1].

(*) Combine and simplify: ℙ {|𝑋𝑚 − 𝔼𝑋𝑚 | ≥ 𝑡 } ≤ 2 exp(−𝑚𝑡 2/(4 + 4𝑡 )) for
𝑡 ≥ 0.

5. Let𝑮 ∈ ℝ𝑚×𝑑 be the random matrix defined as above. Conclude that

ℙ
{
|∥𝑮𝒖 ∥22 − 1| > 𝑡

}
≤ 2 exp

(
−𝑚𝑡 2/4
1 + 𝑡

)
for 𝑡 > 0.
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6. Find a lower bound on the probability that |∥𝑮𝒖 𝑖 𝑗 ∥22 − 1| ≤ 𝑡 holds simultane-
ously for all the unit vectors 𝒖 𝑖 𝑗 = (𝒂 𝑖 − 𝒂 𝑗 )/∥𝒂 𝑖 − 𝒂 𝑗 ∥2 with 𝑖 < 𝑗 .

7. To obtain failure probability 𝛿 ∈ (0, 1) in (16.4), how large should 𝑚 be?
Discuss.

Application 16.45 (*Random graphs). Recall that an Erdős–Rényi graph G(𝑛,𝑝) is an
undirected, combinatorial graph (V, E) drawn at random from the following distribution.
The vertex set V contains 𝑛 vertices. For each choice {𝑢,𝑣 } of distinct vertices, the
edge 𝑒 = {𝑢,𝑣 } appears independently with probability 𝑝 . The degree of a vertex 𝑣 is
the number of edges that are incident on the vertex:

deg(𝑣 ) :=
∑︁

𝑒 ∈E
1𝑣∈𝑒 .

We will explore the degrees of the vertices in a random graph with a large number 𝑛
of vertices. We scale the probability 𝑝 along with the number of vertices to preserve
the expected degree.

1. For each vertex 𝑣 ∈ V, show that the expected degree 𝑑 := 𝔼[deg(𝑣 )] = (𝑛−1)𝑝 .
2. Dense graphs, regularity: Suppose that the expected degree 𝑑 ≥ Const · log𝑛 for a

sufficiently large constant. Show that

ℙ {|deg(𝑣 ) − 𝑑 | ≤ 0.1𝑑 for all 𝑣 ∈ V} ≥ 0.9.

In other words, every vertex in a dense random graph has about the same degree.
The graph is almost regular. Hint: Use the Chernoff inequalities (Problem 16.38)
along with a union bound.

3. *Sparse graphs, irregularity: Suppose that the expected degree 𝑑 = Const · log𝑛.
Show that the graph has a vertex with degree no greater than 𝑑 . Show that it is
likely that the graph has a vertex with degree at least 10𝑑 .

4. **Very sparse graphs, irregularity: Suppose that the expected degree 𝑑 is a constant.
Show that there is a vertex whose degree is constant. Show that it is likely that
there is a vertex with degree at least const · (log𝑛)/(log log𝑛).

Notes
Concentration inequalities for independent sums are the most basic example from
a wide-ranging and powerful theory. Many other types of random variables satisfy
strong concentration results. Michel Talagrand [Tal96] summarizes the basic principle:

“A random variable that depends (in a ‘smooth’ way) on the influence of many
independent random variables (but not too much on any of them) is essentially
constant.”

Concentration inequalities play a central role in modern statistics, mathematics of data
science, theoretical algorithms, and other areas. You can learn more about this subject
from [BLM13; VH16; Ver18; Tro21]. Some of the problems are drawn from these
sources. For a discussion of large-deviation principles, see [DZ98].

Cumulants are very elegant, but they are not often covered in introductory classes.
See the article of Speed [Spe83] for a brief introduction to the subject and some older
references. A related class of cumulants plays a core role in the study of random
matrices [Leh04; NS06].
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17. Weak Convergence

Agenda:
1. Modes of convergence
2. Bounded Lipschitz functions
3. The BL distance
4. Weak convergence
5. Convergence of dfs
6. Integral probability metrics

“To rush into explanations is always a sign of weakness.”

—The Seven Dials Mystery, Agatha Christie

Limit theorems in probability tell us when a sequence of random variables converges
to a limiting random variable. There are many flavors of convergence, each suited for
particular circumstances. So far, we have focused on notions of convergence that treat
the random variables as functions on the sample space. In this lecture, we consider
yet another approach that describes when the distributions of the random variables
converge to a limiting distribution.

This change in perspective requires us to think about what it means for two
probability distributions to be close to each other. Here is the key idea. When two
distributions are similar, then many moments of the distributions are also similar.
Conversely, if two distributions are very different, there is a moment that witnesses the
discrepancy between them.

Using this approach, we introduce the bounded Lipschitz (BL) distance, a metric
defined on the space of probability measures on the real line. The metric geometry
leads to a notion of convergence for probability measures, called weak convergence.
Weak convergence has a number of alternative formulations in terms of random
variables, distribution functions, and characteristic functions. These results make weak
convergence a core tool in probability theory.

We can generalize the bounded Lipschitz distance in several ways. First, it
extends naturally to probability measures defined on ℝ𝑛 . Second, we can introduce
a whole family of distances, called integral probability metrics, that provide a useful
framework for thinking about similarity of probability distributions and what it means
for probability distributions to converge.

17.1 Modes of convergence
Suppose that (𝑋𝑖 : 𝑖 ∈ ℕ) is a family of real random variables, defined on a probability
space (Ω,F,ℙ). What does it mean for the sequence of random variables to converge
to a limiting random variable 𝑋 , defined on the same sample space?

17.1.1 Convergence of functions
Recall that a real random variable 𝑋 : Ω → ℝ is a real-valued function on the sample
space. This definition means that we can apply classic notions of convergence, defined
for functions, to sequences of random variables. The modes of convergence we have
encountered so far are all based on this idea.
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Convergence pointwise, almost-sure, in probability
The simplest notion is pointwise convergence:

𝑋𝑛 → 𝑋 pointwise when 𝑋𝑛 (𝜔) → 𝑋 (𝜔) for all 𝜔 ∈ Ω.

Almost-sure convergence is a relaxation of pointwise convergence:

𝑋𝑛 → 𝑋 a.s. when ℙ {𝜔 ∈ Ω : 𝑋𝑛 (𝜔) → 𝑋 (𝜔)} = 1.

It is easy to see that pointwise convergence implies almost-sure convergence, but the
converse does not hold.

Convergence in probability is even weaker:

𝑋𝑛 → 𝑋 in probability when sup
𝑡>0

lim
𝑛→∞

ℙ {𝜔 ∈ Ω : |𝑋𝑛 (𝜔) − 𝑋 (𝜔) | ≥ 𝑡 } = 0.

Almost-sure convergence implies convergence in probability, but the converse is false.

Convergence in L𝑝
There is a separate notion of convergence defined for random variables in an L𝑝 space
(𝑝 > 0). If the members 𝑋𝑖 of the sequence and the limit 𝑋 all belong to L𝑝 , we say
that

𝑋𝑛 → 𝑋 in L𝑝 when
∫
Ω
|𝑋𝑛 (𝜔) − 𝑋 (𝜔) |𝑝 ℙ(d𝜔) → 0.

This notion of convergence averages the distance between the two functions over the
whole sample space, placing more emphasis on large discrepancies when 𝑝 is large.

We can write the latter expression more compactly using homogeneous 𝑝th
moments: ∥𝑋𝑛 − 𝑋 ∥𝑝 → 0. By monotonicity (Theorem 11.4), convergence in L𝑝
implies convergence in L𝑞 for all 𝑞 ≤ 𝑝 . On the other hand, convergence in L𝑝 is
incomparable with the concepts described in the last paragraph.

Observe that L𝑝 convergence is determined by the pseudometric dist𝑝 (𝑋 ,𝑌 ) :=
∥𝑋 −𝑌 ∥𝑝 . In other words, the distance given by the L𝑝 pseudonorm metrizes conver-
gence in L𝑝 .

17.1.2 Convergence of distributions
Recall that a real random variable 𝑌 induces a Borel probability measure 𝜇𝑌 on the
real line, called the distribution or the law of the random variable. The measure 𝜇𝑌
depends on the probability space (Ω,F,ℙ), as well as the function 𝑌 . Nevertheless,
once we have determined 𝜇𝑌 , the probability space no longer plays a role. We can just
think about 𝜇𝑌 as a measure defined on the Borel sets of the real line.

As a consequence, it is natural to introduce the sequence (𝜇𝑖 : 𝑖 ∈ ℕ) of distributions
of the random variables 𝑋𝑖 and the distribution 𝜇 of the random variable 𝑋 . We can ask
what it would mean for the sequence (𝜇𝑖 ) of distributions to converge to the limiting
probability measure 𝜇.
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Note that this approach to convergence only depends on the marginal distributions
𝜇𝑖 of the random variables 𝑋𝑖 . The interactions among the random variables do not
play any role once we pass to the distributions. As a consequence, we anticipate that
it is easier for the sequence of measures to converge than for the random variables
themselves to converge.

17.1.3 Moments and similarity of measures
To develop a notion of convergence for distributions, we first discuss what it means for
two distributions to be similar.

Recall that amoment of a probability measure 𝜇 on the real line is a linear functional
of the measure. Each moment takes the form 𝜇(ℎ) =

∫
ℝ
ℎ d𝜇 for a measurable function

ℎ : ℝ → ℝ.
We have seen that moments provide information about the distribution. For

example, when the moment 𝜇( |𝑥 |𝑝 ) is finite, then the tails of the distribution decay at
least as fast as 𝑡 −𝑝 . In Problem 10.23, we developed a way to reconstruct a probability
distribution that is supported on {0, 1, 2, . . . , 𝑛} from a collection of 𝑛 moments.

These observations motivate the idea that we can use moments to test whether two
probability measures 𝜇 and 𝜈 are similar to each other. In other words, when 𝜇 ≈ 𝜈 ,
we anticipate that the moments 𝜇(ℎ) ≈ 𝜈 (ℎ) for many test functions ℎ. The more
moments that are close, the more evidence that the distributions are close.

Conversely, if two probability measures 𝜇 and 𝜈 are very dissimilar, we can search
for a test function ℎ for which the associated moments 𝜇(ℎ) and 𝜈 (ℎ) are very
different; this moment witnesses the discrepancy between the measures.

In this lecture, we implement techniques that use moments to measure the distance
between distributions. We will begin with the most important special case, which leads
to the concept of weak convergence of distributions. Afterward, we will generalize this
construction and discuss several additional examples.

17.2 The bounded Lipschitz distance
In this section, we introduce a particular distance between probability distributions.
To do so, we must describe a class of test functions that we will use to evaluate the
similarity between distributions. Our choice of test functions may not seem obvious,
but it is well motivated by the applications in probability theory.

17.2.1 Bounded, Lipschitz functions
First, we present some classical ways to measure regularity of a function.

Definition 17.1 (Bounded function). For a function ℎ : ℝ → ℝ, the supremum norm is

∥ℎ∥sup := sup𝑎∈ℝ |ℎ (𝑎) |.

If ∥ℎ∥sup < +∞, then we say that ℎ is bounded.

Exercise 17.2 (Supremum norm). Show that ∥·∥sup is a norm on functions ℎ : ℝ → ℝ.

The supremum norm is always larger than the L∞(𝜇) norm, which ignores the
values of the function on a 𝜇-negligible set.

Definition 17.3 (Lipschitz function). For a function ℎ : ℝ → ℝ, the Lipschitz
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pseudonorm is

∥ℎ∥Lip := inf{𝐿 > 0 : |ℎ (𝑏) − ℎ (𝑎) | ≤ 𝐿 · |𝑏 − 𝑎 | for all 𝑎, 𝑏 ∈ ℝ}.

If ∥ℎ∥Lip ≤ 𝐿 for a finite value 𝐿 , then we say that ℎ is 𝐿-Lipschitz or just Lipschitz.
The number 𝐿 is referred to as the Lipschitz constant of the function ℎ.

In other words, an 𝐿-Lipschitz function changes by at most 𝐿 units over each unit
interval. You should confirm the following properties of Lipschitz functions.

Exercise 17.4 (Lipschitz constant). Show that ∥·∥Lip is a pseudonorm on functions ℎ :
ℝ → ℝ.

Exercise 17.5 (Lipschitz function: Continuity). Show that every Lipschitz function is contin-
uous. By example, show that there are continuous functions that are not Lipschitz.

Exercise 17.6 (Lipschitz function: Derivatives). Suppose that ℎ : ℝ → ℝ is differentiable.
Show that ∥ℎ∥Lip = ∥ℎ′∥sup. In particular, every continuously differentiable function is
Lipschitz on compact sets. By example, show that there are Lipschitz functions that
are not differentiable.

A function can have any combination of boundedness and Lipschitz properties, or
lack thereof. It is also convenient to introduce another norm that encapsulates both
properties.

Definition 17.7 (Bounded, Lipschitz norm). For a function ℎ : ℝ → ℝ, the bounded,
Lipschitz (BL) norm is

∥ℎ∥BL := max{∥ℎ∥sup, ∥ℎ∥Lip}.

If ∥ℎ∥BL < +∞, then ℎ is both bounded and Lipschitz.

17.2.2 Bounded, Lipschitz functions separate probability measures
We can determine whether two probability measures are equal by checking whether
the moments induced by bounded, Lipschitz functions are equal.

Proposition 17.8 (BL functions separate measures). Two Borel probability measures 𝜇,𝜈
on the real line are equal (𝜇 = 𝜈) if and only if 𝜇(ℎ) = 𝜈 (ℎ) for all bounded, Lipschitz
functions ℎ : ℝ → ℝ.

Proof. The forward direction is easy. Let ℎ : ℝ → ℝ be bounded and Lipschitz. A
Lipschitz function is continuous, so it is also measurable. Each bounded, measurable
function is integrable with respect to any probability measure. Therefore, if 𝜇 = 𝜈 ,
then the integrals 𝜇(ℎ) = 𝜈 (ℎ) are defined and must be equal for every function ℎ
that is bounded and Lipschitz.

For the reverse direction, assume that 𝜇 ≠ 𝜈 . Since Borel probability measures
are determined uniquely by their (cumulative) distribution functions (Theorem 3.26),
we may just as well assume that the distribution functions 𝐹𝜇 (𝑎) := 𝜇(−∞, 𝑎] and
𝐹𝜈 (𝑎) := 𝜈 (−∞, 𝑎] are not equal for some particular 𝑎 ∈ ℝ.

We can approximate the indicator function (−∞, 𝑎] by a sequence of bounded,
Lipschitz functions. Consider the piecewise linear functionℎ𝑛 : ℝ → ℝwithℎ𝑛 (𝑥) = 1
for 𝑥 ≤ 𝑎 and ℎ𝑛 (𝑥) = 0 for 𝑥 ≥ 𝑎 + 1/𝑛.
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By construction, ℎ𝑛 → 1(−∞,𝑎 ] pointwise as 𝑛 → ∞. The bounded convergence
theorem (Corollary 9.13) readily implies that

𝜇(ℎ𝑛) → 𝜇(1(−∞,𝑎 ]) = 𝐹𝜇 (𝑎) and 𝜈 (ℎ𝑛) → 𝜈 (1(−∞,𝑎 ]) = 𝐹𝜈 (𝑎).

Since 𝐹𝜇 (𝑎) ≠ 𝐹𝜈 (𝑎), there must be some index 𝑛 ∈ ℕ for which 𝜇(ℎ𝑛) ≠ 𝜈 (ℎ𝑛).
In other words, the bounded, Lipschitz function ℎ𝑛 witnesses the fact that the two
measures 𝜇 and 𝜈 are not equal. ■

17.2.3 The bounded Lipschitz distance
Proposition 17.8 states that bounded, Lipschitz functions allow us to separate probability
measures. Therefore, we can use them to define a metric.

Definition 17.9 (BL metric: Probability measures). Let𝜇,𝜈 be Borel probability measures
on the real line. Define the bounded Lipschitz (BL) probability metric:

distBL(𝜇,𝜈) := sup {|𝜇(ℎ) − 𝜈 (ℎ) | : ∥ℎ∥BL ≤ 1} .

We can also define the BL metric directly for random variables or distribution
functions using the correspondences between them. Hence,

distBL(𝑋 ,𝑌 ) := distBL(𝐹𝑋 , 𝐹𝑌 ) := distBL(𝜇𝑋 , 𝜇𝑌 ),

where 𝐹𝑋 , 𝐹𝑌 are the distribution functions and 𝜇𝑋 , 𝜇𝑌 are the laws of 𝑋 ,𝑌 .

It is now quite easy to see that distBL defines a metric on the class of Borel probability
measures on the real line. In other words, it gives a rigorous way to quantify the
similarity between two probability measures.

Exercise 17.10 (BL distance is a metric). Show that the BL distance is a metric. For all Borel
probability measures 𝜇,𝜈, 𝜚 on the real line,

1. Positive definiteness: distBL(𝜇,𝜈) ≥ 0, with equality if and only if 𝜇 = 𝜈 .
2. Symmetry: distBL(𝜇,𝜈) = distBL(𝜈, 𝜇).
3. Triangle inequality: distBL(𝜇,𝜈) ≤ distBL(𝜇, 𝜚) + distBL(𝜚,𝜈).

Hint: Proposition 17.8 takes care of the only tricky detail.

17.2.4 Convergence
Like every metric, the BL metric induces a notion of convergence. As we will learn, this
type of convergence plays a central role in classical probability theory.

Definition 17.11 (BL metric: Convergence). Consider a sequence (𝜇𝑖 : 𝑖 ∈ ℕ) of Borel
probability measures on the real line. For another Borel probability measure 𝜇 on
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the real line, suppose that

distBL(𝜇𝑛 , 𝜇) → 0 as 𝑛 → ∞.

Then we say that the measures 𝜇𝑛 → 𝜇 with respect to the BL metric.

In detail, convergence with respect to the BL metric means that

distBL(𝜇𝑛 , 𝜇) = sup{|𝜇𝑛 (ℎ) − 𝜇(ℎ) | : ∥ℎ∥BL ≤ 1} → 0.

As a particular consequence, convergence in the BL metric implies convergence for any
particular bounded, Lipschitz test function:

𝜇𝑛 (ℎ) → 𝜇(ℎ) for each bounded, Lipschitz function ℎ : ℝ → ℝ.

In fact, these two statements are equivalent with each other. Convergence in the BL
metric is the same as convergence for each BL test function.

Theorem 17.12 (BL metric: Convergence). Consider a sequence (𝜇𝑛 : 𝑛 ∈ ℕ) of Borel
probability measures on the real line, and let 𝜇 be another Borel probability
measure on the real line. The following statements are equivalent:

1. distBL(𝜇𝑛 , 𝜇) → 0 as 𝑛 → ∞.
2. 𝜇𝑛 (ℎ) → 𝜇(ℎ) as 𝑛 → ∞ for each bounded, Lipschitz ℎ : ℝ → ℝ.

We postpone the proof of Theorem 17.12 to Section 17.7 because it requires a dose
of functional analysis.

In the next section, we will glorify this type of convergence with its own name, and
we will develop a number of equivalent conditions. Afterward, we will explore some
generalizations of the BL probability metric.

17.3 Weak convergence
Convergence with respect to the BL distance plays a central role in classical probability
theory because it is equivalent to several other types of convergence. In this section,
we will develop some of these connections in detail.

17.3.1 Weak convergence of probability measures
Let us assign a name to the notion of convergence with respect to the BL distance.
Motivated by Theorem 17.12, we pose the definition in terms of convergence for
individual test functions.

Definition 17.13 (Weak convergence: Probability measures). Consider a sequence (𝜇𝑛 :
𝑛 ∈ ℕ) of Borel probability measures on ℝ, and let 𝜇 be another Borel probability
measure on ℝ. We say that 𝜇𝑛 converges weakly to 𝜇 when

𝜇𝑛 (ℎ) → 𝜇(ℎ) for each bounded, Lipschitz function ℎ : ℝ → ℝ.

Common notations for weak convergence include 𝜇𝑛 ⇝ 𝜇 and 𝜇𝑛
𝑤→ 𝜇.

Weak convergence is defined by the pointwise convergence of a large family of
moments. Theorem 17.12 states that weak convergence is the same as convergence
with respect to the BL metric. You may find one definition or the other more intuitive,
but they give identical results. We will gain further intuition in the upcoming sections.
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Our first observation is that weak limits are unique.

Exercise 17.14 (Weak limits: Uniqueness). Suppose that 𝜇𝑛 ⇝ 𝜇 and 𝜇𝑛 ⇝ 𝜈 . Show that
𝜇 = 𝜈 . In other words, weak limits are unique. Hint: Just use Proposition 17.8.

The next exercise shows that we can also define weak convergence using another
natural class of test functions. The alternative definition can sometimes be more
convenient to use.

Exercise 17.15 (Weak convergence: Bounded, continuous functions). Show that 𝜇𝑛 ⇝ 𝜇 if
and only if 𝜇𝑛 (ℎ) → 𝜇(ℎ) for each bounded, continuous function ℎ : ℝ → ℝ. Hint:
Lipschitz functions are dense in the space of bounded, continuous functions, equipped
with the supremum norm.

Warning 17.16 (Weak convergence: Bad notation). Some authors write 𝜇𝑛 ⇒ 𝜇 for weak
convergence. This notation is deprecated because of the potential for confusion
with logical implication. ■

Warning 17.17 (Weak convergence: Functional analysis). Weak convergence in probability
theory is not the same as weak convergence in functional analysis. ■

17.3.2 Weak convergence of random variables
We can also define weak convergence directly for random variables.

Definition 17.18 (Weak convergence: Random variables). Consider a sequence (𝑋𝑛 : 𝑛 ∈
ℕ) of real random variables, and let 𝑋 be another real random variable. We say
that 𝑋𝑛 converges weakly to 𝑋 when

𝔼ℎ (𝑋𝑛) → 𝔼ℎ (𝑋 ) for each bounded, Lipschitz function ℎ : ℝ → ℝ.

We write 𝑋𝑛 ⇝ 𝑋 or 𝑋𝑛
𝑤→ 𝑋 .

Exercise 17.19 (Weak convergence: Equivalence). Verify that 𝑋𝑛 ⇝ 𝑋 if and only if the
laws of the random variables converge weakly: 𝜇𝑋𝑛 ⇝ 𝜇𝑋 .

This exercise emphasizes that the weak convergence is insensitive to relationships
among the random variables 𝑋𝑛 . Indeed, it only reflects the marginal laws of the
random variables, regardless of any dependency or independency between them. The
random variables 𝑋𝑛 do not even need to be defined on the same probability space.

Exercise 17.20 (Almost-sure convergence implies weak convergence). Consider a sequence
(𝑋𝑛 : 𝑛 ∈ ℕ) of real random variables defined on the same probability space. Prove
that 𝑋𝑛 → 𝑋 almost surely implies that 𝑋𝑛 ⇝ 𝑋 . In Section 17.8.5, we will see that
this statement has a partial converse.

17.3.3 Weak convergence of distribution functions
For probability measures on the real line, weak convergence can also be formulated
in terms of (cumulative) distribution functions. This is part of the reason that weak
convergence plays a large role in classical probability theory.

Definition 17.21 (Weak convergence: Distribution functions). A sequence (𝐹𝑛 : 𝑛 ∈ ℕ)
of distribution functions on the real line converges weakly to a distribution function
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𝐹 if and only if the associated laws converge weakly: 𝜇𝑛 ⇝ 𝜇. We write 𝐹𝑛 ⇝ 𝐹
to denote weak convergence of distribution functions.

There is an alternative characterization of weak convergence of distribution functions
that may clarify these concepts.

Theorem 17.22 (Weak convergence: Distribution functions). Suppose that a sequence
(𝐹𝑛 : 𝑛 ∈ ℕ) of distribution functions on the real line, and let 𝐹 be another
distribution function on the real line. Then 𝐹𝑛 ⇝ 𝐹 if and only if

𝐹𝑛 (𝑎) → 𝐹 (𝑎) for each 𝑎 ∈ ℝ at which 𝐹 is continuous.

We will prove Theorem 17.22 in Section 17.8, along with some related results.
Under the assumption that the limit 𝐹 is continuous, 𝐹𝑛 ⇝ 𝐹 is the same as

𝐹𝑛 → 𝐹 pointwise. The most common situation where the limit 𝐹 is continuous is
when it is the distribution function of a continuous random variable. (That is, a random
variable whose law is absolutely continuous with respect to Lebesgue measure.)

When the limit 𝐹 is discontinuous, 𝐹𝑛 ⇝ 𝐹 provides no guarantees at the points
of discontinuity of 𝐹 . The most common situation where the limit 𝐹 is not continuous
is when it is the distribution function of a discrete random variable. In this case, other
(stronger) notions of convergence may be more appropriate so that we can control
what happens at discontinuities.

Note that the convergence 𝐹𝑛 (𝑎) → 𝐹 (𝑎) may not be uniform in the variable
𝑎 ∈ ℝ, even restricted to points of continuity of 𝐹 . That is, the distribution functions
may converge at different rates at different points. Uniform convergence of distribution
functions is a stricter requirement than weak convergence; see Section 17.6.1.

Owing to Theorem 17.22, weak convergence of measures is often called convergence
in distribution. This terminology, however, may be confusing because there are many
other modes of convergence for measures.

Exercise 17.23 (Weak convergence: Atoms). What is the weak limit of the sequence
(𝛿1/𝑛 : 𝑛 ∈ ℕ) of Dirac measures as 𝑛 → ∞? Do the distribution functions converge
pointwise?

17.4 *Weak convergence and functional analysis
The probabilists’ weak convergence can be understood in a functional analytic sense.
We can equip the bounded, continuous functions on ℝ with the supremum norm to
form a Banach space, denoted C(ℝ). The dual C(ℝ)∗ of this Banach space consists of
all finite, signed Borel measures on the extended real line, equipped with the norm
∥𝜇∥TV := sup{𝜇(ℎ) : ∥ℎ∥sup ≤ 1}. By Exercise 17.15, weak convergence 𝜇𝑛 ⇝ 𝜇 of
probability measures is the same as weak-∗ convergence of the probability measures,
viewed as elements of the dual space.

By the Banach–Alaoglu theorem, the unit ball in C(ℝ)∗ is weak-∗ compact. Among
other consequences, every sequence (𝜇𝑛 : 𝑛 ∈ ℕ) of probability measures on ℝ has a
weak-∗ convergent subsequence. The weak-∗ limit of the subsequence is a probability
measure on ℝ. Unfortunately, even if the 𝜇𝑛 are probability measures on ℝ, some of
the mass can migrate to {±∞} and the limiting measure 𝜇 may place strictly less than
one unit of mass on ℝ.

To ensure that the weak-∗ limit of probability measures on ℝ remains a probability
measure on ℝ, the sequence (𝜇𝑛 : 𝑛 ∈ ℕ) needs to have an additional property, called
tightness. This condition ensures that mass does not “leak out” at infinity.



Lecture 17: Weak Convergence 261

Definition 17.24 (Tightness). Consider a sequence (𝜇𝑛 : 𝑛 ∈ ℕ) of Borel probability
measures on the real line. For each 𝜀 > 0, suppose that there is a compact set
K ⊂ ℝ with the property that

𝜇𝑛 (K) > 1 − 𝜀 for all 𝑛 ∈ ℕ.

Then the sequence (𝜇𝑛) is said to be tight.

Theorem 17.25 (Prokhorov). Let (𝜇𝑛 : 𝑛 ∈ ℕ) be a sequence of Borel probability
measures on the real line.

1. If 𝜇𝑛 ⇝ 𝜇 where 𝜇 is a probability measure, then the sequence (𝜇𝑛) is tight.
2. If the sequence (𝜇𝑛) is tight, then it admits a subsequence (𝜇𝑛𝑘 : 𝑘 ∈ ℕ) that

converges weakly to a probability measure 𝜇. That is, 𝜇𝑛𝑘 ⇝ 𝜇.

Proof. (1). Assume that 𝜇𝑛 ⇝ 𝜇 where 𝜇 is a probability measure. We must argue
that the sequence is tight.

Consider a sequence (ℎ𝑖 : 𝑖 ∈ ℕ) of bounded Lipschitz functions where ℎ𝑖
approximates the indicator of [−𝑖 ,+𝑖 ] from below. More precisely, set ℎ𝑖 (𝑡 ) = 1 for
all |𝑡 | ≤ 𝑖 − 1 and ℎ𝑖 (𝑡 ) = 0 for |𝑡 | ≥ 𝑖 . Since 𝜇 is a probability measure,

1 = 𝜇(1ℝ) = lim
𝑖→∞

𝜇(ℎ𝑖 ) = lim
𝑖→∞

lim
𝑛→∞

𝜇𝑛 (ℎ𝑖 ) ≤ lim
𝑖→∞

lim
𝑛→∞

𝜇𝑛 ( [−𝑖 ,+𝑖 ]).

We have used the fact that ℎ𝑖 ↑ 1 pointwise to apply the monotone convergence
theorem (Theorem 9.10). The weak convergence 𝜇𝑛 ⇝ 𝜇 as 𝑛 → ∞ justifies the
second limit. Last, we bound the Lipschitz function ℎ𝑖 above by the indicator of
[−𝑖 ,+𝑖 ]. In fact, the right-hand side cannot exceed 1 because each 𝜇𝑛 is a probability
measure.

Now, fix a parameter 𝜀 > 0. There exists an interval [−𝑖 ,+𝑖 ] where

lim
𝑛→∞

𝜇𝑛 ( [−𝑖 ,+𝑖 ]) > 1 − 𝜀.

Next, we select a number 𝑁 where 𝜇𝑛 ( [−𝑖 ,+𝑖 ]) > 1 − 2𝜀 for all 𝑛 ≥ 𝑁 . Since the
𝜇𝑛 are probability measures, we can also find a compact set K where 𝜇𝑛 (K) > 1 − 2𝜀
for each 𝑛 < 𝑁 . As a consequence,

𝜇𝑛 ( [−𝑖 ,+𝑖 ] ∪ K) > 1 − 2𝜀 for all 𝑛 ∈ ℕ.

We conclude that the sequence (𝜇𝑛) is tight.
(2). Suppose that (𝜇𝑛) is a tight sequence of probability measures on the real line.

By weak-∗ compactness of C(ℝ)∗, there is a subsequence (𝜇𝑛𝑘 : 𝑘 ∈ ℕ) that converges
to a measure 𝜇 on ℝ in the sense that

𝜇𝑛𝑘 (ℎ) → 𝜇(ℎ) for all bounded, continuous ℎ : ℝ → ℝ.

In particular, the limit holds for all bounded, Lipschitz test functions. It remains to
confirm that the limit 𝜇 is a probability measure.

For each 𝜀 > 0, there exists an interval [−𝑖 ,+𝑖 ] for which 𝜇𝑛𝑘 ( [−𝑖 ,+𝑖 ]) > 1 − 𝜀
for all 𝑘 ∈ ℕ because the sequence is tight. Using the bounded Lipschitz functions ℎ𝑖
constructed above, we find that

1 − 𝜀 ≤ lim
𝑘→∞

𝜇𝑛𝑘 ( [−𝑖 ,+𝑖 ]) ≤ lim
𝑘→∞

𝜇𝑛𝑘 (ℎ𝑖+1) = 𝜇(ℎ𝑖+1) ≤ 𝜇(ℝ).

Since 𝜀 is arbitrary, we deduce that 𝜇(ℝ) = 1. ■
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17.5 *Weak convergence: Higher dimensions
Definition 17.13 describes weak convergence for distributions on the real line. The
same ideas apply to distributions on ℝ𝑛 . Let us summarize the approach, without
proof.

Definition 17.26 (Bounded, Lipschitz function on ℝ𝑛 ). A function ℎ : ℝ𝑛 → ℝ is
bounded when

∥ℎ∥sup := sup{|ℎ (𝒂) | : 𝒂 ∈ ℝ𝑛} < +∞.
The function is Lipschitz when its Lipschitz pseudonorm is finite:

Here, ∥ · ∥2 denotes the Euclidean
norm.

∥ℎ∥Lip := inf{𝐿 ≥ 0 : |ℎ (𝒂) − ℎ (𝒃) | ≤ 𝐿 · ∥𝒂 − 𝒃 ∥2 for all 𝒂 ,𝒃 ∈ ℝ𝑛}.

The bounded, Lipschitz norm is now defined for functions on ℝ𝑛 :

∥ℎ∥BL := max{∥ℎ∥sup, ∥ℎ∥Lip}.

Definition 17.27 (Weak convergence on ℝ𝑛 ). Consider a sequence (𝜇𝑛 : 𝑛 ∈ ℝ) of
Borel probability measure on ℝ𝑛 , and let 𝜇 be another Borel probability measure
on ℝ𝑛 . We say that 𝜇𝑛 converges weakly to 𝜇 when

𝜇𝑛 (ℎ) → 𝜇(ℎ) for all bounded, Lipschitz ℎ : ℝ𝑛 → ℝ.

We write 𝜇𝑛 ⇝ 𝜇. We use a similar notation for weak convergence of random
variables taking values in ℝ𝑛 .

As before, we can define a metric on distributions on ℝ𝑛 that is induced by the
bounded, Lipschitz functions.

Definition 17.28 (BL metric: Probability measures on ℝ𝑛 ). Let 𝜇,𝜈 be Borel probability
measures on ℝ𝑛 . Define the bounded, Lipschitz (BL) probability metric:

distBL(𝜇,𝜈) := sup{|𝜇(ℎ) − 𝜈 (ℎ) | : ∥ℎ∥BL ≤ 1}.

We have similar notation for random variables taking values in ℝ𝑛 .

Theorem 17.29 (BL metrizes weak convergence on ℝ𝑛 ). Consider a sequence (𝜇𝑛 : 𝑛 ∈
ℕ) of Borel probability measures on ℝ, and let 𝜇 be another Borel probability
measure on ℝ. Then

𝜇𝑛 ⇝ 𝜇 if and only if distBL(𝜇𝑛 , 𝜇) → 0.

We omit the proof. It is based on an argument similar to Theorem 17.12, but it
requires more technical effort.

Aside: This machinery extends to a much more general setting. Indeed, we can use
exactly the same ideas to define weak convergence of Borel probability measures
on a complete, separable metric space. This generalization plays a major role in
statistics and the study of empirical processes. See [Dud02] for an introduction to
this circle of ideas.
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17.6 Integral probability metrics
We can generalize the idea behind the construction of the bounded Lipschitz distance
to obtain other kinds of distances between probability distributions. These distances
arise in many applications of probability theory, and they share some properties with
the BL distance.

We would like to implement the general idea that two probability measures are
close when a large collection of moments are similar. Here is the approach.

Definition 17.30 (Integral probability metric). Let H be a collection of measurable
functions on ℝ. For two Borel probability measures 𝜇,𝜈 on ℝ, we define

distH(𝜇,𝜈) := sup{|𝜇(ℎ) − 𝜈 (ℎ) | : ℎ ∈ H}.

This is called the integral probability (pseudo)metric induced by the set H of test
functions.

It is easy to see that Definition 17.30 includes the bounded, Lipschitz distance as a
special case when H = {ℎ : ℝ → ℝ : ∥ℎ∥BL ≤ 1}.

The terminology “integral probability metric” is partially justified by the fact that
𝜇(ℎ) is the integral of the function ℎ against the measure 𝜇. The rest of the justification
appears in the next two exercises.

Exercise 17.31 (IPM is a pseudometric). Show that distH is a pseudometric. That is, the
function distH is positive, symmetric, and satisfies the triangle inequality.

Exercise 17.32 (When is an IPM a metric?). Show that distH is a metric if and only if the
collection H separates points. That is, 𝜇 ≠ 𝜈 implies that 𝜇(ℎ) ≠ 𝜈 (ℎ) for some
function ℎ ∈ H.

As we discussed, the more moments that are similar, the more the probability
distributions are similar. This intuition is captured by the next exercise.

Exercise 17.33 (IPM: Monotonicity). Verify that H ⊆ H′ implies that distH ≤ distH′ for all
arguments.

Note, however, that two IPMs, say distH and distH′ , may be incomparable as metrics
when there is no containment between the classes H and H′ of test functions.

17.6.1 Examples of IPMs
There are many important examples of IPMs. Here are a few.

Example 17.34 (Kolmogorov distance). The collection

H = {1(−∞,𝑎 ] : 𝑎 ∈ ℝ}

generates the Kolmogorov distance on probability measures. It is not hard to check that
convergence in Kolmogorov distance is the same as uniform, pointwise convergence
of distribution functions. Therefore, the Kolmogorov distance is stronger than the BL
distance; in particular, it is a metric on probability measures. ■

Example 17.35 (Kantorovich-1 distance). The collection

H = {ℎ : ℝ → ℝ : ∥ℎ∥Lip ≤ 1}

generates the Kantorovich-1 distance on probability measures. It is easy to see that H
strictly contains the functions with BL norm less than one. Therefore, this distance is
larger than the BL distance; in particular, it is a metric.
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Convergence distH(𝜇𝑛 , 𝜇) → 0 is the same as weak convergence, plus convergence
of first moments 𝜇𝑛 ( |𝑥 |) → 𝜇( |𝑥 |).

The Kantorovich-1 distance arises in theory of optimal transport, where it is often
called the Wasserstein-1 distance. ■

Example 17.36 (Total variation distance). The collection

H = {ℎ : ℝ → ℝ : ∥ℎ∥sup ≤ 1 and ℎ continuous}

generates the total variation (TV) distance on probability measures. Equivalently, we
can take H = {1B : B ∈ B(ℝ)}. It is clear that H strictly contains the functions with
BL norm less than one. Therefore, the TV distance is also at as large as the BL distance,
so is a metric.

Convergence in total variation distH(𝜇𝑛 , 𝜇) → 0 requires that 𝜇𝑛 (B) → 𝜇(B)
for every Borel set B ∈ B(ℝ). You can see that this is a very strict requirement.
As a consequence, total variation distance is rarely used for (absolutely) continuous
distributions, but it may be appropriate for convergence of discrete distributions (e.g.,
supported on the integers). ■

There is a lot more to say about each of these particular metrics, and they serve
as appropriate tools for particular applications. Because IPMs derive from the same
conceptual framework, there is a logical economy to these notions that makes them
easier to understand and to compare with each other than other modes of convergence.

17.7 *BL distance metrizes weak convergence
In this section, we prove Theorem 17.12, which states that convergence in the BL
metric is exactly the same as weak convergence. This argument requires a dose of
functional analysis.

Proof of Theorem 17.12. Consider a sequence (𝜇𝑛 : 𝑛 ∈ ℕ) of Borel probability
measures on the real line, and let 𝜇 be another Borel probability measure on the real
line. We must prove that

𝜇𝑛 ⇝ 𝜇 if and only if distBL(𝜇𝑛 , 𝜇) → 0.

We begin with the easier part.

Reverse direction
Assume that distBL(𝜇𝑛 , 𝜇) → 0. Explicitly,

distBL(𝜇𝑛 , 𝜇) = sup{|𝜇𝑛 (ℎ) − 𝜇(ℎ) | : ∥ℎ∥BL ≤ 1} → 0.

Therefore, for each (nonzero) bounded, Lipschitz function ℎ : ℝ → ℝ, we can
calculate that

|𝜇𝑛 (ℎ) − 𝜇(ℎ) | = ∥ℎ∥BL · |𝜇𝑛 (ℎ/∥ℎ∥BL) − 𝜇(ℎ/∥ℎ∥BL) |
≤ ∥ℎ∥BL · distBL(𝜇𝑛 , 𝜇) → 0.

Thus, 𝜇𝑛 (ℎ) → 𝜇(ℎ) for every bounded, Lipschitz function ℎ.
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Forward direction
Assume that 𝜇𝑛 ⇝ 𝜇. Explicitly,

𝜇𝑛 (ℎ) → 𝜇(ℎ) for each bounded, Lipschitz function ℎ : ℝ → ℝ.

The challenge is to obtain uniform convergence over all functions with ∥ℎ∥BL ≤ 1.
Fix a parameter 𝜀 > 0. Observe that there is a compact interval I ⊂ ℝ with the

property that 𝜇(closure(Ic)) ≤ 𝜀. This is an easy consequence of the increasing limit
property of a measure (Proposition 2.30). This is a good time to note that

lim sup𝑛→∞ 𝜇𝑛 (Ic) ≤ 𝜇(closure(Ic)) ≤ 𝜀 as 𝑛 → ∞. (17.1)

Indeed, we can approximate the indicator 1closure(Ic ) above by a Lipschitz function. The
bound (17.1) states that we can neglect what happens outside the interval I if we pay
a small cost of 𝜀.

Consider the Banach space C(I) of bounded, continuous, real-valued functions on
the compact interval I, equipped with the supremum norm ∥·∥sup(I) . Introduce the
family of bounded Lipschitz functions on the interval:

K := {ℎ : I → ℝ : ∥ℎ∥BL(I) ≤ 1}.

We have restricted the BL norm to real-valued functions on I in the obvious way. It is a
standard consequence of the Arzelà–Ascoli theorem that K is a (relatively) compact
subset of C(I). You can easily construct a finite

𝜀-covering of K with your bare hands.
Try it! In more general settings, it is
less obvious how to do so.

In particular, we can produce a finite 𝜀-covering of the set K. More
precisely, there exist a finite number 𝐽 of functions 𝑔1, . . . , 𝑔 𝐽 ∈ K such that

min𝑗 ∥ℎ − 𝑔 𝑗 ∥sup(I) ≤ 𝜀 for each ℎ ∈ K.

It is convenient to treat each function 𝑔 𝑗 : I → ℝ as the restriction to I of a bounded,
Lipschitz function 𝑔 𝑗 : ℝ → ℝ on the real line. (For example, we can just make the
constant extension of the value of 𝑔 𝑗 at the endpoints of I.)

This construction allows us to replace the supremum over bounded, Lipschitz
functions by the maximum over the 𝐽 functions in the covering. For each function
ℎ : ℝ → ℝ with ∥ℎ∥BL ≤ 1. Define 𝑔ℎ to be the function in {𝑔1, . . . , 𝑔 𝐽 } that
is closest to ℎ in the supremum norm on I, breaking ties lexicographically. Thus,
∥ℎ − 𝑔ℎ ∥sup(I) ≤ 𝜀.

To bound the BL distance between 𝜇𝑛 and 𝜇, we proceed as follows. Fixℎ : ℝ → ℝ

with ∥ℎ∥BL ≤ 1. First, we replace ℎ with its approximation 𝑔ℎ :

|𝜇𝑛 (ℎ) − 𝜇(ℎ) | ≤ |𝜇𝑛 (𝑔ℎ) − 𝜇(𝑔ℎ) | + |𝜇𝑛 (ℎ − 𝑔ℎ) | + |𝜇(ℎ − 𝑔ℎ) |

≤
(∑︁𝐽

𝑗=1
|𝜇𝑛 (𝑔 𝑗 ) − 𝜇(𝑔 𝑗 ) |

)
+ |𝜇𝑛 (ℎ − 𝑔ℎ) | + |𝜇(ℎ − 𝑔ℎ) |.

We have bounded the first term by the sum over all possible choices for 𝑔ℎ , so it no
longer depends on ℎ. Notice that the limit of the sum is zero because 𝜇𝑛 ⇝ 𝜇 and
each 𝑔 𝑗 is a bounded, Lipschitz function.

Next, we obtain bounds for the error terms. For example,

|𝜇𝑛 (ℎ − 𝑔ℎ) | ≤ |𝜇𝑛 (ℎ − 𝑔ℎ ; I) | + |𝜇𝑛 (ℎ − 𝑔ℎ ; Ic) |
≤ ∥ℎ − 𝑔ℎ ∥sup(I) · 𝜇𝑛 (I) + ∥ℎ − 𝑔ℎ ∥sup · 𝜇𝑛 (Ic)
≤ 𝜀 + 2𝜇𝑛 (Ic).

We used the triangle inequality to control the supremum ofℎ and 𝑔ℎ on Ic. Using (17.1),
we take the limit superior as 𝑛 → ∞ to see that

lim sup
𝑛→∞

[
sup{|𝜇𝑛 (ℎ − 𝑔ℎ) | : ∥ℎ∥BL ≤ 1}

]
≤ 3𝜀.
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A similar argument implies that sup{|𝜇(ℎ − 𝑔ℎ) | : ∥ℎ∥BL ≤ 1} ≤ 3𝜀.
Altogether, we see that the BL distance satisfies

lim sup
𝑛→∞

distBL(𝜇𝑛 , 𝜇)

= lim sup
𝑛→∞

[
sup{|𝜇𝑛 (ℎ) − 𝜇(ℎ) | : ∥ℎ∥BL ≤ 1}

]
≤ lim sup

𝑛→∞

[(∑︁𝐽

𝑗=1
|𝜇𝑛 (𝑔 𝑗 ) − 𝜇(𝑔 𝑗 ) |

)
+ sup

∥ℎ ∥BL≤1

(
|𝜇𝑛 (ℎ − 𝑔ℎ) | + |𝜇(ℎ − 𝑔ℎ) |

) ]
≤ 6𝜀.

Since the parameter 𝜀 is arbitrary, we determine that

distBL(𝜇𝑛 , 𝜇) → 0 as 𝑛 → ∞.

In summary, the BL distance metrizes weak convergence. ■

17.8 *Weak convergence of distribution functions
In this section, we present a proof of Theorem 17.22, which gives the alternative
characterization of weak convergence in terms of distribution functions. We begin
with the forward direction, which is an easy application of the definition of weak
convergence. To prove the reverse direction, we need an additional result, called the
Skorokhod theorem, that clarifies the relationship between weak convergence and
almost-sure convergence.

17.8.1 Forward direction
In this section, we prove that weak convergence implies that distribution functions
converge pointwise at points of continuity of the limit.

Proposition 17.37 (Theorem 17.22: Forward direction). Consider a weakly convergent se-
quence of distribution functions 𝐹𝑛 ⇝ 𝐹 on the real line, per Definition 17.21. Then
𝐹𝑛 (𝑎) → 𝐹 (𝑎) at each point 𝑎 ∈ ℝ where 𝐹 is continuous.

Proof. For each 𝑛 ∈ ℕ, let 𝜇𝑛 be the Borel probability measure with distribution
function 𝐹𝑛 , and let 𝜇 be the Borel probability measure with distribution function 𝐹 .

Choose any point 𝑎 ∈ ℝ where 𝐹 is continuous, and fix 𝜀 > 0. We will approximate
indicator functions above and below by Lipschitz functions:
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Let ℎ be the piecewise linear function with ℎ (𝑦 ) = 1 for 𝑦 ≤ 𝑎 and ℎ (𝑦 ) = 0 for
𝑦 ≥ 𝑎 + 𝜀. Since ℎ is bounded and Lipschitz, weak convergence yields

𝐹𝑛 (𝑎) = 𝜇𝑛 (−∞, 𝑎] ≤ 𝜇𝑛 (ℎ) → 𝜇(ℎ) ≤ 𝜇(−∞, 𝑎 + 𝜀] = 𝐹 (𝑎 + 𝜀).

Therefore, lim sup𝑛→∞ 𝐹𝑛 (𝑎) ≤ 𝐹 (𝑎 + 𝜀).
Next, consider the piecewise linear function with 𝑔 (𝑦 ) = 1 for 𝑦 ≤ 𝑎 − 𝜀 and

𝑔 (𝑦 ) = 0 for 𝑦 ≥ 𝑎 . Since 𝑔 is bounded and Lipschitz, weak convergence yields

𝐹𝑛 (𝑎) = 𝜇𝑛 (−∞, 𝑎] ≥ 𝜇𝑛 (𝑔 ) → 𝜇(𝑔 ) ≥ 𝜇(−∞, 𝑎 − 𝜀] = 𝐹 (𝑎 − 𝜀).

Therefore, lim inf𝑛→∞ 𝐹𝑛 (𝑎) ≥ 𝐹 (𝑎 − 𝜀).
The distribution function 𝐹 is continuous at 𝑎 , and the parameter 𝜀 is arbitrary.

Therefore, we may take 𝜀 ↓ 0 to deduce that

𝐹 (𝑎) ≤ lim inf𝑛→∞ 𝐹𝑛 (𝑎) ≤ lim sup𝑛→∞ 𝐹𝑛 (𝑎) ≤ 𝐹 (𝑎).

In other words, lim𝑛→∞ 𝐹𝑛 (𝑎) = 𝐹 (𝑎). ■

17.8.2 Skorokhod representation of a random variable
Weak convergence of probability measures does not necessarily involve random
variables. Nevertheless, we might like to understand whether it is possible to model
weak convergence of measures using some type of convergence for random variables.
To do so, we need a way to produce a random variable with a specified distribution
function.

Recall that the universal probability space is the triple ( [0, 1],B[0, 1], 𝜆). The next
result gives an explicit construction of a random variable on the universal probability
space that has a specified distribution function.

Proposition 17.38 (Skorokhod representation). Consider any distribution function 𝐹 on
the real line. The universal probability space supports a real random variable with
distribution function 𝐹 . Here are two explicit expressions for such a random variable.
For each 𝜔 ∈ [0, 1],

𝑋 − (𝜔) := inf{𝑎 ∈ ℝ : 𝜔 ≤ 𝐹 (𝑎)};
𝑋 +(𝜔) := inf{𝑎 ∈ ℝ : 𝜔 < 𝐹 (𝑎)}.

Furthermore, 𝑋 − = 𝑋 + almost surely.

The random variables constructed here are essentially inverses of the distribution
function. For 𝜔 ∈ [0, 1] the fact that the distribution function 𝐹 is right-continuous
guarantees that

𝑋 − (𝜔) ≤ 𝑎 if and only if 𝜔 ≤ 𝐹 (𝑎). (17.2)

Meanwhile,

𝑋 +(𝜔) < 𝑎 implies 𝜔 < 𝐹 (𝑎); (17.3)
𝜔 ≤ 𝐹 (𝑎) implies 𝑋 +(𝜔) ≤ 𝑎. (17.4)

You should verify these relations, which will be used heavily.

Proof. First, let us confirm that 𝑋 − has distribution function 𝐹 . The probability
measure is the Lebesgue measure on [0, 1]. For each 𝑎 ∈ ℝ, the equivalence (17.2)
implies that

ℙ {𝑋 − ≤ 𝑎} = 𝜆{𝜔 ∈ [0, 1] : 𝑋 −1(𝜔) ≤ 𝑎} = 𝜆{𝜔 ∈ [0, 1] : 𝜔 ≤ 𝐹 (𝑎)} = 𝐹 (𝑎).
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In words, the distribution function of 𝑋 − coincides with 𝐹 .
Next, we demonstrate that 𝑋 − = 𝑋 + almost surely, which further implies that 𝑋 +

has distribution function 𝐹 . Since 𝑋 − ≤ 𝑋 + pointwise, the event

{𝑋 − ≠ 𝑋 +} =
⋃

𝑞∈ℚ
{𝑋 − ≤ 𝑞 < 𝑋 +}.

For each (real) 𝑞 ∈ ℝ, we can control the probability of each member of the union:

ℙ
{
𝑋 − ≤ 𝑞 < 𝑋 +} = ℙ

(
{𝑋 − ≤ 𝑞} \ {𝑋 + ≤ 𝑞}

)
= ℙ {𝑋 − ≤ 𝑞} − ℙ {𝑋 + ≤ 𝑞} ≤ 𝐹 (𝑞) − 𝐹 (𝑞) = 0.

Indeed, since 𝑋 − ≤ 𝑋 +, we have the inclusion {𝑋 + ≤ 𝑞} ⊆ {𝑋 − ≤ 𝑞}. The last
relation 𝐹 (𝑞) ≤ ℙ {𝑋 + ≤ 𝑞} is a consequence of (17.3). The result follows from
countable additivity. ■

17.8.3 Skorokhod’s theorem
The next result shows that a weakly convergent sequence of probability measures can
be modeled by a sequence of random variables that converges almost surely. To do so,
we simply consider the Skorokhod representation of each probability measure, given
by Proposition 17.38.

Theorem 17.39 (Skorokhod). Consider a sequence (𝐹𝑛 : 𝑛 ∈ ℕ) of distribution
functions that converges pointwise to a distribution function 𝐹 at each point where
𝐹 is continuous. That is, 𝐹𝑛 (𝑎) → 𝐹 (𝑎) whenever 𝐹 is continuous at 𝑎 ∈ ℝ.

Then the universal probability space supports a sequence (𝑋𝑛 : 𝑛 ∈ ℕ) of
random variables for which 𝑋𝑛 → 𝑋 almost surely, and each 𝑋𝑛 has distribution
function 𝐹𝑛 , and 𝑋 has distribution function 𝐹 .

Proof. Using Proposition 17.38, for each 𝑛 ∈ ℕ, construct random variables 𝑋 −
𝑛 and

𝑋 +
𝑛 with the distribution function 𝐹𝑛 and random variables 𝑋 − and 𝑋 + with the

distribution function 𝐹 . We will show that 𝑋 −
𝑛 → 𝑋 − almost surely.

Fix a sample point 𝜔 ∈ [0, 1]. Choose any point 𝑎 ∈ ℝ where 𝐹 is continuous and
where 𝑋 +(𝜔) < 𝑎 . According to (17.3), 𝜔 < 𝐹 (𝑎). For all large 𝑛, we must have 𝜔 <

𝐹𝑛 (𝑎), and (17.4) guarantees that 𝑋 +
𝑛 (𝜔) ≤ 𝑎 . Therefore, lim sup𝑛→∞ 𝑋

+
𝑛 (𝜔) ≤ 𝑎 .

Since 𝐹 is an increasing function, it has at most a countable number of discontinuities.
Therefore, we can decrease 𝑎 sequentially to 𝑋 +(𝜔) to deduce that

lim sup𝑛→∞ 𝑋
+
𝑛 (𝜔) ≤ 𝑋 +(𝜔).

Analogous arguments show that

lim inf𝑛→∞ 𝑋
−
𝑛 (𝜔) ≥ 𝑋 − (𝜔).

Since 𝑋 − ≤ 𝑋 + pointwise and 𝑋 − = 𝑋 + almost surely, we determine that 𝑋 −
𝑛 → 𝑋 −

almost surely. ■

17.8.4 Reverse direction
Finally, we may establish the reverse direction of Theorem 17.22.

Proposition 17.40 (Theorem 17.22: Reverse direction). Consider a sequence of distribution
functions that satisfies 𝐹𝑛 (𝑎) → 𝐹 (𝑎) for all 𝑎 ∈ ℝ where 𝐹 is continuous. Then the
distribution functions converge weakly: 𝐹𝑛 ⇝ 𝐹 .
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Proof. Skorokhod’s result, Theorem 17.39, furnishes a sequence of random variables
that satisfy 𝑋𝑛 → 𝑋 almost surely, where 𝑋𝑛 has distribution function 𝐹𝑛 , and where
𝑋 has distribution function 𝐹 .

For each 𝑛 ∈ ℕ, let 𝜇𝑛 be the probability measure with distribution function 𝐹𝑛 ,
and let 𝜇 be the probability measure with distribution function 𝐹 . For any bounded,
Lipschitz function ℎ : ℝ → ℝ, the bounded convergence theorem (Corollary 9.13)
ensures that

𝔼ℎ (𝑋𝑛) → 𝔼ℎ (𝑋 ).
Equivalently, the associated probability measures satisfy 𝜇𝑛 (ℎ) → 𝜇(ℎ). We conclude
that 𝐹𝑛 ⇝ 𝐹 . ■

17.8.5 Almost-sure convergence can model weak convergence
In Exercise 17.20, we saw that an almost-surely convergent sequence of random
variables must also converge weakly. We are now prepared to establish a partial
converse.

Corollary 17.41 (Almost-sure convergence can model weak convergence). Consider a weakly
convergent sequence of distribution functions: 𝐹𝑛 ⇝ 𝐹 . Then the universal probability
space supports a sequence of random variables where 𝑋𝑛 → 𝑋 almost surely, where
𝑋𝑛 has distribution function 𝐹𝑛 , and where 𝑋 has distribution function 𝐹 .

Proof. Combine Theorem 17.39 with Proposition 17.40. ■

Problems
Problem 17.42 (Comparison of distances). Let 𝑍 ∼ normal(0, 1). For a real random
variable 𝑌 , recall the definitions of the Kolmogorov (Kol) and Kantorovich-1 (𝑊1)
distances between 𝑌 and 𝑍 :

𝑑Kol(𝑌 , 𝑍 ) := sup𝑎∈ℝ |ℙ {𝑌 ≤ 𝑎} − ℙ {𝑍 ≤ 𝑎}|;
𝑑𝑊1 (𝑌 , 𝑍 ) := sup∥ 𝑓 ∥Lip≤1 |𝔼 𝑓 (𝑌 ) − 𝔼 𝑓 (𝑍 ) |.

The purpose of this problem is to establish the comparison

𝑑Kol(𝑌 , 𝑍 ) ≤
√︁
2C𝑑𝑊1 (𝑌 , 𝑍 ) for C = 1/

√
2𝜋 .

Thus, convergence in Kantorovich-1 distance to a standard normal variable also implies
convergence in Kolmogorov distance.

1. Explain why convergence in Kolmogorov distance always implies convergence in
distribution.

2. Fix 𝜀 > 0. For each 𝑎 ∈ ℝ, define the piecewise linear function

ℎ𝑎 (𝑥) =

1, 𝑥 ≤ 𝑎

1 − (𝑥 − 𝑎)/𝜀, 𝑎 < 𝑥 ≤ 𝑎 + 𝜀
0, 𝑎 + 𝜀 ≤ 𝑥.

Observe that 𝟙{𝑥 ≤ 𝑎} ≤ ℎ𝑎 (𝑥) ≤ 𝟙{𝑥 ≤ 𝑎 + 𝜀} for all 𝑥 ∈ ℝ. Compute
∥ℎ𝑎 ∥Lip.

3. By adding and subtracting 𝔼ℎ𝑎 (𝑍 ), demonstrate that

𝔼𝟙{𝑌 ≤ 𝑎} − 𝔼𝟙{𝑍 ≤ 𝑎} ≤ 𝑑𝑊1 (𝑌 , 𝑍 )/𝜀 + C𝜀/2.

Hint: C is the maximum value of the standard normal probability density function.
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4. Develop the same inequality with 𝑌 and 𝑍 switched. Combine the two in-
equalities, select the optimal 𝜀, and take the supremum over 𝑎 to complete the
proof.

Problem 17.43 (TV nation). For random variables 𝑋 ,𝑌 that take values in ℤ+, the total
variation metric distTV is

distTV (𝑋 ,𝑌 ) := supA⊆ℤ+ |ℙ {𝑋 ∈ A} − ℙ {𝑌 ∈ A}|.

1. Why does distTV induce a metric on probability measures on ℤ+?
2. For random variables (𝑋𝑛 : 𝑛 ∈ ℕ) taking values in ℤ+, explain why the limit

distTV (𝑋𝑛 , 𝑋 ) → 0 as 𝑛 → ∞ implies that 𝑋𝑛 ⇝ 𝑋 weakly.
3. Establish the alternative formulation

distTV (𝑋 ,𝑌 ) =
1
2

∑︁∞
𝑘=0

|ℙ {𝑋 = 𝑘 } − ℙ {𝑌 = 𝑘 }|.

Hint: Consider the sets

A+ = {𝑘 ∈ ℤ+ : ℙ {𝑋 = 𝑘 } > ℙ {𝑌 = 𝑘 }};
A− = {𝑘 ∈ ℤ+ : ℙ {𝑋 = 𝑘 } < ℙ {𝑌 = 𝑘 }}.

4. Compute the TV distance between a geometric(𝑝) and a geometric(𝑞)
distribution.

5. Prove that distTV (𝑋 ,𝑌 ) ≤ ℙ {𝑋 ≠ 𝑌 }. Hint: For each set A, the conditions 𝑋 ∈ A
and 𝑌 ∈ Ac together imply that 𝑋 ≠ 𝑌 .

6. (*) Prove that there is a joint distribution of (𝑋 ,𝑌 ) where equality holds in (5).
7. (*) We can define the TV metric for all random variables: distTV (𝑋 ,𝑌 ) :=

supB∈B(ℝ) |ℙ {𝑋 ∈ B} − ℙ {𝑌 ∈ B}|. Find a general representation of the TV
metric similar with the result in (3).

8. (**) Given an upper bound for the TV distance between the normal(𝑚1, 𝑣1) and
normal(𝑚2, 𝑣2) distributions.

Applications
Application 17.44 (Glivenko–Cantelli). In this application, we establish another classic
result from statistics. We can uniformly approximate the distribution function of a real
random variable from a sample. Let 𝑋 be a real random variable with law 𝜇𝑋 and
distribution function 𝐹𝑋 . For simplicity, assume that 𝐹𝑋 is continuous.

Let (𝑋1, 𝑋2, 𝑋3, . . . ) be an i.i.d. sample from 𝜇𝑋 . For 𝑛 ∈ ℕ, define the (random)
empirical measure and its (random) empirical distribution function

𝜇𝑛 =
1
𝑛

∑︁𝑛

𝑖=1
𝛿𝑋𝑖 and 𝐹𝑛 (𝑎) = 𝜇𝑛 (−∞, 𝑎] for 𝑎 ∈ 𝑅 .

We can think of 𝜇𝑛 as an approximation of the measure 𝜇𝑋 from observed data.
Meanwhile, 𝐹𝑛 approximates the distribution function 𝐹𝑋 .

1. Show that 𝐹𝑛 (𝑎) = 𝑛−1 ∑𝑛
𝑖=1 1{𝑋𝑖 ≤ 𝑎} is the distribution function of 𝜇𝑛 . For

fixed 𝑎 ∈ ℝ, explain why 𝐹𝑛 (𝑎) is a real random variable. For a particular 𝜇𝑋 ,
sketch what 𝜇𝑛 and 𝐹𝑛 might look like.

2. For a fixed 𝑎 ∈ ℝ, confirm that 𝐹𝑛 (𝑎) → 𝐹𝑋 (𝑎) almost surely as 𝑛 → ∞.
3. For fixed 𝑛 ∈ ℕ, show that there exist points −∞ = 𝑡0 < 𝑡1 ≤ 𝑡2 ≤ · · · ≤ 𝑡𝑛−1 <
𝑡𝑛 = +∞ with the property that

𝐹𝑋 (𝑡𝑗 ) = 𝑗/𝑛 for 𝑗 = 0, . . . , 𝑛.
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4. For each fixed 𝑎 ∈ ℝ, establish the bound

|𝐹𝑛 (𝑎) − 𝐹𝑋 (𝑎) | ≤
1
𝑛
+max{|𝐹𝑛 (𝑡𝑗 ) − 𝐹𝑋 (𝑡𝑗 ) | : 𝑗 = 1, . . . , 𝑛 − 1}.

Hint: Isolate the index 𝑗 where 𝑡𝑗−1 ≤ 𝑎 < 𝑡𝑗 .
5. Conclude that

sup𝑎∈ℝ |𝐹𝑛 (𝑎) − 𝐹𝑋 (𝑎) | → 0 almost surely as 𝑛 → ∞.

6. (*) Show that the same conclusions are valid without the assumption that 𝐹𝑋 is
continuous. Hint: Find points 𝑡𝑗 where ℙ {𝑋 < 𝑡𝑗 } ≤ 𝑗/𝑛 ≤ ℙ {𝑋 ≤ 𝑡𝑗 } for each
𝑗 = 1, . . . , 𝑛.

7. For probability measures 𝜇,𝜈 on the real line, define the Kolmogorov metric

distKol(𝜇,𝜈) := sup𝑎∈ℝ |𝜇(−∞, 𝑎] − 𝜈 (−∞, 𝑎] |.

Why is distKol a metric? Why does convergence with respect to distKol imply
weak convergence? Write the conclusion from (5) using the Kolmogorov metric.

8. (**) With notation as above, establish the convergence rate

ℙ
{
distKol(𝜇𝑛 , 𝜇) ≥ 𝑡 · 𝑛−1/2} ≤ 𝐶𝑛 · e−𝑐𝑡 2

for positive, absolute constants 𝑐 ,𝐶 . Hint: To get started, write 𝐹𝑋 (𝑎) =

𝔼𝐹𝑛 (𝑎) and express the expectation in terms of an independent copy of the
sample. Several other ideas are required, including symmetrization, a simple
combinatorial estimate, and a concentration inequality.

Notes
The discussion of weak convergence is adapted from the books of Williams [Wil91],
Dudley [Dud02], and Pollard [Pol02]. For more information about weak convergence,
see Billingsley [Bil99] or van der Vaart & Wellner [VW23].
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18. The Central Limit Theorem

Agenda:
1. Standardization
2. The central limit theorem
3. The Berry–Esseen theorem
4. Lindeberg universality
5. A quantitative CLT

“It is the supreme law of unreason.”

—Sir Francis Galton

We have been studying the long-run behavior of the running averages of an
independent and identically distributed sequence of real random variables. The law of
large numbers states that the running average tends to the expectation almost surely.
In Lecture 14, we saw evidence that the fluctuations of the running average around the
expectation may converge to a limiting distribution. Today, we will prove that, with
an appropriate scaling, the running average converges to a fixed distribution, and we
will identify the limit as a normal random variable. This celebrated result is called the
central limit theorem.

18.1 Standardization
Before we can prove a distributional limit theorem for the running averages, we need
to agree on the right way to scale the averages so that they have a nontrivial limit.

As usual, let 𝑌 ∈ L2 be a fixed random variable, and draw a sequence (𝑌𝑖 : 𝑖 ∈ ℕ)
of independent copies of 𝑌 . Form the running average 𝑋𝑛 = 𝑛−1 ∑𝑛

𝑖=1𝑌𝑖 for each
𝑛 ∈ ℕ.

Is there a sense in which 𝑋𝑛 tends to a limiting distribution? Kolmogorov’s SLLN
states that

𝑋𝑛 → 𝔼𝑌 almost surely.

The constant limit in the SLLN reflects the fact that the variance Var[𝑋𝑛] of the running
average tends to zero with 𝑛 → ∞.

This observation suggests that we should rescale the running average so that its
variance remains constant. To that end, we introduce the random variables

𝑇𝑛 :=
√︂

𝑛

Var[𝑌 ] · (𝑋𝑛 − 𝔼𝑌 ) for 𝑛 ∈ ℕ.

It is an easy exercise to check that

𝔼𝑇𝑛 = 0 and Var[𝑇𝑛] = 1 for each 𝑛 ∈ ℕ.

A random variable with these two properties is called standardized, and we call 𝑇𝑛 the
𝑛th standardized sum.

The standardized sums have the same expectation and variance, so they are all
comparable with each other. We will investigate whether there is a sense in which the
standardized sums converge to a limit.
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Figure 18.1 (CLT). Distributional convergence of the standardized sums to a normal
distribution.

18.2 The distributional limit of standardized sums
It is, perhaps, too much to ask that the standardized sums converge as functions.
Instead, we will ask whether the distributions of the standardized sums converge to a
limiting distribution.

18.2.1 The central limit theorem
The first result states that the standardized sums converge weakly to a limiting
distribution. Moreover, it identifies the weak limit as a normal distribution.

Theorem 18.1 (Central limit theorem (CLT)). Let 𝑌 ∈ L2 be a real random variable with
expectation 𝑚 := 𝔼𝑌 and variance 𝜎2 := Var[𝑌 ] > 0. Consider a sequence
(𝑌𝑖 : 𝑖 ∈ ℕ) of i.i.d. copies of 𝑌 , and introduce the standardized sums

𝑇𝑛 :=
1
√
𝑛

∑︁𝑛

𝑖=1

𝑌𝑖 −𝑚
𝜎

=
√
𝑛 · 𝑋𝑛 −𝑚

𝜎
.

Let 𝑍 ∼ normal(0, 1) be a real standard normal random variable. Then

𝑇𝑛 ⇝ 𝑍 as 𝑛 → ∞.

See Figure 18.1 for a schematic.

The main object of this lecture is to establish the CLT under slightly more generous
assumptions.

To understand the result, we first recall that a standard normal random variable 𝑍
has the law

𝛾 (B) := 1
√
2𝜋

∫
B
e−𝑡

2/2 𝜆(d𝑡 ) for B ∈ B(ℝ).

In other words, the standard normal distribution has density (2𝜋)−1/2e−𝑡 2/2 with
respect to the Lebesgue measure. The (cumulative) distribution function of the
standard normal variable has its own notation:

Φ(𝑎) := 𝛾 (−∞, 𝑎] = 1
√
2𝜋

∫
(−∞,𝑎 ]

e−𝑡
2/2 𝜆(d𝑡 ).

By direct calculation, the expectation and variance of a standard normal variable are

𝔼𝑍 = 0 and Var[𝑍 ] = 1.

In other words, the standard normal variable 𝑍 is standardized. See Figure 18.2 for
an illustration.



Lecture 18: The Central Limit Theorem 274

Figure 18.2 (Normal distribution). The law and distribution function of a standard
normal random variable.

It is productive to rephrase what weak convergence means. Explicitly, weak
convergence states that

𝔼ℎ (𝑇𝑛) → 𝔼ℎ (𝑍 ) for each bounded, Lipschitz ℎ : ℝ → ℝ.

In other words, every BL moment of 𝑇𝑛 converges to the corresponding moment of a
standard normal random variable 𝑍 . According to Theorem 17.22, we can rephrase
weak convergence in terms of distribution functions:

ℙ {𝑇𝑛 ≤ 𝑎} = 𝐹𝑇𝑛 (𝑎) → Φ(𝑎) = ℙ {𝑍 ≤ 𝑎} for each 𝑎 ∈ ℝ.

Indeed, Φ is continuous on the real line.
Historically, the CLT played an important role in statistics to justify (asymptotic)

normal confidence intervals for the sample average. This result has less importance
now because we can use simulation methods (like the bootstrap) to obtain more
accurate confidence intervals.

18.2.2 The Berry–Esseen theorem
You may recall that weak convergence is metrized by the BL distance (Theorem 17.12).
As a consequence, we can also express the conclusion of the CLT as

distBL(𝑇𝑛 , 𝑍 ) := sup{|𝔼ℎ (𝑇𝑛) − 𝔼ℎ (𝑍 ) | : ∥ℎ∥BL ≤ 1} → 0 as 𝑛 → ∞.

The BL distance allows us to quantify how far the standardized sum 𝑇𝑛 lies from the
standard normal limit 𝑍 . Therefore, we can use the BL distance to quantify the rate of
convergence in the CLT.

The next result provides a quantitative rate of convergence in the Kolmogorov
metric, which is stronger than the BL metric.

Theorem 18.2 (Berry–Esseen). Let 𝑌 ∈ L3 be a real random variable with variance
𝜎2 := Var[𝑌 ] > 0 and third central moment 𝑀3 := 𝔼 |𝑌 − 𝔼𝑌 |3. Consider a
sequence (𝑌𝑖 : 𝑖 ∈ ℕ) of i.i.d. copies of 𝑌 , and let 𝑇𝑛 be the 𝑛th standardized sum,
as in Theorem 18.1. Then, for each 𝑛 ∈ ℕ,

distKol(𝑇𝑛 , 𝑍 ) := sup𝑎∈ℝ |ℙ {𝑇𝑛 ≤ 𝑎} − ℙ {𝑍 ≤ 𝑎}| ≤ 𝑀3

𝜎3
√
𝑛

In particular, the distribution functions of the standardized sums 𝑇𝑛 converge
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uniformly to the standard normal distribution function Φ.

Since the Kolmogorov metric is stronger than the BL metric, Theorem 18.2 implies
that the standardized sums converge weakly to the standard normal distribution:
𝑇𝑛 ⇝ 𝑍 as 𝑛 → ∞.

Note that the Berry–Esseen theorem has slightly stronger hypotheses than the
CLT. Indeed, the CLT holds when the underlying random variable 𝑌 ∈ L2, while
the Berry–Esseen theorem requires that 𝑌 ∈ L3. In exchange, we obtain an explicit
estimate for the rate at which the distribution functions of the standardized sums
converge to the standard normal distribution function. The rate of convergence 𝑛−1/2

specified in Theorem 18.2 is optimal.
We will prove a version of the Berry–Esseen theorem under the same hypotheses

(𝑌 ∈ L3). Our approach controls the BL metric rather than the Komogorov metric, and
it only yields the suboptimal rate 𝑛−1/6. Nevertheless, this argument is more than
enough to deduce weak convergence. The proof here is based on a beautiful method
due to Lindeberg (1922), which has found many new applications in the last 15 years.

Aside: The usual approach to the CLT and to the Berry–Esseen theorem is to show
that the characteristic functions (that is, the Fourier transforms) of the distributions
converge. This method is elegant, but it requires a significant amount of extra work
to connect convergence in distribution to convergence of characteristic functions.
See Lecture 21 for more information about this approach.

18.3 Lindeberg’s universality principle
The key idea behind Lindeberg’s proof of the central limit theorem is that we can
estimate moments associated with smooth test functions by means of Taylor’s theorem.
That is,

𝔼ℎ (𝑇𝑛) ≈ 𝔼ℎ (𝑍 ) when ℎ is sufficiently smooth.

Lindeberg uses this observation to show that only the first and second moments of a
distribution affect moments defined by smooth test functions. The fine structure of the
distribution does not play a role. We refer to this fact as a universality phenomenon.

18.3.1 Universality for univariate functions
We begin with an elementary lemma, which shows how to control the discrepancy
between the moments of two random variables with the same mean and variance.

Lemma 18.3 (Universality: Univariate case). In this section, random variables 𝑍
and 𝑍𝑖 are not necessarily standard
normal. Nevertheless, we have
chosen this notation because 𝑍 will
eventually play the role of the normal
variable in the CLT.

Consider real random variables 𝑌 , 𝑍 ∈ L3 that
have the same expectation and variance:

𝔼𝑌 = 𝔼𝑍 and Var[𝑌 ] = Var[𝑍 ].

For each function ℎ : ℝ → ℝ with three bounded derivatives, we have the moment
bound

|𝔼ℎ (𝑌 ) − 𝔼ℎ (𝑍 ) | ≤ 1
6 ∥ℎ

′′′∥sup
(
𝔼 |𝑌 |3 + 𝔼 |𝑍 |3

)
.

This is a basic universality result, which shows that moments with respect to a
smooth test function depend primarily on the expectation and variance. Other features
of the random variables are irrelevant.
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Proof. Let ℎ : ℝ → ℝ be a function with three bounded derivatives. By Taylor’s
theorem with remainder,��ℎ (𝑌 ) − ℎ (0) − ℎ′ (0) ·𝑌 − 1

2ℎ
′′ (0) ·𝑌 2

�� ≤ 1
6 ∥ℎ

′′′∥sup · |𝑌 |3;��ℎ (𝑍 ) − ℎ (0) − ℎ′ (0) · 𝑍 − 1
2ℎ

′′ (0) · 𝑍 2
�� ≤ 1

6 ∥ℎ
′′′∥sup · |𝑍 |3.

Combining these two expressions, we can bound the discrepancy between the moment
of 𝑌 and the moment of 𝑍 :

|𝔼[ℎ (𝑌 ) − ℎ (𝑍 )] | ≤
��𝔼 [

ℎ′ (0) · (𝑌 − 𝑍 ) + 1
2ℎ

′′ (0) · (𝑌 2 − 𝑍 2)
] ��

+ 1
6 ∥ℎ

′′′∥sup ·
(
𝔼 |𝑌 |3 + 𝔼 |𝑍 |3

)
.

The contribution in the first line on the right-hand side vanishes because our assumption
ensures that 𝔼𝑌 = 𝔼𝑍 and 𝔼𝑌 2 = 𝔼𝑍 2. This is the stated result. ■

18.3.2 Universality for multivariate functions
The next step in the proof is to extend Lemma 18.3 to the case of a multivariate function
of independent random variables.

Theorem 18.4 (Lindeberg universality). Let (𝑌1, . . . ,𝑌𝑛) and (𝑍1, . . . , 𝑍𝑛) be mutually
independent random variables that belong to L3. Assume that

𝔼𝑌𝑖 = 𝔼𝑍𝑖 and Var[𝑌𝑖 ] = Var[𝑍𝑖 ] for each 𝑖 = 1, . . . , 𝑛.

For each bounded function 𝑓 : ℝ𝑛 → ℝ that satisfies ∥𝜕𝑖 𝑖 𝑖 𝑓 ∥sup < +∞ for each
index 𝑖 , we have the bound

|𝔼[ 𝑓 (𝑌1, . . . ,𝑌𝑛) − 𝑓 (𝑍1, . . . , 𝑍𝑛)] | ≤
1
6

∑︁𝑛

𝑖=1
∥𝜕𝑖 𝑖 𝑖 𝑓 ∥sup

(
𝔼 |𝑌𝑖 |3 + 𝔼 |𝑍𝑖 |3

)
.

As usual, 𝜕𝑖 𝑖 𝑖 denotes the third partial derivative with respect to the 𝑖 th coordinate.

Proof. The proof is based on the Lindeberg exchange argument. We can interpolate
between the values 𝑓 (𝑌1, . . . ,𝑌𝑛) and 𝑓 (𝑍1, . . . , 𝑍𝑛) by swapping one coordinate at a
time. Lemma 18.3 allows us to control the error we incur at each step.

First, it is convenient to abbreviate lists of random variables using a vector notation:

𝒚 := (𝑌1, . . . ,𝑌𝑛) and 𝒛 := (𝑍1, . . . , 𝑍𝑛).

Introduce the interpolating vectors

𝒘 𝑖 := (𝑌1, . . . ,𝑌𝑖 , 𝑍𝑖+1, . . . , 𝑍𝑛) for each 𝑖 = 0, 1, 2, . . . , 𝑛.

Observe that𝒘 0 = 𝒛 and𝒘𝑛 = 𝒚 .
To compute the difference between the expectations, we use a telescoping sum:

𝔼
[
𝑓 (𝒚 ) − 𝑓 (𝒛 )

]
=

∑︁𝑛

𝑖=1
𝔼

[
𝑓 (𝒘 𝑖 ) − 𝑓 (𝒘 𝑖−1)

]
=

∑︁𝑛

𝑖=1
𝔼𝔼𝑖

[
𝑓 (𝒘 𝑖 ) − 𝑓 (𝒘 𝑖−1)

]
.

We temporarily use the notation 𝔼𝑖 to denote the expectation with respect to𝑌𝑖 and 𝑍𝑖
only. Since all the random variables are independent, Fubini’s theorem (Theorem 6.23)
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allows us to factor the expectation. We may bound the absolute value using Jensen’s
inequality (Theorem 9.26):��𝔼 [

𝑓 (𝒚 ) − 𝑓 (𝒛 )
] �� ≤ ∑︁𝑛

𝑖=1
𝔼

��𝔼𝑖 [
𝑓 (𝒘 𝑖 ) − 𝑓 (𝒘 𝑖−1)

] �� .
It remains to control each summand by an application of the lemma.

Explicitly, for each index 𝑖 , we introduce the univariate function

ℎ𝑖 (𝑡 ) := 𝑓 (𝑌1, . . . ,𝑌𝑖−1, 𝑡 , 𝑍𝑖+1, . . . , 𝑍𝑛) for 𝑡 ∈ ℝ.

Then Lemma 18.3 implies that��𝔼𝑖 [
𝑓 (𝒘 𝑖 ) − 𝑓 (𝒘 𝑖−1)

] �� = ��𝔼𝑖 [
ℎ𝑖 (𝑌𝑖 ) − ℎ𝑖 (𝑍𝑖 )

] ��
≤ 1

6 ∥ℎ
′′′
𝑖 ∥sup ·

(
𝔼𝑖 |𝑌𝑖 |3 + 𝔼𝑖 |𝑍𝑖 |3

)
.

Finally, note that ℎ′′′
𝑖

= 𝜕𝑖 𝑖 𝑖 𝑓 , and combine the results. ■

18.4 A quantitative CLT
In this section, we show how the Lindeberg universality principle applies to standardized
sums. From here, it is a short step to a quantitative version of the central limit theorem,
expressed in term of an unusual probability metric. Afterward, we show that this result
leads to suboptimal versions of the Berry–Esseen theorem and the CLT.

18.4.1 Universality for standardized sums
Lindeberg’s universality principle can be specialized to the case of a standardized sum,
as follows.

Corollary 18.5 (Universality: Standardized sums). Consider real random variables𝑌 , 𝑍 ∈ L3
with

𝔼𝑌 = 𝔼𝑍 = 0 and Var[𝑌 ] = Var[𝑍 ] = 1.

Introduce a bound for the third moments: 𝑀 := (𝔼 |𝑌 |3) ∨ (𝔼 |𝑍 |3). Let (𝑌1, . . . ,𝑌𝑛)
be i.i.d. copies of 𝑌 , and let (𝑍1, . . . , 𝑍𝑛) be i.i.d. copies of 𝑍 . For any function
ℎ : ℝ → ℝ with three bounded derivatives,���𝔼ℎ (

1√
𝑛

∑𝑛
𝑖=1𝑌𝑖

)
− 𝔼ℎ

(
1√
𝑛

∑𝑛
𝑖=1 𝑍𝑖

)��� ≤ 1
3𝑀 ∥ℎ′′′∥sup · 𝑛−1/2.

Proof. Define the multivariate function

𝑓 (𝑥1, . . . , 𝑥𝑛) := ℎ
(

1√
𝑛

∑𝑛
𝑖=1 𝑥𝑖

)
for (𝑥1, . . . , 𝑥𝑛) ∈ ℝ𝑛 .

By the chain rule, ∥𝜕𝑖 𝑖 𝑖 𝑓 ∥sup = 𝑛−3/2∥ℎ′′′∥sup. Thus, Theorem 18.4 implies that��𝔼 [
𝑓 (𝑌1, . . . ,𝑌𝑛) − 𝑓 (𝑍1, . . . , 𝑍𝑛)

] �� ≤ 1
6

∑︁𝑛

𝑖=1
𝑛−3/2∥ℎ′′′∥sup · (𝔼 |𝑌𝑖 |3 + 𝔼 |𝑍𝑖 |3)

≤ 1
3
𝑀 ∥ℎ′′′∥sup · 𝑛−1/2.

We have used the fact that the𝑌𝑖 are i.i.d. and the 𝑍𝑖 are i.i.d. to bound the parenthesis
by 2𝑀 . Note that the factor 𝑛−3/2 emerges when we take the third derivative of the
standardized sum, and this quantity is small enough to counteract the number 𝑛 of
terms in the sum. ■
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Alternatively, we can express the conclusion of Corollary 18.5 in terms of an integral
probability metric. This is just a matter of reinterpretation.

Corollary 18.6 (Universality: Standardized sums). Instate the hypotheses of Corollary 18.5.
Let H := {ℎ : ℝ → ℝ : ℎ bounded, ∥ℎ′′′∥sup ≤ 1}. Then

distH
(

1√
𝑛

∑𝑛
𝑖=1𝑌𝑖 ,

1√
𝑛

∑𝑛
𝑖=1 𝑍𝑖

)
≤ 1

3𝑀 · 𝑛−1/2.

What does Corollary 18.6 mean? It tells us that the distribution of a standardized
sum depends primarily on the first two moments. Indeed, for any distributions 𝑌 and
𝑍 , standardizing the sums has the effect of shifting the distributions to have mean zero
and scaling them to have variance one. Thus, the standardized sum of 𝑛 i.i.d. copies
of 𝑌 is very close the standardized sum of 𝑛 i.i.d. copies of 𝑍 . We can express this
result as saying that the distribution of a standardized sum is universal, given the first
two moments.

For this proof, it is exceedingly natural to use the integral probability metric based
on the family of test functions H = {ℎ : ℎ bounded, ∥ℎ′′′∥sup ≤ 1}. On the other
hand, this distance is somewhat unusual, and it is not obvious what it signifies. In
Section 18.4.5, we will see how to pass from distH to the bounded, Lipschitz distance
distBL.

18.4.2 The normal limit
Corollary 18.6 tells us that the standardized sum of i.i.d. random variables depends
primarily on the first two moments. In other words, all the standardized sums are
close to each other. But are they close to some particular distribution? The answer is a
resounding “yes.”

To find the particular distribution, we want to look for a random variable 𝑍 that
generates standardized sums that we can treat analytically. Ideally, we can find a
random variable 𝑍 where the standardized sums all have the same distribution. Let us
confirm that the standard normal distribution fits the bill.

Exercise 18.7 (Standard normal variable: Standardized sums). Let 𝑍1, . . . , 𝑍𝑛 be independent
standard normal random variables. Show that the standardized sum 𝑛−1/2 ∑𝑛

𝑖=1 𝑍𝑖
follows the standard normal distribution. Hint: Generalize the calculation in Exer-
cise 14.5(2), and use induction.

18.4.3 Our first CLT
With these results in place, we can easily derive a quantitative central limit theorem
from Corollary 18.6.

Theorem 18.8 (Quantitative CLT). Instate the notation and hypotheses of Theorem 18.2.
For the test functions H := {ℎ : ℝ → ℝ : ℎ bounded, ∥ℎ′′′∥sup ≤ 1}, we have

distH(𝑇𝑛 , 𝑍 ) ≤
𝑀3

𝜎3
√
𝑛

for each 𝑛 ∈ ℕ.

Proof. We may assume that 𝑌 is centered and scaled so that 𝜎2 = Var[𝑌 ] = 1. By
monotonicity of moments (Theorem 11.4), note that 𝑀3 := 𝔼 |𝑌 |3 ≥ 1. Let 𝑍 be a
standard normal random variable.

Instantiate Corollary 18.6. According to Exercise 18.7, the standardized sum
𝑛−1/2 ∑𝑛

𝑖=1 𝑍𝑖 follows the standard normal distribution 𝑍 . By direct calculation,
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𝔼 |𝑍 |3 < 2. We see that the third moment bound

𝑀 := (𝔼 |𝑌 |3) ∨ (𝔼 |𝑍 |3) ≤ 𝑀3 ∨ 2 ≤ 2𝑀3.

The result follows once we correct for the scaling of 𝑌 . ■

18.4.4 *From Lipschitz functions to smooth functions
To derive the CLT from Theorem 18.8, we still have to take another step. The remaining
issue is that we established a rate of convergence with respect to a distance distH that
is not obviously comparable with distBL, which is the metric associated with weak
convergence. Therefore, we need to change metrics.

This project requires us to approximate a bounded, Lipschitz function by a function
with three bounded derivatives. To do so, we average the local values of the function by
convolving it with a Gaussian distribution. This is a very useful technique in probability
theory and analysis, so we include the details.

Lemma 18.9 (Gaussian smoothing). Let ℎ : ℝ → ℝ be a bounded, Lipschitz function. For
a parameter 𝜎 > 0, define the smoothed function

ℎ𝜎 (𝑎) := 𝔼
[
ℎ (𝑎 + 𝜎𝑍 )

]
for each 𝑎 ∈ ℝ,

where 𝑍 ∼ normal(0, 1) is a standard normal random variable. Thenℎ𝜎 approximates
ℎ pointwise:

∥ℎ𝜎 − ℎ∥sup < 𝜎 · ∥ℎ∥Lip.
Furthermore, the approximation ℎ𝜎 and all its derivatives are bounded:

∥ℎ𝜎 ∥sup ≤ ∥ℎ∥sup and ∥D𝑘ℎ𝜎 ∥ ≤
[
2𝑘
𝜋𝜎2

] (𝑘−1)/2
· ∥ℎ∥Lip for 𝑘 ∈ ℕ.

Proof. To see that ℎ𝜎 approximates ℎ, we use the fact that ℎ is Lipschitz:

|ℎ𝜎 (𝑎) − ℎ (𝑎) | ≤ 𝔼 |ℎ (𝑎 + 𝜎𝑍 ) − ℎ (𝑎) |

≤ 𝔼
[
|𝜎𝑍 | · ∥ℎ∥Lip

]
=

√︂
2
𝜋

· 𝜎 · ∥ℎ∥Lip.

Indeed, 𝔼 |𝑍 | =
√︁
2/𝜋 < 1.

Next, we will confirm that ℎ𝜎 is differentiable. Fix a point 𝑎 ∈ ℝ. By the law of
the unconscious statistician,

ℎ𝜎 (𝑎) =
1

√
2𝜋

∫
ℝ

ℎ (𝑎 + 𝜎𝑧) · e−𝑧2/2 d𝑧 =
1

√
2𝜋

∫
ℝ

ℎ (𝑢) · e−(𝑢−𝑎 )2/(2𝜎2 ) d𝑢
𝜎
.

We have made the change of variables 𝑎 + 𝜎𝑧 ↦→ 𝑢 . By dominated convergence, we
can compute ℎ′

𝜎 by passing the derivative through the integral sign:

ℎ′
𝜎 (𝑎) =

1
√
2𝜋

∫
ℝ

ℎ (𝑢) · −(𝑢 − 𝑎)
𝜎2 e−(𝑢−𝑎 )2/(2𝜎2 ) d𝑢

𝜎

=
1

𝜎
√
2𝜋

∫
ℝ

ℎ (𝑎 + 𝜎𝑧) · (−𝑧)e−𝑧2/2 d𝑧

=
1
𝜎

· 𝔼
[
ℎ (𝑎 + 𝜎𝑍 ) · (−𝑍 )

]
.



Lecture 18: The Central Limit Theorem 280

We have reversed the change of variables: 𝑢 ↦→ 𝑎 +𝜎𝑧 . Since ℎ is bounded, it is easily
seen that ℎ′

𝜎 (𝑎) is finite on the entire real line. Since ℎ𝜎 is differentiable, Exercise 17.6
ensures that ∥ℎ′

𝜎 ∥sup = ∥ℎ∥Lip.
To bound the remaining derivatives, we exploit the calculations in the last paragraph.

Fix 𝑘 ∈ ℕ. By the stability of the standard normal distribution,

ℎ
𝜎
√
𝑘+1(𝑎) = 𝔼[ℎ (𝑎 + 𝜎

√
𝑘 + 1 · 𝑍 )]

= 𝔼[ℎ (𝑎 + 𝜎
√
𝑘 · 𝑍 + 𝜎𝑍 ′)] = 𝔼[ℎ

𝜎
√
𝑘
(𝑎 + 𝜎𝑍 ′)].

We temporarily introduced an independent standard normal variable 𝑍 ′. We write D for the derivative (with
respect to the variable 𝑎).

As before,
we can differentiate the smoothed function ℎ

𝜎
√
𝑘
:

D𝑘+1ℎ
𝜎
√
𝑘+1(𝑎) = D𝑘+1 𝔼[ℎ

𝜎
√
𝑘
(𝑎 + 𝜎𝑍 )]

= D𝔼[(D𝑘ℎ
𝜎
√
𝑘
) (𝑎 + 𝜎𝑍 )] = 𝜎−1 · 𝔼[(D𝑘ℎ

𝜎
√
𝑘
) (𝑎 + 𝜎𝑍 ) · (−𝑍 )].

Taking the uniform norm,

∥D𝑘+1ℎ
𝜎
√
𝑘+1∥sup ≤

√︂
2
𝜋

· 𝜎−1 · ∥D𝑘ℎ
𝜎
√
𝑘
∥sup.

By iteration,

∥D𝑘+1ℎ
𝜎
√
𝑘+1∥sup ≤

[
2

𝜋𝜎2

]𝑘/2
· ∥ℎ∥Lip.

Finally, we change variables 𝜎 ↦→ 𝜎/
√
𝑘 + 1 to complete the argument. ■

18.4.5 Berry–Esseen with suboptimal rate
Finally, we can establish a version of the Berry–Esseen theorem.

Theorem 18.10 (Berry–Esseen: Suboptimal version). Instate the notation and hypothe-
ses of Theorem 18.2. Then

distBL(𝑇𝑛 , 𝑍 ) ≤
4𝑀 1/3

3

𝜎𝑛1/6 for each 𝑛 ∈ ℕ.

In particular, 𝑇𝑛 ⇝ 𝑍 as 𝑛 → ∞.

Proof. We need to obtain a uniform bound for moments determined by bounded
Lipschitz functions. Choose a function ℎ : ℝ → ℝ with ∥ℎ∥BL ≤ 1. Fix a parameter
𝜎 > 0, to be determined later. Then Lemma 18.9 promises us a function ℎ𝜎 that
satisfies

∥ℎ𝜎 − ℎ∥sup ≤ 𝜎 and ∥ℎ′′′
𝜎 ∥sup ≤ 2𝜎−2.

We can bound moments associated with ℎ by passing to the function ℎ𝜎 .
Compare ℎ with ℎ𝜎 using the uniform approximation bound:

|𝔼[ℎ (𝑇𝑛) − ℎ (𝑍 )] | ≤ |𝔼[ℎ𝜎 (𝑇𝑛) − ℎ𝜎 (𝑍 )] | + 2𝜎 ≤ 2
𝜎2 distH(𝑇𝑛 , 𝑍 ) + 2𝜎.

We have used the fact that the function 𝜎2ℎ𝜎/2 ∈ H. Now, the right-hand side is
minimized when 𝜎3 = distH(𝑇𝑛 , 𝑍 ). Therefore,

distBL(𝑇𝑛 , 𝑍 ) = sup{|𝔼[ℎ (𝑇𝑛) − ℎ (𝑍 )] | : ∥ℎ∥BL ≤ 1} ≤ 4 distH(𝑇𝑛 , 𝑍 )1/3.

Apply Theorem 18.8 to complete the argument. ■
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Problem 18.11 (Berry–Esseen: Non-identical summands). The proof of Theorem 18.10 does
not depend strongly on the assumption that the summands are i.i.d. Formulate and
prove a version of this result for an arbitrary independent sum of real random variables.

Problems
Problem 18.12 (**The Law of Small Numbers). The central limit theorem applies, in
particular, to a binomial random variable 𝑋𝑛 ∼ binomial(𝑝, 𝑛). It is well known that

𝔼𝑋𝑛 = 𝑛𝑝 and Var[𝑋𝑛] = 𝑛𝑝 (1 − 𝑝).

For fixed 𝑝 ∈ (0, 1), the central limit theorem implies that 𝑛−1/2(𝑋𝑛 − 𝑛𝑝) ⇝
normal(0, 𝑝 (1 − 𝑝)).

We can also consider another limit of binomial random variables, where the
probability 𝑝𝑛 varies with 𝑛 in a way that 𝑛𝑝𝑛 = 𝜆, a constant. In this setting, the
central limit theorem is not valid. Instead, binomial(𝑝𝑛 , 𝑛) converges to a Poisson
random variable with expectation 𝜆. This result is called the law of small numbers.

In this problem, we outline the steps in a proof of a strengthened form of the law
of small numbers. As it happens, we can simply modify the Lindeberg method.

1. Define the forward difference operator (Δ+ℎ) (𝑘 ) := ℎ (𝑘 +1)−ℎ (𝑘 ) on functions
ℎ : ℤ+ → ℝ. For 𝑖 ∈ ℤ+, show that

|ℎ (𝑘 ) − ℎ (0) − (Δ+ℎ) (0) · 𝑞 − 1
2 (Δ

2
+ℎ) (0) · 𝑘 (𝑘 − 1) |

≤ 1
6 ∥Δ

3
+ℎ∥sup𝑘 (𝑘 − 1) (𝑘 − 2).

2. Suppose that 𝑌 ,𝑄 are random variables that take values in ℤ+, with 𝔼𝑌 = 𝔼𝑄
and |Var[𝑌 ] − Var[𝑄 ] | ≤ 𝜀. Show that

|𝔼[ℎ (𝑌 ) − ℎ (𝑄 )] | ≤ 1
2 ∥Δ

2
+ℎ∥sup · 𝜀 + 1

6 ∥Δ
3
+ℎ∥sup

(
𝔼𝑌 3 + 𝔼𝑄 3) .

3. Suppose that 𝑌𝑖 ,𝑄𝑖 are independent random variables with 𝔼𝑌𝑖 = 𝔼𝑄𝑖 and
|Var[𝑌𝑖 ] − Var[𝑄𝑖 ] | ≤ 𝜀𝑖 . For each function 𝑓 : ℤ𝑛

+ → ℝ, show that

|𝔼[ 𝑓 (𝑌1, . . . ,𝑌𝑛) − 𝑓 (𝑄1, . . . ,𝑄𝑛)] |

≤
∑︁𝑛

𝑖=1

[ 1
2 ∥Δ

2
𝑖+ 𝑓 ∥sup · 𝜀𝑖 + 1

3 ∥Δ
3
𝑖+ 𝑓 ∥sup ·𝑀𝑖

]
,

where Δ𝑖+ is the forward difference in the 𝑖 th coordinate, and the third moment
𝑀𝑖 := (𝔼𝑌 3

𝑖
) ∨ (𝔼𝑄 3

𝑖
).

4. Consider independent Poisson random variables 𝑄𝑖 ∼ poisson(𝑝𝑖 ). Confirm
that

∑𝑛
𝑖=1𝑄𝑖 ∼ poisson(∑𝑛

𝑖=1 𝑝𝑖 ).
5. Consider the case where 𝑌𝑖 ∼ bernoulli(𝑝𝑖 ) and 𝑄𝑖 ∼ poisson(𝑝𝑖 ) for each

index 𝑖 . Then apply the result from the (3) to the function 𝑓 (𝑥1, . . . , 𝑥𝑛) =∑𝑛
𝑖=1 𝑥𝑖 .

6. Deduce a quantitative version of the law of small numbers for an independent
sum of Bernoulli random variables with arbitrary means 𝑝𝑖 . Express the result in
terms of the probability metric generated by the function class

H := {ℎ : ℤ+ → ℝ : ∥Δ2
+ℎ∥sup ≤ 1 and ∥Δ3

+ℎ∥sup ≤ 1}.

Under what assumptions on the probabilities𝑝𝑖 is the Bernoulli sum approximated
by a Poisson random variable?
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7. We can smooth a bounded function on the integers to obtain a nearby function
with bounded forwarded differences. Let ℎ : ℤ+ → ℝ be uniformly bounded.
For a parameter 𝜆 > 0, define the smoothed function

ℎ𝜆 (𝑘 ) = 𝔼[ℎ (𝑘 +𝑄𝜆)] where 𝑄𝜆 ∼ poisson(𝜆).
Show that ℎ𝜆 is bounded. Obtain uniform bounds on the forward differences
∥Δ𝑗+ℎ∥sup for each 𝑗 ∈ ℕ.

8. The total variation distance on probability measures 𝜇,𝜈 supported on ℤ+ can
be defined as

distTV (𝜇,𝜈) := sup{|𝜇(ℎ) − 𝜈 (ℎ) | : ∥ℎ∥sup ≤ 1}.
Show how to extend your law of small numbers from (6) to the TV distance.
Deduce a limit theorem.

Applications
Application 18.13 (Normal confidence intervals). The central limit theorem provides a
heuristic method for using data to estimate an interval that contains the expectation of
a random variable. Consider an i.i.d. sequence (𝑌𝑖 : 𝑖 ∈ ℕ) of independent observations
of 𝑌 ∈ L2. For 𝑛 ∈ ℕ, we can calculate the sample average 𝑋𝑛 := 𝑛−1 ∑𝑛

𝑖=1𝑌𝑖 and the
sample variance 𝜎2

𝑛 := (𝑛 − 1)−1 ∑𝑛
𝑖=1(𝑌𝑖 − 𝑋𝑛)2 from the observations.

1. Informally, explain why 𝑋𝑛 ≈ 𝔼𝑌 and 𝜎2
𝑛 ≈ Var[𝑌 ] for large 𝑛. Hint: Add and

subtract 𝔼𝑌 in the definition of 𝜎2
𝑛 , and expand the square. What is Cov(𝑌𝑖 , 𝑋𝑛)?

2. Let 𝑍 ∼ normal(0, 1). For fixed 𝑡 > 0 and large 𝑛, informally justify the
approximation

ℙ
{
𝑋𝑛 − 𝑡 · 𝜎𝑛 · 𝑛−1/2 ≤ 𝔼𝑌 ≤ 𝑋𝑛 + 𝑡 · 𝜎𝑛 · 𝑛−1/2} ≈ ℙ {−𝑡 ≤ 𝑍 ≤ +𝑡 } .

In words, explain what this formula means.
3. To find an interval containing 𝔼𝑌 with probability ≈ 95%, how do we pick 𝑡 ?

What about ≈ 99%?
4. For 𝑌 ∈ L3, per Berry–Esseen, how large does 𝑛 need to be for these approxima-

tions to be reasonable?

Application 18.14 (*Bootstrap). As computers became more powerful and more widely
available in the 1960s and 1970s, statisticians began to develop inference procedures
based on computer simulation. In this application problem, we explore the simplest
example of the bootstrap methodology for producing data-driven confidence intervals.
The bootstrap was invented by Brad Efron (a Caltech alumnus!).

Let 𝑌 ∈ L3 be a real random variable with law 𝜇𝑌 and distribution function 𝐹𝑌 . It
is convenient to write𝑚 = 𝔼𝑌 and 𝑣 = Var[𝑌 ] and 𝑠 = 𝔼 |𝑌 −𝑚 |3, the third central
moment. Suppose that we acquire an i.i.d. sample (𝑌1, . . . ,𝑌𝑛) from 𝜇𝑌 . We would
like to estimate the mean 𝑚 and provide a data-driven confidence interval for 𝑚.
The bootstrap can be used for many other estimation problems, but the justification
becomes (even) harder.

1. Define the sample average estimator 𝑋𝑛 = 𝑛−1 ∑𝑛
𝑖=1𝑌𝑖 . This is a random

variable. Use the Berry–Esseen theorem (Lecture 18) to explain why the sampling
distribution of 𝑋𝑛 satisfies

distKol
(√
𝑛 (𝑋𝑛 −𝑚),

√
𝑣 𝑍

)
≤ 𝑠

𝑣3/2√𝑛
for each 𝑛 ∈ ℕ.

As usual, 𝑍 is a standard normal random variable.
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2. Fix the sample 𝒀 = (𝑌1, . . . ,𝑌𝑛). Define the (nonrandom) empirical measure
𝜇𝑛 = 𝑛−1 ∑𝑛

𝑖=1 𝛿𝑌𝑖 . Let 𝑚
∗
𝑛 be the mean and 𝑣∗𝑛 the variance and 𝑠 ∗𝑛 the third

central moment of the empirical measure 𝜇𝑛 . Write down simple formulas to
calculate these quantities in terms of the fixed sample𝒀 .

3. Now, suppose that we draw a new random sample (𝑌 ∗
1 , . . . ,𝑌

∗
𝑛 ) i.i.d. from the

empirical measure 𝜇𝑛 . This is called a bootstrap sample. We can form the sample
average of the bootstrap sample: 𝑋 ∗

𝑛 = 𝑛−1 ∑𝑛
𝑖=1𝑌

∗
𝑖
. This is a random variable.

Explain why the (conditional) sampling distribution of 𝑋 ∗
𝑛 |𝒀 satisfies

distKol
(√
𝑛 (𝑋 ∗

𝑛 −𝑚∗
𝑛) |𝒀 ,

√︁
𝑣∗𝑛 𝑍 |𝒀

)
≤ 𝑠 ∗𝑛

(𝑣∗𝑛)3/2
√
𝑛

for each 𝑛 ∈ ℕ.

In this problem, we are not using conditioning in any substantive way. The
notation is just intended to remind you that the sample𝒀 was drawn at random.
But you should think about 𝒀 as frozen, so you can treat it as a nonrandom
quantity.

4. Using the triangle inequality, deduce that the bootstrap sample average distribu-
tion serves as a proxy for the sample average distribution:

distKol
(√
𝑛 (𝑋 ∗

𝑛 −𝑚∗
𝑛) |𝒀 ,

√
𝑛 (𝑋𝑛 −𝑚)

)
≤ 2𝑠
𝑣3/2√𝑛

+ error(𝒀 ).

Find a formula or bound for error(𝒀 ) to show that it is a function of the fixed
sample𝒀 .

5. (*) With respect to the randomness in the sample 𝒀 = (𝑌1, . . . ,𝑌𝑛), argue
that error(𝒀 ) → 0 almost surely as 𝑛 → ∞. Hint: Use a Taylor expansion
to compare two normal cdfs, and invoke the SLLN. (**) A fortiori, prove that
ℙ

{
|error(𝒀 ) | ≥ Const · 𝑛−1/2} → 0 as 𝑛 → ∞.

6. Let 𝐹 ∗ be the exact distribution function of the random variable
√
𝑛 (𝑋 ∗

𝑛 −𝑚∗
𝑛).

For a fixed confidence level 𝛼 ∈ (0, 0.5), identify points where 𝐹 ∗(𝑡𝛼) ≈ 𝛼 and
𝐹 ∗(𝑡1−𝛼) ≈ 1 − 𝛼. Then we can define the bootstrap confidence interval for the
population mean:

𝐼 ∗ = [𝑚∗
𝑛 − 𝑛−1/2 𝑡1−𝛼 ,𝑚

∗
𝑛 − 𝑛−1/2 𝑡𝛼].

Use (b) and (d) to argue informally that the coverage probability ℙ {𝑚 ∈ 𝐼 ∗} ≈
1 − 2𝛼. The interval 𝐼 ∗ is a prototype for our data-driven confidence interval.

7. Unfortunately, we do not have direct access to the bootstrap distribution function
𝐹 ∗. Instead, we must resort to simulation. For a large parameter 𝐵 , let
𝑊1, . . . ,𝑊𝐵 be independent copies of the random variable

√
𝑛 (𝑋 ∗

𝑛 −𝑚∗
𝑛). These

random variables are called bootstrap replicates, and they are accessible to us. Let
𝐹 ∗
𝐵
be the empirical distribution function of𝑊1, . . . ,𝑊𝐵 . Use Application 17.44

to explain why 𝐹 ∗
𝐵
serves in place of 𝐹 ∗ as 𝐵 → ∞. Explain how to use 𝐹 ∗

𝐵
to

construct a confidence interval 𝐼 ∗
𝐵
where ℙ

{
𝑚 ∈ 𝐼 ∗

𝐵

}
≈ 1 − 2𝛼.

Notes
Lindeberg’s proof of the central limit theorem dates to 1922. Our presentation is
adapted from Pollard’s book [Pol02, Sec. 7.2]. Although this approach is both simple
and classic, it has not achieved the same visibility as other proof strategies. In
particular, most books use characteristic functions to establish the CLT; see Lecture 21
for additional information.
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In recent decades, the Lindeberg principle has been revived because it has many
other elegant applications. In particular, see the papers of Chatterjee [Cha08; Cha06],
Korada & Montanari [KM11], and Tao [Tao19]. We have also borrowed some ideas
from these treatments.

The bootstrap application of the Berry–Esseen theorem is adapted fromWasserman’s
book [Was04].

The quotation that opens the chapter is attributed to Sir Francis Galton (1822–
1911). Galton made major contributions to probability theory, statistics, genetics,
psychology, meteorology, and other fields. He also has a much darker legacy as the
leading proponent of “scientific eugenics”. The eugenics movement inspired some of
the greatest evils of the 20th century.
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19. Conditional Expectation in L2

Agenda:
1. Expectation and least-squares
2. Conditional expectation in L2
3. Conditioning on a 𝜎 -algebra
4. Properties

“Celui qui désespère des événements est un lâche, mais celui qui espère en la
condition humaine est un fou.”

“He who despairs at events is a coward, but he who has hope for the human
condition is a fool.”

—Albert Camus

So far, we have focused our attention on independent random variables and their
properties. In this lecture, we expand our scope to include dependent random variables.
Roughly speaking, when random variables are dependent, they contain information
about each other. By observing one random variable, we may gain additional knowledge
about the probable values of the other. In particular, we can update our best guess
about the expected value of one random variable, given the value of the other.

For example, consider the experiment where we flip two fair coins, and we are
interested in the total number 𝑋 of heads. A priori, 𝔼𝑋 = 1. Suppose that we flip the
first coin, and we observe that its value is heads. The value of 𝑋 is not yet determined,
but we now anticipate that the expected number of heads will be 1.5. Similarly, if the
first coin turns up tails, then the expected number of heads will be 0.5. Once we flip
both coins, the number 𝑋 of heads is no longer random; its expected value has been
determined by the outcomes of the two flips.

We aim to develop this notion of conditional expectation; that is, the expected value
of a random variable that reflects the information that we have acquired. The discussion
in the last paragraph yields several insights. First, the conditional expectation is our
“best guess” for the expectation, given some data. Second, the conditional expectation
is a function of the observed data. Therefore, if we regard the observations as random,
the conditional expectation is a random variable. Third, the more data we acquire, the
more accurately we can refine our prediction of the expectation.

In this lecture, we will use these intuitions to define conditional expectation for
square-integrable random variables. In this case, conditional expectation can be viewed
as an orthogonal projection, and many of its properties follow immediately from the
corresponding properties of orthogonal projection. In the next lecture, we will extend
the definition to integrable random variables and present a more complete slate of
facts about the conditional expectation.

19.1 Least squares and conditional expectations
First, we develop a connection between the expectation of a random variable and a least-
squares problem. This perspective allows us to reinterpret the ordinary expectation
as an orthogonal projection, which will serve as a model for the general conditional
expectation.
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Figure 19.1 (Conditional expectation as an orthogonal projection). The subspace K con-
tains random variables that are determined by the information given. The conditional
expectation of 𝑋 is a random variable 𝑌 ∈ K that best approximates 𝑋 with respect
to the L2 pseudonorm. If we have no prior information, then K is simply the set of
constant random variables, and the constant random variable 𝑌 = 𝔼𝑋 is our best
guess for 𝑋 .

19.1.1 Expectation
Fix a probability space (Ω,F,ℙ), and let 𝑋 ∈ L2(Ω,F,ℙ) be a square-integrable
random variable. From Exercise 12.15, recall that the variance of 𝑋 has a variational
formulation:

Var[𝑋 ] = ∥𝑋 − 𝔼𝑋 ∥22 = inf𝑎∈ℝ ∥𝑋 − 𝑎 ∥22. (19.1)

This result leads to a variational interpretation of the expectation: 𝔼𝑋 is the constant
that best approximates the random variable 𝑋 with respect to the L2 norm. It is our
best guess for 𝑋 in the absence of any information.

We can just as well treat a constant as a constant random variable. Consider the
linear subspace of constant random variables:

K0 := {𝑌 ∈ L2 : 𝑌 (𝜔) = 𝑎 for all 𝜔 ∈ Ω for some 𝑎 ∈ ℝ}.

You should confirm that K0 is a complete linear subspace of L2. The constant random
variable 𝑌 : 𝜔 ↦→ 𝔼𝑋 obviously belongs to K0, and the formula (19.1) ensures that 𝑌
is the (unique) orthogonal projection of 𝑋 onto K0. See Figure 19.1 for a reminder
about the geometry. This innocent observation opens up a world of possibilities.

19.1.2 Linear least squares
Now, suppose that we observe a random variable 𝑍 ∈ L2, and we would like to use the
value of 𝑍 to update our best guess about the expected value of 𝑋 . Let us start with
a simple approach that is widely used in practice. Suppose that we want to find the
best approximation of 𝑋 as a linear function of 𝑍 . This optimization problem takes the
form

minimize ∥𝑋 − (𝑎 + 𝑏𝑍 )∥22 subject to 𝑎, 𝑏 ∈ ℝ. (19.2)

We can easily find the solution by setting the derivatives of the objective with respect
to 𝑎, 𝑏 to zero.
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Exercise 19.1 (Linear least squares). Find the solution to (19.2). Express the result in terms
of the expectations and covariances of 𝑋 and 𝑍 .

Once again, we can interpret the variational problem (19.2) as an orthogonal
projection. Introduce the linear subspace

K1 := {𝑎 + 𝑏𝑍 : 𝑎, 𝑏 ∈ ℝ}. (19.3)

You should confirm that K1 is a complete linear subspace of L2. We can reframe the
least-squares optimization problem (19.2) as

minimize ∥𝑋 −𝑌 ∥22 subject to 𝑌 ∈ K1.

In other words, the solution 𝑌 is the (unique) orthogonal projection of 𝑋 onto K1. The
geometry is similar with Figure 19.1.

Exercise 19.2 (Information never hurts). Let 𝑋 , 𝑍 ∈ L2 be real random variables, and let 𝑌
be the orthogonal projection of 𝑋 onto K1, defined in (19.3). Show that

∥𝑋 −𝑌 ∥2 ≤ ∥𝑋 − 𝔼𝑋 ∥2.

Find necessary and sufficient conditions for the inequality to be strict.

Aside: Given observations {(𝑋𝑖 , 𝑍𝑖 ) : 𝑖 = 1, . . . , 𝑛} that are distributed i.i.d. as
(𝑋 , 𝑍 ), we can formulate an empirical version of the optimization problem (19.2).
That is,

minimize
1
𝑛

∑︁𝑛

𝑖=1

(
𝑋𝑖 − (𝑎 + 𝑏𝑍𝑖 )

)2 subject to 𝑎, 𝑏 ∈ ℝ

By solving this finite-dimensional optimization problem, we can obtain an empirical
estimate for the coefficients (𝑎★, 𝑏★) that solve the problem (19.2). In statistical
learning theory, a basic problem is to quantify how many samples 𝑛 we need to
obtain an accurate estimate of the true coefficients (𝑎★, 𝑏★).

19.1.3 Nonlinear least squares
In general, a real random variable 𝑍 contains more information about 𝑋 than we can
extract from the class K1 of simple linear models. To make the best prediction we can,
we need to consider nonlinear functions of the random variable 𝑍 . This leads to the
optimization problem

minimize ∥𝑋 − ℎ (𝑍 )∥22 subject to ℎ (𝑍 ) ∈ L2. (19.4)

In this expression, ℎ : ℝ → ℝ ranges over Borel measurable functions for which
ℎ (𝑍 ) ∈ L2. In other words, we search over all square-integrable random variables that
are completely determined by 𝑍 to find one that best approximates 𝑋 in the L2 sense.

As before, we can reframe (19.4) as an orthogonal projection. Introduce the linear
subspace

K𝑍 := {ℎ (𝑍 ) ∈ L2 : ℎ : ℝ → ℝ is Borel measurable}.
We arrive at the optimization problem

minimize ∥𝑋 −𝑌 ∥22 subject to 𝑌 ∈ K𝑍 . (19.5)

Assuming that an orthogonal projection of 𝑋 onto K𝑍 exists, it serves as a best L2
estimate of 𝑋 , given the random variable 𝑍 .
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To see why an orthogonal projection is defined, we need an alternative expression
for the linear subspace. As we have seen (Problem 13.20), a random variable 𝑌 is
𝜎 (𝑍 )-measurable if and only if 𝑌 = ℎ (𝑍 ) for a Borel measurable function ℎ : ℝ → ℝ.
Therefore, we can identify

The notation ℙ |G means the
restriction of the probability measure
ℙ to the events in a 𝜎 -algebra G.

K𝑍 = {𝑌 ∈ L2(Ω,F,ℙ) : 𝑌 is 𝜎 (𝑍 )-measurable}
= L2(Ω, 𝜎 (𝑍 ),ℙ|𝜎 (𝑍 ) ).

The square-integrable random variables on a probability space compose a complete
linear space (Theorem 11.30). Therefore, Theorem 12.21 ensures that the orthogonal
projection exists and is unique, up to its values on negligible sets.

We may now introduce the conditional expectation of 𝑋 given 𝑍 . Indeed, we define
the conditional expectation 𝔼[𝑋 | 𝑍 ] to be any version of the orthogonal projection of
𝑋 onto the subspace K𝑍 . That is, the conditional expectation is any one of the solutions
to (19.5). As before, the geometry agrees with Figure 19.1.

Since the conditional expectation is a function ℎ (𝑍 ) of the random variable 𝑍 ,
the conditional expectation is itself a random variable. Moreover, the conditional
expectation is determined up to its values on negligible sets because the orthogonal
projection is determined up to its values on negligible sets.

Aside: In spite of the terminology, the problem (19.4) is actually a linear least-
squares problem posed on a linear space of random variables. In general, we
cannot hope to find an explicit solution to (19.4). It is also challenging to solve the
optimization problem numerically given the law of (𝑋 , 𝑍 ) or to approximate the
solution given an empirical sample from the law. Beyond that, there is no reason
that an optimal estimator of 𝑋 given 𝑍 is computationally tractable to implement.
Computational statistics and statistical learning theory address these challenges.

19.2 Conditioning on a 𝜎-algebra
The discussion in the last section culminated in the definition of the conditional
expectation of a random variable 𝑋 , given the value of another random variable 𝑍 .
Indeed, we defined the conditional expectation 𝔼[𝑋 | 𝑍 ] as the orthogonal projection
of 𝑋 onto a subspace of random variables determined by 𝑍 . In this section, we
generalize this preliminary definition to allow for conditioning with respect to more
general types of information.

19.2.1 Sigma-algebras carry information
We have the intuition that a 𝜎 -algebra G carries information about the state of the
world. It is often helpful to think about Gas a collection of events that have already
been determined. In other words, we know whether each event has occurred or not.
(That is, we can decide whether the distinguished sample point 𝜔0 ∈ G or 𝜔0 ∉ G for
each G ∈ G.)

For example, consider the experiment where we flip two fair coins. The natural
sample space Ω = {HH,HT, TH, TT}. Consider the sub-𝜎 -algebra of events generated
by the outcome of the first coin:

{∅, {HH,HT}, {TH, TT},Ω}.

If we know how the first coin turns up, then we can decide whether each of these
events has or has not occurred. For instance, if the first coin is heads, then the events
{HH,HT} and Ω occur, and the other events do not.
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19.2.2 Conditional expectation with respect to a 𝜎-algebra
In Lecture 13, we saw that independence can be formulated in terms of 𝜎 -algebras.
Independence of events and random variables are just special cases of this definition.
In the same way, we would like to define conditional expectation with respect to a
𝜎 -algebra.

In the last section, we saw that conditional expectation of 𝑋 ∈ L2 with respect to a
random variable 𝑍 is just the orthogonal projection onto the subspace of L2 consisting
of 𝜎 (𝑍 )-measurable random variables. This connection suggests how we can define
the conditional expectation with respect to a 𝜎 -algebra.

Definition 19.3 (Conditional expectation: L2 case). Fix a probability space (Ω,F,ℙ).
Let G ⊆ F be a 𝜎 -algebra on Ω. For a square-integrable random variable
𝑋 ∈ L2(Ω,F,ℙ), consider any solution 𝑌 to the least-squares problem Since there is rarely any ambiguity,

we usually write ℙ = ℙ |G in the
sequel.minimize ∥𝑋 −𝑌 ∥22 subject to 𝑌 ∈ L2(Ω, G,ℙ|G).

We say that 𝑌 is a version of the conditional expectation 𝔼[𝑋 | G].

Definition 19.3 states that conditional expectation is simply an orthogonal projection,
just as in Figure 19.1. The following result is fully justified by Theorem 12.21.

Theorem 19.4 (Conditional expectation: L2 case). In the setting of Definition 19.3, there
exists a version 𝑌 of the conditional expectation 𝔼[𝑋 | G]. Furthermore, if 𝑌 ′ is
another version of the conditional expectation, then 𝑌 = 𝑌 ′ almost surely. That is,
ℙ {𝑌 ≠ 𝑌 ′} = 0.

Let us emphasize that the conditional expectation 𝔼[𝑋 | G] is a random variable
defined on the sample space Ω. Its value is only determined once we specify which
events in Ghave occurred and which have not. This fact has perplexed generations of
probability students, so it merits reflection.

Exercise 19.5 (Conditioning: Trivial 𝜎-algebra). Assume 𝑋 ∈ L2, and let G= {∅,Ω}. Show
that 𝔼[𝑋 | G] = 𝔼[𝑋 ]. What is the intuition for this statement?

Exercise 19.6 (Conditioning: Master 𝜎-algebra). Assume 𝑋 ∈ L2, and let G= F. Show that
𝔼[𝑋 | F] = 𝑋 . What is the intuition for this statement?

Warning 19.7 (Conditional expectation: Almost sure). Sometimes, it is possible to make
a canonical choice of the conditional expectation (e.g., when the sample space is
finite). But, in general, the conditional expectation is only determined, modulo
its values on negligible sets. As a consequence, identities involving conditional
expectations hold almost surely. Initially, we will scrupulously remind you about
this point, but later we will typically omit the qualification, as it is understood. ■

19.2.3 Conditioning on a random variable
Definition 19.3 contains some familiar types of conditional expectation as special cases.
First, each real random variable 𝑍 generates a 𝜎 -algebra 𝜎 (𝑍 ). In this case, we define

𝔼[𝑋 | 𝑍 ] := 𝔼[𝑋 | 𝜎 (𝑍 )].

This construction coincides with the preliminary definition of conditional expectation
(Section 19.1.3) as the solution to a nonlinear least-squares problem.
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More generally, we can define the conditional expectation with respect to a family
of real random variables:

𝔼[𝑋 | 𝑍1, . . . , 𝑍𝑛] := 𝔼[𝑋 | 𝜎 (𝑍1, . . . , 𝑍𝑛)].

Recall that the 𝜎 -algebra 𝜎 (𝑍1, . . . , 𝑍𝑛) is generated by all events of the form 𝑍 −1
𝑖

(B)
for a Borel set B ∈ B(ℝ) and an index 𝑖 = 1, . . . , 𝑛. The interpretation of this
conditional expectation is similar to the univariate case, but we now search for
approximations over the class of multivariate functions ℎ (𝑍1, . . . , 𝑍𝑛) ∈ L2.

19.2.4 Conditioning on an event
We can also condition on an event, which leads to significant and informative simplifi-
cations. We often make abbreviations like

𝜎 (E) := 𝜎 ({E}) for legibility.
Each event E ∈ Fgenerates a 𝜎 -algebra 𝜎 ({E}) = {∅, E, Ec,Ω}. We define

the conditional expectation with respect to the event as

𝔼[𝑋 | E] := 𝔼[𝑋 | 𝜎 (E)] = 𝔼[𝑋 | 1E].

Warning: In elementary
probability, 𝔼[𝑋 | E] is a number:
the conditional expectation of 𝑋 ,
given that E occurs. Here, it
denotes a random variable whose
value depends on whether or not
E occurs. ■

We can develop an explicit expression for this conditional expectation that sheds further
light on the concept.

To compute the conditional expectation, we need to approximate 𝑋 by a random
variable 𝑌 that is measurable with respect to 𝜎 ({E}). The measurability property
forces the random variable 𝑌 to be constant on E and constant on Ec. Explicitly,

𝑌 = 𝑎1E + 𝑏1Ec for some 𝑎, 𝑏 ∈ ℝ.

Thus, the conditional expectation 𝑌 = 𝔼[𝑋 | E] is obtained by solving

minimize ∥𝑋 − (𝑎1E + 𝑏1Ec)∥22 subject to 𝑎, 𝑏 ∈ ℝ.

To do so, we use the orthogonality of 1E and 1Ec to split the squared norm:

∥𝑋 − (𝑎1E + 𝑏1Ec)∥22 = ∥(𝑋 − 𝑎)1E∥22 + ∥(𝑋 − 𝑏)1Ec ∥22.

We can now minimize independently over 𝑎, 𝑏 ∈ ℝ. In light of (19.1), the solution is

𝑎 =
𝔼[𝑋 1E]
ℙ(E) and 𝑏 =

𝔼[𝑋 1Ec]
ℙ(Ec) .

If ℙ(E) = 0, then we can take 𝑎 = 0 because the numerator and denominator are
both zero. Similarly, if ℙ(Ec) = 0, then we can take 𝑏 = 0. Therefore, the conditional
expectation satisfies

𝑌 (𝜔) = 𝔼[𝑋 | E] (𝜔) =
{
𝔼[𝑋 1E]/ℙ(E), 𝜔 ∈ E;
𝔼[𝑋 1Ec]/ℙ(Ec), 𝜔 ∉ E.

Thus, the conditional expectation admits a canonical definition in case 0 < ℙ(E) < 1.
Otherwise, the conditional expectation can take an arbitrary value on the event E or Ec
that is negligible.

In summary, the conditional expectation depends on whether the event E occurs. If
E occurs, then the conditional expectation 𝑌 equals the average value of 𝑋 on E. If E
does not occur, then the conditional expectation 𝑌 equals the average value of 𝑋 on
Ec. This is precisely the elementary definition of conditional expectation. By direct
calculation, you may also confirm that 𝔼𝑌 = 𝔼𝑋 . See Figure 19.2 for an illustration.
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Figure 19.2 (Conditioning on an event). For a random variable 𝑋 ∈ L2 and an event
E ∈ F, we can easily compute𝑌 = 𝔼[𝑋 | E]. The conditional expectation𝑌 is constant
on E and constant on Ec by measurability. By consistency, the constant value of 𝑌 on
E (resp. Ec) agrees with the average value of 𝑋 on E (resp. Ec). Moreover, the total
expectations match: 𝔼𝑌 = 𝔼𝑋 .

More generally, we can condition on a family of events:

𝔼[𝑋 | E1, . . . , E𝑛] := 𝔼[𝑋 | 𝜎 (E1, . . . , E𝑛)].

In this case, the conditional expectation is constant over the “minimal” events in the
𝜎 -algebra, which take the form

A = A1 ∩ · · · ∩ A𝑛 where A𝑖 ∈ {E𝑖 , Ec𝑖 }.

For all 𝜔 ∈ A, the conditional expectation 𝔼[𝑋 | E1, . . . , E𝑛] (𝜔) = 𝔼[𝑋 1A]/ℙ(A).

19.3 Conditional expectation: Properties
For a square-integrable random variable, the conditional expectation is simply an
orthogonal projection. In this setting, we can immediately derive a number of
fundamental properties of the conditional expectation from facts about orthogonal
projection. Lecture 20 contains generalizations and additional properties.

19.3.1 Measurability
We begin with two properties that characterize the conditional expectation. The first
is a measurability property of the conditional expectation.

Proposition 19.8 (L2 conditional expectation: Measurability). Let 𝑋 ∈ L2(Ω,F,ℙ), and let
G⊆ Fbe a 𝜎 -algebra contained in F. If 𝑌 is a version of the conditional expectation
𝔼[𝑋 | G], then 𝑌 is G-measurable.
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In detail, this result states that

𝑌 −1(B) ∈ G for each Borel set B ∈ B(ℝ).

Therefore, if we know whether each event G ∈ Goccurs or not, then we can determine
whether 𝑌 ∈ B for each Borel set B. The value of 𝑌 is completely determined by the
events in G.

Proof. By definition, a conditional expectation 𝑌 = 𝔼[𝑋 | G] belongs to the space
L2(Ω, G,ℙ). In particular, 𝑌 must be a G-measurable random variable. ■

In case G = 𝜎 (𝑍1, . . . , 𝑍𝑛) for a family (𝑍1, . . . , 𝑍𝑛) of real random variables,
this statement means that the conditional expectation 𝑌 = ℎ (𝑍1, . . . , 𝑍𝑛) for a Borel
measurable function.

In case G = 𝜎 ({E1, . . . , E𝑛}) for a family (E1, . . . , E𝑛) of events, this statement
means that the conditional expectation 𝑌 = ℎ (𝜀1, . . . , 𝜀𝑛) where 𝜀𝑖 ∈ {0, 1} indicates
whether event E𝑖 occurs. In particular, 𝑌 is constant on “minimal” events. Figure 19.2
illustrates the simplest case.

19.3.2 Consistency
The second characteristic property of the conditional expectation states that certain
averages of a random variable and its conditional expectation coincide.

Proposition 19.9 (L2 conditional expectation: Consistency). Let 𝑋 ∈ L2(Ω,F,ℙ), and let
𝑌 = 𝔼[𝑋 | G] be a conditional expectation with respect to a 𝜎 -algebra G⊆ F. Then

𝔼[𝑋 1G] = 𝔼[𝑌 1G] for each G ∈ G. (19.6)

This is a consistency or coarse-graining property. If G ∈ G is one of the events on
which we condition, the average value of the conditional expectation 𝑌 on G is the
same as the average of 𝑋 on G. In particular, if we consider a “minimal” event on which
𝑌 is constant, the constant equals the average value of 𝑋 on the event. Figure 19.2
illustrates the simplest case.

Why do we restrict attention to these events? In light of Proposition 19.8, these are
the ones where 𝑌 is naturally defined.

Proof. To check this claim, we use the dual characterization of orthogonal projection
from Theorem 12.21:

⟨𝑋 −𝑌 , 𝑊 ⟩ = 0 for each𝑊 ∈ L2(Ω, G,ℙ). (19.7)

Writing the inner product as an expectation, we see that

𝔼[𝑋𝑊 ] = 𝔼[𝑌𝑊 ] for each𝑊 ∈ L2(Ω, G,ℙ).

In particular, for any event G ∈ G, we can take𝑊 = 1G because this random variable
𝑊 is G-measurable and square-integrable. ■

19.3.3 The pull-through property
We continue with some special properties of conditional expectation. The first one
describes a situation where we can draw a random variable through the conditional
expectation.
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Proposition 19.10 (L2 conditional expectation: Pull-through). Suppose that 𝑋 ∈ L2(Ω,F,ℙ),
and let 𝑍 ∈ L∞(Ω, G,ℙ) be an (essentially) bounded, G-measurable random variable.
Then

𝔼[𝑋 𝑍 | G] = 𝔼[𝑋 | G] · 𝑍 .
In other words, given the information in the 𝜎 -algebra G, the random variable 𝑍 is

completely determined. Therefore, we may pull 𝑍 out of the expectation, as if it were
a constant.

Proof. The pull-through property follows from the dual characterization of the orthog-
onal projection. Let 𝑌 = 𝔼[𝑋 | G]. For all𝑊 ∈ L2(Ω, G,ℙ),

⟨𝑋 𝑍 −𝑌 𝑍 , 𝑊 ⟩ = 𝔼[(𝑋 −𝑌 ) (𝑍𝑊 )] = ⟨𝑋 −𝑌 , 𝑍𝑊 ⟩ = 0.

Indeed, since 𝑍 is bounded and G-measurable, the product 𝑍𝑊 is square-integrable
and G-measurable. The characterization (19.7) of the conditional expectation 𝑌
ensures that the inner-product is zero. Therefore, 𝑌 𝑍 is a version of the conditional
expectation of 𝑋 𝑍 , given G. ■

Problem 19.11 (L2 conditional expectation: Pull-through). For 𝑋 ∈ L2, the pull-through
property can be extended to the case where 𝑍 is square-integrable and G-measurable.
Prove it.

19.3.4 The tower property
There is a further orthogonality property that arises when we condition with respect
to nested 𝜎 -algebras.

Proposition 19.12 (L2 conditional expectation: Tower). Suppose that G ⊆ H ⊆ F are
𝜎 -algebras. Let 𝑋 ∈ L2(Ω,F,ℙ). Then

𝔼[𝔼[𝑋 | H] | G] = 𝔼[𝑋 | G] almost surely.

Heuristically, if we compute the expectation given a lot of information and then
forget some of what we know, then the conditional expectation is the same as if we
had less information to begin with. This result is called the tower property.

Proof. To establish this claim, note that

L2(Ω, G,ℙ) ⊆ L2(Ω,H,ℙ).

Problem 12.28(Nesting) shows that we can compute the orthogonal projection onto
the smaller subspace (G) in two stages. First, we compute the orthogonal projection
onto the larger subspace (H). Second, we compute its orthogonal projection onto the
smaller subspace (G). Reinterpreting this statement in terms of conditional expectation,
we arrive at the tower property. ■

19.3.5 Conditional expectation mimics an expectation
We motivated the construction of conditional expectation using the variational inter-
pretation of the ordinary expectation. By what token does it make sense to call the
conditional expectation an expectation? We may do so because it shares the four core
properties of an expectation.

Proposition 19.13 (L2 conditional expectation: Expectation properties). Fix a probability space
(Ω,F,ℙ), and let G ⊆ F be a 𝜎 -algebra on Ω. The conditional expectation with
respect to G is...
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1. Unital: 𝔼[1 | G] = 1 almost surely.
2. Positive: If 𝑋 is square-integrable and 𝑋 ≥ 0 almost surely, then 𝔼[𝑋 | G] ≥ 0

almost surely.
3. Linear: If 𝑋 ,𝑌 ∈ L2(Ω,F,ℙ) and 𝛼, 𝛽 ∈ ℝ, then

𝔼[𝛼𝑋 + 𝛽𝑌 | G] = 𝛼 𝔼[𝑋 | G] + 𝛽 𝔼[𝑌 | G] almost surely.

4. Monotone: In particular, for square-integrable random variables that satisfy
𝑋 ≤ 𝑌 , we have 𝔼[𝑋 | G] ≤ 𝔼[𝑌 | G] almost surely.

Proof. Unital: Note that constant random variables are G-measurable with respect to
every 𝜎 -algebra. Therefore, 1 ∈ L2(Ω, G,ℙ), and so 1 is a version of the orthogonal
projection of 1 onto this linear subspace.

Positive: We may assume that 𝑋 ≥ 0 everywhere. (Why?) Let 𝑌 = 𝔼[𝑋 | G] be a
conditional expectation. The numerical inequality (𝑎 −𝑏+)2 ≤ (𝑎 −𝑏)2 for 𝑎 ≥ 0 and
monotonicity of expectation together imply that

∥𝑋 −𝑌 ∥22 = 𝔼(𝑋 −𝑌 )2 ≥ 𝔼(𝑋 −𝑌+)2 = ∥𝑋 −𝑌+∥22.

Note that the positive part𝑌+ = max{0,𝑌 } ∈ L2(Ω, G,ℙ). The conditional expectation
𝑌 already minimizes the least-squares objective over this class, so𝑌+ is also a minimizer.
It follows that the conditional expectation has a version 𝑌+ that is positive.

Linear: The linearity property is a consequence of the fact that orthogonal projections
are linear. See Problem 12.28. ■

Exercise 19.14 (Conditional expectation: Monotonicity). Deduce the monotonicity property
of conditional expectation from the properties we have already established.

Warning 19.15 (Conditional distribution). Although we might like to regard the condi-
tional expectation as an ordinary expectation with respect to a (regular) conditional
distribution, this interpretation is not valid in the most general settings. We will
return to this point later. ■

19.3.6 Special examples
There are a number of cases where the conditional expectation can be computed almost
instantly from the definitions.

Proposition 19.16 (L2 conditional expectation: Special cases). Let G ⊆ F be a 𝜎 -algebra,
and let 𝑋 ∈ L2(Ω,F,ℙ) be a random variable.

1. Expectations: If 𝑌 = 𝔼[𝑋 | G] almost surely, then 𝔼[𝑌 ] = 𝔼[𝑋 ].
2. Full knowledge: If 𝑋 is G-measurable, then 𝔼[𝑋 | G] = 𝑋 almost surely.
3. Independence: If 𝜎 (𝑋 ) is independent from G, then 𝔼[𝑋 | G] = 𝔼[𝑋 ] almost

surely.

Proof. Expectations: To see that the expectation of 𝑋 and its conditional expectation
𝑌 = 𝔼[𝑋 | G] coincide, we simply apply Proposition 19.9 with G = Ω. This is possible
because every 𝜎 -algebra on Ω contains Ω.

Full knowledge: If 𝑋 is G-measurable, then 𝑋 ∈ L2(Ω, G,ℙ). Therefore, 𝑋 is its
own orthogonal projection onto this space. It follows that 𝔼[𝑋 | G] = 𝑋 almost surely.
This result is natural because Galready contains full information about 𝑋 .

Independence: If 𝜎 (𝑋 ) is independent from G, then you should confirm that

𝔼[(𝑋 − 𝔼𝑋 )𝑌 ] = 0 for each G-measurable 𝑌 .
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Now, if 𝑌 is G-measurable, we may calculate that

∥𝑋 −𝑌 ∥22 = ∥(𝑋 − 𝔼𝑋 ) − (𝑌 − 𝔼𝑋 )∥22 = ∥𝑋 − 𝔼𝑋 ∥22 + ∥𝑌 − 𝔼𝑋 ∥22.

The last relation holds because 𝑌 − 𝔼𝑋 is G-measurable. The right-hand side is
minimized when 𝑌 = 𝔼𝑋 . It follows that 𝑌 = 𝔼𝑋 is a version of the conditional
expectation. ■

Problems
Exercise 19.17 (Chain rule). Let 𝑋 ∈ L2 be a real random variable. Let G ⊆ F be a
sub-𝜎 -algebra of the master 𝜎 -algebra. Define the conditional variance:

Var[𝑋 | G] := 𝔼[(𝑋 − 𝔼[𝑋 | G])2 | G].

1. Argue that the conditional variance is positive (almost surely).
2. Confirm the variational formulation:

Var[𝑋 | G] (𝜔) = inf{𝔼[(𝑋 −𝑌 )2 | G] (𝜔) : 𝑌 ∈ L2(Ω, G,ℙ)} a.s.

3. Establish the chain rule:

Var[𝑋 ] = 𝔼[Var[𝑋 | G]] + Var[𝔼[𝑋 | G]].

Notes
Our approach to conditioning is modeled on Williams’s book [Wil91].

Lecture bibliography
[Wil91] D. Williams. Probability with Martingales. Cambridge University Press, 1991.



20. Conditional Expectation in L1

Agenda:
1. Conditional expectation
2. Convergence theorems
3. Further properties
4. Elementary conditional

expectation

“Do not become a mere recorder of facts, but try and penetrate the mystery of their
origin.”

—Ivan Petrovich Pavlov

In the last lecture, we introduced the idea of conditional expectation. For a square-
integrable random variable, we can update our best guess of its expected value in
light of new information. In L2, conditional expectation coincides with an orthogonal
projection, so it has a geometric underpinning and an interpretation in terms of least
squares. Furthermore, the properties of conditional expectation can be derived from
facts about least-squares problems.

In this lecture, we will extend the conditional expectation to all integrable random
variables. This result, due to Kolmogorov, is one of the most fundamental facts in
modern probability. The generalization shares all of the properties outlined in the last
lecture, but it lacks the pellucid geometry of least squares.

To begin, we will introduce the general definition of conditional expectation and
prove that it is justified. Then we will develop the convergence theory for conditional
expectation, which offers a quick path to obtaining the other properties of conditional
expectation. Last, we will see that the abstract definition here captures all of the
elementary notions of conditional expectation from introductory probability.

20.1 Conditional expectation, in general
In the Grundbegriffe, Kolmogorov introduced a general notion of conditional expecta-
tion. This definition is based on two characteristic properties of conditional expectation,
outlined in Lecture 19. This section presents Kolmogorov’s definition, along with the
fundamental theorem of conditional expectation.

20.1.1 Characteristic properties
Let 𝑋 ∈ L2(Ω,F,ℙ) be a square-integrable random variable, and let 𝑌 ∈ L2(Ω, G,ℙ)
be a version of the conditional expectation 𝔼[𝑋 | G]. First, recall that the conditional
expectation 𝑌 is a G-measurable random variable, which means that 𝑌 is completely
determined once we know which events in Goccur (Proposition 19.8). Second, the
expectation of 𝑌 over each event in G coincides with the expectation of 𝑋 over the
same event (Proposition 19.9).

Observe that neither of these properties requires the random variable 𝑋 to be
square-integrable. Therefore, we can use them as a template for extending the
conditional expectation to random variables in L1.
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20.1.2 Kolmogorov’s definition
Kolmogorov put forth the following definition of the conditional expectation. It requires
further justification, which we will supply in a moment.

Definition 20.1 (Conditional expectation). Fix a probability space (Ω,F,ℙ), and let
G ⊆ Fbe a 𝜎 -algebra on Ω. Let 𝑋 ∈ L1(Ω,F,ℙ) be an integrable real random
variable. A real random variable 𝑌 on the probability space is called a version of the
conditional expectation 𝔼[𝑋 | G] if it satisfies three properties:

1. Measurability: 𝑌 is G-measurable.
2. Integrability: 𝑌 is ℙ-integrable.
3. Consistency: For each event G ∈ G, we have 𝔼[𝑌 1G] = 𝔼[𝑋 1G].

The fundamental theorem of conditional expectation holds that the conditional
expectation always exists, and it is essentially unique.

Theorem 20.2 (Conditional expectation: Fundamental theorem). In the setting of Def-
inition 20.1, there exists a version 𝑌 of the conditional expectation 𝔼[𝑋 | G].
Furthermore, if 𝑌 ′ is another version of the conditional expectation, then 𝑌 = 𝑌 ′

almost surely. That is, ℙ {𝑌 ≠ 𝑌 ′} = 0.

In other words, the two properties (measurability, consistency) that we extracted
from the definition of the conditional expectation in L2 are sufficient to determine the
conditional expectation in L1. We will prove this result in the next subsection.

Exercise 20.3 (Conditional expectation: Positive case). Assuming that the random variable
𝑋 ≥ 0 is positive, but not necessarily integrable, adapt the proof of Theorem 20.2 to
see that it has a positive conditional expectation 𝔼[𝑌 | G] ≥ 0 that is G-measurable
and satisfies the consistency property.

20.1.3 Fundamental theorem of conditional expectation: Proof
Let us prove Theorem 20.2. The approach is straightforward. We simply approximate
an integrable random variable 𝑋 ∈ L1 by a sequence of square-integrable random
variables (𝑋𝑛 : 𝑛 ∈ ℕ) ⊆ L2. The properties of the general conditional expectation are
preserved in the limit.

Existence
Let 𝑋 ∈ L1(Ω,F,ℙ). By decomposing the random variable into its positive and
negative parts (𝑋 = 𝑋+−𝑋− with 𝑋+ ≥ 0 and 𝑋− ≥ 0), we realize that it is sufficient to
construct the conditional expectation of a positive, integrable random variable. (Why?)

Assume that 𝑋 ≥ 0. Define the random variables

𝑋𝑛 (𝜔) := 𝑋 (𝜔) ∧ 𝑛 for all 𝜔 ∈ Ω and for all 𝑛 ∈ ℕ.

Evidently, 𝑋𝑛 is positive, bounded, and F-measurable. Furthermore, 𝑋𝑛 ↑ 𝑋 pointwise.
We may use Theorem 19.4 to construct a conditional expectation 𝑌𝑛 = 𝔼[𝑋𝑛 | G]

for each index 𝑛 ∈ ℕ. Indeed, 𝑋𝑛 is square-integrable because it is bounded. Since
𝑋𝑛 ≥ 0, Proposition 19.13 ensures that 𝑌𝑛 ≥ 0 almost surely. The same proposition
implies that 𝑌𝑛+1 ≥ 𝑌𝑛 almost surely for each 𝑛 ∈ ℕ, so the conditional expectations
are increasing. (Why?)

Now, we may define a candidate 𝑌 for the conditional expectation 𝔼[𝑋 | G]:

𝑌 (𝜔) := lim sup𝑛→∞𝑌𝑛 (𝜔) for each 𝜔 ∈ Ω.
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We must confirm the three properties of conditional expectation, stated in Defini-
tion 20.1.

First, we check that 𝑌 is G-measurable. Each 𝑌𝑛 is an L2 conditional expectation
with respect to G, so 𝑌𝑛 is G-measurable (Proposition 19.8). Therefore, the limit
superior 𝑌 of the sequence remains G-measurable (Proposition 5.7).

Second, we confirm that 𝑌 is integrable. This is an easy consequence of monotone
convergence (Theorem 9.10):

𝔼[𝑌 ] = lim𝑛→∞ 𝔼[𝑌𝑛] = lim𝑛→∞ 𝔼[𝑋𝑛] = 𝔼[𝑋 ] < +∞.

The first limit is valid because (𝑌𝑛 : 𝑛 ∈ ℕ) is an almost-surely increasing sequence of
positive random variables. The second relation follows from the consistency property
of the L2 conditional expectation with G = Ω (Proposition 19.9). The second limit
follows from monotone convergence applied to the sequence (𝑋𝑛 : 𝑛 ∈ ℕ). Finally, we
use the fact that 𝑋 is integrable.

Third, we deduce that 𝑌 satisfies the consistency property. This argument is almost
the same as the last paragraph. Fix an event G ∈ G. Then

𝔼[𝑌 1G] = lim𝑛→∞ 𝔼[𝑌𝑛1G] = lim𝑛→∞ 𝔼[𝑋𝑛1G] = 𝔼[𝑋 1G].

The first limit is a consequence of dominated convergence (Theorem 9.12), with the
dominating random variable 𝑌 . The second relation follows from the consistency
property of L2 conditional expectation (Proposition 19.9). The last limit holds because
of the monotone convergence theorem.

We conclude that 𝑌 = 𝔼[𝑋 | G] is a version of the conditional expectation of the
integrable random variable 𝑋 with respect to the 𝜎 -algebra G.

Uniqueness
Finally, we must verify that conditional expectations are determined up to their
values on negligible sets. Suppose that 𝑌 and 𝑌 ′ are both versions of the conditional
expectation 𝔼[𝑋 | G]. The consistency property requires that

𝔼[(𝑌 −𝑌 ′)1G] = 0 for all events G ∈ G. (20.1)

For the sake of contradiction, assume that ℙ {𝑌 ≠ 𝑌 ′} > 0.
Without loss of generality, we can arrange the two versions so that ℙ {𝑌 > 𝑌 ′} > 0.

Define the events
E𝑛 := {𝑌 > 𝑌 ′ + 𝑛−1} for 𝑛 ∈ ℕ.

Since 𝑌 ,𝑌 ′ are both G-measurable, each event E𝑛 ∈ G. Beyond that, the sequence
(E𝑛 : 𝑛 ∈ ℕ) is increasing, and E𝑛 ↑ {𝑌 > 𝑌 ′}. By the monotone limit property of a
measure (Proposition 2.30),

ℙ(E𝑛) ↑ ℙ {𝑌 > 𝑌 ′} > 0.

For this limit to be valid, there must exist an index 𝑛 ∈ ℕ for which ℙ(E𝑛) > 0.
We now approach the contradiction. For the distinguished index 𝑛, calculate that

𝔼[(𝑌 −𝑌 ′)1E𝑛 ] ≥ 𝑛−1 · ℙ(E𝑛) > 0.

Indeed, on the event E𝑛 , the random variable 𝑌 > 𝑌 ′ + 𝑛−1, and the probability of the
event E𝑛 is strictly positive. Unfortunately, the last display contradicts the consistency
property (20.1) because E𝑛 ∈ G. We must conclude that ℙ {𝑌 ≠ 𝑌 ′} = 0.
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20.2 Conditional expectation mimics an expectation
In this section, we will present a number of basic results which demonstrate that the
conditional expectation behaves much like an ordinary expectation. In this section, we
fix a probability space (Ω,F,ℙ), and let G⊂ Fbe a 𝜎 -algebra on Ω.

20.2.1 Expectation properties
The conditional expectation shares four basic properties with the ordinary expectation.
This result is the analog of Proposition 19.13.

Proposition 20.4 (Conditional expectation: Expectation properties). The conditional expec-
tation is...

1. Unital: 𝔼[1 | G] = 1 almost surely.
2. Positive: If 𝑋 ≥ 0 almost surely, then 𝔼[𝑋 | G] ≥ 0.
3. Linear: If 𝑋 ,𝑌 are integrable and 𝛼, 𝛽 ∈ ℝ, then

𝔼[𝛼𝑋 + 𝛽𝑌 | G] = 𝛼 𝔼[𝑋 | G] + 𝛽 𝔼[𝑌 | G] almost surely.

4. Monotone: In particular, for integrable random variables that satisfy 𝑋 ≤ 𝑌
almost surely, it holds that 𝔼[𝑋 | G] ≤ 𝔼[𝑌 | G] almost surely.

Exercise 20.5 (Conditional expectation: Expectation properties). Prove Proposition 20.4. In
addition, show that the conditional expectation is positive linear: For positive random
variables 𝑋 ,𝑌 ≥ 0 and 𝛼, 𝛽 ≥ 0,

𝔼[𝛼𝑋 + 𝛽𝑌 | G] = 𝛼 𝔼[𝑋 | G] + 𝛽 𝔼[𝑌 | G] almost surely.

20.2.2 Jensen’s inequality
The conditional expectation also satisfies an analog of Jensen’s inequality. This result
is a very powerful tool.

Proposition 20.6 (Conditional expectation: Jensen). Let 𝜑 : U → ℝ be a convex function
on an open interval U ⊆ ℝ. If 𝑋 and 𝜑 (𝑋 ) are both integrable, then

𝔼[𝜑 (𝑋 ) | G] ≥ 𝜑 (𝔼[𝑋 | G]) almost surely.

As compared with Jensen’s inequality for ordinary expectation, the proof is more
involved. It is easy to prove the inequality for a single sample point, but we need to
show that it holds on an almost-sure set of sample points. To do so, we have to piece
together the result from a countable number of almost-sure inequalities. The dual
representation of a convex function allows us to accomplish this task.

Proof. Corollary 9.21 furnishes a countable set E ⊆ ℝ2 for which

𝜑 (𝑦 ) = sup{𝜑 (𝑎) + 𝑔 · (𝑦 − 𝑎) : (𝑎, 𝑔 ) ∈ E} for each 𝑦 ∈ U.

For each pair (𝑎, 𝑔 ) ∈ E, we find that

𝜑 (𝑋 ) ≥ 𝜑 (𝑎) + 𝑔 · (𝑋 − 𝑎).
By monotonicity of conditional expectation (Proposition 20.4),

𝔼[𝜑 (𝑋 ) | G] ≥ 𝜑 (𝑎) + 𝑔 · (𝔼[𝑋 | G] − 𝑎) almost surely.

We may take the countable supremum of the right-hand side without disturbing the
almost sureness of the inequality:

𝔼[𝜑 (𝑋 ) | G] ≥ sup{𝜑 (𝑎) + 𝑔 · (𝔼[𝑋 | G] − 𝑎) : (𝑎, 𝑔 ) ∈ E} = 𝜑 (𝔼[𝑋 | G]).
This is the required result. ■
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20.3 Convergence theorems
Like the ordinary expectation, the conditional expectation interacts well with limits.
In this section, we present the main convergence theorems. These results allow us
to deduce properties of the general conditional expectation from the corresponding
properties of the L2 conditional expectation. As usual, we fix a probability space
(Ω,F,ℙ) and a 𝜎 -algebra G⊆ Fon Ω.

20.3.1 Monotone convergence and Fatou’s lemma
For an increasing sequence of positive random variables, the conditional expectations
also increase to an almost-sure limit.

Theorem 20.7 (Conditional monotone convergence). Consider an increasing sequence
(𝑋𝑛 : 𝑛 ∈ ℕ) of integrable, positive, real random variables with an integrable limit
𝑋 . More precisely, 0 ≤ 𝑋𝑛 ≤ 𝑋𝑛+1 almost surely for each 𝑛 ∈ ℕ, and 𝑋𝑛 → 𝑋
almost surely. Then

𝔼[𝑋𝑛 | G] ↑ 𝔼[𝑋 | G] almost surely.

Proof. For each random variable 𝑋𝑛 , we may extract a version 𝑌𝑛 = 𝔼[𝑋𝑛 | G] of the
conditional expectation. Define

𝑌 (𝜔) := lim sup𝑛→∞𝑌𝑛 (𝜔) for each 𝜔 ∈ Ω.

Then 𝑌 is G-measurable, and 𝑌𝑛 ↑ 𝑌 because of the monotonicity of conditional
expectation (Proposition 20.4). For each event G ∈ G, two applications of the
almost-sure monotone convergence theorem (Exercise 5.25) deliver

𝔼[𝑌 1G] = lim𝑛→∞ 𝔼[𝑌𝑛1G] = lim𝑛→∞ 𝔼[𝑋𝑛1G] = 𝔼[𝑋 1G].

The second relation is the consistency property of the conditional expectation 𝑌𝑛 of
the random variable 𝑋𝑛 . ■

Conditional expectations of positive random variables also satisfy a variant of Fatou’s
lemma. This result is useful because it does not require us to check convergence.

Theorem 20.8 (Conditional Fatou “lemma”). Consider a sequence (𝑋𝑛 : 𝑛 ∈ ℕ) of
integrable, almost surely positive real random variables. That is, 𝑋𝑛 ≥ 0 a.s. Then

lim inf𝑛→∞ 𝔼[𝑋𝑛 | G] ≥ 𝔼[lim inf𝑛→∞ 𝑋𝑛 | G] almost surely.

Exercise 20.9 (Conditional Fatou). Prove Theorem 20.8.

20.3.2 Dominated and bounded convergence
As with ordinary expectation, themost widely used convergence theorem for conditional
expectation is a dominated convergence result.

Theorem 20.10 (Conditional dominated convergence). Consider a sequence (𝑋𝑛 :
𝑛 → ℕ) of integrable, real-valued random variables that converges almost surely:
𝑋𝑛 → 𝑋 . Assume that there is an integrable random variable 𝑌 for which

|𝑋𝑛 | ≤ |𝑌 | almost surely for all 𝑛 ∈ ℕ.
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Then the conditional expectations converge:

𝔼[𝑋𝑛 | G] → 𝔼[𝑋 | G] almost surely.

Exercise 20.11 (Conditional dominated convergence). Prove Theorem 20.10.

Exercise 20.12 (Conditional bounded convergence). Consider a sequence (𝑋𝑛 : 𝑛 ∈ ℕ) of
real random variables that satisfy |𝑋𝑛 | ≤ 𝑅 almost surely for each 𝑛 ∈ ℕ, where 𝑅 ∈ ℝ

is a number. Prove that 𝑋𝑛 → 𝑋 almost surely implies that 𝔼[𝑋𝑛 | G] → 𝔼[𝑋 | G]
almost surely.

20.4 Conditional expectation: Special properties
The conditional expectation has a number of special properties that describe how
particular types of random variables interact with conditioning. These results are
all easy consequences of the definition of conditional expectation or the analogous
statements for the L2 conditional expectation.

Proposition 20.13 (Conditional expectation: Special properties). Fix a probability space
(Ω,F,ℙ), and let G⊆ Fbe a 𝜎 -algebra on Ω. Let 𝑋 ∈ L1(Ω,F,ℙ) be an integrable
random variable.

1. Expectations: If 𝑌 = 𝔼[𝑋 | G], then 𝔼[𝑌 ] = 𝔼[𝑋 ].
2. Full knowledge: If 𝑋 is G-measurable, then 𝔼[𝑋 | G] = 𝑋 almost surely.
3. Independence: If 𝜎 (𝑋 ) is independent from G, then 𝔼[𝑋 | G] = 𝔼[𝑋 ] almost

surely.
4. Pull-through: If 𝑍 ∈ L∞(Ω, G,ℙ) is a.s. bounded and G-measurable, then

𝔼[𝑋 𝑍 | G] = 𝔼[𝑋 | G] · 𝑍 almost surely.

5. Tower: If G⊆ H ⊆ F, then

𝔼[𝔼[𝑋 | H] | G] = 𝔼[𝑋 | G] almost surely.

Proof. Expectations: This is a consequence of the consistency property in Definition 20.1
for the certain event G = Ω.

Full knowledge: This is an immediate outcome of Definition 20.1. Indeed, 𝑋 is
assumed to be G-measurable and integrable, and it is clear that the consistency property
holds.

Independence: We can establish this result using approximation by square-integrable
random variables. Let 𝑋𝑛 := (𝑋 ∧ 𝑛) ∨ (−𝑛) for each index 𝑛 ∈ ℕ. Clearly, 𝜎 (𝑋𝑛)
is still independent from G, and 𝑋𝑛 is square-integrable. Proposition 19.16 implies
that 𝔼[𝑋𝑛 | G] = 𝔼[𝑋𝑛] for each index 𝑛. We may apply conditional dominated
convergence (Theorem 20.10) with 𝑋 as the dominating random variable.

Pull-through: In the same way, the pull-through property follows from Proposi-
tion 19.10 using approximation. You should work through the steps of the argument.

Tower: This is just a matter of confirming that the left-hand side satisfies the
properties that Definition 20.1 requires of a version of 𝔼[𝑋 | G]. You should write out
the details. ■

Exercise 20.14 (Pull-through law). The pull-through law holds under most reasonable
integrability assumptions. For example, you can show that 𝔼[𝑋 𝑍 | G] = 𝔼[𝑋 | G] · 𝑍
when 𝑋 , 𝑍 ∈ L2 and 𝑍 is G-measurable.
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20.5 Conditional expectation in elementary probability
You are already familiar with several types of conditional expectation that arise in
elementary probability. It is not immediately obvious how the elementary results are
related to Kolmogorov’s definition. In this section, we set this matter to rest by showing
that everything is a special case of Definition 20.1. But the general construction
also applies to many examples that fall outside the scope of elementary conditional
expectation, such as conditioning a discrete random variable on a continuous random
variable.

20.5.1 Conditioning on an event
Let 𝑋 ∈ L1(Ω,F,ℙ) be an integrable random variable, and let E ∈ F be an event.
with 0 < ℙ(E) < 1. The conditional expectation of 𝑋 , given that E has occurred, is
defined as

𝔼[𝑋 | E occurs] := 𝔼[𝑋 1E]
ℙ(E) .

In other words, we compute the average value of 𝑋 over the event E. The result is a
number, not a random variable, because we assume that E occurs.

We have already seen a closely related result in Section 19.2.4. For a square-
integrable random variable 𝑋 ∈ L2, we calculated that

𝔼[𝑋 | 𝜎 (E)] (𝜔) =
{
𝔼[𝑋 1E]/ℙ(E), 𝜔 ∈ E;
𝔼[𝑋 1Ec]/ℙ(Ec), 𝜔 ∉ E.

Using an approximation argument (or working directly from Definition 20.1), we see
that the same formula is valid for an integrable random variable 𝑋 ∈ L1.

The elementary notion of conditional expectation, given that the event E occurs,
simply isolates the value of 𝔼[𝑋 | 𝜎 (E)] (𝜔) on the sample points 𝜔 ∈ E.

20.5.2 Conditioning on a discrete random variable
Next, we turn to the problem of conditioning a discrete random variable 𝑋 ∈
L1(Ω,F,ℙ) on the value of another discrete random variable 𝑍 . The classical definition
states that

𝔼[𝑋 | 𝑍 = 𝑧] =
𝔼[𝑋 1{𝑍=𝑧 }]
ℙ {𝑍 = 𝑧} for 𝑧 ∈ range(𝑍 ).

Since 𝑍 is discrete, ℙ {𝑍 = 𝑧} > 0 for each value 𝑧 ∈ range(𝑍 ). This definition
induces a random variable

𝔼[𝑋 | 𝑍 ] (𝜔) := 𝔼[𝑋 | 𝑍 = 𝑧𝜔] where 𝑧𝜔 := 𝑍 (𝜔).

That is, the conditional expectation is a random variable whose value determined once
the value 𝑍 (𝜔) is provided.

As with conditioning on an event, there is no difficulty in making the connection
with the Kolmogorov definition. Consider the conditional expectation 𝑌 = 𝔼[𝑋 | 𝑍 ] =
𝔼[𝑋 | 𝜎 (𝑍 )]. The random variable 𝑌 is 𝜎 (𝑍 )-measurable. Thus, 𝑌 must take a
constant value, say 𝑦 (𝑧), on each event {𝜔 : 𝑍 (𝜔) = 𝑧} where 𝑧 ∈ range(𝑍 ). To
determine the value 𝑦 (𝑧), we use consistency:

𝔼[𝑋 1{𝑍=𝑧 }] = 𝔼[𝑌 1{𝑍=𝑧 }] = 𝑦 (𝑧) · ℙ {𝑍 = 𝑧} .
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Since ℙ {𝑍 = 𝑧} > 0 for each 𝑧 ∈ range(𝑍 ), we have

𝑌 (𝜔) =
𝔼[𝑋 1{𝑍=𝑧 }]
ℙ {𝑍 = 𝑧} where 𝑧 = 𝑍 (𝜔).

This is exactly the same as the classical definition.

20.5.3 Conditioning on a continuous random variable
Conditioning on a continuous random variable is more delicate because there is zero
probability that a continuous random variable takes any particular value. In classical
probability, this issue is addressed by passing to density functions. We will see that
Kolmogorov’s definition leads to the same result.

Suppose that (𝑋 , 𝑍 ) is a jointly continuous pair of real random variables with joint
density function 𝑓𝑋 ,𝑍 . That is,

ℙ {(𝑋 , 𝑍 ) ∈ B} =
∫
B
𝑓𝑋 ,𝑍 (𝑥, 𝑧) d𝑥 d𝑧 for B ∈ B(ℝ2).

Keep in mind that an unadorned differential (such as d𝑦 ) means integration with
respect to the Lebesgue measure (on the 𝑦 -coordinate).

Introduce the marginal density 𝑓𝑍 of 𝑍 and the conditional density 𝑓𝑋 | 𝑍 :

𝑓𝑍 (𝑧) :=
∫
ℝ

𝑓𝑋 ,𝑍 (𝑥, 𝑧) d𝑥 and 𝑓𝑋 | 𝑍 (𝑥 | 𝑧) := 𝑓𝑋 ,𝑍 (𝑥, 𝑧)
𝑓𝑍 (𝑧)

.

Consider a Borel measurable function ℎ : ℝ → ℝ where ℎ (𝑋 ) is integrable. The
classical definition of the conditional expectation is

𝔼[ℎ (𝑋 ) | 𝑍 = 𝑧] =
∫
ℝ

ℎ (𝑥) 𝑓𝑋 | 𝑍 (𝑥 | 𝑧) d𝑧.

In other words, we simply compute the expectation with respect to the conditional
distribution of 𝑋 , given 𝑍 .

We need to verify that the Kolmogorov definition yields the same formulation of
the conditional expectation. First, define the function

𝑔 (𝑧) :=
∫
ℝ

ℎ (𝑥) 𝑓𝑋 | 𝑍 (𝑥 | 𝑧) d𝑥 =
1

𝑓𝑍 (𝑧)

∫
ℝ

ℎ (𝑥) 𝑓𝑋 ,𝑍 (𝑥, 𝑧) d𝑥 for 𝑧 ∈ ℝ

In case 𝑓𝑍 (𝑧) = 0, we set 𝑔 (𝑧) = 0. We claim that 𝑔 (𝑍 ) is a version of the conditional
expectation 𝔼[ℎ (𝑋 ) | 𝜎 (𝑍 )].

To check this statement, we first note that 𝑔 (𝑍 ) is measurable with respect to
𝜎 (𝑍 ). To check consistency, observe that 𝜎 (𝑍 ) is generated by events of the form
{𝑍 ∈ B} for a Borel set B ∈ B(ℝ). We may calculate that

𝔼[ℎ (𝑋 )1{𝑍 ∈B}] =
∫
ℝ2
ℎ (𝑥)1B(𝑧) 𝑓𝑋 ,𝑍 (𝑥, 𝑧) d𝑥 d𝑧

=

∫
ℝ

1B(𝑧)
(∫

ℝ

ℎ (𝑥) 𝑓𝑋 ,𝑍 (𝑥, 𝑧) d𝑥
)
d𝑧

=

∫
ℝ

1B(𝑧)𝑔 (𝑧) · 𝑓𝑍 (𝑧) d𝑧 = 𝔼[𝑔 (𝑍 )1{𝑍 ∈B}].

We have used the (multivariate) law of the unconscious statistician (9.6) in the first
and last relations. The second step is Fubini–Tonelli (Theorem 6.23, which is justified
when ℎ (𝑋 ) is integrable). To pass to the third step, we recognize the function 𝑔 (𝑧).
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Aside: The argument requires one more step, which is technical. So far, we
have only checked consistency of ℎ (𝑋 ) and 𝑔 (𝑍 ) on events of the form 𝑍 −1(B)
where B ∈ B(ℝ). The definition of conditional expectation requires us to check
consistency on every event in 𝜎 (𝑍 ). To do so, introduce the finite (signed)
measures

𝜇(E) :=
∫
E
ℎ (𝑋 ) dℙ and 𝜈 (E) :=

∫
E
𝑔 (𝑍 ) dℙ.

These signed measures agree on all events of the form E = 𝑍 −1(B). This class
of events is intersection stable. Therefore, the two measures must agree on the
𝜎 -algebra generated these events, namely 𝜎 (𝑍 ). This point ultimately follows
from Theorem E.4. You should work out the details.

20.6 *Regular conditional distributions
Intuitively, we might like to regard a conditional expectation as the integral with
respect to a conditional probability measure. In many (but not all) cases of interest,
this interpretation is possible. This section gives a short introduction to this extremely
technical subject. As usual, we fix a probability space (Ω,F,ℙ) and let G⊆ Fbe a
𝜎 -algebra on Ω.

20.6.1 Conditional probability
First, we remark that conditional expectation induces a notion of conditional probability
if we restrict our attention to indicator functions.

Definition 20.15 (Conditional probability). The conditional probability ℙ(E | G) of an
event E ∈ F, given the 𝜎 -algebra G, is defined to be a version of the conditional
expectation 𝔼[1E | G].

The conditional probability is a random variable, not a number. This construction
is consistent with the elementary notions of conditional probability if G= 𝜎 (A) for an
event A ∈ For if G= 𝜎 (𝑍 ) for a random variable 𝑍 .

In very simple cases (e.g., when Ω has finite cardinality), we can argue directly that
the conditional probability ℙ(· | G) (𝜔) defines a measure on the 𝜎 -algebra Fof events
for each sample point 𝜔 ∈ Ω. In more general settings, however, we cannot deduce
that the conditional probability defines a probability measure. Indeed, it may not be
clear how to stitch all of the conditional expectations together in a consistent way.

20.6.2 Conditional probability distributions
We are deeply interested in the case where conditioning results in a family of probability
distributions on the master 𝜎 -algebra of events. The following definition captures the
desired properties.

Definition 20.16 (Regular conditional distribution). We say that G induces a regular
conditional distribution when there is a function

(E, 𝜔) ↦→ ℙ(E | G) (𝜔) mapping F× Ω → [0, 1]

with two properties:

1. Conditional: For each E ∈ F, the function 𝜔 ↦→ ℙ(E | G) (𝜔) is a version of
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the conditional probability ℙ(E | G).
2. Distribution: On a ℙ|G almost-sure set of sample points 𝜔 ∈ Ω, the map
E ↦→ ℙ(E | G) (𝜔) is a probability measure on F.

We interpret the conditional distributionℙ(· | G) as a new distribution of probability
on events, updated based on the information encapsulated in the 𝜎 -algebra G.

More rigorously, ℙ(· | G) can be regarded as a random measure. It is a function from
the sample space Ω into the class of probability measures. When Tyche designates
a sample point 𝜔0, it determines whether each event in Goccurs. At this stage, the
function E ↦→ ℙ(E | G) is fixed for each event E ∈ F. There is a 100% chance that the
result is a probability measure on F.

Example 20.17 (Conditional distribution: Event). Consider the 𝜎 -algebra G= 𝜎 (A) gener-
ated by an event A ∈ Fwith 0 < ℙ(A) < 1. It induces the conditional distribution

ℙ(E | 𝜎 (A)) (𝜔) =
{
ℙ(E | A), 𝜔 ∈ A;
ℙ(E | Ac), 𝜔 ∉ A.

This formula is valid for all E ∈ Fand all 𝜔 ∈ Ω. In words, the conditional distribution
models the proportion of the probability of event E attributable to A occurring or not
occurring. ■

Example 20.18 (Conditional distribution: Discrete random variable). Consider the 𝜎 -algebra
G = 𝜎 (𝑍 ) generated by a discrete random variable 𝑍 . For each event E ∈ F and
sample point 𝜔 ∈ Ω, the conditional distribution assigns the probability

ℙ(E | 𝜎 (𝑍 )) (𝜔) = ℙ(E | 𝑍 = 𝑧𝜔) where 𝑧𝜔 = 𝑍 (𝜔).

The conditional distribution models the proportion of the probability of event E
attributable to each value of 𝑍 . ■

When a conditional distribution exists, then we can calculate the conditional
expectation of an integrable random variable 𝑋 via the expression

𝔼[𝑋 | G] (𝜔) =
∫
Ω
𝑋 (𝑠 ) ℙ(d𝑠 | G) (𝜔) almost surely.

That is, for almost all sample points 𝜔, the conditional expectation of 𝑋 is determined
as the expectation of 𝑋 with respect to the probability measure ℙ(· | G) (𝜔).

20.6.3 Conditional law of a random variable
In the same way that a random variable has a law, we can investigate when it has a
conditional law.

Definition 20.19 (Regular conditional distribution: Random variable). Let 𝑋 be a real
random variable on the probability space. A regular conditional distribution of 𝑋 ,
given G, is a function

𝜇𝑋 | G : B(ℝ) × Ω → [0, 1]
with two properties:

1. Conditional: For each Borel set B ∈ B(ℝ), the function 𝜔 ↦→ 𝜇𝑋 | G(B | 𝜔) is
a version of the conditional distribution ℙ(𝑋 −1(B) | G).
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2. Distribution: For a ℙ|G almost-sure set of sample points 𝜔 ∈ Ω, the function
B ↦→ 𝜇𝑋 | G(B | 𝜔) is a probability measure on the Borel sets in ℝ.

We interpret the conditional law 𝜇𝑋 | G as a new distribution over the outcomes
of the random variable 𝑋 , updated based on the information encapsulated in the
𝜎 -algebra G.

That is, 𝜇𝑋 | G can be regarded as a random Borel measure on the real line. Once
a sample point 𝜔0 ∈ Ω is chosen, the function B ↦→ 𝜇𝑋 | G(B) is determined for each
Borel set B ∈ B(ℝ). This function is almost surely a Borel probability measure on ℝ,
and it agrees with ℙ {𝑋 ∈ B | G} almost surely.

Example 20.20 (Conditional law: Event). Consider the 𝜎 -algebra G= 𝜎 (A) generated by
an event A ∈ Fwith probability 0 < ℙ(A) < 1. The real random variable 𝑋 has the
conditional law

𝜇𝑋 | 𝜎 (A) (B | 𝜔) =
{
ℙ({𝑋 ∈ B} | A), 𝜔 ∈ A;
ℙ({𝑋 ∈ B} | Ac), 𝜔 ∉ A.

This formula is valid for each Borel set B ∈ B(ℝ) and each 𝜔 ∈ Ω. Once we know
whether or not A occurs, the conditional law of 𝑋 is determined. For example, the
probability that E := {𝑋 ∈ B} ∈ Foccurs given that A occurs is the proportion of the
probability in E that is attributable to A. ■

Example 20.21 (Conditional law: Discrete random variable). Consider the 𝜎 -algebra G =

𝜎 (𝑍 ) generated by a discrete random variable 𝑍 . The real random variable 𝑋 has the
conditional law

𝜇𝑋 | 𝜎 (𝑍 ) (B | 𝜔) = ℙ({𝑋 ∈ B} | {𝑍 = 𝑧𝜔 }) where 𝑧𝜔 = 𝑍 (𝜔).

This formula is valid for each Borel set B ∈ B(ℝ) and each 𝜔 ∈ Ω. Once we
know the value of 𝑍 , the conditional law of 𝑋 is determined. The probability that
E = {𝑋 ∈ B} ∈ Foccurs given A = {𝑍 = 𝑧𝜔 } occurs is the proportion of the probability
in E that is attributable to A. ■

When a regular conditional law exists, we have a conditional version of the law of
the unconscious statistician:

𝔼[ℎ (𝑋 ) | G] (𝜔) =
∫
ℝ

ℎ (𝑥) 𝜇𝑋 | G(d𝑥 | 𝜔) almost surely.

This formula is valid when the function ℎ is integrable with respect to the conditional
law for all sample points 𝜔 ∈ Ω. For instance, it suffices that ℎ : ℝ → ℝ is bounded
and measurable.

Example 20.22 (Conditional law: Jointly continuous random variables). We can reinterpret
the discussion from Section 20.5.3 to identify conditional laws in case (𝑋 , 𝑍 ) is jointly
continuous with a strictly positive density 𝑓𝑋 𝑍 > 0. In this case, we obtain the
conditional law of 𝑋 given 𝑍 by integrating the conditional density 𝑓𝑋 | 𝑍 over Borel
sets. Indeed,

𝜇𝑋 | 𝜎 (𝑍 ) (B | 𝜔) =
∫
B
𝑓𝑋 | 𝑍 (𝑥 | 𝑍 (𝜔)) d𝑥.

This formula is valid for each Borel set B ∈ B(ℝ) and each sample point 𝜔 ∈ Ω.
More generally, the conditional law of the unconscious statistician reads

𝔼[ℎ (𝑋 ) | 𝑍 ] (𝜔) =
∫
ℝ

ℎ (𝑥) 𝑓𝑋 | 𝑍 (𝑥 | 𝑍 (𝜔)) d𝑥.
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This formula holds for all bounded, measurable ℎ : ℝ → ℝ. At least for jointly
continuous distributions, it is a valid intuition that conditional expectation derives from
an integral. ■

20.6.4 Disintegration
When a regular conditional distribution exists, we can also factorize the total expectation
into a product of the marginal distribution and the conditional distribution. Moreover,
we have a conditional variant of the Fubini–Tonelli theorem. Let us state following
result without proof, even though it is not especially hard.

Theorem 20.23 (Disintegration). Fix a probability space (Ω,F,ℙ), and let G ⊆ F

be a 𝜎 -algebra on Ω. Suppose that the real random variable 𝑋 admits a regular
conditional law 𝜇𝑋 | G, and let 𝑍 be a G-measurable real random variable. For each
function ℎ : ℝ2 → ℝ with 𝔼 |ℎ (𝑋 , 𝑍 ) | < +∞,

𝔼[ℎ (𝑋 , 𝑍 ) | G] =
∫
ℝ

ℎ (𝑥, 𝑍 ) 𝜇𝑋 | G(d𝑥) almost surely.

In particular, the right-hand integral produces a G-measurable random variable.

We can also take the expectation of the disintegration formula to obtain the
promised extension of Fubini–Tonelli:

𝔼[ℎ (𝑋 , 𝑍 )] = 𝔼

[∫
ℝ

ℎ (𝑥, 𝑍 ) 𝜇𝑋 | G(d𝑥)
]
. (20.2)

In other words, we may compute the total expectation in two steps by first integrating
with respect to the conditional law and then averaging over the residual randomness
in the G-measurable variable 𝑍 . The formula (20.2) is often called the law of total
expectation. It generalizes several elementary results of the same name.

Consider the special case where G= 𝜎 (𝑍 ). It can be shown that the conditional
law is given by a probability kernel:

𝜇𝑋 | 𝑍 = 𝐾 (·, 𝑍 ) almost surely.

In other words, the conditional law is a probability measure 𝐾 (·, 𝑍 ) that is essentially
determined by the value of 𝑍 . Then we can simplify the disintegration formula to read

𝔼[ℎ (𝑋 , 𝑍 ) | 𝑍 ] =
∫
ℝ

ℎ (𝑥, 𝑍 ) 𝐾 (d𝑥, 𝑍 ) almost surely.

Taking the expectation,

𝔼[ℎ (𝑋 , 𝑍 )] =
∫
ℝ

[∫
ℝ

ℎ (𝑥, 𝑧) 𝐾 (d𝑥, 𝑧)
]
𝜇𝑍 (d𝑧),

where 𝜇𝑍 is the marginal law of 𝑍 . As above, we average with respect to the conditional
law, and then we average over the residual randomness in 𝑍 . These rules are frequently
used in the study of Markov chains.

20.6.5 Existence and uniqueness
The existence and uniqueness of regular conditional probability distributions is a
delicate matter. Unlike many results in measure theory, it requires topological assump-
tions on the range of the random variable. Fortunately, for real random variables, no
problems arise. The following theorem (also presented without proof) addresses this
case.



Lecture 20: Conditional Expectation in L1 309

Theorem 20.24 (Conditional distributions). Consider a probability space (Ω,F,ℙ),
and let G ⊆ Fbe a 𝜎 -algebra on Ω. Let 𝑋 : Ω → ℝ be a real random variable.
Then a regular conditional distribution 𝜇𝑋 | G exists. If 𝜈 is another version of the
conditional distribution of 𝑋 | G, then 𝜈 (· | 𝜔) = 𝜇𝑋 | G(· | 𝜔) on a ℙ|G almost-sure
set of sample points.

Problems
Exercise 20.25 (Pavlov). In this exercise, we will explore some basic examples of
conditional expectation. Fix a probability space (Ω,F,ℙ). Assume that 𝑋 , 𝑍 ∈ L1.

1. Let G= {∅,Ω}. What is 𝔼[𝑋 | G]?
2. Let G= F. What is 𝔼[𝑋 | G]?
3. Let A ∈ F, and set G= 𝜎 ({A}). What is 𝔼[𝑋 | G]?
4. Suppose that 𝑋 , 𝑍 are independent. What is 𝔼[𝑋 | 𝑍 ]?
5. Suppose that 𝑋 = 𝑔 (𝑍 ) ∈ L1 for Borel measurable 𝑔 : ℝ → ℝ. What is

𝔼[𝑋 | 𝑍 ]?
6. Assume that 𝑋 is a discrete random variable that takes values in ℤ. Consider the

random variable 𝑌 = |𝑋 |. Compute the conditional expectation 𝔼[𝑋 |𝑌 ].
7. Repeat the last part, now assuming that 𝑋 is a continuous random variable taking

values in ℝ.

Exercise 20.26 (Coarse graining). Consider the universal probability space ((0, 1],B(0, 1], 𝜆).
For 𝑛 ∈ ℤ+, let G𝑛 := 𝜎 ({(𝑖2−𝑛 , (𝑖 + 1)2−𝑛] : 0 ≤ 𝑖 < 2𝑛 and 𝑖 ∈ ℤ}) be the 𝜎 -
algebras generated by dyadic half-open intervals.

1. For an integrable random variable 𝑋 : (0, 1] → ℝ, compute 𝑌𝑛 = 𝔼[𝑋 | G𝑛] for
each 𝑛 ∈ ℕ.

2. Relate 𝑌𝑛 and 𝑌𝑛+1. Hint: Use the tower rule.
3. For a particular random variable, say 𝑋 (𝜔) = sin(2𝜋𝜔), illustrate 𝑋 and
𝑌0,𝑌1,𝑌2,𝑌3.

Exercise 20.27 (Memories). We say that a positive random variable 𝑋 is memoryless when

ℙ {𝑋 > 𝑡 + 𝑟 | 𝑋 > 𝑡 } = ℙ {𝑋 > 𝑟 } for all 𝑡 , 𝑟 ≥ 0.

To interpret this expression, we interpret 𝑋 as the lifetime (say, of an electronic
component), and we introduce the survival function 𝑆 (𝑡 ) := ℙ {𝑋 > 𝑡 } for 𝑡 ≥ 0. The
memoryless property states that the probability of surviving for 𝑟 seconds more does
not depend on how long the component has already lasted.

1. Reinterpret the memoryless property as a functional equation for the survival
function:

𝑆 (𝑡 + 𝑟 ) = 𝑆 (𝑡 ) · 𝑆 (𝑟 ) for all 𝑡 , 𝑟 ≥ 0.

2. Assume that 𝑋 is a discrete random variable, taking values in ℕ. What are the
possible distributions for 𝑋 ? Hint: Consider 𝑟 = 1.

3. Assume that 𝑋 is an (absolutely) continuous random variable, taking values in
ℝ+. What are the possible distributions for 𝑋 ? Hint: Derive an ODE by taking
𝑟 ↓ 0.



Lecture 20: Conditional Expectation in L1 310

Applications
Application 20.28 (Bayesian estimation). Bayesian statistics is based on the idea that we
should encode our beliefs about the world using a probability distribution, which we
should update as we acquire more information. In this application, we explore some
basic facts about Bayes’s rule and estimation.

1. Let E, F be events where ℙ(F) > 0. Use elementary conditioning to confirm
Bayes’s rule:

ℙ(E | F) = ℙ(F | E) · ℙ(E)
ℙ(F) .

2. Suppose that (𝑋 ,𝑌 ) is a jointly continuous pair of real random variables whose
joint density 𝑓𝑋𝑌 is strictly positive. Let 𝑓𝑋 and 𝑓𝑌 be the marginal densities. Let
𝑓𝑋 | 𝑌 and 𝑓𝑌 | 𝑋 be the conditional densities. From the definition of a conditional
density, establish Bayes’s rule:

𝑓𝑋 | 𝑌 (𝑥 | 𝑦 ) =
𝑓𝑌 | 𝑋 (𝑦 | 𝑥) 𝑓𝑋 (𝑥)

𝑓𝑌 (𝑦 )
for all 𝑥, 𝑦 ∈ ℝ.

Similar rules are valid in more general settings, e.g., when 𝑋 is continuous and
𝑌 is discrete.

3. Suppose that (𝑋 ,𝑌 , 𝑍 ) is a jointly continuous triple of real random variables
whose joint density 𝑓𝑋𝑌 𝑍 > 0. Show that conditioning is recursive:

𝑓 (𝑋 | 𝑌 ) | 𝑍 (𝑥, 𝑦 , 𝑧) = 𝑓𝑋 | (𝑌 ,𝑍 ) (𝑥, 𝑦 , 𝑧) for all 𝑥, 𝑦 , 𝑧 ∈ ℝ.

Observe that this formula implements the tower law. Similar rules are valid in
more general settings.

4. (Succession). Imagine that we can perform repeated trials of a binary experiment
(success/failure), resulting in outcomes (𝑋1, 𝑋2, 𝑋3, . . . ). Assume the outcomes
(𝑋𝑖 ) are independent bernoulli(𝑃 ) random variables, conditional on the
unknown success probability 𝑃 . Lacking further information, we might frame
the “prior” model 𝑃 ∼ uniform[0, 1]. Now, suppose that we witness 𝑠 successes
and 𝑛− 𝑠 failures in the first 𝑛 trials. Use Bayes’s rule to show that the “posterior”
probability distribution for 𝑃 is

(𝑃 | 𝑋1 + · · · + 𝑋𝑛 = 𝑠 ) ∼ beta(𝑠 + 1, 𝑛 − 𝑠 + 1).

Confirm that the expected probability of success in the (𝑛 + 1)th trial is

𝔼[𝑃 | 𝑋1 + · · · + 𝑋𝑛 = 𝑠 ] = ℙ {𝑋𝑛+1 = 1 | 𝑋1 + · · · + 𝑋𝑛 = 𝑠 } = 𝑠 + 1
𝑛 + 2

.

Hint: Given 𝑃 , what is the distribution of 𝑋1 + · · · + 𝑋𝑛?
5. (Sunrise). As an impractical application, the mathematical astronomer Laplace

observed that the sun has risen every morning for all of biblical history, which
amounts to 5784 years at the time of writing. Compute the posterior probability
that the sun will rise again tomorrow, assuming exactly 5784 years of 365.25
days. (*) Identify and explain the fallacy in this computation.

6. (Counts). Imagine that we can perform repeated trials of an experiment that
results in counts (𝑁1, 𝑁2, 𝑁3, . . . ). Assume the outcomes (𝑁𝑖 ) are independent
poisson(𝐵) random variables, conditional on the unknown mean 𝐵 . Lacking
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further information, we model 𝐵 ∼ exponential(𝑏) for a (fixed) prior mean
𝔼[𝐵] = 𝑏 > 0. Confirm that the posterior expectation of 𝐵 satisfies

𝔼[𝐵 |𝑁1 +𝑁2 + · · · +𝑁𝑘 = 𝑚] = 𝑚 + 1
𝑘 + 1/𝑏 =

𝑏 (𝑚 + 1)
𝑏𝑘 + 1

.

This is our best guess for the mean of the counts, given the observations. Hint:
Given 𝐵 , what is the distribution of 𝑁1 + · · · +𝑁𝑘? Recall that Poisson random
variables are stable.

7. (Prussians). It is dangerous to be a Prussian cavalryman. For example, you might
get kicked to death by your horse. Contemplating this possibility, one might
imagine that 1 soldier per corp per year suffers this tragic fate. For a period of
years, beginning in 1875, the actual total number of deaths in 14 full corps were

[1875] 3, 5, 7, 9, 10, 18, 6, 14, 11, 9, 5, 11, 15, 6, 11, 17, 12, 15, 8, 4 [1894].

Use the Bayesian count estimator to obtain a sequence of posterior estimates for
the mean number of deaths per corp per year (for the observations prior to each
year). Discuss.

Notes
The treatment of conditional expectation in L1 is adapted from Williams [Wil91,
Chap. 9]. For more information about regular conditional distributions, refer to
Pollard [Pol02, Chap. 5] or Dudley [Dud02, Chap. 10]. See Kallenberg [Kal02, pp. 107–
108] for the proofs of the disintegration theorem (Theorem 20.23) and the existence of
conditional laws for real random variables (Theorem 20.24).
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21. Gaussians and Conditioning

Agenda:
1. Gaussian random variables
2. Characteristic functions
3. Characterization of

distributions
4. Independence and

conditioning

“Pauca sed matura. Few but ripe.”

—Motto of Karl Friedrich Gauss

In this lecture, we make a deeper investigation of the properties of univariate and
multivariate normal distributions. These random variables are the most fundamental
ones of all, and they enjoy some truly remarkable properties. Our primary goal in this
lecture is to show that, for normal random variables, conditional expectation reduces to
linear least-squares. This incredible fact motivates many of the applications of normal
random variables in statistics, machine learning, and applied mathematics. Along the
way, we will introduce the idea of a characteristic function, which is an elegant tool for
working with multivariate distributions.

21.1 Normal random variables
To begin, we recall the definitions of univariate and multivariate normal random
variables, as well as some basic results about them.

21.1.1 Univariate normal distributions
In the central limit theorem, we encountered the standard normal distribution as the
limiting distribution of a standardized sum of i.i.d. random variables in L2. This is the
single most important distribution in probability theory. In this section, we introduce
the class of all normal distributions on the real line and discuss some of its properties.

Definition 21.1 (Standard normal distribution). The standard normal distribution 𝛾 is a
Borel probability measure on the real line defined by

Recall that 𝜆 is the Lebesgue measure
on ℝ.

𝛾 (B) :=
∫
B

e−𝑧
2/2

√
2𝜋

𝜆(d𝑧) for all Borel B ∈ B(ℝ).

A real random variable 𝑍 with law 𝛾 is called a standard normal random variable.
The distribution function has special notation that is widely used:

Φ(𝑎) := 𝐹𝑍 (𝑎) = 𝛾 (−∞, 𝑎] =
∫ 𝑎

−∞

e−𝑧
2/2

√
2𝜋

𝜆(d𝑧) for all 𝑎 ∈ ℝ.

We sometimes write 𝜑 (𝑧) := (2𝜋)−1/2e−𝑧2/2 for 𝑧 ∈ ℝ to denote the density of a
standard normal random variable; this notation is not universal.

We obtain the class of univariate standard normal random variables by affine
transformations of a real standard normal random variable.
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Definition 21.2 (Normal random variable). Let 𝑍 be a standard normal random variable.
For 𝑚,𝜎 ∈ ℝ, we say that the random variable 𝑋 = 𝑚 + 𝜎𝑍 follows a normal
distribution It is very common to refer to normal

distributions as Gaussian distributions.
with mean𝑚 and variance 𝜎2, and we write 𝑋 ∼ normal(𝑚,𝜎2).

You should confirm that the mean and variance in Definition 21.2 are correct. By a
change of variables argument, we quickly identify the law of a normal random variable.

Exercise 21.3 (Normal distribution). Let 𝑋 ∼ normal(𝑚,𝜎2) where 𝜎 > 0. Verify that
the law 𝜇𝑋 of 𝑋 takes the form

𝜇𝑋 (B) =
∫
B

e−(𝑥−𝑚 )2/(2𝜎2 )
√
2𝜋𝜎2

𝜆(d𝑥).

It is important to allow the case 𝜎 = 0. What is the distribution then?

Observe that there is a one-to-one correspondence between univariate normal
distributions and pairs (𝑚,𝜎) with𝑚 ∈ ℝ and 𝜎 ≥ 0.

21.1.2 Univariate normal distribution: Properties
This section contains several exercises that describe fundamental properties of normal
random variables on the real line.

Problem 21.4 (Normal distribution: Density). Confirm that the standard normal law 𝛾 is a
probability density by showing that𝛾 (ℝ) = 1. Hint: You can argue that (𝛾×𝛾 ) (ℝ2) = 1
by computing the integral in polar coordinates.

Exercise 21.5 (Normal distribution: Approximate identity). Consider a real standard normal
random variable 𝑍 . For a parameter 𝜎 ≥ 0, show that

𝔼[ℎ (𝑎 + 𝜎𝑍 )] =
∫
ℝ

ℎ (𝑎 + 𝑧) · e
−𝑧2/(2𝜎2 )
√
2𝜋𝜎2

𝜆(d𝑧) → ℎ (𝑎) as 𝜎 → 0,

for all bounded, continuous ℎ : ℝ → ℝ and for each 𝑎 ∈ ℝ. Reinterpret this statement
as a weak limit 𝜎𝑍 ⇝ 0 when 𝜎 → 0. Express the result as a limit of probability
measures.

Exercise 21.6 (Gaussian integration by parts). Let 𝑍 be a real standard normal variable
variable. Suppose that ℎ : ℝ → ℝ is a continuously differentiable function whose
derivative is bounded. Verify that

𝔼[𝑍ℎ (𝑍 )] = 𝔼[ℎ′ (𝑍 )]. (21.1)

Hint: This is just the integration by parts rule from calculus. (*) Conversely, show that a
random variable 𝑍 that satisfies (21.1) must follow a standard normal distribution.

Exercise 21.7 (Normal distribution: Moments). Let 𝑍 be a standard normal random variable.
For each natural number 𝑝 ∈ ℕ, prove that

𝔼[𝑍 2𝑝−1] = 0 and 𝔼[𝑍 2𝑝 ] = (2𝑝 − 1)!!. (21.2)

Recall that (2𝑝 −1)!! := (2𝑝 −1) (2𝑝 −3) (2𝑝 −5) · · · 3 ·1. Hint: For the odd moments,
notice that the normal density is an odd function. For the even moments, use Gaussian
integration by parts (Exercise 21.6) recursively.

Exercise 21.8 (Normal distribution: Tail bounds). Let 𝑍 be a real standard normal random
variable.



Lecture 21: Gaussians and Conditioning 314

1. For 𝑡 ≥ 0, show that ℙ {𝑍 ≥ 𝑡 } ≤ 1
2e

−𝑡 2/2.
2. For 𝑡 > 0, show that ℙ {𝑍 ≥ 𝑡 } ≤ (2𝜋𝑡 2)−1/2e−𝑡 2/2.

Hint: First the first part, find the maximum difference between left- and right-hand
sides by global optimization of the resulting differentiable function. For the second
part, introduce an extra factor into the integral that defines the tail probability.

21.1.3 Multivariate normal distributions
Now, we expand our scope to include multivariate normal distributions on ℝ𝑛 . As in
the univariate case, we begin with the fundamental example: an independent family
of independent, real standard normal random variables.

Exercise 21.9 (Multivariate standard normal distribution). Consider an independent family
(𝑍1, . . . , 𝑍𝑛) of real, standard normal random variables. Show that the joint distribution
has law In the integral, the variable 𝒛 ∈ ℝ𝑛 ,

and ∥ · ∥2 is the Euclidean norm on
ℝ𝑛 , and 𝜆𝑛 is the Lebesgue measure
on ℝ𝑛 .

𝛾𝑛 (B) =
∫
B

e−∥𝒛 ∥22/2

(2𝜋)𝑛/2
𝜆𝑛 (d𝒛 ) for all Borel B ∈ B(ℝ𝑛).

This law is called the standard normal distribution on ℝ𝑛 . Hint: This point follows from
the definition of a product measure and Fubini–Tonelli.

In much the same way that we defined the univariate normal distribution as an
affine function of a standard normal distribution, we can define multivariate normal
distributions.

Definition 21.10 (Multivariate normal random variable). Consider an independent family
(𝑍1, . . . , 𝑍𝑛) of real, standard normal random variables. For a vector𝒎 ∈ ℝ𝑛 and
a matrix 𝚺 ∈ ℝ𝑛×𝑛 , we can construct a family of random variables We write𝑚 𝑗 for the 𝑗 th entry of the

vector𝒎 and 𝜎𝑗𝑘 for the ( 𝑗 , 𝑘 ) entry
of the matrix 𝚺.

𝑋 𝑗 := 𝑚 𝑗 +
∑︁𝑛

𝑘=1
𝜎𝑗𝑘𝑍𝑘 for each 𝑗 = 1, . . . , 𝑛. (21.3)

We say that a random vector (𝑋1, . . . , 𝑋𝑛) ∈ ℝ𝑛 follows a multivariate normal
distribution if and only if it can be written in the form (21.3).

Exercise 21.11 (Multivariate normal: Mean and covariance). Construct the random vector
(𝑋1, . . . , 𝑋𝑛) as in (21.3). A matrix 𝑪 ∈ ℝ𝑛×𝑛 is positive

semidefinite if it is symmetric and
𝒖∗𝑪𝒖 ≥ 0 for each vector 𝒖 ∈ ℝ𝑛 .
The symbol ∗ denotes the (conjugate)
transpose of a vector or matrix.

Introduce the positive-semidefinite matrix 𝑪 = 𝚺𝚺∗ ∈ ℝ𝑛 .
Show that

𝔼[𝑋 𝑗 ] = 𝑚 𝑗 and Cov(𝑋 𝑗 , 𝑋𝑘 ) = 𝑐 𝑗𝑘 for all 𝑗 , 𝑘 = 1, . . . , 𝑛.

To be clear, we have written 𝑐 𝑗𝑘 for the (𝑗 , 𝑘 ) entry of the matrix 𝑪 . We call 𝑪 the
covariance matrix of the vector (𝑋1, . . . , 𝑋𝑛).

For every vector𝒎 ∈ ℝ𝑛 and positive-semidefinite matrix 𝑪 ∈ ℝ𝑛×𝑛 , confirm that
there is a normal random vector (𝑋1, . . . , 𝑋𝑛) with mean vector 𝒎 and covariance
matrix𝑪 . Hint: Consider the positive-semidefinite square root of the covariance matrix.

Exercise 21.12 (Multivariate normal: Affine transformations). Let 𝑿 be a multivariate normal
distribution on ℝ𝑛 . For a vector 𝒎 ∈ ℝ𝑛 and a matrix 𝚺 ∈ ℝ𝑛×𝑛 , show that
𝒀 = 𝒎 + 𝚺𝑿 follows a multivariate normal distribution. What are the mean and
covariance?

We have seen that there exists a normal distribution with a given mean and positive-
semidefinite covariance. Our primary task is to establish that the mean and covariance
uniquely determine the normal distribution. Anticipating this result, we give a formal
definition of the multivariate normal distribution.



Lecture 21: Gaussians and Conditioning 315

Definition 21.13 (Multivariate normal distribution). Fix a vector𝒎 ∈ ℝ𝑛 and a positive-
semidefinite matrix 𝑪 ∈ ℝ𝑛×𝑛 . We say that a multivariate normal random variable
with mean𝒎 and covariance 𝑪 follows the normal(𝒎 ,𝑪 ) distribution.

Right now, this definition remains suspect because the parameterization (𝒎 ,𝚺)
in Definition 21.10 could result in distributions that are different, even though they
have the same mean and covariance matrix. One approach to resolving this matter
is to explicitly compute the form of the multivariate normal distribution. In case the
matrix 𝚺 ∈ ℝ𝑛×𝑛 in the definition (21.3) is invertible, then the multivariate normal
distribution has a density with respect to the Lebesgue measure on ℝ𝑛 .

Exercise 21.14 (Multivariate normal: Density). Suppose that 𝚺 ∈ ℝ𝑛×𝑛 is an invertible
matrix, and construct the random vector (𝑋1, . . . , 𝑋𝑛) as in (21.3). Show that the joint
distribution of the random vector satisfies We have written 𝑪 −1 for the inverse

of the matrix 𝑪 , and det denotes the
determinant.

ℙ {(𝑋1, . . . , 𝑋𝑛) ∈ B} =
∫
B

e−(𝒙−𝒎 )∗𝑪 −1 (𝒙−𝒎 )/2

(det(2𝜋𝑪 ))1/2
𝜆𝑛 (d𝒙 ) for all Borel B ∈ B(ℝ𝑛).

Hint: This result follows from the change of variables formula for a multivariate integral
in terms of the Jacobian of the transformation. (*) If 𝚺 is singular, what happens?

Exercise 21.14 settles the matter of uniqueness when the covariance matrix 𝑪 is
invertible. When the matrix 𝚺 in (21.3) is singular, it is also possible to produce an
explicit (but somewhat fussy) representation for the distribution. This representation
implies that the distribution is also uniquely determined when 𝑪 is singular. Instead of
pursuing this argument, we will develop a more elegant approach for studying normal
distributions, via characteristic functions.

21.1.4 *Multivariate normal distribution: Properties
We proceed with several exercises in analogy with the results in Section 21.1.2.

Exercise 21.15 (Multivariate normal: Approximate identity). Consider a multivariate standard
normal random variable 𝒁 on ℝ𝑛 . For a parameter 𝜎 ≥ 0, show that

𝔼[ℎ (𝒂 + 𝜎𝒁 )] =
∫
ℝ𝑛

ℎ (𝒂 + 𝒛 ) · e
−∥𝒛 ∥2/(2𝜎2 )

(2𝜋𝜎2)𝑛/2
𝜆𝑛 (d𝒛 ) → ℎ (𝒂) as 𝜎 → 0,

for each 𝒂 ∈ ℝ𝑛 and for all bounded, continuous ℎ : ℝ𝑛 → ℝ. Reinterpret this
statement as the weak limit 𝜎𝒁 ⇝ 0 when 𝜎 → 0.

Exercise 21.16 (Gaussian integration by parts). Let 𝒁 be a multivariate standard normal
variable variable onℝ𝑛 . Suppose thatℎ : ℝ𝑛 → ℝ is a twice continuously differentiable
function whose second derivative is bounded. Verify that

Here, ⟨·, ·⟩ is the standard Euclidean
inner product, and tr is the trace. As
usual, ∇ denotes the gradient and ∇2

is the Hessian.

𝔼[⟨𝒁 , ∇ℎ (𝒁 )⟩] = 𝔼[tr∇2ℎ (𝒁 )].

Hint: Once again, this is just integration by parts. (*) More generally, show that a
multivariate normal variable 𝑿 on ℝ𝑛 with mean zero and covariance 𝑪 ∈ ℝ𝑛×𝑛

satisfies
𝔼[⟨𝑿 , ∇ℎ (𝑿 )⟩] = 𝔼[tr[𝑪∇2ℎ (𝑿 )]].

Although this result may seem esoteric, it is truly fundamental.
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21.2 Characteristic functions
In this section, we introduce the characteristic function of a real random variable, and
then we extend the definition to a vector of real random variables. We will prove
that this function completely determines the distribution of a vector of real random
variables, so it is an incredibly useful tool for reasoning about when two distributions
coincide or differ from each other.

21.2.1 Real random variables
We begin with the basic definition of the characteristic function of a real random
variable. This definition is the reason that

probabilists call 1E an indicator
function, not a characteristic function
(as some other mathematicians do).

Definition 21.17 (Characteristic function). Let 𝑋 be a real random variable. The
characteristic function 𝜒𝑋 : ℝ → ℂ is a complex-valued function defined as

𝜒𝑋 (𝜃 ) := 𝔼[ei𝜃𝑋 ] := 𝔼[cos(𝜃𝑋 )] + i · 𝔼[sin(𝜃𝑋 )] for all 𝜃 ∈ ℝ. We reserve the symbol i :=
√
−1 for

the imaginary unit.

Exercise 21.18 (Characteristic function: Bounded and continuous). Let 𝑋 be a real random
variable. Explain why 𝜒𝑋 (𝜃 ) is defined and finite for all 𝜃 ∈ ℝ. Argue that the
characteristic function is uniformly bounded in magnitude by one and continuous.

Exercise 21.19 (*Characteristic function: Smoothness). Suppose that 𝑋 ∈ L1 is a real random
variable. Show that the derivative 𝜒′

𝑋
(𝜃 ) exists and is a continuous function. (*) Under

what conditions does 𝜒𝑋 have 𝑛 continuous derivatives?

Exercise 21.20 (Characteristic function: Affine transformations). Let 𝑋 be a real random
variable. Let 𝑎, 𝑏 ∈ ℝ be real numbers. Check that

𝜒𝑎+𝑏𝑋 (𝜃 ) = ei𝑎𝜃 · 𝜒𝑋 (𝑏𝜃 ) for all 𝜃 ∈ ℝ.

Exercise 21.21 (Characteristic function: Multiplicativity). Let 𝑋 ,𝑌 be independent, real
random variables. Prove that

𝜒𝑋 +𝑌 (𝜃 ) = 𝜒𝑋 (𝑡 ) · 𝜒𝑌 (𝜃 ) for all 𝜃 ∈ ℝ.

Extend this identity to a finite sum of independent, real random variables.

21.2.2 Examples
Let us continue with computations of the characteristic functions for the most important
real random variables.

Example 21.22 (Binomial distribution: Characteristic function). First, observe that a Bernoulli
random variable 𝑌 ∼ bernoulli(𝑝) has characteristic function

𝜒𝑌 (𝜃 ) = 𝔼[ei𝜃𝑌 ] = 1 + 𝑝 · (ei𝜃 − 1) for all 𝜃 ∈ ℝ.

Since the binomial random variable 𝑋 ∼ binomial(𝑛,𝑝) can be written as the sum of
𝑛 i.i.d. copies of 𝑌 , we immediately recognize that

𝜒𝑋 (𝜃 ) =
[
1 + 𝑝 · (ei𝜃 − 1)

]𝑛
for all 𝜃 ∈ ℝ.

Indeed, Exercise 21.21 states that the characteristic function is multiplicative. ■
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Example 21.23 (Univariate normal distribution: Characteristic function). Consider a univariate
normal random variable 𝑋 ∼ normal(𝑚,𝜎2) with mean 𝑚 ∈ ℝ and variance
𝜎2 ∈ ℝ+. We will calculate that

𝜒𝑋 (𝜃 ) = ei𝑚𝜃−𝜎2𝜃2/2 for all 𝜃 ∈ ℝ.

The case 𝜎 = 0 is trivial, so we may assume that 𝜎 > 0. To simplify matters,
it is enough to standardize so that 𝑚 = 0 and 𝜎2 = 1. Indeed, we may write
𝑋 = 𝑚 + 𝜎 · [(𝑍 −𝑚)/𝜎] and apply the affine transformation rule (Exercise 21.20).

Let 𝑍 ∼ normal(0, 1) be a real standard normal variable. The argument is based
on the fact that the Taylor series for the exponential function converges everywhere in
the complex plane. By dominated convergence (Theorem 9.12),

𝜒𝑍 (𝜃 ) = 𝔼

[
1 +

∑︁∞
𝑝=1

(i𝜃 )𝑝
𝑝!

𝑍𝑝
]
= 1 +

∑︁∞
𝑝=1

(i𝜃 )𝑝
𝑝!

𝔼[𝑍𝑝 ].

(Why?) Exercise 21.7 shows us how to compute the moments of a standard normal
random variable. Therefore, the series simplifies to

𝜒𝑍 (𝑡 ) = 1 +
∑︁∞

𝑝=1

(−1)𝑝𝜃 2𝑝

(2𝑝)! (2𝑝 − 1)!! = 1 +
∑︁∞

𝑝=1

(−𝜃 2)𝑝
2𝑝𝑝!

= e−𝜃
2/2.

This is the required result. ■

Exercise 21.24 (Normal random variable: Inversion). Let 𝑍 be a standard normal random
variable. Show that the standard normal density 𝜑 admits the inversion formula

𝜑 (𝑧) := e−𝑧
2/2

√
2𝜋

=
1
2𝜋

∫
ℝ

𝜒𝑍 (𝜃 ) · e−i𝜃𝑧 𝜆(d𝜃 ).

Hint: Use the definition of the characteristic function, the law of the unconscious
statistician, and the computation of 𝜒𝑍 from Example 21.23,

Exercise 21.25 (Poisson distribution: Characteristic function). Let 𝑄 ∼ poisson(𝛽) be a
Poisson random variable with mean 𝛽 ∈ ℝ+. Prove that

𝜒𝑄 (𝜃 ) = exp
(
𝛽 (ei𝜃 − 1)

)
for all 𝜃 ∈ ℝ.

21.2.3 Multivariate characteristic functions
Characteristic functions are especially useful for studying multivariate distributions.
For this purpose, we require a small generalization.

Definition 21.26 (Characteristic function: Multivariate distribution). Let 𝑿 := (𝑋1, . . . , 𝑋𝑛)
be an arbitrary family of real random variables. The characteristic function 𝜒𝑿 :
ℝ𝑛 → ℂ is the multivariate complex-valued function We write ⟨·, ·⟩ for the standard

Euclidean inner product on ℝ𝑛 .

𝜒𝑿 (𝜽 ) := 𝔼[ei⟨𝜽 , 𝑿 ⟩] for all 𝜽 ∈ ℝ𝑛 .

Multivariate characteristic functions share many of the basic properties of univariate
characteristic functions.

Exercise 21.27 (Multivariate characteristic function: Affine transformations). Let 𝑿 be a random
vector taking values in ℝ𝑛 . Let 𝒎 ∈ ℝ𝑛 be a vector, and let 𝚺 ∈ ℝ𝑛×𝑛 be a matrix.
Form the random vector𝒀 :=𝒎 + 𝚺𝑿 . Then

𝜒𝒀 (𝜽 ) = ei⟨𝜽 , 𝒎 ⟩ · 𝜒𝑿 (𝚺∗𝜽 ) for all 𝜽 ∈ ℝ𝑛 .
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Exercise 21.28 (Multivariate characteristic function: Multiplicativity). Let 𝑿 and𝒀 be inde-
pendent random vector taking values in ℝ𝑛 . Verify that

𝜒𝑿 +𝒀 (𝜽 ) = 𝜒𝑿 (𝜽 ) · 𝜒𝒀 (𝜽 ) for all 𝜽 ∈ ℝ𝑛 .

Exercise 21.29 (Multivariate normal distribution: Characteristic function). Consider a vector
𝒁 = (𝑍1, . . . , 𝑍𝑛) of independent standard normal random variables. Prove that

𝜒𝒁 (𝜽 ) = e−∥𝜽 ∥22/2 for all 𝜽 ∈ ℝ𝑛 .

Now, consider the multivariate normal distribution 𝑿 =𝒎 + 𝚺𝒁 . Show that

𝜒𝑿 (𝜽 ) = ei⟨𝜽 , 𝒎 ⟩ · e−𝜽
∗𝑪𝜽/2 for all 𝜽 ∈ ℝ𝑛 ,

where 𝑪 = 𝚺𝚺∗ is the covariance matrix.

The result of Exercise 21.29 is intriguing because it shows that the mean𝒎 and
covariance 𝑪 are the only aspects of the multivariate normal distribution that appear
in the characteristic function. Ultimately, this fact will allow us to deduce that the
multivariate normal distribution is completely determined by its mean and covariance.

21.3 Characterization of distributions
What is the source of the terminology “characteristic function”? It comes from the
next group of results, which state that the characteristic function of a distribution
determines the distribution completely.

Theorem 21.30 (Characteristic functions). Suppose that 𝑋 and 𝑌 are real random
variables with distributions 𝜇𝑋 and 𝜇𝑌 . Then the distributions are identical
(𝜇𝑋 = 𝜇𝑌 ) if and only if the characteristic functions are identical (𝜒𝑋 = 𝜒𝑌 ).

The key idea in the proof is to smooth the distributions of 𝑋 and 𝑌 so that we can
find an explicit representation of the densities in terms of the characteristic functions.
Before continuing on to the proof, let us state some important facts that follow from
closely related arguments.

Problem 21.31 (Multivariate characteristic functions). Suppose that 𝑿 and𝒀 are random
vectors taking values in ℝ𝑛 . Then the distributions of 𝑿 and𝒀 are equal if and only
if the multivariate characteristic functions are equal: 𝜒𝑿 = 𝜒𝒀 . Prove this claim by
generalizing the proof of Theorem 21.30.

Hint: The argument is structurally identical to the result for real random variables.
The main difference is that we need to smooth the distribution using a multivariate
standard normal distribution.

Exercise 21.32 (Linear marginals). Suppose that 𝑿 and𝒀 are random vectors taking values
in ℝ𝑛 . Show that 𝑿 and𝒀 share the same distribution if and only if ⟨𝒂 , 𝑿 ⟩ ∼ ⟨𝒂 , 𝒀 ⟩
for every vector 𝒂 ∈ ℝ𝑛 . In other words, a multivariate distribution is completely
determined by its linear marginals. Hint: This result is an easy consequence of
Problem 21.31.

21.3.1 Smoothing
Let 𝑋 be a real random variable. Let 𝑍 be a real standard normal random variable,
independent from 𝑋 . For each 𝜎 > 0, we construct the smoothed random variable
𝑋𝜎 := 𝑋 + 𝜎𝑍 .



Lecture 21: Gaussians and Conditioning 319

Exercise 21.33 (Smoothed random variable: Approximation). Show that 𝑋𝜎 ⇝ 𝑋 weakly as
𝜎 → 0. Hint: This is a consequence of the observation that 𝑋𝜎 → 𝑋 pointwise.

When 𝑋 and 𝑌 have the same characteristic function, we will prove that the
smoothed random variables 𝑋𝜎 and 𝑌𝜎 share the same distribution for each 𝜎 > 0.
Since weak limits are unique (Exercise 17.14), the facts that 𝑋𝜎 ⇝ 𝑋 and 𝑌𝜎 ⇝ 𝑌
force 𝑋 and 𝑌 to share the same distribution.

21.3.2 Inversion
The critical step in the argument is to write the distribution of the smoothed random
variable 𝑋𝜎 in terms of its characteristic function. This result can be viewed as a Fourier
inversion formula for the density of a particular type of random variable.

Proposition 21.34 (Smoothed random variable: Inversion). Let 𝑋𝜎 be the smoothed random
variable defined above. The density 𝑓𝑋𝜎 of the random variable 𝑋𝜎 can be written as

𝑓𝑋𝜎 (𝑥) =
∫
ℝ

𝜒𝑋 (𝜃 ) · 𝜒𝜎𝑍 (𝜃 ) · e−i𝜃𝑥 𝜆(d𝜃 ) for all 𝑥 ∈ ℝ.

Proof. The basic result underlying the proof is a similar inversion formula for a standard
normal random variable. According to Exercise 21.24, the standard normal density
can be represented in terms of a characteristic function:

e−𝑧
2/2

√
2𝜋

=
1
2𝜋

∫
ℝ

𝜒𝑍 (𝜃 ) · e−i𝜃𝑧 𝜆(d𝜃 ) for all 𝑧 ∈ ℝ.

We can obtain a similar result for the density 𝜑𝜎 of the random variable 𝜎𝑍 . To do so,
we make the change of variables 𝑧 ↦→ 𝑧/𝜎 in the last display. This step yields

𝜑𝜎 (𝑧) :=
e−𝑧

2/(2𝜎2 )
√
2𝜋𝜎2

=
1

2𝜋𝜎

∫
ℝ

𝜒𝑍 (𝜃 ) · e−i𝜃 (𝑧/𝜎 ) 𝜆(d𝜃 )

=
1
2𝜋

∫
ℝ

𝜒𝜎𝑍 (𝜃 ) · e−i𝜃𝑧 𝜆(d𝜃 ).

The last identity follows from the change of variables 𝜃 ↦→ 𝜎𝜃 and the affine
transformation rule for cgfs (Exercise 21.20).

According to Exercise 14.4, the independent sum 𝑋𝜎 = 𝑋 + 𝜎𝑍 is an (absolutely)
continuous random variable with density

𝑓𝑋𝜎 (𝑥) =
∫
ℝ

𝜑𝜎 (𝑥 − 𝑦 ) 𝜇𝑋 (d𝑦 ) for all 𝑥 ∈ ℝ.

Our plan is to express 𝜑𝜎 in terms of the characteristic function of 𝜎𝑍 . After
reorganizing the integrals, this computation will deliver the result. Combine the last
two displays to obtain

𝑓𝑋𝜎 (𝑦 ) =
∫
ℝ

[
1
2𝜋

∫
ℝ

𝜒𝜎𝑍 (𝜃 ) · e−i𝜃 (𝑥−𝑦 ) 𝜆(d𝜃 )
]
𝜇𝑋 (d𝑦 )

=
1
2𝜋

∫
ℝ

[∫
ℝ

ei𝜃𝑦 𝜇𝑋 (d𝑦 )
]
· 𝜒𝜎𝑍 (𝜃 ) · e−i𝜃𝑥 𝜆(d𝜃 )

=
1
2𝜋

∫
ℝ

𝜒𝑋 (𝜃 ) · 𝜒𝜎𝑍 (𝜃 ) · e−i𝜃𝑥 𝜆(d𝜃 ).
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Since the integrand is bounded, we may apply Fubini–Tonelli (Theorem 6.23) to
rearrange the integrals in the first line. We used the law of the unconscious statistician
(Proposition 9.4) to identify the characteristic function 𝜒𝑋 of the random variable 𝑋 .
This is what we needed to show. ■

21.3.3 Proof of Theorem 21.30
We are now prepared to establish Theorem 21.30, which states that the distribution of
a real random variable is completely determined by its characteristic function.

It is clear that the equality 𝜇𝑋 = 𝜇𝑌 of the distributions implies the equality
𝜒𝑋 = 𝜒𝑌 of the characteristic functions. Indeed, the characteristic function just packs
up a collection of moments of the (common) distribution.

For the reverse direction, assume that the characteristic functions coincide:

𝜒𝑋 (𝜃 ) = 𝜒𝑌 (𝜃 ) for all 𝜃 ∈ ℝ.

Let 𝑍 be a real standard normal random variable. For 𝜎 > 0, define the (absolutely)
continuous random variables 𝑋𝜎 := 𝑋 + 𝜎𝑍 and 𝑌𝜎 := 𝑌 + 𝜎𝑍 . Proposition 21.34
ensures that their respective densities 𝑓𝑋𝜎 and 𝑓𝑌𝜎 also coincide:

𝑓𝑋𝜎 (𝑥) =
∫
ℝ

𝜒𝑋 (𝜃 ) · 𝜒𝜎𝑍 (𝜃 ) · e−i𝜃𝑥 𝜆(d𝑥)

=

∫
ℝ

𝜒𝑌 (𝜃 ) · 𝜒𝜎𝑍 (𝜃 ) · e−i𝜃𝑥 𝜆(d𝑥) = 𝑓𝑌𝜎 (𝑥) for all 𝑥 ∈ ℝ.

The density of a continuous random variable determines its distribution. We realize
that 𝑋𝜎 and 𝑌𝜎 have a common distribution, say 𝜇𝜎 .

Now, Exercise 21.33 states that the distributions of the smoothed random variables
converge weakly to the original distributions: 𝜇𝑋𝜎 ⇝ 𝜇𝑋 and 𝜇𝑌𝜎 ⇝ 𝜇𝑌 as 𝜎 → 0.
We have seen that the distributions of the smoothed variables both coincide with 𝜇𝜎 ,
so 𝜇𝜎 ⇝ 𝜇𝑋 and 𝜇𝜎 ⇝ 𝜇𝑌 . But weak limits are unique (Exercise 17.14), so we must
conclude that 𝜇𝑋 = 𝜇𝑌 . The random variables 𝑋 and 𝑌 share the same distribution.

21.3.4 *Characteristic functions and weak convergence
Characteristic functions have historically played a significant role in studying weak
convergence because of the following equivalence.

Theorem 21.35 (Characteristic functions and weak convergence). Consider a sequence
(𝑊𝑛 : 𝑛 ∈ ℕ) of real random variables, and let𝑊 be a real random variable. Then

𝑊𝑛 ⇝𝑊 if and only if 𝜒𝑊𝑛
(𝜃 ) → 𝜒𝑊 (𝜃 ) pointwise.

Note that it is necessary to assume that the limit is a random variable.

Using bounded convergence, it is quite easy to check that weak convergence implies
pointwise convergence of the characteristic functions. The reverse direction requires
some techniques from Fourier analysis, and it is somewhat more involved. We omit
the proof, which you may find in most probability books.

Theorem 21.35 and its relatives lead to short proofs of distributional limit theorems
for independent sums.

Problem 21.36 (CLT). Assume that 𝑌 ∈ L2 is a real random variable. Let 𝑇𝑛 be the
standardized sum of 𝑛 i.i.d. copies of 𝑌 . Show that 𝜒𝑇𝑛 → 𝜒𝑍 pointwise, where
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𝑍 ∼ normal(0, 1) is a standard normal random variable. Deduce the central limit
theorem.

Problem 21.37 (Multivariate CLT). Assume that 𝒀 is a random vector taking values in
ℝ𝑘 , with square-integrable coordinates. Let 𝒎 be the mean vector of 𝒀 , and let 𝑪
be the covariance matrix. Let𝑻 𝑛 = 𝑛−1/2 ∑𝑛

𝑖=1(𝒀 𝑖 −𝒎) be the normalized sum of 𝑛
independent copies of the vector𝒀 . Prove that𝑻 𝑛 converges weakly to a normal(0,𝑪 )
distribution.

Other types of limit theorems follow from similar considerations.

Problem 21.38 (Poisson limit of the binomial). Let 𝛽 ≥ 0. For all sufficiently large 𝑛 ∈ ℕ,
consider the random variables𝑄𝑛 ∼ binomial(𝑛, 𝛽/𝑛). Prove that𝑄𝑛 ⇝ 𝑄 , where
𝑄 follows the Poisson distribution with mean 𝛽 .

21.4 Gaussians, independence, and conditioning
Now that we understand how to identify distributions using the (multivariate) char-
acteristic function, we can undertake a deeper study of the multivariate normal
distribution. Our objective in this section is to determine the conditional expectation
of a normal random variable, given a family of normal random variables.

21.4.1 Existence and uniqueness
In this section, we use characteristic functions to argue the there is only one multivariate
normal distribution with a given mean and covariance. This fact has some significant
implications.

Theorem 21.39 (Multivariate normal: Existence and uniqueness). Select a vector𝒎 ∈ ℝ𝑛

and a positive-semidefinite matrix𝑪 ∈ ℝ𝑛×𝑛 . There is a unique normal distribution,
normal(𝒎 ,𝑪 ), on ℝ𝑛 with mean𝒎 and covariance matrix 𝑪 .

Proof. By definition, a multivariate normal random vector 𝑿 on ℝ𝑛 is the affine image
of a multivariate standard normal vector 𝒁 ∈ ℝ𝑛 . That is,

𝑿 =𝒎 + 𝚺𝒁 where𝒎 ∈ ℝ𝑛 and 𝚺 ∈ ℝ𝑛×𝑛 .

Define the positive-definite covariance matrix 𝑪 = 𝚺𝚺∗.
According to Exercise 21.29, the characteristic function of 𝑿 takes the form

𝜒𝑿 (𝜽 ) = ei⟨𝜽 , 𝒎 ⟩e−𝜽
∗𝑪𝜽/2 for all 𝜽 ∈ ℝ.

Invoking Problem 21.31, we realize that the mean vector𝒎 and the covariance matrix
𝑪 completely determine the distribution of the multivariate normal random vector 𝑿 .

It remains to confirm that there is a multivariate normal distribution with an
arbitrary mean vector 𝒎 and positive-semidefinite covariance matrix 𝑪 . Of course,
the mean presents no difficulty. We can obtain the desired covariance by choosing
𝚺 = 𝑪 1/2, the unique positive-semidefinite square-root of 𝑪 . ■

21.4.2 Independence and rotational invariance
Theorem 21.39 has striking consequences.

Corollary 21.40 (Multivariate normal: Independence). Consider a multivariate normal
random vector (𝑋1, . . . , 𝑋𝑛) ∼ normal(𝒎 ,𝑪 ) on ℝ𝑛 . Then the random variables
(𝑋1, . . . , 𝑋𝑛) compose an independent family if and only if 𝑪 is diagonal. In other
words, (𝑋1, . . . , 𝑋𝑛) is independent if and only if Cov(𝑋𝑖 , 𝑋 𝑗 ) = 0 for all 𝑖 ≠ 𝑗 .
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Proof. It is well-known that an independent pair (𝑋 ,𝑌 ) of random variables necessarily
satisfies Cov(𝑋 ,𝑌 ) = 0. The content of the result is the reverse direction.

Let 𝒎 ∈ ℝ𝑛 , and suppose that 𝑪 = diag(𝑐11, . . . , 𝑐𝑛𝑛) is a diagonal, positive-
semidefinite matrix. According to Theorem 21.39, the distribution normal(𝒎 ,𝑪 ) is
uniquely determined. Therefore, it suffices to produce a multivariate normal vector
𝑿 = (𝑋1, . . . , 𝑋𝑛) with independent coordinates and the specifiedmean and covariance.
But this is trivial. For a standard normal vector 𝒁 = (𝑍1, . . . , 𝑍𝑛), we simply choose

𝑋 𝑗 = 𝑚 𝑗 +
√
𝑐 𝑗 𝑗 𝑍 𝑗 for 𝑗 = 1, . . . , 𝑛.

The coordinates (𝑋1, . . . , 𝑋𝑛) compose an independent family because (𝑍1, . . . , 𝑍𝑛) is
independent. ■

Exercise 21.41 (Multivariate standard normal: Rotational invariance). Let 𝒁 be a standard
normal vector on ℝ𝑛 . Let𝑼 ∈ ℝ𝑛×𝑛 be an orthogonal matrix. Show that the random
vector𝑼𝒁 remains standard normal. Hint: Compute the covariance matrix.

21.4.3 Linear marginals
Another important property of the multivariate normal distribution is that each linear
marginal follows a normal distribution on the real line. Conversely, a distribution
whose linear marginals are all normal must be a multivariate normal distribution.

Theorem 21.42 (Multivariate normal: Linear marginals). Let 𝑿 be a multivariate normal
random distribution on ℝ𝑛 . For every vector 𝒂 ∈ ℝ𝑛 , the linear marginal ⟨𝒂 , 𝑿 ⟩
follows a normal distribution on ℝ.

Conversely, suppose that 𝑿 is a distribution taking values on ℝ𝑛 . Suppose that
⟨𝒂 , 𝑿 ⟩ follows a normal distribution for every vector 𝒂 ∈ ℝ𝑛 . Then 𝑿 must be a
multivariate normal distribution.

Proof. Suppose that 𝑿 ∼ normal(𝒎 ,𝑪 ) on ℝ𝑛 . Exercise 21.29 states that the
characteristic function is

𝜒𝑿 (𝜽 ) = 𝔼[ei⟨𝜽 , 𝑿 ⟩] = ei⟨𝜽 , 𝒎 ⟩e−𝜽
∗𝑪𝜽/2 for all 𝜽 ∈ ℝ𝑛 .

Let 𝑌 = ⟨𝒂 , 𝑿 ⟩ for some vector 𝒂 ∈ ℝ𝑛 . Reading from the last display, we see that
the characteristic function of 𝑌 must satisfy

𝜒𝑌 (𝜃 ) = 𝔼[ei𝜃𝑌 ] = ei𝜃𝑚𝑌 e−𝜃
2𝑣𝑌 /2,

where 𝑚𝑌 = ⟨𝒂 , 𝒎⟩ and 𝑣𝑌 = 𝒂∗𝑪𝒂 . From Example 21.23, we recognize the
characteristic function of a real normal(𝑚𝑌 , 𝑣𝑌 ) random variables. According to
Theorem 21.30, we must conclude that 𝑌 follows a normal distribution on ℝ.

Conversely, suppose that 𝑿 is a distribution on ℝ𝑛 whose linear marginals each
follow a standard normal distribution. Introduce the mean𝒎 = 𝔼𝑿 and covariance
matrix 𝑪 = 𝔼[(𝑿 −𝒎) (𝑿 −𝒎)∗] of the distribution. Now, for a vector 𝒂 ∈ ℝ𝑛 ,
consider the real normal random variable 𝑌 = ⟨𝒂 , 𝑿 ⟩. A short calculation shows that
the mean and variance of 𝑌 must satisfy

𝑚𝑌 = 𝔼[𝑌 ] = ⟨𝒂 , 𝒎⟩ and 𝑣𝑌 = Var[𝑌 ] = 𝒂∗𝑪𝒂 .

Since the mean and variance determine a univariate normal distribution, the charac-
teristic function of 𝑌 satisfies

𝜒𝑌 (𝜃 ) = 𝔼[ei𝜃𝑌 ] = ei𝑚𝑌 𝜃e−𝑣
2
𝑌
𝜃2/2.
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Changing variables 𝜃𝒂 ↦→ 𝜽 and introducing the computed mean and variance, we
find that

𝔼[ei⟨𝜽 , 𝑿 ⟩] = ei⟨𝜽 , 𝒎 ⟩e−𝜽
∗𝑪𝜽/2 for all 𝜽 ∈ ℝ𝑛 .

Exercise 21.29 shows that this is the characteristic function of a multivariate normal
distribution. Problem 21.31 now compels us to conclude that 𝑿 itself is multivariate
normal. ■

Theorem 21.42 allow us to work with multivariate normal distributions by focusing
on the marginals. This is a very useful technique, and it suggests an alternative
definition of a multivariate normal distribution.

Definition 21.43 (Jointly Gaussian distribution). A random vector 𝑿 taking values in
ℝ𝑛 is called jointly Gaussian when the linear marginal ⟨𝒂 , 𝑿 ⟩ follows a univariate
normal distribution for every vector 𝒂 ∈ ℝ𝑛 .

Warning 21.44 (Jointly Gaussian). To satisfy Definition 21.43, every single linear
marginal of the random vector 𝑿 must follow a normal distribution. It is possible for
a random vector to have some Gaussian marginals without being jointly Gaussian.
In particular, the sole conditions 𝑋 ∼ normal(0, 1) and 𝑌 ∼ normal(0, 1) do not
imply that (𝑋 ,𝑌 ) is jointly Gaussian! ■

Aside: Definition 21.43 provides the right framework for extending the concept of
a Gaussian distribution to an infinite-dimensional linear space.

21.4.4 Gaussian least squares
Next, we study the solution to least-squares problems involving multivariate normal
distributions. The simple structure of the distribution allows for clean statements of
the result.

Example 21.45 (Multivariate normal distribution: Least squares). Consider a jointly Gaussian
family (𝑋 ,𝒀 ) of real random variables where𝒀 = (𝑌1, . . . ,𝑌𝑛). For simplicity, we will
assume that these random variables all have mean zero. Now, frame the least-squares
problem:

minimize𝒂∈ℝ𝑛 ∥𝑋 − ⟨𝒂 , 𝒀 ⟩∥22.
In other words, we seek the best L2 approximation of 𝑋 as a linear function of the
vector𝒀 .

We can solve this problem by differential calculus. Let 𝑐𝑋𝑋 = Var[𝑋 ], and define
the covariance vector and matrix:

𝒄𝑋𝒀 = (𝔼[𝑋𝑌𝑖 ] : 𝑖 = 1, . . . , 𝑛) ∈ ℝ𝑛 ;
𝑪𝒀𝒀 = (𝔼[𝑌𝑖𝑌𝑗 ] : 𝑖 , 𝑗 = 1, . . . , 𝑛) ∈ ℝ𝑛×𝑛 .

Writing the norm as an expectation and expanding the square, we detect that

∥𝑋 − ⟨𝒂 , 𝒀 ⟩∥22 = Var[𝑋 ] − 2𝔼[𝑋 ⟨𝒂 , 𝒀 ⟩] + Var[⟨𝒂 , 𝒀 ⟩]
= 𝑐𝑋𝑋 − 2⟨𝒂 , 𝒄𝑋𝒀 ⟩ + 𝒂∗𝑪𝒀𝒀 𝒂 .

Set the derivative with respect to 𝒂 to zero, and rearrange to deduce that there is a
minimizer of the form 𝒂 = 𝑪 †

𝒀𝒀 𝒄𝑋𝒀 . We write 𝑪 † for the pseudoinverse of
the matrix 𝑪 . It reduces to the
ordinary inverse when 𝑪 is invertible.

It follows that the best approximation 𝑋 of 𝑋 as
a linear function of𝒀 is the random variable

𝑋 = 𝒄 ∗𝑋𝒀𝑪
†
𝒀𝒀𝒀 .
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In particular, the norm of the residual satisfies Observe that the residual norm is a
Schur complement of the covariance
matrix. This is not an accident.∥𝑋 − 𝑋 ∥22 = 𝑐𝑋𝑋 − 𝒄 ∗𝑋𝒀𝑪

†
𝒀𝒀 𝒄𝑋𝒀 .

Let us emphasize that the coefficients in the formula for 𝑋 are simply numbers that
depend on the joint statistics of (𝑋 ,𝒀 ).

So far, we have not used the assumption that the random variables are Gaussian.
From the orthogonal projection theorem (Theorem 12.21), recall that the residual
𝑋 − 𝑋 in the least-squares problem must be orthogonal to the subspace of random
variables that can be written as linear combinations of the components of (𝑌1, . . . ,𝑌𝑛).
That is,

𝔼[(𝑋 − 𝑋 )⟨𝒖 , 𝒀 ⟩] = 0 for all 𝒖 ∈ ℝ𝑛 .

But (𝑋 −𝑋 ) and ⟨𝒖 , 𝒀 ⟩ are jointly Gaussian (because they are fixed linear combinations
of jointly Gaussian random variables). From Corollary 21.40, we deduce that the
residual (𝑋 − 𝑋 ) is independent from ⟨𝒖 , 𝒀 ⟩ for each 𝒖 ∈ ℝ𝑛 . A fortiori, the residual
(𝑋 − 𝑋 ) is independent from the Gaussian vector𝒀 . We will exploit this observation
in the next section. ■

Exercise 21.46 (Multivariate normal: Least squares). In Example 21.45, consider the more
general case where the random variables may have nonzero expectations. Solve the
affine least-squares problem:

minimize𝒂∈ℝ𝑛 ,𝑏∈ℝ ∥𝑋 − (𝑏 + ⟨𝒂 , 𝒀 ⟩)∥22.

Find representations for the optimal coefficients 𝒂 and 𝑏 . What can we deduce about
the relationship between the residual and the random vector𝒀 ?

21.4.5 Gaussian conditioning
Finally, we are in a position to compute conditional expectations in the setting of a
jointly Gaussian distribution. This situation allows for a dramatic simplification over
the general case.

Theorem 21.47 (Multivariate normal distribution: Conditional expectation). Consider a
jointly Gaussian family (𝑋 ,𝒀 ) of real random variables where 𝒀 = (𝑌1, . . . ,𝑌𝑛).
For simplicity, we will assume that each of these random variables has mean zero.
Then, almost surely, conditional expectation of 𝑋 given𝒀 takes the form

𝔼[𝑋 |𝒀 ] = 𝒄 ∗𝑋𝒀𝑪
†
𝒀𝒀𝒀 ,

where 𝒄𝑋𝒀 ∈ ℝ𝑛 is the covariance vector of 𝑋 and 𝒀 and 𝑪𝒀𝒀 ∈ ℝ𝑛×𝑛 is the
covariance matrix of𝒀 .

Theorem 21.47 is a truly remarkable result. In a general setting, the conditional
expectation 𝔼[𝑋 |𝒀 ] is a measurable function of 𝒀 . Yet, in the Gaussian setting,
the conditional expectation is a linear function of 𝒀 . This is a dramatic conceptual
simplification, and it supports the use of linear least-squares procedures in statistical
estimation.

Proof. This result follows from the computation in Example 21.45 and the properties of
conditional expectation. Let 𝑋 = 𝒄 ∗

𝑋𝒀𝑪
†
𝒀𝒀𝒀 be the best approximation of 𝑋 as a linear

function of𝒀 . Recall that the residual (𝑋 − 𝑋 ) is independent from𝒀 . Therefore, we
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may calculate that
𝔼[𝑋 |𝒀 ] = 𝔼[(𝑋 − 𝑋 ) + 𝑋 |𝒀 ]

= 𝔼[𝑋 − 𝑋 |𝒀 ] + 𝔼[𝑋 |𝒀 ]
= 𝔼[𝑋 − 𝑋 ] + 𝑋 = 𝑋 .

To reach the second line, we apply the linearity of conditional expectation. Since
(𝑋 −𝑋 ) is independent from𝒀 , its conditional expectation coincides with its complete
expectation. But 𝑋 and 𝑋 are both mean zero, so this term vanishes by linearity. As
for the second term, the estimate 𝑋 is a function of𝒀 , so it is 𝜎 (𝒀 )-measurable. Thus,
its conditional expectation equals itself. ■

Exercise 21.48 (Multivariate normal: Conditional expectation). Extend the computation in
Theorem 21.47 to the case where (𝑋 ,𝒀 ) may have nonzero expectations.

Problems
Exercise 21.49 (Stability). Characteristic functions provide an easy way to check stability
properties of probability distributions.

1. Let (𝑋 ,𝑌 ) be an independent pair of Poisson random variables, perhaps with
different means. Show that 𝑋 +𝑌 is Poisson by computing characteristic functions
and invoking Theorem 21.30.

2. Let (𝑋 ,𝑌 ) be an independent pair of Cauchy random variables, perhaps with
different means and scale parameters. Show that 𝑋 +𝑌 is Cauchy.

Exercise 21.50 (Combinations of Gaussians). We can check that two distributions are equal
by checking that their characteristic functions are equal. Alternatively, we can check
that all of the linear marginals have the same distribution. There are many situations
where these are the most efficient paths to identifying a distribution. Recall that a pair
(𝑋 ,𝑌 ) of random variables is jointly Gaussian if 𝑎𝑋 +𝑏𝑌 follows a normal distribution
for all 𝑎, 𝑏 ∈ ℝ. Jointly Gaussian variables are special.

1. Suppose that a real random variable 𝑋 has the characteristic function 𝜒𝑋 (𝜃 ) =
exp(i𝑚𝜃 − 𝑣𝜃 2/2) for all 𝜃 ∈ ℝ. What is the distribution of 𝑋 ?

2. Let 𝑋 ∼ normal(𝑚𝑋 , 𝑣𝑋 ) and 𝑌 ∼ normal(𝑚𝑌 , 𝑣𝑌 ) be independent. By
calculating the characteristic function, show that the sum 𝑋 +𝑌 ∼ normal(𝑚𝑋 +
𝑚𝑌 , 𝑣𝑋 + 𝑣𝑌 ). Explain why (𝑋 ,𝑌 ) is jointly Gaussian.

3. Assume that (𝑋 ,𝑌 ) is jointly Gaussian. Show that Cov(𝑋 ,𝑌 ) = 0 if and only if
𝑋 and 𝑌 are independent. Hint: Look at the linear marginals.

4. Let (𝑋 ,𝑌 ) be jointly Gaussian. Compute 𝔼[𝑋 |𝑌 ] in terms of the mean and
covariance of (𝑋 ,𝑌 ). Hint: Prove that the conditional expectation is an affine
function of 𝑌 .

Applications
Application 21.51 (Kalman). The Kalman filter applies the Bayesian framework to track a
random state variable 𝑋𝑡 that is evolving with time. The input to the Kalman filter is a
sequence (𝑌𝑡 ) of noisy observations that are (indirectly) related to the state 𝑋𝑡 . The
Kalman filter is used by self-driving vehicles to track their positions and to map their
environments. Nonlinear extensions of the Kalman filter arise in a multitude of other
domains, such as weather predictions in geophysics and tracking virus populations in
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epidemiology. In this problem, we will analyze the stability and error properties of the
Kalman filter.

Assume that the initial state follows a normal distribution: 𝑋0 ∼ normal(𝑚0, 𝑐0)
with known mean and variance. Consider a discrete-time dynamical system that links
the (scalar) state variable 𝑋𝑡 and the scalar observations 𝑌𝑡 . For 𝑡 ∈ ℕ,

𝑋𝑡 = 𝜆𝑋𝑡−1 + 𝜎𝑋 𝜀𝑡
𝑌𝑡 = 𝑋𝑡 + 𝜎𝑌𝜂𝑡 ,

where 𝜆 ∈ ℝ is a known stability parameter and 𝜎𝑋 , 𝜎𝑌 > 0 are fixed standard
deviations, assumed known. The forecast and observational noise variables follow 𝜀𝑡 ∼
normal(0, 1) and 𝜂𝑡 ∼ normal(0, 1). The noise variables are drawn independently
from 𝑋𝑡 for all 𝑡 , and they are treated as unknown.

The Kalman filter tracks the conditional distribution of 𝑋𝑡 given the measurements
𝑌1, . . . ,𝑌𝑡 . We denote the conditional distribution as L𝑡 := L(𝑋𝑡 |𝑌1, . . . ,𝑌𝑡 ). The
filter computes the distributionL𝑡 recursively in terms of the previous distributionL𝑡−1
and the new observation 𝑌𝑡 . The update is performed in two stages. First, the forecast
step describes L(𝑋𝑡 |𝑌1, . . . ,𝑌𝑡−1) using L𝑡−1 and the model dynamics. Second, the
analysis step uses Bayesian inference to incorporate the latest measurement 𝑌𝑡 .

1. First, a warmup. Assume the law L(𝑋 ) = normal(𝑚,𝑢) and the law
L(𝑌 | 𝑋 ) = normal(𝑋 ,𝑤 ), where the variances 𝑢,𝑤 > 0. Use Bayes’s rule to
verify that

L(𝑋 |𝑌 ) = normal(𝑋 ,𝑣 ) where
1
𝑣
=

1
𝑢

+ 1
𝑤

and
𝑋

𝑣
=
𝑚

𝑢
+ 𝑌
𝑤
.

2. The next task is to show by induction that L𝑡 ∼ normal(𝑚𝑡 , 𝑐𝑡 ) for each 𝑡 ∈ ℕ.
To do so, write out the distribution L(𝑋𝑡 |𝑌1, . . . ,𝑌𝑡−1) after the forecast step.
Then use Bayes’s rule to calculate the distribution L𝑡 after the analysis step.

3. Give explicit formulas for the evolution 𝑓 : 𝑚𝑡 ↦→ 𝑚𝑡+1 of the filtering mean
and the evolution 𝑔 : 𝑐𝑡 ↦→ 𝑐𝑡+1 of the filtering variance.

4. Deduce that 𝑐𝑡 ≤ 𝜎2
𝑌
for all 𝑡 , regardless of the observations (𝑌𝑡 ).

For the rest of the problem, we will assume that the dynamics are deterministic
(𝜎𝑋 = 0), while the observations are contaminated with noise with a constant standard
deviation (𝜎𝑌 > 0).

5. Derive the form of the asymptotic filtering variance 𝑐∞ := lim𝑡→∞ 𝑐𝑡 by computing
a fixed point of the evolution equation. Describewhat happenswhen the dynamics
are stable (|𝜆| ≤ 1) and when they are unstable (|𝜆| > 1).

6. Regardless of whether the dynamical system is stable or unstable, show that the
asymptotic filtering variance computed in (d) is globally asymptotically stable.
That is, |𝑔 ′ (𝑐∞) | < 1.

7. Last, we consider the evolution of the filtering mean for a fixed state sequence
𝑋 ∗
𝑡+1 = 𝜆𝑋

∗
𝑡 where 𝑋 ∗

0 is deterministic. Define the error 𝐸𝑡 := 𝑚𝑡 − 𝑋 ∗
𝑡 for each

𝑡 ∈ ℕ. Using the previous results, show that the expected error in the filtering
mean with respect to the noise in the observations satisfies

lim
𝑡→∞

����𝔼[𝐸𝑡+1]𝔼[𝐸𝑡 ]

���� < 1.

Therefore, the expected error in the filtering mean converges to zero. Altogether,
these results show that we can reliably track the evolution of an (unstable)
dynamical system from noisy observations.
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Notes
The material on characteristic functions can be found in most books on probability
theory. Application 21.51 was written by Dr. Ricardo Baptista.



22. *Densities

Agenda:
1. Densities
2. Absolute continuity
3. Radon–Nikodým theorem
4. Conditional expectation as a

density
5. Lebesgue decomposition

theorem

“Dr. Peter Venkman: Ray, pretend for a moment that I don’t know anything about
metallurgy, engineering, or physics, and just tell me what the hell is going on.”

—Ghostbusters, 1984

In Lecture 19, we introduced the concept of conditional expectation by considering
the best least-squares approximation of a random variable given some additional data.
This construction shows that the conditional expectation of a square-integrable random
variable has two properties (measurability and consistency) that characterize it.

In Lecture 20, we defined the conditional expectation of an integrable random
variable by means of the two characteristic properties. Then, we constructed the
general conditional expectation by approximating an integrable random variable by a
square-integrable random variable and taking limits.

In this lecture, we will present another perspective on conditional expectation
based on the notion of densities and justified by the Radon–Nikodým theorem from
measure theory. This is the classical approach to conditional expectation. It provides
yet another way to think about what conditional expectation means. Furthermore, it is
valuable to understand the concept of the relative density of a pair of measures, which
arises in other applications of probability theory.

22.1 The relative density of two measures
To motivate the idea of a relative density, we begin with the elementary conditional
expectation of a random variable given an event. This definition suggests that we
might be able to view conditional expectation as a ratio of measures. With this idea in
place, we recall the notion of a density, and we present the Radon–Nikodým theorem.

22.1.1 Elementary conditional expectation
Fix a probability space (Ω,F,ℙ). Let 𝑋 ∈ L1(Ω,F,ℙ) be an integrable real random
variable. For conceptual simplicity, we assume that the random variable is positive:
𝑋 ≥ 0. Consider an event G ∈ Fwith strictly positive probability: ℙ(G) > 0.

The elementary conditional expectation of the random variable 𝑋 given the event
G is given by the formula

𝔼[𝑋 | G occurs] := 𝔼[𝑋 1G]
ℙ(G) .

Note that this conditional expectation is a number, not a random variable, because it
reflects the concrete situation where the event G has occurred.

We can interpret the conditional expectation as a ratio of the expectation of 𝑋 on
the event G against the probability of the event G. Since 𝑋 is positive, this looks like
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a ratio of two measures applied to the event G. This point suggests the prospect of
constructing the conditional expectation as a relative density of two measures.

What is the connection with Kolmogorov’s definition of conditional expectation?
Suppose that 𝑌 is a version of the conditional expectation 𝔼[𝑋 | 𝜎 (G)]. Then

𝔼[𝑋 | G occurs] = 𝔼[𝑋 1G]
ℙ(G) =

𝔼[𝑌 1G]
ℙ(G) .

The second relation is the consistency property of the conditional expectation. In
other words, elementary conditional expectation given an event is the average of the
abstract conditional expectation over the event. Note that we must normalize by the
probability of the event to make this formulation correct. One of the insights behind
Kolmogorov’s construction is that the normalization prevents us from defining the
conditional expectation over negligible sets, even though we may need to do so (e.g.,
when conditioning on a continuous random variable).

22.1.2 Densities
It is easiest to discuss densities using measures, rather than limiting our attention
to probabilities. Let us recall what it means for one measure to have a density with
respect to another, along with the basic facts about this construction.

Suppose that 𝜇 is a (finite) measure on the measurable space (Ω,F). Consider
a positive, 𝜇-integrable function 𝑓 ∈ L1(𝜇) with 𝑓 ≥ 0. We can construct another
(finite) measure 𝜈 on the same space using an integral:

𝜈 (E) :=
∫
E
𝑓 d𝜇 for E ∈ F. (22.1)

It is an easy matter to check that 𝜈 is a measure by means of Tonelli’s theorem for
sums (Exercise 5.39). When (22.1) holds, we say that the function 𝑓 is a density of the
measure 𝜈 with respect to the measure 𝜇.

Integrals with respect to the measure 𝜈 satisfy the formula∫
𝑔 d𝜈 =

∫
𝑔 𝑓 d𝜇 for each 𝑔 ∈ L1(𝜈).

This point follows from an application of Fubini–Tonelli (Theorem 6.23). In view of
this formula, it is natural to use a differential notation for the density:

𝑓 =
d𝜈
d𝜇

.

This notation is compatible with the intuition that we are changing measures from 𝜇
to 𝜈 by “cancellation.” But it is worth emphasis that the density is a function (defined
on points of the domain Ω), and not a measure.

Densities are essentially unique. If the function ℎ is another density of 𝜈 with
respect to 𝜇, then 𝑓 = ℎ 𝜇-almost everywhere. This point requires a standard, but
nontrivial, measure theory argument. It is similar to the proof that integrals are almost
positive (Theorem 5.14).

The measures 𝜇 and 𝜈 can distribute mass in rather disparate ways. Nevertheless,
for a measurable set E ∈ F, it must be the case that 𝜇(E) = 0 implies that 𝜈 (E) = 0.
This is a consequence of the definition of the integral. As we will see, this property
characterizes when 𝜈 has a density with respect to 𝜇.
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22.1.3 Densities: Examples
The most common situations where we encounter densities are in elementary discrete
and continuous probability.

Example 22.1 (Counting measure: Densities). Consider the measurable space (ℤ+,P(ℤ+)).
Recall that the counting measure #E reports the cardinality of a set E ⊆ ℤ+. Let
(𝑝𝑛 : 𝑛 ∈ ℕ) be a sequence of positive numbers, and consider the measure

𝜈 (E) =
∑︁

𝑛∈E
𝑝𝑛 for E ⊆ ℤ+.

The measure 𝜈 has density 𝒑 = (𝑝𝑛 : 𝑛 ∈ ℤ+) with respect to the counting measure.
Familiar cases include the standard discrete probability distributions. For example,

𝑝𝑛 = 𝑞−𝑛/(1 − 𝑞) is the density of the geometric(𝑞) distribution. Meanwhile,
𝑝𝑛 = e−𝛽𝛽𝑛/𝑛! is the density of the poisson(𝛽) distribution. ■

Example 22.2 (Lebesgue measure: Densities). Consider the measurable space (ℝ,B(ℝ)).
Recall that the Lebesgue measure 𝜆 reports the total length of a Borel set. Let 𝑓 ≥ 0
be a positive, Borel measurable function, and consider the measure

𝜈 (B) =
∫
E
𝑓 d𝜆 for B ∈ B(ℝ).

The measure 𝜈 has density 𝑓 with respect to the Lebesgue measure.
Familiar examples include “continuous” probability distributions. For example,

𝑓 = 1[0,1] is the density of the uniform[0, 1] distribution. Meanwhile, the function
𝑓 (𝑥) = (2𝜋)−1/2e−𝑥2/2 is the density of the standard normal distribution. ■

22.1.4 The Radon–Nikodým theorem
In this section, we present an important theorem that describes when one measure has
a density with respect to another. First, we give a definition.

Definition 22.3 (Absolutely continuous). Let 𝜇 and 𝜈 be two measures on the same
measurable space. Suppose that, for any measurable set E, the condition 𝜇(E) = 0
implies that 𝜈 (E) = 0. Then we say that 𝜈 is absolutely continuous with respect to
𝜇, and we write 𝜈 Î 𝜇.

As we have seen, when 𝜈 has a density with respect to 𝜇, then 𝜈 is absolutely
continuous with respect to 𝜇. The converse of this statement is also valid.

Theorem 22.4 (Radon–Nikodým). Suppose that 𝜇,𝜈 are 𝜎 -finite measures on the
same measurable space. If 𝜈 is absolutely continuous with respect to 𝜇 (that is,
𝜈 Î 𝜇), then

𝜈 (E) =
∫
E
𝑓 d𝜇 for all measurable E,

where 𝑓 is a positive, real-valued, measurable function. The function 𝑓 is deter-
mined 𝜇-almost everywhere.

We will establish this theorem in Section 22.3.
As before, we can use the differential notation to express the density 𝑓 = d𝜈/d𝜇

that is promised by Theorem 22.4. The density 𝑓 = d𝜈/d𝜇 is often called the
Radon–Nikodým derivative of 𝜈 with respect to 𝜇.

Even though d𝜈/d𝜇 is a function and not a measure, the notation hints at the role
of absolute continuity. It is natural to insist that 𝜇(E) = 0 whenever 𝜈 (E) = 0, or else
the ratio would formally be infinite for points in E.
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The Radon–Nikodým theorem arises in contexts where we change measures or
compare two measures. Our purpose in introducing the result is to give an alternative
construction of the conditional expectation.

22.1.5 Absolute continuity: Examples
To get a feel for what absolute continuity means, we can consider some simple
examples.

Example 22.5 (Absolute continuity: Discrete case). Once again, consider the measurable
space (ℤ+,P(ℤ+)). Generically, any two measures on this space can be written as

𝜇(E) =
∑︁

𝑛∈E
𝑝𝑛 and 𝜈 (E) =

∑︁
𝑛∈E

𝑞𝑛 for E ⊆ ℤ+,

where (𝑝𝑛 : 𝑛 ∈ ℤ+) and (𝑞𝑛 : 𝑛 ∈ ℤ+) are sequences that take values in ℝ+.
The support of a sequence 𝒂 = (𝑎𝑛 )
is supp(𝒂 ) := {𝑛 : 𝑎𝑛 ≠ 0}.

The measure 𝜈 is absolutely continuous with respect to 𝜇 if and only if 𝑝𝑛 = 0
implies that 𝑞𝑛 = 0 for every index 𝑛. In other words, 𝜈 Î 𝜇 if and only if
supp(𝒒 ) ⊆ supp(𝒑). ■

Example 22.6 (Absolute continuity: Lebesgue case). Now, consider the measurable space
(ℝ,B(ℝ)). We introduce two measures that have densities with respect to the
Lebesgue measure:

𝜇(B) =
∫
B
𝑓 d𝜆 and 𝜈 (B) =

∫
B
𝑔 d𝜆 for B ∈ B(ℝ).

The densities 𝑓 , 𝑔 : ℝ → ℝ+ are Borel measurable.
The support of a real-valued function
𝑓 is supp( 𝑓 ) := {𝑎 : 𝑓 (𝑎 ) ≠ 0}.

For the measure 𝜈 to be absolutely continuous with respect to 𝜇, it is sufficient that
𝑓 (𝑎) = 0 implies 𝑔 (𝑎) = 0 for all 𝑎 ∈ ℝ. That is, supp(𝑔 ) ⊆ supp( 𝑓 ) implies that
𝜈 Î 𝜇. ■

Exercise 22.7 (Absolute continuity: Lebesgue case). Find a necessary and sufficient condition
for 𝜈 Î 𝜇 in Example 22.6.

Warning 22.8 (Continuous versus absolutely continuous). Recall that a real random
variable 𝑋 is (absolutely) continuous when it has a density with respect to the
Lebesgue measure. Equivalently, the law 𝜇𝑋 is absolutely continuous with respect
to the Lebesgue measure: 𝜇𝑋 Î 𝜆.

Note, however, that 𝑋 : Ω → ℝ might not be a continuous function. (Indeed,
the sample space Ω need not have a topology).

The distribution function of a continuous random variable is always a continuous
function. Nevertheless, there are random variables that have continuous distribution
functions that do not have a density with respect to the Lebesgue measure. ■

22.2 Conditional expectation: Construction via densities
Let us return to the matter of constructing the conditional expectation by means of a
density. We can accomplish this goal by applying the Radon–Nikodým theorem to the
ratio of an expectation against a probability that arises from the elementary definition
of conditional expectation.
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Theorem 22.9 (Conditional expectation: Fundamental theorem, redux). Fix a probability
space (Ω,F,ℙ), and let G ⊆ F be a 𝜎 -algebra on the sample space Ω. Let
𝑋 ∈ L1(Ω,F,ℙ) be a real random variable.

As in Definition 20.1, there exists a version 𝑌 of the conditional expectation
𝔼[𝑋 | G]. Furthermore, if 𝑌 ′ is another version of the conditional expectation,
then 𝑌 = 𝑌 ′ almost surely. That is, ℙ {𝑌 ≠ 𝑌 ′} = 0.

The uniqueness claim in Theorem 22.9 follows from a direct argument, just as it
did in Theorem 20.2. Let us present an independent proof of the existence result.

Proof. On the measurable space (Ω, G), we construct two finite measures

𝜈+(G) :=
∫
G
𝑋+ dℙ = 𝔼[𝑋+1G];

𝜈− (G) :=
∫
G
𝑋− dℙ = 𝔼[𝑋−1G]

for all G ∈ G. (22.2)

Let us emphasize that the events G here belong to G, the 𝜎 -algebra on which we are
conditioning. As usual, 𝑋± are the positive and negative parts of the random variable
𝑋 , which are both F-measurable (but typically not G-measurable).

We can verify that both 𝜈+ and 𝜈− are finite measures using Tonelli’s theorem
(Exercise 5.39). Furthermore, by definition of the Lebesgue integral, the condition
ℙ(G) = 0 implies that 𝜈+(G) = 0 and 𝜈− (G) = 0. Therefore, each of the two measures
is absolutely continuous with respect to ℙ on the measurable space (Ω, G).

An application of Theorem 22.4 delivers two positive, G-measurable functions 𝑌+
and 𝑌− for which

𝜈+(G) =
∫
G
𝑌+ dℙ = 𝔼[𝑌+1G];

𝜈− (G) =
∫
G
𝑌− dℙ = 𝔼[𝑌−1G]

for all G ∈ G. (22.3)

We may now construct the random variable 𝑌 := 𝑌+ −𝑌− , which will serve as a version
of the conditional expectation 𝔼[𝑋 | G].

Let us confirm that 𝑌 has the properties required by Definition 20.1. First, 𝑌 is
G-measurable, because it is the difference of two G-measurable random variables.
Second, 𝑌 is integrable because 𝜈±(Ω) = 𝔼[𝑋±] < +∞. Last, 𝑌 is consistent with 𝑋
in the sense that

𝔼[𝑌 1G] = 𝔼[𝑋 1G] for all G ∈ G.
This point followswhenwe subtract the relations (22.3) and invoke the definitions (22.2)
of 𝜈±. Thus, 𝑌 is a conditional expectation of 𝑋 , given G. ■

The proof of Theorem 22.9 indicates that the conditional expectation can be viewed
as the density of the (signed) measure 𝜈 (G) := 𝔼[𝑋 1G] with respect to the probability
measure G ↦→ ℙ(G) on the measurable space (Ω, G). That is,

𝑌 =
d𝜈
dℙ

on (Ω, G).

This corresponds to our intuition that we are comparing the mass that 𝑋 places on G
with the probability mass of G for events G ∈ G.

A subtle feature of this argument is that we apply the Radon–Nikodým theorem in
the measurable space (Ω, G) instead of the original measurable space (Ω,F). This
slight change of perspective forces the conditional expectation 𝑌 to be G-measurable,
which means that 𝑌 is a coarse-grained approximation of 𝑋 , quantized to events in G.
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22.3 The Lebesgue decomposition theorem
We will derive the Radon–Nikodým theorem as a consequence of a more general
decomposition theorem for measures, due to Lebesgue.

Theorem 22.10 (Lebesgue decomposition). Let 𝜇,𝜈 be 𝜎 -finite measures on the same
measurable space. Then there is a measurable set N with 𝜇(N) = 0 and a positive,
measurable function 𝑓 for which

𝜈 (E) = 𝜈 (E ∩ N) +
∫
E
𝑓 d𝜇 for all measurable E.

This decomposition is essentially unique, in that the set N and the function 𝑓 are
determined 𝜇-almost everywhere.

A discussion and proof of Theorem 22.10 occupy the rest of this section. Observe
that the Radon–Nikodým theorem is an immediate consequence of Theorem 22.10.

Corollary 22.11 (Radon–Nikodým). If 𝜈 Î 𝜇, then 𝜈 has a density 𝑓 with respect to 𝜇.

Proof. Since 𝜇(N) = 0, we have 𝜈 (N) = 0. Therefore, in Theorem 22.10, the term
𝜈 (E ∩ N) = 0 for every measurable set E. ■

22.3.1 Lebesgue decomposition
Let us discuss what Theorem 22.10 means. We begin with a definition.

Definition 22.12 (Mutually singular). Two measures 𝜇,𝜈 on the same measurable space
are called mutually singular if there is a measurable set N for which 𝜇(N) = 0 and
𝜈 (Nc) = 0. We write 𝜇 ⊥ 𝜈 .

In other words, two measures are mutually singular when each one is concentrated on
a negligible set of the other. In this sense, the two measures have nothing to do with
each other.

Theorem 22.10 treats 𝜇 as reference measure. This reference measure allows us to
split the measure 𝜈 into two parts:

𝜈 = 𝜈⊥ + 𝜈Î where 𝜈⊥ ⊥ 𝜈Î. (22.4)

The measure 𝜈⊥ and the reference measure 𝜇 are mutually singular, while the measure
𝜈Î is absolutely continuous with respect to the reference 𝜇.

Exercise 22.13 (Mutually singular). Show that the set N that witnesses that 𝜇 ⊥ 𝜈 is
determined (𝜇 + 𝜈)-almost everywhere. More precisely, suppose there is another
measurable set M for which 𝜇(M) = 0 and 𝜈 (Mc) = 0. Then 𝜇(N△M) = 𝜈 (N△M) = 0.

Exercise 22.14 (Mutually singular: Discrete and continuous). Suppose that 𝑋 is a discrete
random variable, and 𝑌 is a continuous random variable. Show that the laws 𝜇𝑋 and
𝜇𝑌 are mutually singular.

Exercise 22.15 (Lebesgue decomposition). Show that the measures 𝜈⊥ and 𝜈Î in the
Lebesgue decomposition (22.4) are completely determined by 𝜇,𝜈 .

Problem 22.16 (*Singular continuous). Recall that the Cantor distribution has a continuous
distribution function, but it does not have a density with respect to the Lebesgue
measure. Let 𝑋 be a random variable that is either discrete or continuous. Show that
the law 𝜇𝑋 and the Cantor distribution are mutually singular.



Lecture 22: *Densities 334

Prove the following extension of the Lebesgue decomposition. Every Borel measure
on the real line is the sum of three mutually singular distributions: a purely discrete
distribution (concentrated on a countable set), a distribution that has a density
with respect to Lebesgue measure, and a singular continuous distribution (having a
continuous distribution function but no density with respect to Lebesgue measure).

22.3.2 Background
We will prove Theorem 22.10 using a functional-analytic argument due to John von
Neumann. This approach involves a small dose of theory for inner-product spaces.

Consider a 𝜎 -finite measure 𝜚 on a measurable space (Ω,F). As usual, define the
L2 pseudonorm:

∥𝑔 ∥2 :=
(∫

Ω
|𝑔 |2 d𝜚

)1/2
for measurable 𝑔 : Ω → ℝ.

We introduce the space of square-integrable functions:

L2(𝜚) := {𝑔 : ∥𝑔 ∥2 < +∞}.
As in Lecture 11 or 12, this is a complete pseudonormed space. Let us single out an
important class of functions, defined on L2(𝜚).

Definition 22.17 (Bounded linear functional). A linear functional is a linear map 𝜑 :
L2(𝜚) → ℝ. That is,

𝜑 (𝛼𝑓 + 𝛽𝑔 ) = 𝛼𝜑 ( 𝑓 ) + 𝛽𝜑 (𝑔 ) for all 𝛼, 𝛽 ∈ ℝ and 𝑓 , 𝑔 ∈ L2(𝜚).

The linear functional 𝜑 is bounded if there exists a constant 𝐶 > 0 such that

|𝜑 (𝑔 ) | ≤ 𝐶 · ∥𝑔 ∥2 for all 𝑔 ∈ L2(𝜚).

Every bounded linear functional on L2(𝜚) can be expressed as an integral. This
famous result is called the Riesz representation theorem.

Theorem 22.18 (Riesz representation). Let 𝜚 be a 𝜎 -finite measure on a measurable
space. Consider the space L2(𝜚) of square-integrable functions. If 𝜑 is a bounded
linear functional on L2(𝜚), then there is a function ℎ ∈ L2(𝜚) for which

𝜑 (𝑔 ) =
∫
Ω
𝑔ℎ d𝜚 for all 𝑔 ∈ L2(𝜚).

In the special case of a probability measure 𝜚, Problem 12.29 contains an outline of
the proof. The argument is no different in the general setting here. The key idea is to
show that every function in L2(𝜚) induces another function that is orthogonal to the
null space of 𝜑 . This orthogonality relation yields the Riesz representation.

22.3.3 Lebesgue decomposition: Proof
We establish the theorem under the additional assumption that both 𝜇 and 𝜈 are finite
measures. We will work in the space L2(𝜇 + 𝜈). Recall that

(𝜇 + 𝜈) (E) = 𝜇(E) + 𝜈 (E) for measurable E.

Similarly, ∫
Ω
𝑔 d(𝜇 + 𝜈) =

∫
Ω
𝑔 d𝜇 +

∫
Ω
𝑔 d𝜈 for 𝑔 ∈ L2(𝜇 + 𝜈).
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The sum of two measures behaves exactly as you imagine it should.

A bounded linear functional
On L2(𝜇 + 𝜈), we consider the bounded linear functional

𝜑 (𝑔 ) :=
∫
Ω
𝑔 d𝜈 for all 𝑔 ∈ L2(𝜇 + 𝜈).

Linearity follows from the linearity of the integral. To see that 𝜑 is bounded, we
calculate that

|𝜑 (𝑔 ) | ≤
∫
Ω
|𝑔 | d𝜈 ≤

∫
Ω
|𝑔 | d(𝜇 + 𝜈)

≤ ((𝜇 + 𝜈) (Ω))1/2
(∫

Ω
|𝑔 |2 d(𝜇 + 𝜈)

)1/2
=: 𝐶 · ∥𝑔 ∥2.

The first inequality is the absolute value inequality for integrals. The second inequality
holds because 𝜇 is a positive measure, so

∫
Ω
|𝑔 | d𝜇 ≥ 0. The third inequality is

Cauchy–Schwarz. Finally, we invoke the fact that 𝜇,𝜈 are finite measures and the
definition of the L2 pseudonorm.

Riesz representation
Since 𝜑 is a bounded linear functional on L2(𝜇 + 𝜈), Theorem 22.18 furnishes a
representation as an integral. There is a fixed function ℎ ∈ L2(𝜇 +𝜈) with the property
that

𝜑 (𝑔 ) =
∫
Ω
𝑔 d𝜈 =

∫
Ω
𝑔ℎ d(𝜇 + 𝜈) for all 𝑔 ∈ L2(𝜇 + 𝜈). (22.5)

The relation (22.5) is the key to the proof. We can extract everything we need by
inserting particular functions into the identity and making deductions.

The representing function is bounded: 0 ≤ ℎ ≤ 1
First, let us establish that 0 ≤ ℎ ≤ 1 𝜈 -almost everywhere. Heuristically, ℎ ≤ 1/2 in
places where 𝜇 is bigger than 𝜈 , while ℎ ≥ 1/2 in places where 𝜈 is bigger than 𝜇.

Let us start with the upper bound. We will present this argument in some detail
because variants arise several times in the proof. For a fixed 𝑛 ∈ ℕ, we consider the
bounded function 𝑔 (𝜔) = 1{𝜔 ∈ Ω : ℎ (𝜔) > 1 + 𝑛−1}. Since bounded functions are
square-integrable, the relation (22.5) shows that∫

Ω
1{ℎ > 1 + 𝑛−1} d𝜈 =

∫
Ω
1{ℎ > 1 + 𝑛−1} · ℎ d(𝜇 + 𝜈).

On the left-hand side, we recognize the measure of a set, and we bound the right-hand
side below:

𝜈{ℎ > 1 + 𝑛−1} ≥ (1 + 𝑛−1) · (𝜇 + 𝜈){ℎ > 1 + 𝑛−1}
≥ (1 + 𝑛−1) · 𝜈{ℎ > 1 + 𝑛−1}.

The first inequality holds by monotonicity of the integral since ℎ > 1 + 𝑛−1 on the
designated event. The last inequality depends on the fact that 𝜇 is a positive measure.
This relation implies that

𝜈{ℎ > 1 + 𝑛−1} = 0 for each 𝑛 ∈ ℕ.

Using the decreasing limit property of a finite measure (Proposition 2.30), we conclude
that 𝜈{ℎ > 1} = 0.

The proof of the lower bound is essentially the same. This time, we consider
functions of the form 𝑔 = 1{ℎ < −1/𝑛} for 𝑛 ∈ ℕ
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Constructing the singular set
We introduce the measurable set N := {𝜔 ∈ Ω : ℎ (𝜔) = 1}. This is the singular set
promised in the theorem.

To verify that 𝜇(N) = 0, we simply insert the function 𝑔 = 1{ℎ = 1} into the
relation (22.5).

Constructing the density
We are now prepared to construct the density that certifies that the remaining part of
the measure 𝜈 is absolutely continuous with respect to 𝜇.

Let us rearrange the relation (22.5) to obtain∫
Ω
𝑔 (1 − ℎ) d𝜈 =

∫
Ω
𝑔ℎ d𝜇. for all 𝑔 ∈ L2(𝜇 + 𝜈).

Fix a measurable set E. By the change of variables 𝑔 ↦→ 𝑔1E, we can restrict the
integrals to the set E. That is,∫

E
𝑔 (1 − ℎ) d𝜈 =

∫
E
𝑔ℎ d𝜇. for all 𝑔 ∈ L2(𝜇 + 𝜈). (22.6)

To obtain the formula for the density 𝑓 in the theorem statement, we need to choose a
function 𝑔 that cancels out the factor (1 − ℎ) on the left-hand side.

For 𝑛 ∈ ℕ, we activate (22.6) with the bounded function

𝑔 :=
1

1 − ℎ · 1{ℎ < 1 − 𝑛−1}.

Using monotone convergence (Theorem 5.18), we obtain∫
E
1{ℎ < 1} d𝜈 =

∫
E

ℎ

1 − ℎ · 1{ℎ < 1} d𝜇.

Since Nc = {ℎ < 1}, we can reinterpret the last display to reach the relation

𝜈 (E ∩ Nc) =
∫
E
𝑓 d𝜇 where 𝑓 =

ℎ

1 − ℎ 1ℎ<1.

The function 𝑓 is the density in the part of 𝜈 that is absolutely continuous with respect
to 𝜇.

Endgame
Finally, we note that

𝜈 (E) = 𝜈 (E ∩ N) + 𝜈 (E ∩ Nc) = 𝜈 (E ∩ N) +
∫
E
𝑓 d𝜈.

This is the statement of Theorem 22.10.

Exercise 22.19 (Lebesgue decomposition: 𝜎-finite case). Extend the Lebesgue decomposition
result to the case where 𝜇,𝜈 are 𝜎 -finite measures.

Exercise 22.20 (Lebesgue decomposition: Uniqueness). Show that the set N and the density
𝑓 are essentially unique.
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23. Martingales

Agenda:
1. Filtrations
2. Martingales
3. Examples

“I took all the gold I found, and playing the martingale, and doubling my stakes
continuously, I won every day during the remainder of the carnival. I was fortunate
enough never to lose the sixth card, and, if I had lost it, I should have been without
money to play, for I had two thousand sequins on that card. I congratulated myself
upon having increased the treasure of my dear mistress...

“I still played on the martingale, but with such bad luck that I was soon left without
a sequin. As I shared my property with M. M. I was obliged to tell her of my losses,
and it was at her request that I sold all her diamonds, losing what I got for them;
she had now only five hundred sequins by her. There was no more talk of her
escaping from the convent, for we had nothing to live on! I still gamed, but for
small stakes, waiting for the slow return of good luck.”

—Histoire de ma via, Giacomo Casanova (1822), transl. Arthur Machen (1902)

Having completed our study of conditional expectation, we turn back to the theory
of stochastic processes. We have already attended on the basic facts about the partial
sums of a sequence of independent random variables. Although these partial sums are
not independent, they have a rather trivial type of dependency structure. Now that we
understand conditioning, we can discuss stochastic processes with more interesting
dependencies.

In this lecture, we introduce several important classes of stochastic processes:
martingales and their relatives. These processes consist of random variables that are
indexed by time, and each element can depend in an almost arbitrary way on the past.
The random variables are linked to each other by means of assumptions about their
conditional expectations. At each time, the conditional expectation of the next random
variable in the sequence is related to the current value of the sequence.

Among other things, a martingale models a sequence of repeated games, where
the player’s strategy may depend on the past. For conceptual simplicity, we will use
gambling analogies to motivate the definition of a martingale and related concepts. For
computational mathematicians, the relevant applications of martingales include pre-
diction, filtering, adaptive learning and decision making, and the study of randomized
algorithms.

23.1 Filtrations and adapted processes
We have the intuition that a 𝜎 -algebra captures knowledge about the world. In
particular, at a given time, we can collect all the events that have been determined so
far. Therefore, a small 𝜎 -algebra contains less information than a larger 𝜎 -algebra
that contains it. In this section, building on this idea, we develop a mathematical
formalization of the process of accumulating information about the state of affairs.
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23.1.1 Filtrations
A filtration is simply an increasing sequence of 𝜎 -algebras. Each algebra collects the
events that have been determined at a given time.

Definition 23.1 (Filtration). Fix a probability space (Ω,F,ℙ). A (discrete-time)
filtration is an increasing sequence of 𝜎 -algebras on Ω:

F0 ⊆ F1 ⊆ F2 ⊆ · · · ⊆ F∞ ⊆ F.

We may abbreviate the filtration as a sequence (F𝑘 : 𝑘 ∈ ℤ+).

You should think about 𝑘 = 0, 1, 2, . . . as a discrete time index. The 𝜎 -algebra F𝑘
contains all events that have been determined up to and including time instant 𝑘 . That
is, for each event E ∈ F𝑘 , at the time 𝑘 , we know whether the distinguished sample
point 𝜔0 ∈ E or 𝜔0 ∉ E.

The fact that the 𝜎 -algebras are increasing reflects the assumption that we accu-
mulate knowledge with time, and we never forget what we know. With age comes
wisdom.

It is common (but not necessary) for the initial element of the filtration to be the
trivial 𝜎 -algebra: F0 := {∅,Ω}. In this case, no events are determined at the outset;
we are born ignorant.

Note that
⋃∞
𝑘=1 F𝑘 need not be a

𝜎 -algebra; we may need to generate
additional events.

If the last element F∞ of the filtration is not specified, we define F∞ := 𝜎 (⋃∞
𝑘=1 F𝑘 ).

This is the collection of all events that are discoverable during our exploration. We
do not assume that F∞ coincides with the master 𝜎 -algebra F, so there may be many
events that remain outside the scope of our experience.

It is also very common to consider a finite filtration, which takes the form

F0 ⊆ F1 ⊆ F2 ⊆ · · · ⊆ F𝑁 ⊆ F for a fixed 𝑁 ∈ ℤ+.

These filtrations can be used to model random processes that have a fixed horizon.

23.1.2 Filtrations generated by events and by random variables
We can generate a filtration from a sequence of events.

Example 23.2 (Filtration: Events). Consider an arbitrary sequence (E𝑖 : 𝑖 ∈ ℕ) of events
that belong to the master 𝜎 -algebra F. Define the 𝜎 -algebras

F𝑘 := 𝜎 (E1, . . . , E𝑘 ) for 𝑘 ∈ ℕ.

Let F0 := {∅,Ω} and F∞ := 𝜎 (⋃∞
𝑘=1 F𝑘 ).

Then (F𝑘 : 𝑘 ∈ ℤ+) is a filtration. At each time 𝑘 , we know whether the events
E1, . . . , E𝑘 and all of their set-theoretic combinations have occurred.

This filtration models a sequence of simple experiments (not necessarily indepen-
dent) where E𝑖 is the event that the 𝑖 th experiment succeeds. At time 𝑘 , we know the
outcomes of the first 𝑘 experiments. ■

Most commonly, filtrations arise from a sequence of random variables.

Example 23.3 (Filtration: Random variables). Consider an arbitrary sequence (𝑍𝑖 : 𝑖 ∈ ℤ+)
of real random variables on Ω that are F-measurable. Define the 𝜎 -algebras

F𝑘 := 𝜎 (𝑍0, 𝑍1, 𝑍2, . . . , 𝑍𝑘 ) for 𝑘 ∈ ℤ+.

Let F∞ := 𝜎 (⋃∞
𝑘=1 F𝑘 ).
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As before, (F𝑘 : 𝑘 ∈ ℤ+) is a filtration. At each time 𝑘 , we know the values of the
random variables 𝑍0, 𝑍1, . . . , 𝑍𝑘 . Recall that a random variable 𝑌 is F𝑘 -measurable if
and only if 𝑌 = 𝑔 (𝑍0, 𝑍1, . . . , 𝑍𝑘 ) for a measurable function 𝑔 : ℝ𝑘 → ℝ.

In many cases, the initial random variable 𝑍0 takes a constant value (so is not
random). This assumption is equivalent with F0 = {∅,Ω}.

This filtration models a sequence 𝑍0, 𝑍1, 𝑍2, . . . of numerical observations (not
necessarily independent), although there is no need for the measurements to be alike
or independent from each other. ■

The last example is fairly general, and it describes a large class of situations. For
example, we can think about the random variables 𝑍𝑘 as the random outcome of the
𝑘 th game in a sequence. If we are repeatedly rolling a fair die, then 𝑍𝑘 are i.i.d. copies
of a uniform{1, . . . , 6} random variable. At time 𝑘 , the outcomes of the first 𝑘 rolls
are completely described by F𝑘 .

23.1.3 Adapted processes
We can now introduce a new kind of stochastic process, consisting of a sequence of
random variables whose values are determined as time passes.

Definition 23.4 (Adapted process). Fix a probability space (Ω,F,ℙ) and a filtration
(F𝑘 : 𝑘 ∈ ℤ+). We say that a sequence (𝑋𝑘 : 𝑘 ∈ ℤ+) of real random variables is
adapted to the filtration if 𝑋𝑘 is F𝑘 -measurable for each index 𝑘 ∈ ℤ+.

In other words, the 𝑘 th random variable 𝑋𝑘 in the adapted sequence is completely
determined by the information we have available at time 𝑘 .

If you think about the filtration (F𝑘 ) as describing the random outcomes (𝑍𝑘 )
of a sequence of games, you might think about (𝑋𝑘 ) as describing the sequence of
accumulated winnings after 𝑘 games. The total winnings 𝑋𝑘 after 𝑘 games depends
on the player’s winnings 𝑋𝑘−1 from the first 𝑘 − 1 games, the player’s bet on the 𝑘 th
game (which may depend on the entire history of the game), and the random outcome
𝑍𝑘 of the 𝑘 th game. Although these effects may interact in a complicated way, the
sequence (𝑋𝑘 ) is still adapted.

23.2 Martingales and friends
An adapted process provides a very flexible model for describing random outcomes
that evolve with time in a causal fashion (i.e., the future does not influence the past).
Nevertheless, at this level of generality, it is hard to say very much about the behavior
of an adapted process because there is no relationship among its constituents. If we
want to be able to understand the trajectory of the process, we need a way to link the
random variables.

23.2.1 Martingales
Martingales (and their relatives) are adapted processes that are based on a minimal
assumption about how the random variables evolve. Although the value 𝑋𝑘 of an
adapted process is determined at time 𝑘 , the future values of the process remain
random. A martingale is a random process that is indifferent about the future. Given
where things stand now, our best prediction is that the future will be the same.

Definition 23.5 (Martingale sequence). Fix a probability space (Ω,F,ℙ) and a filtration
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(F𝑘 : 𝑘 ∈ ℤ+). A sequence (𝑋𝑘 : 𝑘 ∈ ℤ+) of real random variables is called
a (discrete-time) martingale with respect to the filtration when it satisfies three
properties:

1. Adaptivity: (𝑋𝑘 ) is adapted to the filtration for each 𝑘 ∈ ℤ+.
2. Integrability: 𝔼 |𝑋𝑘 | < +∞ for each 𝑘 ∈ ℤ+. The integrability property does not

require that the sequence ∥𝑋𝑘 ∥L1 is
uniformly bounded.

3. Status quo: 𝔼[𝑋𝑘+1 | F𝑘 ] = 𝑋𝑘 almost surely for each 𝑘 ∈ ℤ+.

The adaptivity property means that the value 𝑋𝑘 of the martingale sequence at
time 𝑘 is determined by the information F𝑘 that we have available at time 𝑘 . The
distinctive assumption is the status quo property, which states that the next value 𝑋𝑘+1
of the sequence is, on average, the same as the current value. In other words, we
expect tomorrow to be the same as today. The integrability requirement is needed so
that we can compute the conditional expectation.

Example 23.6 (Gambling). In the 𝑘 th game, I flip a fair coin, and I pay you $1 if the coin
comes up heads, whereas you pay me $1 if the coin comes up tails. Let 𝑋𝑘 denote your
total winnings after 𝑘 games are complete.

We canmodel your total winnings as amartingale sequence. For each𝑘 = 1, 2, 3, . . .
define the random variable 𝑍𝑘 = +1 if the 𝑘 th coin comes up heads and 𝑍𝑘 = −1 if the
𝑘 th coin comes up tails. Introduce the𝜎 -algebrasF0 = {∅,Ω} andF𝑘 = 𝜎 (𝑍1, . . . , 𝑍𝑘 ).
The initial winnings 𝑋0 = 0, so it is F0-measurable. Your total winnings after the 𝑘 th
game satisfy

𝑋𝑘 = 𝑋𝑘−1 + 𝑍𝑘 for 𝑘 ∈ ℕ.

By induction, we can see that 𝑋𝑘 is F𝑘 -measurable for each 𝑘 . Therefore, (𝑋𝑘 ) is
adapted to the filtration. Second, induction shows that 𝑋𝑘 is integrable because L1 is a
linear space. Third, we compute the conditional expectation:

𝔼[𝑋𝑘+1 | F𝑘 ] = 𝔼[𝑋𝑘 + 𝑍𝑘+1 | F𝑘 ] = 𝑋𝑘 + 𝔼[𝑍𝑘+1 | F𝑘 ] = 𝑋𝑘 .

Therefore, the accumulated winnings from a fair game form a martingale sequence. ■

This is also called the St. Petersburg
game.

The last example is probably the source of the terminology “martingale”. Indeed,
there is a famous betting strategy called a martingale where you double your bet each
time you play a fair game. Paradoxically, it may seem that this strategy is guaranteed
to yield a profit. If your first win occurs on the 𝑘 th trial, then your total winnings after
the 𝑘 trial satisfy

−1 − 2 − 4 − · · · − 2𝑘−1 + 2𝑘 = 1.

Unfortunately, this strategy potentially requires an infinite amount of capital and
infinite gameplay, so it is not entirely practical.

Exercise 23.7 (Martingale: Future expectation). Assuming that 𝑛 ≥ 𝑘 , show that

𝔼[𝑋𝑛 | F𝑘 ] = 𝑋𝑘 almost surely.

In particular, 𝔼[𝑋𝑛] = 𝔼[𝑋0] for each 𝑛 ∈ ℤ+.

23.2.2 Supermartingales and submartingales
As we have mentioned, martingales can be used to model fair games. It is natural to
consider two related processes that describe unfair games.
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Definition 23.8 (Supermartingale). Maintain the notation of Definition 23.5. We say
that the sequence (𝑋𝑘 : 𝑘 ∈ ℤ+) is a supermartingale if the status quo property (3)
is replaced by the condition

3↓. Decreasing expectations: 𝔼[𝑋𝑘+1 | F𝑘 ] ≤ 𝑋𝑘 almost surely for each 𝑘 ∈ ℤ+.

“ ‘That Accounts for a Good Deal,’
said Eeyore. ‘How Like Them,’ he
added, after a long silence.”

—Winnie-The-Pooh, A. A. Milne

The decreasing expectation property in Definition 23.8 reflects a pessimistic view
of the world. On average, tomorrow is worse than today. A supermartingale can be
used to model a player’s total winnings in a game that is unfair to him (e.g., casino
games from the player’s point of view).

Definition 23.9 (Submartingale). Maintain the notation of Definition 23.5. We say
that the sequence (𝑋𝑘 : 𝑘 ∈ ℤ+) is a submartingale if the status quo property (3)
is replaced by the condition

3↑. Increasing expectations: 𝔼[𝑋𝑘+1 | F𝑘 ] ≥ 𝑋𝑘 almost surely for each 𝑘 ∈ ℤ+.

“Pangloss enseignait la métaphysico-
théologo-cosmolonigologie. Il
prouvait admirablement qu’il n’y a
point d’effet sans cause, et que, dans
ce meilleur des mondes possibles, le
château de monseigneur le baron
était le plus beau des châteaux, et
madame la meilleure des baronnes
possibles.”

—Candide, Voltaire

The increasing expectation property in Definition 23.9 reflects an optimistic view of
the world. On average, tomorrow is better than today. A submartingale can be used to
model a player’s total winnings in a game that is unfair to her opponent (e.g., casino
games from the casino’s point of view).

Exercise 23.10 (Supermartingale and submartingale). Show that (𝑋𝑘 : 𝑘 ∈ ℤ+) is a
supermartingale if and only if (−𝑋𝑘 : 𝑘 ∈ ℤ+) is a submartingale.

Exercise 23.11 (Supermartingale and submartingale: Future expectations). What is the correct
extension of Exercise 23.7 to a supermartingale? For a submartingale?

Warning 23.12 (Super?). The terms “supermartingale” and “submartingale” are the op-
posite of what you might anticipate. Supermartingales have decreasing expectations,
while submartingales have increasing expectations. Be careful!

In fact, there is good reason for this terminology, connected to potential theory.
A superharmonic function on a Markov chain induces a supermartingale, while a
subharmonic function induces a submartingale. ■

23.2.3 *Positive martingales
For a sequence of positive random variables, we can define a martingale sequence
without the integrability assumption.

Definition 23.13 (Positive martingale sequence). Fix a probability space (Ω,F,ℙ) and
a filtration (F𝑘 : 𝑘 ∈ ℤ+). Consider a sequence (𝑋𝑘 : 𝑘 ∈ ℤ+) of positive random
variables taking extended real values. The sequence is called a positive martingale
with respect to the filtration when it satisfies two properties:

1. Adaptivity: (𝑋𝑘 ) is adapted to the filtration for each 𝑘 ∈ ℤ+.
2. Status quo: 𝔼[𝑋𝑘+1 | F𝑘 ] = 𝑋𝑘 almost surely for each 𝑘 ∈ ℤ+.

We admit the possibility that the random variables and the conditional expectations
take the value +∞.

We can define positive supermartingales and positive submartingales in a similar
fashion.
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23.3 Examples
Martingales arise in a wide range of situations. In this section, we describe some
mathematical models that lead to martingales, along with some applications of these
models.

23.3.1 Independent sums
First, let us demonstrate that the independent sums we studied before can provide
an example of a martingale sequence. In particular, we may gain new insights on
independent sums using martingale methods.

Consider an independent sequence (𝑍𝑖 : 𝑖 ∈ ℕ) of centered random variables; that
is, 𝔼𝑍𝑖 = 0 for each index 𝑖 . In particular, the random variables 𝑍𝑖 are integrable.
Consider the partial sums

𝑋0 = 0 and 𝑋𝑘 =
∑︁𝑘

𝑖=1
𝑍𝑖 for 𝑘 ∈ ℕ.

We will check that these partial sums compose a martingale.
Construct the filtration F𝑘 = 𝜎 (𝑍1, . . . , 𝑍𝑘 ) for 𝑘 ∈ ℕ, where F0 = {∅,Ω}. Since

𝑋0 = 0 is F0-measurable, a short inductive argument demonstrates that 𝑋𝑘 is F𝑘 -
measurable. The integrability of 𝑋𝑘 follows from the triangle inequality and the
integrability of the 𝑍𝑘 . Last, to check the status quo property, we calculate that

𝔼[𝑋𝑘+1 | F𝑘 ] = 𝔼[𝑋𝑘 + 𝑍𝑘+1 | F𝑘 ] = 𝑋𝑘 + 𝔼[𝑍𝑘+1 | F𝑘 ] = 𝑋𝑘 almost surely.

We have used linearity of conditional expectation, the fact that 𝑋𝑘 is F𝑘 -measurable,
and the fact that 𝑍𝑘+1 is independent from F𝑘 .

As we discussed in Lecture 14, independent sums arise in many contexts. They
model random walks and renewal processes (e.g., queues). They describe the total
number of successes in a sequence of independent experiments and the sample average
of a sequence of i.i.d. measurements. They also describe the behavior of Monte
Carlo integration procedures. In some of these instances, we may need to center the
independent sum to treat it using martingale methods.

Exercise 23.14 (Independent sum: Uncentered case). Suppose instead that the independent
summands 𝑍𝑖 are uncentered, but 𝔼𝑍𝑖 ≥ 0 for each index 𝑖 . Show that the partial
sums (𝑋𝑘 ) compose a submartingale.

23.3.2 Independent products
Next, we consider products of independent random variables. This example is closely
related to independent sums, but it falls outside the scope of our previous analyses.

Consider an independent sequence (𝑍𝑖 : 𝑖 ∈ ℕ) of positive random variables with
expectation 𝔼𝑍𝑖 = 1 for each index 𝑖 . In particular, the random variables 𝑍𝑖 are
integrable. Consider the partial products

𝑋0 = 1 and 𝑋𝑘 =
∏𝑘

𝑖=1
𝑍𝑖 for 𝑘 ∈ ℕ.

We claim that this sequence (𝑋𝑘 ) is a martingale.
As before, construct the filtration F𝑘 = 𝜎 (𝑍1, . . . , 𝑍𝑘 ) for 𝑘 ∈ ℕ, where F0 =

{∅,Ω}. Since 𝑋0 = 1 is F0-measurable, induction confirms that 𝑋𝑘 is F𝑘 -measurable.
The integrability of 𝑋𝑘 follows from the independence and the integrability of the 𝑍𝑘 .
Last, to check the status quo property, we calculate that

𝔼[𝑋𝑘+1 | F𝑘 ] = 𝔼[𝑋𝑘 · 𝑍𝑘+1 | F𝑘 ] = 𝑋𝑘 · 𝔼[𝑍𝑘+1 | F𝑘 ] = 𝑋𝑘 almost surely.
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By assuming that 𝑍𝑖 ≥ 0, so that
𝑋𝑘 ≥ 0, we can justify the
pull-through property without
integrability assumptions.

We have used the pull-through property of conditional expectation, the fact that 𝑋𝑘 is
F𝑘 -measurable, and the fact that 𝑍𝑘+1 is independent from F𝑘 .

It may not be as clear to you how independent products appear in practice.
First, they arise in the study of branching processes, which describe the growth
or decay of a population (Exercise 23.18). Branching processes model things like
actual populations (in ecology or bacteriology), as well as more abstract things like
family names (in genealogy) or chain reactions (in nuclear physics). Independent
products also have statistical applications, including the analysis of likelihood ratio tests
(Application 25.32). Furthermore, independent products can describe the trajectory of
a (stochastic) dynamical system.

It is also easy to see how independent products can arise from the mgf of an
independent sum. Indeed, if the family (𝑌𝑖 ) is independent, then

e𝜃 (𝑌1+···+𝑌𝑛 ) = e𝜃𝑌1 · · · e𝜃𝑌𝑛 .

The right-hand side is an independent product. If 𝔼𝑌𝑖 = 0, then we can only be sure
that 𝔼 e𝜃𝑌𝑖 ≥ 1, so the product is a submartingale (rather than a martingale). We will
return to this example in Lecture 26.

Exercise 23.15 (Independent product: Out of equilibrium). Suppose instead that the inde-
pendent factors 𝑍𝑖 satisfy 𝔼𝑍𝑖 ≥ 1 for each index 𝑖 . Confirm that the partial products
𝑋𝑘 = 𝑍𝑘 · · · 𝑍1𝑍0 compose a submartingale.

23.3.3 The Lévy–Doob martingale
There is another fundamental construction of a martingale, variously attributed to Lévy
or to Doob. Suppose that (F𝑘 : 𝑘 ∈ ℤ+) is an arbitrary filtration of the probability
space. Let 𝑍 be any integrable random variable. Then we may define

𝑋𝑘 = 𝔼[𝑍 | F𝑘 ] for 𝑘 ∈ ℤ+.

More precisely, 𝑋𝑘 is a version of the conditional expectation 𝔼[𝑍 | F𝑘 ]. In other
words, 𝑋𝑘 is our best prediction of 𝑍 , given the information that we have acquired at
time 𝑘 . This sequence (𝑋𝑘 ) of random variables also composes a martingale.

By definition of the conditional expectation, 𝑋𝑘 is integrable, and it isF𝑘 -measurable
(hence adapted). The status quo property follows instantly from the tower law:

𝔼[𝑋𝑘+1 | F𝑘 ] = 𝔼[𝔼[𝑍 | F𝑘+1] | F𝑘 ] = 𝔼[𝑍 | F𝑘 ] = 𝑋𝑘 .

Indeed, F𝑘 ⊆ F𝑘+1, so the tower law is valid.
Lévy–Doob martingales arise whenever we make a sequence of predictions based

on accumulated information. For example, they appear in the problem of predicting
the value of a random variable from a sequence of noisy observations. They arise
in filtering problems, where our goal is to track the evolution of a random sequence
given ongoing observations. They also come up in combinatorics and in the analysis of
randomized algorithms.

23.3.4 Further applications
More generally, martingale arise in any setting where we have a sequence of random
variables that evolves in time and where we our predictions of the future have a clear
relationship with the present value. Some problems where martingales are central
include...

• Gambling and game theory;
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• Pricing financial assets;
• Diffusion processes;
• Statistical estimation;
• Adaptive learning and decision making;
• Prediction, filtering, and control;
• Stochastic algorithms.

As a consequence, understanding the behavior of martingale processes can pay
significant dividends for the modern computational mathematician.

Problems
Exercise 23.16 (The drifters). There are several ways to construct martingales related to
random walks on the real line. Consider an i.i.d. family (𝑍𝑘 : 𝑘 ∈ ℕ) of copies of a
real random variable 𝑍 . For an initial point 𝑎 ∈ ℝ, we can construct a random walk
with increment distribution 𝑌 via

𝑆0 := 𝑎 and 𝑆𝑘+1 := 𝑆𝑘 + 𝑍𝑘+1 for 𝑘 ∈ ℤ+.

Observe that these random variables 𝑆𝑘 do not generally compose a martingale
sequence. Nevertheless, we can use martingale methods to analyze the random walk
by passing to another sequence.

1. For a simple random walk on the integers, the increment distribution 𝑍 takes
the form

ℙ {𝑍 = +1} = 𝑝 and ℙ {𝑍 = −1} = 1 − 𝑝 =: 𝑞,

where 𝑝 ∈ (0, 1). Confirm that the sequence 𝑀𝑘 := (𝑞/𝑝)𝑆𝑘 for 𝑘 ∈ ℤ+
composes a martingale, called De Moivre’s martingale.

2. If 𝑍 ∈ L1 with𝑚 = 𝔼[𝑍 ], show that the random variables 𝑋𝑘 := 𝑆𝑘 −𝑚𝑘 for
𝑘 ∈ ℤ+ compose a martingale sequence.

3. If 𝑍 ∈ L2 with mean𝑚 = 𝔼[𝑍 ] and variance 𝑣 = Var[𝑍 ], check that the random
variables 𝑋𝑘 := (𝑆𝑘 −𝑚𝑘 )2 − 𝑣𝑘 for 𝑘 ∈ ℤ+ also compose a martingale.

4. Assume that 𝑍 ∈ L∞ with mgf𝑚𝑍 . For each fixed real number 𝜃 ∈ ℝ, confirm
that the following sequence composes a martingale:

𝑀𝑘 (𝜃 ) :=
e𝜃𝑆𝑘

𝑚𝑍 (𝜃 )𝑘
for 𝑘 ∈ ℤ+.

Exercise 23.17 (Le rouge et le noir). Urn models can be used to describe the evolution of
discrete populations, including the spread of epidemics. Here is the most elementary
example. Initially, a candy bowl contains one red and one black M&M. At each time
instant 𝑘 = 1, 2, 3, . . . , a uniformly random M&M is extracted from the bowl, and we
return this M&M to the bowl along with a new M&M of the same color. Let 𝑅𝑘 and 𝐵𝑘
denote the number of red and black M&Ms in the bowl after 𝑘 steps. Check that the
random variables 𝑀𝑘 := 𝑅𝑘/(𝑅𝑘 + 𝐵𝑘 ) compose a martingale. (Note: Black M&Ms
are available at Halloween, so this problem statement is not vacuous.)

Exercise 23.18 (Branch water). Branching processes are often used to model the growth
or decay of a population (e.g., family names, bunnies, bacteria, free neutrons). A
branching process is a random sequence (𝑍𝑘 : 𝑘 ≥ 0) constructed in the following
manner.



Lecture 23: Martingales 346

i. The initial population 𝑍0 is a positive, integer-valued random variable with finite
mean.

ii. For each time 𝑘 and each 𝑖 = 1, 2, 3, . . . , the family sizes 𝑌 (𝑖 )
𝑘

are positive,
integer-valued, i.i.d. random variables

iii. The size 𝑍𝑘 of the population evolves as

𝑍𝑘+1 =
∑︁𝑍𝑘

𝑖=1
𝑌

(𝑖 )
𝑘

.

Check that the random variables 𝑋𝑘 = 𝑍𝑘/𝑠𝑘 for 𝑘 ∈ ℤ+ compose a martingale.

Notes
I learned of the delicious Casanova quotation about martingales from Grimett &
Stirzaker [GS01], and many of the problems and exercise are adapted from their book.
Our overall presentation of martingales is based on Williams’s book [Wil91].
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[GS01] G. Grimmett and D. Stirzaker. Probability and Random Processes. 3rd ed. Oxford
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[Wil91] D. Williams. Probability with Martingales. Cambridge University Press, 1991.



24. Stopping Times

Agenda:
1. Martingale transforms
2. Stopping times
3. Stopped processes
4. Optional stopping
5. Monotone stopping

“Stop! In the name of love
Before you break my heart.
Think it over.”

—Stop! In the name of love, The Supremes, 1965

In Lecture 23, we introduced the concept of a martingale process, a sequence of
random variables with the status quo property: on average, tomorrow is the same
as today. We also defined supermartingales (whose conditional expectations are
decreasing) and submartingales (whose conditional expectations are increasing). We
saw that these models arise in a wide range of circumstances, with many possible
applications in computational mathematics.

Among other things, martingales model the accumulated winnings from a sequence
of fair games. This application suggests some questions. First, we may ask if there is
a betting strategy that allows us to profit, on average, from a fair game. Second, we
may ask if there is a strategy for stopping play that allows us to profit on average. I am
sorry to report that both answers are essentially negative.

To settle these questions, we need to introduce some additional tools for under-
standing the behavior of martingales. First, we define the martingale transform of a
sequence, which converts a sequence of bets and a sequence of game outcomes into a
sequence of total winnings. Second, we introduce the important notion of a stopping
time, which is a random time at which we may elect to quit playing a game. Although
these methods are motivated by gambling analogies, they are also quite valuable for
proving mathematical facts about martingale sequences.

24.1 The martingale transform
As discussed, martingales are closely connected to games of chance. In this section,
we develop a mathematical formalization for betting strategies. Then we define the
martingale transform, which describes the total winnings from a sequence of games.
We prove the important fact that the sequence of accumulated winnings from a fair
game compose a martingale sequence. This settles the matter of whether we can
outfox a fair game by a sequence of clever bets.

24.1.1 Previsible processes
If we are playing a game of chance, we must place a bet before the random outcome of
the game is revealed to us. At the same time, our betting strategy may depend in a
complicated way on the trajectory of the game up to the present time. A previsible
process encapsulates these requirements.

https://www.youtube.com/watch?v=une981B7Q4Y
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Definition 24.1 (Previsible process). Fix a probability space (Ω,F,ℙ) and a filtration
(F𝑘 : 𝑘 ∈ ℤ+). A previsible process starts with index

𝑘 = 1!
A sequence (𝐶1,𝐶2,𝐶3, . . . ) of real random variables is called

previsible with respect to the filtration when 𝐶𝑘 is F𝑘−1-measurable for each 𝑘 ∈ ℕ.
Previsible processes are also called predictable processes.

You can think about 𝐶𝑘 as modeling the value of a bet on the 𝑘 th game in a
sequence. The requirement that 𝐶𝑘 is F𝑘−1-measurable means that the bet may
depend on everything that has happened in the first 𝑘 − 1 games, but it must be
determined before the outcome of the 𝑘 th game is revealed.

24.1.2 The martingale transform
We can model a fair game using a martingale sequence, and we can model bets on
these outcomes using a previsible process. The martingale transform then describes
the accumulated winnings.

Definition 24.2 (Martingale transform). Fix a probability space and a filtration. Suppose
that (𝑋𝑘 : 𝑘 ∈ ℤ+) is a martingale and (𝐶𝑘 : 𝑘 ∈ ℕ) is a previsible process. Assume
that each random variable 𝐶𝑘 is almost surely bounded. Then the martingale
transform of the previsible process by the martingale is the sequence

(𝑪 · 𝑿 )𝑘 :=
∑︁𝑘

𝑖=1
𝐶𝑖 · (𝑋𝑖 − 𝑋𝑖−1) for each 𝑘 ∈ ℕ,

with the understanding that (𝑪 · 𝑿 )0 := 0.

The idea here is that you are betting on the change in the martingale sequence.
Each increment Δ𝑖 := 𝑋𝑖 − 𝑋𝑖−1 of the martingale describes the outcome of the 𝑖 th
game. The value𝐶𝑖 is the bet you place on the 𝑖 th game, while𝐶𝑖Δ𝑖 is the amount you
win from the 𝑖 th game. Then the martingale transform (𝑪 · 𝑿 )𝑘 is the total amount
that you have won after 𝑘 games.

Exercise 24.3 (Martingale increments). Let (𝑋𝑘 : 𝑘 ∈ ℤ+) be a martingale with respect to
a filtration F𝑘 . Check that the increments of the margingale are conditionally zero
mean: 𝔼[𝑋𝑘+1 − 𝑋𝑘 | F𝑘 ] = 0 for each 𝑘 ∈ ℤ+.

Aside: The martingale transform is a discrete version of a stochastic integral. The
theory of stochastic integration is closely connected with continuous stochastic
processes. It is a fundamental tool for studying diffusion processes and stochastic
PDEs. It is also plays a role in pricing financial assets.

24.1.3 The martingale transform is a martingale
The key fact about the martingale transform is that it always results in a martingale
sequence.

Proposition 24.4 (Martingale transform). Fix a probability space and a filtration. Suppose
that (𝑋𝑘 : 𝑘 ∈ ℤ+) is a martingale. Assume that (𝐶𝑘 : 𝑘 ∈ ℕ) is a previsible process

The sequence ∥𝐶𝑘 ∥L∞ does not need
to be uniformly bounded, so the bets
can increase without bound provided
that each one is a.s. finite.

that is bounded in the sense that ∥𝐶𝑘 ∥L∞ < +∞ for each 𝑘 ∈ ℕ. Then the martingale
transform ((𝑪 · 𝑿 )𝑘 : 𝑘 ∈ ℤ+) is a martingale with initial value zero.

Proof. First, since (𝑪 · 𝑿 )0 = 0, it is F0-measurable. A short inductive argument, using
Definition 24.2, shows that (𝑪 ·𝑿 )𝑘 is F𝑘 -measurable. Integrability of (𝑪 ·𝑿 )𝑘 follows
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from the triangle inequality, the boundedness of 𝐶1, . . . ,𝐶𝑘 , and the integrability of
𝑋1, . . . , 𝑋𝑘 .

The status quo property is an easy consequence of the pull-through law for
conditional expectation (Proposition 20.13). Indeed,

𝔼[(𝑪 · 𝑿 )𝑘+1 − (𝑪 · 𝑿 )𝑘 | F𝑘 ] = 𝔼[𝐶𝑘+1(𝑋𝑘+1 − 𝑋𝑘 ) | F𝑘 ]
= 𝐶𝑘+1 · 𝔼[𝑋𝑘+1 − 𝑋𝑘 | F𝑘 ] = 0.

We are justified in drawing the previsible multiplier 𝐶𝑘+1 out from the conditional
expectation because it is bounded and F𝑘 -measurable. The last relation holds because
(𝑋𝑘 ) is a martingale.

Last, using linearity of the conditional expectation and the fact that (𝑪 · 𝑿 )𝑘 is
F𝑘 -measurable, we quickly determine that the random variables (𝑪 · 𝑿 )𝑘 compose a
martingale with initial value zero. ■

We can interpret Proposition 24.4 in terms of gambling. On average, we can never
gain an advantage in a sequence of fair games by a clever betting strategy.

There aremany natural variants on Proposition 24.4 that follow from straightforward
technical modifications.

Exercise 24.5 (Martingale transform). Suppose that (𝑋𝑘 ) is a martingale and (𝐶𝑘 ) is a
previsible process, and assume that both take values in L2. Show that the martingale
transform ((𝑪 · 𝑿 )𝑘 ) is a martingale.

Exercise 24.6 (Supermartingale transform). Suppose that (𝑋𝑘 ) is a supermartingale. As-
sume that (𝐶𝑘 ) is a positive, previsible process that takes values in L∞. We can define
the transform ((𝑪 · 𝑿 )𝑘 ) of the supermartingale, just as in Definition 24.2. Prove that
((𝑪 · 𝑿 )𝑘 ) is a supermartingale.

Exercise 24.7 (Submartingale transform). Suppose that (𝑋𝑘 ) is a submartingale. Assume
that (𝐶𝑘 ) is a positive, previsible process that takes values in L∞. Prove that the
transform ((𝑪 · 𝑿 )𝑘 ) is a submartingale.

Exercise 24.6 means that an unfair sequence of games remains unfair, no matter
how we choose to make (positive) bets. Exercise 24.7 means that a favorable sequence
of games remains favorable, no matter how we choose to make (positive) bets.

24.2 Stopping times and stopped processes
We have seen that it is not possible to gain an advantage in a fair sequence of games
by calibration of our betting strategy. Next, we may ask whether it is possible to gain
an advantage by leaving the game at a favorable moment. To answer this question, we
need to formalize strategies for stopping play. We will prove that, if we exit a fair game
at a random time, the accumulated winnings also compose a martingale sequence. As
we will see, this point is somewhat delicate, and it requires careful interpretation.

24.2.1 Stopping times
A strategy for stopping play may involve complicated considerations based on the
trajectory of the game, but it cannot involve foreknowledge of the future. The next
definition encapsulates this idea.

Definition 24.8 (Stopping time). Fix a probability space and a filtration. A stopping
time 𝜏 : Ω → ℤ+ is a random variable that may take the value +∞ and with the
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property that the event

{𝜏 ≤ 𝑘 } ∈ F𝑘 for each 𝑘 ∈ ℤ+.

At each moment 𝑘 , we can decide whether the stopping time 𝜏 has already arrived,
given the information we have at hand.

Exercise 24.9 (Stopping time: Equivalence). In the discrete-time setting, we can also define
a stopping-time as a (positive, extended value) random variable that satisfies

{𝜏 = 𝑘 } ∈ F𝑘 for each 𝑘 ∈ ℤ+.

Prove that this definition is equivalent with Definition 24.8.

Exercise 24.9 has an intuitive meaning. After playing the 𝑘 th game, we have the
information to decide whether to quit at that moment (before playing the next game).

Exercise 24.10 (Compound stopping times). Let 𝜏1 and 𝜏2 be two stopping times with
respect to the same filtration. Show that min{𝜏1,𝜏2} and max{𝜏1,𝜏2} are stopping
times. Show that 𝜏1 + 𝜏2 is a stopping time.

24.2.2 Examples
We can dramatize the notion of a stopping time by considering the problem of when to
liquidate a stock portfolio.

Example 24.11 (Stopping times: Investing). A stopping time describes a rule for deciding
when to convert our stock portfolio into cash.

• We can stop investing at the close of market on a date that is fixed in advance,
such as the date of your 70th birthday or the Monday before the next presidential
election. This is a nonrandom time, so it is not a very interesting choice.

• We can stop investing at the close of market on the first day that the Dow
surpasses 50,000 points. This is a random time, but we can certainly ascertain
whether it has arrived from available data. It is also possible that this day will
never arrive, in which case the stopping time is infinite.

• We can stop investing the first day that the value of our portfolio exceeds
$100,000, the amount required to purchase an aspirational good, such as a very
nice fountain pen. As before, this is a random time that we can distinguish when
it arrives, although it may never occur.

• Here is an example of an “investing rule” that is not a stopping time. Likewise, stopping “in the name of
love before you break my heart” is not
a stopping time. Think it over.

Suppose
that we plan to stop investing on the day before the next stock market crash.
This is a random time, and it is almost surely finite (I claim!). On the other
hand, we cannot evaluate whether the market will crash before it actually does
so, because this would require clairvoyance.

Indeed, any strategy that you can actually implement will be a stopping time. ■

Here is an important mathematical example of a stopping time.

Example 24.12 (Hitting times). Let (𝑋𝑘 ) be a martingale sequence. Fix a Borel set
B ∈ B(ℝ). The first hitting time is defined as

𝜏 := inf{𝑘 ∈ ℤ+ : 𝑋𝑘 ∈ B}.

In other words, 𝜏 is the first time that the martingale takes a value in the distinguished
Borel set. Since 𝑋𝑘 is F𝑘 -measurable, it is certainly possible to evaluate whether
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𝑋𝑘 ∈ B given the information we have at time 𝑘 . It is also possible that the martingale
never enters the set B, in which case 𝜏 is infinite.

For a related example of a random variable that is not a stopping time, consider
𝑇 := sup{𝑘 ∈ ℤ+ : 𝑋𝑘 ∈ B}, the last time that the martingale takes a value in B. In a
general setting, we cannot be sure that the martingale will not return to the set later,
so the event {𝑇 ≤ 𝑘 } is certainly not F𝑘 -measurable. ■

24.2.3 Stopped processes
Given an adapted sequence and a stopping time, we can construct a stopped process
whose value is frozen after the stopping time.

Definition 24.13 (Stopped process). Fix a probability space and a filtration. Consider
an adapted process (𝑋𝑘 : 𝑘 ∈ ℤ+), and let 𝜏 be a stopping time. The stopped
process is the adapted process Recall that ∧ is the infix minimum.(𝑋𝑘∧𝜏 : 𝑘 ∈ ℤ+).

The idea here is that the original process 𝑋𝑘 evolves until the random stopping
time 𝜏 arrives. For future times 𝑘 ≥ 𝜏 , the stopped process persists with the same
value 𝑋𝜏 .

You can think about the stopped processes as a model for your accumulated
winnings from a repeated sequence of games that you may choose to stop playing. The
game may go on, but your winnings do not change after you leave the casino.

Exercise 24.14 (Stopped process). Confirm that the stopped process (𝑋𝑘∧𝜏 ) is indeed an
adapted process.

24.2.4 Stopped martingales are martingales
The key fact about a stopped process is that it inherits conditional expectation properties
from the original process. For example, a stopped martingale is a martingale.

Theorem 24.15 (Stopped martingale). Fix a probability space and a filtration. Consider
a martingale (𝑋𝑘 : 𝑘 ∈ ℤ+) and a stopping time 𝜏 . Then the stopped process
(𝑋𝑘∧𝜏 : 𝑘 ∈ ℤ+) is a martingale. In particular, 𝔼𝑋𝑘∧𝜏 = 𝔼𝑋0 = 𝔼𝑋𝑘 for each
𝑘 ∈ ℤ+.

Theorem 24.15 means that, on average, at any fixed time 𝑘 , you cannot gain an
advantage in a fair game by any implementable strategy for quitting. But, as we
will discuss in the next section, the interpretation of this result does require further
thought.

Proof. We will prove this result by showing that the stopped process can be represented
using a martingale transform. Construct the previsible process

𝐶𝑘 :=

{
1, 𝑘 ≤ 𝜏;
0, 𝑘 > 𝜏

for all 𝑘 ∈ ℕ.

To confirm that (𝐶𝑘 ) is previsible, note that

{𝐶𝑘 = 0} = {𝜏 ≤ 𝑘 − 1} ∈ F𝑘−1.

Therefore, the complementary event {𝐶𝑘 = 1} ∈ F𝑘−1 as well. We conclude that 𝐶𝑘 is
F𝑘−1 measurable for each 𝑘 ∈ ℕ.
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Now, since (𝐶𝑘 ) is bounded, Proposition 24.4 ensures that the martingale transform
((𝑪 · 𝑿 )𝑘 ) is a martingale with initial value zero. Let us reinterpret what this means:

(𝑪 · 𝑿 )𝑘 =
∑︁𝑘

𝑖=1
𝐶𝑖 (𝑋𝑖 − 𝑋𝑖−1) =

∑︁𝑘∧𝜏
𝑖=1

(𝑋𝑖 − 𝑋𝑖−1) = 𝑋𝑘∧𝜏 − 𝑋0.

It now follows that 𝑋𝑘∧𝜏 is a martingale with initial value 𝑋0. This is what we needed
to show. ■

Variants of Theorem 24.15 hold for supermartingales and submartingales.

Exercise 24.16 (Stopped supermartingales). Suppose that (𝑋𝑘 ) is a supermartingale and
𝜏 is a stopping time. Show that the stopped process (𝑋𝑘∧𝜏 ) is a supermartingale. In
particular, 𝔼[𝑋𝑘∧𝜏 ] ≤ 𝔼[𝑋0].
Exercise 24.17 (Stopped submartingales). Suppose that (𝑋𝑘 ) is a submartingale and 𝜏 is a
stopping time. Show that the stopped process (𝑋𝑘∧𝜏 ) is a submartingale. In particular,
𝔼[𝑋𝑘∧𝜏 ] ≥ 𝔼[𝑋0].

24.3 Optional stopping
You can always quit while you are ahead. Suppose that we stop playing a game at the
first time that our accumulated winnings exceed $1. Therefore, at the stopping time,
our total winnings must exceed $1.

More formally, there are martingales (𝑋𝑘 ) and a.s. finite stopping times 𝜏 for which
𝔼𝑋𝜏 ≠ 𝔼𝑋0. This situation can occur for a number of different reasons, including
when the stopping time 𝜏 is unbounded or the martingale lacks suitable integrability
properties. Nevertheless, there are simple conditions under which we reach conclusions
about the expected value of a martingale at a stopping time.

The next result describes some conditions where the expected value of a martingale
at a stopping time coincides with the expectation of its initial value. Among other
things, this kind of result is useful for studying hitting times.

Theorem 24.18 (Optional stopping). Fix a probability space and a filtration. Let (𝑋𝑘 )
be a martingale, and let 𝜏 be a stopping time that is almost surely finite. This list of conditions is not

exhaustive!
Then

𝔼𝑋𝜏 = 𝔼𝑋0 under any one of the following assumptions:

1. The stopping time 𝜏 is bounded. That is, 𝜏 ≤ 𝐵 for some (nonrandom)
𝐵 ≥ 0.

2. The martingale (𝑋𝑘 ) is uniformly bounded and the stopping time 𝜏 is almost
surely finite. That is, |𝑋𝑘 (𝜔) | ≤ 𝐵 for some 𝐵 ≥ 0, uniformly for each time
𝑘 and each sample point 𝜔.

3. The increments of the martingale are uniformly bounded and the stopping
time 𝜏 is integrable. That is, 𝔼𝜏 < +∞ and |𝑋𝑘+1(𝜔) − 𝑋𝑘 (𝜔) | ≤ 𝐵 for
some 𝐵 ≥ 0, uniformly for each time 𝑘 and sample point 𝜔.

Proof. This result follows whenwe take appropriate limits of the fact that𝔼𝑋𝑘∧𝜏 = 𝔼𝑋0
for all 𝑘 .

First, suppose that the stopping time 𝜏 is bounded; say, 𝜏 ≤ 𝐵 for a natural number
𝐵 . Then we may take 𝑘 = 𝐵 to obtain

𝔼𝑋0 = 𝔼𝑋𝐵∧𝜏 = 𝔼𝑋𝜏 .

This is the first result.
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Second, suppose that the martingale is uniformly bounded and the stopping time
is finite, almost surely. Then

𝑋𝑘∧𝜏 = 𝑋𝑘∧𝜏1𝜏<+∞ → 𝑋𝜏 almost surely as 𝑘 → ∞.

The second result now follows by taking expectations and invoking the bounded
convergence theorem.

Third, suppose that the stopping time is integrable and the martingale increments
are uniformly bounded, say, by 𝐵 . Then

|𝑋𝑘∧𝜏 − 𝑋0 | =
���∑︁𝑘∧𝜏

𝑖=1
(𝑋𝑖 − 𝑋𝑖−1)

��� ≤ 𝐵𝜏.

Since 𝜏 is integrable, we can take the limit of 0 = 𝔼[𝑋𝑘∧𝜏 − 𝑋0] as 𝑘 → ∞ using
dominated convergence. ■

Exercise 24.19 (Optional stopping: Submartingales). Fix a probability space and a filtration.
Consider a submartingale (𝑋𝑘 ) and a stopping time 𝜏 .

1. Show that 𝔼[𝑋𝜏 ] ≥ 𝔼[𝑋0] under each one of the conditions in Theorem 24.18.
2. If (𝑋𝑘 ) is positive and 𝜏 is a.s. finite, show that 𝔼[𝑋𝜏 ] ≥ 𝔼[𝑋0].
3. Assume that 𝜏 ≤ 𝐵 almost surely for a fixed integer 𝐵 ∈ ℤ+. Deduce that

𝔼[𝑋𝜏 ] ≤ 𝔼[𝑋𝐵 ]. Hint: Invoke Proposition 24.4 to analyze the decomposition

𝑋𝐵 − 𝑋𝜏 =
∑︁𝐵

𝑖=1
1{𝜏 < 𝑖 } · (𝑋𝑖 − 𝑋𝑖−1).

4. Consider stopping times that satisfy 𝜏 ≤ 𝜏 ′ ≤ 𝐵 almost surely for a fixed integer
𝐵 ∈ ℤ+. Deduce that 𝔼[𝑋𝜏 ] ≤ 𝔼[𝑋𝜏 ′].

5. Develop parallel results for supermartingales.

Problem 24.20 (Optional stopping: Weaker conditions). Consider a martingale sequence
(𝑋𝑘 ) and a stopping time 𝜏 that satisfy

i. ℙ {𝜏 < +∞} = 1;
ii. 𝔼 |𝑋𝜏 | < +∞; and

iii. 𝔼[𝑋𝑘1{𝜏 > 𝑘 }] → 0 as 𝑘 → ∞.

Prove that these conditions imply 𝔼[𝑋𝜏 ] = 𝔼[𝑋0]. Hint: Work with the decomposition
𝑋𝜏 = 𝑋𝜏∧𝑘 + (𝑋𝜏 − 𝑋𝑘 )1{𝜏 > 𝑘 }.

Problems
Exercise 24.21 (Martingale increments in L2). Consider a martingale (𝑋𝑘 : 𝑘 ∈ ℤ+) taking
values in L2, and define the difference sequence Δ𝑘 := 𝑋𝑘 − 𝑋𝑘−1 for each 𝑘 ∈ ℤ+.

1. Prove that the difference sequence is orthogonal: 𝔼[Δ𝑗Δ𝑘 ] = 0 when 𝑗 ≠ 𝑘 .
Hint: Use the tower law.

2. Deduce that 𝔼[𝑋 2
𝑘
] = ∑𝑘

𝑖=1 𝔼[Δ2
𝑖
] for each index 𝑘 ∈ ℤ+.

Problem 24.22 (Doob decomposition). Let (𝑋𝑘 : 𝑘 ∈ ℤ+) be a submartingale sequence
with respect to a filtration (F𝑘 : 𝑘 ∈ ℤ+).
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1. Prove that we can decompose

𝑋𝑘 = 𝑀𝑘 +𝐶𝑘 for 𝑘 ∈ ℤ+

where (𝑀𝑘 : 𝑘 ∈ ℕ) is a martingale sequence and (𝐶𝑘 : 𝑘 ∈ ℕ) is an increasing
previsible process with 𝐶0 = 0, called a compensator. Hint: The compensator
process has increments 𝐶𝑘+1 −𝐶𝑘 := 𝔼[𝑋𝑘+1 | F𝑘 ] − 𝑋𝑘 .

2. Show that the Doob decomposition is uniquely determined (up to values on
negligible sets).

3. Apply the Doob decomposition to give an alternative account of the results in
Exercise 24.19.

Problem 24.23 (Time to ruin: Fair game). Consider the simple symmetric random walk:
𝑋0 = 0 and 𝑋𝑘+1 = 𝑋𝑘 + 𝑍𝑘+1 for 𝑘 ∈ ℤ+, where the increments 𝑍𝑘 ∼ uniform{±1}
are independent. For 𝑎, 𝑏 ∈ ℕ, we would like to understand whether the random walk
first visits the number −𝑎 or the number +𝑏 .

This is an idealization of a fair game where you win or lose one unit of capital at
each play, and (𝑋𝑘 ) tabulates your total winnings (or losses). Suppose that you have
𝑎 units of capital to start, and you are hoping to win 𝑏 more units so that you can
purchase an aspirational good, such as a Taylor Swift NFT. If you visit −𝑎 first, then
you have depleted all of your capital. Conversely, if you visit 𝑏 first, your total fortune
is augmented to 𝑎 + 𝑏 , and you can acquire the cryptotoken.

1. Check that the sequence (𝑋𝑘 ) is a martingale with respect to F𝑘 = 𝜎 (𝑍1, . . . , 𝑍𝑘 ).
2. Let 𝜏 := inf{𝑘 ∈ ℤ+ : 𝑋𝑘 = −𝑎 or 𝑋𝑘 = +𝑏}. Confirm that 𝜏 is a stopping time.
3. Prove that ℙ {𝜏 > 𝑘 } → 0 as 𝑘 → ∞. Hint: Observe that ℙ {𝜏 > 𝑘 } ≤

ℙ {|𝑋𝑘 | ≤ 𝑎 ∨ 𝑏}.
4. Verify that the martingale (𝑋𝑘 ) and stopping time 𝜏 satisfy the conditions of the

optional stopping theorem (Problem 24.20), so that 𝔼[𝑋𝜏 ] = 𝔼[𝑋0] = 0.
5. Reinterpret the statement from the last part to see that the probability of ruin

satisfies
ℙ {𝑋𝜏 = −𝑎} = 𝑏

𝑎 + 𝑏 .

Discuss what this result means in terms of the game.
6. Check that the random variables𝑀𝑘 := 𝑋 2

𝑘
−𝑘 for 𝑘 ∈ ℤ+ compose a martingale

with respect to the same filtration.
7. Do the martingale (𝑀𝑘 ) and the stopping time𝜏 satisfy any one of the hypotheses

of Theorem 24.18? What about Problem 24.20?
8. Compute 𝔼[𝑀𝜏 ] two different ways to prove that 𝔼[𝜏] = 𝑎𝑏 . Discuss what this

result means.

Exercise 24.24 (Probability of ruin: Unfair games). Consider the simple random walk:
𝑆0 = 𝑎 ∈ ℕ and 𝑆𝑘+1 = 𝑆𝑘 + 𝑍𝑘 , where the independent increments 𝑍𝑘 = +1 with
probability 𝑝 and 𝑍𝑘 = −1 with probability 1 − 𝑝 =: 𝑞 . For a number 𝑁 ∈ ℕ, we
would like to understand whether the sequence 𝑆𝑘 first visits 0 or 𝑁 . We assume that
𝜚 := 𝑞/𝑝 ≠ 1, so this model is an idealization of an unfair game.

1. Confirm that the random variables 𝑋𝑘 = 𝜚𝑆𝑘 compose a martingale with respect
to F𝑘 = 𝜎 (𝑍1, . . . , 𝑍𝑘 ).

2. Let 𝜏 := inf{𝑘 ∈ ℤ+ : 𝑆𝑘 = 0 or 𝑆𝑘 = 𝑁 }. Confirm that 𝜏 is a stopping time.
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3. Verify that the martingale (𝑋𝑘 ) and stopping time 𝜏 satisfy one the conditions
of the optional stopping theorem (Theorem 24.18), so that 𝔼[𝑋𝜏 ] = 𝔼[𝑋0] = 1.
Reinterpret this statement to see that

ℙ {𝑋𝜏 = 0} = 𝜚𝑘 − 𝜚𝑁
1 − 𝜚𝑁

.

Discuss what this result means in terms of the game.

Problem 24.25 (Wald identities). In this problem, we consider the sum 𝑆𝑘 =
∑𝑘
𝑖=1𝑌𝑖 of

i.i.d. copies of a random variable 𝑌 . Let 𝜏 be a stopping time with respect to the
filtration F𝑘 = 𝜎 (𝑌1, . . . ,𝑌𝑘 ) with the property that 𝔼[𝜏] < +∞. We can use the
optional stopping theorem (Theorem 24.18) to analyze the randomly stopped sum 𝑋𝜏 .

1. Assuming that 𝑌 ∈ L1, prove that

𝔼[𝑋𝜏 ] = 𝔼[𝜏] · 𝔼[𝑌 ].

Hint: Consider 𝑋𝑘 := 𝑆𝑘 − 𝑘 𝔼[𝑌 ].
2. Assuming that 𝑌 ∈ L2, prove that

Var[𝑋𝜏 ] = 𝔼[𝜏] · Var[𝑌 ].

Hint: Consider the quadratic martingale described in Exercise 23.16. First
consider the bounded stopping time 𝜏 ′ := 𝜏 ∧𝑁 . Then take a limit as 𝑁 → ∞.

3. Assume that 𝑌 ∈ L∞ with mgf𝑚𝑌 (𝜃 ) := 𝔼[e𝜃𝑌 ]. Consider the sequence with
𝑆0(𝜃 ) = 1 and

𝑆𝑘 (𝜃 ) :=
e𝜃𝑆𝑘

𝑚𝑌 (𝜃 )𝑘
for fixed 𝜃 ∈ ℝ.

Prove that (𝑆𝑘 ) is a martingale sequence. Confirm that

𝔼[𝑆𝜏 (𝜃 )] = 1 provided that𝑚𝑌 (𝜃 ) ≥ 1.

This result is often used to compute the distribution of first passage times, but the
details of the argument are subtle. Hint: Use the third condition of the optional
stopping theorem.

Notes
This lecture is based on Williams’s book [Wil91]. Many problems are adapted from
Grimmett & Stirzaker [GS01].

Lecture bibliography
[GS01] G. Grimmett and D. Stirzaker. Probability and Random Processes. 3rd ed. Oxford

University Press, 2001.

[Wil91] D. Williams. Probability with Martingales. Cambridge University Press, 1991.



25. Martingale Convergence

Agenda:
1. Doob’s convergence theorem
2. Convergence and crossings
3. Upcrossing inequality
4. Proof of Doob’s theorem
5. *Uniform integrability

“Remain true to yourself, but move ever upward toward greater consciousness and
greater love! At the summit you will find yourselves united with all those who,
from every direction, have made the same ascent. For everything that rises must
converge.”

—The Omega Point, Pierre Teilhard de Chardin

Martingales are much-loved by probabilists because they converge to a limiting
random variable under minimal conditions. Supermartingale and submartingales also
enjoy strong convergence properties.

There are many random processes that have an obvious martingale structure
(e.g., prediction of a random variable from noisy observations), and the martingale
convergence theorem ensures that these processes converge to an equilibrium. There
are other random processes where there is a “hidden” martingale structure that can be
exploited to understand the limiting behavior.

In this lecture, we will state and prove the most basic martingale convergence
theorem, due to Joseph Doob. The argument reframes the question about convergence
as a question about the number of times the martingale traverses a range of values.
This proof strategy is very powerful, and it extends almost verbatim to continuous-time
martingales.

25.1 Doob’s convergence theorem
The main result of this lecture states that a martingale converges almost surely under
a mild integrability condition.

Theorem 25.1 (Martingale: Convergence). Fix a probability space (Ω,F,ℙ) and a
filtration (F𝑘 : 𝑘 ∈ ℤ+). Suppose that (𝑋𝑘 : 𝑘 ∈ ℤ+) is a uniformly bounded
martingale. That is, for a fixed number 𝑅 ,

𝔼 |𝑋𝑘 | ≤ 𝑅 for all 𝑘 ∈ ℤ+.

Then 𝑋𝑘 → 𝑋∞ almost surely, where 𝑋∞ is an integrable random variable. In
particular, 𝑋∞ is almost surely finite.

The proof of Theorem 25.1 occupies the rest of the lecture.
In words, a uniformly bounded martingale converges almost surely to a finite limit.

We may assume that the limit 𝑋∞ is a random variable because

𝑋∞(𝜔) = lim inf𝑘→∞ 𝑋𝑘 (𝜔) almost surely.
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We can view this random variable 𝑋∞ as the equilibrium of the martingale process.
To identify the limiting random variable, we must conduct a separate and specialized
investigation.

Warning 25.2 (Convergence in L1). The martingale convergence provided by Theo-
rem 25.1 does not imply that (𝑋𝑘 ) converges in L1. In particular, 𝔼𝑋𝑘 may not
converge to 𝔼𝑋∞. This conclusion requires further assumptions or a separate
argument. See Section 25.5 for a discussion of uniformly integrable martingales,
where the situation is simpler.

Martingales that are uniformly bounded in L2 also enjoy a more satisfactory
convergence theory; see Problem 25.31. ■

25.1.1 Extensions
For clarity of argument, we will prove Theorem 25.1 for a martingale, but the same
proof applies to supermartingales and submartingales with essentially no change.

Exercise 25.3 (Supermartingale: Convergence). Suppose that (𝑋𝑘 : 𝑘 ∈ ℤ+) is a uni-
formly bounded supermartingale. Then 𝑋𝑘 → 𝑋∞ almost surely, where 𝑋∞ is an
integrable random variable. Prove this result by surgical modifications to the proof of
Theorem 25.1.

Exercise 25.4 (Submartingale: Convergence). Use Exercise 25.3 to deduce that a uniformly
bounded submartingale converges almost surely to an integrable random variable.

In certain circumstances, we can even avoid placing a separate boundedness
assumption on the random process.

Exercise 25.5 (Positive supermartingale: Convergence). Use Exercise 25.3 to deduce that
a positive supermartingale converges almost surely to an integrable, positive random
variable.

25.1.2 Example: Urn models
As a first example, let us investigate how Doob’s theorem applies to the urn model
described in Exercise 23.17.

Let us recall the setting. Initially, a candy bowl contains one red and one black
Skittle. At each time instant 𝑘 = 1, 2, 3, . . . , a uniformly random Skittle is extracted
from the bowl, and we return this Skittle to the bowl along with a new Skittle of the
same color. Let 𝑅𝑘 and 𝐵𝑘 denote the number of red and black Skittles in the bowl
after 𝑘 steps.

It is not hard to confirm that the (random) proportion𝑀𝑘 := 𝑅𝑘/(𝑅𝑘 + 𝐵𝑘 ) of red
Skittles at time 𝑘 composes a martingale sequence. This is the content of Exercise 23.17.
It is also clear that 𝔼 |𝑀𝑘 | ≤ 1 for all 𝑘 , so the martingale is uniformly bounded in
L1. Therefore, Doob’s martingale convergence theorem (Theorem 25.1) furnishes a
limiting random variable𝑀∞ with the property that𝑀𝑘 → 𝑀∞ almost surely. As a
consequence,𝑀𝑘 ⇝ 𝑀∞ in distribution.

Figure 25.1 illustrates the a.s. convergence of the sample paths of the martingale
(𝑀𝑘 ). You can also see that the density of sample paths settles down to an equilibrium
as time passes. What is the limiting distribution? As it happens,𝑀∞ ∼ uniform[0, 1].

Doob’s theorem does not assert that 𝔼𝑀𝑘 → 𝔼𝑀∞. Nevertheless, the sequence
(𝑀𝑘 ) also converges in L1 because it is uniformly integrable; see Theorem 25.28.

Exercise 25.6 (Skittles: Limiting distribution). For the martingale (𝑀𝑘 : 𝑘 ∈ ℕ) defined in
this section, prove that the limiting random variable𝑀∞ follows the uniform[0, 1]
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Figure 25.1 (Urn model: Convergence). The top chart illustrates the almost sure
convergence of the sample paths of the proportion 𝑀𝑘 of red Skittles at time 𝑘 in
the candy bowl to a limiting distribution. The panels below show the unconditional
distribution of 𝑀𝑘 at several specific instants 𝑘 ∈ {1, 2, 3,∞}. You can see that the
proportion of red Skittles tends to a uniform limit.

distribution. Hint: During the first 𝑛 draws, what is the probability that we select a red
Skittle in each of the first 𝑘 draws? What is the probability that we select exactly 𝑘
red Skittles during the first 𝑛 draws?

Problem 25.7 (Skittles: Initial conditions and limits). Consider the more general setting
where the bowl initially contains 𝑟 red Skittles and 𝑏 black Skittles. As before, we
draw a uniformly random Skittle and we return this Skittle to the bowl along with
another Skittle of the same color. Confirm that the proportion𝑀𝑘 := 𝑅𝑘/(𝑅𝑘 + 𝐵𝑘 ) of
red Skittles is still a martingale that is uniformly bounded in L1. Prove that the limiting
distribution𝑀∞ ∼ beta(𝑟 , 𝑏).

25.1.3 Example: Branching processes
As a second example, let us investigate how Doob’s theorem applies to the branching
process described in Exercise 23.18.

Let 𝑌 be a positive, integer-valued random variable that models the size of a family.
We require that 𝑠 := 𝔼𝑌 be finite. For simplicity, assume that the initial population
size 𝑍0 = 1, and the population size evolves as

𝑍𝑘+1 =
∑︁𝑍𝑘

𝑖=1
𝑌

(𝑘 )
𝑖

for 𝑘 ∈ ℤ+,

where the 𝑌 (𝑘 )
𝑖

are i.i.d. copies of 𝑌 . Define the relative population size

𝑀𝑘 := 𝑍𝑘/𝑠𝑘 for 𝑘 ∈ ℤ+.



Lecture 25: Martingale Convergence 359

Figure 25.2 (Crossings and convergence). A sequence cannot converge if it crosses an
interval an infinite number of times.

The scaling 𝑠𝑘 is important to make sure that the sequence 𝑀𝑘 does not trivially
collapse or blow up.

It is not hard to check that (𝑀𝑘 : 𝑘 ∈ ℤ+) composes a positive martingale sequence.
This is the content of Exercise 23.18. As a consequence, the sequence must be uniformly
bounded in L1. Doob’s theorem (Theorem 25.1) yields the almost sure limit𝑀𝑘 → 𝑀∞,
where𝑀∞ is a finite, integrable random variable. This result can be interpreted as a
statement that the random population size has a distribution relative to the baseline
population growth 𝑠𝑘 , which is exponentially increasing or decreasing, depending on
the value 𝑠 of the typical family size.

What is the nature of the limiting distribution? When the family size 𝑠 < 1, the
population dies out, and𝑀∞ = 0 almost surely. Observe that 0 = 𝔼𝑀∞ ≠ 𝔼𝑀𝑘 = 1,
so this is a situation where the martingale fails to converge in L1!

When the family size 𝑠 > 1 and 𝔼[𝑌 log𝑌 ] < +∞, then the random variable𝑀∞
has a nontrivial distribution. Unfortunately, it is not possible to obtain formulas for the
limit, except in very special cases.

25.2 Convergence and crossings
Before we turn to the probabilistic parts of the proof, we need to develop some
conditions under which a real-valued sequence converges to a limit.

25.2.1 Interval sandwiches
The key observation is that a convergent sequence cannot oscillate across an interval.
See Figure 25.2 for an illustration.

Lemma 25.8 (Interval sandwich). A (nonrandom) real-valued sequence (𝑥𝑘 : 𝑘 ∈ ℤ+)
fails to converge to a limit in ℝ if and only if there are rational numbers 𝑎 < 𝑏 with
𝑎, 𝑏 ∈ ℚ for which

lim inf𝑘→∞ 𝑥𝑘 < 𝑎 < 𝑏 < lim sup𝑘→∞ 𝑥𝑘 .

Exercise 25.9 (Interval sandwich). Prove Lemma 25.8.

In other words, we can witness the failure of a sequence to converge by identifying
an interval [𝑎, 𝑏] with rational endpoints where the sequence takes an infinite number
of values below 𝑎 and an infinite number of values above 𝑏 .
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Figure 25.3 (Completed upcrossings). This diagram shows a sequence that completes
two upcrossings of the interval [𝑎, 𝑏] before the index 𝑁 . The first upcrossing (𝑠1, 𝑡1)
occurs right at the beginning of the sequence. Afterward, the sequence wanders for
a while before dropping below the level 𝑎 . The second upcrossing (𝑠2, 𝑡2) occurs at
this point, including a section that rises above the level 𝑎 and falls below 𝑎 before
continuing upward past the level 𝑏 .

25.2.2 Upcrossings
This observation suggests that we count how many times the sequence passes upward
through the interval.

Definition 25.10 (Upcrossing). Consider a nonrandom real sequence (𝑥𝑘 : 𝑘 ∈ ℤ+),
and fix real numbers 𝑎, 𝑏 ∈ ℝ. An upcrossing of the interval [𝑎, 𝑏] is a pair (𝑠 , 𝑡 )
of indices for which 𝑥𝑠 < 𝑎 < 𝑏 < 𝑥𝑡 .

Definition 25.11 (Completed upcrossings). Consider a nonrandom real sequence (𝑥𝑘 :
𝑘 ∈ ℤ+), real numbers 𝑎, 𝑏 ∈ ℝ, and an index 𝑁 ∈ ℤ+. The number 𝑢𝑁 [𝑎, 𝑏]
denotes the (maximum) number of upcrossings that are completed by time 𝑁 . The
total number 𝑢∞ [𝑎, 𝑏] of upcrossings is given by

𝑢∞ [𝑎, 𝑏] := lim𝑁→∞𝑢𝑁 [𝑎, 𝑏] ∈ ℤ+.

The monotone limit is always defined, but it may take the value +∞.
More formally, we define pairs of upcrossings recursively. Let 𝑡0 = 0, and

construct

𝑠1 := inf{𝑘 ≥ 𝑡0 : 𝑥𝑘 < 𝑎} and 𝑡1 := inf{𝑘 > 𝑠1 : 𝑥𝑘 > 𝑏};
𝑠2 := inf{𝑘 > 𝑡1 : 𝑥𝑘 < 𝑎} and 𝑡2 := inf{𝑘 > 𝑠2 : 𝑥𝑘 > 𝑏}; . . . .

Then 𝑢𝑁 [𝑎, 𝑏] = sup{𝑚 ∈ ℤ+ : 𝑡𝑚 ≤ 𝑁 }. See Figure 25.3 for an illustration.

25.2.3 Convergence from upcrossings
We can now express convergence properties of a real sequence in terms of the number
of times that it crosses an interval.

Lemma 25.12 (Finite upcrossings). Consider a real sequence (𝑥𝑘 : 𝑘 ∈ ℤ+). If 𝑢∞ [𝑎, 𝑏] <
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+∞ for all rational numbers 𝑎 < 𝑏 , then (𝑥𝑘 ) converges to a limit in ℝ.

Proof. Let us establish the contrapositive: If (𝑥𝑘 ) fails to converge to a limit in ℝ, then
𝑢∞ [𝑎, 𝑏] = +∞ for some rational numbers 𝑎 < 𝑏 .

According to Lemma 25.8, the premise is equivalent to the condition that

lim inf𝑘→∞ 𝑥𝑘 < 𝑎 < 𝑏 < lim sup𝑘→∞ 𝑥𝑘 for some rational 𝑎 < 𝑏 .

Consider the sequences (𝑠𝑖 : 𝑖 ∈ ℤ+) and (𝑡𝑖 : 𝑖 ∈ ℤ+) from Definition 25.11. Since the
limit inferior of (𝑥𝑘 ) is smaller than 𝑎 , the times 𝑠𝑖 are all finite. Since the limit superior
of (𝑥𝑘 ) is bigger than 𝑏 , the times 𝑡𝑖 are all finite. Furthermore, each pair (𝑠𝑖 , 𝑡𝑖 ) is a
distinct upcrossing of the interval [𝑎, 𝑏]. We conclude that 𝑢∞ [𝑎, 𝑏] = +∞. ■

25.3 Upcrossing inequalities
Our next goal is to count the number of times that a martingale sequence makes an
upcrossing of a fixed interval. To do so, we recall that martingale increments model the
outcomes of a fair game. If the martingale values cross an interval repeatedly, we could
prescribe a betting strategy that exploits this event to make money. Unfortunately, we
have already seen that it is impossible to profit on a fair game on average, so we must
conclude that the martingale only traverses the interval a finite number of times.

25.3.1 Betting on upcrossings
Consider a martingale sequence (𝑋𝑘 : 𝑘 ∈ ℤ+). The martingale increments Δ𝑖 :=
𝑋𝑖 − 𝑋𝑖−1 model the outcomes of a sequence of fair games. We can make (linear) bets
on the values of the increments in the hope of turning a profit.

The endpoints of the interval are
parameters in the argument. We will
see that there is no benefit from
picking any particular set of
endpoints.

We will develop a betting strategy based on the surmise that the martingale
repeatedly traverses a particular interval [𝑎, 𝑏] upward, where 𝑎 < 𝑏 are real numbers.
The basic idea is that we start betting $1 per game as soon as the martingale dips
below the level 𝑎 , and we continue betting $1 per game until the martingale exceeds
the level 𝑏 . Then we bet $0 per game until the value of the martingale falls below 𝑎
again. See Figure 25.4.

Formally, we define the sequence (𝐶𝑘 : 𝑘 ∈ ℕ) of bets:

𝐶1 := 1{𝑋0 < 𝑎}
𝐶𝑘 := 1{𝐶𝑘−1 = 1, 𝑋𝑘−1 ≤ 𝑏} + 1{𝐶𝑘−1 = 0, 𝑋𝑘−1 < 𝑎} for 𝑘 ≥ 2.

(25.1)

You should convince yourself that this sequence implements exactly the strategy
described in the previous paragraph.

Exercise 25.13 (Upcrossing: Bets). Show that the sequence (𝐶𝑘 : 𝑘 ∈ ℕ) is positive,
bounded, and previsible.

The martingale transform of (𝑋𝑘 ) by the sequence (𝐶𝑘 ) models your accumulated
winnings from this betting strategy:

𝑌𝑘 := (𝑪 · 𝑿 )𝑘 =
∑︁𝑘

𝑖=1
𝐶𝑖 (𝑋𝑖 − 𝑋𝑖−1) for 𝑘 ∈ ℤ+,

with the understanding that 𝑌0 = 0. Proposition 24.4 shows that (𝑌𝑘 ) is also a
martingale. In particular, your expected winnings 𝔼𝑌𝑘 = 𝔼𝑌0 = 0 at each time
𝑘 ∈ ℤ+.
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Figure 25.4 (Betting on upcrossings). This diagram shows the upcrossing betting
strategy for a particular sample path 𝑋𝑘 (𝜔) and a particular interval [𝑎, 𝑏].

25.3.2 Snell’s inequality
We can develop a coarse lower bound on the accumulated winnings from the upcrossing
betting strategy. This bound allows us to control the total number of upcrossings of a
sample path of the martingale (𝑋𝑘 ).

For each fixed time 𝑁 ∈ ℤ+ and each sample point 𝜔 ∈ Ω, define the number
𝑈𝑁 [𝑎, 𝑏] (𝜔) of upcrossings of [𝑎, 𝑏] that the sample path (𝑋𝑘 (𝜔) : 𝑘 ∈ ℤ+)
completes by time 𝑁 . Similarly, we introduce the total number 𝑈∞ [𝑎, 𝑏] (𝜔) of
upcrossings of [𝑎, 𝑏] achieved by the entire sample path 𝑋𝑘 (𝜔).
Exercise 25.14 (Upcrossing random variables). Confirm that𝑈𝑁 [𝑎, 𝑏] and𝑈∞ [𝑎, 𝑏] are
positive random variables.

The next result bounds the expected number of completed upcrossings at time 𝑁
in terms of the expected value of the martingale at time 𝑁 .

Proposition 25.15 (Snell’s inequality). Let (𝑋𝑘 ) be a martingale. For all real numbers
𝑎 < 𝑏 and integers 𝑁 ∈ ℤ+, Recall that

(𝑥 )− := max{−𝑥, 0} ≥ 0.(𝑏 − 𝑎) · 𝔼𝑈𝑁 [𝑎, 𝑏] ≤ 𝔼(𝑋𝑁 − 𝑎)− .

There are two phenomena that affect the expected number of completed upcrossings.
The wider the interval [𝑎, 𝑏], the fewer upcrossings we can anticipate. The integrability
properties of the martingale also play a role.

Proof. We consider the martingale transform 𝑌𝑘 = (𝑪 · 𝑿 )𝑘 of the martingale (𝑋𝑘 )
applied to the betting strategy (𝐶𝑘 ), defined in (25.1).

Using the number𝑈𝑁 [𝑎, 𝑏] (𝜔) of upcrossings, we can develop a lower bound on
our total winnings 𝑌𝑁 (𝜔) up to time 𝑁 :

𝑌𝑁 (𝜔) ≥ (𝑏 − 𝑎) ·𝑈𝑁 [𝑎, 𝑏] (𝜔) − (𝑋𝑁 (𝜔) − 𝑎)− .

Indeed, we win at least (𝑏 − 𝑎) dollars each time the sample path (𝑋𝑘 (𝜔)) completes
an upcrossing of the interval [𝑎, 𝑏]. After the last upcrossing, completed before time
𝑁 , there is a final interval of play. If the martingale passes below 𝑎 during this interval,
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then we have started betting actively. The amount that we lose during this interval of
play is bounded above by (𝑋𝑁 (𝜔) − 𝑎)− , the amount that the martingale drops below
the level 𝑎 .

Since (𝑌𝑘 ) is a martingale, at the fixed time 𝑁 , we have

0 = 𝔼𝑌0 = 𝔼𝑌𝑁 ≥ (𝑏 − 𝑎) · 𝔼𝑈𝑁 [𝑎, 𝑏] − 𝔼(𝑋𝑁 − 𝑎)− .
The second inequality follows from the display in the last paragraph. Rearrange to
complete the proof. ■

25.3.3 Infinite upcrossings are negligible
The key implication of Snell’s inequality is that a uniformly bounded martingale has
zero probability of traversing any given interval [𝑎, 𝑏] an infinite number of times.

Corollary 25.16 (Infinite upcrossings are negligible). Assume (𝑋𝑘 ) is a martingale that is
uniformly bounded in L1. Fix real numbers 𝑎 < 𝑏 . Then ℙ {𝑈∞ [𝑎, 𝑏] = +∞} = 0.

Proof. Suppose that 𝔼 |𝑋𝑘 | ≤ 𝑅 uniformly for all 𝑘 . According to Snell’s inequality
(Proposition 25.15),

(𝑏 − 𝑎) · 𝔼𝑈𝑁 [𝑎, 𝑏] ≤ 𝔼(𝑋𝑁 − 𝑎)− ≤ 𝔼 |𝑋𝑁 | + |𝑎 | ≤ 𝑅 + |𝑎 |.
Note that𝑈𝑁 [𝑎, 𝑏] ↑𝑈∞ [𝑎, 𝑏] as 𝑁 → ∞. Therefore, we can invoke the monotone
convergence theorem to deduce that

(𝑏 − 𝑎) · 𝔼𝑈∞ [𝑎, 𝑏] ≤ 𝑅 + |𝑎 |.
Since𝑈∞ [𝑎, 𝑏] is a positive random variable, its expectation is finite only if it takes
exclusively finite values, almost surely: ℙ {𝑈∞ [𝑎, 𝑏] = +∞} = 0. ■

25.3.4 *Dubins’s inequality
For a positive martingale (𝑋𝑘 : 𝑘 ∈ ℕ), it is possible to prove a much sharper bound on
the number of upcrossings. Fix positive real numbers 𝑎 < 𝑏 . As in Definition 25.11,
we may introduce (random) times 𝑇0 = 0 and

𝑆1 := inf{𝑘 ≥ 𝑇0 : 𝑥𝑘 < 𝑎} and 𝑇1 := inf{𝑘 > 𝑆1 : 𝑥𝑘 > 𝑏};
𝑆2 := inf{𝑘 > 𝑇1 : 𝑥𝑘 < 𝑎} and 𝑇2 := inf{𝑘 > 𝑆2 : 𝑥𝑘 > 𝑏}; . . . .

Then𝑈𝑁 [𝑎, 𝑏] = sup{𝑚 ∈ ℤ+ : 𝑇𝑚 ≤ 𝑁 }.
Exercise 25.17 (Upcrossing: Stopping times). Show that each 𝑇𝑘 is a stopping time, and
each 𝑆𝑘 is a stopping time.

Exercise 25.18 (Upcrossing: Bets). Express the sequence (𝐶𝑘 ) of bets from (25.1) more
succinctly using the stopping times (𝑆𝑖 ) and (𝑇𝑖 ).
Problem 25.19 (Dubins’s upcrossing inequality). Let (𝑋𝑘 : 𝑘 ∈ ℤ+) be a positivemartingale,
and fix positive real numbers 𝑎 < 𝑏 . For each index 𝑘 ∈ ℕ, let𝑇𝑘 be the stopping time
described above. Then

ℙ {𝑇𝑘 < ∞} ≤ (𝑎/𝑏) · ℙ {𝑇𝑘−1 < ∞} .
In particular, ℙ {𝑇𝑘 < +∞} ≤ (𝑎/𝑏)𝑘 . Deduce that ℙ {𝑈∞ [𝑎, 𝑏] = +∞} = 0.

Hint: For any fixed index 𝑁 , show that

𝑏 · ℙ {𝑇𝑘 ≤ 𝑁 } + 𝔼[𝑋𝑁1{𝑇𝑘 > 𝑁 }] ≤ 𝔼𝑋𝑇𝑘∧𝑁

= 𝔼𝑋𝑆𝑘∧𝑁 ≤ 𝑎 · ℙ {𝑆𝑘 ≤ 𝑁 } + 𝔼[𝑋𝑁1{𝑆𝑘 > 𝑁 }].
Exercise 25.20 (Dubins: Supermartingale case). Show that Dubins’s inequality also holds
for a positive supermartingale.
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25.4 Doob’s martingale convergence theorem: Proof
We are now prepared to prove Doob’s convergence theorem (Theorem 25.1). For
concreteness, define the limiting random variable

𝑋∞(𝜔) := lim inf𝑘→∞ 𝑋𝑘 (𝜔) for all 𝜔 ∈ Ω.

Consider the event

E := {𝜔 : 𝑋𝑘 (𝜔) does not have a limit in ℝ as 𝑘 → ∞}.

Using Lemma 25.8 and Lemma 25.12, we can express this event as

E =
⋃

𝑎<𝑏
𝑎,𝑏∈ℚ

{𝜔 : lim inf𝑘→∞ 𝑋𝑘 (𝜔) < 𝑎 < 𝑏 < lim sup𝑘→∞ 𝑋𝑘 (𝜔)}

⊆
⋃

𝑎<𝑏
𝑎,𝑏∈ℚ

{𝜔 :𝑈∞ [𝑎, 𝑏] (𝜔) = +∞}.

Corollary 25.16 states that each event in the latter union has probability zero. Since
the union is indexed by a countable set (pairs of rational numbers), we deduce that E
is an event with ℙ(E) = 0. As a consequence,

𝑋∞(𝜔) = lim𝑘→∞ 𝑋𝑘 (𝜔) almost surely.

Indeed, the limit and limit inferior coincide whenever the limit exists.
To confirm that 𝑋∞ is almost surely finite, we bound its expectation using Fatou’s

lemma (Theorem 9.11):

𝔼 |𝑋∞ | = 𝔼[lim inf𝑘→∞ |𝑋𝑘 |] ≤ lim inf𝑘→∞ 𝔼 |𝑋𝑘 | ≤ 𝑅,

where 𝑅 is the uniform L1 bound on the martingale (𝑋𝑘 ). In other words, 𝑋∞ is
integrable. In particular, 𝑋∞ must be finite almost surely.

25.5 *Uniformly integrable martingales
A disappointing feature of Doob’s convergence theorem is that it does not imply the
L1 convergence of a martingale (𝑋𝑘 ). A natural question is when we can assert that
𝔼𝑋𝑘 → 𝔼𝑋∞. To address this problem, we give a brief tour of the theory of uniformly
integrable martingales.

25.5.1 Uniform integrability
The notion of uniform integrability arises when we attempt to connect L1 convergence
with notions of pointwise convergence. As we have discussed, these two concepts are
incomparable with each other. Uniform integrability offers a bridge.

First, we observe that the tails ℙ {|𝑋 | ≥ 𝑡 } of an integrable random variable 𝑋
must decay at least as fast as 𝑡 −1 as 𝑡 → ∞. The next result gives an alternative
perspective on this fact.

Exercise 25.21 (Integrable random variable: Tails). Suppose that 𝑋 is an integrable random
variable. Show that

𝔼
[
|𝑋 | · 1{|𝑋 | > 𝑅}

]
→ 0 as 𝑅 → ∞.

Motivated by this exercise, we carve out a family of integrable random variables
whose tails all decay uniformly.
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Definition 25.22 (Uniform integrability). A family (𝑋𝑡 : 𝑡 ∈ T) of random variables is
uniformly integrable (UI) if

sup𝑡 ∈T 𝔼
[
|𝑋𝑡 | · 1{|𝑋𝑡 | > 𝑅}

]
→ 0 as 𝑅 → ∞.

Uniform integrability is a kind of compactness property. Among other things, a UI
family is uniformly bounded in L1. In particular, UI random variables are integrable.

Exercise 25.23 (Uniform integrability: L1 boundedness). Show that a UI family (𝑋𝑡 : 𝑡 ∈ T)
is uniformly bounded in L1. That is, sup𝑡 ∥𝑋𝑡 ∥L1 ≤ 𝑅 for a finite number 𝑅 .

Uniform integrability is the missing ingredient that we need to deduce L1 conver-
gence from almost-sure convergence.

Proposition 25.24 (Convergence in L1: Sufficient condition). Consider a sequence (𝑋𝑘 :
𝑘 ∈ ℤ+) of integrable random variables. If the sequence is uniformly integrable and
𝑋𝑘 → 𝑋∞ almost surely, then ∥𝑋𝑘 − 𝑋∞∥L1 → 0.

Proof. First, we verify that the limit 𝑋∞ is integrable. Using Fatou’s lemma (Theo-
rem 9.11),

𝔼 |𝑋∞ | = 𝔼[lim inf𝑘→∞ |𝑋𝑘 |] ≤ lim inf𝑘→∞ 𝔼 |𝑋𝑘 | < +∞.

The last relation holds because a UI sequence is uniformly bounded (Exercise 25.23).
The key idea is to approximate the random variables in the sequence (𝑋𝑘 : 𝑘 ∈ ℤ+)

by thresholding them all at the same level. For a parameter 𝑅 ≥ 0, introduce the
bounded, continuous function

𝜑𝑅 (𝑥) := sgn(𝑥) · ( |𝑥 | ∧ 𝑅).

By choosing 𝑅 sufficiently large, we can ensure that

𝔼 |𝜑𝑅 (𝑋∞) − 𝑋∞ | ≤ 𝜀 and 𝔼 |𝜑𝑅 (𝑋𝑘 ) − 𝑋𝑘 | ≤ 𝜀 for all 𝑘 ∈ ℤ+.

The first statement follows from Exercise 25.21; the second statement is the definition of
uniform integrability. Since 𝜑𝑅 is bounded and continuous, the bounded convergence
theorem implies that

𝔼 |𝜑𝑅 (𝑋𝑘 ) − 𝜑𝑅 (𝑋∞) | → 0 as 𝑘 → ∞.

Therefore, if we choose 𝑘 large enough, the triangle inequality implies that

𝔼 |𝑋𝑘 − 𝑋∞ | ≤ 𝔼
[
|𝑋𝑘 − 𝜑𝑅 (𝑋𝑘 ) | + |𝜑𝑅 (𝑋𝑘 ) − 𝜑𝑅 (𝑋∞) | + |𝜑𝑅 (𝑋∞) − 𝑋∞ |

]
≤ 3𝜀.

Take the limit as 𝑘 → ∞ and then as 𝜀 → 0 to deduce that 𝑋𝑘 → 𝑋∞ in L1. ■

We can strengthen the result of Proposition 25.24 to obtain a necessary and sufficient
condition for L1 convergence.

Problem 25.25 (*Convergence in L1: Characterization). Consider a sequence (𝑋𝑘 : 𝑘 ∈ ℤ+)
of integrable random variables. Prove that the following statements are equivalent.

1. Convergence in L1: The sequence (𝑋𝑘 ) converges to an integrable random variable
𝑋∞ with respect to the L1 pseudonorm: ∥𝑋𝑘 − 𝑋∞∥L1 → 0.

2. Convergence in probability + UI: The sequence (𝑋𝑘 ) is uniformly integrable, and it
converges in probability to an integrable random variable 𝑋∞.

Hint: The direction (2) ⇒ (1) is similar to the proof of Proposition 25.24. The direction
(1) ⇒ (2) requires uniform boundedness of (𝑋𝑘 ) in L1 and Markov’s inequality.
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25.5.2 Example: Lévy–Doob martingales
The key example of a UI sequence is the Lévy–Doob martingale associated with a
random variable and a filtration. Recall that these martingales arise when we improve
our prediction of a random variable by progressively acquiring more information.

Proposition 25.26 (Lévy–Doob martingale: Uniform integrability). Let (F𝑘 : 𝑘 ∈ ℤ+) be
a filtration, and let 𝑍 be an integrable random variable. Consider the martingale
sequence

𝑋𝑘 := 𝔼[𝑍 | F𝑘 ] for 𝑘 ∈ ℤ+.

Then (𝑋𝑘 : 𝑘 ∈ ℤ+) is a UI family.

Proof. Jensen’s inequality for conditional expectation (Proposition 20.6) yields

|𝑋𝑘 | = |𝔼[𝑍 | F𝑘 ] | ≤ 𝔼[|𝑍 | | F𝑘 ].

Therefore, without loss, we may assume that 𝑍 ≥ 0. In particular, the sequence (𝑋𝑘 )
is positive as well.

Fix an index 𝑘 ∈ ℤ+. We will obtain a bound on the tail expectation that is
independent of 𝑘 . For a parameter 𝑅 ≥ 0, we calculate that

𝔼[𝑋𝑘 · 1{𝑋𝑘 > 𝑅2}] = 𝔼[𝔼[𝑍 | F𝑘 ] · 1{𝑋𝑘 > 𝑅2}]
= 𝔼[𝔼[𝑍 · 1{𝑋𝑘 > 𝑅2} | F𝑘 ]]]
= 𝔼[𝑍 · 1{𝑋𝑘 > 𝑅2}].

The second relation holds because {𝑋𝑘 > 𝑅2} is F𝑘 -measurable, so we can draw
it inside the conditional expectation. Then we invoke the tower law to drop the
conditioning. To continue, we decompose 𝑍 = 𝑍 · 1{𝑍 ≤ 𝑅} + 𝑍 · 1{𝑍 > 𝑅} to make
the bounds

𝔼[𝑍 · 1{𝑋𝑘 > 𝑅2}] ≤ 𝑅 · ℙ
{
𝑋𝑘 > 𝑅2} + 𝔼[𝑍 · 1{𝑍 > 𝑅}].

We can control the first term using Markov’s inequality:

ℙ
{
𝑋𝑘 > 𝑅2} ≤ (𝔼𝑋𝑘 )/𝑅2 = (𝔼𝑍 )/𝑅2.

Sequencing the last three displays and taking the supremum over 𝑘 ,

sup𝑘 𝔼[𝑋𝑘 · 1{𝑋𝑘 > 𝑅2}] ≤ (𝔼𝑍 )/𝑅 + 𝔼[𝑍 · 1{𝑍 > 𝑅}].

The right-hand side tends to zero as 𝑅 → ∞ because of Exercise 25.21. ■

Exercise 25.27 (Conditional expectations: Uniform integrability). Establish that the family
containing all conditional expectations of an integrable random variable 𝑍 is UI:

{𝔼[𝑍 | G] : G⊆ Fand Ga 𝜎 -algebra on Ω}.

Hint: The proof is no different from Proposition 25.26.

25.5.3 UI martingales converge
Consider a martingale sequence that is uniformly integrable. This extra condition
guarantees almost-sure convergence and L1 convergence of the martingale. More
strikingly, we can deduce that every UI martingale is a Lévy–Doob martingale.
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Theorem 25.28 (UI martingale: Convergence). Consider a martingale sequence (𝑋𝑘 :
𝑘 ∈ ℤ+) that is uniformly integrable. Then 𝑋𝑘 → 𝑋∞ almost surely and in L1
where 𝑋∞ is an a.s. finite random variable. Furthermore,

𝑋𝑘 = 𝔼[𝑋∞ | F𝑘 ] almost surely for each 𝑘 ∈ ℤ+.

Proof. According to Exercise 25.23, the UI martingale (𝑋𝑘 : 𝑘 ∈ ℤ+) is uniformly
bounded in L1. Doob’s theorem (Theorem 25.1) now implies that 𝑋𝑘 → 𝑋∞ almost
surely. Proposition 25.24 allows us to upgrade the convergence to L1.

Last, we must argue that the martingale has the Lévy–Doob form. Since (𝑋𝑘 ) is a
martingale,

𝔼[𝑋𝑛1E] = 𝔼[𝑋𝑘1E] for all 𝑛 ≥ 𝑘 and all E ∈ F𝑘 .

By the conditional Jensen inequality (Proposition 20.6) and convergence 𝑋𝑛 → 𝑋∞ in
L1,

|𝔼[𝑋𝑛1E] − 𝔼[𝑋∞1E] | ≤ 𝔼[|𝑋𝑛 − 𝑋∞ | · 1E] → 0 as 𝑛 → ∞.

Therefore, 𝔼[𝑋∞1E] = 𝔼[𝑋𝑘1E] for all E ∈ F𝑘 . We conclude that 𝑋𝑘 = 𝔼[𝑋∞ | F𝑘 ] by
Definition 20.1 of conditional expectation. ■

25.5.4 Lévy’s upward convergence theorem
We can apply Theorem 25.28 to a Lévy–Doob martingale, but one issue remains
hanging. The Lévy–Doob martingale converges, but does its limit coincide with its
terminal value? The next result clarifies that the answer is positive, so UI martingales
are essentially the same thing as Lévy–Doob martingales.

Corollary 25.29 (Lévy–Doob martingale: Convergence). Consider a filtration (F𝑘 : 𝑘 ∈ ℤ+)
where F∞ = 𝜎 (⋃∞

𝑘=1 F𝑘 ). For any integrable random variable 𝑍 , the Lévy–Doob
martingale associated with the filtration converges:

𝑋𝑘 := 𝔼[𝑍 | F𝑘 ] → 𝔼[𝑍 | F∞] =: 𝑋∞ almost surely and in L1.

Proof. Proposition 25.26 ensures that the Lévy–Doob martingale (𝑋𝑘 ) is UI. Theo-
rem 25.28 states that it converges: 𝑋𝑘 → 𝑋 almost surely and in L1. Furthermore,
each element of the martingale is a conditional expectation of its limit: 𝑋𝑘 = 𝔼[𝑋 | F𝑘 ]
almost surely.

We must confirm that almost-sure equality at the finite indices implies almost-sure
equality at the terminal index 𝑘 = +∞. We know that

𝔼[𝑋 | F𝑘 ] = 𝔼[𝑍 | F𝑘 ] almost surely for all 𝑘 ∈ ℤ+.

Let us see how this point follows from a short uniqueness of measure argument.
By splitting 𝑋 and 𝑍 into positive and negative parts, we may assume that both

random variables are positive. For any event E ∈ F∞, we define measures

𝜇(E) := 𝔼[𝑋 1E] and 𝜈 (E) := 𝔼[𝑍1E].

Suppose that F ∈ F𝑘 for some index 𝑘 . Then the tower and pull-through laws
guarantee that

𝜇(F) = 𝔼[𝔼[𝑋 1F | F𝑘 ]] = 𝔼[𝔼[𝑋 | F𝑘 ] · 1F] = 𝔼[𝑋𝑘1F] = 𝜈 (F).

Therefore, 𝜇 and𝜈 coincide on the intersection-stable system
⋃∞
𝑘=1 F𝑘 , which generates

the 𝜎 -algebra F∞. Theorem E.4, on uniqueness of measures, implies that 𝜇 and 𝜈
coincide on F∞.
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Finally, we need to pass from events to random variables. Since 𝑋 = lim sup𝑘→∞ 𝑋𝑘
almost surely, both 𝑋 and 𝑋∞ are F∞-measurable. In particular, we realize that the
event E := {𝑋 > 𝑋∞} ∈ F∞, so

𝔼[(𝑋 − 𝑋∞)1E] = 𝜇(E) − 𝜈 (E) = 0.

Since expectations are almost positive operators, we deduce that ℙ {𝑋 > 𝑋∞} = 0.
Likewise, ℙ {𝑋 < 𝑋∞} = 0. We conclude that 𝑋 = 𝑋∞ almost surely. ■

Problems
Exercise 25.30 (Time to ruin: Limits). Consider the simple random walk described in
Exercise 24.24. Assuming 𝑞/𝑝 ≠ 1, show that the martingale (𝑋𝑘 ) converges almost
surely to a finite limit: 𝑋𝑘 → 0 almost surely. What are the implications for the
random walk 𝑆𝑘? Check that 𝔼[𝑋𝑘 ] ↛ 0.

Problem 25.31 (Martingales in L2). Let (𝑋𝑘 : 𝑘 ∈ ℤ+) be a martingale in L2 with difference
sequence Δ𝑘 := 𝑋𝑘 −𝑋𝑘−1 for 𝑘 ∈ ℕ. The theory of L2 martingales is more elementary
than the case of L1 martingales.

1. Prove that the difference sequence is orthogonal: 𝔼[Δ𝑗Δ𝑘 ] = 0 when 𝑗 ≠ 𝑘 .
2. Use the Pythagorean theorem to establish that the martingale (𝑋𝑘 ) is uniformly

bounded in L2 if and only if
∑
𝑘≥1 𝔼[Δ2

𝑘
] < ∞.

3. From now on, assume (𝑋𝑘 ) is uniformly bounded in L2. Deduce that (𝑋𝑘 ) is
a Cauchy sequence in L2, so it converges in the L2 sense to a random variable
𝑀∞ ∈ L2.

4. Apply Doob’s convergence theorem to conclude that (𝑋𝑘 ) also converges almost
surely to a random variable 𝑋∞.

5. In particular, consider 𝑋𝑘 =
∑𝑘
𝑖=1 Δ𝑖 , where Δ𝑖 are centered, independent

random variables in L2. Argue that (𝑋𝑘 ) converges almost surely and in L2,
provided that

∑∞
𝑖=1 Var[Δ𝑖 ] < ∞.

6. Let 𝜀𝑖 ∼ unif{±1} be i.i.d. Does the random series
∑∞
𝑖=1 𝜀𝑖/𝑖 converge? In

what sense? (*) For context, does the series
∑∞
𝑖=1 𝑖

−1 converge? What about∑∞
𝑖=1(−1)𝑖/𝑖?

7. (*) Establish Kronecker’s lemma: Let (𝑎𝑘 ) and (𝑏𝑘 ) be real sequences for which
0 < 𝑏𝑘 ↑ ∞ and

∑∞
𝑖=1 𝑎𝑖/𝑏𝑖 converges to a finite limit. Then 𝑏−1

𝑘

∑𝑘
𝑖=1 𝑎𝑖 → 0

as 𝑘 → ∞. Hint: Summation by parts.
8. (*) Consider an independent sequence (𝑍𝑘 ) of real random variables whose

variances satisfy the bound
∑∞
𝑖=1 𝑖

−2 Var[𝑍𝑖 ] < ∞. Use Kronecker’s lemma to
deduce a variant of the SLLN:

1
𝑘

∑︁𝑘

𝑖=1
(𝑍𝑖 − 𝔼𝑍𝑖 ) → 0 almost surely as 𝑘 → ∞.

This result, due to Kolmogorov, is the standard SLLN for non-identically dis-
tributed sums.

9. (**) For an i.i.d. sum, show how to extend the argument to the case where the
summands are in L1 but not necessarily in L2. Hint: Truncate the summands.
The slickest way to handle the technical details is to invoke Toeplitz’s lemma, a
relative of Kronecker’s lemma.

Applications
Application 25.32 (Likelihood ratio tests). Let (𝑍𝑘 : 𝑘 ∈ ℕ) of i.i.d. copies of a continuous
random variable 𝑍 with strictly positive density with respect to Lebesgue measure. We
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pose competing hypotheses:{
H0 : 𝑋 has density 𝑝 : ℝ → ℝ++;
H1 : 𝑋 has density 𝑞 : ℝ → ℝ++.

Assume 𝜆{𝑝 ≠ 𝑞} > 0. The likelihood ratio test forms the sequence of random
variables

𝑋0 = 1 and 𝑋𝑘+1 =
𝑞 (𝑍𝑘+1)
𝑝 (𝑍𝑘+1)

· 𝑋𝑘 for 𝑘 ∈ ℤ+.

For a level 𝑎 > 0, we reject the null hypothesis H0 if we observe that 𝑋𝑘 ≥ 𝑎 at any
time 𝑘 .

1. Assuming the null hypothesis H0 is valid, show that (𝑋𝑘 : 𝑘 ∈ ℤ+) is a positive
martingale.

2. Explain why the martingale converges almost surely.
3. Under the null hypothesis H0, prove that 𝑋𝑘 → 0 almost surely. Hint: Take the

logarithm and use the SLLN. You will need the strict case of Jensen (Exercise 9.30)
as well.

4. (*) Using Ville’s maximal inequality (Theorem 26.12), bound the probability that
the test commits a Type I error, that is, the event that the test mistakenly rejects
the null when it is true.

Application 25.33 (Randomized Kaczmarz). Consider a matrix 𝑨 ∈ ℝ𝑑×𝑟 with full column-
rank. Here, ∥ · ∥ℓ2 is the ordinary Euclidean

norm on ℝ𝑟 , and ∗ is the transpose of
a vector or matrix.

Let 𝒂∗
𝑖
denote the 𝑖 th row of 𝑨, and assume that ∥𝒂 𝑖 ∥ℓ2 = 1 for each index

𝑖 . Let 𝒃 ∈ ℝ𝑑 be a vector. We wish to find the (unique) solution 𝒙★ ∈ ℝ𝑑 to the
overdetermined, consistent linear system 𝑨𝒙 = 𝒃 .

Here is a simple randomized algorithm. Fix an arbitrary point 𝒙0 ∈ ℝ𝑟 . For
each iteration 𝑘 = 1, 2, 3, . . . , choose a random index 𝑇 (𝑘 ) ∼ uniform{1, . . . , 𝑑},
independent of everything. Update the current iterate 𝒙𝑘 ∈ ℝ𝑟 by enforcing equation
𝑇 (𝑘 ) exactly:

𝒙𝑘 = 𝒙𝑘−1 −
(
𝒂𝑇 (𝑘 )

∗𝒙𝑘−1 − 𝑏𝑇 (𝑘 )
)
𝒂𝑇 (𝑘 ) .

Define the squared error 𝐸𝑘 := ∥𝒙𝑘 − 𝒙★∥2ℓ2 for each 𝑘 ∈ ℤ+.

1. Consider the random rank-one orthogonal projector 𝑷 𝑘 := 𝒂𝑇 (𝑘 )𝒂𝑇 (𝑘 )
∗ for

𝑘 ∈ ℕ. Show that the error vectors satisfy the relation

𝒙𝑘 − 𝒙★ = (I − 𝑷 𝑘 ) (𝒙𝑘−1 − 𝒙★).

2. Deduce that the squared errors are decreasing: 𝐸𝑘+1 ≤ 𝐸𝑘 for each 𝑘 ∈ ℤ+.
3. Observe that 𝔼𝑷 𝑘 = 𝑑−1𝑨∗𝑨 for each 𝑘 ∈ ℕ.
4. Deduce that

𝔼
[
𝐸𝑘+1 |𝑇 (1), . . . ,𝑇 (𝑘 )

]
≤ (1 − 𝜚) 𝐸𝑘 for each 𝑘 ∈ ℤ+,

where 0 < 𝜚 ≤ 1. Hint: The minimum singular value of 𝑨∗𝑨 is strictly positive.
5. Show that (𝐸𝑘 ) converges almost surely.
6. Show that (𝐸𝑘 ) also converges in L1. Hint: Use part (2).
7. Conclude that 𝐸𝑘 → 0 almost surely and in L1.
8. Give a lower bound on the probability that 𝐸𝑘 ≤ 10(1 − 𝜚)𝑘𝐸0 for all 𝑘 ∈ ℤ+.
9. (*) Prove that the sequence (𝐸𝑘/(1−𝜚)𝑘 ) converges almost surely to an integrable

random variable.
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10. (**) Show that (𝐸𝑘/(1 − 𝜚)𝑘 ) converges in L𝑝 for all 0 < 𝑝 < 1.

Application 25.34 (Stochastic gradient descent). Martingale methods provide a natural
tool for studying the behavior of randomized iterative algorithms. In this problem, we
will develop some convergence properties of the simplest stochastic gradient algorithm,
a very important optimization method.

Let 𝑓 : ℝ𝑑 → ℝ be a differentiable convex function. The set F★ := argmin{𝑓 (𝒙 ) :
𝒙 ∈ ℝ𝑛} of minimizers is always closed and convex, and we will assume that it is
nonempty.

The stochastic gradient algorithm attempts to minimize 𝑓 . It begins with a (random)
initial point 𝒙1 ∈ ℝ𝑑 . At each step 𝑘 ∈ ℕ, we construct a random unbiased estimator
𝒈 𝑘 ∈ ℝ𝑑 for the gradient at the current iterate:

𝔼 𝒈 𝑘 = ∇𝑓 (𝒙𝑘 ) for each 𝑘 ∈ ℕ.

Then we update the iterate using the rule

𝒙𝑘+1 = 𝒙𝑘 −𝜂𝑘𝒈 𝑘 ,

where 𝜂𝑘 ≥ 0 is a (nonrandom) step size parameter. For simplicity, we also assume
that ∥𝒈 𝑘 ∥22 ≤ 𝐿 uniformly.

The random gradient approximation 𝒈 𝑘 can depend in an arbitrary way on
the observed trajectory 𝒙1, . . . , 𝒙𝑘 and on the previous gradient approximations
𝒈 1, . . . , 𝒈 𝑘−1 and on some auxiliary randomness. But it cannot anticipate the future
trajectory.

1. Let 𝒚 ∈ ℝ𝑑 be an arbitrary point. For each 𝑘 ∈ ℕ, prove that

𝔼
[
∥𝒙𝑘+1 − 𝒚 ∥22 | F𝑘

]
≤ ∥𝒙𝑘 − 𝒚 ∥22 − 2𝜂𝑘 ( 𝑓 (𝒙𝑘 ) − 𝑓 (𝒚 )) +𝜂2

𝑘𝐿.

Hint: The gradient ∇𝑓 of the convex function 𝑓 satisfies the inequality

𝑓 (𝒚 ) − 𝑓 (𝒙 ) ≥ ⟨∇𝑓 (𝒙 ), 𝒚 − 𝒙 ⟩ for all 𝒚 ∈ ℝ𝑑 .

2. Fix an optimal point 𝒙★ ∈ F★. Define the random error in the current iterate
relative to the optimal point:

𝐸𝑘 (𝒙★) := ∥𝒙𝑘 − 𝒙★∥22.

Instantiate the result from (1) with 𝒚 = 𝒙★ to relate 𝐸𝑘+1 and 𝐸𝑘 .

The result in (2) shows that the error sequence is almost—but not quite—a positive
supermartingale. To establish that it converges, we need to develop a convergence
theorem that addresses our situation.

3. Let (𝑆𝑘 ) and (𝑌𝑘 ) be positive adapted sequences of random variables that satisfy

𝔼[𝑆𝑘+1 | F𝑘 ] ≤ 𝑆𝑘 −𝑌𝑘 + 𝑐𝑘 , where 𝑐𝑖 ≥ 0 and
∑︁∞

𝑖=1
𝑐𝑖 < ∞.

Prove that (𝑆𝑘 ) converges almost surely to a (finite) positive random variable.
Conclude that

∑∞
𝑖=1𝑌𝑖 < ∞ almost surely. Hint: Consider the positive super-

martingale
𝑇𝑘 = 𝑆𝑘 +

∑︁
𝑖<𝑘

(𝑌𝑖 − 𝑐𝑖 ) +
∑︁∞

𝑖=1
𝑐𝑖 .
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4. With this result in view, identify a sequence of step size parameters that satisfy∑︁∞
𝑘=1

𝜂𝑘 = +∞ and
∑︁∞

𝑘=1
𝜂2
𝑘 < +∞.

5. Invoke (3) to argue that lim inf𝑘→∞ 𝑓 (𝒙𝑘 ) = 𝑓 (𝒙★) almost surely.
6. Deduce that (𝒙𝑘 ) a.s. has a limit point in F★. Hint: The sequence 𝐸𝑘 (𝒙★) is

bounded a.s.
7. Assume that the optimal set F★ = {𝒙★} is a singleton. In this case, demonstrate

that 𝒙𝑘 → 𝒙★ a.s. As a consequence, 𝑓 (𝒙𝑘 ) → 𝑓 (𝒙★) a.s. Hint: Prove that
𝐸𝑘 (𝒙★) → 0 a.s.

8. (*) Without assuming that F★ is a singleton, prove that (𝒙𝑘 ) converges a.s. to a
point in F★. Conclude that 𝑓 (𝒙𝑘 ) → 𝑓 (𝒙★) a.s. Hint: Amplify the last argument
by noting that 𝐸𝑘 (𝒚 ) converges a.s. for every 𝒚 in a countable dense subset of
F★.

9. Stochastic gradient is often applied when the function 𝑓 can be written as a sum
of many terms: 𝑓 (𝒙 ) = 𝑛−1 ∑𝑛

𝑖=1 𝑓𝑖 (𝒙 ). Consider a random vector 𝒈 with the
distribution

ℙ {𝒈 = ∇𝑓𝑖 (𝒙 )} = 1/𝑛 for 𝑖 = 1, . . . , 𝑛.

Confirm that 𝒈 is an unbiased estimator for ∇𝑓 (𝒙 ).
10. Explain how to apply the stochastic gradient method to solve the least-squares

problem:

minimize𝒙
1
𝑛

∑︁𝑛

𝑖=1
(⟨𝒂 𝑖 , 𝒙 ⟩ − 𝑏𝑖 )2.

11. (*) Explain how to apply stochastic gradient to solve the logistic regression
problem:

maximize𝒙
1
𝑛

∑︁𝑛

𝑖=1

[
𝑏𝑖 ⟨𝒂 𝑖 , 𝒙 ⟩ − log

(
1 + e⟨𝒂 𝑖 , 𝒙 ⟩

) ]
.

12. (*) Solve some least-squares and logistic regression problems using stochastic
gradient. Plot the convergence of the objective value and the iterates.

Notes
The quotation heading this chapter is due to a Jesuit theologian named Pierre Teilhard
de Chardin. In contrast, the proof of the Doob martingale convergence theorem might
be summarized as “everything that rises repeatedly doesn’t converge”. The Teilhard
de Chardin quotation has been immortalized by Flannery O’Connor in her short story
“Everything That Rises Must Converge”. O’Connor’s collected work [O’C71] received
the National Book Award in 1972.

See the introduction of Williams [Wil91] for an overview of branching processes
and the connection with martingales. Grimmett & Stirzaker [GS01] also contains a
treatment of branching processes.

The proof of the martingale convergence theorem and the discussion of uniformly
integrable martingales are both adapted from Williams [Wil91]. Some of the problems
are adapted from Grimmett & Stirzaker [GS01].
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26. Maximal Inequalities

Agenda:
1. Doob’s maximal inequality
2. Submartigales and convexity
3. Hoeffding–Azuma maximal

inequality
4. Uniform confidence intervals
5. *Ville’s maximal inequality
6. *Adapted Hoeffding
7. *Empirical Bernstein

“La loi, dans un grand souci d’égalité, interdit aux riches comme aux pauvres de
coucher sous les ponts, de mendier dans les rues et de voler du pain.”

“The law, in its great concern for equality, forbids the rich and the poor alike from
sleeping under bridges, from begging in the streets, and from stealing bread.”

—Anatole France

A concentration inequality provides bounds on the probability that a random
variable takes a value far from its expectation. We have already encountered some
powerful concentration inequalities for independent sums (Chebyshev, Hoeffding,
Chernoff, Bernstein, and others). These results show that the probability of a large
deviation has a profile similar to the probability that a normal random variable exhibits
a large deviation. They stand among the most widely used probabilistic tools in
computational mathematics and statistics.

A martingale is a stochastic process whose expectation is stable. We may now ask
whether it is possible to control the probability that a martingale takes a value far from
its expectation (at a finite time). In other words, we want to investigate concentration
inequalities for martingales.

A remarkable feature of the martingale setting is that we can establish stronger
results than we were able to achieve for independent sums. In particular, we can
show that the entire trajectory of the martingale (up to a fixed time) is unlikely to
deviate from its expectation. As a consequence, we can even enhance our results for
independent sums.

This type of result is called a maximal inequality, because it controls the maximum
value of the martingale over a portion of its trajectory. To establish maximal inequalities,
we must exploit our toolkit of martingale methods, including martingale transforms
and stopping times.

26.1 Doob’s maximal inequality
We begin with the simplest maximal inequality, which is the analog of Markov’s
inequality (Theorem 10.13) for a submartingale. As we will see, the submartingale
assumption is critical for extensions of this inequality.

Theorem 26.1 (Doob’s maximal inequality). Fix a probability space and a filtration.
Consider a positive submartingale (𝑋𝑘 : 𝑘 ∈ ℤ+). For each index 𝑁 ∈ ℤ+,

ℙ {max0≤𝑘≤𝑁 𝑋𝑘 ≥ 𝑡 } ≤ 𝔼𝑋𝑁

𝑡
for all 𝑡 > 0.
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If the submartingale converges to a limit 𝑋∞ almost surely and in L1, then

ℙ
{
sup𝑘 ∈ℤ+ 𝑋𝑘 > 𝑡

}
≤ 𝔼𝑋∞

𝑡
for all 𝑡 > 0.

The proof of Theorem 26.1 appears in the next subsection. First, let us take a
moment to compare the result with Markov’s inequality.

There are two obvious ways that we might invoke Markov’s inequality to control
the supremum of a positive random process. First, we can apply it to the random
variable 𝑋𝑁 to obtain

ℙ {𝑋𝑁 ≥ 𝑡 } ≤ 𝔼𝑋𝑁

𝑡
for all 𝑡 > 0.

In this case, the right-hand side of the bound matches Theorem 26.1, but we only
control the tail of 𝑋𝑁 , a single element of the process. Instead, we might apply
Markov’s inequality to sup𝑘≤𝑁 𝑋𝑘 , which yields

ℙ
{
sup𝑘≤𝑁 𝑋𝑘 ≥ 𝑡

}
≤

𝔼 sup𝑘≤𝑁 𝑋𝑘
𝑡

for all 𝑡 > 0.

Now, the left-hand side of the bound matches Theorem 26.1, but the right-hand side
involves the expected supremum. The latter expectation may not be easy to compute
and, in the worst case, it might be as large as 𝑁 · max𝑘≤𝑁 𝔼𝑋𝑘 .

For submartingale processes, Doob’s inequality asserts that we can do better. Since
the random variables in a submartingale are linked, we can control the entire trajectory
(up to time 𝑁 ) by means of the expectation 𝔼𝑋𝑁 of the submartingale at the end
of the time horizon. In particular, Doob’s maximal inequality applies to martingale
sequences, in which case 𝔼𝑋𝑁 = 𝔼𝑋0.

As a first application of Doob’s inequality, we can obtain bounds for the polyno-
mial moments of the maximum of a submartingale in terms of the moments of the
submartingale. These estimates improve with the order of the moment (why?).

Problem 26.2 (Doob’s maximal inequality: Moments). Fix a power 𝑝 > 1. Consider a
positive submartingale (𝑋𝑘 : 𝑘 ∈ ℤ+) that takes values in L𝑝 . Define the sequence of
partial maxima: 𝑆𝑘 := max𝑖≤𝑘 𝑋𝑖 . For each time horizon 𝑁 ∈ ℕ, prove that

(𝔼𝑋 𝑝

𝑁
)1/𝑝 ≤ (𝔼𝑆𝑝

𝑁
)1/𝑝 ≤ 𝑝

𝑝 − 1
· (𝔼𝑋 𝑝

𝑁
)1/𝑝 .

Hint: Use integration by parts: 𝔼𝑆𝑝
𝑁
=

∫ ∞
0 ℙ {𝑆𝑁 > 𝑡 } · 𝑝𝑡𝑝−1 d𝑡 .

26.1.1 Doob’s inequality: Proof
We establish Theorem 26.1 under the assumption that 𝑁 < +∞; you are invited to
establish the limit case in Exercise 26.3. The argument involves a powerful stopping
time argument that has many other applications in probability theory.

Define the extended random variable

𝜏 := inf{𝑘 ≤ 𝑁 : 𝑋𝑘 ≥ 𝑡 } ∈ ℤ+ ∪ {+∞}.

In other words, 𝜏 is the first index 𝑘 where the submartingale 𝑋𝑘 surpasses the level
𝑡 . If this event does not occur by the fixed time 𝑁 , then we set 𝜏 = +∞. You should
confirm that 𝜏 is indeed a stopping time.
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Consider the event that the submartingale surmounts the level 𝑡 on or before the
time 𝑁 . That is,

E := {max𝑘≤𝑁 𝑋𝑘 ≥ 𝑡 } = {𝜏 ≤ 𝑁 }.
Indeed, the maximum exceeds 𝑡 if and only if 𝑋𝑘 ≥ 𝑡 at some particular time 𝑘 ≤ 𝑁 .
Equivalently, the stopping time is at most 𝑁 .

Our task is to compute the probability of the excursion event E. We proceed
backward so that we can exploit the submartingale property. Invoke the optional
stopping theorem for submartingales (Exercise 24.19) to compare the expectation
𝔼[𝑋𝑁 ] with the expectation 𝔼[𝑋𝑁∧𝜏 ] of the stopped process:

𝔼𝑋𝑁 ≥ 𝔼𝑋𝑁∧𝜏 ≥ 𝔼[𝑋𝑁∧𝜏 · 1E] = 𝔼[𝑋𝜏 · 1E] ≥ 𝔼[𝑡 · 1E] = 𝑡 · ℙ(E).

Since the (stopped) process is positive, the expectation only gets smaller if we introduce
an indicator random variable. On the event E, the stopping time𝜏 ≤ 𝑁 . At the stopping
time, 𝑋𝜏 ≥ 𝑡 by construction. The last relations follow from familiar properties of the
expectation. This is the required result.

Problem 26.3 (Doob maximal inequality: Limiting case). Assuming that 𝑋𝑘 → 𝑋∞ almost
surely and in L1, extend the statement of Theorem 26.1 to the limiting case. Hint: This
result follows from the inequality we have already established.

26.2 Submartingales and convexity
Markov’s inequality is a powerful tool for obtaining other concentration inequalities
because we can transform a random variable before invoking the inequality. For
example, Chebyshev’s inequality follows when we apply Markov’s inequality to the
squared deviation, and the Laplace transform method involves an application to the
exponential. Doob’s maximal inequality plays a similar role in the theory of martingales
because convex transformations interact well with (sub)martingales.

26.2.1 Convex transformations
The next two results are very simple, and yet they have significant ramifications.

Proposition 26.4 (Martingale: Convex transformation). Consider a martingale sequence
(𝑋𝑘 : 𝑘 ∈ ℤ+). For any convex function 𝜑 : ℝ → ℝ, the transformed process
(𝜑 (𝑋𝑘 ) : 𝑘 ∈ ℤ+) is a submartingale, provided that each 𝜑 (𝑋𝑘 ) is integrable.

Proof. Granted integrability, we just need to confirm the submartingale property. For
any index 𝑘 ∈ ℤ+, we find that

𝔼[𝜑 (𝑋𝑘+1) | F𝑘 ] ≥ 𝜑 (𝔼[𝑋𝑘+1 | F𝑘 ]) = 𝜑 (𝑋𝑘 ) almost surely.

This is an immediate consequence of the conditional Jensen inequality (Proposi-
tion 20.6). Therefore, (𝜑 (𝑋𝑘 )) is a submartingale. ■

Similarly, increasing convex transformations preserve the submartingale property.

Exercise 26.5 (Submartingale: Convex transformation). Consider a submartingale sequence
(𝑋𝑘 : 𝑘 ∈ ℤ+). For any increasing convex function 𝜑 : ℝ → ℝ, show that the
transformed process (𝜑 (𝑋𝑘 ) : 𝑘 ∈ ℤ+) is a submartingale, provided that each 𝜑 (𝑋𝑘 )
remains integrable. Show by example that the conclusion can fail if 𝜑 is not increasing.



Lecture 26: Maximal Inequalities 376

26.2.2 Kolmogorov’s inequality
Just as we obtained Chebyshev’s inequality from Markov’s inequality, Doob’s inequality
yields a maximal inequality for squared deviations.

Exercise 26.6 (Kolmogorov’s maximal inequality). Consider a martingale sequence (𝑋𝑘 :
𝑘 ∈ ℤ+) in L2. For each index 𝑁 ∈ ℤ+, prove that

ℙ
{
max𝑘≤𝑁 (𝑋𝑘 − 𝔼[𝑋𝑘 ])2 ≥ 𝑡 2

}
≤ Var[𝑋𝑁 ]

𝑡 2
for all 𝑡 > 0.

Confirm that Var[𝑋𝑁 ] =
∑𝑁
𝑘=1 Var[Δ𝑘 ], where Δ𝑘 := 𝑋𝑘 − 𝑋𝑘−1 is the 𝑘 th martingale

difference. Hint: See Exercise 24.21.

26.2.3 The Laplace transform method
Next, we present a maximal inequality version of the Laplace transform method.

Proposition 26.7 (Exponential maximal inequality). Let (𝑋𝑘 : 𝑘 ∈ ℤ+) in L∞ be a bounded
submartingale sequence. For each index 𝑁 ∈ ℤ+,

ℙ {max𝑘≤𝑁 𝑋𝑘 ≥ 𝑡 } ≤ exp
(
− sup𝜃>0(𝜃𝑡 − 𝜉𝑋𝑁 (𝜃 ))

)
.

As usual, 𝜉𝑋 (𝜃 ) := log𝔼 e𝜃𝑋 denotes the cgf.

This result takes some more thought to use because we need to find a way to
control the cgf of an adapted process in terms of its increments. In the next subsection,
we give a simple example of how this can work.

Proof. Let 𝜃 > 0, since the exponential function 𝑥 ↦→ e𝜃𝑥 is convex and strictly
increasing,

ℙ {max𝑘≤𝑁 𝑋𝑘 ≥ 𝑡 } = ℙ
{
max𝑘≤𝑁 e𝜃𝑋𝑘 ≥ e𝜃𝑡

}
≤ e−𝜃𝑡 · 𝔼 e𝜃𝑋𝑁 .

We have invoked Exercise 26.5 to see that (e𝜃𝑋𝑘 : 𝑘 ∈ ℤ+) is a (positive) submartingale.
The inequality follows from Doob’s maximal inequality (Theorem 26.1). Finally, rewrite
the right-hand side in terms of the cgf, and optimize over 𝜃 > 0. ■

Exercise 26.8 (Exponential maximal inequality). Explain how we can weaken the bounded-
ness assumption in Proposition 26.7, as we did in Theorem 16.16.

26.2.4 The Hoeffding–Azuma maximal inequality
As a particular example of the exponential maximal inequality, let us derive a very
useful concentration inequality for submartingales with bounded increments. In the
next section, we will explore some applications in probability and statistics; see the
Problems section for some additional examples.

Theorem 26.9 (Hoeffding–Azuma maximal inequality). Consider a martingale sequence
(𝑋𝑘 : 𝑘 ∈ ℤ+) whose difference sequence is bounded in the sense that

|Δ𝑘 | := |𝑋𝑘 − 𝑋𝑘−1 | ≤ 𝑎𝑘 almost surely for 𝑘 ∈ ℕ.

For 𝑁 ∈ ℕ, define the variance proxy

𝑣𝑁 :=
∑︁𝑁

𝑘=1
𝑎2
𝑘 .
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Then, for all 𝑡 > 0,

ℙ {max𝑘≤𝑁 |𝑋𝑘 − 𝑋0 | ≥ 𝑡 } ≤ 2 e−𝑡
2/(2𝑣𝑁 ) .

Theorem 26.9 is themaximal inequality that corresponds with Hoeffding’s inequality
(Theorem 16.23). The cornerstone of the argument is a cgf bound for a martingale
with a bounded difference sequence, which we obtain by applying the Hoeffding cgf
bound (Lemma 16.27) conditionally.

Lemma 26.10 (Hoeffding–Azuma: Cgf bound). Under the assumptions of Theorem 26.9,

𝜉𝑋𝑁 −𝑋0 (𝜃 ) ≤ 𝜃 2𝑣𝑁 /2.

Proof. We express 𝑋𝑁 − 𝑋0 as a telescoping sum of the difference sequence:

𝑚 (𝜃 ) := 𝔼 e𝜃 (𝑋𝑁 −𝑋0 ) = 𝔼
[
e𝜃Δ𝑁 e𝜃Δ𝑁 −1 · e𝜃Δ1].

To bound the expectation, we repeatedly condition using the tower rule:

𝑚 (𝜃 ) = 𝔼
[
𝔼[e𝜃Δ𝑁 | F𝑁 −1] · e𝜃Δ𝑁 −1 · · · e𝜃Δ1

]
≤ e𝜃

2𝑎2
𝑁
/2 · 𝔼[e𝜃Δ𝑁 −2 · · · e𝜃Δ1]

≤ · · ·
≤ e𝜃

2 (𝑎2
𝑁
+𝑎2

𝑁 −1+···+𝑎
2
1 )/2 = e𝜃

2𝑣2
𝑁
/2.

The first step follows from the pull-through rule and the fact that 𝑋𝑁 −1, . . . , 𝑋0 are
bounded and F𝑁 −1-measurable. At each step 𝑘 = 𝑁 ,𝑁 − 1, . . . , 1, we have invoked
the Hoeffding cgf bound (Lemma 16.27), conditional on F𝑘−1. This action is legal
because 𝔼[Δ𝑘 | F𝑘−1] = 0 by the martingale property and |Δ𝑘 | ≤ 𝑎𝑘 by assumption.
Take the logarithm to complete the proof. ■

We are now prepared to complete the proof of the Hoeffding–Azuma maximal
inequality.

Proof of Theorem 26.9. According to Proposition 26.7 and Lemma 26.10,

ℙ {max𝑘≤𝑁 (𝑋𝑁 − 𝑋0) ≥ 𝑡 } ≤ exp
(
− sup𝜃>0(𝜃𝑡 − 𝜃 2𝑣𝑁 /2)

)
= e−𝑡

2/(2𝑣𝑁 ) .

The same argument, applied to the martingale (−𝑋𝑘 ), yields a bound on the lower tail.
Use the union bound to combine the two inequalities. ■

26.3 Uniform concentration: Applications
In this section, we develop some applications of the Hoeffding–Azuma maximal
inequality (Theorem 26.9) in statistics and probability. These results also support
modern techniques for stochastic decision problems, such as A/B testing and stochastic
bandits.

26.3.1 Uniform confidence intervals
Suppose that we observe an i.i.d sequence of bounded random variables, and we
compute the sequence of sample average estimators:

𝑋𝑛 :=
1
𝑛

∑︁𝑛

𝑖=1
𝑌𝑖 where 𝑌𝑖 are i.i.d. copies of 𝑌 ∈ L∞.
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Of course, the SLLN tells us that the sample average estimators converge to the common
expectation of the input sequence: 𝑋𝑛 → 𝔼𝑌 almost surely. Can we be confident that
every individual sample average 𝑋𝑛 provides a reliable estimate of the expectation?
More precisely, can we guarantee that

ℙ
{
|𝑋𝑛 − 𝔼𝑌 | ≤ 𝑐𝑛 for all 𝑛 ∈ ℕ

}
≥ 1 − 𝛼,

where (𝑐𝑛 : 𝑛 ∈ ℕ) is a coverage sequence and 1 − 𝛼 is the confidence level?
We can indeed achieve this goal, provided that we select the right coverage sequence.

This is not an immediate consequence of Theorem 26.9 because the time horizon is
infinite, while the variance proxies 𝑣𝑁 → ∞. To achieve this goal, we stitch together
bounds that are valid up to dyadically increasing horizons.

Theorem 26.11 (Sample average: Uniform confidence interval). Let𝑌 ∈ L∞ with 𝔼𝑌 = 0
and |𝑌 | ≤ 1. Consider a sequence (𝑌𝑖 : 𝑖 ∈ ℕ) of i.i.d. copies of 𝑌 , and form the
sample averages 𝑋𝑘 = 𝑘 −1 ∑𝑘

𝑖=1𝑌𝑖 . Then, for 𝛼 ≤ 1/16,

ℙ
{
∃𝑘 : |𝑋𝑘 | ≥

√︁
8𝑘 −1(log(1 + log2 𝑘 ) + log(1/𝛼))

}
≤ 𝛼.

Proof. Consider the partial sum process 𝑋𝑘 =
∑𝑘
𝑖=1𝑌𝑖 for 𝑘 ∈ ℕ. These ran-

dom variables compose a martingale with 𝔼[𝑋𝑘 ] = 0. The difference sequence
|𝑋𝑘 − 𝑋𝑘−1 | = |𝑌𝑘 | ≤ 1 for each 𝑘 , so the variance proxy 𝑣𝑁 defined in Theorem 26.9
satisfies 𝑣𝑁 ≤ 𝑁 for each time horizon 𝑁 . It follows immediately from the Hoeffding–
Azuma maximal inequality that

ℙ
{
sup1≤𝑘≤𝑁 |𝑋𝑘 | ≥ 𝑡

}
≤ 2 e−𝑡

2/2𝑁 .

We deploy this bound on each interval 2𝑖 ≤ 𝑘 < 2𝑖+1 separately with an appropriate
choice of 𝑡 to control the overall trajectory of the partial sum process. Since the upper
and lower limits of the interval are comparable, we can rescale by 𝑘 to derive a uniform
confidence interval for the sample average.

For 𝑖 ∈ ℤ+, consider the dyadic interval 2𝑖 ≤ 𝑘 < 2𝑖+1 = 𝑁𝑖 . By the following
choice of the level 𝑡 , we obtain

ℙ

{
sup𝑘≤𝑁𝑖 |𝑋𝑘 | ≥

√︃
2𝑁𝑖 log[(log22𝑁𝑖 )/𝛼]

}
≤ 2𝛼

log22(𝑁𝑖 )
=

2𝛼
(𝑖 + 1)2 .

To pass to the sample average, we restrict the supremum to the range 𝑁𝑖/2 ≤ 𝑘 < 𝑁𝑖

and observe that

ℙ

{
|𝑋𝑘 | ≥

√︃
2𝑁𝑖 log[(log22𝑁𝑖 )/𝛼] when 𝑁𝑖/2 ≤ 𝑘 < 𝑁𝑖

}
≤ 2𝛼

(𝑖 + 1)2 .

Dividing the inequality in the event through by 𝑘 and noting that 𝑁𝑖/𝑘 2 ≤ 2/𝑘 and
𝑁𝑖 ≤ 2𝑘 on this dyadic interval,

ℙ

{
|𝑋𝑘 | ≥

√︃
4𝑘 −1 log[(log22(2𝑘 ))/𝛼] when 2𝑖 ≤ 𝑘 < 2𝑖+1

}
≤ 2𝛼

(𝑖 + 1)2 .

Summing these inequalities over 𝑖 ∈ ℤ+, we obtain a uniform bound over all choices
of 𝑘 ∈ ℕ.

ℙ

{
|𝑋𝑘 | ≥

√︃
4𝑘 −1 log[(log22(2𝑘 ))/𝛼] for some 𝑘 ∈ ℕ

}
≤

∑︁∞
𝑖=0

2𝛼
(𝑖 + 1)2 =

𝜋2𝛼

3
.

This formula implies the one stated in the theorem. ■
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26.3.2 *The law of the iterated logarithm
The calculation in Theorem 26.11 is closely related to a classic problem in probability
theory. What are the extreme limits achieved by a random walk with i.i.d. increments?

Consider the partial sum 𝑋𝑘 :=
∑𝑘
𝑖=1𝑌𝑖 where the 𝑌𝑖 are i.i.d. copies of a bounded

random variable 𝑌 ∈ L∞ with 𝔼𝑌 = 0 and Var[𝑌 ] =: 𝜎2. Khintchine’s law of the
iterated logarithm states that

lim inf
𝑘→∞

𝑋𝑘√︁
2𝜎2𝑘 log log𝑘

= −1;

lim sup
𝑘→∞

𝑋𝑘√︁
2𝜎2𝑘 log log𝑘

= +1
almost surely.

This is the blue envelope depicted in Figure 14.3. In other words, with probability one,
a sample path 𝑋𝑘 (𝜔) approaches the upper limit and lower limit an infinite number of
times, but it escapes these limits only a finite number of times.

Under the assumption |𝑌 | ≤ 1, the argument in Theorem 26.11 can be tuned and
combined with the Borel–Cantelli lemma (Proposition 15.14) to establish that

lim sup
𝑘→∞

|𝑋𝑘 |√︁
2𝑘 log log𝑘

≤ 1 almost surely.

We need to use a fancier maximal inequality (analogous to the Bernstein inequality) if
we wish to obtain scaling that is proportional to the standard deviation, stdev(𝑌 ) = 1,
rather than the uniform bound, ∥𝑌 ∥L∞ = 1. The complementary lower bounds
(showing that the limit is achieved) require a separate argument.

26.4 Maximal inequalities for supermartingales
As we have seen, Doob’s maximal inequality has many elegant corollaries and a wide
range of applications. On the other hand, it does not allow us to control the trajectory
of a process using information that we acquire along the way. To accomplish this goal,
we need to develop maximal inequalities for supermartingales and learn how to apply
them. This is a vast and tricky subject, so we will introduce some basic principles and
establish a couple representative results.

26.4.1 Ville’s maximal inequality
As usual, the fundamental result is an analog of Markov’s inequality for supermartin-
gales.

Theorem 26.12 (Ville’s maximal inequality). Fix a probability space and a filtration.
Consider a positive supermartingale (𝑋𝑘 : 𝑘 ∈ ℤ+). Then

ℙ
{
sup𝑘 ∈ℤ+ 𝑋𝑘 > 𝑡

}
≤ 𝔼𝑋0

𝑡
for all 𝑡 > 0.

Let us emphasize that Ville’s maximal inequality controls the entire infinite trajectory
of the supermartingale in terms of its initial value 𝔼𝑋0.

Proof sketch. The argument is similar to the proof of Doob’s maximal inequality
(Theorem 26.1). Introduce a stopping time

𝜏 := inf{𝑘 ∈ ℤ+ : 𝑋𝑘 > 𝑡 }.



Lecture 26: Maximal Inequalities 380

Define the event E := {𝜏 < +∞}. Use the fact that a stopped supermartingale is a
supermartingale (Exercise 24.16) to determine that

𝔼[𝑋0] ≥ lim inf
𝑘→∞

𝔼[𝑋𝑘∧𝜏 ] ≥ lim inf
𝑘→∞

𝔼[𝑋𝑘∧𝜏1E]

≥ 𝔼
[
lim inf
𝑘→∞

𝑋𝑘∧𝜏1E
]
= 𝔼[𝑋𝜏1E] ≥ 𝑡 · ℙ(E).

The third inequality is Fatou’s lemma (Theorem 9.11). Reinterpret this bound to obtain
Ville’s maximal inequality. ■

26.4.2 *Where do we get supermartingales?
Doob’s inequality is easy to deploy because convex transformations of (sub)martingale
sequences produce submartingales. It takes more ingenuity to identify positive
supermartingales that allow us to extract the full power of Ville’s inequality.

Here is one natural construction. The most powerful concentration results are
obtained by applying Markov’s inequality to an exponential. We would like to mimic
this approach, but the exponential of a martingale is a submartingale. To fix this
problem, we need to modify the exponent with a term that forces the random process
to decline.

Exercise 26.13 (Cgf identity). Let 𝑋 ∈ L∞. For all 𝜃 ∈ ℝ, confirm that

𝔼 exp
(
𝜃𝑋 − log𝔼 e𝜃𝑋

)
= 1.

We can apply the cgf identity conditionally to construct a martingale sequence.

Proposition 26.14 (Martingale: Conditional cgfs). Consider an adapted sequence (𝑋𝑘 : 𝑘 ∈
ℤ+) with 𝑋0 = 0 and with bounded differences Δ𝑘 := 𝑋𝑘 −𝑋𝑘−1 ∈ L∞. Fix a parameter
𝜃 ∈ ℝ, and define the partial sum of conditional cgfs:

𝑉𝑘 (𝜃 ) :=
∑︁𝑘

𝑖=1
log𝔼[e𝜃Δ𝑘 | F𝑘−1] for 𝑘 ∈ ℕ.

Set 𝑆0(𝜃 ) := 1, and construct the sequence

𝑆𝑘 (𝜃 ) := exp
(
𝜃𝑋𝑘 −𝑉𝑘 (𝜃 )

)
for 𝑘 ∈ ℕ.

Then (𝑆𝑘 (𝜃 ) : 𝑘 ∈ ℤ+) is a positive martingale.

Proof. Positivity is clear. Note that 𝑆𝑘 (𝜃 ) is F𝑘 -measurable for each 𝑘 ∈ ℤ+. We
simply need to check the status-quo condition:

𝔼[𝑆𝑘+1(𝜃 ) | F𝑘 ] = 𝔼
[
exp

(
𝜃𝑋𝑘+1 −𝑉𝑘+1(𝜃 )

)
| F𝑘

]
= 𝔼

[
exp

(
𝜃𝑋𝑘 −𝑉𝑘 (𝜃 ) + 𝜃Δ𝑘+1 − log𝔼[e𝜃Δ𝑘+1 | F𝑘 ]

)
| F𝑘

]
= 𝔼

[
𝑆𝑘 (𝜃 ) · exp

(
𝜃Δ𝑘+1 − log𝔼[e𝜃Δ𝑘+1 | F𝑘 ]

)
| F𝑘

]
= 𝑆𝑘 (𝜃 ) · 𝔼

[
exp

(
𝜃Δ𝑘+1 − log𝔼[e𝜃Δ𝑘+1 | F𝑘 ]

)
| F𝑘

]
= 𝑆𝑘 (𝜃 ).

The first three relations follow from the definitions of 𝑆𝑘+1(𝜃 ), the differences Δ𝑘+1,
and the conditional cgf process𝑉𝑘+1(𝜃 ). Last, we invoke the pull-through property of
the conditional expectation and the cgf identity (Exercise 26.13). ■

In many situations, it is too much to ask that we know the exact value of the cgf
of the random increments. If we replace each conditional cgf by an adapted upper
bound, then we obtain a supermartingale instead of a martingale.
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Exercise 26.15 (Supermartingale: Conditional cgf bounds). With the assumptions of Proposi-
tion 26.14, suppose that (𝑊𝑘 (𝜃 ) : 𝑘 ∈ ℕ) is an adapted process where

log𝔼[e𝜃Δ𝑘 | F𝑘−1] ≤𝑊𝑘 (𝜃 ) for all 𝜃 ∈ ℝ.

Define𝑉𝑘 (𝜃 ) =
∑𝑘
𝑖=1𝑊𝑘 (𝜃 ) for 𝑘 ∈ ℕ. Construct the sequence 𝑆0(𝜃 ) = 0 and

𝑆𝑘 (𝜃 ) = exp
(
𝜃𝑋𝑘 −𝑉𝑘 (𝜃 )

)
for 𝑘 ∈ ℕ.

Check that (𝑆𝑘 (𝜃 ) : 𝑘 ∈ ℤ+) is a positive supermartingale.

One approach to using the supermartingale from Exercise 26.15 is to introduce
𝑆𝑘 (𝜃 ) into Ville’s maximal inequality (Theorem 26.12) and to choose the parameter 𝜃
and the level 𝑡 cleverly. As in the proof of Theorem 26.11, we can also stitch together a
sequence of bounds to obtain a uniform envelope.

In contrast with the situation for independent sums and submartingales, the
processes (𝑋𝑘 ) and (𝑉𝑘 ) are both random. As a consequence, we may not be able to
optimize the parameter 𝜃 to obtain the best probability bound. One alternative is to
draw the parameter 𝜃 from a suitable probability distribution and average.

Exercise 26.16 (Supermartingale: Pseudomaximization). For each 𝜃 ∈ ℝ, assume that
(𝑆𝑘 (𝜃 ) : 𝑘 ∈ ℤ+) is a positive supermartingale with initial value 𝑆0(𝜃 ) = 1. For a
probability distribution 𝜇 on the real line, construct the sequence

𝑆𝑘 :=
∫

𝑆𝑘 (𝜃 ) 𝜇(d𝜃 ) for 𝑘 ∈ ℤ+.

Show that (𝑆𝑘 : 𝑘 ∈ ℤ+) is a positive supermartingale with initial value 𝑆0 = 1.

Yet another approach is to choose a separate value 𝜃𝑘 of the parameter to control
each increment of the supermartingale. This leads to results with a more complicated
structure.

26.4.3 *Example: Random Hoeffding–Azuma bounds
At this stage, it may not be clear that the machinery in this section leads to fruitful
results. In this section, we present a simple example, which shows that we can produce
uniform concentration inequalities for martingales with bounded differences, where
the bounds are random and may depend on the trajectory of the process.

Theorem 26.17 (Hoeffding–Azuma: Adapted bounds). Consider a martingale (𝑋𝑘 :
𝑘 ∈ ℤ+) whose differences admit random uniform bounds 𝐴𝑘 that are previsible
(F𝑘−1-measurable):

|Δ𝑘 | := |𝑋𝑘 − 𝑋𝑘−1 | ≤ 𝐴𝑘 almost surely for 𝑘 ∈ ℕ.

Define the random variance proxies𝑉𝑘 :=
∑𝑘
𝑖=1 𝐴

2
𝑘
. Then, for all 𝑡 > 0,

ℙ
{
∃𝑘 : |𝑋𝑘 − 𝑋0 | >

√︁
(1 +𝑉𝑘 ) (log(1 +𝑉𝑘 ) + 𝑡 2)

}
≤ e−𝑡

2/2.

Theorem 26.17 offers an intriguing refinement over the Hoeffding–Azuma maximal
inequality (Theorem 26.9). Instead of a sequence of uniform bounds that are fixed
a priori, we can control the probability of a large deviation in terms of an evolving
sequence of (previsible) uniform bounds. There is a modest cost for this flexibility,
which is a larger logarithmic factor.
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As a simple example, imagine that the martingale models your capital after playing
a sequence of fair games where the winnings in each round are bounded. Both results
control the probability that your capital ever differs very much from your initial capital.
But Theorem 26.9 requires an a priori sequence of bounds on the winnings from each
game. So, for example, it only applies when all your bets are bounded in advance of
playing the game. In contrast, Theorem 26.17 allows random bounds that are chosen
in advance of each round. For example, it reflects the prospect that you may win a
significant amount and choose to make a large bet using your good fortune.

Proof. The proof of this result requires several lemmas, which we frame as exercises.
Without loss of generality, we may assume that 𝑋0 = 0.

Exercise 26.18 (Adapted Hoeffding: Supermartingale). Instate the notation of Theorem 26.17.
For a parameter 𝜃 ∈ ℝ, show that the sequence

𝑆𝑘 (𝜃 ) = exp
(
𝜃𝑋𝑘 − (𝜃 2/2)𝑉𝑘

)
for 𝑘 ∈ ℤ+

composes a positive supermartingale. Hint: Use Exercise 26.15 and the Hoeffding cgf
bound (Lemma 16.27).

Exercise 26.19 (Gaussian pseudomaximization). Consider a family of supermartingales of
the form

𝑆𝑘 (𝜃 ) = exp
(
𝜃𝑋𝑘 − (𝜃 2/2)𝑉𝑘

)
for 𝑘 ∈ ℤ+ and 𝜃 ∈ ℝ.

Check that the supermartingale (𝑆𝑘 ) obtained by averaging with respect to the
distribution 𝜃 ∼ normal(0, 1) takes the form

𝑆𝑘 :=
1

√
2𝜋

∫
ℝ

𝑆𝑘 (𝜃 ) e−𝜃
2/2 d𝜃 =

1
√
1 +𝑉𝑘

exp

(
𝑋 2
𝑘

2(1 +𝑉𝑘 )

)
.

Hint: Recognize the mgf of a normal random variable with an appropriate mean and
variance.

We are now prepared to establish Theorem 26.17. Apply Ville’s maximal inequality
to the supermartingale

𝑆𝑘 =
1

√
1 +𝑉𝑘

exp

(
𝑋 2
𝑘

2(1 +𝑉𝑘 )

)
for 𝑘 ∈ ℕ.

Since 𝑆0 = 1, this step yields

ℙ

{
sup𝑘≥0

1
√
1 +𝑉𝑘

exp

(
𝑋 2
𝑘

2(1 +𝑉𝑘 )

)
> e𝑡

}
≤ e−𝑡 .

Rearrange the event to obtain

ℙ

{
∃𝑘 : |𝑋𝑘 | >

√︃
2(1 +𝑉𝑘 ) (𝑡 + log

√︁
1 +𝑉𝑘 )

}
≤ e−𝑡 .

This is equivalent to the stated result. ■

In comparison with the uniform confidence intervals described in Theorem 26.11,
Theorem 26.17 has a logarithm instead of an iterated logarithm. If you invest some
thought, you will see that it is possible to obtain the iterated logarithm bound by
replacing Gaussian pseudomaximization with stitching. The cost is a more involved
argument and worse constants.
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Problem 26.20 (Adapted Hoeffding: Iterated logarithm). Instate the assumptions of Theo-
rem 26.17. Show that

ℙ
{
∃𝑘 : |𝑋𝑘 − 𝑋0 | >

√︁
(1 +𝑉𝑘 ) (2 log(1 + log2(1 +𝑉𝑘 )) + 𝑡 2)

}
≤ 2 e−𝑡

2/2.

Hint: Partition the values of the variance proxy𝑉𝑘 into dyadic intervals: 2𝑖 ≤ 1 +𝑉𝑘 <

2𝑖+1 for 𝑖 ∈ ℤ+.

26.4.4 *Example: Empirical martingale inequalities
The supermartingale approach to concentration also allows us to obtain concentration
inequalities that depend primarily on empirical information. This kind of bound is
useful because it allows us to produce uniform confidence intervals under minimal
assumptions about the process generating the data. Here is one example of this
phenomenon.

Theorem 26.21 (Empirical Bernstein). Consider a martingale (𝑋𝑘 : 𝑘 ∈ ℤ+) whose
differences Δ𝑘 := 𝑋𝑘 − 𝑋𝑘−1 are uniformly bounded: |Δ𝑘 | ≤ 𝐵 where 𝐵 > 0 is a
known constant. Introduce the quadratic variation process:

𝑉𝑘 :=
∑︁𝑘

𝑖=1
Δ2
𝑖 .

Then, for all 𝛼 ≤ 1/9,

ℙ

{
∃𝑘 :

|𝑋𝑘 − 𝑋0 |
2(𝐵 +

√
𝑉𝑘 )

> 2 log2(1 + log(1 + 𝐵−1√︁𝑉𝑘 )) + log(1/𝛼)
}
≤ 9𝛼.

This result measures the fluctuations |𝑋𝑘 − 𝑋0 | of the martingale with respect to
the increasing scale parameter 𝐵 +

√
𝑉𝑘 . This is a natural scale for measuring the

fluctuations of the martingale because it incorporates both the observed variability
(𝑉𝑘 ) and the maximum possible value (𝐵) of the martingale differences. Bernstein’s
inequality (Theorem 16.30) tells us that both of these quantities are relevant to
the concentration of an independent sum, so they should also arise when studying
martingales.

In contrast with previous results, this bound only requires a weak piece of prior
information: a uniform upper bound on themartingale differences. The scale parameter
only reflects observed values of the martingale, so we can instantiate it using only the
information that we acquire along the trajectory. The price we pay for this improvement
is a very slowly growing function (log log) of the scale for fluctuations.

Proof. In spirit, the proof of Theorem 26.21 is similar to the argument suggested in
Problem 26.20. First, we may assume that 𝑋0 = 0 without loss of generality. Making
the transformation 𝑋𝑘 ↦→ 𝑋𝑘/𝐵 , we may also assume that |𝑋𝑘 | ≤ 1 uniformly for all 𝑘 .

Exercise 26.22 (Empirical Bernstein: Cgf bound). Establish the numerical inequality

exp
(
𝑎 − 𝑎2/2

1 − |𝑎 |

)
≤ 1 + 𝑎 for |𝑎 | < 1.

Let 𝑍 be a random variable with 𝔼𝑍 = 0 and |𝑍 | < 1. Deduce that

𝔼 exp
(
𝜃𝑍 − 𝜃 2𝑍 2/2

1 − |𝜃 |

)
≤ 1 when |𝜃 | < 1.
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Exercise 26.23 (Empirical Bernstein: Supermartingale). Instate the notation of Theorem 26.21,
and place the assumptions𝑋0 = 0 and |𝑋𝑘 | ≤ 1. For |𝜃 | < 1, verify the supermartingale
property for the sequence

𝑆𝑘 (𝜃 ) := exp
(
𝜃𝑋𝑘 −

𝜃 2𝑉𝑘/2
1 − |𝜃 |

)
for 𝑘 ∈ ℤ+.

Hint: Modify the proof of Proposition 26.14.

For each 𝑡 > 0, Ville’s maximal inequality (Theorem 26.12) yields the uniform
bound

ℙ

{
∃𝑘 : 𝜃𝑋𝑘 >

𝜃 2𝑉𝑘/2
1 − |𝜃 | + 𝑡

}
≤ e−𝑡 . (26.1)

To use this result, we need to break the trajectory into segments based on the value of
the (random) intrinsic time parameter

𝑇𝑘 := 1 +
√︁
𝑉𝑘 .

For future reference, note that𝑉𝑘/𝑇 2
𝑘
< 1.

Next, we partition the time indices into disjoint sets. For each natural number
𝑗 ∈ ℤ+, define

I+𝑗 := {𝑘 : 2𝑗 ≤ 𝑇𝑘 < 2𝑗+1 and 𝑋𝑘 ≥ 0};
I−𝑗 := {𝑘 : 2𝑗 ≤ 𝑇𝑘 < 2𝑗+1 and 𝑋𝑘 < 0}.

We will develop a separate probability bound for each of these sets of time indices.
Fix an index 𝑗 ∈ ℤ+. For this index, we will select a value of the parameters 𝜃

and 𝑡 in (26.1) to analyze the fluctuations of the martingale on the (random) indices
𝑘 ∈ I+

𝑗
. For fixed 𝛼 ∈ (0, 1), select

𝜃 := 2−( 𝑗+1) ≤ 1/2 and 𝑡 := log((𝑗 + 1)2/𝛼).

From (26.1), we obtain the bound

ℙ

{
∃𝑘 :

𝑋𝑘

2𝑗+1
> 2−2( 𝑗+1)𝑉𝑘 + log((𝑗 + 1)2/𝛼)

}
≤ 𝛼

(𝑗 + 1)2 .

This event addresses all time indices 𝑘 , so the event certainly includes the (random)
indices 𝑘 ∈ I+

𝑗
. On these indices, we know that 𝑋𝑘 ≥ 0 and that 2𝑗+1 ≤ 2𝑇𝑘 and that

2−2( 𝑗+1)𝑉𝑘 ≤ 𝑉𝑘/𝑇 2
𝑘
< 1. It follows that

ℙ

{
∃𝑘 ∈ I+𝑗 :

|𝑋𝑘 |
2𝑇𝑘

> 1 + log((log2(𝑇𝑘 ) + 1)2/𝛼)
}
≤ 𝛼

(𝑗 + 1)2 .

A parallel argument gives the identical bound for indices 𝑘 ∈ I−
𝑗
.

Finally, recall that the sets I±
𝑗
partition ℤ+, so we may conclude that

ℙ

{
∃𝑘 :

|𝑋𝑘 |
2𝑇𝑘

> 2 log(1 + log2(𝑇𝑘 )) + log(e/𝛼)
}
≤

∑︁∞
𝑗=0

2𝛼
(𝑗 + 1)2 .

The series on the right-hand side equals 𝛼𝜋2/3 ≤ 4𝛼. Adjust constants to arrive at the
stated result. ■
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Problems
Exercise 26.24 (Uniform Chebyshev–Cantelli). Using martingale methods, we can extend
many classic concentration inequalities to martingales and simultaneously strengthen
them to obtain uniform bounds over a portion of the trajectory.

Let (𝑋𝑘 : 𝑘 ∈ ℤ+) be a martingale with 𝔼𝑋0 = 0 and taking values in L2. Prove
the uniform extension of the Chebyshev–Cantelli inequality (Exercise 12.23):

ℙ {max𝑘≤𝑛 𝑋𝑘 ≥ 𝑡 } ≤ 𝔼[𝑋 2
𝑛 ]

𝔼[𝑋 2
𝑛 ] + 𝑡 2

for 𝑡 ≥ 0.

Problem 26.25 (Freedman’s inequality). We can also develop martingale inequalities that
depend on the typical variability we expect to encounter at the next step. Consider a
martingale sequence (𝑋𝑘 : 𝑘 ∈ ℤ+) whose differences Δ𝑘 := 𝑋𝑘 − 𝑋𝑘−1 are uniformly
bounded: |Δ𝑘 | ≤ 𝑅 . Introduce the predictable quadratic variation of the martingale:

𝑊𝑘 :=
∑︁𝑘

𝑖=1
𝔼[Δ2

𝑖 | F𝑖−1].

For all 𝑡 > 0, we will prove Freedman’s inequality:

ℙ
{
∃𝑘 : |𝑋𝑘 | ≥ 𝑡 and𝑊𝑘 ≤ 𝜎2} ≤ exp

(
−𝑡 2/2

𝜎2 + 𝑅𝑡 /3

)
. (26.2)

In words, it is unlikely that the martingale achieves a large value when its predicted
fluctuations are not very large.

1. Define the function

𝑔 (𝜃 ) := 𝜃 2/2
1 − 𝑅 |𝜃 | for 𝜃 ∈ ℝ.

For fixed 𝜃 ∈ ℝ, introduce the sequence

𝑆0(𝜃 ) := 1 and 𝑆𝑘 (𝜃 ) := exp(𝜃𝑋𝑘 − 𝑔 (𝜃 )𝑊𝑘 ) for 𝑘 ∈ ℤ+.

Prove that 𝑆𝑘 (𝜃 ) composes a supermartingale. Hint: Use the Bernstein cgf bound
(Lemma 16.32).

2. Introduce the stopping time

𝜏 := inf{𝑘 ≥ 0 : |𝑋𝑘 | ≥ 𝑡 and𝑊𝑘 ≤ 𝜎2}.

As usual, we understand that 𝜏 = +∞ if there is no finite 𝑘 where the conditions
hold. Confirm that

1 ≥ 𝔼[𝑆𝜏1{𝜏 < +∞}] ≥ e𝜃𝑡−𝑔 (𝜃 )𝜎
2 · ℙ{𝜏 < +∞}.

Hint: Modify the proof of Ville’s maximal inequality (Theorem 26.12).
3. Derive Freedman’s inequality (26.2) by choosing an appropriate value of 𝜃 .

Problem 26.26 (Bounded differences). Martingale methods lead to many useful new
probability inequalities. The following result is a classic tool with a number of
applications to combinatorics and algorithms.

1. For a set S ⊂ ℝ𝑛 , let 𝑓 : S → ℝ be a function that satisfies the bounded
difference property:

sup
𝑥1,...,𝑥𝑛 ,𝑥

′
𝑘

| 𝑓 (𝑥1, . . . , 𝑥𝑘 , . . . 𝑥𝑛) − 𝑓 (𝑥1, . . . , 𝑥 ′𝑘 , . . . 𝑥𝑛) | ≤ 𝑎𝑘 for each 𝑘 .

This type of function often arises in combinatorial problems. Explain what the
bounded difference property means in words.
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2. Give an example of a function that has bounded differences.
3. Let 𝑓 be a function with bounded differences, and define the variance proxy

𝑣𝑛 :=
∑︁𝑛

𝑖=1
𝑎2
𝑖 .

Consider an independent family (𝑋1, . . . , 𝑋𝑛) of real random variables taking
values in S. Prove that

ℙ {| 𝑓 (𝑋1, . . . , 𝑋𝑛) − 𝔼 𝑓 (𝑋1, . . . , 𝑋𝑛) | ≥ 𝑡 } ≤ 2 e−𝑡
2/(2𝑣𝑛 ) .

Hint: Introduce the Lévy–Doob martingale

𝑀𝑘 = 𝔼[ 𝑓 (𝑋1, . . . , 𝑋𝑛) | F𝑘 ] where F𝑘 = 𝜎 (𝑋1, . . . , 𝑋𝑘 ).

Exercise 26.27 (Bin space). Suppose that 𝑛 pieces of luggage have weights𝑤1, . . . ,𝑤𝑛 ∈
[0, 1]. A flight attendant wishes to place the luggage into overhead bins, but each bin
holds at most one unit of weight. Let 𝐵 (𝑤1, . . . ,𝑤𝑛) be the minimum number of bins
that suffice.

1. For random weights 𝑊1, . . . ,𝑊𝑛 , use the bounded differences inequality to
control

ℙ {|𝐵 (𝑊1, . . . ,𝑊𝑛) − 𝔼𝐵 (𝑊1, . . . ,𝑊𝑛) | ≥ 𝑡 } .
Explain what this result means for Thanksgiving air travel.

2. (**) Prove that 𝔼𝐵 (𝑊1, . . . ,𝑊𝑛)/𝑛 → const as 𝑛 → ∞. Can we determine the
constant? Hint: The sequence 𝑛 ↦→ 𝐵 (𝑊1, . . . ,𝑊𝑛) is subadditive.

Exercise 26.28 (Graph coloring). A coloring of the graph is an assignment of colors (or
labels) to the vertices so that no pair of connected vertices shares the same color. The
chromatic number 𝜒(G) of a graph G is the minimal number of colors required for a
coloring.

We construct a random graph on 𝑛 vertices 𝑣1, . . . , 𝑣𝑛 . For each pair {𝑣𝑖 , 𝑣𝑗 } of
distinct vertices, we randomly place an edge with probability 𝑝 ∈ (0, 1). This is called
an Erdős–Rényi (ER) graph.

1. For an ER graph G𝑛 on 𝑛 vertices, use the bounded differences inequality to
control

ℙ {|𝜒(G) − 𝔼 𝜒(G) | > 𝑡 } .
2. (**) Prove that 𝔼 𝜒(G𝑛)/𝑛 → const as 𝑛 → ∞. Can we determine the constant?

Applications
Application 26.29 (A/B testing). A basic problem in applied statistics is to determine which
of two alternative procedures leads to the best outcomes on average. For example,
which of two experimental toothpastes instills the most personal charisma in a typical
patient? Which of two website designs leads users to buy more widgets? We can
administer each of the alternatives and track the outcomes to see which emerges as
the favorite.

To model these problems, let (𝑋𝑖 : 𝑖 ∈ ℕ) be i.i.d. copies of a random variable
with mean𝑚𝑋 , taking values in [0, 1]. Let (𝑌𝑖 : 𝑖 ∈ ℕ) be i.i.d. copies of a random
variable with mean𝑚𝑌 , taking values in [0, 1]. By drawing as few samples as possible,
our goal is to assess which of the means is greater. Define the gap between the
means: 𝐺 := |𝑚𝑋 −𝑚𝑌 | > 0. For concreteness, we assume that 𝑚𝑋 > 𝑚𝑌 , but
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this information is not available to the experimenter. Fix a confidence parameter
𝛿 ∈ (0, 1/2).

First, suppose that the gap size𝐺 is known. In this case, we can obtain an a priori
bound on the number 𝑛 = 𝑛 (𝐺, 𝛿 ) samples that suffice to determine which sequence
has the larger mean, up to the specified confidence.

1. Let 𝑋𝑡 and 𝑌𝑡 be the sample averages of the first 𝑡 draws from each sequence.
Use the (sharp) Hoeffding inequality to confirm that

ℙ
{
|𝑋𝑡 −𝑚𝑋 | >

√︁
log(2/𝛿 )/(2𝑡 )

}
≥ 1 − 𝛿 .

A similar bound holds for |𝑌𝑡 −𝑚𝑌 |. Find a lower bound for 𝑛 which ensures
that 𝑋𝑛 > 𝑌𝑛 with probability at least 1 − 2𝛿?

In practice, we do not know the gap size𝐺 , so we cannot predict the number 𝑛 of
samples that are required in advance. Instead, we will maintain a uniform confidence
interval for each sample mean. For example,

ℙ {∀𝑡 ∈ ℕ : |𝑋𝑡 −𝑚𝑋 | ≤ 𝑈 (𝑡 , 𝛿 )} ≥ 1 − 𝛿 .

We can take𝑈 (𝑡 , 𝛿 ) =
√︁
8𝑡 −1 log(𝛿 −1 log 𝑡 ) when 𝛿 ≤ 1/16.

2. Find a condition involving 𝑡 and 𝑋𝑡 and 𝑌𝑡 which guarantees that 𝑚𝑋 > 𝑚𝑌

with probability at least 1 − 2𝛿 . Use this condition to obtain a lower bound on
the number 𝑛 = 𝑛 (𝐺, 𝛿 ) of samples that suffice for your condition to hold.

In practice, for each trial, we can only draw a sample from one of the two
distributions. (For example, each user only sees one of the two websites.) We want to
achieve the best payoff we can, as we try to narrow our uncertainty. The key idea is to
select the distribution that is most likely to have the larger mean, given our uncertainty.
This approach provides a way to balance “exploration versus exploitation”.

To implement this approach, we introduce a clock 𝑘 that counts the number of
trials. We track 𝑇𝑋 (𝑘 ) and 𝑇𝑌 (𝑘 ), the number of times we have drawn a sample from
𝑋 or 𝑌 in trial 𝑘 . After drawing one sample from each distribution in the first step,

Sample 𝑋 when 𝑋𝑇𝑋 (𝑘 ) +𝑈 (𝑇𝑋 (𝑘 ), 𝛿 ) ≥ 𝑌𝑇𝑌 (𝑘 ) +𝑈 (𝑇𝑌 (𝑘 ), 𝛿 ).

Otherwise, sample from𝑌 . That is, the larger of our upper bounds signals the preferred
distribution. This approach is called an “upper confidence bound” method.

3. (*) With high probability, show that we have identified the correct distribution
when 𝑇𝑋 (𝑘 ) ≥ Const · 𝑇𝑌 (𝑘 ) for a sufficiently large constant, independent of
everything. Hint: Keep in mind that a uniform concentration inequality is valid
for all 𝑡 , including random values 𝑇𝑋 or 𝑇𝑌 . Under what circumstances do we
choose to sample from the distribution 𝑌 with the smaller mean?

4. (*) Implement the A/B testing procedure for various choices of the gap𝐺 . Plot
the evolution of 𝑇𝑋 (𝑡 ) and 𝑇𝑌 (𝑡 ) as a function of 𝑡 . Plot the evolution of the
upper confidence bounds 𝑋𝑡 +𝑈 (𝑇𝑋 (𝑡 ), 𝛿 ) and 𝑌𝑡 +𝑈 (𝑇𝑌 (𝑡 ), 𝛿 ).

5. (**) Explain how to extend these ideas to the case where there are more than two
alternatives with means𝑚1 > 𝑚2 ≥ · · · ≥ 𝑚𝑘 . Express the required number 𝑛
of samples in terms of Δ𝑘 := 𝑚1 −𝑚𝑘 . Can you obtain a procedure where the
number 𝑛 of samples depends only on the gaps and not directly on the number
𝑘 of alternatives?
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Notes
Kolmogorov’s maximal inequality (Exercise 26.6) is one of the earliest maximal
inequalities for martingales. Many proofs are based on an explicit decomposition of
the event that the martingale differs from its mean. This argument is effectively a
stopping time proof, even though it is not couched in these terms. The proof of Doob’s
maximal inequality (Theorem 26.1) crystallizes this stopping time argument.

See Boucheron et al. [BLM13] or Alon & Spencer [AS16] for many applications of
the bounded differences inequality and its relatives. The application of Doob’s maximal
inequality to the A/B testing problem is adapted from a paper [Jam+14] of Jamieson
and coauthors.

Ville’s maximal inequality (Theorem 26.12) is older than Doob’s maximal inequality,
as it was derived in Ville’s 1939 thesis along with many other foundational properties
of martingale sequences. Ville was one of the first researchers to appreciate the power
and beauty of martingales, but his contributions have often been overshadowed by
Doob’s work.

Ville’s inequality plays a central role in recent research [How+20; How+21] on
uniform concentration inequalities. We have adapted the discussion of concentration
for supermartingales from this body of work.
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A. Extension of Measures

Agenda:
1. Extension theorems
2. Set algebras
3. Hahn–Kolmogorov theorem
4. Construction of Lebesgue

measure
5. Distribution functions
6. Proof of Hahn–Kolmogorov

We now return to the question that was posed at the end of Lecture 2. What information
do we need to determine a measure?

For example, to specify a measure on the real line, we might like to provide only
the measure of the open intervals. Is this data consistent with the values of a measure
on the Borel sets? Does it determine a unique measure on Borel sets?

The abstract setting of a measurable space provides the appropriate context for
discussing this problem. Here, our goal is to construct a measure by specifying its
value for a small family of “elementary sets”. Having done so, we need to extend this
partial definition to the entire family of measurable sets. We also need to understand
when the extension is unique.

This appendix discusses and proves one of the major results on measure extension,
the Hahn–Kolmogorov theorem. It also shows how this theorem can be used to produce
the Lebesgue measure. These tools play a role in the construction of product measures
(Lecture 6), and they provide the scaffolding that supports most of our probability
models (Lecture 7).

A.1 Set algebras
As we have said, we hope to define measures on a “small family” of subsets and then
extend to all measurable sets. To formalize what properties we need the “small family”
to enjoy, we recall the concept of a set algebra. This definition should look familiar.

Definition A.1 (Algebra of sets). Let X be a domain. A family A ⊆ P(X) of subsets of
X is called an algebra on the domain X if it satisfies three properties.

1. Nothing and everything: The empty set ∅ and the domain X belong to A.
2. Complements: If a set A ∈ A, then its complement Ac := X \ A belongs to A.
3. Unions and intersections: If two sets A, B ∈ A, then their union and intersection

belong to A:
A ∪ B ∈ A and A ∩ B ∈ A.

As before, some of the requirements in Definition A.1 are redundant (which ones?),
but we have included them for clarity.

Exercise A.2 (Algebra: Stability for finite unions and intersections). Let Abe a set algebra.
Show that A is stable under finite unions and under finite intersections. That is,

A1, . . . ,A𝑛 ∈ A implies that
⋃𝑛
𝑖=1 A𝑖 ∈ A and

⋂𝑛
𝑖=1 A𝑖 ∈ A.

Exercise A.3 (Algebra: Stability for set differences). Let Abe a set algebra, and let A, B ∈ A.
Verify that the differences A \ B and B \ A and A△B all belong to the algebra A.

Exercise A.4 (Algebra: Intersection). Show that the intersection of an arbitrary family of
algebras on X remains an algebra on X.
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Obviously, every 𝜎 -algebra is also a set algebra, but the converse is not true. Indeed,
although the set algebra is stable under finite unions and intersections, it need not be
stable under countable unions and intersections. Here is an example.

Example A.5 (Co-finite algebra). For an (infinite) set X, consider the family

A := {A ⊆ X : A is finite or Ac is finite}.
The collection A is an algebra on X. Since the domain X has an infinite cardinality,
A is not a 𝜎 -algebra (why?). This algebra often arises as a counterexample to refute
“intuitively obvious” statements. ■

A.1.1 Generation of algebras
Given a collection of subsets of the domain, we can always construct a minimal algebra
that contains these sets.

Definition A.6 (Set algebra: Generation). Let S ⊆ P(X) be a collection of subsets of X.
The family Sgenerates a unique minimal algebra:

algebra(S; X) :=
{
A ⊆ X : A belongs to every algebra Aon X with S ⊆ A

}
.

We may omit the domain X from the notation if it is clear.

In other words, algebra(S) is the intersection of all set algebras on X that contain
S. The intersection is nonempty because S is contained in the complete algebra P(X).
The intersection remains an algebra because of Exercise A.4.

In many cases, the algebra generated by a set is small enough that we can find an
explicit expression for a generic element of the algebra. In contrast, the 𝜎 -algebra
generated by the set has to be stable under countably many set operations, so we may
not be able to write down a formula for an element of the 𝜎 -algebra.

Example A.7 (Interval algebra). Consider the family S= {(𝑎, 𝑏] : 𝑎, 𝑏 ∈ ℝ} of half-open
intervals of the real line. It generates algebra(S;ℝ), the algebra of half-open intervals
of ℝ, consisting of all finite unions of half-open intervals and their complements. ■

Exercise A.8 (Interval algebra). Does the algebra of half-open intervals of ℝ contain
closed intervals [𝑎, 𝑏] for 𝑎, 𝑏 ∈ ℝ? What about open intervals and semi-infinite open
intervals, such as (𝑎, 𝑏) and (𝑎,+∞)? Describe a generic element of the algebra.

Exercise A.8 suggests that the algebra of open intervals is, somehow, very small.
This is both a curse and a blessing. On the one hand, the algebra is missing a lot of sets
that we might want to measure. On the other hand, it is relatively easy to describe all
of the sets in the algebra and to assign them a measure. This observation is very useful
for constructing measures.

A.2 The Hahn–Kolmogorov theorem
The basic idea behind measure extension is to construct an algebra of “elementary sets”
that we understand well. Then we define a function, called a premeasure, that assigns
mass to each elementary set. Afterward, we lift the premeasure to a measure defined
on the full 𝜎 -algebra generated by the elementary sets. The lifting is accomplished by
means of a construction called an outer measure.

It should be clear that the premeasure cannot be an arbitrary function on elementary
sets. Its structuremust be consistent with the structure of ameasure. The next definition
bakes in everything that we need.
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Definition A.9 (Premeasure). Let X be a domain equipped with an algebra A of
elementary sets. A premeasure is a positive function 𝜇0 : A → [0,+∞] on the
elementary sets that satisfies three properties.

1. Empty set: 𝜇0(∅) = 0;
2. Pre-countable additivity: For each sequence (A𝑖 : 𝑖 ∈ ℕ) of disjoint, elementary

sets A𝑖 ∈ Awhose union is an elementary set, we have

𝜇0
( ¤⋃∞

𝑖=1 A𝑖
)
=

∑∞
𝑖=1 𝜇0(A𝑖 ) when ¤⋃∞

𝑖=1A𝑖 ∈ A.

3. Strong 𝜎-finiteness: The domain has a countable cover by elementary sets
A𝑖 ∈ A, each with finite premeasure:

X =
⋃∞
𝑖=1 A𝑖 where 𝜇0(A𝑖 ) < +∞ for each 𝑖 ∈ ℕ.

Now, we can state precisely what we mean when we say that a measure extends a
premeasure.

Definition A.10 (Extension of premeasures). More precisely, we have defined the
minimal extension of the premeasure.

Let 𝜇0 be a premeasure defined on an
algebra A of elementary sets. Let 𝜇 : 𝜎 (A) → [0,+∞] be a measure on the
𝜎 -algebra generated by the elementary sets. We say that the measure 𝜇 extends
the premeasure 𝜇0 when they coincide on elementary sets:

𝜇(A) = 𝜇0(A) for each A ∈ A.

To find a candidate for the extension of the measure, we will use the outer measure
associated with the premeasure. Heuristically, the outer measure “shrink-wraps” each
set by means of elementary sets.

Definition A.11 (Outer measure). Let X be a domain equipped with a set algebra A,
and let 𝜇0 : A→ [0,+∞] be a premeasure defined on the algebra. For each set
E ∈ P(X), the outer measure is defined as

𝜇∗(E) := inf
{ ∑∞

𝑖=1 𝜇0(A𝑖 ) : E ⊆ ⋃∞
𝑖=1 A𝑖 and A𝑖 ∈ A

}
.

In other words, we cover the set E by a countable number elementary sets, compute
the total premeasure of the cover, and minimize over all such covers.

With these definitions at hand, our main result on measure extension can be written
succinctly.

Theorem A.12 (Hahn–Kolmogorov). Each premeasure 𝜇0 on an algebra A extends
to a unique measure 𝜇 on the generated 𝜎 -algebra 𝜎 (A). On this 𝜎 -algebra, the
measure 𝜇 agrees with the associated outer measure 𝜇∗.

We will give almost the entire proof of this theorem, leaving a few small pieces for the
avid reader. See Section A.6.

To invoke the Hahn–Kolmogorov theorem, we typically proceed in four steps:

1. Construct an algebra Aof elementary sets.
2. Identify the 𝜎 -algebra generated by the elementary sets, which will be the

domain of the extension.
3. Construct a finitely additive function 𝜇0 : A→ [0,+∞] on the elementary sets.
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4. Verify that 𝜇0 is a premeasure.

In most applications, the main challenge is to check that the function𝜇0 is pre-countably
additive.

Aside: There are other kinds of measure extension theorems. In analysis, the
Carathéodory extension theorem is prominent; it allows for the construction of
Lebesgue sets. In probability, it is common to use Dynkin’s theorem on intersection-
stable systems, which gives uniqueness of measures with a minimum of effort. We
will prove Dynkin’s theorem in Appendix E.

A.3 The Lebesgue measure
Our first application of the Hahn–Kolmogorov theorem is to construct the Lebesgue
measure on the real line.

The algebra of half-open intervals
Our goal is to define the Lebesgue measure on the class B(ℝ) of Borel sets in the real
line. Therefore, we begin with an algebra that generates the Borel class and where the
length of a set is easy to determine. Construct the algebra of half-open intervals:

A= algebra
{
(𝑎, 𝑏] : 𝑎 < 𝑏 and 𝑎, 𝑏 ∈ ℝ

}
. (A.1)

Referring back to Exercise 3.6, we may confirm that 𝜎 (A) coincides with B(ℝ), the
family of Borel sets. A generic nonempty element A ∈ A takes the form

A = (𝑎1, 𝑏1] ∪ (𝑎2, 𝑏2] ∪ · · · ∪ (𝑎𝑛 , 𝑏𝑛] or
A = (𝑎1, 𝑏1] ∪ (𝑎2, 𝑏2] ∪ · · · ∪ (𝑎𝑛 ,+∞). (A.2)

The endpoints can be arranged so that 𝑎1 < 𝑏1 < 𝑎2 < · · · < 𝑎𝑛 < 𝑏𝑛 . We allow
the possibility that 𝑎1 = −∞, but the rest of the endpoints must be finite. In this
context, we understand (−∞, 𝑏] and (𝑎,+∞) and (−∞,+∞) to be half-open intervals
for 𝑎, 𝑏 ∈ ℝ.

The Lebesgue premeasure
We define a function 𝜆0 : A→ [0,+∞] by specifying its value on each elementary set.
If A ∈ A is a bounded set, then we can define

𝜆0(A) :=
∑𝑛
𝑖=1 |𝑏𝑖 − 𝑎𝑖 | when A = ¤⋃𝑛

𝑖=1 (𝑎𝑖 , 𝑏𝑖 ]. (A.3)

Of course, we demand that 𝜆0(∅) = 0 and that 𝜆0(A) = +∞ when A is unbounded.
The function 𝜆0 is called the Lebesgue premeasure, in anticipation that we will verify
the required properties.

Exercise A.13 (Lebesgue premeasure: Well-definition). Confirm that the definition (A.3)
does not depend on the representation of the set A as a disjoint union of half-open
intervals. Hint: Consider a representation of A using the minimum number of half-open
intervals. Show that it is unique. For any other representation, argue that you can
reduce the number of intervals without changing the value of 𝜆0.

Exercise A.14 (Lebesgue premeasure: Finite additivity and monotonicity). Show that 𝜆0 is
finitely additive on disjoint unions of elementary sets:

𝜆0
( ¤⋃𝑛

𝑖=1A𝑖
)
=

∑𝑛
𝑖=1 𝜆0(A𝑖 ) when A𝑖 ∈ Aare disjoint.
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Deduce that 𝜆0 is finitely subadditive, without assuming disjointness:

𝜆0
( ⋃𝑛

𝑖=1 A𝑖
)
≤ ∑𝑛

𝑖=1 𝜆0(A𝑖 ) when A𝑖 ∈ A.

Conclude that 𝜆0 is monotone: A ⊆ B implies 𝜆0(A) ≤ 𝜆0(B) for sets A,B ∈ A.

Exercise A.15 (Lebesgue premeasure: Strong 𝜎-finiteness). Check that the function 𝜆0 is
strongly 𝜎 -finite.

Pre-countable additivity
The only real difficulty is to prove that the function 𝜆0 is pre-countably additive on the
algebra. This argument requires us to exploit the topology of the real line.

Our duty is to establish that

𝜆0(A) =
∑∞
𝑖=1 𝜆0(A𝑖 ) whenever A = ¤⋃∞

𝑖=1 A𝑖 and A,A𝑖 ∈ A. (A.4)

It is easy to check that 𝜆0 is pre-countably superadditive. By monotonicity and finite
additivity of 𝜆0 on the algebra A,

𝜆0(A) = 𝜆0
( ¤⋃∞

𝑖=1 A𝑖
)
≥ 𝜆0

( ¤⋃𝑘
𝑖=1 A𝑖

)
=

∑𝑘
𝑖=1 𝜆0(A𝑖 ) for each 𝑘 ∈ ℕ.

Taking the (increasing) limit as 𝑘 → ∞, we find that

𝜆0(A) ≥
∑∞
𝑖=1 𝜆0(A𝑖 ). (A.5)

If any one of the A𝑖 is unbounded, then A is unbounded and both sides of (A.5) are
infinite.

Therefore, it suffices to reverse the inequality (A.5) when the sets A𝑖 are bounded.
We need to show that

𝜆0(A) ≤
∑∞
𝑖=1 𝜆0(A𝑖 ) when A = ¤⋃∞

𝑖=1 A𝑖 and A,A𝑖 ∈ Awith A𝑖 bounded.

To simplify matters further, we can limit our attention to the situation where each set
A and A𝑖 is a half-open interval. Indeed, we may invoke the representation (A.2) of
members of the algebra A to slice the set A = ¤⋃𝑛

𝑗=1B𝑗 into a finite number of disjoint
half-open intervals B𝑗 , perhaps unbounded. By finite additivity of 𝜆0, it is enough to
show that 𝜆0(B𝑗 ) ≤

∑∞
𝑖=1 𝜆0(A𝑖 ∩ B𝑗 ) for each index 𝑗 . We can use finite additivity

of 𝜆0 again to break down each elementary set A𝑖 ∩ B𝑗 into a finite intersection of
bounded, half-open intervals. You may wish to write out the details.

In summary, we must obtain pre-countable subadditivity for a half-open interval
that is represented as a disjoint union of finite half-open intervals. This amounts to the
following pair of claims:

(𝑎, 𝑏] = ¤⋃∞
𝑖=1 (𝑎𝑖 , 𝑏𝑖 ] implies 𝑏 − 𝑎 = 𝜆0(𝑎, 𝑏] ≤

∑∞
𝑖=1 𝜆0(𝑎𝑖 , 𝑏𝑖 ]. (A.6)

(𝑎,+∞) = ¤⋃∞
𝑖=1 (𝑎𝑖 , 𝑏𝑖 ] implies +∞ =

∑∞
𝑖=1 𝜆0(𝑎𝑖 , 𝑏𝑖 ]. (A.7)

In these expressions, we allow the left-hand endpoint 𝑎 = −∞, but the remaining
endpoints are all finite: 𝑏, 𝑎𝑖 , 𝑏𝑖 ∈ ℝ.

Partitioning 𝜀 into dyadically
decreasing parts is a very useful trick
for proving things about measures.

The main challenge inheres in proving (A.6) for a finite interval (𝑎, 𝑏 ∈ ℝ). Elect
a positive parameter 𝜀 > 0. Adjusting the endpoints of the intervals, we obtain the
inclusions

[𝑎 + 𝜀, 𝑏] ⊆ (𝑎, 𝑏] = ¤⋃∞
𝑖=1 (𝑎𝑖 , 𝑏𝑖 ] ⊆

⋃∞
𝑖=1 (𝑎𝑖 , 𝑏𝑖 + 2−𝑖 𝜀).
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We have constructed an open cover of the compact interval [𝑎 + 𝜀, 𝑏]. By the
Heine–Borel theorem, the open cover has a finite subcover. Thus, for a finite set I ⊆ ℕ,

(𝑎 + 𝜀, 𝑏] ⊆ [𝑎 + 𝜀, 𝑏] ⊆ ⋃
𝑖 ∈I (𝑎𝑖 , 𝑏𝑖 + 2−𝑖 𝜀) ⊆ ⋃

𝑖 ∈I (𝑎𝑖 , 𝑏𝑖 + 2−𝑖 𝜀].

Apply the premeasure 𝜆0, using monotonicity and finite subadditivity:

𝑏 − (𝑎 + 𝜀) = 𝜆0(𝑎 + 𝜀, 𝑏] ≤ 𝜆0
( ⋃

𝑖 ∈I (𝑎𝑖 , 𝑏𝑖 + 2−𝑖 𝜀]
)

≤ ∑
𝑖 ∈I

(
(𝑏𝑖 + 2−𝑖 𝜀) − 𝑎𝑖

)
≤ 𝜀 + ∑∞

𝑖=1 (𝑏𝑖 − 𝑎𝑖 ) = 𝜀 +
∑∞
𝑖=1 𝜆0(𝑎𝑖 , 𝑏𝑖 ].

Since 𝜀 is arbitrary, we arrive at the statement (A.6) for finite 𝑎, 𝑏 ∈ ℝ.
The infinite cases follow from the finite case by exhausting the infinite interval with

a sequence of finite subintervals:

• Semi-infinite case in (A.6): For 𝑎 = −∞ and 𝑏 ∈ ℝ, we apply the finite case of (A.6)
to the sequence ((−𝑛,𝑏] : 𝑛 ∈ ℕ) of finite half-open intervals.

• Semi-infinite case in (A.7): For 𝑎 ∈ ℝ, we apply (A.6) to the sequence ((𝑎, 𝑛] :
𝑛 ∈ ℕ) of finite half-open intervals.

• Infinite case in (A.7): For 𝑎 = −∞, we apply (A.6) to the sequence ((−𝑛, 𝑛] : 𝑛 ∈
ℕ) of finite half-open intervals.

Together, these arguments establish (A.6) and (A.7) for all valid choices of 𝑎, 𝑏 . We
conclude that 𝜆0 is indeed a premeasure on the algebra Aof half-open intervals.

The Lebesgue measure
An incantation with the Hahn–Kolmogorov theorem now yields the existence of a
unique measure 𝜆 that extends the Lebesgue premeasure 𝜆0. Since the algebra of half-
open intervals generates the Borel 𝜎 -algebra B(ℝ), the measure 𝜆 : B(ℝ) → [0,+∞]
assigns a well-defined value to every Borel set. On the Borel sets, we can obtain a
formula for 𝜆 by means of the outer measure (cf. Definition 3.15 and Definition A.11).
We interpret 𝜆(B) as the length of a Borel set B, and we call 𝜆 the Lebesgue measure.

Exercise A.16 (Lebesgue measure: Properties). You may now confirm the remaining prop-
erties of the Lebesgue measure stated in Theorem 3.16.

A.4 Distributions on the real line
The strategy we used to construct the Lebesgue measure works in a more general setting.
From Lecture 3, recall that a distribution function 𝐹 : ℝ → ℝ+ is increasing, has
asymptotic limits, and is right-continuous. Theorem 3.26 states that every distribution
function induces a finite measure. We are now in a position to establish this result.

Problem A.17 (Measures from distribution functions). Prove Theorem 3.26. Let 𝐹 : ℝ → ℝ+
be a distribution function; that is, 𝐹 is increasing, has limits at ±∞, and is right-
continuous (see Proposition 3.24). Define

𝜇0(𝑎, 𝑏] := 𝐹 (𝑏) − 𝐹 (𝑎) for all 𝑎, 𝑏 ∈ ℝ with 𝑎 < 𝑏 .

Use finite additivity and appropriate limits to extend 𝜇0 to the algebra Aof half-open
intervals in ℝ. Prove that 𝜇0 is a premeasure on A. Deduce that 𝜇0 extends to a
unique (finite) measure on the Borel sets B(ℝ). Hint: The proof hews closely to
the construction of the Lebesgue measure. What are the differences? How do the
properties of a distribution function enter into the argument?



Lecture A: Extension of Measures 396

There is a related, but somewhat more general, construction of a measure from an
increasing function.

Problem A.18 (*Lebesgue–Stieltjes measure). Let 𝐹 : ℝ → ℝ be an increasing, right-
continuous function with 𝐹 (0) = 0. A measure on a topological space is

locally finite when 𝜇 (K) < +∞ for
every compact set K.

Prove that there exists a unique locally finite Borel
measure 𝜇 that satisfies

𝜇(𝑎, 𝑏] = 𝐹 (𝑏) − 𝐹 (𝑎) for all 𝑎, 𝑏 ∈ ℝ with 𝑎 < 𝑏 .

The converse is also true, so locally finite Borel measures are in one-to-one correspon-
dence with the class of increasing functions that fix zero.

Aside: The Lebesgue measure is both 𝜎 -finite and locally finite. In spite of the
similar terminology, locally finite measures and 𝜎 -finite measures are incomparable
concepts. Neither one of these conditions on a measure implies the other in a
general setting.

A.5 Approximating Borel sets
The proof of the Hahn–Kolmogorov theorem (Theorem A.12) also lends us insight
into the structure of a Borel set. After digesting the proof, you can attempt the next
problem.

Problem A.19 (*Borel sets: Approximation by intervals). In this problem, we will argue that
Borel sets are well-approximated by unions of half-open intervals. Define A to be the
algebra (A.1) of half-open intervals in ℝ.

1. Choose a bounded Borel set B ∈ B(ℝ). In particular, the set has finite Lebesgue
measure: 𝜆(B) < +∞. For each 𝜀 > 0, show that B is 𝜀-close to a finite union of
(disjoint) half-open intervals, in the sense that

𝜆(B△A) < 𝜀 where A = (𝑎1, 𝑏1] ¤∪ · · · ¤∪ (𝑎𝑛 , 𝑏𝑛].

As usual, the endpoints 𝑎𝑖 , 𝑏𝑖 ∈ ℝ. Hint: Each element of the algebra A is a finite
union of half-open intervals. The statement follows directly from the definition
of the 𝜎 -algebra C in the proof of Theorem A.12. Why is there no semi-infinite
interval in A?

2. By a stronger argument, we can refine the representation to obtain

B = (𝑎1, 𝑏1] ¤∪ · · · ¤∪ (𝑎𝑛 , 𝑏𝑛] ¤∪ E where 𝜆(E) < 𝜀.

In this expression, E is a Borel set, and the endpoints 𝑎𝑖 , 𝑏𝑖 may differ from the
first representation. Hint: Given the approximation A from above, cover the set
A \B using half-open intervals, and use the construction of the Lebesgue measure
as an outer measure (see Definition 3.15 or Definition A.11).

3. Let B ∈ B(ℝ) be a Borel set, possibly unbounded, but with finite Lebesgue
measure: 𝜆(B) < +∞. Show that we can represent B as a finite union of (disjoint)
half-open intervals, plus a set with arbitrarily small Lebesgue measure. Hint:
Find a compact set that contains most of B.

4. Now, consider a general Borel set B. In particular, it might have infinite Lebesgue
measure: 𝜆(B) = +∞. In this case, the situation is a little more complicated.
For each 𝜀 > 0, show that we can approximate the set B by a countable union
of (disjoint) half-open intervals, united with a (disjoint) set that has Lebesgue
measure smaller than 𝜀. Hint: Cut the set B into a countable number of bounded
pieces, and apply the previous results to each piece.
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5. In this context, the Lebesgue measure does not play any special role. Show that
similar results hold if we replace 𝜆 by any locally finite Borel measure. See
Problem A.18.

In the last problem, we saw that Borel sets can be approximated by simpler sets. In
a related vein, we may ask when the measure of a set can be approximated from the
inside or from the outside. For a (nice) Borel measure, both types of approximation
are always possible.

Problem A.20 (*Borel measures: Regularity). The Lebesgue measure can be computed by
approximating Borel sets from the inside or the outside.

1. Prove that the Lebesgue measure 𝜆 is outer regular. That is,

𝜆(B) = inf{𝜆(G) : B ⊆ G where G ⊆ ℝ is open}.
Hint: Use the construction of the Lebesgue measure as an outer measure (Defini-
tion 3.15), and adjust the sets in the cover so they are open.

2. Prove that the Lebesgue measure 𝜆 is inner regular. That is,

𝜆(B) = sup{𝜆(K) : K ⊆ B where K ⊆ ℝ is compact}.
Hint: The results in Problem A.19 can be used to this effect.

3. Show that a locally finite Borel measure 𝜇 : B(ℝ) → [0,+∞] on the real line is
both inner regular and outer regular. Hint: See Problem A.18 and Problem A.19.

In other words, every (locally finite) Borel measure on the real line is both inner regular
and outer regular.

A.6 Hahn–Kolmogorov theorem: Proof
In this section, we establish Theorem A.12. The argument is based on the intuition
that the sets in a 𝜎 -algebra should be “limits” of elementary sets.

We will prove the theorem for the special case of a finite premeasure. The extension
to strongly 𝜎 -finite premeasures is left for the reader (Exercise A.22).

A.6.1 Properties of a premeasure
To begin, let us collect some basic properties of a premeasure that parallel the properties
of a measure.

Exercise A.21 (Premeasure: Properties). Prove that every premeasure 𝜇0 : A→ [0,+∞]
enjoys the following properties.

1. Monotonicity: A ⊆ B implies 𝜇0(A) ≤ 𝜇0(B) for elementary sets A,B ∈ A.
2. Finite additivity: For a finite, disjoint family (A1, . . . ,A𝑛) of elementary sets in A,

𝜇0
( ¤⋃𝑛

𝑖=1 A𝑖
)
=

∑𝑛
𝑖=1 𝜇0(A𝑖 ).

3. Pre-countable subadditivity: Let A ∈ A be an elementary set. For a sequence
(A𝑖 : 𝑖 ∈ ℕ) of elementary sets in Awhose union covers A,

𝜇0(A) ≤
∑∞
𝑖=1 𝜇0(A𝑖 ) when A ⊆ ⋃∞

𝑖=1 A𝑖 and A,A𝑖 ∈ A.

Hint: The argument is related to the proof that a measure is countably subadditive.
By considering the sets A𝑛 \ ⋃𝑛−1

𝑖=1 A𝑖 , we may use monotonicity to reduce to the
case where A is covered by a union of disjoint elementary sets. Then intersect
each set in the disjoint cover with A to pass to the case where A equals a disjoint
union of elementary sets.
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A.6.2 The outer measure
Let A be a set algebra on a domain X. Recall that the sets in the algebra A are
referred to as elementary sets. Consider a finite premeasure 𝜇0 : A→ [0,+∞) on the
algebra. That is, 𝜇0 assigns zero mass to the empty set, is pre-countably additive, and
𝜇(X) < +∞.

To extend a premeasure, we need to find a way to assign mass to sets that do
not belong to the algebra. The approach is The word “outer” indicates that we

are approximating a set by supersets.
based on the concept of an outer measure

(Definition A.11). For a set E ∈ P(X), define

𝜇∗(E) := inf
{∑∞

𝑖=1 𝜇0(A𝑖 ) : E ⊆ ⋃∞
𝑖=1 A𝑖 and A𝑖 ∈ A

}
. (A.8)

We emphasize that this definition applies to every subset E of the domain. You can think
about this construction as “shrink wrapping” the set E. We cover E with a countable
union of elementary sets, and we seek to minimize the total premeasure of the sets in
the cover.

For an elementary set A ∈ A, the outer measure and premeasure coincide:
𝜇∗(A) = 𝜇0(A). Indeed, an elementary set covers itself, so 𝜇∗(A) ≤ 𝜇0(A). At the
same time, by pre-countable subadditivity of the premeasure 𝜇0,

A ⊆ ⋃∞
𝑖=1 A𝑖 for A𝑖 ∈ A implies 𝜇0(A) ≤

∑∞
𝑖=1 𝜇0(A𝑖 ).

Taking the infimum of the right-hand side, 𝜇0(A) ≤ 𝜇∗(A).
We remark that the outer measure is uniformly bounded: 𝜇∗(E) ≤ 𝜇0(X) < +∞ for

all E ⊆ X. The construction (A.8) also ensures that the outer measure 𝜇∗ is monotone
for arbitrary sets:

E ⊆ F ⊆ X implies 𝜇∗(E) ≤ 𝜇∗(F) (A.9)

because any countable cover of F by elementary sets is also a cover of E. Similarly, the
outer measure is countably subadditive for arbitrary sets:

𝜇∗ ( ⋃∞
𝑖=1 E𝑖

)
≤ ∑∞

𝑖=1 𝜇
∗(E𝑖 ) for all E𝑖 ⊆ X. (A.10)

Assuming the axiom of choice, the
countable union of countable sets
remains a countable set.

Indeed, given a countable cover of E𝑖 for each 𝑖 ∈ ℕ, we can combine them to obtain a
countable cover for

⋃∞
𝑖=1 E𝑖 . This cover witnesses the inequality.

A.6.3 A pseudometric space
The pseudodistance between two
distinct sets can equal zero. For
brevity, we usually just refer to the
pseudodistance as a distance.

Next, we use the outer measure 𝜇∗ to equip the subsets of the domain with a
pseudometric structure. Define a (pseudo)distance

dist(E, F) := 𝜇∗(E△F) for E, F ∈ P(X).

The distance is clearly nonnegative and symmetric. To verify the triangle inequality,
first note that

E△G ⊆ (E△F) ∪ (F△G) for all E, F,G ∈ P(X).
You may want to draw a Venn diagram to persuade yourself of the set inclusion. As a
consequence,

dist(E,G) = 𝜇∗(E△G) ≤ 𝜇∗ ((E△F) ∪ (F△G)
)

≤ 𝜇∗(E△F) + 𝜇∗(F△G) = dist(E, F) + dist(F,G).

We have used the facts that the outer measure is monotone (A.9) and subadditive (A.10).
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A.6.4 A bigger algebra
Let C := closure(A) be the closure of the algebra of elementary sets in the pseudometric
space. Roughly, we will use continuity to extend the premeasure 𝜇∗ from the algebra
A to its closure C.

To do so, we will argue that the closure C remains a set algebra. Furthermore, we
will establish that the outer measure 𝜇∗ is finitely additive on this algebra. These two
claims are the content of this subsection.

Complements
Let us show that the family C is stable under complements. That is, for each set E ∈ C,
we verify that Ec := X \ E ∈ C.

For each 𝜀 > 0, we can find A ∈ Awith dist(A, E) < 𝜀 because E is in the closure
of Awith respect to the pseudometric. Now,

Recall the set identity Ac△Ec = A△E.dist(Ac, Ec) = dist(A, E) < 𝜀.

The display states that we can approximate Ec by a set in the algebra A, namely Ac.
Since 𝜀 > 0 is arbitrary, we conclude that Ec ∈ C.

Unions and intersections
Next, we check that the family C is stable under unions. Since we have shown that C
is also stable under complements, De Morgan’s identity ensures that C is also stable
under intersections.

Suppose that E, F ∈ C. We must confirm that E ∪ F ∈ C. This argument depends
on the set identities

(A ∪ B)△(E ∪ F) ⊆ (A△E) ∪ (B△F)
(A ∩ B)△(E ∩ F) ⊆ (A△E) ∪ (B△F) for all A,B, E, F ⊆ X.

As always, make Venn diagrams as needed to check set relations. Alternatively, see
Exercise 2.47.

For each 𝜀 > 0, we can find elementary sets A, B ∈ A for which dist(A, E) < 𝜀 and
dist(B, F) < 𝜀. The outer measure 𝜇∗ is monotone (A.9) and subadditive (A.10), so

dist(A ∪ B, E ∪ F) = 𝜇∗((A ∪ B)△(E ∪ F)) ≤ 𝜇∗((A△E) ∪ (B△F))
≤ 𝜇∗(A△E) + 𝜇∗(B△F) = dist(A, E) + dist(B, F) < 2𝜀.

(A.11)

Since 𝜀 is arbitrary, we deduce that E ∪ F ∈ C.

Finite additivity
These arguments demonstrate that C is a set algebra. We are now prepared to show
that the outer measure is finitely additive on the algebra C. In other words,

𝜇∗ (E ¤∪ F) = 𝜇∗(E) + 𝜇∗(F) for disjoint E, F ∈ C. (A.12)

The outer measure is subadditive (A.10), so we already know that 𝜇∗(E ∪ F) ≤
𝜇∗(E) + 𝜇∗(F). Our job is to prove the reverse inequality.

Choose disjoint sets E, F ∈ C. Fix 𝜀 > 0, and select A,B ∈ Awith dist(A, E) < 𝜀
and dist(B, F) < 𝜀. Using (A.11) and the triangle inequality,

2𝜀 > dist(A ∪ B, E ∪ F) ≥ dist(A ∪ B, ∅) − dist(E ∪ F, ∅) = 𝜇0(A ∪ B) − 𝜇∗(E ∪ F).

We have also applied the fact that the outer measure 𝜇∗ coincides with the premeasure
𝜇0 on elementary sets. By a similar argument,

2𝜀 > dist(A ∩ B, E ∩ F) ≥ dist(A ∩ B, ∅) − dist(E ∩ F, ∅) = 𝜇0(A ∩ B).
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We have used the disjointness of E and F at the last step.
Now, combine these inequalities:

𝜇∗(E ∪ F) ≥ 𝜇0(A ∪ B) − 2𝜀
= 𝜇0(A) + 𝜇0(B) − 𝜇0(A ∩ B) − 2𝜀 ≥ 𝜇∗(E) + 𝜇∗(F) − 6𝜀.

To reach the second line, we invoked the finite additivity of the premeasure 𝜇0. To
reach the last member, we used the assumption that E, F are 𝜀-distant from A, B. Since
𝜀 was arbitrary, we conclude that

𝜇∗(E ∪ F) ≥ 𝜇∗(E) + 𝜇∗(F).

This is what we needed to show.

A.6.5 A 𝜎-algebra and an extension
In this section, we complete the proof that the premeasure has at least one extension.
To do so, we first demonstrate that the outer measure 𝜇∗ is countably additive on C.
Then we deduce that C = closure(A) is actually a 𝜎 -algebra.

Hahn–Kolmogorov: Existence
Granted the statements in the last paragraph, we can easily establish the existence claim
in the Hahn–Kolmogorov theorem. Indeed, since 𝜎 (A) is the smallest 𝜎 -algebra that
contains the algebra A, it must be the case that the 𝜎 -algebra C contains 𝜎 (A). By
construction, the outer measure 𝜇∗ agrees with the premeasure 𝜇0 on A. Moreover,
we have verified that 𝜇∗ is countably additive on 𝜎 (A). Therefore, 𝜇∗ is a measure
that extends 𝜇0.

Countable additivity
Let us turn to proving the two claims. Consider a disjoint sequence (E𝑖 : 𝑖 ∈ ℕ) of sets
in the closure C. We intend to argue that

𝜇∗ ( ¤⋃∞
𝑖=1E𝑖

)
=

∑∞
𝑖=1 𝜇

∗(E𝑖 ) for disjoint E𝑖 ∈ C. (A.13)

By countable subadditivity (A.10) of the outer measure, 𝜇∗ ( ⋃∞
𝑖=1 E𝑖

)
≤ ∑∞

𝑖=1 𝜇
∗(E𝑖 ).

We must develop the reverse inequality.
To do so, we simply calculate that

𝜇∗ ( ⋃∞
𝑖=1 E𝑖

)
≥ 𝜇∗ ( ⋃𝑘

𝑖=1 E𝑖
)
=

∑𝑘
𝑖=1 𝜇

∗(E𝑖 ) for each 𝑘 ∈ ℕ.

Indeed, the first inequality follows from monotonocity (A.9). Since C is stable under
finite unions,

⋃𝑘
𝑖=1 E𝑖 ∈ C. Therefore, it is legal to deploy the finite additivity of 𝜇∗ on

C. Taking the increasing limit as 𝑘 → ∞, we discover that 𝜇∗(⋃∞
𝑖=1 E𝑖 ) ≥

∑∞
𝑖=1 𝜇

∗(E).
This is the required result.

Countable unions
Last, we must show that the algebra C is a 𝜎 -algebra. To accomplish this task, we
only need to confirm that C is stable under countable unions. It suffices to consider a
disjoint sequence (E𝑖 : 𝑖 ∈ ℕ) of sets in C and its union E = ¤⋃∞

𝑖=1 E𝑖 . Let us verify that
the union E ∈ C.

Since the outer measure 𝜇∗ is countably additive (A.13) on C and we assumed that
𝜇∗ is finite, ∑∞

𝑖=1 𝜇
∗(E𝑖 ) = 𝜇∗(E) < +∞.
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Next, calculate that

dist
( ¤⋃𝑘

𝑖=1 E𝑖 , E
)
= 𝜇∗ ( ¤⋃∞

𝑖=𝑘+1 E𝑖
)
=

∑∞
𝑖=𝑘+1 𝜇

∗(E𝑖 ) → 0 as 𝑘 → ∞.

Again, we rely on the countable additivity (A.13) of the outer measure 𝜇∗ on C. The
right-hand side tends to zero because it is the tail of a summable sequence. Now, for
each index 𝑘 , the finite union ¤⋃𝑘

𝑖=1E𝑖 belongs to the algebra C. Therefore, we can
approximate E by elements of the set C. But the pseudometric space C is closed with
respect to the pseudodistance. It follows that E ∈ C.

A.6.6 Uniqueness of the extension
Finally, we demonstrate that the premeasure 𝜇0 on the algebra A admits a unique
extension. The key idea is to show that every measure that extends 𝜇0 is continuous
with respect to the pseudometric.

Let 𝜇 be a measure on 𝜎 (A) that agrees with 𝜇0 on the algebra A. Choose a set
E ∈ 𝜎 (A) in the 𝜎 -algebra generated by A. We must prove that 𝜇(E) = 𝜇∗(E). That
is, the (outer) measure 𝜇∗ is the only measure that extends 𝜇0 to 𝜎 (A).

We have already shown that 𝜎 (A) is a subset of C = closure(A). As a consequence,
dist(A𝑖 , E) → 0 for a sequence (A𝑖 : 𝑖 ∈ ℕ) of elementary sets in A. Since the measure
𝜇 and the outer measure 𝜇∗ both agree with 𝜇0 on elementary sets,

𝜇(A𝑖 ) = 𝜇0(A𝑖 ) = 𝜇∗(A𝑖 ) → 𝜇∗(E) as 𝑖 → ∞.

The last relation follows because dist(A𝑖 , E) = 𝜇∗(A𝑖△E) → 0. Therefore, 𝜇(A𝑖 ) has
an unambiguous limit.

Now, let us prove that 𝜇(A𝑖 ) → 𝜇(E), which implies that 𝜇(E) = 𝜇∗(E). By
definition (A.8) of the outer measure, for each 𝑖 , we can cover the set A𝑖△E by a
countable family of elementary sets (B𝑖 ,𝑗 : 𝑗 ∈ ℕ) in Awhose total premeasure 𝜇0
is arbitrarily close to the outer measure 𝜇∗(A𝑖△E), which tends to zero as 𝑖 → ∞.
Whence

A𝑖△E ⊆ ⋃∞
𝑗=1 B𝑖 ,𝑗 and

∑∞
𝑗=1 𝜇0(B𝑖 ,𝑗 ) → 0 as 𝑖 → ∞.

By monotonicity and countable subadditivity of the measure 𝜇,

𝜇(A𝑖△E) ≤ 𝜇
( ⋃∞

𝑗=1 B𝑖 ,𝑗
)
≤ ∑∞

𝑗=1 𝜇(B𝑖 ,𝑗 ) =
∑∞
𝑗=1 𝜇0(B𝑖 ,𝑗 ) → 0.

In the last step, we have used the assumption that the measure 𝜇 agrees with the
premeasure 𝜇0 on elementary sets. It now follows that 𝜇(A𝑖 ) → 𝜇(E).

A.6.7 Strongly 𝜎-finite measures
We have established the Hahn–Kolmogorov theorem for finite premeasures. The result
holds equally for strongly 𝜎 -finite premeasures.

Exercise A.22 (Extension of 𝜎-finite premeasures). Prove the Hahn–Kolmogorov theorem
for a premeasure 𝜇0 that is strongly 𝜎 -finite. Hint: Reduce to the finite case by cutting
the domain X into a disjoint union of elementary sets, each with finite premeasure.

Notes
Our approach to the Hahn–Kolmogorov theorem is attributed to Marshall Stone [Sto48],
with further contributions by Dorothy Maharam [Mah87]. Parts of the presentation
are drawn from Terry Tao’s online lecture notes on measure theory [Taoa].

The earliest proofs of measure extension results were based on lengthy set-theoretic
arguments. These approaches remain important, and you will find them in many
books on measure theory, real analysis, and probability.
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B. Unmeasurable Sets

Agenda:
1. Lebesgue sets
2. Lebesgue vs. Borel
3. Vitali sets
4. Banach–Tarski paradox

We spent a lot of energy motivating the definition of Borel sets and Borel measures.
We have also defined the Lebesgue measure, which assigns a length to each Borel set.
At the same time, we asserted that is impossible to assign a length to every subset of
the real line, which is our prime reason for introducing the Borel sets in particular
and measurable sets in general. In this appendix, we give substance to this claim by
describing sets that cannot possibly have a well-defined length. This material will not
be needed later in the course.

B.1 Lebesgue sets
If you have taken a course on measure theory, you may recall that the Lebesgue measure
can be extended from the Borel sets B(ℝ) to a larger family, called the Lebesgue
sets L(ℝ). In this section, we state a characterization of the Lebesgue sets, due to
Carathéodory, and we start to see why we cannot define the length of every set.

The exterior length of a general subset of the real line is defined as

𝜆∗(A) := inf
{ ∑∞

𝑖=1 |𝑏𝑖 − 𝑎𝑖 | : A ⊆ ¤⋃∞
𝑖=1 (𝑎𝑖 , 𝑏𝑖 ]

}
for A ⊆ ℝ. (B.1)

In other words, the exterior length of the set is the minimum length of a cover by
half-open intervals. It is easy to check that the exterior length is translation invariant,
so it is a reasonable candidate for the length.

We have defined the Lebesgue measure 𝜆 as the restriction of the exterior length
𝜆∗ to the Borel sets. It is natural to ask whether we can extend the exterior length to
more sets, while retaining the countable additivity property. The answer is yes.

A subset E ⊆ ℝ of the real line is called a Lebesgue set if

𝜆∗(A) = 𝜆∗(A ∩ E) + 𝜆∗(A ∩ Ec) for all subsets A ⊆ ℝ. (B.2)

That is, if we slice a general set A in two by a Lebesgue set E and its complement Ec,
the exterior length of the set A equals the sum of the exterior lengths of the slices. This
is a kind of additivity property, although it is not widely regarded as intuitive.

The family L(ℝ) of Lebesgue sets contains all of the Borel sets from B(ℝ), and
L(ℝ) is stable under complements and countable unions. Furthermore, the restriction
of the exterior length to the Lebesgue sets is countably additive:

𝜆(E) := 𝜆∗(E) for E ∈ L(ℝ) is countably additive on L(ℝ).

In other words, we can extend the measure 𝜆 from Borel sets to a measure on Lebesgue
sets, which is why we retain the same symbol.

In a moment, we will see that there are subsets of the real line that are not Lebesgue
sets. For these sets, the Carathéodory criterion (B.2) fails. As a consequence, there are
pairs of subsets of the real line for which

𝜆∗(A ¤∪B) < 𝜆∗(A) + 𝜆∗(B) where A,B ⊆ ℝ.
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(The reverse inequality is not possible because the exterior length is a subadditive
function.) That is, the exterior length is not even finitely additive on all subsets of the
real line. One may wonder if we just need a more clever definition of length, but we
will rule out this possibility as well.

Exercise B.1 (Exterior length). Establish the following facts about the exterior length 𝜆∗

defined in (B.1).

1. Translation invariance: 𝜆∗(A + 𝑡 ) = 𝜆∗(A) for each subset A ⊆ ℝ and each shift
𝑡 ∈ ℝ.

2. Monotonicity: A ⊆ B implies 𝜆∗(A) ≤ 𝜆∗(B).
3. Subadditivity: 𝜆∗(A ∪ B) ≤ 𝜆∗(A) + 𝜆∗(B).
4. Additivity fails: Assume that there exists a subset E ⊆ ℝ for which the Carathédory

criterion (B.2) fails. Show that the exterior length is not finitely additive.

B.2 Lebesgue versus Borel
What is the relationship between Borel sets and Lebesgue sets? In this section, we
clarify this picture by giving an alternative definition of the Lebesgue sets.

Let Z ∈ B(ℝ) be a Borel set that is negligible for the Lebesgue measure: 𝜆(Z) = 0.
It is not always the case that a subset N ⊆ Z is a Borel set. Nevertheless, it is reasonable
to desire that the subset N be measurable, in which case monotonicity demands that
𝜆(N) = 0.

The Lebesgue sets repair this deficiency of the Borel sets. Indeed, we can define the
Lebesgue sets as the smallest 𝜎 -algebra that contains all the Borel sets and all subsets of
𝜆-negligible Borel sets. In a word, the Lebesgue sets form the completion of the Borel
sets with respect to the Lebesgue measure.

In summary, the completion process guarantees that every subset of a negligible
set is both measurable and negligible, while securing the countable additivity of the
Lebesgue measure. It can be shown that the completion definition of Lebesgue sets
gives the same result as the earlier definition (B.2), via the Carathéodory criterion.

There are way more Lebesgue sets than Borel sets. The family B(ℝ) of Borel sets
has the same cardinality as the real line ℝ. The family L(ℝ) of Lebesgue sets has the
same cardinality as the power set P(ℝ) of the real line.

For real analysis and for certain applications of probability theory, the completeness
of the Lebesgue sets plays an important role. “El Guapo: I would not like to think

that someone would tell someone
else he has a plethora, and then find
out that that person has no idea what
it means to have a plethora.
“Jefe: El Guapo, I know that I, Jefe, do
not have your superior intellect and
education, but could it be that once
again, you are angry at something
else, and are looking to take it out on
me?”

—¡Three Amigos!, 1986

For our purposes, the plethora of Lebesgue
sets actually causes more trouble than it is worth because continuous functions interact
better with Borel sets than with Lebesgue sets.

Problem B.2 (Lebesgue = Carathéodory). Prove that the two definitions of Lebesgue sets
are equivalent. Hint: Use the definition of the Lebesgue measure as the restriction of
the exterior length and the property that the Lebesgue sets are complete.

B.3 Vitali sets
In 1905, several years after Lebesgue’s thesis, Vitali demonstrated that there are subsets
of the real line that are not Lebesgue measurable. In fact, Vitali’s argument establishes
a stronger statement.

Theorem B.3 (Vitali). A nontrivial set function cannot equal
+∞ on all sets.

Assume the axiom of choice. There is no (nontrivial) translation
invariant, countably additive, positive function defined on all subsets of the real
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line. In particular, not all subsets of the real line are Lebesgue measurable.

Proof. Suppose that 𝜇 : P(ℝ) → [0,+∞] is a translation invariant, countably
additive, positive function defined on all subsets of the real line. The function 𝜇 must
be monotone increasing with respect to set inclusion because it is countably additive.
Without loss of generality, we may impose the normalization 𝜇(0, 1] = 1.

Consider the abelian group (ℝ,+) of real numbers with ordinary addition. The
subset ℚ of rational numbers forms a normal subgroup. Therefore, we can construct
the quotient group ℝ/ℚ, which consists of the cosets

[𝑟 ] := {𝑟 + 𝑞 : 𝑞 ∈ ℚ} for 𝑟 ∈ ℝ.

By standard considerations, the cosets compose a partition ofℝ. There are uncountably
many cosets, and each coset corresponds with a copy of the rational numbers. A Vitali
set V is a subset of (0, 1] that contains exactly one representative 𝑟 + 𝑞 (𝑟 ) from each
coset [𝑟 ]. We need the axiom of choice to make this selection.

Choose and fix a Vitali set V. We can use this Vitali set to lodge a contradiction
against our assumptions about the function 𝜇. Enumerate the rational numbers
𝑞1, 𝑞2, 𝑞3, . . . belonging to the interval [−1,+1]. Introduce the sets V𝑖 := V + 𝑞𝑖 for
𝑖 ∈ ℕ. The family (V𝑖 : 𝑖 ∈ ℕ) must be disjoint because the Vitali set contains only
one element of each coset. Moreover,

(0, 1] ⊆ ⋃∞
𝑖=1 V𝑖 ⊆ (−1, 2]. (B.3)

The upper inclusion is straightforward because V ⊆ (0, 1] and |𝑞𝑖 | ≤ 1. For the lower
inclusion, fix a real number 𝑟 ∈ (0, 1]. The Vitali set V ⊆ (0, 1] contains exactly
one representative 𝑟 + 𝑞 (𝑟 ) from the coset [𝑟 ], where 𝑞 (𝑟 ) ∈ [−1,+1] ∩ ℚ. Since
𝑞 (𝑟 ) = −𝑞𝑖 for some index 𝑖 , depending on 𝑟 , the number 𝑟 ∈ V𝑖 .

Apply the function 𝜇 to the countable union of the shifts V𝑖 using countable
additivity and then translation invariance:

𝜇
( ⋃∞

𝑖=1 V𝑖
)
=

∑∞
𝑖=1 𝜇(V𝑖 ) =

∑∞
𝑖=1 𝜇(V).

Owing to the normalization and monotonicity of 𝜇, the inclusions (B.3) imply that

1 ≤ ∑∞
𝑖=1 𝜇(V) ≤ 3.

If 𝜇(V) = 0, then the central member is zero. If 𝜇(V) > 0, then the central member is
infinite. Either way, we have a problem. ■

Aside: In 1970, Solovay showed that there are models of set theory, without
the axiom of choice, where every subset of the real line is Lebesgue measurable.
Keep in mind, however, that there remain explicit subsets of ℝ that are not Borel
measurable.

B.4 The Banach–Tarski “paradox”
The horrors arising from unmeasurable sets multiply when we move to settings more
general than the real line. We may agree that every reasonable notion of volume in
three dimensions should assign the unit ball a positive volume, it should be invariant
under proper rigid motions, A proper rigid motion is a translation

followed by a rotation.
and it should be finitely additive. Granted this principle,

we must conclude that there are subsets of ℝ3 that cannot be assigned a volume.
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Introduce the three-dimensional Euclidean unit ball:

B3 := {𝒙 ∈ ℝ3 : ∥𝒙 ∥ℓ2 ≤ 1}.

The Banach–Tarski theorem states that the ball B3 can be cut into a finite number of
disjoint pieces (say, five) that can be reassembled via rigid motions to obtain the ball
2B3 with twice the radius:

B3 = ¤⋃𝑛
𝑖=1 E𝑖 and 2B3 =

⋃𝑛
𝑖=1 𝑔𝑖E𝑖 ,

where the 𝑔𝑖 : ℝ3 → ℝ3 are proper rigid motions. Assuming that every subset of ℝ3

has a volume, we can use finite (sub)additivity and motion invariance to compute

vol(B3) =
∑𝑛
𝑖=1 vol(E𝑖 ) =

∑𝑛
𝑖=1 vol(𝑔𝑖E𝑖 ) ≥ vol(2B3) = 8 vol(B3)

This is impossible because the unit ball has strictly positive volume.
“To see a World in a Grain of Sand
And a Heaven in a Wild Flower
Hold Infinity in the palm of your hand
And Eternity in an hour...”

—William Blake

By iterating the Banach–Tarski theorem, we could repeatedly dissect and reassemble
a pea until it were larger than the sun. Because of this apparent absurdity, people
often refer to the Banach–Tarski “paradox.” But there is no paradox: we have
simply established that there are regions in three-dimensional space where volume is
meaningless.

Aside: The Banach–Tarski theorem depends on the fact that the special Euclidean
group SE(𝑛) for 𝑛 ≥ 3 contains a free group with two generators. The same
argument, however, does not work in lower dimensions. If you are interested in
understanding these results more deeply, there are simpler settings where you
can encounter similar phenomena. In particular, you may want to read about the
Banach–Tarski “paradox” for the free group with two generators.



C. The Riemann–Darboux Integral

Agenda:
1. Riemann vs. Darboux
2. Lower and upper sums
3. The Darboux integral
4. Properties of the integral
5. Calculus rules
6. Improper integrals
7. Monotone convergence
8. Riemann vs. Lebesgue

The ordinary integral of a function computes the (signed) area lying between the
function and the horizontal axis. This area can be approximated by subdividing the
region under the curve into very thin vertical rectangles and adding up the area of
these rectangles; see Figure 4.1. This geometric intuition was already present in the
work of Archimedes. Integrals found wide application in mathematics and physics after
the late 17th century work of Newton and Leibniz on the calculus. Only in the 19th
century were mathematicians able to place integration on a solid footing, by exploiting
new-fangled concepts from analysis, such as limits.

In Latin, the word calculus means
“pebble.” Pebbles were used for
reckoning, as in an abacus. The
etymological relative “chalk” is also
an important part of mathematics.

This section describes a classic construction of an integral, commonly known as the
Riemann integral, that was introduced in the mid-1800s. We rely on this material to
develop the Lebesgue integral, so we will treat it in some detail.

C.1 Riemann versus Darboux
In the 1850s, Bernhard Riemann developed the first rigorous definition of an integral.
He did so by formalizing the concept of partitioning the interval of integration into
small pieces. His approximation sums the areas of rectangles that touch the function at
the knots of the partition. Then one takes the limit as the partition becomes increasingly
fine. The resulting object is called a Riemann integral.

As in most modern treatments, we present a variant of Riemann’s approach, properly
called a Darboux integral. Darboux constructed lower and upper approximations to the
area under the curve by describing rectangles that rise to the minimum and maximum
function value within each piece of the partition. If the lower and upper sums share a
limit as the partition becomes increasingly fine, we declare the integral to equal their
common value.

The Riemann and Darboux integrals are defined for the same functions, and they
give identical results. Darboux’s approach, however, leads to somewhat easier proofs.
In the notes, we just refer to the Riemann integral, even though the term is imprecise.

C.2 Partitions
Fix a compact subinterval [𝑎, 𝑏] of the real line. A partition 𝒑 = (𝑥0, . . . , 𝑥𝑛) is a
finite, ordered list of points in the interval:

Figure C.1 (A partition).

𝑎 = 𝑥0 ≤ 𝑥1 ≤ 𝑥2 ≤ · · · ≤ 𝑥𝑛 = 𝑏.

We allow any natural number 𝑛 ∈ ℕ here. The width ∥𝒑 ∥ of the partition is the
maximum separation between adjacent points:

∥𝒑 ∥ := max{𝑥𝑖 − 𝑥𝑖−1 : 1 ≤ 𝑖 ≤ 𝑛}.
The collection P𝑎,𝑏 contains all partitions of the interval [𝑎, 𝑏].
Exercise C.1 (Narrow partitions). For each 𝛿 > 0, describe a partition 𝒑 ∈ P𝑎,𝑏 whose
width satisfies ∥𝒑 ∥ ≤ 𝛿 .
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Figure C.2 (Darboux sums). In the lower (resp. upper) Darboux sum, the
height of each rectangle is the infimal (resp. supremal) value of the function
on each piece of the partition.

C.3 Lower and upper sums
Let 𝑓 : [𝑎, 𝑏] → ℝ be a bounded function defined on the interval [𝑎, 𝑏]. Let 𝒑 be a
partition of [𝑎, 𝑏]. The lower and upper Darboux sums are computed as

𝐿 ( 𝑓 ,𝒑) :=
∑︁𝑛

𝑖=1
inf{𝑓 (𝑥) : 𝑥𝑖−1 ≤ 𝑥 ≤ 𝑥𝑖 } · (𝑥𝑖 − 𝑥𝑖−1);

𝑈 ( 𝑓 ,𝒑) :=
∑︁𝑛

𝑖=1
sup{𝑓 (𝑥) : 𝑥𝑖−1 ≤ 𝑥 ≤ 𝑥𝑖 } · (𝑥𝑖 − 𝑥𝑖−1).

(C.1)

Since 𝑓 is bounded, each infimum and supremum takes a finite value, so both the
sums are finite. See Figure C.2 for an illustration.

Obviously, the lower sum is smaller than the upper sum: 𝐿 ( 𝑓 ,𝒑) ≤ 𝑈 ( 𝑓 ,𝒑).We
can bound the difference between the upper and lower sums:

𝑈 ( 𝑓 ,𝒑) − 𝐿 ( 𝑓 ,𝒑)

≤
∑︁𝑛

𝑖=1
sup{𝑓 (𝑥) − 𝑓 (𝑦 ) : 𝑥𝑖−1 ≤ 𝑥, 𝑦 ≤ 𝑥𝑖 } · (𝑥𝑖 − 𝑥𝑖−1). (C.2)

This expression suggests the heuristic that the upper and lower sums are close for
functions with “bounded total variation.” We will not justify this statement, but an
appropriate formulation is valid.

C.4 The Darboux integral
The lower and upper sums allow us to obtain a family of approximations to the signed
area between the function 𝑓 and the horizontal axis.

𝐿𝑏𝑎 ( 𝑓 ) := sup{𝐿 ( 𝑓 ,𝒑) : 𝒑 ∈ P𝑎,𝑏 };
𝑈 𝑏
𝑎 ( 𝑓 ) := inf{𝑈 ( 𝑓 ,𝒑) : 𝒑 ∈ P𝑎,𝑏 }.

These quantities are called lower and upper Darboux integrals. It is clear that 𝐿𝑏𝑎 ( 𝑓 ) ≤
𝑈 𝑏
𝑎 ( 𝑓 ), but they may not coincide.
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The Darboux integral is defined when the lower and upper integrals match. Under
the assumption that 𝐿𝑏𝑎 ( 𝑓 ) =𝑈 𝑏

𝑎 ( 𝑓 ), As in the main text, we color the
integral sign in a Riemann–Darboux
integral to draw a distinction with the
Lebesgue integral.

∫ 𝑏

𝑎

𝑓 (𝑥) d𝑥 := 𝐿𝑏𝑎 ( 𝑓 ) =𝑈 𝑏
𝑎 ( 𝑓 ).

In this case, we say that 𝑓 is Darboux integrable on [𝑎, 𝑏].
Here is a necessary and sufficient condition for the Darboux integrability of 𝑓 on

[𝑎, 𝑏]. For each 𝜀 > 0, there exists a partition 𝒑 𝜀 ∈ P𝑎,𝑏 for which

𝑈 ( 𝑓 ,𝒑 𝜀) − 𝐿 ( 𝑓 ,𝒑 𝜀) ≤ 𝜀.

The bound (C.2) aids us checking this criterion.

C.5 Darboux-integrable functions
Let us establish two theorems that describe important collections of functions that are
Darboux integrable. The first result has central importance for us.

Theorem C.2 (Darboux integral: Monotone function). Let 𝑓 : [𝑎, 𝑏] → ℝ be a bounded,
monotone function. Then 𝑓 is Darboux integrable on [𝑎, 𝑏].

Proof. Assume that 𝑓 is increasing. For any partition 𝒑 of [𝑎, 𝑏], the definition (C.1)
of the Darboux sums implies that

𝑈 ( 𝑓 ,𝒑) − 𝐿 ( 𝑓 ,𝒑) =
∑︁𝑛

𝑖=1
( 𝑓 (𝑥𝑖 ) − 𝑓 (𝑥𝑖−1)) · (𝑥𝑖 − 𝑥𝑖−1)

≤
[∑︁𝑛

𝑖=1
( 𝑓 (𝑥𝑖 ) − 𝑓 (𝑥𝑖−1))

]
· ∥𝒑 ∥ = [ 𝑓 (𝑏) − 𝑓 (𝑎)] · ∥𝒑 ∥.

Thus, we can make the difference𝑈 ( 𝑓 ,𝒑) − 𝐿 ( 𝑓 ,𝒑) as small as we like by selecting a
partition 𝒑 of sufficiently small width. Thus 𝑓 is integrable. The proof for decreasing
𝑓 is similar. ■

Theorem C.3 (Darboux integral: Continuous function). Let 𝑓 : [𝑎, 𝑏] → ℝ be continu-
ous. Then 𝑓 is Darboux integrable on [𝑎, 𝑏].

Proof. Let 𝜀 > 0, and define𝜂 := 𝜀/(𝑏 −𝑎). On the compact set [𝑎, 𝑏], the continuous
function 𝑓 is uniformly continuous, so there exists 𝛿 > 0 for which

|𝑥 − 𝑦 | < 𝛿 implies | 𝑓 (𝑥) − 𝑓 (𝑦 ) | < 𝜂.

Choose a partition 𝒑 of the interval [𝑎, 𝑏] with width ∥𝒑 ∥ ≤ 𝛿 . Then

𝑈 ( 𝑓 ,𝒑) − 𝐿 ( 𝑓 ,𝒑) ≤
∑︁𝑛

𝑖=1
𝜂 · (𝑥𝑖 − 𝑥𝑖−1) = (𝑏 − 𝑎) ·𝜂 = 𝜀.

Therefore, 𝑓 is Darboux integrable. ■

C.6 Properties of the Darboux integral
The Darboux integral has a number of important structural properties. In particular,
the integral of a positive function is a positive number, and the integral of a linear
combination is the linear combination of integrals. The Darboux integral also satisfies
the usual computational rules, such as the Fundamental Theorem of Calculus and the
change of variables formula.
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Theorem C.4 (Darboux integral: Properties). Let 𝑓 , 𝑔 : [𝑎, 𝑏] → ℝ be bounded,
Darboux integrable functions.

1. Monotonicity: If 𝑓 ≤ 𝑔 , then∫ 𝑏

𝑎

𝑓 (𝑥) d𝑥 ≤
∫ 𝑏

𝑎

𝑔 (𝑥) d𝑥.

In particular, 𝑓 ≥ 0 implies that the integral of 𝑓 is positive.
2. Linearity: For 𝛼, 𝛽 ∈ ℝ,∫ 𝑏

𝑎

(𝛼𝑓 + 𝛽𝑔 ) (𝑥) d𝑥 = 𝛼

∫ 𝑏

𝑎

𝑓 (𝑥) d𝑥 + 𝛽
∫ 𝑏

𝑎

𝑔 (𝑥) d𝑥.

3. Domain decomposition: If 𝑐 ∈ [𝑎, 𝑏], then∫ 𝑏

𝑎

𝑓 (𝑥) d𝑥 =

∫ 𝑐

𝑎

𝑓 (𝑥) d𝑥 +
∫ 𝑏

𝑐

𝑓 (𝑥) d𝑥.

Proof. Monotonicity: Suppose that 𝑓 ≤ 𝑔 pointwise. Then the definition (C.1) of the
Darboux sums immediately implies that 𝐿 ( 𝑓 ,𝒑) ≤ 𝐿 (𝑔 ,𝒑) for any partition 𝒑 . As an
immediate consequence, 𝐿𝑏𝑎 ( 𝑓 ) ≤ 𝐿𝑏𝑎 (𝑔 ). Both 𝑓 and 𝑔 are Darboux integrable, so∫ 𝑏

𝑎

𝑓 (𝑥) d𝑥 = 𝐿𝑏𝑎 ( 𝑓 ) ≤ 𝐿𝑏𝑎 (𝑔 ) =
∫ 𝑏

𝑎

𝑔 (𝑥) d𝑥.

This is the required result.
Homogeneity: To verify the linearity property, we first check that the integral is

homogeneous. It is easy to see that the lower and upper Darboux integrals are positively
homogeneous, but negative scaling reverses the lower and upper integrals:

𝐿𝑏𝑎 (𝛼𝑓 ) = 𝛼𝐿𝑏𝑎 ( 𝑓 ) and 𝑈 𝑏
𝑎 (𝛼𝑓 ) = 𝛼𝑈 𝑏

𝑎 ( 𝑓 ) for 𝛼 ≥ 0;

𝐿𝑏𝑎 (𝛼𝑓 ) = 𝛼𝑈 𝑏
𝑎 ( 𝑓 ) and 𝑈 𝑏

𝑎 (𝛼𝑓 ) = 𝛼𝐿𝑏𝑎 ( 𝑓 ) for 𝛼 < 0.

When 𝑓 is Darboux integrable, we may deduce that∫ 𝑏

𝑎

(𝛼𝑓 ) (𝑥) d𝑥 = 𝛼

∫ 𝑏

𝑎

𝑓 (𝑥) d𝑥 for 𝛼 ∈ ℝ.

Therefore, the integral is homogeneous.
Additivity: Next, we show that the integral is additive. The key observation is that

𝐿 ( 𝑓 ,𝒑) + 𝐿 (𝑔 ,𝒑) ≤ 𝐿 ( 𝑓 + 𝑔 ,𝒑)
≤ 𝑈 ( 𝑓 + 𝑔 ,𝒑) ≤ 𝑈 ( 𝑓 ,𝒑) +𝑈 (𝑔 ,𝒑)

for any partition 𝒑 ∈ P𝑎,𝑏 . (Why?)
To verify that the sum 𝑓 + 𝑔 is Darboux integrable, fix 𝜀 > 0. There exist partitions

𝒑 𝑓 and 𝒑 𝑔 for which

𝑈 ( 𝑓 ,𝒑 𝑓 ) − 𝐿 ( 𝑓 ,𝒑 𝑓 ) ≤ 𝜀 and 𝑈 (𝑔 ,𝒑 𝑔 ) − 𝐿 (𝑔 ,𝒑 𝑔 ) ≤ 𝜀.

For both functions 𝑓 , 𝑔 , we can reduce the error bound by passing to the common
refinement 𝒑 𝑓 𝑔 of the partitions 𝒑 𝑓 and 𝒑 𝑔 . (Formalize and check this claim!) As a
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consequence,

𝑈 ( 𝑓 + 𝑔 ,𝒑 𝑓 𝑔 ) − 𝐿 ( 𝑓 + 𝑔 ,𝒑 𝑓 𝑔 )
≤ [𝑈 ( 𝑓 ,𝒑 𝑓 𝑔 ) − 𝐿 ( 𝑓 ,𝒑 𝑓 𝑔 )] + [𝑈 ( 𝑓 ,𝒑 𝑓 𝑔 ) − 𝐿 ( 𝑓 ,𝒑 𝑓 𝑔 )] ≤ 2𝜀.

We determine that 𝑓 + 𝑔 is Darboux integrable.
To compute the integral of the sum, we first bound it above:∫ 𝑏

𝑎

( 𝑓 + 𝑔 ) (𝑥) d𝑥 = 𝐿𝑏𝑎 ( 𝑓 + 𝑔 )

≤ 𝑈 𝑏
𝑎 ( 𝑓 ) +𝑈 𝑏

𝑎 (𝑔 ) =
∫ 𝑏

𝑎

𝑓 (𝑥) d𝑥 +
∫ 𝑏

𝑎

𝑔 (𝑥) d𝑥.

We have used the fact that all three functions 𝑓 + 𝑔 , 𝑓 , 𝑔 are Darboux integrable. A
similar argument shows that the integral of the sum 𝑓 + 𝑔 is bounded below by the
sum of the integrals of 𝑓 and 𝑔 . Altogether,∫ 𝑏

𝑎

( 𝑓 + 𝑔 ) (𝑥) d𝑥 =

∫ 𝑏

𝑎

𝑓 (𝑥) d𝑥 +
∫ 𝑏

𝑎

𝑔 (𝑥) d𝑥.

We conclude that the integral is additive. Therefore, it is linear.
Domain decomposition: We leave the proof for the reader. You just need to consider

partitions that contain the intermediate point 𝑐 ∈ [𝑎, 𝑏]. ■

C.7 Calculus rules
In this framework, it is easy to establish some basic operational rules from calculus.

Theorem C.5 (Darboux integral: Fundamental theorem of calculus). Suppose that 𝑓 :
[𝑎, 𝑏] → ℝ is Darboux integrable. Let 𝐹 be an antiderivative of 𝑓 ; that is, 𝐹 ′ = 𝑓
on (𝑎, 𝑏). Then ∫ 𝑏

𝑎

𝑓 (𝑥) d𝑥 = 𝐹 (𝑏) − 𝐹 (𝑎).

Proof. Let 𝒑 = (𝑥0, . . . , 𝑥𝑛) be a partition of [𝑎, 𝑏]. By the mean value theorem for
derivatives, we can find a point 𝜉𝑖 ∈ [𝑥𝑖−1, 𝑥𝑖 ] in each subinterval that satisfies

𝑓 (𝜉𝑖 ) (𝑥𝑖 − 𝑥𝑖−1) = 𝐹 (𝑥𝑖 ) − 𝐹 (𝑥𝑖−1) for 𝑖 = 1, . . . , 𝑛.

By definition of the Darboux sums,

𝐿 ( 𝑓 ;𝒑) ≤
∑︁𝑛

𝑖=1
𝑓 (𝜉𝑖 ) (𝑥𝑖 − 𝑥𝑖−1) ≤ 𝑈 ( 𝑓 ;𝒑).

But the center term equals 𝐹 (𝑏) − 𝐹 (𝑎), regardless of the choice of partition. Since 𝑓
is Darboux integrable, the integral must equal 𝐹 (𝑏) − 𝐹 (𝑎). ■

As a corollary, we obtain a partial result on change of variables.

Corollary C.6 (Darboux integral: Change of variables). Suppose that 𝑢 is a strictly increasing,
continuously differentiable function that maps [𝐴,𝐵] onto [𝑎, 𝑏]. Suppose that
𝑓 : [𝑎, 𝑏] → ℝ is continuously differentiable. Then∫ 𝐵

𝐴

𝑓 ′ (𝑢 (𝑥)) 𝑢 ′ (𝑥) d𝑥 =

∫ 𝑏

𝑎

𝑓 ′ (𝑥) d𝑥.
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Proof. This is just an application of the chain rule for derivatives and the previous
result. Let 𝐹 (𝑥) = 𝑓 (𝑢 (𝑥)), so that 𝐹 ′ (𝑥) = 𝑓 ′ (𝑢 (𝑥))𝑢 ′ (𝑥). Then∫ 𝐵

𝐴

𝑓 ′ (𝑢 (𝑥)) 𝑢 ′ (𝑥) d𝑥 =

∫ 𝐵

𝐴

𝐹 ′ (𝑥) d𝑥 = 𝐹 (𝐴) − 𝐹 (𝐵)

= 𝑓 (𝑎) − 𝑓 (𝑏) =
∫ 𝑏

𝑎

𝑓 ′ (𝑥) d𝑥.

We have used the fact that 𝑢 (𝐴) = 𝑎 and 𝑢 (𝐵) = 𝑏 . ■

C.8 Improper integrals
It is convenient to be able to integrate functions over infinite intervals. A simple
approach to this problem is to take limits, which results in an object called an improper
integral. For our purposes, it is enough to construct the improper integral of a
decreasing, positive function.

Theorem C.7 (Darboux integral: Decreasing, positive function). Let ℎ : ℝ+ → ℝ+ be a
decreasing, positive function. Introduce the improper integral

𝐼 (ℎ) :=
∫ ∞

0
ℎ (𝑥) d𝑥 := lim

𝑁→∞

∫ 𝑁

1/𝑁
ℎ (𝑥) d𝑥. (C.3)

We can define this limit unambiguously, although it may take the value +∞.
The resulting improper integral remains monotone. For a decreasing, positive

function 𝑔 : ℝ+ → ℝ+,

0 ≤ 𝑔 ≤ ℎ implies 0 ≤ 𝐼 (𝑔 ) ≤ 𝐼 (ℎ).

Proof. If ℎ (𝑥) = +∞ for some 𝑥 > 0, then we may declare the improper integral
𝐼 (ℎ) = +∞.

We may suppose that ℎ (𝑥) < +∞ for all 𝑥 > 0. The function ℎ is bounded and
monotone decreasing on the compact interval [1/𝑁 ,𝑁 ], where 𝑁 ∈ ℕ. Therefore, ℎ
is Darboux integrable on [1/𝑁 ,𝑁 ].

Now, by the positivity and domain decomposition properties of the Darboux integral,
the function 𝑁 ↦→

∫ 𝑁

1/𝑁 ℎ (𝑥) d𝑥 is increasing for 𝑁 ∈ ℕ. A monotone increasing
sequence has a limit, which may equal +∞.

By a similar argument, the monotonicity property of the improper integral is a
consequence of the monotonicity of the Darboux integral. ■

C.9 Doubly monotone convergence
For the most part, Darboux integrals do not interact smoothly with limits. Nevertheless,
there is a special situation where we can prove a satisfactory limit theorem. For an
increasing sequence of monotone decreasing functions, the limit of the integrals is the
integral of the limit. This result depends crucially on everything being monotone.

Theorem C.8 (Darboux integral: Doubly monotone convergence). For each 𝑗 ∈ ℕ, let
ℎ 𝑗 : ℝ+ → ℝ+ be a decreasing, positive function. Assume that the sequence is
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pointwise increasing (and thus has a limit). That is,

ℎ 𝑗 (𝑥) ↑ ℎ (𝑥) for each 𝑥 ∈ ℝ+.

Then the sequence of improper integrals (C.3) increases to its limiting value:

𝐼 (ℎ 𝑗 ) ↑ 𝐼 (ℎ).

Proof. The limit ℎ must also be decreasing and positive (why?), so its improper integral
𝐼 (ℎ) is defined. The improper integral is monotone, so the sequence 𝐼 (ℎ 𝑗 ) is increasing
and has a limit. We must show that the limit coincides with 𝐼 (ℎ).

Everything is monotone increasing, so we can rewrite limits as suprema and
interchange them:

lim
𝑗→∞

𝐼 (ℎ 𝑗 ) = sup
𝑗 ∈ℕ

sup
𝑁 ∈ℕ

∫ 𝑁

1/𝑁
ℎ 𝑗 (𝑥) d𝑥 = sup

𝑁 ∈ℕ
sup
𝑗 ∈ℕ

∫ 𝑁

1/𝑁
ℎ 𝑗 (𝑥) d𝑥.

We claim that

sup
𝑗 ∈ℕ

∫ 𝑁

1/𝑁
ℎ 𝑗 (𝑥) d𝑥 =

∫ 𝑁

1/𝑁
ℎ (𝑥) d𝑥. (C.4)

Owing to the definition (C.3) of the improper integral, we may then conclude that
lim𝑗→∞ 𝐼 (ℎ 𝑗 ) = 𝐼 (ℎ).

To prove the claim, fix 𝑁 ∈ ℕ and a partition 𝒑 of the interval [1/𝑁 ,𝑁 ]. In view
of the facts that each ℎ 𝑗 is decreasing and that ℎ = sup𝑗 ℎ 𝑗 ,

sup𝑗 𝐿 (ℎ 𝑗 ,𝒑) = sup𝑗
∑︁𝑛

𝑖=1
ℎ 𝑗 (𝑥𝑖 ) (𝑥𝑖 − 𝑥𝑖−1)

=
∑︁𝑛

𝑖=1
ℎ (𝑥𝑖 ) (𝑥𝑖 − 𝑥𝑖−1) = 𝐿 (ℎ,𝒑).

Therefore, the lower Darboux integral satisfies

sup𝑗 𝐿
𝑁
1/𝑁 (ℎ 𝑗 ) = sup𝑗 sup𝒑 𝐿 (ℎ 𝑗 ,𝒑) = sup𝒑 sup𝑗 𝐿 (ℎ 𝑗 ,𝒑) = 𝐿𝑁1/𝑁 (ℎ).

The suprema over 𝒑 range over P1/𝑁 ,𝑁 . The functions ℎ 𝑗 and ℎ are both Darboux
integrable on [1/𝑁 ,𝑁 ], so the lower integral coincides with the integral. Therefore,
we reach the stronger conclusion (C.4). This is what we had to show. ■

C.10 Riemann implies Lebesgue
In this section, we sketch the proof of Proposition 4.37, which states that a bounded
Riemann integrable function 𝑓 : [𝑎, 𝑏] → ℝ is Lebesgue integrable with respect to
Lebesgue measure and that the two integrals coincide.

By adding a constant, we may assume that 𝑓 : [𝑎, 𝑏] → ℝ+ is positive. A step
function is a function that is constant in the interior of each interval of a partition of
[𝑎, 𝑏]. From Section 5.2.3, recall that a positive simple function is a positive linear
combination of indicator functions of (Borel) measurable sets. Every positive step
function is a positive simple function because intervals are Borel measurable.
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Beginning with the lower Riemann sum, we have a chain of inequalities:

𝐿𝑏𝑎 ( 𝑓 ) = sup
{∫ 𝑏

𝑎

𝑠 (𝑥) d𝑥 : 𝑠 ≤ 𝑓 for a positive step function 𝑠
}

= sup
{∫

[𝑎,𝑏 ]
𝑠 (𝑥) 𝜆(d𝑥) : 𝑠 ≤ 𝑓 for a positive step function 𝑠

}
≤ sup

{∫
[𝑎,𝑏 ]

𝑠 (𝑥) 𝜆(d𝑥) : 𝑠 ≤ 𝑓 for a positive simple function 𝑠
}

≤ inf
{∫

[𝑎,𝑏 ]
𝑠 (𝑥) 𝜆(d𝑥) : 𝑠 ≥ 𝑓 for a positive simple function 𝑠

}
= inf

{∫
[𝑎,𝑏 ]

𝑠 (𝑥) 𝜆(d𝑥) : 𝑠 ≥ 𝑓 for a positive step function 𝑠
}

= inf
{∫ 𝑏

𝑎

𝑠 (𝑥) d𝑥 : 𝑠 ≥ 𝑓 for a positive step function 𝑠
}

=𝑈 𝑏
𝑎 ( 𝑓 ).

Since 𝑓 is Riemann integrable, the lower Riemann sum 𝐿𝑏𝑎 ( 𝑓 ) and the upper Riemann
sum𝑈 𝑏

𝑎 ( 𝑓 ) both equal the Riemann integral of 𝑓 . Meanwhile, by formula (5.5) and
Proposition 5.35, the Lebesgue integral of 𝑓 is the supremum of the integrals of simple
functions that satisfy 𝑠 ≤ 𝑓 . We conclude that∫ 𝑏

𝑎

𝑓 (𝑥) d𝑥 =

∫
[𝑎,𝑏 ]

𝑓 (𝑥) 𝜆(d𝑥). (C.5)

This is what we needed to show.

C.11 Integration by parts
Finally, we establish Proposition 4.39. This result states that we can replace the
improper Darboux integral on the right-hand side of Definition 4.20 (of the Lebesgue
integral) with the corresponding Lebesgue integral.

We can just as easily establish the result in a general measure space (X,F, 𝜇). Let
𝑓 : X → ℝ+ be a positive, measurable function. Define

ℎ𝜇 (𝑡 ) := 𝜇{𝑥 ∈ X : 𝑓 (𝑥) > 𝑡 } for 𝑡 ≥ 0.

We must establish the identity∫ ∞

0
ℎ𝜇 (𝑡 ) d𝑡 =

∫
ℝ+

ℎ𝜇 (𝑡 ) 𝜆(d𝑡 )

The integral on the left-hand side is the improper Darboux integral of ℎ𝜇, while the
right-hand side is the Lebesgue integral of ℎ𝜇 with respect to the Lebesgue measure 𝜆.
Without loss of generality, we may assume that ℎ𝜇 (𝑡 ) < +∞ for 𝑡 > 0, or else both
integrals are infinite.

At this stage, the computation is straightforward. Sinceℎ𝜇 is positive and decreasing,
it is improperly Darboux integrable (Theorem C.7). Moreover, using the definition of
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the improper Darboux integral (C.3), we find that∫ ∞

0
ℎ𝜇 (𝑡 ) d𝑡 = lim

𝑁→∞

∫ 𝑁

1/𝑁
ℎ𝜇 (𝑡 ) d𝑡

= lim
𝑁→∞

∫
[1/𝑁 ,𝑁 ]

ℎ𝜇 (𝑡 ) 𝜆(d𝑡 ) =
∫
(0,+∞)

ℎ𝜇 (𝑡 ) 𝜆(d𝑡 ).

The second relation is (C.5), and the last relation is monotone convergence (Theo-
rem 5.18) for the Lebesgue integral. Finally, to pass from the domain (0,+∞) to
ℝ+ = [0,+∞), we invoke Theorem 5.14 to take advantage of the fact that the Lebesgue
integral is insensitive to negligible sets (in this case {0}).

Notes
This material may be found in any introductory book on real analysis. We have adapted
this presentation from [Rud76].



D. Product Measures

Agenda:
1. Existence of product measures
2. Monotone class theorem
3. Proof of Fubini–Tonelli

In this appendix, we establish the basic results about the existence and uniqueness
of product measures. Then we prove Kolmogorov’s extension theorem, which asserts
that there is a probability space that supports an independent family of random
variables with specified marginal laws. Last, we prove the Fubini–Tonelli theorem on
the interchange of integrals.

D.1 Construction of product measures
In this section, we prove Theorem 6.14 by constructing the product measure. For
reference, we restate the result.

Theorem D.1 (Product measure: Existence and uniqueness).
Warning: The construction of
product measures fails without
𝜎 -finiteness! ■

Let (X𝑖 ,F𝑖 , 𝜇𝑖 ) be 𝜎 -finite
measure spaces for 𝑖 = 1, 2. The product (X,F) := (X1,F1) × (X2,F2) carries a
unique measure 𝜇 := 𝜇1 × 𝜇2, called the product measure, that satisfies

𝜇(E × F) = 𝜇1(E) · 𝜇2(F) for all E ∈ F1 and F ∈ F2. (D.1)

The triple (X,F, 𝜇) is called the product of the measure spaces.

To establish this theorem, we activate the only machine we have for this purpose:
Hahn–Kolmogorov (Theorem A.12).

The algebra of rectangles
First, construct the algebra of measurable rectangles:

A := algebra{E × F : E ∈ F1 and F ∈ F2} ⊆ F.

A generic element A ∈ A can be written as a finite union of disjoint rectangles:

A = ¤⋃𝑛
𝑖=1(E𝑖 × F𝑖 ) with E𝑖 ∈ F1 and F𝑖 ∈ F2. (D.2)

By Exercise 6.4, this algebra generates the product 𝜎 -algebra: 𝜎 (A) = F.

A candidate premeasure
Define a candidate premeasure 𝜇0 : A→ [0,+∞] by the rule

𝜇0
( ¤⋃𝑛

𝑖=1(E𝑖 × F𝑖 )
)
=

∑𝑛
𝑖=1 𝜇1(E𝑖 ) · 𝜇2(F𝑖 ). (D.3)

One may check that the function 𝜇0 is well-defined; it does not depend on the particular
representation of the union. In addition, 𝜇0 is finitely additive. Every measure on
the product that satisfies the product condition (D.1) must also satisfy (D.3) by finite
additivity, so this is the natural definition of a product premeasure.
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Pre-countable additivity
As usual, the difficult step is to prove that 𝜇0 is pre-countably additive. That is,

𝜇0(A) =
∑∞
𝑖=1 𝜇0(A𝑖 ) when A = ¤⋃∞

𝑖=1 A𝑖 ∈ A for sets A𝑖 ∈ A.

By the representation (D.2) and finite additivity of 𝜇0, we may assume that each
member of the union is a measurable rectangle. Similarly, we may assume that the
union itself is a measurable rectangle. In other words, it is enough to show that

𝜇0(E × F) = ∑∞
𝑖=1 𝜇0(E𝑖 × F𝑖 ) when E × F = ¤⋃∞

𝑖=1 E𝑖 × F𝑖 .

As usual E, E𝑖 ∈ F1 and F, F𝑖 ∈ F2. You should convince yourself of these claims, by
pictures or by algebra.

In this situation, our task is considerably simplified because we can exploit integra-
tion theory for the component measures 𝜇1 and 𝜇2. Passing to indicator functions, the
condition on the sets can be written in the form

1E(𝑥) · 1F(𝑦 ) =
∑︁∞

𝑖=1
1E𝑖 (𝑥) · 1F𝑖 (𝑦 ) for all 𝑥 ∈ X1 and 𝑦 ∈ X2.

Integrate both sides with respect to 𝜇2 and then with respect to 𝜇1. The left-hand side
equals ∫

X1
𝜇1(d𝑥)

(∫
X2
𝜇2(d𝑦 ) 1E(𝑥) · 1F(𝑦 )

)
=

∫
X1
𝜇1(d𝑥) 1E(𝑥)

(∫
X2
𝜇2(d𝑦 ) 1F(𝑦 )

)
=

∫
X1
𝜇1(d𝑥) 1E(𝑥) · 𝜇2(F)

= 𝜇1(E) · 𝜇2(F).

(D.4)

We have used positive linearity to draw positive constants out of both integrals, and
there is no question about existence because everything is positive. Meanwhile, the
right-hand side equals∫

X1
𝜇1(d𝑥)

(∫
X2
𝜇2(d𝑦 )

∑︁∞
𝑖=1

1E𝑖 (𝑥) · 1F𝑖 (𝑦 )
)

=

∫
X1
𝜇1(d𝑥)

(∑︁∞
𝑖=1

∫
X2
𝜇2(d𝑦 ) 1E𝑖 (𝑥) · 1F𝑖 (𝑦 )

)
=

∑︁∞
𝑖=1

∫
X1
𝜇1(d𝑥)

(∫
X2
𝜇2(d𝑦 ) 1E𝑖 (𝑥) · 1F𝑖 (𝑦 )

)
=

∑︁∞
𝑖=1

𝜇1(E𝑖 ) · 𝜇2(F𝑖 ).

We have used monotone convergence (Theorem 5.18) twice, once to draw the sum
out of the integral with respect to 𝜇2 and then to draw the sum out of the integral
with respect to 𝜇1. The last identity follows from (D.4). And everything depends on
positivity.

Since the last two displays are equal, we have shown that the premeasure 𝜇0 is
pre-countably additive on the algebra of measurable rectangles.

Strong 𝜎-finiteness
Finally, since 𝜇1 and 𝜇2 are 𝜎 -finite measures, there are countable covers of X1 and X2
where

X𝑖 ⊆
⋃∞
𝑗=1 E𝑖𝑗 and 𝜇𝑖 (E𝑖𝑗 ) < +∞ for 𝑖 = 1, 2.
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The products (E1
𝑗
× E2

𝑗
: 𝑗 ∈ ℕ) ⊆ A form a countable cover of the product space:

X1 × X2 ⊆ ⋃∞
𝑗=1(E1𝑗 × E2

𝑗
) and 𝜇0(E1𝑗 × E2

𝑗
) = 𝜇1(E1𝑗 ) · 𝜇2(E2𝑗 ) < +∞.

In other words, 𝜇0 is strongly 𝜎 -finite.

Hahn–Kolmogorov
We deduce that 𝜇0 is a premeasure on A. Theorem A.12 implies that 𝜇0 extends to a
unique measure 𝜇 on the product 𝜎 -algebra F= 𝜎 (A). This measure 𝜇 satisfies (D.3),
so it is the product measure.

D.2 Kolmogorov’s extension theorem
Let us recall the statement of the Kolmogorov extension theorem, which allows us to
construct a sequence of independent random variables. This section offers a proof of
the result by means of the Hahn–Kolmogorov theorem.

Theorem D.2 (Kolmogorov extension). Let (𝜇1, 𝜇2, 𝜇3, . . . ) be a sequence of proba-
bility measures defined on the Borel sets of the real line. There exists a probability
space (Ω,F,ℙ) on which we can define a sequence (𝑋1, 𝑋2, 𝑋3, . . . ) of independent
random variables where the law of 𝑋𝑖 is 𝜇𝑖 for each index 𝑖 ∈ ℕ. That is,

ℙ
{
(𝑋𝑖1 , . . . , 𝑋𝑖𝑛 ) ∈ B𝑖1 × · · · × B𝑖𝑛

}
=

∏𝑛

𝑗=1
ℙ

{
𝑋𝑖 𝑗 ∈ B𝑖 𝑗

}
=

∏𝑛

𝑗=1
𝜇𝑖 𝑗 (B𝑖 𝑗 )

for all 𝑛 ∈ ℕ, and distinct indices 𝑖1 < · · · < 𝑖𝑛 ∈ ℕ, and Borel sets B𝑖 𝑗 ∈ B(ℝ)
for 𝑗 = 1, . . . , 𝑛.

Proof. We mimic the construction behind Theorem D.1 on the existence of product
measures (Section D.1). First, we define the sample space to be the family of all
real-valued sequences, which is the countable product of copies of the real line:

Ω := ℝℕ := {𝝎 = (𝜔1, 𝜔2, 𝜔3, . . . ) : 𝜔𝑖 ∈ ℝ for each 𝑖 ∈ ℕ}.

Second, we introduce the coordinate functions

𝑋𝑖 (𝝎) = 𝜋𝑖 (𝝎) = 𝜔𝑖 for each 𝝎 ∈ Ω.

Third, we equip Ω with the 𝜎 -algebra Fgenerated by all Borel cylinders:

F := 𝜎 (𝑋𝑖 : 𝑖 ∈ ℕ) := 𝜎{𝑋 −1
𝑖 (B) : B ∈ B(ℝ) and 𝑖 ∈ ℕ}.

In particular, the 𝜎 -algebra contains all Borel rectangles of the form B1 × B2 × B3 × · · ·
where B𝑖 ∈ B(ℝ). Fourth, we define the probability measure on Borel rectangles in a
finite number of coordinates, as in the statement of the theorem:

ℙ
{
(𝑋𝑖1 , . . . , 𝑋𝑖𝑛 ) ∈ B𝑖1 × · · · × B𝑖𝑛

}
=

∏𝑛

𝑗=1
ℙ

{
𝑋𝑖 𝑗 ∈ B𝑖 𝑗

}
=

∏𝑛

𝑗=1
𝜇𝑖 𝑗 (B𝑖 𝑗 ).

This is the natural definition of the product measure for a sequence.
The proof that ℙ extends to a unique probability measure on the 𝜎 -algebra F

is the same as the proof of Theorem 6.14. We use the same method to check that
the definition of ℙ yields a (finite) pre-measure on the algebra generated by Borel
rectangles in a finite number of coordinates. Hahn–Kolmogorov (Theorem A.12) then
yields the extension to F. ■
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D.3 The monotone class theorem
To prove the Fubini–Tonelli theorem, we need a result from set theory that gives an
alternative method for generating 𝜎 -algebras.

Definition D.3 (Monotone class). A system M of sets is called a monotone class if it is
stable under increasing countable unions and decreasing countable intersections:

1. Increase: If A1 ⊆ A2 ⊆ A3 ⊆ · · · and A𝑖 ∈ M, then
⋃∞
𝑖=1 A𝑖 ∈ M.

2. Decrease: If A1 ⊇ A2 ⊇ A3 ⊇ · · · and A𝑖 ∈ M, then
⋂∞
𝑖=1 A𝑖 ∈ M.

Every 𝜎 -algebra is a monotone class because a 𝜎 -algebra contains all countable
unions and intersections of its members. In general, a monotone class Mmay not even
contain enough sets to form an algebra. Nevertheless, if M happens to contain an
algebra A, then it even contains 𝜎 (A). This statement is the content of the monotone
class theorem, which we are about to prove.

This result is useful because we may be able to extend an algebra to a monotone
class with a minimum of effort. In contrast, it may take a lot of work to construct the
generated 𝜎 -algebra directly.

Theorem D.4 (Monotone class). Let Abe a set algebra. The 𝜎 -algebra 𝜎 (A) equals
the smallest monotone class that contains A.

D.3.1 Monotone class theorem: Proof
The proof of Theorem D.4 involves set gymnastics and close reasoning.

Setup
Fix an algebra Aon the domain X. Let M be the intersection of every monotone class
that contains A. You may check that the family M is itself a monotone class that
contains A. We interpret M as the smallest monotone class that contains the algebra
A. In particular, M ⊆ 𝜎 (A), because a 𝜎 -algebra is a monotone class.

We need to prove the reverse inclusion 𝜎 (A) ⊆ M. Since 𝜎 (A) is the smallest
𝜎 -algebra containing A, it is enough to show that M is itself a 𝜎 -algebra. What steps
must we take? Since M contains the algebra A, it obviously contains the empty set ∅
and the domain X. It remains to demonstrate that M is stable under complements and
under countable unions.

Complements
First, we check that M is stable under complements. Introduce the family C of
complemented sets in M:

C := {M ∈ M : Mc ∈ M} ⊆ M.

Since the algebra A is contained in M and the algebra is stable under complements,
we see that the algebra A belongs to C. Now, consider an increasing sequence
(B𝑖 : 𝑖 ∈ ℕ) ⊆ C. By De Morgan’s law,( ⋃∞

𝑖=1 B𝑖
)c

=
⋂∞
𝑖=1 Bc𝑖 ∈ M

because (Bc
𝑖
: 𝑖 ∈ ℕ) ⊆ M is a decreasing sequence and M is a monotone class. It

follows that C is stable under increasing unions. By a parallel argument, the family
C is stable under decreasing intersections. Therefore, C is a monotone class that
contains the algebra A. By minimality of the monotone class, M ⊆ C, so that C = M.
Therefore, the family M is stable under complementation.
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Finite unions
Second, let us show that M is stable under finite unions. Fix a set A ∈ A in the algebra,
and define the family U(A) of sets in M that stay in M after union with A:

U(A) := {M ∈ M : A ∪M ∈ M} ⊆ M.

Since the algebra A is contained in M and the algebra is stable under unions, the
algebra Abelongs to U(A). Now, if (B𝑖 : 𝑖 ∈ ℕ) ⊆ U(A) is an increasing sequence,

A ∪ ⋃∞
𝑖=1 B𝑖 =

⋃∞
𝑖=1(A ∪ B𝑖 ) ∈ M

because (A ∪ B𝑖 : 𝑖 ∈ ℕ) is increasing and M is a monotone class. Therefore, the
collection U(A) is stable under increasing unions. By a parallel argument, U(A) is
stable under decreasing intersections. It follows that U(A) is itself a monotone class
containing A, and U(A) = M by minimality of M. In other words, A ∪ M ∈ M

whenever A ∈ Aand M ∈ M.
Next, fix an arbitrary set E ∈ M, and make the same construction:

U(E) := {M ∈ M : E ∪M ∈ M} ⊆ M.

We have just shown that A ∪ E ∈ M for every A ∈ A, so the algebra A ⊆ U(E).
Repeating the argument from the last paragraph, we learn that U(E) is a monotone
class containing A. Therefore, U(E) = M. We confirm that E ∪ M ∈ M for all
E,M ∈ M.

Countable unions
Last, we prove that the monotone class M is stable under countable unions, increasing
or not. Elect a sequence of sets from the class: (M𝑖 : 𝑖 ∈ ℕ) ⊆ M. Consider the
increasing sequence of partial unions: (⋃𝑘

𝑖=1M𝑖 : 𝑘 ∈ ℕ) ∈ M. Indeed, the partial
unions belong to M because it is stable under finite unions. Since M is a monotone
class, it contains the increasing union of the partial unions. That is,

⋃∞
𝑖=1M𝑖 ∈ M.

D.4 Fubini–Tonelli theorem: Proof
Consider measure spaces (X𝑖 ,F𝑖 , 𝜇𝑖 ) for 𝑖 = 1, 2 with product (X,F, 𝜇). The proof of
Theorem 6.23 follows a standard strategy. First, we treat the case where the measures
𝜇𝑖 are finite. For the finite case, we begin with indicators, proceed to positive simple
functions, positive measurable functions, and then integrable functions. Finally, we
pass to the 𝜎 -finite case by partitioning the domain.

Indicators
Until further notice, assume that 𝜇1 and 𝜇2 are finite measures, so that 𝜇 is also a
finite measure. Introduce the family M that contains every product-measurable set
A ∈ F for which∫

X
d𝜇 1A =

∫
X2

d𝜇2

(∫
X1

d𝜇1 1A

)
=

∫
X1

d𝜇1

(∫
X2

d𝜇2 1A

)
. (D.5)

The validity of the expression (D.5) depends on the fact that the indicator function
1A is product-measurable, so that its sections are measurable functions on the factor
spaces (Exercise 6.22).

Recalling the calculation (D.4), we realize that the family M contains every
measurable rectangle E × F where E ∈ F1 and E ∈ F2. Since F is a 𝜎 -algebra, it is
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stable under increasing unions. Therefore, by the monotone convergence theorem,
M is also stable under increasing unions. In detail, if B𝑖 ↑ B and the formula (D.5)
is valid for each A = B𝑖 ∈ M, then (D.5) is valid when A = B. Likewise, M is stable
under decreasing intersections of sets in F. This claim requires downward monotone
convergence (Exercise 5.38), which is only valid for finite measures. In other words,
M is a monotone class that contains all rectangles.

Theorem D.4 now ensures that M is a 𝜎 -algebra that contains all rectangles. By
definition, F is the smallest such 𝜎 -algebra. Therefore, M = F. We conclude that the
interchange (D.5) of integrals is valid for the indicator of every product-measurable set.

Positive simple functions
The rest of the argument follows a prescribed route. A positive simple function
𝑓 : X → ℝ+ takes the form

𝑓 =
∑︁𝑛

𝑖=1
𝛼𝑖1A𝑖 for 𝛼𝑖 ≥ 0 and A𝑖 ∈ F.

By positive linearity of the Lebesgue integral,∫
X
d𝜇 𝑓 =

∫
X2

d𝜇2

(∫
X1

d𝜇1 𝑓

)
=

∫
X1

d𝜇1

(∫
X2

d𝜇2 𝑓

)
. (D.6)

We have also used the fact that linear combinations of indicators are measurable
(Exercise 4.15), and so their sections are measurable (Exercise 6.22).

Positive functions
Now, every positive, product-measurable function 𝑓 : X → ℝ+ is an increasing limit of
positive simple functions (Exercise 5.10). The sections of the approximations are all
measurable and converge pointwise to the sections of the limit 𝑓 . Therefore, monotone
convergence allows us to extend (D.6) to the positive function 𝑓 .

Integrable functions
Last, if 𝑓 : X → ℝ is integrable, then its positive part 𝑓+ and negative part 𝑓− and their
sections are integrable. We can extend (D.6) to 𝑓 by applying the result to the positive
and negative parts and subtracting. Integrability ensures that there are no competing
infinities.

The 𝜎-finite case
To complete the argument, we must address the case where 𝜇1 and 𝜇2 are 𝜎 -finite.
Consider countable covers by disjoint sets of finite measure:

X1 = ¤⋃∞
𝑖=1E𝑖 and X2 = ¤⋃∞

𝑗=1F𝑗 whence X = ¤⋃∞
𝑖 ,𝑗=1E𝑖 × F𝑗 .

Here, 𝜇1(E𝑖 ) < +∞ and 𝜇2(F𝑗 ) < +∞ for all 𝑖 , 𝑗 ∈ ℕ. Let 𝑓 : X → ℝ+ be a positive,
measurable function. Using domain decomposition (Exercise 5.40), the Fubini–Tonelli
identities (D.6), and the Tonelli theorem for sums (Exercise 5.39) repeatedly,∫

X
d𝜇 𝑓 =

∑︁∞
𝑖 ,𝑗=1

∫
E𝑖×F𝑗

d𝜇 𝑓 =
∑︁∞

𝑖 ,𝑗=1

∫
E𝑖
d𝜇1

(∫
F𝑗
d𝜇2 𝑓

)
=

∑︁∞
𝑖=1

∫
E𝑖
d𝜇1

(∑︁∞
𝑗=1

∫
F𝑗
d𝜇2 𝑓

)
=

∫
X1

d𝜇1

(∫
X2

d𝜇2 𝑓

)
.

A similar calculation yields the same result with the integrals over 𝜇1 and 𝜇2 exchanged.
Finally, we extend this result to integrable functions by considering the positive and
negative parts.



E. Uniqueness of Measures

Agenda:
1. Intersection-stable systems
2. Uniqueness of measure
3. Dynkin’s lemma
4. Kolmogorov’s 0–1 law

This appendix covers some more topics around the uniqueness of measures. In
particular, we describe some additional tools for checking independence of 𝜎 -algebras
and uniqueness of measures. Last, as a more sophisticated application of these ideas,
we prove Kolmogorov’s 0–1 law.

E.1 Intersection-stable systems
It can be challenging to give a direct proof that two 𝜎 -algebras are independent. The
basic reason is that the sets in a 𝜎 -algebra are not very explicit. Instead, it is often
convenient to work with smaller families of sets that we can describe completely. This
approach is widely used in probability theory.

E.1.1 Intersection-stable systems
We begin with the definition of a new type of set system.

Definition E.1 (Intersection-stable system). A family S ⊆ P(Ω) of subsets of Ω is
called an intersection-stable system when Ω ∈ Sand

A,B ∈ S implies A ∩ B ∈ S.

Intersection-stable systems are also called multiplicative systems or 𝜋 -systems.

Obviously, a 𝜎 -algebra on Ω is an intersection-stable system. We will be interested
in the case where an intersection-stable system S generates a 𝜎 -algebra F. That is,
F= 𝜎 (S). Even in this setting, the intersection-stable system may be far smaller than
the 𝜎 -algebra.

Example E.2 (Semi-infinite intervals). By convention, the class S includes
the real line ℝ.

Consider the family S = {(−∞, 𝑎] : 𝑎 ∈ ℝ} of
semi-infinite subintervals of the real line. Then S is an intersection-stable system in ℝ.
It generates the Borel sets of the real line: 𝜎 (S) = B(ℝ). ■

Example E.3 (Semi-infinite rectangles). By convention, the class S includes
the real plane ℝ2.

The family S= {(−∞, 𝑎] × (−∞, 𝑏] : 𝑎, 𝑏 ∈ ℝ}
is an intersection-stable system in ℝ2. It generates the Borel sets of the plane:
𝜎 (S) = B(ℝ2). ■

E.1.2 Uniqueness of measure
The key fact about intersection-stable systems is that they are already large enough to
determine a measure completely. Let us emphasize that this result does not guarantee
the existence of a measure—just the uniqueness.

Theorem E.4 (Uniqueness of measure). Let (Ω,F) be a measurable space. Suppose
that S is an intersection-stable system with F = 𝜎 (S). Let 𝜇1 and 𝜇2 be finite
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measures on F. If 𝜇1 and 𝜇2 agree on S, then they agree on F. That is,

𝜇1(A) = 𝜇2(A) for all A ∈ S

implies 𝜇1(E) = 𝜇2(E) for all E ∈ F.

We will prove Theorem E.4 below in Section E.1.4. For now, we outline the
consequences for distribution functions and independence of 𝜎 -algebras.

Corollary E.5 (Distribution functions: Uniqueness).
Warning: By itself, this result
does not guarantee that 𝜇𝑋
extends to a Borel measure on ℝ.
See Problem A.17. ■

Suppose that 𝐹𝑋 : ℝ → [0, 1] is
a distribution function; that is, an increasing, right-continuous function with left
asymptote zero and right asymptote one. Then there is at most one probability measure
𝜇𝑋 with the property that

𝜇𝑋 (𝑎, 𝑏] = 𝐹𝑋 (𝑏) − 𝐹𝑋 (𝑎) for all real numbers 𝑎 < 𝑏 .

Proof. The class S = {(𝑎, 𝑏] : 𝑎 < 𝑏} of semi-open intervals (including ℝ) forms
an intersection-stable system in ℝ. By Exercise 3.6, the class S generates the Borel
𝜎 -algebra B(ℝ).

According to the increasing limit property of a measure, the total mass of the
measure 𝜇𝑋 must satisfy

𝜇𝑋 (ℝ) = lim𝑏↑+∞ 𝐹𝑋 (𝑏) − lim𝑎↓−∞ 𝐹𝑋 (𝑎) = 1.

As a consequence, Theorem E.4 guarantees that there is at most one probability
measure 𝜇𝑋 that takes the specified values on the semi-open intervals. ■

Corollary E.6 (Independence: Intersection-stable systems). Let (Ω,F,ℙ) be a probability
space. Suppose that S𝑖 ⊆ Fare intersection-stable systems that generate 𝜎 -algebras
G𝑖 = 𝜎 (S𝑖 ) for 𝑖 = 1, 2. Assume that

ℙ(A ∩ B) = ℙ(A) · ℙ(B) for all A ∈ S1 and B ∈ S2.

Then G1 and G2 are independent.

Proof. Fix an event B ∈ S2. Define measures

𝜇1(A) = ℙ(A ∩ B) and 𝜇2(A) = ℙ(A) · ℙ(B) for A ∈ F.

Clearly, 𝜇1(Ω) = 𝜇2(Ω). By hypothesis, 𝜇1 and 𝜇2 agree on events A ∈ S1. Theo-
rem E.4 implies that they agree on events E ∈ G1 = 𝜎 (S1).

We can now fix an event E ∈ G1. Define measures

𝜈1(B) = ℙ(E ∩ B) and 𝜈2(B) = ℙ(E) · ℙ(B) for B ∈ F.

Taking B = Ω, we see that these measures have the same total mass. By the argument
in the last paragraph, these measures agree on events B ∈ S2. Theorem E.4 now
implies that the measures agree on all events F ∈ G2 = 𝜎 (S2). That is,

ℙ(E ∩ F) = ℙ(E) · ℙ(F) for all E ∈ G1 and F ∈ G2.

The 𝜎 -algebras G1 and G2 are independent. ■

Example E.7 (Independence and distribution functions). Suppose that 𝑋 ,𝑌 are real random
variables that satisfy

ℙ {𝑋 ≤ 𝑎,𝑌 ≤ 𝑏} = ℙ {𝑋 ≤ 𝑎} · ℙ {𝑌 ≤ 𝑏} for all 𝑎, 𝑏 ∈ ℝ.
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Then 𝑋 and 𝑌 are independent. Indeed, S = {(−∞, 𝑎] : 𝑎 ∈ ℝ} is an intersection-
stable system that generates the Borel 𝜎 -algebra onℝ. Therefore, Corollary E.6 implies
that 𝜎 (𝑋 ) and 𝜎 (𝑌 ) are independent 𝜎 -algebras. That is, 𝑋 and 𝑌 are independent
random variables. ■

Example E.8 (Independence of families of 𝜎-algebras). Let {G𝑖 : 𝑖 ∈ ℕ} be independent
𝜎 -algebras. We can prove that, for any I ⊆ ℕ, the 𝜎 -algebra 𝜎 (G𝑖 : 𝑖 ∈ I) and
𝜎 (G𝑗 : 𝑗 ∉ I) are independent.

Consider the intersection-stable system S1 consisting of all finite intersections of
sets from

⋃
𝑖 ∈I G𝑖 , which generates 𝜎 (G𝑖 : 𝑖 ∈ I). Consider the intersection-stable

system S2 consisting of all finite intersections of sets from
⋃
𝑗∉I G𝑗 , which generates

𝜎 (G𝑗 : 𝑗 ∉ I). By the definition of independence,

ℙ(E ∩ F) = ℙ(E) · ℙ(F) for all E ∈ S1 and F ∈ S2.

Corollary E.6 implies the result. ■

E.1.3 Limit-stable systems
To establish Theorem E.4, we need to introduce another type of set system that is
simpler than a 𝜎 -algebra and has properties complementary to an intersection-stable
system.

Definition E.9 (Limit-stable system). A collection D ⊆ P(Ω) of subsets of Ω is called
a limit-stable system when

1. Everything: Ω ∈ D.
2. Set difference: For nested D1 ⊆ D2 with D1,D2 ∈ D, we have D2 \ D1 ∈ D.
3. Increasing limits: For an increasing sequence D1 ⊆ D2 ⊆ D3 ⊆ · · · of sets that

belong to D, the limit
⋃∞
𝑖=1 D𝑖 ∈ D.

Limit-stable systems are often called Dynkin systems or 𝜆-systems.

It is immediate that a limit-stable system D is a 𝜎 -algebra if and only if it is stable
under (finite) intersections.

Exercise E.10 (Intersection-stable + limit-stable). Show that a collection Fof subsets of Ω
is a 𝜎 -algebra if and only if F is both an intersection-stable system and a limit-stable
system.

In fact, to obtain a 𝜎 -algebra, it is sufficient that a limit-stable system contains an
intersection-stable system. Our next goal is to establish this claim.

Definition E.11 (Generated limit-closed system). Suppose thatS is a collection of subsets
of Ω. Define the collection 𝑑 (S) to be the intersection of all limit-stable systems D

on Ω with S ⊆ D.

Exercise E.12 (Generated limit-closed system). Check that 𝑑 (S) is a limit-stable system.

Proposition E.13 (Dynkin’s lemma). IfSis an intersection-stable system, then𝑑 (S) = 𝜎 (S).
In particular, a limit-stable system that contains an intersection-stable system contains
the 𝜎 -algebra generated by the intersection-stable system.

Proof. In view of Exercise E.10, it suffices to check that 𝑑 (S) is an intersection-stable
system. This argument is reminiscent of the proof of the monotone class theorem
(Theorem D.4).
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Introduce the part of the limit-stable system 𝑑 (S) that is stable under intersection
with all sets in S:

I := {D ∈ 𝑑 (S) : S ∩ D ∈ 𝑑 (S) for all S ∈ S}.

Since S is stable under intersections, S ⊆ I. We claim that I is a limit-stable
system. As a consequence, I= 𝑑 (S) because 𝑑 (S) is the smallest limit-stable system
containing S.

Second, we introduce the part of the limit-stable system 𝑑 (S) that is stable under
intersection with all sets in 𝑑 (S):

J := {D ∈ 𝑑 (S) : S ∩ D ∈ 𝑑 (S) for all S ∈ 𝑑 (S)}.

We have already shown that I ⊆ J. For the same reasons (below) that I is a
limit-stable system, J is a limit-stable system. Therefore, J = 𝑑 (S). But J is
intersection-stable by construction. This is what we needed to prove.

To verify the outstanding claim, we need to check that I satisfies the three
properties of a limit-stable system. First, Ω ∈ I because S ∩ Ω = S ∈ I. Second,
choose nested sets D1 ⊆ D2 from I. For each S ∈ S,

(D2 \ D1) ∩ S = (D2 ∩ S) \ (D1 ∩ S) ∈ I.

Indeed, since D𝑛 ∈ I for 𝑛 = 1, 2, we must have D𝑛 ∩ S ∈ 𝑑 (I), which is stable
under set difference. Last, we select an increasing sequence (D𝑛 ⊆ I : 𝑛 ∈ ℕ) with
D𝑛 ↑ E. Then

(D𝑛 ∩ S) ↑ (E ∩ S) ∈ I.

Indeed, D𝑛 ∩ S ∈ 𝑑 (S) for each 𝑛 ∈ ℕ, and 𝑑 (S) is stable under increasing limits.
The identical argument implies that J is a limit-stable system as well. ■

E.1.4 Proof of uniqueness of measure theorem
We are now prepared to establish Theorem E.4 on the uniqueness of measures. Let
𝜇1 and 𝜇2 be two measures on (Ω,F). We assume that the measures agree on an
intersection-stable system S ⊆ F that generates F. In particular, 𝜇1(Ω) = 𝜇2(Ω), so
the measures have the same total mass.

Introduce the class of events in F that have the same measure:

D := {E ∈ F : 𝜇1(E) = 𝜇2(E)}.

By hypothesis, D contains the intersection-stable system S. We claim that D is a
limit-stable system as well. Therefore, Dynkin’s lemma (Proposition E.13) implies that
F= 𝜎 (S) = 𝑑 (S) ⊆ D. We determine that the measures agree on F.

To prove the claim, we must check that D satisfies the three properties of a
limit-stable system. First, Ω ∈ D because the two measures have the same total mass.
Second, choose nested sets A ⊆ B from D. Calculate that

𝜇1(B \ A) = 𝜇1(B) − 𝜇1(A) = 𝜇2(B) − 𝜇2(A) = 𝜇2(B \ A).

Thus, B \ A ∈ D. Finally, consider an increasing sequence (D𝑛 : 𝑛 ∈ ℕ) with D𝑛 ↑ E.
By the increasing limit property of a measure (Proposition 2.30),

𝜇1(E) = sup𝑛∈ℕ 𝜇1(D𝑛) = sup𝑛∈ℕ 𝜇2(D𝑛) = 𝜇2(E).

We conclude that E ∈ D. Therefore, D is a limit-closed system.
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E.2 *Kolmogorov’s 0–1 law
In this section, we give an example of a situation where independence of 𝜎 -algebras
plays a central role.

E.2.1 The tail 𝜎-algebra
The Kolmogorov extension theorem (Theorem 13.24) asserts that it is possible to
construct an independent sequence of random variables. When we try to study
convergence properties associated with this sequence, we encounter the following
𝜎 -algebra.

Definition E.14 (Tail 𝜎-algebra). Let (𝑋1, 𝑋2, 𝑋3, . . . ) be an independent sequence of
real random variables. The tail 𝜎 -algebra T is defined as

T :=
⋂∞

𝑛=1
𝜎 (𝑋𝑛 , 𝑋𝑛+1, 𝑋𝑛+2, . . . )

In other words, the tail 𝜎 -algebra includes only events that do not depend on any
prefix of the sequence of random variables. Another way to say this is that the events
in the tail 𝜎 -algebra do not depend on any finite subcollection of the random variables.
Events in the tail 𝜎 -algebra include things like...

1. E1 = {lim𝑛→∞ 𝑋𝑛 exists}.
2. E2 = {∑∞

𝑛=1 𝑋𝑛 converges}.
3. E3 = {lim sup𝑛→∞ 𝑋𝑛 = +∞}.

There are also random variables that are measurable with respect to the tail 𝜎 -algebra,
such as

𝜉 = lim sup
𝑛→∞

1
𝑛

∑︁𝑛

𝑖=1
𝑋𝑖 .

This is the limiting upper bound on the running average of the random variables.

E.2.2 The tail 𝜎-algebra is almost trivial
Kolmogorov proved a striking fact about the tail 𝜎 -algebra:

Theorem E.15 (Kolmogorov 0–1 law). Let (𝑋1, 𝑋2, 𝑋3, . . . ) be an independent sequence
of real random variables. Every event E in the tail 𝜎 -algebra T has probability
ℙ(E) = 0 or ℙ(E) = 1. In particular, every random variable that is measurable
with respect to T is constant almost surely.

Although this theorem seems to conjure a strong conclusion from minimal assump-
tions, it can be quite hard to check whether an event E ∈ Thas probability zero or
probability one. Similarly, it may take serious effort to determine the constant value of
a random variable that is measurable with respect to T.

Why is this theorem covered in this appendix? The key idea in the proof is to
demonstrate that the tail 𝜎 -algebra T is independent from itself!

Proof. For each index 𝑛 ∈ ℕ, we introduce two 𝜎 -algebras:

F𝑛 := 𝜎 (𝑋1, . . . , 𝑋𝑛) and T𝑛 := 𝜎 (𝑋𝑛+1, 𝑋𝑛+2, . . . ).

First, observe that F𝑛 is independent from T𝑛 because of Example E.8. It follows that
F𝑛 is independent from Tbecause T⊆ T𝑛 for each 𝑛 ∈ ℕ.
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A fortiori, the 𝜎 -algebra F∞ = 𝜎 (𝑋𝑛 : 𝑛 ∈ ℕ) is independent from T. To check
this point, note that In general, S is not a 𝜎 -algebra!S=

⋃∞
𝑛=1 F𝑛 is an intersection-stable system that generates F∞.

Since S is independent from T, Corollary E.6 ensures that F∞ and Tare independent.
But T⊆ F∞. Thus, T is independent from T. In particular, for E ∈ T,

ℙ(E) = ℙ(E ∩ E) = ℙ(E) · ℙ(E).

We conclude that ℙ(E) = 0 or ℙ(E) = 1. ■

Exercise E.16 (Tail random variables are almost constant). Prove that a real random variable
that is measurable with respect to T is constant almost surely.

Notes
The discussion of intersection-stable and limit-closed systems is adapted from Williams’
book [Wil91, Chap. 1, Chap. 4, App. A.1]. We have also drawn on insights from
Pollard [Pol02, Sec. 2.10].
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