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Preface

“Alea iacta est. The die has been cast.”

—Julius Caesar, after crossing the Rubicon, 49 BCE

“The reader of any book is entitled to ask why it had to be written at all and, if the
book absolutely had to exist, why it couldn’t have been shorter.”

—Walter Russell Mead

CMS/ACM 117 is a first-year graduate course on probability theory and stochastic
processes for students in computing and mathematical sciences. It is not intended
to be a first course in probability, and our focus will be on developing theoretical
foundations, rather than providing a toolkit for calculation. Nevertheless, we will
touch on a few substantive applications of the theory to demonstrate its implications
for practical problems.

Course overview

Modern probability is expressed in the language of measure theory. Although measure
theory has a bad reputation, it can be engaging and accessible if we do not venture too
deep within the labyrinth of details. The probabilistic motivation also breathes life
into the subject.

The course notes begin with a rigorous, but unfussy, overview of measure and
integration theory. Our goal is to develop good geometric intuitions for the concepts
of measure and integral. When studying probability, one must learn some abstract
measure theory, and we introduce these ideas early on so that the student gains the
confidence that only comes with practice. From the appendices, a keen reader can also
learn the foundational results on existence and uniqueness of measures, including the
construction of the Lebesgue measure.

This development sets the stage for a quick treatment of Kolmogorov’s axiomatic
definition of probability. We introduce new probabilistic language that adds a vivid
interpretation to the measure-theoretic constructs. The key new idea in probability
theory is that algebras of events encode our knowledge about the world; the concept
of independence is best understood through this lens.

Next, we introduce our first stochastic process: a sum of independent random
variables. We develop the tools for understanding the finite-time and asymptotic
behavior of independent sums. These ideas include concentration inequalities, large-
deviation principles, laws of large numbers, the central limit theorem, and more. These
results require us to explore what it means for two probability distributions to be
similar to each other.

Afterward, we turn our attention to the fundamental concept of conditional
expectation. How does our current knowledge about the world affect our predictions
for the future? We present these ideas in an intuitive way using the concept of best

In Fall 2023, the measure theory
background was treated in an
optional boot camp outside of class.
This year, measure theory once again
takes its rightful seat at the head of
the table.
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approximation of a random variable. Conditioning also allows us to talk about the
relative density of one distribution with respect to another, a major ingredient in
Bayesian statistics and other fields.

To gain some experience with conditioning, we study discrete-time martingales.
These are random processes where the future depends only on the past. We develop
the basic theory of maximal inequalities and martingale convergence. These tools have
a wide implications, including techniques for prediction, filtering, adaptive testing,
online learning, and stochastic optimization.

Along the way, we will explore other applications of probability theory in computa-
tional statistics, computational mathematics, computer science, electrical engineering,
and control theory.

Previous iterations of this course included the development of other sequential
random processes, namely Markov chains. We have removed this important material
to make the course more manageable.

These notes

The Fall 2024 edition of CMS/ACM 117 is the sixth instantiation of this class. Hopefully,
this version of the course is approaching asymptotic stability. Future upgrades to the
notes may supersede the current version.

These lecture notes diverge somewhat from CMS/ACM 117 as it was taught in Fall
2024, because they contain additional material that was not covered in the classroom.
At present, they are intended as a reference for the students who have taken the
class. The notes have been prepared with some care. Nevertheless, they are not fully
polished, and they may still contain repetitions, omissions, errors, and inconsistencies.
In particular, they lack full scholarly citations. Caveat lector!

Activities
The lecture notes are full of exercises and problems. Exercises contain material that
is essential for your understanding, and they are usually quite easy. Problems are
intended to give you more practice with the concepts or to expand your understanding;
they may be more difficult or lengthier than exercises. Applications are designed to
show how tools from probability theory are used in computational mathematics; they
may involve coding and simulation.

More challenging activities may be marked with stars; the number of stars gives a
rough indication of the difficulty.

Starred sections and asides

This course is designed for students arriving from a wide range of academic experiences.
Students with more applied backgrounds may not have seen much of the material in this
course, while students from more theoretical backgrounds may have seen the majority.
Students who are just entering this subject may want to focus on the unstarred material,
while students with more exposure should take the time the understand the starred
sections and appendices. The hope is that everyone will learn something that is new
and interesting for them.

Similarly, asides are reserved for technical comments. These sidebars address
questions that may occur to you as you read or they may point toward more advanced
parts of probability theory. This material falls outside the scope of the class, so you
may skip it with impunity.

Prerequisites
The prerequisites for this course are differential and integral calculus (e.g., Caltech
Math 1ac), intermediate linear algebra (e.g., Math 1b and ACM 104), and applied

For those with more experience,
consider this: “Never underestimate
the joy people derive from hearing
something they already know.”
—Enrico Fermi
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probability (e.g., Math 3 and ACM 116). Exposure to linear analysis (e.g., ACM 107a)
and functional analysis (e.g., ACM 107b) is valuable but not necessary.

This course demands experience with basic facts about set theory, real numbers,
functions, point-set topology, sequences, series, convergence, continuity, derivatives,
Riemann integrals, metric spaces, and linear spaces. At Caltech, this material is covered
in the undergraduate class Math 108a. You will also benefit from some exposure to
measure theory, which is covered in Math 108b. Some good textbooks include

* [Folgg] Folland, Real Analysis, 2nd ed., Wiley, 1999.

* [Roy88] Royden, Real Analysis, 3rd ed., Macmillan, 1988.

* [Rudy6] Rudin, Principles of mathematical analysis, 3rd ed., Wiley, 1976.
e [Tao16] Tao, Analysis I, 3rd ed., Springer, 2014.

It may be possible to brush up on this background as the course proceeds.

Supplemental textbooks

There is no required textbook for the course. Some relatively recent books that cover
related material include

* [GSo1] Grimmett & Stirzaker, Probability and random processes, Oxford, 2001.

e [Wilg1] Williams, Probability with martingales, Cambridge, 1991.

* [Dur19] Durrett, Probability theory and examples, sth ed., Cambridge, 2019.

* [Polo2] Pollard, A user’s guide to measure theoretic probability, Cambridge,
2002.

 [Bil12] Billingsley, Probability and measure, 3rd ed., Wiley, 2012.

e [Dudoz2] Dudley, Real analysis and probability, 2nd ed., Cambridge, 2002.

* [Kalo2] Kallenberg, Foundations of modern probability, 2nd ed., Springer, 2002.

These books are arranged in rough order of difficulty. Grimmett & Stirzaker is a rigorous
book on applied probability, focusing on probability models and problem solving.
Williams is a charming, short book on martingales, but it is also idiosyncratic and
telegraphic. Durrett’s book seems to be the current standard in graduate mathematics
programs. Pollard’s book contains a personal perspective on probability, with loads of
intuition. Billingsley’s book is more technical. Dudley’s book gives a thorough treatment
of the foundations of set theory, real analysis, and probability. Last, Kallenberg contains
a comprehensive, rigorous overview of topics in modern probability.
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\ Notation and Definitions

“You sound like a physicist,” she said.
“There’s no reason to be insulting.”

—Dr. No, Percival Everett, 2022

The notation in this course is standard in probability theory and related fields.
This section contains the main definitions and conventions. Other notation will be
introduced as needed.

Set theory
The Pascal notation, := or =:, generates a definition. Sets without any particular
internal structure are denoted with sans serif capitals: A, B, E. Collections of sets are
written in a calligraphic font: of, %, &F. The power set (that is, the collection containing
all subsets) of a set E is written as P (E).

The symbol 0 is reserved for the empty set. We use braces to denote a set. The
character € (or, rarely, 3) is the member-of relation. The set-builder notation

{xeA:P(x)}

carves out the (unique) set of elements that belong to a set A and that satisfy the
predicate P. The operator # returns the cardinality of a set. Basic set operations
include union (U), intersection (N), symmetric difference (A), set difference (\), and
the complement (¢) with respect to a fixed set. We often write U for the union of
disjoint sets.

The natural numbers N := {1, 2, 3, ... }. Ordered tuples and sequences are written
with parentheses, e.g.,

(al,aZra?))---ran) or (al»a2$a3r--')

Alternative notations include things like (a; : i € N) or (a;);en or simply (a;).
The relations C and 2 indicate set containment. For a sequence of increasing
(resp., decreasing) sets, we may use arrows to denote the union (resp., intersection):

AiTU‘ix,zlAi when A; CA; C A3 C---;
A L N2 A whenA; DA; D A3 D -

We typically use italic lowercase letters like f, g, h for functions. To introduce a
function f with domain A and codomain B, we write

f:A—B where f:aw f(a).

For a subset E C A, the set f(E) is the image of E. For a subset F C B, the set f~!(F)
is the preimage of F. The circle o composes functions.

The set A X B is the Cartesian product of sets A and B. The symbol A" denotes
the n-fold product of A with itself: A” = A X --- X A, with A repeated n times. More
generally, Al is a repeated product of A indexed by a set I. For each i € I, the function
m; : A" —> A refers to the ith coordinate projection: 7;((a; : j € 1)) = a;.
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Real analysis

We mainly work in the field R of real numbers, equipped with the absolute value
|-|. The extended real numbers R := R U {+oo} are defined with the usual rules
of arithmetic and order. In particular, we instate the conventions that 0/0 = 0 and
0 - 00 = 0. Expressions involving competing infinities (co — co) are undefined, and
we do not allow division by infinity. We use the standard (American) notation for open
and closed intervals; e.g.,

(a,b) ={xeR:a<x<b} and [a,b]:={xeR:a<x<Db}

Occasionally, we will visit the rational field Q or the complex field C. The imaginary
unit, i, is written in an upright font. Euler’s constant is denoted as e; by default every
logarithm has base e.

We use modern conventions for words describing order; these may be slightly
different from what you are used to. In this course, we enforce the definition that positive
means > 0 and negative means < 0. For example, the positive integers compose the set
Z,:={0,1,2,3,...} and the positive reals compose the set R, := {x € R : x > 0}.
When required, we may deploy the phrase strictly positive to mean > 0 and strictly
negative to mean < 0. For instance, the set R, := {x € R : x > 0} contains the
strictly positive real numbers. Similarly, increasing means “never going down” and
decreasing means “never going up.”

We often write the maximum (V) or minimum (A) of two numbers using infix
notation. Given a nonempty set A C R of extended real numbers, define

sup(A) := least upper bound on A in R;
inf(A) := greatest lower bound on A in R.

The supremum and infimum always exist, but they may be infinite.
Each of the following expressions means that the sequence (x; : i € N) has limiting

value x:

lim x; =x or X;i —> Xxasi—>o0 or X;— X.

11—
We may use vertical arrows to indicate that a real-valued sequence increases or decreases
to its limiting value: x; T x or x; | x. Recall that a monotone sequence always has a
limit in the extended reals. The limit superior and limit inferior are defined as

limsup x; := lim sup,,,; X, = inf;en SUP,5; Xn;
i—o0 =00

liminf x; := lim inf,>; X, = sup;en infp>i Xp-
1—00 1—00

These limits always exist, but they may be infinite.

For a pair of functions with a common domain, we understand relations and
other operations in the pointwise sense. For example, f = g means f(x) = g(x)
for all x in their shared domain. When the functions are real-valued, we may write
f A g for the function x — (f(x) A g(x)) with the same domain or fg for the
function x — (f(x)g(x)) with the same domain. Similarly, f < g means that
f(x) < g(x) for all x in the domain. We often use a compact set-builder notation,
such as {f < g} :={x: f(x) < g(x)}, for brevity.

Much the same way, for a sequence (f; : j € N) of functions with a common
domain, the expression f; — f means pointwise convergence of the f; to a limiting
function f. For real-valued functions, we may use vertical arrows to denote pointwise
monotone convergence. For example,

fiTf ifandonlyif fi,3>f; and fj— f.

I Warning: Positive means > 0!

Warning: The infix maximum

and minimum have the opposite

appearance to what you might
expect!

A monotone sequence is either
increasing or decreasing.
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The increasing limit always exists pointwise, but it may take (some) infinite values.
Likewise, f; | f refers to decreasing monotone convergence.

Measure and integral
Given a collection 6 of subsets of X, the symbol 0 (®6) denotes the smallest o-algebra
on X that contains all the sets in 6.

For a topological space X, the family %(X) contains the Borel sets in X. In particular,
B(R™) contains the Borel sets in R”.

To denote measures, we typically use Greek letters in the middle of the alphabet
(i, v). The letter A is reserved for the Lebesgue measure on R, and A" is the Lebesgue
measure on R"”. We write J, for the Dirac mass of intensity one, concentrated at a
point x.

Given a subset A C X of a domain, we define the real-valued o-1 indicator function

1, xeA;

Ip:X—> R where 1a(x):= 0 x¢A
Indicator functions and sets are in one-to-one correspondence, so we can switch
between them at will.
Riemann-Darboux integrals play a central role in our definition of Lebesgue
integrals. We employ the classic notation for Riemann integrals, but we will color the
integral symbol to emphasize when an integral is defined in the sense of Riemann:

b
/ f(x)dx isthe Riemann integral of f : [a, b] — R.
a

Except where explicitly noted, all other integrals are defined in the sense of Lebesgue.
We have many, many equivalent notations for these Lebesgue integrals. For a measure
u (on a o-algebra) on X and a function f : X — R, we may write

u(h) = [ Feouen = [ Feodue = [ e

It is common that we omit the domain X from these notations. To integrate over a
subset A C X, we may write

W5 A) = /A £ u(dx) = /X LA (E) f(x) p(d).

We eschew the notation where the limits of the Lebesgue integral are placed above and
below the integral sign. When the measure is the Lebesgue measure A, the differential
is often abbreviated as well: dx := A(dx).

We also use the arrow notation to refer to modes of convergence that require
measure or integral. In these cases, we will give an explicit qualification to emphasize
the type of convergence. For example, we may write f; — f A-almost everywhere or

For weak convergence of measures, we deploy the seismic arrow: u;, ~» uy. In
parallel, we use the seismic arrow ~» to refer to converge in distribution for random
variables (X;, w» X) and distribution functions (F, ~» F).

Linear algebra
We usually denote scalars with lowercase Greek letters (a, ). Lowercase boldface
italics (u, v) refer to vectors. Uppercase boldface italics (A, B) are associated with

The family of Borel sets is the
sigma-algebra generated by all open
sets.
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matrices or linear maps. The symbol * denotes the (conjugate) transpose of a vector or
matrix. The operator tr returns the trace of a square matrix.

Norms and pseudonorms are denoted with double bars: ||-||. We typically add a
subscript to refer to a specific norm, such as the Euclidean norm ||-||¢,.

Probability

We write (Q, %, P) for the probability space with sample space 2, with master o-
algebra &, and with probability measure P defined on %. The map P(-) returns the
probability of an event in &. The operator [E[-] returns the expectation of a random
variable (taking values in a linear space). We only include the brackets when it is
necessary for clarity, and we impose the convention that nonlinear functions bind
before the expectation. At rare times, we may also use [P to denote expectation with
respect to a probability measure P.

Uppercase italic letters (near the end of the Roman alphabet) usually refer to
real random variables: S, T, W, X,Y, Z. We often write ux for the law of a random
variable X, while Fx denotes its (cumulative) distribution function.

We use small capitals for named distributions. For example, UNIFORM Or NORMAL.
The symbol ~ means “has the distribution.”

The sigma-algebra generated by a real random variable X is defined as ¢ (X) :=
{X~%(B) : B € B(R)}. Similar notations are in force for random variables taking
values in other measure spaces.

For each real number p > 0, the space L, := L,(Q, %, P) contains all real random
variables X whose pth absolute moment is finite:

Ly :={X : E|X|” < +0c0}.

As usual, L, contains the random variables that meet a finite, uniform bound almost
everywhere. The operator Var|[ -] returns the variance of a random variable in L,, while
Cov(-, -) computes the covariance of a pair of random variables in L.

The symbol L means that two random variables in L, are orthogonal: X 1 Y if
and only if E[XY] = 0. In contrast, the notation X 1l Y means that X and Y are
independent random variables.

As usual, we write E[X | €] for the conditional expectation of the random variable X
with respect to the o-algebra 6. Related notations include the conditional expectation
with respect to a family of events or a family of random variables. For example,
E[X|AB]:=E[X|o({A,B})] and E[X |Y,Z] :=E[X |o(Y, Z)].
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O. Probability + CMS

‘Jedenfalls bin ich {iberzeugt, dal® der nicht wiirfelt.”
“I, at any rate, am convinced that [God] does not throw dice.”

—Albert Einstein, 1926

“The gods may throw a dice,
Their minds as cold as ice.”

—The Winner Takes it All, ABBA, 1980

Probability theory is the study of regular patterns that arise from random phenom-
ena. The field of statistics exploits this fact to make inferences about the state of the
world. These regularities can also be used to develop efficient algorithms for solving a
wide range of computational problems.

In this introductory section, we give a simple example of the patterns that can
emerge from a simple probability experiment. Then we discuss how probability models
can arise and some of the fields where they are in use. Afterward, we present several
applications of probability theory in contemporary computational mathematics. Last,
we summarize the concepts that are required to make sense of the application examples.
This motivation helps us appreciate why we need to understand measure theory to
work with probability models. In the first lecture, we enter into our treatment of
measure theory.

What is probability theory?

Say that you flip a fair penny 100 times, and you observe that heads turns up 97 times.
Are you surprised? In a word, yes. While the outcome of this experiment is random,
you do not expect it to be totally irregular. In fact, you will probably take the result as
evidence that the coin is not fair after all.

When we say that the coin is fair, we mean that each sequence HTHHHTHHTH...
or HHHHHHHHHH... is equally likely to occur. So no particular sequence is very
common. Nevertheless, if we ask summary questions like “How many heads?”, then
we can offer informative answers. Indeed, we strongly suspect that, in the long-term,
the proportion of heads is close to one-half. We anticipate this pattern based on our
experience living in the world. When we observe a pattern that violates our intuition,
we may draw inferences about how that outcome arose.

Moving beyond coins, suppose that we perform a probabilistic experiment and
record the outcome. From the word probabilistic, we understand that repeating the
experiment gives an unpredictable result each time. Nevertheless, when we look at a
large number of experiments, we encounter predictable phenomena.

Agenda:

. What is probability?

. Probability models

. Randomized trace estimators
. Stochastic gradient

. Markov chains

. Probability and measure

oA WN -

Even my 6-year-old thought that this
would be a surprising outcome.


https://www.youtube.com/watch?v=92cwKCU8Z5c
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Lecture O: Probability + CMS 2

Probability is the study of the predictable patterns that arise from random phenom-
ena. For instance, it is predictable that a fair coin turns up heads about half the time,
and we will learn to quantify this statement precisely.

Inversely, statistics uses probability theory to infer the state of the world from
observed outcomes of probabilistic experiments. For example, if a coin turns up heads
97 times out of 100, we can be confident (but not certain) that the coin is unfair.

Our challenge is to develop the mathematical foundations for probability. Statistics
is a primary beneficiary of this effort, but probability also enriches the mathematical
sciences, computing, and engineering.

Activity 0.1 (Probability experiments). What are situations where probability arises in
your field? It is likely that your research program involves more than flipping coins. =

Probability models

The real world is complex and messy. To help us understand the world and make
predictions, we frame simplifying or reductive models. Probability models describe phe-
nomena that are not fully predictable. They encode our uncertainty using distributions,
rather than worst-case considerations.

Sources of randomness

So, how does randomness arise? Why might we want to use a probability model for
applications in science and engineering?

Since the laws of classical physics are deterministic, one may imagine that a classical
phenomenon becomes completely predictable if we know the state of the world. In
practice, however, we rarely have complete information about the initial conditions
(e.g., the starting position, velocity, and angular momentum of a tossed penny). We can
model this uncertainty using probability. Many phenomena (e.g., the weather) exhibit
a sensitive dependency on the initial conditions, so it may only be reasonable for us to
talk about a distribution of outcomes, some more likely than others. In a similar vein,
a system may be so complicated (e.g., the positions of all molecules in a cup of coffee)
that we must use probabilistic models to summarize its behavior; this is the insight
behind the field of statistical mechanics. Beyond that, measurements are inherently
inaccurate, and measurement errors are commonly modeled using probability.

To the best of our understanding, quantum mechanics gives a precise and accurate
description of the nanoscale. In the quantum world, probability is an irreducible
fact of life: Born’s rule tells us that every measurement of a quantum system yields
a random outcome. Nevertheless, at a macroscopic scale, the aggregation of many
random outcomes can lead to behavior that does not appear random at all. (We have
already seen a similar effect in long sequences of coin flips or the bulk behavior of
the molecules in a gas.) Indeed, the law of large numbers helps resolve the tension
between the randomness of the quantum world and the apparent determinism of the
classical world.

Physical laws often admit simple mathematical expressions that have been validated
by extensive experiments. In other human endeavors, we may not have a complete
understanding of mechanisms or even a collection of empirical laws that govern the
phenomena under investigation. This kind of challenge emerges in social sciences
(economics, sociology, psychology) or in hard sciences that involve complex systems
(cell biology, neuroscience). We can try to model our uncertainty using probability.

Another important source of randomness is sampling from a population. Suppose
that we isolate a number of individuals from a larger (perhaps infinite) group. If these

“All models are wrong, but some are
useful.”

—George E. P. Box, 1970s

Sources of randomness:

VOO UNAWN-

. Uncertain initial conditions

. Sensitivity to initial conditions
. Measurement errors

. Statistical mechanics

. Quantum mechanics

Uncertain mechanisms

. Sampling from a population

Random number generators

. The whim of Tyche



0.2.2

Lecture O: Probability + CMS 3

individuals are not chosen in any particular fashion, then it may be reasonable to model
them as a random sample. This allows us to regard the individuals as representative
of the full population, so we can infer things about the population from the sample.
The fields of statistics and statistical learning theory are based on this idea. In fact,
rigorous statistical studies reinforce this model by randomly assigning participating
subjects to different treatment conditions.

Randomness also plays a central role in modern computational science. We can
design algorithms that exploit probability theory by making random choices during
their execution. A classic example is Monte Carlo integration, which approximates
an integral by averaging the values of the integrand at some randomly chosen points.
Another example is the stochastic gradient algorithm (Section 0.4), which minimizes a
function by taking small random steps that, on average, point in the direction of the
negative gradient of the objective. There are many more examples. We will leave aside
the question about how a computer can get hold of random numbers in the first place.

Activity 0.2 (Sources of randomness). Can you think of other ways that probability and
randomness arise in your research area? .

Activity 0.3 (Validation). Models do not need to be perfect to be valuable, but they do
need to describe salient aspects of the phenomenon under study. When working with a
model, you must verify the assumptions and confirm the predictions by reference to
reality. In your field, what steps can you take to validate probability models? .

Sequential probability models and applications
The full version of this course focuses on three particular types of probability models:

* Asum of independent random variables: This model can be used to study a sequence
of independent experiments (like our coin flips).

* A martingale sequence: This model describes a repeated game of chance where a
player’s strategy may depend on the past (like the stock market).

* A Markov chain: This model describes random sequences where the next element
depends only on the current element (like a random walk).

Each of these stochastic processes has its own distinctive theory, as well as a wide range
of applications.

As mathematical scientists, applying for grants in the twenty-first century, we may
be particularly interested in using these probability models for

* statistics,

* signal and image processing,
¢ information theory,

* learning and decision-making,
* control theory,

* numerical analysis,

* uncertainty quantification,

* computer algorithms, or

* quantum information science.

We will continue our discussion with some contemporary applications of probability
theory in computational science. By the end of the course, we will understand our
probability models and a few of their applications well.

The material on Markov chains has
been removed because of time
constraints.
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Randomized trace estimators

In this section, our goal is to introduce a randomized algorithm for approximating the
trace of a positive-semidefinite matrix. This algorithm is a particular, but untraditional,
example of a Monte Carlo method. The method depends on properties of a sum of
independent random variables.

Let A € R™" be a positive-semidefinite matrix. If we can easily access individual
entries of the matrix, then there is no impediment to evaluating the trace directly:

n
trA= E . ajj.
i=1

In other words, we compute and sum the diagonal entries of the matrix. Done.

In certain applications, we cannot easily access entries of the matrix. Nevertheless,
we may be able to compute the matrix-vector product # +— Au for an arbitrary vector
u € R". Can we design an algorithm that approximates the trace using a small number
of applications of this primitive?

A Monte Carlo method
There is a beautiful and simple randomized method for trace estimation that operates
in this setting. Construct a random vector Z = (Z1, ..., Z,) € R" with independent

entries where
Z; ~ UNtForRM{x1} foreachi=1,...,n.

Note that the expectation E Z; = 0 for each i. Using the matrix—vector multiplication
primitive, we can form the random quantity

X = Z*(AZ).

Expanding the quadratic form, we have a detailed representation:

n n

We quickly obtain the expectation of this random variable:

n n
EX = Zi:l a;; + Zi:ﬁj([EZi)([E Zj) - ajj = Zi:l a;; = trA.

Indeed, the expectation operator is linear, and the expectation of a product of indepen-
dent random variables equals the product of expectations. By a similar calculation, we
may also compute the variance:

var[X] = E[X?] - (EX)? = Z#,- a?, < (A,

This argument takes a little more work, and we leave it as an exercise. The final
inequality depends on the fact that A is positive semidefinite.

Although the random variable X is an unbiased estimator for the trace, it is not
an adequate estimate because its standard deviation may be on the same scale as the
trace, the thing we are trying to compute. We soon realize that we can enhance the
estimator by averaging independent copies:

- 1 k
Xp = T Zi_l X; where Xi,..., Xy are independent copies of X. (0.1)

The estimator X; has the properties that

E[Xi] =trA and Var[Xi] < k™ (tr A)2%.

A positive-semidefinite matrix is a
(conjugate) symmetric matrix whose
eigenvalues are all positive.

We use highlighting to emphasize
important words that you should not
overlook.

If you learn only one thing in this
class, then you should learn that
expectation is linear.

The standard deviation is the
square-root of the variance.
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Indeed, expectation is linear, and the variance of an independent sum is the sum of the
variances. By this device, we can reduce the variability of the estimator. With only a
constant (say, k = 10) summands, we can achieve a result that is often within a factor
of two of the correct answer. The trace estimator (0.1) is a simple example of a Monte
Carlo method.

This discussion is based on the most elementary facts about expectation and
independence. Unfortunately, it does not tell us much about the probability that the
estimator achieves a desired level of precision at a given number k of samples. To
address this task, we need to develop concentration inequalities that describe how
sharply a random variable peaks around its expectation. As the number k of samples
grows without bound, the consistency of this estimator follows from the law of large
numbers, while the central limit theorem precisely describes the fluctuations of the
error.

*Application: Smoothed least squares

It may not be obvious why it would be valuable to estimate a trace by means of the
matrix—vector multiplication primitive. Let us give an example from computational
statistics. In fact, this is the original application of the randomized trace estimator.

Consider paired real-valued data {(x;,y;) : i = 1,...,n} € R X R, where the
covariates x; are arranged in (strictly) increasing order. Suppose that we want to fit
a slowly varying function to the data. We can accomplish this task by discretizing
the function at the covariates. Then we formulate a least-squares problem with a
smoothness penalty:

minimizegers |y = fll7, + - IDFI1F,. (0.2)
The first term enforces fidelity between the approximation f := (fi,..., f,) € R”
and the observed data y := (y1,...,¥n) € R”. In the second term, the matrix
D e R(""DX7" js 3 (bidiagonal) first-difference operator, say
(Df); = Szl gioq n-n,
Xi+1 — Xi

As a consequence, the second term in (0.2) is small if and only if the fitted model f
varies slowly. The regularization parameter { > 0 negotiates a tradeoff between the
fidelity and the smoothness.

Using calculus, we quickly determine that the solution to the smoothed least-squares
problem (o0.2) takes the form

f=A;y where A;=(1+({D*D)™".

The matrix I+ {D*D is tridiagonal and positive definite, so we can apply its inverse A;
with O(n) arithmetic operations (for example, by Cholesky factorization and triangular
solves). On the other hand, we do not have direct access to entries of A;.

Why are we concerned about the trace of the matrix A;? This question arises when
we try to select the best value of the regularization parameter . A standard approach
to this task is to minimize the generalized cross-validation functional:

||<1—A<>y||ezr

gev(§) i=n- [ (- A)

This quantity reflects the “effective number of degrees of freedom” in the model, per
unit of approximation error, at the regularization level {. The effective degrees of

Figure 0.1 Smoothed least
squares
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freedom measures the smoothness of the model. We prefer smooth models but allow
rougher models if warranted by a significant improvement in approximation quality.

In most cases, to minimize the gcv functional, we need to evaluate it numerically
for regularization parameters { drawn from a grid of values. To do so, we need to
estimate the trace of I — A; for many choices of {. But we can only access A; by
applying it to vectors. Therefore, randomized trace estimation is a natural tool for
accelerating generalized cross-validation.

Stochastic gradient algorithms

In many learning systems, the goal is to find a reductive model that minimizes the
error in explaining some observed data. In this section, we consider a basic least-
squares problem that arises in statistical learning theory. We show how to convert
this problem into a stochastic optimization problem. Then we introduce an algorithm,
called stochastic gradient iteration, for solving this problem. Stochastic gradient and
its variants are among the most widely used computational tools in modern machine
learning. One approach to studying these algorithms involves tools from martingale
theory.

From least squares to stochastic least squares

Suppose that we have acquired paired data {(a;, b;) : i = 1,...,n} C R x R. We
might like to fit a model that approximates the responses b; as a (pure) linear function
of the covariates @;. The most basic approach is the ordinary least squares formulation:

1

o Z; ((ai, x) - b;)>.

As you know, this is among the simplest problems in statistical machine learning.
The normalized sum can be interpreted as an average. This observation suggests a
probabilistic interpretation. Introduce the empirical measure u of the data set:

minimize,, cpd

i = untForm{(@a;, b;) : i =1,...,n}.
Using the empirical measure, we can rewrite the least-squares problem as

minimize,cpe  Eab)~u [%((a, x) — b)z]. (0.3)

Defining the random vector & = (a, b) ~ u and the bivariate function f(x; &) =
1((a, x) - b)z, we arrive at the compact formulation

minimize, e Egopy f(x56). (0.4)

The expression (0.4) is a general way of writing a stochastic optimization problem. Our
example is just one instance from a broad class.

At this stage, one may wonder what kind of object is the empirical measure p. To
what extent can we pass between sums and expectations?

Stochastic gradients

How can we solve the stochastic optimization problem (0.3)? For an unconstrained
optimization problem with a continuous objective function defined on a Euclidean
space, the simplest solution concept is gradient descent: we repeatedly take small steps

The symbol ~ means “has the
distribution.”
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in the direction of the negative gradient of the objective function. To that end, let us
compute the gradient of the objective in (0.3)—(0.4):

ViEe f(x;8) =Eg Vif(x; &)
=E, Vx[%(m, x) — b)z] =E, [((a, x) — b)a].

For now, we blithely pass the gradient through the expectation, even though this
step requires justification. You may also realize that it is expensive to compute this
expectation. Even in our discrete setting, it involves iteration over the entire set of n
data pairs. In a more general case, where the support of the distribution p has infinite
cardinality, the expectation might not be tractable at all.

The idea behind the stochastic gradient algorithm is simple. We replace the gradient
by an easily computable random variable g € R” that gives an unbiased estimator for
the gradient:

Eg=VyE;f(x;&) =E,[({a, x) - Db)al.

For example, we can just take a random draw & = (a, b) from the empirical distribution
u and form
g = ({(a, x) —b)a where (a,b) ~ p.

In our discrete setting, this amounts to choosing one data point at random and
constructing the vector

g = ((a;, x) —by)a; where I ~ uniForM{1,...,n}.

Our randomized gradient approximation no longer requires us to compute an expec-
tation. But the stochastic gradient it is correct on average, and that turns out to be
enough.

The stochastic gradient iteration

To solve the optimization problem (0.3), we proceed as follows. Make an initial guess,
say xg € R, for the solution. At each iteration j=1,2,3,..., construct a randomized
gradient estimate:

g; = ({(a, xj_1) —b)a where (a,b) ~ p.
Update the current iterate:
xj=xj_1—1;8; forastep size parameter 7; > 0.

This process repeats indefinitely.

In contrast to a classic optimization algorithm, the sequence (xg, X1, X2,...) of
iterates is composed of random elements. Under what conditions does this sequence
converge to a minimizer of the stochastic least-squares problem (0.3)? In what sense?
Does the initialization xo matter? How should we select the step sizes? What is the
role of the distribution of the data, encapsulated in the measure pu?

These questions seem daunting. Indeed, at each iteration, the random iterate
depends on the entire history of the algorithm. Yet we can easily prove finite-time
guarantees using maximal inequalities for martingales, while asymptotic guarantees
follow from the martingale convergence theorem.
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Markov chains

In computational mathematics, one of the basic challenges is to draw samples from a
complicated probability distribution. Although there are reliable routines for producing
uniform random variables or normal random variables, there may be no direct approach
by which we can sample from a more complicated model. A remarkable and powerful
idea is to construct a sequence of distributions that ultimately converges to the desired
distribution. This approach is called Markov chain Monte Carlo (MCMC). In this section,
we give a short description of an MCMC algorithm for drawing samples from a basic
model in statistical physics.

The Ising model on a graph

The Ising model was designed as a stylized description of ferromagnetism. We construct
a graph that reflects which atoms in a material, say a crystal lattice, are adjacent. We
assume that each atom can have a positive or negative spin. When most of the spins are
oriented the same way, the net magnetic moment is large and the material will generate
a significant magnetic field. On the other hand, when the spins are incoherent, there
is little magnetic effect. We may ask to sample a typical configuration of spins.

Formally, let G = (V, E) be an undirected combinatorial graph on a finite set V of
vertices with edge set E. To each vertex in the graph, we assign a positive spin (+1)
or a negative spin (—1). We can encode the family of assignments in a configuration
function o : V — {£1}. The nearest-neighbor Ising model is a probability distribution
over these configurations:

u(o) = Ziﬁ exp (,6 Z{W}d a(u)a(v)) for o € {+1}". (0.5)

In this expression, > 0 is a fixed parameter called the inverse temperature, and Zg is
a normalizing constant known as the partition function. This type of distribution u is
usually called a Gibbs measure.

The intuition behind the formula (o.5) is that the probability of a configuration
is largest when neighboring vertices tend to share the same spin (either positive
or negative). If the parameter 8 is large (i.e., the temperature is low), the model
places most of the probability mass on configurations where spins are aligned. When
the parameter f is small (i.e., the temperature is high), we are more likely to see
heterogeneous configurations where spins at neighboring vertices differ.

For a more picayune example, imagine a social network G = (V, E) where the
edge set E reflects which members of the community V are friends. We may imagine
that each individual has a preference for Coke (+1) or for Pepsi (—1). While friends
tend to have similar preferences, their affinity depends on the interaction strength S.
The probability u(o) expresses the likelihood that the network exhibits a particular
configuration o of tastes in soft drinks. Sampling this distribution is a pressing issue in
viral marketing.

The Metropolis—Hastings chain

For a general graph G, it is not obvious how we can draw a random sample from the
Gibbs measure  of the Ising model (0.5). Indeed, the configuration space {+1}¥ may
be quite large. Individual spins have a complicated dependency because of the graph
structure. Moreover, it is challenging just to compute the partition function Zg.
Instead, suppose that we start with an initial configuration & . Is there some way to
make simple random updates to the configuration to obtain a sequence (g, : n € N)
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of random configurations that tends toward a sample from the Gibbs distribution y? In
fact, we can accomplish this task via an elegant method called the Metropolis—Hastings
algorithm.

At each iteration, the Metropolis—Hastings algorithm tells us to update the current
configuration o € {+1}¥ according to the following procedure.

1. Proposal: Choose a random vertex # ~ uNIFORM(V). Form a candidate configu-
ration o’ by flipping the spin at vertex u:

—U(U), V=1U;

o’(v) = forv e V.

o(v), v+u

2. Acceptance ratio: Compute the ratio a of the Gibbs measure p at the candidate
configuration ¢’ and at the current configuration o

_ k() _ ( )
ai= S0 = e B ZMW}GE( 20(w)a(v)).
This quantity reflects how much the probability increases or decreases by flipping
the spin at the site u.
3. Update: Draw a random variable X ~ unirorM[O0, 1]. Update the current
configuration from o to ¢’ according to the rule
o, X<a;

o, X>a.

In other words, we move to the candidate configuration o’ with probability
1 A a. Otherwise, we remain at the original configuration o.

Let us point out a few key features of this algorithm. First, the candidate config-
uration o’ is random, but it is easy to construct. Second, we do not need to know
the partition function Zg to compute the acceptance ratio a, and we only need to
sum over vertices adjacent to the selected vertex u. Third, we always move to the
candidate configuration ¢’ if it has larger probability than the current configuration
o. We may elect to move to a less probable configuration, but we inject randomness
into this decision.

Markov chains

To recap, the Metropolis—Hastings algorithm generates a sequence of random con-
figurations taking values in the space {+1}V. At each step in the sequence, the next
configuration depends on the current configuration, but it is independent from the
trajectory of the algorithm before the current time. This kind of random sequence is
called a Markov chain.

In the theory of Markov chains, some of the basic questions center on their long-term
behavior. Does there exist a distribution that is stationary under the dynamics of the
Markov chain? Is this stationary distribution unique? Does the Markov chain converge
to a stationary distribution from any initialization? How long does it take before
the distribution of the chain is close to the stationary distribution? Can we compute
moments of the stationary distribution by averaging along the trajectory of the chain?

The Metropolis—Hastings algorithm emerged as general recipe for designing a
Markov chain with a given stationary distribution.
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Problem 0.4 (Metropolis—Hastings for Ising model: Gibbs measure is stationary). Suppose
that we draw & from the distribution y defined in (0.5). Show that the output o’ of
the Metropolis—Hastings algorithm in Section 0.5.2 also follows the distribution p.

In other words, the Gibbs measure p is stationary under the Metropolis—Hastings
dynamics. This fact hints that the sequence of random configurations might converge
to a sample from the Gibbs measure. Indeed, it can be shown that Metropolis—Hastings
allows us to simulate the distribution of the Ising model on a graph.

Because of the fundamental importance of Markov chains, we used to introduce
some basic definitions and applications at the end of the course. Unfortunately, we
would need an entire term to fully address the questions that we posed in the earlier
paragraphs. ACM 216 takes up this study for Markov chains with discrete configuration
spaces, and ACM sometimes offer courses on Markov chains with continuous state
spaces.

0.6 Probability and measure

We have now encountered several different computational applications of probability.
These applications already raise a large number of questions about the foundations
of probability theory. To develop appropriate answers to these questions, we need to
learn about measure theory.

0.6.1 Probability concepts
Here are some of the questions that we must confront:

* What is a probability distribution? What events have probabilities?

e What is a random variable? Is it the same as a distribution?

* How do we define the expectation of a random variable? What properties does
expectation have?

* How do we bound the probability that a random variable takes values far from
its expectation?

* What does it mean for a pair of random variables to be similar? When does a
sequence of random variables converge?

* What does it mean for two probability distributions to be similar? When does a
sequence of distributions converge?

* How do we define independence? How do we condition on prior knowledge?

* How can we make sense of an infinite sequence of independent random variables?

* What behavior should we expect an independent sum to exhibit? What about a
martingale? A Markov chain?

0.6.2 The role of measure theory

To address these questions in a systematic way, we need to learn measure theory. There
are many reasons that measure theory is the appropriate language for talking about
probability.

1. What is an event? An event is a collection of outcomes of a probability experiment
to which we can ascribe a probability. In simple discrete settings (coins, dice,
etc.), all sets of outcomes are events. But as soon as we move to the continuous
setting (height, lifetimes, etc.), we encounter a problem. There is no way to
consistently assign probabilities to all subsets of the real line. We need a way to
delineate which events are legitimate and which are not.
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2. Discrete versus continuous: In elementary probability courses, we usually hone
our intuition with discrete probability models, and we develop a complete set
of definitions and formulas for this case. Afterward, we proceed to continuous
probability models, and we develop another complete set of definitions and
formulas for this case. Many students will perceive an analogy between these
situations. Measure theory allows us to treat all random variables (discrete,
continuous, mixed) on an equal footing, with one set of definitions that is valid
in all cases.

3. Univariate versus multivariate: Similarly, elementary probability courses begin
with treatments of individual random variables before proceeding to pairs of
random variables, random vectors, and so on. Each case is burdened with its
own terminology and formulas. Measure theory allows us to regard a family of
random variables as determining a distribution on a space of higher dimension.
There is no fundamental distinction between univariate and multivariate models.

4. Independence: What does it mean for two probabilistic events to be independent
from each other? In elementary courses, we typically define a pair of random
variables to be independent when the joint cumulative distribution function
factors. This definition is unintuitive and hard to work with. Measure theory
allows us to describe independence naturally through the construction of product
measures.

5. Conditioning: How does knowledge about the world inform our predictions?
Introductory probability courses also present a long catalog of formulas for
conditioning of discrete random variable and another catalog for conditioning
of continuous random variables. It is in no way clear, however, that we can mix
these ideas. Measure theory provides a natural set of tools for handling cases
that cannot be addressed by manipulation of probability masses or densities.

6. Approximation of distributions: In its most basic form, the central limit theorem
states that a standardized sum of independent uniform +1 random variables
converges to a continuous normal distribution. But it must be perplexing to
contemplate discrete distributions that have a continuous limit. By treating all
probability distributions as measures, this conceptual difficulty evaporates.

At this stage, it may not be clear exactly what we mean by this encomium to
measure theory. Once we have finished the course, and you look back on this section,
you will appreciate how measure-theoretic probability resolves all of these issues.

In the first lecture, we will begin our study of measure theory. These concepts are
easier to understand without the added burden of a probabilistic interpretation, so we
will first introduce the major concepts in the comfortable setting of the integers and
then we will upgrade the basic ideas to the real line. Once the foundations are solid,
we will recast measure theory as a language for discussing probability.

Notes

Monte Carlo methods were invented to perform challenging integrations that arise in
computational physics. In practice, Monte Carlo methods are often enhanced with
more sophisticated sampling techniques (e.g., importance sampling or control variates).
For many problems, where it is intractable to produce unbiased samples, we can
implement a Markov chain that drives an initial distribution toward the desired target.
The resulting technique, called Markov Chain Monte Carlo (MCMC), has fundamental
importance in contemporary machine learning and computational science.
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MCMC was invented in the 1940s by the physicists Nick Metropolis and Stanislaw
Ulam, who were on the staff of the Manhattan Project. In the 1970s, MCMC was
revitalized by Hastings [Has7o]. Image processing applications emerged in the 1980s
with the work of Geman & Geman [GG84]. MCMC methods entered the mainstream of
computational statistics in the 1990s; for example, see [Tie94]. They are now central
tools for Bayesian solution of inverse problems [Stu1o]. For an accessible introduction
to Markov chains on discrete state spaces, see the book of Levin & Peres [LP17].

Randomized trace estimators were proposed by Girard [Gir89] for generalized
cross-validation of smoothed least-squares problems. The specific estimator that we
described was proposed by Hutchinson [Hutgo]. See [MT20] for a more in-depth
discussion and more recent extensions.

The stochastic gradient algorithm was first proposed by Robbins and Monro [RM51]
for rootfinding problems that arise in statistics (quantile estimation, least-squares
computation). These methods have been rediscovered many times in other research
communities. Stochastic gradient achieved a renewed prominence in the machine
learning community after an influential paper [Botg8] of Bottou. At present, variants of
stochastic gradient are widely used in statistical machine learning and for the training
of artificial neural networks.

Our discussion of the importance of measure theory for probability theory owes a
great debt to Pollard’s book [Polo2].

We have presented the tired quotation of George Box about the fact that models are,
well, models. The discrepancy between reality, models of reality, and our perception of
reality is an ancient theme in philosophy. For example,

“Dao ke dao, fei chang dao. / Ming ke ming, fei chang ming.”

“The truth can be known, but it is not the truth known to you. / Things can be
named, but the names are not the things.”

—Laozi, Dao Deching, circa 400 BCE

You may also recall Plato’s “Allegory of the Cave,” where the prisoners imagine that the
shadows of objects are the reality of the objects. In his meditation on a ball of wax,
Descartes considered the falseness of our senses, and he argued that our knowledge
of the world is uncertain. He concluded that, on some level, models for reality can
capture truths that we cannot directly perceive.

Lecture bibliography

[Boto8] L. Bottou. “Online Algorithms and Stochastic Approximations”. In: Online Learning
and Neural Networks. Revised, Oct. 2012. Cambridge University Press, 1998. URL:
http://leon.bottou.org/papers/bottou-98x.

[GG84] S. Geman and D. Geman. “Stochastic Relaxation, Gibbs Distributions, and the
Bayesian Restoration of Images”. In: IEEE Transactions on Pattern Analysis and
Machine Intelligence PAMI-6.6 (1984), pages 721-741. pot: 10 .1109/TPAMI .
1984.4767596.

[Gir89] D. A. Girard. “A fast “Monte Carlo cross-validation” procedure for large least
squares problems with noisy data”. In: Numer. Math. 56.1 (1989), pages 1—23.
por1: 10.1007/BF01395775.

[Has7o] W. K. Hastings. “Monte Carlo sampling methods using Markov chains and their
applications”. In: Biometrika 57.1 (1970), pages 97—-109. por: 10.1093/biomet/
57.1.97.


http://leon.bottou.org/papers/bottou-98x
https://doi.org/10.1109/TPAMI.1984.4767596
https://doi.org/10.1109/TPAMI.1984.4767596
https://doi.org/10.1007/BF01395775
https://doi.org/10.1093/biomet/57.1.97
https://doi.org/10.1093/biomet/57.1.97

Lecture O: Probability + CMS 13

[Hutoo]

[LP17]

[MT20]

[Polo2]

[RM51]

[Stu1o]

[Tieg4]

M. F. Hutchinson. “A stochastic estimator of the trace of the influence matrix for
Laplacian smoothing splines”. In: Comm. Statist. Simulation Comput. 19.2 (1990),
pages 433—450. bol: 10.1080/03610919008812864.

D. A. Levin and Y. Peres. Markov chains and mixing times. Second edition of
[ MR2466937], With contributions by Elizabeth L. Wilmer, With a chapter on
“Coupling from the past” by James G. Propp and David B. Wilson. American
Mathematical Society, Providence, RI, 2017. por: 10.1090/mbk/107.

P.-G. Martinsson and J. A. Tropp. “Randomized numerical linear algebra: Founda-
tions and algorithms”. In: Acta Numerica (2020).

D. Pollard. A user’s guide to measure theoretic probability. Cambridge University
Press, 2002.

H. Robbins and S. Monro. “A stochastic approximation method”. In: Ann. Math.
Statistics 22 (1951), pages 400—407. DOI: 10.1214/aoms/1177729586.

A. M. Stuart. “Inverse problems: a Bayesian perspective”. In: Acta Numer. 19
(2010), pages 451-559. DOI: 10.1017/50962492910000061.

L. Tierney. “Markov chains for exploring posterior distributions”. In: Ann. Statist.
22.4 (1994). With discussion and a rejoinder by the author, pages 1701-1762.
DpoI: 10.1214/a0s/1176325750.


https://doi.org/10.1080/03610919008812864
https://doi.org/10.1090/mbk/107
https://doi.org/10.1214/aoms/1177729586
https://doi.org/10.1017/S0962492910000061
https://doi.org/10.1214/aos/1176325750

measure theory

Measureson thelIntegers ................ 15
Abstract Measure Spaces .. .............. 26
Measures on the Real Line .............. 38
Integration on the Real Line ............. 49
Abstract Integration . . ....... ... ... ... 68

Product Measures ..................... 89



11

\ 1. Measures on the Integers

“Truth is truth
To th’end of reck’ning.”

—William Shakespeare, Measure for Measure, Act V, Scene 1

Measure theory is a branch of mathematics that provides tools for describing
a “distribution of mass” over a domain. The mathematical abstraction is the same,
regardless of whether we are talking about distributions of physical mass or distributions
of probability or whatnot.

Modern probability is written in the language of measure theory, and we cannot
develop a mature understanding of the subject without it. Although there are more
elementary approaches, we really need the technical apparatus of measure theory
to properly build foundations (e.g., conditional expectations) and to pursue modern
applications (e.g., optimal transportation).

The first task of measure theory is to define a measure, which is the basic object
that describes a distribution of mass over a domain. Later, we will use measures to
introduce integrals, which allow us to add up the values of a function on the domain,
weighted by the distribution of mass.

We will begin our study in a drastically simplified setting, the case of distributions
over the integers. In this environment, we can develop intuitions without worrying
about technical matters. In the next lecture, we will expand on the basic ideas to give
the abstract definition of a measure. The abstraction is important for understanding
measures on the real line. As always, our goal is to be correct but never fussy.

Distributions on the integers

So, what does measure theory allow us to measure? All kinds of things. For instance,

* Combinatorial content, such as counting points.

* Geometric content, such as length, area, or volume.
* Physical content, such as mass or charge.

* Probability or likelihood, which is our main interest.

In each case, we can think about some kind of substance that is distributed over a
domain. We will use the word “mass” generically to refer to the substance that is being
distributed.

The first step in our program is to study mass distributions, or measures, on the
integers. The distribution simply places some amount of mass on each integer. This
model is not rich enough to support all of the examples that might interest us, but it
already allows us to identify some of the core properties of a measure. In the next few
lectures, we will gradually introduce the additional technical ideas that are required to
define measures on the real line.

Agenda:

oSOV AWN -

Distributions of mass
Motivation for definition
Measures on the integers
Basic properties
Examples

Specifying a measure
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Example 1.1 (Counting). Let A C Z be a subset of the integers. We may be interested in
counting the number of points in the set A. To that end, define #A to be the number
of points in the set A. We will call # the counting measure (on the integers).

As a concrete example, consider an interval A= {a+1,a+2,...,a + k} where
a € Z. Then #A = k is just the length of the interval. On the other hand, for a set A
that contains an infinite number of points, we set #A = +oo.

At first glance, counting may not seem to have much to do with distributions. In
fact, it is just an elementary example. Counting is associated with the distribution that
places one unit of mass on each integer. Thus, for a set A with finite cardinality,

#A = ZieA L.

If A has infinite cardinality, we can interpret the sum as the limit of an increasing
sequence of finite partial sums, which equals +oo.

It will be valuable to develop schematics that can give us intuition for distributions.

Here is a picture of the counting measure:

Each spike has height one, and it represents one unit of mass, concentrated at an
integer point. ]

Example 1.2 (Physical mass). Alexander Stirling Calder was a mid-2oth century American
sculptor, well-known for his whimsical constructions of measures. Here is an illustration
of a Calder mobile, along with an associated schematic that describes how the mass is
distributed over the integer points:

We imagine that the horizontal rod is massless and the strings have no width.
It is natural to describe a general distribution of physical mass over the integers

using a sequence (w; : i € Z) of positive real numbers. The number w; specifies how

Calder grew up in Pasadena. His
father, also named Alexander Calder,
was a prominent sculptor, who
designed the frieze over the original
Pasadena Hall in 1910. These
sculptures are now located on the
bridge between Church Hall and
Crellin Hall.

Warning: Recall that positive
always means > 0! "
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much mass is placed at the integer i. The total mass carried by a set A C Z is simply
Dliea Wi. Here is a picture of what the distribution might look like.

As in Example 1.1, the spikes represent point masses, which have no spatial extent.
The center of mass m of the system is the location at which we must support the
number line to make it balance. In other words, the torque about the point m is zero:

Ziez(i —m)w; =0. (1.1)

We have added up the values of a function i — i — m, weighted by the distribution
(w; : i € Z) of mass. This is an explicit example of integrating a function against a
distribution, a task we will learn to accomplish in some generality. .

Example 1.3 (Probability). A probabilistic experiment has a distribution of possible
outcomes, some more likely than others. For a truly boring instance, consider the
process of flipping a fair penny until we encounter the first heads. By elementary
reasoning, for each natural number i € N, the probability that the first heads appears
on the ith flip is 277, Here is an illustration of this distribution of probability:

This is a particular example of the geometric distribution, which is a family of probability
distributions that are supported on the natural numbers.

We can describe a general probability distribution over the integers via a sequence
(p;i : i € Z) of positive numbers that sums to one: ;.7 p; = 1. The normalization
reflects the fact that the total probability of all the outcomes must equal one, or 100%.
The probability that the outcome lies in aset A C Z is just ). ;ca pi, the total probability
mass carried by the set.

The expectation m of the probability distribution is given by the series

m = Ziez ipi. (1.2)

You may notice the strong analogy
between (1.1) and (1.2), which
suggests a mechanical interpretation
of the expectation.
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In other words, we average the values of the function i + i, weighted by the
distribution (p; : i € Z) of probability. This is another explicit example of an integral,
and we begin to see why probability theory demands a robust theory of integration. =

Aside: (Signed distributions). We can consider a more general class of distributions
on the integers that may place either a positive or negative mass at each integer.
This situation arises in physics, where it models a distribution of electric charge
on the integers. Mathematically, we describe this kind of distribution using an
object called a signed measure. For the moment, however, we will only consider
distributions that are positive.

What properties should a measure have?

In the last section, we discussed several situations where we may encounter a dis-
tribution of mass over the integers. A measure is simply a mathematical object that
describes a distribution of mass. We will need this formalism to give a unified treatment
of distributions over domains that are more general than the integers.

Fortunately, we can use distributions over the integers to get acquainted with the
basic ingredients in the definition of a measure. The archetype of a measure on the
integers is the counting measure, which reports the number of points in a set (see
Example 1.1). From this example, we can identify some intuitive properties that all
measures should share.

Measures are defined on sets

What kind of function is the counting measure? After a moment of thought, we realize
that the counting measure reports the number of points in a set of integers. That is,
we have defined #A for a set A C Z. In contrast, it does not make any sense to talk
about the number of points in an individual integer a € Z, even though we can talk
about the number of points in the singleton set {a}. In other words, the domain of the
counting measure # on the integers is the power set % (Z), which contains all subsets
of integers.
This innocuous observation points to a central idea in measure theory:

A measure is a function, defined on sets, that reports the amount of mass carried by
each set.

Different measures describe different ways to assign mass to sets. In the subsequent
lectures, we will refine this idea in an essential way.

Aside: Although a measure is defined on subsets of the domain, it may not be
defined on every subset. This issue is truly fundamental, but we can ignore it until
the next lecture.

Measures take positive values, which may be infinite

What is the range of the counting measure? It is very easy to see that the cardinality of
a set of integers may take any value in Z, U {+o0}, the set of positive integers together
with +o0o. By consideration of our other examples (physical mass, probability), we
quickly realize that it is too restrictive to require a measure to take integer values.
From these observations, we extract several conclusions. First, a measure should
assign a positive amount of mass to a set. Second, it is eminently reasonable for the
measure to assign an infinite amount of mass to some sets. In summary, the range of a

Evidently, #{a} = 1.
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measure is contained in R, := R, U {+o0} = [0, +0], the set of positive real numbers,
together with +co.

Measures are finitely additive

At this stage, we have decided that a measure is a function that maps a set to a positive
number. But what kind of function? What is the core property of the counting measure
that other measures must share?

Observe that the total number of points in a union of two disjoint sets equals the
sum of the number of points in each of the sets:

#(AUB) = (#A) + (#B) for disjoint A,B C Z. (1.3)

The formula (1.3) expresses the finite additivity of the counting measure. This is a very
natural requirement for any distribution of mass: the total mass carried by two disjoint
sets must equal the sum of the masses of the two sets.

Observe that the finite additivity property (1.3) has several formal implications.
First, it allows us to compute the number of points in a set difference:

#(A\E) = (#A) - (#E) whenECAC Z.

Second, we can extend the additivity rule to a disjoint family containing a finite number
of sets:
#(Ui=1Ai) = X1, (#A;)  for disjoint sets A; C Z. (1.4)

This identity follows by iteration of (1.3).

Measures are countably additive

Measure theory demands that we upgrade the finite additivity rule (1.4) to a stronger
property called countable additivity. For the counting measure, countable additivity is
the trivial statement that

#(U;;Ai) = Yo, (#A;) for disjoint sets A; C Z. (1.5)

Here, we may consider any countable family of disjoint sets.

We will require a similar property to hold for every measure. To see what this
looks like, consider a general mass distribution (w; : i € Z) as in Example 1.2.
For any subset A C Z, we can unambiguously define the total mass in the set via
1(A) := X ;ea wi. It is not too hard to check that

(Ui Ai) = 32, p(A;) - for disjoint sets A; C Z. (1.6)

This identity expresses the countable additivity of u. Since the integers Z are countable,
we will often invoke this relation to translate information about the mass on singleton
sets to the mass on general sets of integers.

In a wider context, countable additivity allows us to effortlessly handle sequences of
sets, to perform limiting operations, and to construct integrals. In general, if we wish
to enjoy the fruits of the countable additivity property, we must enforce it explicitly
because it does not follow from finite additivity (!). The crucial role of countable
additivity is a brilliant technical insight that powers the entire field of measure theory.

Exercise 1.4 (Countable additivity). Verify that (1.6) holds for the function p(A) = >};cp Wi
with w; > 0. Hint: A (countable) sum of positive numbers has an unambiguous value,
no matter the order of summation.

A pair (A, B) of sets is disjoint when
they have a trivial intersection:

AN B = 0. In other words, disjoint
sets do not overlap.

The symbol U denotes the union of
disjoint sets.

The words family and collection are
alternative terms for “set.” For
euphony, they are often used to refer
to a set whose elements are sets.

A family of sets is disjoint when each
pair of sets in the family is disjoint.

A set is countable if it can be placed in
one-to-one correspondence with a
subset of the natural numbers. For
example, finite sets are countable;
the integers are countable; and the
rational numbers are countable. The
real numbers are not countable.
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Measures on the integers

In the last section, we explored the properties of the counting measure, and we argued
that any distribution of mass on the integers should share similar properties. In this
section, we will give a rigorous definition of a measure, which crystallizes these ideas.

Formal definition

Let us reiterate the key properties we have uncovered. First, a measure is defined
on sets of integers, and it reports the total mass carried by a set. Second, measures
are countably additive: the measure of a countable union of disjoint sets must equal
the sum of the measures of the sets. The definition of a measure just collects these
principles.

Definition 1.5 (Measure on the integers). A measure on the integers is a positive function
defined on sets of integers:

u:P(Z) — [0,+].
A measure has two distinguished properties:

1. Empty set: y(0) = 0.
2. Countable additivity: If (A; : i € N) is a countable sequence of disjoint sets in
P(Z), then the measure of the union is the sum of the measures:

t(UA) = 22, u(Ay). (1.7)

Exercise 1.6 (Counting measure). Let us verify that Definition 1.5 is not vacuous. Show
that the counting measure # : $(Z) — [0, +o0] is a measure on the integers.

Exercise 1.7 (Set differences). Let u be a measure on the integers. Confirm that u(A\E) =
1(A) — u(E) whenE C A C Z.

Warning 1.8 (Details, details). There are a number of pitfalls that often trip students
up when they first encounter the definition of a measure:

1. Measures assign mass to sets, not to points.

2. Measures can return the value +oco.

3. Measures are assumed to be countably additive.

4. The definition of countable additivity requires disjointess of the sets.

Be careful! .

Problem 1.9 (*Finite additivity). A function g : $(Z) — [0, +o0] is finitely additive if it
satisfies

,uo(U?:1 Ai) = X1, po(A;) for all disjoint A; € Z and n € N. (1.8)

Confirm that a measure p on the integers is always finitely additive. Exhibit a finitely
additive function po with o (0) = 0 that is not a measure.

Conclude that it is necessary to assume that a function on sets is countably additive
if we wish to use this property. The proof of Proposition 1.20 gives a first hint about
why countable additivity is so valuable.



Lecture 1: Measures on the Integers 21

Aside: (Signed measures). More precisely, we have defined a positive measure on all
sets of the integers. We omit the qualification that the measure is positive because
this is the most common case by far. There is a related object, called a signed
measure, which can take negative values. In that case, we always use the word
“signed” to maintain the distinction.

1.3.2 Basic properties

Measures are required to satisfy the countable additivity property (1.7), which involves
disjoint sets. Even for sets that are not disjoint, the measure still satisfies some elegant
rules. As a first example, let us show that a measure is monotone.

Example 1.10 (Measure: Monotonicity). Let u be a measure on the integers. Consider
nested sets A C B C Z. We have the disjoint decomposition

B=AU(B\A).
Using (countable) additivity and positivity of the measure, we find that

p(B) = pu(A) + p(B\ A) > u(A).

In summary, the measure is monotone with respect to set inclusion: A C B implies that
1(A) < u(B). This fact gives additional support to the heuristic that measures model
distributions of mass. If you enlarge a set, the amount of mass that it carries can only
increase. .

Exercise 1.11 (Measure: Properties). Let i be a measure on the integers. Prove the following
claims.

1. Inclusion—exclusion: For all sets A,B C Z,

u(AUB) + u(ANB) = u(A) + u(B).

What happens when B C A?
2. Countable subadditivity: Consider a countable sequence (A; : i € N) of sets of
integers, not necessarily disjoint. Show that

p(UZ A < 2325 m(A). (1.9)
Hint: Reason about the increasing sets B, := [JI; A; for n € N.

You may find that Venn diagrams are helpful here. In each case, the key idea is to
rewrite a set as the disjoint union of two or more subsets.

Exercise 1.12 (Measure: Monotone limits). Let 1 be a measure on the integers. Verify that
the measure interacts well with monotone limits.

1. Increasing limits: For an increasing sequence A; C A; C A3 C - - C Z, show that
p(UZ1 A) = limi e p(A;).

2. Decreasing limits: For a decreasing sequence Z 2 A; 2 Ay 2 A3 2 - - -, show that
p( M52y Ar) = limjeo (A;),

provided that p(A;) < +oo for some index i. (*) Give an example to show that the
statement may fail without the qualification.
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Finite measures

It is useful to make a distinction among measures that distribute a finite amount of
mass and measures that distribute an infinite amount of mass.

Definition 1.13 (Finite measure). Let u be a measure on the integers. We say that p is
a finite measure if the total mass p(Z) < +co. Otherwise, u is not finite.

We will encounter examples of finite and non-finite measures in the next section.

Livestock

You cannot run a ranch without any cattle. Likewise, you need to become acquainted
with examples of measures if you want to develop an operational understanding of
measure theory. Furthermore, you need to become familiar with the methods for
transforming measures to obtain new measures.

Basic examples
Here are some of the basic classes of measures on the integers.

Example 1.14 (Dirac measure). Let us exhibit a family of measures that are simple but
very important. For a point k € Z, the Dirac measure 0y is defined for each set A C Z
via the rule
1, keA
Ok (A) :=1a(k) := (1.10)
((A) = ak) =
The measure 6y is often called the point mass at k. We illustrate 6y as a “spike” at the
point k with height 1. The Dirac measure is obviously a finite measure. .

Exercise 1.15 (Weights and measures). Consider a sequence (w; : i € Z) of positive
numbers that may be infinite; that is, w; € [0, +oo] for each i. Define

p(A) = ZieA w; forAC Z.

Verify that p is a measure on the integers. Deduce that p is the unique measure on the
integers with u({i}) = w; for each i. Under what conditions is u a finite measure?

Measures from measures
Next, let us explore some of the transformation rules that produce new measures from
existing measures.

Exercise 1.16 (Restriction of measures). Let 1 be a measure on the integers, and fix a set
E C Z. We can define the restriction of the measure p to the set E via

v(A) := w(ANE) forAcC Z.

Show that v is a measure. In what circumstances is v a finite measure?

Example 1.17 (Positive linear combinations). A measure on the integers is a particular type
of function that takes extended real values. As a consequence, we can scale a measure
by a positive number, and we can add measures. For instance, if g, v are measures
on the integers and a, f € R, are positive numbers, then we can define the measure
ap + Bv via the rule

(ap+ Bv)(A) :=au(A) + pv(A) forallAC Z.

“Haste still pays haste, and leisure

answers leisure, / Like doth quit like,

and measure still for measure.”
—William Shakespeare
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For example, # + &y is a measure (what is it?). More generally, we can form a positive
linear combination of (a finite number of) measures. .

Example 118 (*Mapping). Another way to construct new measures is via mapping. Let u
be a measure on the integers, and let f : Z — Z be a function. Then we can define a
measure v, called the push-forward of the measure u by the function f:

v(A) := u(f1(A)) foreachAC Z. (1.11)

We have written f~1(A) := {k € Z : f(k) € A} for the preimage of the function. It is
common to denote the push-forward measure as v = f. . .

Exercise 1.19 (*Preimages and mapping). Let f : Z — Z be a function. Show that the
preimage of a union is the union of the preimages:

F Y UiaAi) = Uje f71(A;) where A; € Z foreachii € I.

This statement is true for every index set . In fact, it is valid for all functions f,
regardless of the domain and codomain.

Deduce that (1.11) defines a measure. Compute f, 8 and f.#. Are there situations
where you can simplify the formulas?

Specifying a measure on the integers

What information do we need to completely describe a measure on the integers? A
priori, to specify a measure, we need to provide a rule that delivers the value of the
measure on every subset of integers. In some cases, it is natural to define the measure
directly on subsets (e.g., the counting measure or the Dirac measure). In other cases,
it may be more productive to pursue other representations.

We have already encountered a fully general construction of a measure on the
integers in Exercise 1.15. Indeed, we have the following converse result.

Proposition 1.20 (Integer measures: Characterization). Every measure p on the integers can
be written uniquely in the form p(A) = ;- w; where the weights w; € [0, +oo].

Proof. Define w; := u({i}) for each i € Z. For each subset A C Z, we can evidently
write A = (J;ep {i}. By countable additivity of the measure p, we have the identity

1(A) = Xiea p({i}) = Zjea wi- n

When we study measures on more general domains, however, we may lack an
analog of Proposition 1.20. For instance, when the domain is uncountable, we cannot
decompose a set into a countable union of singleton sets as we did in the proof. In
these situations, we need to find more flexible classes of sets that we can use as building
blocks.

Let us see how we might design other kinds of representations for measures in
the present context. Suppose that we knew the measure of every interval (j, k] N Z
where j, k € Z. It seems as if this data should be adequate to determine the measure
of every set of integers. This intuition is correct.

There is a separate concern, however, that the measures of intervals need to be
self-consistent. For instance, we certainly cannot have p({0}) = 2 and u({0,1}) = 1.
For finite measure on the integers, there is an easy way to guarantee consistency by
working with the distribution function of the measure.
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Definition 1.21 (Distribution function: Integer measure). Let i be a finite measure on
the integers. The (cumulative) distribution function (abbreviated cdf or df) of the
measure is defined as

F(k) := u((=o0,klNZ) forkeZ.

Distribution functions are useful tools for probability theory. We will spend more
time with them later on. For now, let us present some results, which state that a
distribution function characterizes a measure.

Proposition 1.22 (Distribution function on integers: Properties). Let F : Z — R, be the
distribution function of a finite measure u on the integers. Define M := u(Z) < +oo.
Then F enjoys two properties:

1. Increasing: If j < k, then F(j) < F(k).
2. Asymptotic limits: We have limy|_o, F(k) = 0 and limyp,o F(k) = M.
Exercise 1.23 (Distribution function on integers). Prove Proposition 1.22.

Remarkably, the converse is also true. Any function on the integers with these two
properties is the distribution function of a unique finite measure.

Theorem 1.24 (Distribution function on integers = finite integer measure). Let F : Z — R,
be a function that satisfies Proposition 1.22(1)—(2). Then there is a unique finite
measure p on the integers with

u((j,klNZ)=F(k)-F(j) forall j, k € Zwithj < k.

Proof. Define w; := F(i) — F(i — 1) for each i € Z. Since F is increasing and finite,
the weights w; are positive. Construct the function

w(A) = ZieA w; forallAC Z.
By a telescope, this function has the advertised property:

. k . . . .
w((j,klnz) = Zi:m w; = F(k) — F(j) for j, k € Z with j < k.
Taking limits as j — —co and k — 400, we quickly determine that the total mass
U(Z) = Y ez Wi = M < +co. According to Exercise 1.15, the function u is indeed a
finite measure, which is uniquely determined by F. [ |

Problem 1.25 (*Discrete distribution functions). A measure p on the integers is locally finite
if u({i}) < +oo for each i € Z. Show that locally finite measures on the integers are
in one-to-one correspondence with the class of increasing functions F : Z — R that
satisfy F(0) = 0.

Problems

Exercise 1.26 (Preimage: Set operations). Let f : X — Y be a function. The preimage of a
subset of the codomain is defined as

fIB):={xeX:f(x)eB}CX forallBCY.
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1. Show that the preimage of a complement is the complement of the preimage:
B = (f71B)"

The complement of a subset of a domain is defined with respect to the domain.
For example, if B C Y, then B := Y \ B.

2. Verify that the preimage f~! distributes over unions, intersections, and set
differences. For example,

fYBUCQ =fYB)UfI(C) forallB,CCY.

3. For functions f and g with compatible domains, confirm that (f o g)~! =
-1, f-1
g of.

Notes

The material in this lecture is standard, but it is not very common to emphasize
measures on the integers because there are more elementary ways to present these
ideas. We have chosen this introduction to help build intuition for the concept of a
measure in a concrete setting where there are no technicalities.
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\ 2. Abstract Measure Spaces

“[Abstract art is] a product of the untalented, sold by the unprincipled to the utterly
bewildered.”

—Al Capp

We introduced the concept of a measure in the friendly territory of the integers.
This concrete setting helps us visualize a distribution of mass and intuit some of the
properties that a distribution of mass should have.

But the ambitious reader may wish to distribute mass over domains that are more
general than the integers (Z). The most important case is the real line (R). Other
related examples include the plane (R2) and ordinary space (R3). Later, when we
enter into probability theory, we will want to assign likelihoods to the outcomes of
general probability experiments (e.g., coins, dice, card games, the Kentucky Derby...).

Although mathematicians are sometime accused of an excessive love of abstraction,
these examples intimate that we really do need to consider distributions of mass over
general domains. Abstraction allows us to isolate what is truly essential. We will see
the power of this approach in the next lecture when we discuss measures on the real
line. Later, it will provide a clean setting for developing probability theory.

The main goal of this lecture is to introduce a foundational concept from measure
theory, the notion of a g-algebra of sets. After exploring this important idea, we will
give a general definition of a measure and present some examples. We dedicate the
next lecture to the study of measures on the real line.

Measurable sets

One of the core ideas behind measure theory is that we assign mass to subsets of the
domain, rather than to points. This raises the question: Which subsets?

Why is this an issue?

We ducked the question when we introduced measures on the integers Z. Indeed,
we defined these measures on the power set 9 (Z), which contains all subsets of
the integers. This approach is successful because the integers compose a countable
set, and so every subset of Z is also countable. Therefore, we can use countable
additivity to define a measure on singleton sets and to extend it to all subsets. (See
Proposition 1.20.)

This program crashes when we try to define measures on uncountable domains,
such as the real line R. Roughly speaking, there is no way to break down an arbitrary
subset of the real line as a countable union of “nice” subsets. As a consequence, we
cannot hope to define a measure on “nice” subsets and extend it to all subsets via
countable additivity.

Agenda:

Measurable sets
Sigma-algebras
Measurable spaces
Measure spaces
Examples

How to specify a measure

oSOV AWN -

Recall that a countable set is in
one-to-one correspondence with a
subset of the natural numbers. An
uncountable set is not countable.
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The difficulty is both serious and inexorable. The essential example of a distribution
of mass on the real line is a uniform distribution. Under the uniform distribution,
the mass of each interval is proportional to its length. In the late 19th century,
mathematicians sought a way to define the “length” of an arbitrary subset of the real
line. After many failed attempts, they eventually realized that there is no consistent
definition of “length” that is valid for every subset of the real line. Shockingly, we
cannot break down a general set into pieces that have well-defined lengths. The field
of measure theory was invented at the outset of the 20th century as a way to resolve
the concept of length. We will discuss the history and the details in the next lecture.

For now, suppose that we want to define a distribution of mass over a domain. We
have argued that a measure is a countably additive function that reports the amount of
mass carried by subsets of the domain.

The key idea is that we should only try to define a measure on a “nice” class of
subsets of the domain, called measurable sets.

Only by ratcheting down our expectations can we design a successful theory.

Measurable sets

Let X be an abstract set, called the domain, whose elements are called points. The
domain is often a familiar environment (such as Z or R or R™), but measure theory
does not require the domain to have any extra structure. A measure will describe a
distribution of mass over the domain X.

To that end, we equip the domain with a collection & C % (X) of subsets, called
measurable sets. Measures only assign mass to measurable sets; other subsets of the
domain are out of bounds. The family & of measurable sets cannot be totally arbitrary,
or else we cannot hope to define measures on the family &. Rather, the family & must
be stable under certain set operations. These set operations ensure that it makes sense
to define a countably additive function on F.

Measurable spaces

In this section, we rigorously define the concept of a measurable space, the arena where
measure theory takes place. A measurable space involves a domain and a collection of
measurable sets. Our first task is to develop the mathematical framework for describing
the measurable sets.

Sigma-algebras

Let us introduce the key definition underlying the construction of measurable sets. This
object is called a o-algebra. It provides the scaffolding for abstract measure theory,
and we cannot overstate its importance for this class.

Definition 2.1 (Sigma-algebra of sets). Let X be a domain. A family ¥ C P(X) of
subsets of X is called a o-algebra on the domain X if it satisfies three properties.

1. Nothing and everything: The empty set () and the domain X belong to F.
2. Complements: If a set A € F, then its complement A® := X \ A belongs to F.
3. Countable unions and intersections: The family is stable under countable unions

“If at first you don’t succeed, lower
your standards.”
—Tommy Boy, 1995

In this context, some authors use the
word closed instead of the word stable.

The prefix 0 means “countable.”

Some authors use the term o-field
instead of o-algebra. The latter is
more better; see Problem 2.49.
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and intersections:

A; e Ffori e N impliesthat U2, A;€F and (2, A €F.

Exercise 2.2 (Sigma-algebra: Minimal definition). Some of the requirements in Definition 2.1
are redundant. Which ones can be removed?

Here are some particular examples of o-algebras.

Example 2.3 (Trivial o-algebra). The family F = {0, X} is a o-algebra on X. .
Example 2.4 (Almost trivial o-algebra). Fix a set A C X. Then ¥ = {0,A, A, X} is a
o-algebra on X. .
Example 2.5 (Complete o-algebra). The power set *(X) is a g-algebra on X. .

As we will see, the complete o-algebra appears in the construction of measures on
the integers. We will also encounter the Borel o-algebra, a more complicated object
that is essential for constructing measures on the real line.

Aside: Why not allow uncountable unions? That is a bridge too far. If we required
the measurable sets to be stable under uncountable unions, then we might end
up with so many measurable sets that we could not define measures consistently.
Sigma-algebras are designed to cooperate with the countable additivity of measures.

Algebraic properties of sigma-algebras

By construction, a g-algebra is stable under complements, countable unions, and
countable intersections. We can deduce some additional stability properties directly
from the definition.

Exercise 2.6 (Sigma-algebra: Differences). Show that a o-algebra is stable under set
differences. For sets A, B in the o-algebra, the sets A\ B and B \ A and AAB also belong
to the o-algebra.

The intersection of two o-algebras is always a o-algebra. This fact and its
generalizations play an important role in constructions of o-algebras.

Exercise 2.7 (Sigma-algebra: Intersections). Let % and ¢ be og-algebras on X. Show that
F N € is also a o-algebra on X. Argue that the intersection of an arbitrary family of
o-algebras on X remains a o-algebra.

Exercise 2.8 (Sigma-algebra: Restriction). Let & be a g-algebra on a domain X, and let
E € F be an element of the g-algebra. Define the restriction of the g-algebra to E:

Fle:={ENF:FeF}.

Show that F|g is a o-algebra on E.

Generation of sigma-algebras

A collection of subsets of the domain may or may not be a o-algebra. Nevertheless, we
can always construct a minimal o-algebra that contains the collection.

Conceptually, it seems that we might want to repeatedly add subsets that are
missing and stop as soon as arrive at a g-algebra. This approach, however, is hard
to make rigorous. Instead, we will begin with the complete o-algebra and remove
as many subsets as possible, keeping the initial family of subsets and retaining the
o-algebra property.

The intersection of two collections of
sets contains exactly those sets that
appear in both collections.
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Definition 2.9 (o-algebra: Generation). Let S C 9 (X) be a collection of subsets of X.
The family § generates a unique minimal o-algebra:

g(8;X) := {A C X : A belongs to every g-algebra & on X with § C OJ}

We often call o(8; X) the smallest o-algebra on X that contains §. The domain X is
omitted from the notation when it is clear from context: g(8) := a(S; X).

It remains to verify that Definition 2.9 actually produces a minimal o-algebra.

Proposition 2.10 (Generated o-algebras). Let S C 9 (X) be a collection of subsets of X.
Then o(S8; X) is a o-algebra on X. Moreover, if § C & for another g-algebra & on X,
then 0(8;X) C F.

Proof. We can interpret the definition of the generated o-algebra g(S;X) as the
intersection of all o-algebras on X that contain the distinguished collection § of sets.
The intersection is nonempty because the power set 2(X) is a o-algebra that contains
§. By Exercise 2.7, the intersection of o-algebras remains a g-algebra.

Finally, since 0(8) is the intersection of all o-algebras that contain S, it must be
the case that ¢ (8) is a subset of any particular o-algebra that contains §. [ |

Here are some basic examples of generated o-algebras.

Example 2.11 (Almost trivial o-algebra). Let A be a subset of the domain X. Then
o({A}) ={0,A A5, X}.

To see why, observe that this is the minimal list of sets that must appear in o ({A}).
Indeed, every o-algebra contains nothing (@) and everything (X). The generated
o-algebra contains the set A, so it also contains the complement A. These four sets
already compose a o-algebra, so they form the smallest o-algebra generated by A. =

Exercise 2.12 (Small g-algebras). Let A, B C X. What is o ({A, B})?

Exercise 2.13 (Countable domains). Let X be a countable domain. Show that the singleton
sets generate the complete g-algebra. That is, o ({{x} : x € X}) = 2(X).

Problem 2.14 (**Uncountable domains). Let X be an uncountable domain. Show that the
singleton sets do not generate the complete g-algebra. That is, o({{x} : x € X}) &
P(X).

Aside: The minimality property of a generated o-algebra also provides a versatile
theoretical tool. Later on, we will use this fact to verify that particular set collections
are o-algebras. This argument arises in the development of the integral and again
in the construction of product measures.

Borel sigma-algebras

Generated o-algebras are a powerful mechanism for building classes of measurable
sets that contain specific families of “elementary sets.” An important example is the
Borel g-algebra on the real line, which will play a central role in the definition of
measures on the real line.

Example 2.15 (Borel g-algebra on R). On the real line R, we may regard open intervals
(a, b) as a class of elementary sets. We define the Borel o-algebra on R as

B(R) :=0({(a,b) : a<banda,b e R}).

Similar constructions arise
throughout mathematics. For
example, the span of a set of vectors
is the smallest linear subspace that
contains those vectors. Likewise, the
convex hull is the smallest convex set
that contains a given set.
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As it happens, the Borel g-algebra also contains all open subsets of the real line because
every open set in the line is a countable union of open intervals. .

We can extend this example to a much wider setting. Here are two cases of
particular importance in probability theory.

Example 2.16 (Borel o-algebra on R"). In the Euclidean space R", we may regard open
Euclidean balls as a class of elementary sets. For reference, the open Euclidean balls
are the sets

D(x;r) :={y e R" : |y = xll2 <r}.

We define the Borel o-algebra on R" as
B(R"™) := c({D(x;7) : x € R" and r > 0}),

As before, the Borel g-algebra on R” contains all the open subsets of R". .

Example 2.17 (*Borel o-algebra on a metric space). Let (X, dist) be a separable metric space.
The Borel g-algebra on X is defined as

RB(X) := c({D(x;7r) : x € Xand r > 0}),

where the open ball D(x;7) := {y € X : dist(y, x) < r}. As in the previous examples,
the Borel o-algebra on X contains all the open subsets of X. This claim requires the
separability assumption. .

Measurable spaces

To summarize, we have introduced the concept of a g-algebra, which is a collection
of sets that includes the empty set and that is stable under complements, countable
unions, and countable intersections. We may now describe the stage where measure
theory plays out.

Definition 2.18 (Measurable space). Let X be a domain equipped with a g-algebra F.
The pair (X, F) is called a measurable space. In this context, the elements of F are
called measurable sets or F-measurable sets.

Here are some simple examples of measurable spaces that frequently arise.

Example 2.19 (The trivial measurable space). The pair (X, {0, X}) is a measurable space.
The only measurable sets are the empty set and the whole domain. As we will see, this
trivial example plays a role in probability theory. .

Example 2.20 (Finite measurable spaces). Let X be a finite set. Then (X, (X)) is a
measurable space. .

Example 2.21 (A countable measurable space). The space (Z, %(Z)) is a measurable space.
The measurable sets consist of all subsets of the integers. This is the measurable space
where we define measures on the integers, as in Lecture 1. .

Example 2.22 (A multivariate measurable space). The space (N?, % (N?)) is a measurable
space. The measurable sets consist of all subsets of pairs of natural numbers. .

Example 2.23 (The complete measurable space). In general, the space (X, (X)) is a
measurable space where every subset of X is measurable. As we have seen, this
construction is useful when X is countable. On the other hand, when X is uncountable,
the power set contains too many measurable sets for us to build a successful theory. =

Recall that ||-||2 is the ordinary
Euclidean norm on R”.

A separable metric space contains a
countable subset that is dense in the
whole space.
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Example 2.24 (The real line with its Borel sets). The pair (R, %(R)) is a measurable space.

This construction will allow us to rigorously define distributions of mass over the real
line, including the uniform distribution of mass. We will wait until the next lecture to
elaborate on this example. .

Warning 2.25 (“Measurable”). The data of a measurable space does not include a
measure. In a moment, we will define a measure to be a type of function whose
domain consists of measurable sets. In other words, the term “measurable” refers
to a potentiality. -

Abstract measures

We may now introduce the notion of an abstract measure, which is a function that reports
the mass of a measurable set. This section presents the formal definition, recounts the
basic properties and examples, and introduces some additional terminology.

Measures

To reiterate, a measure is a function that reports the amount of mass carried by each
measurable set. As in the case of measures on the integers, we require that the measure
is countably additive.

Definition 2.26 (Measure). Let (X, F) be a measurable space. A (countably additive)
measure is a function u : F — [0, +oo] that satisfies two properties:

1. Empty set: u(0) = 0.
2. Countable additivity: Let (A; € F : i € N) be a disjoint sequence of measurable
sets. Then

N(Uzl Ai) = X2, p(Ay). (2.1)

Definition 2.27 (Measure space). A measure space is a triple (X, %, u) where X is a
domain, ¥ is a g-algebra on X, and p is a measure on F.

We have already seen the importance of countable additivity in the construction of
measures on the integers (Proposition 1.20). Countable additivity will be critical for
taking limits and for designing a theory of integration.

Problem 2.28 (*Finite additivity). Let (X, %) be a measurable space. A function g : F —
[0, +o0] is finitely additive if it satisfies

,uo(U?:l Ai) = X, po(A;) for all disjoint A; € F and n € N. (2.2)

Confirm that a measure u on (X, ¥) is always finitely additive.
Show that the finite additivity property (2.2) follows from the simpler condition

o(AUB) = ug(A) + uo(B) for disjoint A,B € F.

Why is this assumption inadequate to establish countable addivity (2.1)?
Assume that X is infinite. Exhibit a finitely additive function po with po(0) =0

that is not a measure. Thus, we must enforce countable additivity if we want to use it.

I Warning: See Warning 1.8! =

Warning: In contrast to a
measurable space, the data in a
measure space includes a
measure. .
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Aside: Why not uncountable additivity? You cannot add up an uncountable number
of positive quantities unless there are only countably many nonzero terms, so there
is no sensible notion of uncountable additivity.

2.3.2 Basic properties

Abstract measures satisfy the same properties that we established for integer measures.
The proofs are exactly the same. Let us set these statements down for reference.

Proposition 2.29 (Measure: Properties). Let (X, F, 1) be a measure space.

1. Monotonicity: For nested F-measurable sets A C B, we have u(A) < u(B).
2. Inclusion—exclusion: For all measurable sets A,B € %,

u(AUB) + u(ANB) = u(A) + u(B).

3. Countable subadditivity: Consider a countable sequence (A; : i € N) of measurable
sets, not necessarily disjoint. Then

p(UZ A < 2725 p(A). (2.3)
Proposition 2.30 (Measure: Monotone limits). Let (X, &, ) be a measure space.

1. Increasing limits: For an increasing sequence A; € Ay, € A3 C --- of measurable
sets,
p( U2y Ai) = limje0 p(A)).
2. Decreasing limits: For a decreasing sequence A; 2 A, 2 Az 2 - - - of measurable
sets,
p(N21 A) = limie p(A),

provided that ((A;) < +co for some index i.

Problem 2.31 (*Measure: Continuity at zero). Let (X, ¥) be a measurable space, and let
o : F — [0,+c0] be a finitely additive function, as in (2.2). Prove that yg is a
measure if and only if yo satisfies the condition

to(A;) L0 when A; |0 and po(A;) < +oo for some i.

That is to say, a measure is continuous at zero. This property may feel more intuitive
than countable additivity.

2.3.3 Finite measures
Measures that we encounter in everyday life have either a finite amount of mass, or
they have an infinite amount of mass that is nicely distributed. We will give some
examples in the next subsection.

Definition 2.32 (Finite; o-finite). Let (X, %, ) be a measure space.

* Finite measure: If the total mass pu(X) < +oo, then we say that y is a finite
measure.

* Sigma-finite measure: We say that u is a o-finite measure if we can cover X by
countably many measurable sets A;, each with finite measure. That is,

U2 Ai=X and p(A;) <+oco foreachi e N.
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There is a special case of particular importance for us.

Definition 2.33 (Probability measure). A finite measure u with total mass p(X) = 1 is
called a probability measure. It describes a distribution of probability mass over the
domain X.

Aside: Measures that are not o-finite can exhibit counterintuitive behavior. We
will often exclude them from consideration.

2.3.4 Examples of measures
We may now explore some of the basic examples of measures.

Example 2.34 (Dirac measure). Let (X, F) be a measurable space. Let t € X be a fixed
point. The Dirac measure concentrated at ¢ is given by

1, teA;
0:(A) := 1a(2) := forA e &F.
(A) = 1a(0) {0, o for

This measure is also called the point mass at t. Clearly, 6; is a probability measure. =

Example 2.35 (Counting measure). Let (X, %) be a measurable space. The counting
measure # is defined as

) for A e 7.
+00, otherwise

card(A), A is finite;

#A = { ()
This measure reports the number of points in a measurable set. If X is finite, then # is
a finite measure. If X is countable, then # is a o-finite measure. On the other hand, if
X is uncountable, then # is not o-finite. .

Example 2.36 (Uniform measure on a finite set). Let X be a finite set. Then (X, (X)) is a
measurable space. We can define a measure u where

#A
w(A) = X for each A C X.

This is called the uniform measure on X. It is clearly a probability measure. .

Example 2.37 (Measures on the integers). Consider the measurable space (Z, %(Z)). Fix
a sequence (w; : i € N) of positive numbers that may be infinite. We can define a
measure

w(A) = ZieA w; foreachAC Z.

In other words, we add up the masses w; for the indices i that appear in the set A. The
measure p is finite if and only if };.7 w; < +00. The measure u is o-finite if and only
if w; < +co for all i. In what circumstances is p a probability measure? .

Exercise 2.38 (Measures on pairs of integers). Consider the measurable space (Z2, %(Z?)).
Show that measures are in one-to-one correspondence with functions w : 72 —
[0, +oo].

We can also define measures on domains with smaller o-algebras. Let us give an
explicit example to show that it is not necessary for a measure to be defined on all
subsets of a domain.
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Example 2.39 (Measures on the trivial o-algebra). Consider a domain X equipped with the
trivial g-algebra % = {0, X}. There is a one-parameter family of measures defined on
this g-algebra. For a positive @ € [0, +co], these measures take the form

w(@)=0 and p(X)=a.

You can easily check that y is countably additive on &. It is not defined on any
nontrivial subset of the domain. .

Exercise 2.40 (Measures on small o-algebras). Consider the domain X equipped with the
almost trivial g-algebra F := {0, A, A%, X} for a set A C X. Describe all of the measures
defined on the measurable space (X, F).

Now, consider the o-algebra & := o({A, B}) generated by two sets A,B C X.
Describe all of the measures defined on (X, %). For simplicity, you may want to
consider the case of finite measures.

2.3.5 Measures from measures

As before, we can obtain new measures from old measures via the following transfor-
mations.

Exercise 2.41 (Restriction). Let (X, %, i) be a measure space, and let E be a measurable
set. Define the restriction of u to E:

v(A) := u(ANE) for measurable A € F.

Confirm that the restriction is a measure on (X, F).
Exercise 2.42 (Positive combinations). Let (X, %) be a measurable space equipped with
two measures u and v. For positive scalars a, f > 0, define the function

(ap+ pv)(A) :== au(A) + Bpv(B) for measurable A € F.

Check that the positive combination is a measure on (X, F).

Aside: You may notice that the push-forward f,py has disappeared from this list.
The reason is that the construction requires further assumptions on the function f.
We will turn back to this matter when we develop a theory of integration.

2.3.6 Negligible sets and almost-everywhere sets

We continue with a few more general definitions about measures. Let us introduce
some important terminology for sets that carry no mass or whose complement carries

no mass.
Definition 2.43 (Negligible; almost everywhere). Let (X, F, 1) be a measure space. The term null set is more common,
but less informative, than the term
* Negligible sets: A measurable set A is called a negligible set for the measure negligible set.
when u(A) =0.
* Almost everywhere sets: We say that a measurable set A is p-almost everywhere .
hen i I . ligibl - u(AS) = 0. Y i1l of h Warning: These concepts
when its complement is a p-negligible set: p(A®) = 0. You will often see the e ot e e
abbreviations y-a.e. or just a.e.

Let us mention one of the major use cases for this definition. Consider a measure
and two functions f, g : X — Y. We say that f and g are equal u-almost everywhere if

p({x € X: f(x) # g(x)}) = 0.
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As we will see, functions that are equal almost everywhere often behave as if they were
the same function. The careful reader will realize that we must make further demands
on the functions f, g to be sure that the points where the functions differ compose a
measurable set. We will return to this issue when we develop a theory of integration.

Exercise 2.44 (Dirac almost everywhere). Consider the measurable space (Z,%(Z)). Let
0o be a Dirac measure at zero. Describe all negligible sets for §y. Describe all the
almost everywhere sets for 9.

Exercise 2.45 (Negligible sets: Countable union). For each i € N, let A; be a negligible set
for a measure p. Show that (J;2; A; is a negligible set for u.

Atoms

As we have seen, measures may concentrate mass on a point. There is special
terminology for describing this situation.

Definition 2.46 (Atom). Let (X, &, u) be a measure space. We say that y has an atom
at the point x € X when p({x}) > 0.

When we illustrate a measure that has an atom at a point, we use a spike to indicate
the location and strength of the atom. All of the measures we have considered so far
have atoms.

In the next lecture, we will introduce measures on the real line. For example, the
Lebesgue measure models a uniform distribution of mass, with no mass concentrated
at any point. In other words, the Lebesgue measure has no atoms, in contrast to the
examples we have studied so far.

How do we construct a measure?

What information do we need to completely describe a measure? As before, we may
give a rule that specifies the value of the measure on every measurable set. This is
straightforward for examples like the Dirac measure or the counting measure. Beyond
that, to define a measure on a countable domain, we can enumerate the values that
the measure assigns to each singleton set and invoke countable additivity to extend
the measure to all subsets. (See Proposition 1.20.)

In more general measurable spaces, however, life is hard. The measurable sets may
be very complicated, and they may not have any explicit description. What do we do
in these cases?

In many situations, we can begin with a small family of elementary sets that are easy
to describe (e.g., open intervals of the real line). The measurable sets are obtained as
the smallest o-algebra that contains all of the elementary sets. We can try to construct
a measure by specifying its value on elementary sets (e.g., the lengths of the intervals)
and then extending the partial definition to the entire family of measurable sets. To
execute this program, we must also ensure that the partial data is consistent with a
unique measure.

This approach is called measure extension. Appendix A presents the statement and
proof of the Hahn-Kolmogorov theorem, a foundational result on measure extension.
This theorem is the main tool we use to verify that there exist measures that meet
various desiderata. Measure extension theorems are rarely needed for workaday
applications of measure theory. Theoretically minded readers will want to understand
how measures are constructed, but most users will not need to explore the guts of this
machinery.
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Problems

Exercise 2.47 (Indicators). Subsets of a domain are in one-to-one correspondence with
indicator functions. Each A C X is associated with the o-1 indicator function
1a : X > R defined by 15(x) = 1 when x € A and 1a(x) = 0 when x ¢ A. Set
operations have algebraic analogs for indicator functions. This observation is useful
because it is often easier to reason about indicators than about sets.

1. Show that 1png = min{1a, 15} = 1alg. Find similar formulas that express the
union, the complement with respect to X, the set difference, and the symmetric
difference in terms of indicators. How can you represent subset and superset
relations with indicators?

2. (Inclusion—exclusion). For arbitrary sets A, B C X, use indicator calculus to show
that

Taus = 1a+1p — Tans.

3. (Deep inclusion—exclusion). For arbitrary sets A;, ..., A, C X, show that

Ln A = Zn (-1)F*! Z Ta; ne-nA;, -
=171 k=1 i1 <ip<---<ik 1 'k

In the sum, each index i; takes values 1,..., n, and the indices iy, iy, ..., i; are
strictly increasing. Hint: Take the complement of the union.
4. (Setlimits). For i € N, let A; C R be sets. Define the set limit superior and limit
inferior as
A :=lim SUp;_, 00 A via 1z = limsup;_,, 1a;
A :=liminf; ,o A; via 1a = liminf; o 1a;.
Using indicator calculus, express the set limits using only set operations. One of
these sets is interpreted as “points that appear in an infinite number of the sets
A;” and one of these sets is interpreted as “points that eventually appear in a set
A;.” Which is which?
5. Use indicator calculus to give short proofs of the following set identities. For all
sets A,B, E, F,
(AUB)A(EUF) € (AAE) U (BAF);
(ANB)A(ENF) C (AAE) U (BAF).

These identities play a role in the proof of the Hahn-Kolmogorov theorem
(Theorem A.12).

Exercise 2.48 (More inclusion—exclusion). The simple inclusion-exclusion rule for two sets
extends to a more general result. This fact has many applications in set theory and
combinatorics.

1. Let (X, %, u) be a measure space. For measurable sets A;,..., A, € ¥, each
with finite measure, establish the general inclusion—exclusion principle:

n
W(UBA) = D m(A) = D il NA)
+Zil<i2<i3 p(Ay N NA) — -+ (_1)n+1H(A1 A NAy).

Each of the sums ranges over indices i; = 1, ..., n where the indices iy, i, ..., ik
are strictly increasing. Hint: You can prove this by induction on 7.
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2. (*Valuation). Alternatively, define the function (1) := u(A) for measurable
sets A € F. Argue that y extends to a linear functional on the linear space
lin{la : A € ¥}, which is a subset of the real-valued functions on X. This is not
easy; see Section 5.5.

3. (Keys). At a party, each of n guests gives their car keys to the host (don’t drink
and drive!). How many ways can the keys be returned so that no guest receives
the correct set of keys? Can you make an approximation to simplify the result?
Hint: Choose the sets A; carefully, and use inclusion—exclusion for the counting
measure.

Exercise 2.49 (Setalgebras). In this problem, we explore another important set-theoretic
notion. Let X be a domain. A family s C P (X) of subsets of X is called a set algebra
on the domain X if it satisfies three properties:

1. Nothing and everything: The empty set () and the domain X belong to of.
2. Complements: If a set A € o, then its complement A := X \ A belongs to .
3. Unions and intersections: If A, B € of, then the union and intersection belong to :

AUBed and ANBEe 4.

A o-algebra upgrades the demands on an algebra by requiring stability under countable
unions and intersections.

1. Some of the requirements in the definition of an algebra are redundant. Which
ones can be removed?

2. Show that an algebra is stable under finite unions and intersections.

3. Show that a set algebra is stable under set differences.

4. Show that the intersection of an arbitrary family of set algebras on X remains a
set algebra on X.

5. (Generated algebras). For a family § C % (X), we can construct the smallest algebra
on X containing §:

algebra(S; X) := {A C X : A belongs to every algebra of on X with § C o}.

Show that algebra(S; X) is a well-defined set algebra.

6. (*Set algebras are algebras). As in Exercise 2.47, we can pass from the set algebra
o to a collection of indicator functions: {1 : A € d}. Equip this collection
with the multiplication operation 14 ® 1g := 1ang and the addition operation
1a @ 1p := 1asp. With these definitions, show that the indicators of a set algebra
compose an algebra of functions over the field [F,.

7. (*Algebras are not always o-algebras). Let X be an infinite set. Find an example of
an algebra on X that is not a g-algebra. Hint: One easy example is called the
co-finite algebra.

Notes

You can find the material in this lecture in any book on probability theory or measure
theory. For example, see Dudley [Dudo2] or Folland [Folgg] for a treatment as part
of a real analysis course. For a presentation with a more probabilistic flavor, see
Billingsley [Bil12], Pollard [Polo2], or Williams [Wilg1].
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3. Measures on the Real Line

“It is not length of life, but depth of life.”

—Ralph Waldo Emerson

“This report, by its very length, defends itself against the risk of being read.”

—Winston Churchill

As we have learned, a measure describes a distribution of mass over a domain. It
reports the mass that is carried by subsets of the domain. We started with the example
of a measure on the integers, which assigns mass to every subset of integers. In more
general settings, however, measures may not be defined on all subsets of the domain.
Rather, measures are only defined on a family of measurable sets. We introduced the
concept of a g-algebra to formalize the properties of a family of measurable sets. This
definition dovetails with the countable additivity property of a measure.

The reason for all of this abstraction will now become clear. In this lecture, we will
turn to the problem of defining a distribution of mass over the real line. The archetype
of a measure on the real line is the uniform measure, which assigns a “length” to
certain subsets of the real line. As it happens, we cannot give a consistent meaning to
the concept of “length” for all subsets of the real line. Therefore, we must identify a
suitable class of measurable subsets of the real line for which length is meaningful.

To begin our investigation, we will discuss some simple examples of distributions
of mass over the real line, and we will present schematics that allow us to visualize
these distributions. Afterward, we introduce the Borel class of measurable subsets
of the real line, along with the related notion of a Borel measure defined on these
sets. This discussion culminates in the construction of the Lebesgue measure, which
reports the length of every Borel-measurable set. Afterward, we present more examples
of measures on the real line and talk about how we can specify a measure using a
distribution function.

Distributions on the real line

Measure theory allows us to model distributions of mass over very general domains.
In particular, we would very much like to describe distributions of mass over the real
line. Let us give some examples of how these distributions arise naturally in geometry,
mechanics, and probability.

Example 3.1 (Uniform distribution on the real line). The uniform distribution on the real
line places mass on the entire line with a constant density of mass per unit length. We
can visualize this distribution using a schematic:

Agenda:

Distributions on the real line
Borel sets

Borel measures

Lebesgue measure

Support

Specifying a measure

oSOV AWN -
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The shading indicates that the distribution has a density, and the height of the shaded
region reflects the local density of mass at each point. Since the density of mass is
constant, the top boundary of the region is a constant function.

We will construct a measure A on certain subsets of the real line that models the
uniform distribution with a particular normalization. This measure has the distinctive
property that

A((a,b)) =|b—a| fora,be Rwitha <b.

In other words, the measure A reports the length of each open interval. More generally,
the measure A assigns a well-determined length to every one of the measurable sets.
The characteristic property of the uniform distribution on the real line is that it
is invariant under translation. If we shift the distribution to the left or right, it does
not change. Correspondingly, the length of an interval does not change if we shift the
interval. .

Example 3.2 (Mass). Consider a homogeneous metal rod with weights hanging from
the ends. We can model the rod itself as a uniform distribution of mass. (The scaling
reflects the density of the rod, which depends on whether it is made of iron, aluminum,
etc.) The weights place a positive amount of mass at specific points.

This distribution has both a continuous component (the shaded region) and a discrete
component (the spikes). A measure on the real line can handle both of these features
with grace.

We have marked the center of mass m of the system. This is the point m about
which the total torque is zero. Heuristically, the torque at the position x is the length
(x — m) of the lever arm times the “local mass” at the point x. To define the center of
mass of a general distribution, we must make sense of these concepts. To answer this
challenge, we will develop a theory of integration for general measures. .

Example 3.3 (Probability). A probabilistic experiment has a distribution of possible
outcomes, some more likely than others. Here is an anodyne example. When we install
a new light bulb, we do not know how long it will last before it burns out. There is a
strictly positive possibility that it will burn out immediately. If not, the lifetime can be
modeled by an exponential distribution. The overall distribution is neither discrete nor
continuous.

In contrast, we used a spike to
illustrate mass that is concentrated at
a point.

Mathematically, the term uniform
refers to any distribution that is
invariant under an appropriate class
of transformations.
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We can illustrate this probability distribution using a spike to represent the atom at
time zero and a shaded region to represent the density for positive times. Our theory
of integration will allow us to evaluate the expected lifetime of the lightbulb. .

Borel sets and Borel measures

In this section, we will initiate our construction of measures on the real line. The main
challenge is to identify a suitable class of measurable sets. Fortunately, we can make
short work of this task using the abstraction of a measurable space.

Intervals

At a minimum, our general definition of measures on the real line must support the
construction of a uniform measure. As we have discussed, the uniform distribution on
the real line is associated with the concept of length. We may exploit this connection
to identify a family of elementary sets that had better be measurable.

Suppose that we want to construct a measure that generalizes the length to a wide
class of sets of real numbers. Where should we start? If all is right in the world, the
measure should be defined for all open intervals. Indeed,

length(a,b) = |b —a| fora,b € Rwitha < b.

In view of this trivial observation, we may regard the open intervals as a class of
elementary sets that we absolutely cannot do without. Unfortunately, the open intervals
compose a rather small collection of sets. There are many other sets that ought to have
a well-defined length. For example, we can obviously assign a length to a finite union
of disjoint open intervals.

So what other sets should we include? This seems like a tricky matter. But we can
dispose of it efficiently by using the machinery of measurable spaces. We simply form
the minimal o-algebra that contains all of the open intervals. This is a natural setting
for defining a uniform measure on the real line.

Aside: Why focus on open intervals? We could just as well start with closed
intervals or half-open intervals. But the choice of open intervals lends itself better
to generalization, and it is consistent with definitions that we will encounter later.

The collection of Borel sets

We are now prepared to reintroduce a fundamental collection of subsets in the real
line. This class will serve as the family of measurable sets that we use to construct
measures on the real line.
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Definition 3.4 (Borel sets). We define %3(R) to be the smallest g-algebra of subsets
of R that contains all the open intervals. That is,

B(R) := 0({(a,b) CR:a,b€Randa < b}).

The sets in B(R) are called Borel-measurable sets or Borel sets in the real line.

The definition of Borel sets is not very explicit, so it is worth taking a moment to
investigate what kinds of sets are Borel.

Exercise 3.5 (Borel sets). Verify that the following sets are Borel.

* The empty set: The set () is Borel.

* Thereal line: The set R is Borel.

* Setdifferences: If A and B are Borel, then A \ B and AAB are Borel.

* Singletons: For each a € R, the set {a} is a Borel set. Hint: Represent the
singleton as a countable intersection of decreasing open intervals.

* Countable sets: Show that every countable subset of R is Borel. In particular, the
integers Z and the rationals @ are Borel sets.

* Intervals: For a, b € R, the half-open interval (a, b], the closed interval [a, b],
and the semi-infinite intervals (—o0, a] and (b, +o0) are all Borel.

* Opensets: If G is an open subset of R, then G is Borel. Hint: Every open set in R
is a countable union of open intervals.

* Closed sets: If F is a closed subset of R, then F is Borel. Hint: The complement of
a closed set is an open set.

Exercise 3.6 (Borel sets: Other generators). Definition 3.4 states that the Borel sets in the
real line are generated by the collection of finite open intervals. Show that we can
define the Borel class as the g-algebra generated by any one of the following families.

* Half-openintervals: (a, b] for a, b € R.

* Closedintervals: [a, b] for a, b € R.

* Semi-infinite open intervals: (—o0, a) for a € R.
* Semi-infinite closed intervals: (—c0, a] for a € R.

Hint: Exercise 3.5 already implies that the Borel sigma-algebra contains all of these
types of intervals. For the reverse direction, you must argue that you can represent
open intervals using countable combinations from each of these classes.

In the course of human events, practically every set of real numbers that you encounter
will be a Borel set. Nevertheless, you should keep in mind that there are (many!)
subsets of the real line that are not Borel.

Aside: The Borel sets are in one-to-one correspondence with the real numbers R.
The power set % (R), which contains all subsets of real numbers, has strictly larger
cardinality than 9% (R). Surprisingly, there is a concrete construction of a non-Borel
set, due to Lusin. There are easier, but less explicit, constructions of non-Borel sets
that require the axiom of choice; see Appendix B.

Extended Borel sets

It is often necessary to work with functions taking extended values, and this fact of life
requires us to define an appropriate class of Borel sets.

Warning: There are subsets of R

that are not Borel.
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Definition 3.7 (Extended Borel sets). We define %(R) to be the smallest o-algebra of
subsets of R that contains all the open intervals: That is,

A(R) := o({(a,b) : a,b € R}; R).

The sets in %(@) are called Borel sets in the extended real line.

Exercise 3.8 (Extended Borel sets). Confirm that {—co} and {+co} and R are extended
Borel sets. Deduce that every Borel set in %B(R) also belongs to %B(R).

Borel measures

Now that we have constructed a o-algebra of measurable sets in R, we may introduce
a class of measures on R.

Definition 3.9 (Borel measure on thereal line). Consider the measurable space (R, %(R)).
A measure u : B(R) — [0, +00] is called a Borel measure on R.

Unless otherwise noted, we always equip R with the class % ([R) of Borel measurable
sets, and all measures on R are understood to be Borel measures. We often omit the
qualification “Borel”, and we simply refer to measurable subsets of the real line and
measures on the real line.

Activity 3.10 (Borel measures). Borel measures on the real line compose a particular class
of abstract measures that has special importance. As such, Borel measures enjoy all of
the same properties as an abstract measure. This is a good time to review the general
definitions and results presented in Section 2.3. Think concretely about what these
statements mean for measures on the real line. Draw some pictures! .

Discrete Borel measures

Let us present a few simple examples of discrete Borel measures that are similar in
spirit to examples we have considered before.

Example 3.11 (Dirac measure on the real line). For a point ¢ € R, we can define the Dirac
measure 0. For each Borel set B € B(R),

1, teB;

61(B) :=1g(1) := {0 1 ¢B.

By general considerations, §; is a measure on (R, %(R)). It has an atom at ¢. .

Example 3.12 (Measure supported on the integers). Let (w; € [0,40] : i € Z) be a
sequence of positive weights. We can define a Borel measure

u(B) := ZieBmZ w; for each Borel set B C R.

This measure has an atom at each integer i where w; > 0. When restricted to subsets
of the integers, the Borel measure p coincides with a measure on the integers, as
defined in Lecture 1. Nevertheless, u is defined on the entire class of Borel subsets of
the real line, which is larger than the collection P (Z) of subsets of the integers. =

Example 3.13 (Discrete measure). We can extend Example 3.12 by considering a sequence
(w; € [0,+0] : i € 1) of positive weights indexed by a countable set |. Define a Borel
measure
= ; C
u(B) : ZieBnl w; for each Borel set B C R. (3.1)
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This measure has an atom at each point i € | where w; > 0. If a Borel measure can be
expressed in the form (3.1), we say that the measure is discrete. .

The Lebesgue measure

In the late 19th century, mathematicians began a serious attack on the following
question: “How do we define the length of a subset of the real line?” Our geometric
intuitions lead to some plausible definitions, but it turns out that these definitions are
fraught with peril. The field of measure theory was initially developed to resolve the
confusion about the meaning of the word “length.” The critical steps of this project
were completed in Henri Lebesgue’s 1902 doctoral dissertation.

We have already laid the groundwork for defining the length on Borel sets. In this
section, we will complete the construction.

The length of elementary sets

In this section, we outline some of the properties that the “length” should have. This
discussion is not rigorous because length is never defined. The formal construction of a
measure that models the length appears in the next subsection.

So, how might we assign a length to a subset of the real line? Let us start small.
Surely, the half-open interval (a, b] must have length |b — a| for all real numbers
a < b. What about more complicated sets? Consider a finite union of disjoint half-open
intervals; for example,

A= (ay, b1l U (as, by]U---U(ay b, with a; < b; < a4 for each i.

We want the length to be finitely additive, so the length of this disjoint union should
equal the sum of the lengths of its components:

length(A) = 2.7, |b; — a;l. (3.2)

This formula requires some thought because we have to affirm that it gives the same
result, no matter how we break up the set into subintervals.

If the length is to become a measure, then it must also be countably additive. Thus,
it also seems reasonable that we should be able to assign a length to a countable, disjoint
union of intervals, presumably by adding up the lengths of the intervals:

A=Ui, (@i, bi] implies length(A) = X%, |b; - ail. (3.3)

This expression takes a partial step toward countable additivity. As before, we need
to argue that the formula (3.3) gives a well-defined result. This is one of the core
technical challenges in constructing a measure that agrees with the length.

Exercise 3.14 (*Length: Finite additivity). Show that (3.2) does not depend on how we
decompose the set A as a finite union of disjoint half-open intervals.

Lebesgue measure

What about sets that are more complicated still? We may not be able to break up a
Borel set B € %(R) into a countable number of half-open intervals. Instead, we will
cover the set B by a countable union of (disjoint) half-open intervals. This union has

an unambiguous length, and it serves as an upper bound for the length of the set B.

Among all such covers, we search for the shortest one.
This approach results in the definition of the Lebesgue measure, which assigns a
well-determined length to each Borel set.

In this construction, it is more
convenient to work with half-open
intervals rather than with open
intervals. Half-open intervals link
together more neatly, and the
complement of a half-open interval is
a half-open interval. As we saw in
Exercise 3.6, the half-open intervals
also generate the Borel sets.
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Definition 3.15 (Lebesgue measure). The Lebesgue measure is the Borel measure
A : B(R) — [0, +o0] given by the rule

A(B) :=inf { X%, |b; — a;| : B € Usy (as, bi]}- (3.4)

The function that appears in (3.4) is called the exterior length of the Borel set. Let us
emphasize that the definition is sensible, even without proving that (3.3) is valid. The
construction is akin to shrink-wrapping a package:

You can easily confirm that the exterior length coincides with the elementary length
on a finite union of half-open intervals.

It is not evident that Definition 3.15 yields a reasonable construction of the length
for all Borel sets. Nor is it clear that the definition results in a Borel measure. Let us
state a major theorem that speaks to these concerns.

Theorem 3.16 (Lebesgue measure). The Lebesgue measure A : B(R) — [0, +o0],
defined in (3.4), has the following properties.

1. Measure: The Lebesgue measure A is a Borel measure. In particular, it is
countably additive.

2. Intervals: Each interval has Lebesgue measure A((a, b]) = |b — a| for all real
numbers a < b. In particular, A((0,1]) = 1.

3. Translation invariance: The Lebesgue measure is invariant under translation:
A(B +t) = A(B) for all Borel B and all ¢ € R.

4. Uniqueness: The Lebesgue measure is the only Borel measure that satisfies
requirements (1)—(3).

Proof. The proof of Theorem 3.16 appears in Appendix A.3. You are invited to check
the length property and the translation invariance yourself. The remaining assertions
(countable additivity, uniqueness) are very difficult. [ |

In summary, the Lebesgue measure A reports the length of every Borel set. The
distinctive property of the Lebesgue measure is the translation invariance. This result
ensures that the Lebesgue measure models a uniform distribution of mass on the real
line. The normalization just establishes a particular scaling: the measure places one
unit of mass per unit of length.

Exercise 3.17 (Lebesgue measure: Singletons). For a point x € R, use the definition of
the Lebesgue measure to compute the Lebesgue measure A({x}) of the singleton set
containing x.

Exercise 3.18 (Lebesgue almost everywhere). Let A be the Lebesgue measure. Use the
definition to confirm that the empty set is negligible for A. Deduce that R is an almost
everywhere set for A. Find two more examples of 1-negligible sets and two more
examples of A-almost everywhere sets. Be creative!
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Exercise 3.19 (Lebesgue measure: o-finiteness). Explain why the Lebesgue measure A is
o-finite.

Aside: At this stage, we can obtain a more concrete understanding of what Borel
sets look like. For each € > 0, every Borel set with finite Lebesgue measure can be
expressed as a finite union of disjoint half-open intervals, united with a Borel set
that has Lebesgue measure less than €. Proving this fact is a challenging problem
that requires the machinery from Appendix A. See Problem A.19.

Looking ahead: Measures with density

A natural way to describe a distribution of mass on the real line is to start with the
local density, the mass per unit length.

Let h : R — R, be a positive function (say, bounded and continuous) that models
the local density. Formally, we can define a measure u on each Borel set A via the
expression

“ u(A) :=/Ah(x)dx. 7

That is, the measure p adds up the local density h on the Borel set A. When A is a
finite union of intervals, we can simply use a Riemann integral here. Ahead of us,
we have a big job of understanding what the integral means for all Borel sets A. The
Lebesgue measure will play a central role in this construction.

Aside: It is not the case that all Borel measures are continuous (with a local density),
or discrete (point masses), or positive linear combinations thereof. There also exist
singular measures, such as the Cantor distribution, that have neither a density nor a
discrete distribution. Although these examples may seem exotic, singular measures
arise naturally in the study of continuous stochastic processes, such as Brownian
motion. Singular measures will not play a role in this course.

*Unmeasurable sets

The perspicacious reader will realize that the definition (3.4) of the exterior length
could be applied to any subset of the real line. Why have we restricted our attention to
the Borel sets?

Suppose that we use (3.4) to define the exterior length A* : *(R) — [0, +oo] for
an arbitrary subset of the real line. Unfortunately, A* does not behave itself. Indeed,
there are (many!) disjoint pairs of sets for which the exterior length of the union is
strictly smaller than the sum of the exterior lengths of the sets:

A"(AUB) < A"(A) + A"(B) for certain disjoint subsets A, B of R.
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This fact violates all our intuitions about the length: the parts are greater than the
whole. For Borel sets, however, the exterior length behaves in accordance with our
expectations about length.

We have averred that some subsets of the real line cannot be assigned a length in a
satisfactory way. This is the fundamental reason that we have to work with a smaller
collection of subsets, such as the Borel sets. For the assiduous student, Appendix B
contains a more in-depth discussion about sets that cannot be assigned a length.

Support

A Borel measure may only place its mass on a part of the real line. It is helpful to have
terminology and a rigorous definition to describe the locations where there is mass.

Definition 3.20 (Borel measure: Support). Let u be a Borel measure on the real line.
The support of the measure pu is defined as the set of points where every open
neighborhood has strictly positive measure:

supp(u) :={x e R: u(x —&,x+¢) > 0 forall € > 0}.

The support is always a closed subset of R, hence a Borel set.

Example 3.21 (Borel measure: Support). For the Lebesgue measure, supp(A) = R. Indeed,
every open interval satisfies A(x — €, x + €) = 2¢ > 0, so every point x € R belongs to
the support.

For the Dirac measure at zero, supp(dp) = {0}. Indeed, every open interval about
zero satisfies 6p(—¢, +€) = 1. On the other hand, for each point a # 0, we can find an
open interval about a with zero measure: 6y(a — |a|/2, a + |a|/2) = 0. .

Specifying a Borel measure

Let us pose the same type of question that we asked at the end of each of the previous
two lectures: How can we specify a Borel measure on the real line?

In Lecture 1, we gave some specific answers that were tailored to the elementary
case of a measure on the integers. In Lecture 2, we outlined an abstract approach
that extends a partial definition from a class of elementary sets to the full class of
measurable sets. Here, we will unite these two perspectives to arrive at a powerful
approach for representing measures on the real line.

Definition 3.22 (Distribution function). Let u be a finite Borel measure on the real
line. The (cumulative) distribution function (abbreviated cdf or df) of the measure is
defined as

Fu(a) := p((-0,al]) foraeR.

Exercise 3.23 (Some distribution functions). What are the distribution functions of some
basic Borel measures?

1. Let u = Oy be the Dirac measure at the point ¢ € R. Compute the distribution
function.

2. Define u(B) := A(B N (0, 1]) on the Borel sets B € %(R). This is the uniform
measure restricted to the interval (0, 1]. Compute its distribution function.

Note that the interval (—oo, a]
contains its right endpoint. This
convention ensures that the
distribution function is
right-continuous; see
Proposition 3.24.
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At a basic level, we can appreciate how the distribution function might serve to
represent a Borel measure. Indeed, Exercise 3.6 shows that Borel sets are generated
by the class of semi-infinite intervals (—o0, a] for a € R. As a consequence, it is easy
to imagine that knowledge of the measure on these elementary sets is necessary and
sufficient to determine its values on all of the Borel sets. This intuition is correct, but
the formal deduction is quite intricate. See Appendix A.

Distribution functions play an important role in probability theory. Anticipating
these developments, let us outline some useful results, which state that a distribution
function characterizes a finite Borel measure.

Proposition 3.24 (Distribution function: Properties). Let F : R — R, be the distribution
function of a finite Borel measure i on the real line. Set M := yu(R) < +o0. Then F
enjoys three properties:

1. Increasing: If @ < b, then F(a) < F(b).

2. Asymptotic limits: We have lim,| ., F(a) = 0 and lim,,o F(a) = M.
3. Right continuous: For each x € R, we have lim,|, F(a) = F(x).

Problem 3.25 (Distribution function). Prove Proposition 3.24.
Remarkably, the converse is also true. Any function with these distinguished

properties is the distribution function of a unique finite measure.

Theorem 3.26 (Distribution function = measure). Let F : R — R, be a function that
satisfies the properties listed in Proposition 3.24(1)—(3). Then there is a unique
finite measure p for which

u((a,b]) =F(b)— F(a) foralla,b e Rwitha < b.

Proof. See Problem A.17 in Appendix A. [ |

Quiz

Respond to the following questions with one of the alternatives: Always True (T) /
Always False (F).

. The set {n} is a Borel set.

. Every subset of the real line is a Borel set.

. If A, B are Borel sets, then A N B is a Borel set.
. The Lebesgue measure of (1,2) U [3, 4] is two.
. A Borel measure y is finitely additive:

A WN o

A= A; implies p(A) = 1 1(A;) for Borel sets A;.

6. If the measure of a set is zero, then the set is empty.

Problems

Exercise 3.27 (Lebesgue measure: Rationals). Explain why the set Q of rational numbers is
countable. Show that Q is a Borel set. Confirm that the Lebesgue measure 1(Q) = 0.

Problem 3.28 (*Lebesgue measure: Cantor set). Recall the construction of Cantor’s ternary
set. Begin with the unit interval. Remove the middle third. Remove the middle third of
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each of the two remaining subintervals. Repeat. This yields a sequence

To := [0, 1];
T, :=[0,1/3] U [2/3,1];
T, :=[0,1/9] U [2/9U1/3]U[2/3,7/9] U[8/9,1];...

Cantor’s ternary set T is obtained as the (decreasing) set limit of this process. Equiva-
lently, T is the set of numbers in the interval [0, 1] whose base-three expansion does
not contain the numeral 1.

Prove that Cantor’s ternary set T is a Borel set. Explain why T is uncountable.
Confirm that the Lebesgue measure A(T) = 0.

Notes

You can find the material in this lecture in any book on probability theory or measure
theory. For example, see Billingsley [Bil12] or Folland [Folgg]. Probability texts focus
their attention on Borel sets and Borel measures, in part because probability involves
many different types of distributions. Real analysis and measure theory books place
more emphasis on Lebesgue sets, and the Lebesgue measure is often the main object
of study.

For an explicit example of non-Borel set, see the book [Kecgs] by Caltech logician,
Alexander Kechris.
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4.1

\ 4. Integration on the Real Line

“There is nothing new under the sun, but there are new suns.”

—OQctavia Butler

We have now completed our introduction to the concept of a measure, which
models a distribution of mass over a domain. Our next step is to develop a general
theory of integration, which allows us to add up the values of a function, weighted by
the local mass. We have seen hints that a flexible method for integration is valuable for
problems in geometry, mechanics, and probability.

This lecture begins with a geometric description of our new approach to integration.
Once we perceive the ideas, we can introduce the class of functions that we are allowed
to integrate. Afterward, we give a formal definition of the integral that comports with
our geometric picture. We discuss some of the basic properties of the new integral,
and we compare it with the familiar Riemann integral.

We will develop the basic concepts of integration in the concrete setting of Borel
measures on the real line. The next lecture will recapitulate these ideas in an abstract
setting. The abstract definitions are really no different, but the simpler presentation
here may help to build intuition.

Sums weighted by mass

To reiterate: an integral sums the values of a function, weighted by the local mass,
over a domain. Applications include

* Geometry: For a uniform distribution of mass on the real line (modeled by the
Lebesgue measure), the integral of a function computes the signed area enclosed
between a function and the horizontal axis.

* Mechanics: For a distribution of mass in a one-dimensional mechanical system,
we can define an integral that returns the center of mass of the distribution.

* Probability: For a distribution of probability, the integral can be used to find the
expected value of the distribution.

In this lecture, our goal is to develop a general method for integrating a real-valued
function against a distribution of mass on the real line, given by a Borel measure. In
particular, the Lebesgue measure A describes a uniform distribution of mass over the
real line, where the mass of an interval equals its length. In this situation, the integral
computes the signed area between the function and the horizontal axis. To fix ideas,
you may wish to visualize this special case for the remainder of this lecture.

You can see that there is a potential mismatch in the definitions of functions and
measures. Indeed, functions take values at points, whereas the Lebesgue measure is
defined on sets. It may also be puzzling that the Lebesgue measure of a singleton set is
zero, which suggests that the uniform distribution does not put any mass anywhere.

Agenda:

Sums weighted by mass
Measurable functions
Integrating positive functions
Integrating signed functions
Examples

Riemann vs. Lebesgue

oSOV AWN -
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Figure 4.1 (The Riemann integral). The region under the curve is sliced into
narrow vertical bands.

To resolve this conflict, we first review the geometric construction of the Riemann
integral. This treatment reveals some shortcomings that we want to address. Then
we outline another approach to integration, called the Lebesgue integral, that will lead
to a more satisfactory theory. Lebesgue integrals provide the foundation for much of
modern analysis and for probability theory.

Riemann integrals

In the simplest case, the integral computes the area enclosed between a positive function
and the horizontal axis. You have learned to denote this quantity using the symbols

b
/ f(x)dx where f : [a, b] — R,.

To define this object, we approximate the region under the curve by vertical rectangles
that do not overlap. The rough area under the curve is obtained by adding up the areas
of the rectangles (given by the length of the base times the height). See Figure 4.1.
By making the rectangles narrower, we can improve the quality of the approximation.
This geometric approach to integration dates back to the ancient Greeks (Eudoxus,
Archimedes) and the ancient Chinese (Liu Hui, Zu Chongzhi).

Bernhard Riemann, in the 19th century, was the first to give a rigorous treatment
of the integral. He formalized the notion of subdividing the area into rectangles of
increasingly small width. If the total area of the rectangles tends to a well-defined
limit as the width tends to zero, then the integral is declared to equal this limit. Most
real analysis books present a variant of Riemann’s approach, called a Darboux integral.
See Appendix C for an overview of this construction.

The Riemann integral weights function values by a uniform distribution of mass
over the real line. We can extend the Riemann integral to more general distributions
of mass. The heuristic approach is to multiply the height of each of the vertical panels
by the mass carried on its base, rather than the length of the base. This construction
can be made rigorous, and it leads to an object called the Riemann-Stieltjes integral.

We will color Riemann integrals to
emphasize that they are defined
using Riemann sums. This visual cue
helps distinguish Riemann integrals
from Lebesgue integrals.



4.1.2

Lecture 4: Integration on the Real Line 51

Figure 4.2 (The Lebesgue integral). The region under the curve is sliced into
narrow horizontal bands.

These intuitive ideas work well for some types of functions, such as continuous
functions on a compact interval. Nevertheless, we can easily escape from the class
of Riemann-integrable functions. For example, neither unbounded functions nor
functions on unbounded intervals are considered to be Riemann integrable, although
we can sometimes achieve satisfactory results for these examples by taking limits
(called improper Riemann integrals).

Unfortunately, when we start taking limits of Riemann integrals, we quickly run
into problems. There is no satisfactory theory that describes when we can interchange
a limit with a Riemann integral. This leads to vexing outcomes. For instance, we can
construct a pointwise-convergent sequence of Riemann-integrable functions whose
limit is not Riemann integrable. This difficulty remains even when we restrict our
attention to nice functions (e.g., bounded, continuous) or to gentle kinds of convergence
(e.g, monotone increase). Since limits are among the basic operations in analysis (and
probability!), this shortcoming of the Riemann integral is serious.

The construction of the Riemann integral also depends on being able to partition the
domain of the function into increasingly tiny, nonoverlapping pieces. As a consequence,
we cannot extend the Riemann integral naturally to functions defined on more general
domains. As we will see (Lecture 7), this issue makes Riemann integrals unsuitable for
serious probability.

Lebesgue integrals

Let us return to our motivating problem. How can we compute the area between a
positive function and the horizontal axis?

The simple, but astonishing, idea of Henri Lebesgue was to cut up the area under
the function horizontally instead of vertically. The content of each horizontal rectangle
is given by its height times the length of its base. By taking the limit as the height of
each rectangle tends to zero, we can compute the area under the curve. See Figure 4.2
for an illustration of this idea.

We can also realize this geometric idea using functions. Suppose that f : R — R,

Lebesgue invented the concept of a
measure, constructed the Lebesgue
measure, and designed the new
integral in his 1902 doctoral thesis,
Intégrale, longeur, aire.
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Figure 4.3 (Decreasing rearrangement). For a positive-valued function f :
R — Ry, the decreasing rearrangement h : Ry — Ry, defined in (4.1),
returns the total length of the super-level set {x € R : f(x) > t} for each
t > 0. The rearrangement is positive and decreasing. The area under the
function f is the same as the area under the rearrangement h.

is a “nice” positive-valued function that we wish to integrate. Then we can construct
another function

h(t) =MxeR: f(x)>t} fort>0. (4.1)

Evidently, & is positive and decreasing (why?). You can interpret the value h(t) as
the total length of the (broken) horizontal line, positioned at the location ¢ along the
vertical axis and lying beneath the function f. See Figure 4.3 for a schematic.

Here is a second way to visualize the function h. Suppose that we turn the
graph of the function f clockwise by 90°. At each point ¢ on the horizontal axis, we
consolidate the (broken) vertical line above ¢ inside the rotated curve by sliding the
pieces downward to form an interval sitting on the horizontal axis. This construction
indicates that the area under & equals the area under the function f.

We want to construct an integral that returns the area under the function f induced
by a subdivision into horizontal panels. Therefore, we anticipate that the right approach
is to define this integral via the relation

[ee]

/Rf(x) A(dx) = /o MxeR: f(x)>t}de :/0 h(t)dt. (4.2)

The notation for the integral is intended to suggest that each function value f(x)
is weighted by the local mass A(dx) carried by an “infinitesimal” set at the point x.
As we will discover, the formulation (4.2) leads to a well-defined integral with many
remarkable properties.

The definition (4.2) focuses our attention on the super-level sets of the integrand:
{x e R: f(x) > t}. The Lebesgue measure A simply computes the total length of
each super-level set. It should now be obvious that we can weight function values by a
different distribution of mass by replacing A with another Borel measure. Furthermore,
we perceive that there is an opportunity to construct the integral of a real-valued
function defined on any domain that carries a measure (see Lecture 5).

The function £ is sometimes called
the decreasing rearrangement of f.

The strong inequality in (4.1) could
also be replaced by a weak inequality.
The strong inequality simplifies a few
technical arguments.

You should interpret the right-hand
side of the definition as an improper
Riemann integral.



4.2

4.2.1

Lecture 4: Integration on the Real Line 53

Borel measurable functions

Before we can define the integral properly, we need to take a step back again and
ask what kinds of functions we may try to integrate. Observe that the preliminary
definition (4.2) of the integral does not even make sense unless we can apply the
measure A to the super-level sets. In other words, each super-level set of the integrand
must be a Borel set. Equivalently,

FU(t, +00) := {x € R : f(x) > t} is Borel for each t € R.

To attend to this the matter, we must introduce the concept of a (Borel) measurable
function.

Measurability

If we want to compute the measure of the super-level sets of the integrand, these sets
must be measurable. This important insight leads us to our next definition.

Definition 4.1 (Measurable function). We say that a function f : R — R is measurable
if the preimage of each semi-infinite interval (¢, +co) is a Borel set. That is,

FHt, +00) :={x e R: f(x) >t} € B(R) forallt € R. (4.3)

For emphasis, we may refer to f as a Borel-measurable function.

The condition (4.3) on super-level sets implies that a measurable function satisfies
an (apparently) much stronger property.

Proposition 4.2 (Borel measurability). A function f : R — R is Borel measurable if and
only if

fi(B):={xeR: f(x) € B} € B(R) for all Borel B € B(R). (4-4)
That is, the preimage of every Borel set is a Borel set.

*Proof. This argument exhibits a fundamental technique for working with Borel sets.
It hinges on the fact that %B(R) is the smallest o-algebra on R that contains all
semi-infinite intervals.

It is clear that the condition (4.4) for Borel sets implies the condition (4.3) for
super-level sets because the semi-infinite interval (¢, +c0) is a Borel set for each t € R.
See Exercise 3.5.

To prove the converse, suppose that the function f : R — R satisfies the condi-
tion (4.3) on super-level sets. Introduce the collection 6 of sets whose preimage under
f is a Borel set:

®:={CCR:f1C) eB(R)}.

We claim that 6 is a o-algebra. Given this claim, we may complete the argument. The
condition (4.3) ensures that € contains every semi-infinite interval (¢, +00). According
to Exercise 3.6, the Borel class B(R) is the smallest o-algebra that contains the
semi-infinite intervals. Therefore, B(R) C €. In particular, f~!(B) is a Borel set for
every Borel set B.

To establish the claim, we first prove that the family 6 is stable under complements.
That is, if C € 6, then C° € 6. Recall that C € € means that f~1(C) € B(R). Since
the Borel sets are stable under complements,

fTHE) = (FTHO) € B(R).

Now is a good time to review the
definition of a preimage and its
properties (Exercise 1.26).

Warning: Measurability of a
function does not involve a
measure! n

For comparison, recall that a function
is continuous if the preimage of every
open set is an open set.
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We have used the fact (Exercise 1.26) that the preimage commutes with the complement.
Therefore, C¢ € €. A very similar argument establishes that €6 is stable under countable
unions. These two properties are enough to conclude that 6 is a o-algebra. |

Using Proposition 4.2, we can easily confirm that points where a measurable function
takes a specific value compose a measurable set. This is an important application.

Exercise 4.3 (Measurable function: Zero set). Let f : R — R be a measurable function.
Then {x e R: f(x) =0} and {x € R : f(x) # 0} are both measurable sets.

The argument behind Proposition 4.2 can be used to establish many related
principles. For example, we can check the measurability of a function by examining
the preimages of finite half-open intervals.

Exercise 4.4 (*Measurability: Intervals). Let f : R — R be a function. Suppose that
the preimage f~!(a, b] is measurable for all real numbers a < b. Deduce that f is
measurable.

Extended values

Functions with extended real values can easily arise from limiting processes, so we
need an appropriate definition for measurability. (Sorry!)

Refinition 4.5 (Measurable function: Extended values). We say that a function f : R —
R with extended real values is measurable when

it +0] :={xeR: f(x) >t} € B(R) forallteR.

For emphasis, we may also say that f is Borel measurable.

Equivalently, f : R — R is measurable when each extended Borel set B € %(R)
has a measurable preimage: f~!(B) € B(R). There is no conceptual difference from
the case of real-valued functions.

We have chosen to allow extended-valued functions because they lead to a simpler
presentation of integration theory with fewer special cases and qualifications. It does

take some practice to get used to working with functions that take infinite values.

Keep in mind the conventions that 0/0 = 0 and 0 - (+c0) = 0. We never allow division
by +oo. We must also avoid competing infinities: expressions of the form co — co are
undefined.

There is a broad principle that we can deal with infinite numbers or signed numbers,
but not both at the same time. Thus, we will allow positive functions to take the
value +oo, but we will require signed functions to remain finite.

Examples
Our prospective definition (4.2) of the integral leads inexorably to the concept of a

measurable function. Let us give some important examples of measurable functions.

These results are a straightforward consequence of the definition.

Example 4.6 (Measurability: Indicators). Let B € %(R) be a Borel set. Then the indicator
1g : R — R is a measurable function. Conversely, if B C R is not Borel, then the
indicator 1p is not measurable.

We just need to examine the semi-infinite intervals (¢, 4+o0) for each t € R. The

See Definition 3.7 of the extended
Borel sets.
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preimage is one of three alternatives:

R, t<0;
(1) 7' (f,+00) =3B, t€[0,1);
0, t>1.

Obviously, @ and R are Borel sets. We see that the indicator 1g is measurable if and
only if the set B is Borel. .

Exercise 4.7 (Measurability: Constant functions). Show that each constant function f :
R — R is measurable. Recall that a constant function satisfies f(x) = ¢ for all x € R,
where ¢ € R.

The next three examples show that many familiar classes of real-valued functions
are measurable.

Example 4.8 (Measurability: Continuous functions). Let f : R — R be a continuous
function. Then f is Borel measurable.

Indeed, for each r € R, the preimage f~!(t,+0) of the open interval (z, +c0) is
an open set because f is continuous. Finally, recall that every open set is a Borel set. =

Exercise 4.9 (Measurability: Monotone functions). Let f : R — R be a monotone function.
Prove that f is Borel measurable.

Exercise 4.10 (Measurability: Convex functions). Let f : R — R be a convex function on
the real line (Definition 9.15). Prove that f is Borel measurable.

Stability properties
Next, we will argue that most set-theoretic, algebraic, and analytic combinations of

measurable functions remain measurable. This is basically all you need to know to work
with measurable functions. The proofs are not of great importance for this course.

Example 4.11 (Measurability: Composition). Let f, g : R — R be measurable functions.
Then the composition f o g is measurable. See Problem 5.36 for an extension.

To prove this claim, recall that (f o g)(x) := f(g(x)) for x € R. By Exercise 1.26,
the preimage of a set under composition satisfies

(fog) ' (A) =g *(f }(A)) foreachA CR.

If A is a Borel set, the preimage f~!(A) under the measurable function f is a Borel set,
and consequently the preimage g ~!(f~!(A)) under the measurable function g is also
Borel. .

Example 4.12 (Measurability: Positive and negative part). Let f : R — R be a function that
may take extended real values. Define the positive and negative parts:

J+(x) := max{+f(x), 0};
f-(x) := max{-f(x), 0}
As an exercise, confirm that f = fi — f_ and that |f| = f; + f-.

We assert that both the positive and negative parts of a measurable function are
measurable. For example, let us consider the positive part. Observe that

for x € R.

fi(t,+o0], t>0;
R, t<O0.

()71, +o0] = {

Since f is measurable, so is the positive part f;. .

Warning: Both the positive part

f+ and the negative part f_ are
positive-valued functions!
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Using the ideas from the last example, you can establish some related results.

Exercise 4.13 (Measurability: Abs, min, max). Let f, g : R — R be measurable functions.
Confirm that the following functions are measurable.

* Absolute value: By direct argument, prove that |f| is measurable.
* Minimum: The pointwise minimum f A g := min{f, g} is measurable.
* Maximum: The pointwise maximum f V g := max{f, g} is measurable.

Next, we show that sums of measurable functions are measurable.

Example 4.14 (Measurability: Positive sums). Let f, g : R — R, be positive, measurable
functions that may take the value +co. Then f + g is measurable.
To check this statement, it suffices to show that the super-level set {x € R :
f(x) + g(x) > t} is measurable for each ¢ € R. Fix the level . Observe that
f(x)+g(x)>t ifandonlyif f(x)>qg>t—-g(x) forsomegq e Q.
Using this observation, we can write the super-level set as a countable union over the
rationals:

(xeR: f(x)+g(x) >t} = qu@[f_l(q,+oo] Nngl(t - q,+]].

By measurability of f, g, each element of the union is the intersection of two Borel
sets, so is a Borel set. Finally, a countable union of Borel sets is Borel. .

Similar arguments allow us to show that algebraic combinations of signed functions
remain measurable.

Exercise 4.15 (Measurability: Algebraic combinations). Let f, g : R — R be finite-valued
measurable functions. Prove that the following functions are measurable.

* Sums: The sum f + g is measurable.

* Products: The product f g is measurable.

* Linearity: Deduce that the set of finite-valued Borel measurable functions is a
linear space (in fact, an algebra).

Countable combinations and limits

Operations involving a countable number of measurable functions produce measurable
functions. These results allow us to form limits. By permitting functions to take
extended values, we can obtain clean statements without any extraneous conditions.
The fact that the Borel sets form a g-algebra is also a crucial ingredient here.

Example 4.16 (Measurability: Countable infimum and supremum). For each j € N, let
fi: R— R be a measurable function that may take extended real values. Then the
pointwise infimum, inf;cy f}, and the pointwise supremum, sup ieN fj, are measurable
functions.

Let us establish the result for the supremum. To do so, we write its super-level set
at t € R as a countable union of Borel sets:

{x € R:supjey fi(x) > 1} = U;‘;l {xeR: fi(x) >t}

Indeed, sup; fj(x) > ¢ if and only if fj(x) > ¢ for at least one index j. .

The same approach applies to many related examples.

Warning: We require positive
values to avoid competing
infinities (oo — o0). "

It is crucial that g is a rational
number!

We can start to see why it is so
important that Borel sets are stable
over countable unions.

Warning: We require finite
values to avoid competing
infinities (co — o). n

This is the place where it is really

critical that measurable sets are stable

under countable unions.
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Exercise 4.17 (Measurability: Limits). For each j € N, let fJ : R — R be a measurable
function that may take extended real values.

* Superior limit: The superior limit, limsup;_,, fj» is a measurable function. Hint:
lim sup]-_)oof]- = i.nsz.l SUPy> j fk . .

* Inferior limit: The inferior limit, lim inf; ., fj, is measurable.

* Limits: If the limit, lim;_,, fj, exists pointwise in R, then it is measurable.

* Set of convergence: Deduce that the set {x € R : lim;_,, fj(x) exists} is Borel.

Each of these results requires the stability of Borel sets under countable unions!

Exercise 4.18 (Measurability: Series). For each j € N, let fj : R — @J, be a measurable
function that takes positive values. Verify that the series 2;11 f; determines a mea-
surable function. The situation is more complicated for signed functions. Under what
conditions is an infinite sum of signed functions measurable?

Warning 4.19 (Non-measurability: Uncountable combinations). It is problematic to per-
form uncountably indexed operations with measurable functions. For example, the
supremum of an uncountable family of measurable functions may not be measurable.
This kind of function does arise in statistics and optimization. Take care! .

Aside: If you have studied measure theory, you may have encountered Lebesgue-
measurable functions. These are functions f : R — R for which the preimage
f1(B) of each Borel set B is a Lebesgue set. A rather unpleasant feature of this
definition is that it does not interact neatly with composition. In particular, the
composition of a Lebesgue measurable function followed by a continuous function
need not be Lebesgue measurable.

The takeaway

Measurability is a fundamental concept that is crucial for defining integrals. At the
same time, the following principle suggests that we usually do not need to worry too
much about whether a real-valued function is Borel measurable.

If you encounter a function f : R — R in applications, that function is quite likely
to be Borel measurable. Warning 4.19 outlines the main exceptions to this principle.

As a consequence, we will not place a lot of emphasis on measurability at this point. It
will become more important in probability theory when we study conditioning.

The Lebesgue integral on the real line

We are now prepared to give a rigorous definition of the integral of a function, weighted
by a distribution of mass on the real line. This construction was pioneered by Henri
Lebesgue in his doctoral thesis, so it is now called the Lebesgue integral in his honor.

The development of the Lebesgue integral proceeds in two stages. First, we define
the integral for positive functions. Second, we use the primitive definition to extend
the integral to signed functions.

The integral of a positive function

We begin with the simplest case: the integral of a positive function on the real line
with respect to a Borel measure. The definition matches the geometric picture we gave
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Figure 4.4 (Integral of a positive function). The integral weights the values f(x) of a
positive function by the local mass u(dx) and sums over the real line R.

in Figure 4.2. Just add up the measures of the horizontal bands.

Definition 4.20 (Lebesgue integral: Positive function). Fix a Borel measure u on the
real line. Let f : R — R, be a positive measurable function that may take the
value +oo. Define the Lebesgue integral of f with respect to u as

/f(x) u(dx) := /Ooy{x eR: f(x)>t}de. (4.5)
R 0

The right-hand side of (4.5) is a well-defined improper Riemann integral (see
Appendix C), which may take the value +oo.

Figure 4.4 illustrates what the Lebesgue integral is designed to do in the context of
the real line. Heuristically, we are weighting each value f(x) of the function by the
mass p(dx) located near x, and adding up these quantities. The notation u(dx) is
designed to suggest the measure of an “infinitesimal set” containing the point x, which
is something like the local density of mass at x. In Lecture 22, we will see that there is
(sometimes) a deeper connection with densities.

To make complete sense of Definition 4.20, we need a few more observations.
First of all, our assumption that f is measurable ensures that each super-level set
{x e R: f(x) > t} is a Borel set. Therefore, the measure u of the super-level set is
defined. Second, consider the function

hu(t) == p{x €R: f(x) > 1} fort >0.

The function h, is positive and decreasing. This type of function always has a well-
defined (improper) Riemann integral, although the value can equal +co. See the
discussion in Appendix C.

In other words, what the integral is actually doing is computing the measure p of
each super-level set {x € R : f(x) > ¢t} and summing over the levels ¢. This is the
content of the rigorous definition.

Properties of the integral for positive functions

The Lebesgue integral for positive functions has a number of important properties
that are easy to verify. We simply need to refer back to the definition and the invoke
properties of the Riemann integral.

Warning: The Lebesgue integral
need not involve the Lebesgue
measure! n

Warning: The dx is a piece of
notation, not a defined object. =
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Figure 4.5 (Integral of an indicator). The integral of an indicator function of a Borel set
equals the measure of the set.

Example 4.21 (Lebesgue integral: Indicators). Fix a Borel measure p on the real line. Let
B € B(R) be a Borel set. We can easily calculate the integral of the indicator 15 of the
set. Referring back to Example 4.6, we find that

/]lB(x) p(dx) = /00 w{x e R:1g(x) >t} dr
R 0

1 (o]
A OL ANTOREO
0 1

We will often use basic properties of the Riemann integral without comment (here,
domain decomposition). Thus, the integral of the indicator function of a set equals the
measure of the set. See Figure 4.5 for an illustration. In particular, the integral of the
zero function is zero. .

Example 4.22 (Lebesgue integral: Dirac measure). For a € R, consider the Dirac measure
O, on the real line. It is illuminating to compute the integral of a positive, measurable
function f : R — R, with respect to the Dirac measure. Indeed,

/f(x) 0q(dx) = /m(?a{x eER: f(x)>t}dt
R 0
:./0 Lio,f(ay) (¥) dt = f(a).

Indeed, the Dirac measure §, of the super-level set {x € R : f(x) > t} equals one if
and only if 0 < t < f(a). This identity motivates the use of a “spike” to illustrate the
Dirac measure. .

Exercise 4.23 (Lebesgue integral: Monotonicity for positive functions). Fix a Borel measure
1 on the real line. For positive measurable functions f, g : R — R, show that the
integral is monotone:

0 < f < g pointwise implies /Rf(x) p(dx) < /Rg(x) p(dx).

In particular, the integral of a positive function is positive. Hint: At each fixed level
t > 0, compare the super-level set of f and g.
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Figure 4.6 (Integral of a signed function). We define the integral of a signed function
by integrating its positive and negative parts and computing the difference. This figure
illustrates the case of an integral with respect to the Lebesgue measure A.

Exercise 4.24 (Lebesgue integral: Positive homogeneity). Fix a Borel measure u on the real
line. Let f : R — R, be a positive, measurable function. Prove that

/ af (x) pu(dx) = a / f(x) p(dx) for positive a € R,.
R R

In particular, the integral of a positive constant ¢ equals ¢ - g(R). Hint: Make a linear
change of variables in the definition of the integral.

The integral of a measurable function

To integrate a signed function, we just integrate the positive and negative parts
separately and then combine the results; see Figure 4.6. To avoid competing infinities,
we will require that the absolute value of the function has a finite integral.

Definition 4.25 (Integrable function). We say that a finite-valued measurable function
f : R — R is integrable with respect to the Borel measure y when

/R ()] a(dx) < +oo.

For brevity, we may also say that f is p-integrable. The class of u-integrable
real-valued functions is often denoted as Ly (u).

Exercise 4.26 (Integrable function: Positive and negative parts). Suppose that f : R — R is
integrable with respect to the Borel measure . Deduce that the positive and negative
parts are integrable with respect to u:

/ﬁ,(x) 1(dx) < +co  and /f_ (x) p(dx) < +oo.
R R

Hint: Invoke Exercise 4.12 and Exercise 4.23.

With these preparations complete, we are prepared to define the Lebesgue integral
of a signed function.



4.3.4

4.3.5

Lecture 4: Integration on the Real Line 61

Definition 4.27 (Lebesgue integral). Let f : R — R be a function that is integrable
with respect to the Borel measure p. Then we may define the Lebesgue integral of
f with respect to y to be

[ren@n = [ fouan - [ £ uo.

Otherwise, the function f does not admit a Lebesgue integral.

Definition 4.27 presents no new complications. Exercise 4.26 guarantees that both
the positive and negative parts of a measurable function have finite integrals, so there
is no possibility of competing infinities (co — co) when we subtract their values.

Exercise 4.28 (Lebesgue integral: Consistency). Let f : R — R, be a positive, measurable
function that is integrable with respect to the Borel measure p. Show that Definition 4.20
and Definition 4.27 give the same value.

Exercise 4.29 (Lebesgue integral: Absolute value). Assuming that f : R — R is integrable
with respect to the Borel measure p, check that

[ rutan| < [ reoluan.

R R

Hint: This argument only requires the definitions and monotonicity of the integral for
positive functions. In particular, it is not necessary to check that the integral is linear.

Exercise 4.30 (Lebesgue integral: Basic properties). Without restriction to positive functions,
show that the Lebesgue integral is monotone. Show that the integral is homogeneous:
we can pass any finite scalar through the integral.

Integration over a set

It is often the case that we want to integrate a function over a subset of the domain.
With Lebesgue integrals, this task can be accomplished in a straightforward way.

Definition 4.31 (Lebesgue integral: Subset). Fix a Borel measure u on the real line and
a measurable function f : R — R whose Lebesgue integral with respect to u is
defined. For each Borel set B € 3B(R), we define the integral over the set via the
expression

/ Fx) () o= / 1800 (x) p(dx).
B R

Linearity
The critical fact about the Lebesgue integral is that it is linear: the integral of a sum is
the sum of the integrals.

Theorem 4.32 (Lebesgue integral: Linearity). Fix a Borel measure p on the real line.



4.3.6

4.3.7

Lecture 4: Integration on the Real Line 62

Let f, g : R — R be pu-integrable functions. Then

[ (ar +Be)) u(an
= a/Rf(x) ©(dx) +ﬁ/Rg(x) u(dx) forall a, B € R.

In Lecture 5, we will prove Theorem 4.32 in a more general setting. The argument is
somewhat involved.

Negligible sets
Another basic fact about Lebesgue integrals is that they are insensitive to the values of
a function on a negligible set. The following result encapsulates the basic fact.

Proposition 4.33 (Lebesgue integral: Negligible sets). Let f,g : R — R be measurable
functions. If f and g are equal p-almost everywhere, then their integrals are equal:

pxeR: f(x) #£g(x)} =0 implies /R (0 u(dx) = /R g (x) p(dx).

In Lecture 5, we establish Proposition 4.33 in a more general setting.

Exercise 4.34 (Lebesgue integral: Rationals). For a positive, measurable function f : R —
R, compute the integral fR 1g(x)f(x) A(dx) by pure thought.

Examples

As we have insinuated, the integral has a wide range of applications. Let us elaborate
on some of the examples we have already mentioned.

Example 4.35 (Center of mass). Suppose that u is a finite Borel measure on the real line
that describes a distribution of physical mass (see Example 3.2). The center of mass m
of the distribution is the point about which the total torque is zero:

/(x —m) u(dx) =0.
R

Indeed, the torque at m due to the mass at a point x € R is the length (x — m) of the
lever arm times that local mass p(dx) at the point x. By the linearity property of the

integral (Theorem 4.32),
ofl
m=—— [ xu(dx).
u(R) Jr

This computation requires the assumption that the identity function x — x is integrable
with respect to . Heuristically, the system cannot place too much mass at very long
distances from the origin.

The construction of the integral allows us to give a unified way to compute the
center of mass for any one-dimensional mechanical system, even if it involves both
extended mass (like a rod) and point masses (like hanging weights). .

Example 4.36 (Expectation). Suppose that u is a Borel probability measure on the real
line, so u(R) = 1. See Example 3.3 for an illustration. The expected value m of the

distribution is the quantity
m = / x p(dx).
R
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In other words, we weight each outcome x € R by the local probability mass y(dx) and
sum. Once again, the computation requires the assumption that x + x is integrable
with respect to u. Heuristically, the probability of very large values must not be too
big. Note the analogy with the center of mass of a mechanical system.

The construction of the integral provides a unified way to compute the expectation
of any distribution of probability, even if the distribution has continuous parts and
point masses (like the lifetime of a lightbulb). .

Riemann versus Lebesgue

Students often ask: What is the relationship between the Riemann integral and the
Lebesgue integral with respect to the Lebesgue measure? When we see an integral
sign, do we interpret it as a Riemann integral or a Lebesgue integral? How do we
calculate Lebesgue integrals in practice? This section speaks to these concerns.

The best way to think about the Lebesgue integral is to regard it as an upgrade of
the Riemann integral. We use similar notation because the approaches are designed to
accomplish the same goal. As with Riemann integrals, you can use calculus to evaluate
Lebesgue integrals. With Lebesgue integrals, we gain some additional tools: a clear
definition of the class of integrable functions and a suite of limit theorems (Lecture 5).
Moreover, we can define Lebesgue integrals in a wider setting.

Riemann implies Lebesgue

For both Riemann and Lebesgue integrals, the geometric purpose is similar: they are
designed to sum up function values. As a consequence, the two approaches usually
give the same answer when they are both valid. In particular, every function that is
(properly) Riemann integrable is also Lebesgue integrable.

Proposition 4.37 (Riemannimplies Lebesgue). Suppose that f : [a, b] — R isa (bounded)
Riemann integrable function. Then f is also Lebesgue integrable with respect to the
Lebesgue measure A on the interval [a, b], and the integrals coincide:

b
/ F(x) A(dx) = / (o) du,
[a,b] a

Proof. See Appendix C.10. [ |

Proposition 4.37 gives us immediate access to familiar tools for working with the
Riemann integral, such as elementary antiderivatives, change of variables formulas,
and so forth. We will take these calculus rules for granted, but see the Problems section
for a taste. Similar results are valid for Riemann-Stieltjes integrals.

Warning 4.38 (Improperintegrals). There are functions that are not Lebesgue integrable
but still have improper Riemann integrals. A classic example is

400 -
/ sin(7x) I

o X

The Lebesgue integral of the integrand f does not exist because f; and f- both
have infinite integrals with respect to Lebesgue measure. .
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Aside: There is a more general construction, called the Denjoy—Perron—-Henstock—
Kurzweil integral, that allows us to integrate a larger class of functions that
includes all (improperly) Riemann-integrable functions and all Lebesgue-integrable
functions on the real line.

All our integrals are Lebesgue integrals

In fact, once we are comfortable with Lebesgue integrals and their properties, we
can forget about Riemann integrals entirely. The next result recasts the formula in
Definition 5.11 purely in terms of Lebesgue integrals.

Proposition 4.39 (Integration by parts). Let y be a Borel measure, and let f : R — R, be
a positive, measurable function. Then

/f(x)p(dx) ::/ pxeR: f(x)>t}de
R 0
:/ wxeR: f(x) >t} A(dr).

+

In this expression, we interpret the right-hand side as a Lebesgue integral over the
positive real line!

Proof. This boils down to an application of Proposition 4.37. See Appendix C.11 for
the details. n

As a consequence of this statement, you can regard every integral you see in
this class as a Lebesgue integral, unless explicitly stated otherwise. To perform
concrete computations, you may still rely on familiar calculus rules. Concerning the
terminology, Proposition 4.39 is the simplest case of the integration by parts formula;
see Problem 6.26 for a generalization.

Outlook

So what do we gain by using the Lebesgue integral? We obtain flexibility and tools
that are simply not available if we stick with Riemann integrals. In the next lecture, we
will give an abstract treatment of the Lebesgue integral that provides all these benefits.

First, we use the same procedure to define the Lebesgue integral on domains that
are more general than the real line. Then we will be able to integrate real-valued
functions defined on an arbitrary measure space. This extension is critical when we
develop an axiomatic model of probability theory (Lecture 7).

Second, Lebesgue integrals are equipped with a robust convergence theory, which
allows us to compute the integral of a sequence of functions. These results play a
crucial role in analysis, and they will also support the development of limit theorems
in probability.

Problems

Exercise 4.40 (Elementary antiderivatives). In integral calculus, we learn to compute
definite Riemann integrals using antiderivatives. Similar results hold for Lebesgue
integrals with respect to the Lebesgue measure. In this problem, we assume that a < b
and a, b € R. In each case, first argue that the integrand is a measurable function.
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1. Powers: For real p # 1, use a direct argument to confirm that the Lebesgue
integral of the power function satisfies

1
/ xP A(dx) = —— (b"*! — aP™!)  assuming 0 < a < b.
[a,b] p+1

Hint: Use Definition 4.20 to refer the matter back to a familiar Riemann integral.
2. Reciprocals: By direct argument, show that the Lebesgue integral of the reciprocal
function satisfies

/ x~ 1 A(dx) = log(b) —log(a) provided that0 < a < b.
[a.b]

3. Exponentials By direct argument, show that the Lebesgue integral of the exponen-
tial function satisfies

/ eP* A(dx) = 071 (%" - e%) for 0 # 0.
[a,b]

4. *Cosines: By direct argument, show that the Lebesgue integral of the cosine
function satisfies

/ cos(6x) A(dx) = 8~ (sin(@b) —sin(fa)) for 6 # 0.
[a,b]

Hint: Decompose the domain [a, b] of integration into regions where cos is
monotone.

5. FTC: From these examples, you can see that the direct approach to computing
Lebesgue integrals can be inefficient or difficult. Fortunately, there is a general
result. Suppose that f : [a, b] — R is a continuous function. Let F : [a, b] —
R be an antiderivative; that is, F’ = f on (a, b). Use Proposition 4.37 to check
that the Lebesgue integral satisfies the Fundamental Theorem of Calculus (FTC):

‘/[ " f(x) A(dx) = F(b) — F(a).

Explain how this result yields all of the previous statements.

6. Change of variables: Let u : [A, B] — [a, b] be a strictly increasing, continuously
differentiable function, and suppose that f : [a,b] — R is continuously
differentiable. Use the FTC to confirm that

/ £ (u) (x) A(dx) = / F/(0) A(d).
[A,B] [a,b]

Exercise 4.41 (Powers: Integrability). Let p be a real number. Consider the functions
fp» & : R — R defined by

£(x) = xP, x>1 (x) = xP, 0<x<1
P B 0, otherwise; & B 0, otherwise.

Convince yourself that f, and g, are measurable. For which values of p are the
functions f, integrable with respect to A? What about g;,?

Exercise 4.42 (Layer-cake representation). Let f : R — R, be a positive, measurable
function. Show that

fla) = /R L et (oo (@) A(dD).

Hint: Apply Proposition 4.39 with the Dirac measure §,.
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Notes

The quotation at the head of this chapter is from the wonderful speculative fiction
writer, Octavia Butler. She was born and raised here in Pasadena and Altadena. Her
work received multiple Hugo and Nebula prizes, and she was the first speculative fiction
author to be awarded a MacArthur Fellowship. Her archive is held by the Huntington
Library. I particularly recommend Kindred [Buto3].

Our presentation of the Lebesgue integral, using super-level sets, is adapted from
the analysis textbook [LLo1] of Lieb & Loss. This approach has several benefits. It gives
a clear geometric picture of what the Lebesgue integral is doing, and it motivates the
definition of the class of measurable functions. On the other hand, this construction
requires the use of the improper Riemann integral, and we will need to rely on
theoretical facts about the Riemann integral.

Most books on probability theory and measure theory define the Lebesgue integral
using approximation by simple functions (Section 5.6). This approach is more self-
contained because it does not rely on properties of the Riemann integral, and it also
extends more readily to functions that take values in a linear space. On the other hand,
it also has some deficiencies. The construction based on simple functions makes it hard
to appreciate where measurability comes from and why it is essential for the integral.
(Roughly, the positive measurable functions are the increasing limits of positive simple
functions.) Furthermore, it also requires a nontrivial argument to prove that the
integral of a positive simple function is well-defined.

Altogether, the approach via super-level sets seems more intuitive. The mathemat-
ically oriented reader should understand both perspectives, in part because simple
functions play an important role in proving facts about integrals.

There are at least two more approaches to defining the Lebesgue integral, using
ideas from functional analysis. This perspective originally emerged from Bourbaki’s
program. It has been championed by Peter Lax [Laxo2] and Barry Simon [Sim15];
David Pollard [Polo2] also expresses admiration.

Here is the first approach. Suppose that we want to construct the Lebesgue integral
with respect to the Lebesgue measure on the compact interval [0, 1]. The first approach
begins with the linear space of continuous functions on [0, 1], equipped with the L; (1)
norm. In this special case, the L; norm can be defined using an ordinary Riemann
integral. This normed linear space is completed to obtain the Banach space L; (1)
of equivalence classes of A-integrable functions. We can extend this idea to other
measures by using the Riemann-Stieltjes integral.

The second approach begins with the convex cone M. (X) of positive measurable
functions on a measurable space (X, %). An integral is defined to be a positive functional
on M, (X) that is positive homogeneous, additive, and satisfies a monotone convergence
rule. By the Riesz—Kakutani representation theorem, these positive functions are in
one-to-one correspondence with positive measures. This approach places the abstract
properties of an integral front and center, although the construction is not particularly
concrete. See [Polo2, Sec. 2.3] and Problem 5.45.

Although these ideas are elegant, they demand comfort with functional analysis.
For this course, we prefer to start with a more elementary construction of the integral.
This approach helps us gain intuition for functional analysis in a relatively simple
setting.
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5.1

\ 5. Abstract Integration

“Agent Dale Cooper: Wait a minute, wait a minute. You know, this is—excuse
me—a damn fine cup of coffee. I've had I can’t tell you how many cups of coffee in
my life, and this... this is one of the best.”

—Twin Peaks, 2001

In the last lecture, we introduced the Lebesgue integral with respect to a Borel
measure on the real line. This integral adds up the values of a function, weighted by a
distribution of mass. From the construction, we can perceive an opportunity to define
the integral of a real-valued function on a measure space. In this lecture, we will give a
complete treatment of integration on an abstract measure space, along with the major
convergence theorems for integrals. These foundations are essential for an axiomatic
treatment of probability theory.

For most readers, the key concepts are the properties of the integral, packaged in
Theorem 5.14, and the three major convergence theorems (monotone convergence,
Fatou’s lemma, and dominated convergence). The proofs in this lecture are not
particularly hard, but they are somewhat involved. The technical details are not really
necessary for a working understanding of the subject, so most of the material is starred.
More mathematically oriented reader will want to understand the arguments, which is
why they are included here.

In this lecture, we fix a general measure space (X, ¥, u) with domain X, sigma-
algebra &, and measure p. This is all of the structure that we need to develop a theory
of integration.

Compact notation for set-builder

We will often be working with functions. The standard set-builder notation for sets of
function values quickly becomes cumbersome. This seems like a good time to introduce
a more efficient script.

Our new notation delineates the set of points where a function satisfies some
condition. For example, suppose that f, g : X — R. Then we may write things like

{f>gr={xeX: f(x)>g)}
{(f=gr={xeX: f(x) =gx)}
We will use many similar expressions without further comment. It takes a little practice

to get used to this convention. But it saves a lot of letters, which ultimately makes
things easier to understand.

Agenda:

1. Measurable functions

2. The Lebesgue integral

3. Convergence theorems

4. Almost everywhere
convergence

5. Proof of integral properties
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The space of measurable functions

As before, we can only integrate measurable functions. In this section, we quickly
introduce the appropriate definitions and summarize the stability properties of mea-
surable functions. Last, we describe how to approximate positive measurable functions
by means of positive simple functions.

Measurable functions

To begin, we need to introduce the appropriate concept of a measurable function on
the domain. See Problem 5.36 for more context and further extensions.

Definition 5.1 (Measurable function). Let (X, %) be a measurable space. A function
f : X — R taking extended real values is measurable when

f it +0] € F forallt € R.

In other words, the preimage of each semi-infinite interval must be a measurable
set. For emphasis, we may say that f is an F-measurable function.

Exercise 5.2 (*Measurability). Prove that a function f : X — R is F-measurable if and
only if .
fY(B) € F for all extended Borel sets B € %(R).

Hint: See the proof of Proposition 4.2.

Exercise 5.3 (*Measurability: Continuous functions). Suppose that the measurable space
(X, F) is also a topological space where every open set belongs to F. Verify that each
continuous function f : X — R is measurable.

Although the definition of an %-measurable function is similar to the definition of
an (extended) Borel measurable function (Definition 4.5), we would like to inject a
note of caution in this general setting.

Warning 5.4 (Measurability: Role of measurable sets). The definition of a measurable
function depends on the class & of measurable sets. When ¥ is a small o-algebra,
the stock of measurable functions may be limited. This point is not central right
now, but it will play a role in probability theory when we discuss conditioning. =

Exercise 5.5 (*Measurability: Trivial c-algebra). Consider a domain X equipped with the
trivial g-algebra & = {0, X}. Give a complete description of the class of measurable
functions f : X — R.

Repeat this exercise for the almost trivial o-algebra F = {0, A, A, X} where A C X
is a subset of the domain.

Stability properties and limits

As with Borel measurable functions, the measurable functions on a measurable space
are stable under a wide range of operations. The proofs parallel those in Sections 4.2.4
and 4.2.5, so we simply collect the results.

Proposition 5.6 (Measurable functions: Algebraic operations). Fix a measurable space (X, F).
Let f, g : X = R be measurable functions.

1. Constants: Constant functions are measurable.

Warning: The definition of a
measurable function does not
involve a measure.
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2. Indicators: For a measurable set A € %, the indicator function 1, is a measurable
function.

3. Sign parts: The positive part f;, the negative part f_, and the absolute value |f|
are measurable functions.

4. Min and max: The minimum f A g and the maximum f Vv g are measurable.

5. Sum: The sum f + g is measurable, provided that f, g are both positive or both
finite-valued.

6. Product: The product f g is measurable, provided that f, g are both positive or
both finite-valued.

7. Linear space: In particular, the finite-valued measurable functions compose a
linear space (in fact, an algebra).

Proposition 5.7 (Measurable funciions: Countable operations). Fix a measurable space (X, F).
For each j € N, let fj : X — R be a measurable function.

1. Infimum and supremum: The infimum, inf;cy fj, and the supremum, Supjen fi>
are measurable.

2. Inferior and superior limits: The inferior limit, lim inf; ., fj, and the superior limit,
lim sup 00 fj,» are measurable.

3. Limits: If lim;_,., fj exists pointwise, then it is measurable.

4. Set of convergence: The set {x € X : lim;_, fj(x) exists} is measurable.

Exercise 5.8 (Measurable functions). Prove Proposition 5.6 and Proposition 5.7.

*Positive simple functions

To establish properties of the integral, it is helpful to start with functions where we
can compute the value of the integral with our bare hands. To that end, we introduce
the class of positive linear combinations of indicator functions:

SF, := SF.(%F) := {Z; a;lp ta; € Ryand A; e Fandn € N} . (5.1)

The elements of the class SF, are called positive simple functions. The key property of
a simple function is that it takes only a finite number of values. We anticipate that the
integral of a positive simple function satisfies the linearity relation

« n d — n A ”
(D @it ) () = 30 amiay).
Our construction of the integral leads to this result, but it is not a triviality.

Exercise 5.9 (Simple functions: Limit superior). Confirm that each positive simple function
is measurable. For a sequence (s; : j € N) of positive simple functions, explain why
limsup;_,, $;j is measurable.

Simple functions are important because we can approximate every positive mea-
surable function by a simple function that is pointwise smaller; see Figure 5.1. To
establish this fact, we introduce the staircase maps Q; : Ry — R, for each j € N:

I x>
Qj(x):=13(i-1)277, (i-1)27<x<i27/<j forieN; (5.2)
0, x =0.

The function Q; quantizes and thresholds positive, extended real numbers.

The notation for this linear space is
not standardized.
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Figure 5.1 (Staircase approximation). Every positive measurable function can be
approximated by a positive simple function.

Exercise 510 (Staircase approximation). Let f : X — R, be a positive, measurable
function.

1. Prove that Q; o f is a positive simple function for each j € N.
2. Check that Q; o f < f pointwise for each j € N.
3. Show that (Qj o f) T f pointwise as j — oo.

Later, we will use the staircase approximation in conjunction with a fundamental
limit theorem to extend results for the integral on positive simple functions to all
positive measurable functions.

The Lebesgue integral

In this section, we begin the development of the Lebesgue integral on the measure
space (X, F, u). We first consider the integral of a positive function. Then we extend
the integral to signed functions by passing to the positive and negative parts. Afterward,
we outline the main properties of the integral.

Positive functions

To integrate a positive-valued function over a measure space, we simply compute the
total measure of the super-level sets of the function.

Definition 5.11 (Lebesgue integral: Positive functions). Consider a positive, measurable
function f : X — R. The Lebesgue integral of f with respect to y is defined as

/f(x)u(dx) = /wp{xeX:f(x)>t}dt.
X 0

The right-hand side is an improper Riemann integral (Appendix C), and it is always
well-defined.

As before, the right-hand side gives sense to the Lebesgue integral. It allows us to
apply familiar tools for Riemann integrals, such as elementary antiderivatives, change
of variables, and so forth.
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Signed functions

To integrate a signed function over a measure space, we first define the class of
integrable functions.

Definition 5.12 (Integrable function). We say that a finite-valued measurable function
f : X — R is integrable with respect to the measure y when

/X F (0 1(dx) < +oo,

In this case, we may also say that f is y-integrable.

The positive and negative parts of an integrable function are also integrable.
Therefore, we may define the integral of a signed function by integrating the positive
and negative parts separately.

Definition 5.13 (Lebesgue integral). Let f : X — R be a function that is integrable
with respect to the measure yu. Then we may define the Lebesgue integral to be

/X F(0) p(dx) = /X £u(x) ) - /X £ () u(d).

In this case, we may also say that f is u-integrable.

As before, the integrability assumption ensures that the integral is well-defined.
For positive functions, Definition 5.13 is consistent with Definition 5.11.

Notation for integrals

There are many common notations for Lebesgue integrals, and you should be familiar
with them so that you can fluently read the mathematical literature. First, there are
several alternative expressions for the differential:

[reuen = [ r@auo = [ rau= [ ran

These expressions all mean the same thing. As in the last term, we may omit the
domain of integration, in which case the integration takes place over the full domain
of the integrand f. We introduce parallel notation for the integral over a subdomain:

/f(x) p(dx) := /IlA(x) f(x) u(dx) for measurable A € F.
A X

The left-hand integral may be abbreviated further, as in the penultimate display. It is
also very convenient to use functional notation:

u(f) = /X FO) udx) o u(fiA) = /A £(x) u(d).

Throughout these notes, we vary how we write the integral, depending on what part
of the formula requires your attention.

For integrals with respect to the Lebesgue measure A on the measurable space
(R, %(R)), the differential A(dx) is often written more compactly as dx. Thus,

/Af(x) ?L(dx)=/Af(x) cm(x)z/Afcm:/Af(x) dx.

These notations are consistent with the familiar notation for Riemann integrals.
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Structural properties

We have developed the Lebesgue integral in two stages. First, we defined the integral
for all positive functions. Second, we defined the integral for all measurable functions,
with some restrictions to avoid problems with infinities.

In parallel, we will generally present facts about integrals in two parts, one for
positive functions (that may have integral +oc0) and one for signed functions (requiring
the integral to be finite).

We may now state an omnibus theorem that describes the major properties of the
Lebesgue integral. For succinctness, we include results for both positive and integrable
functions together, but we emphasize that these cases are slightly different in spirit.

Theorem 5.14 (Lebesgue integral: Properties). Let (X, F, 1) be a measure space. Let
f, & : X = R be measurable functions whose integrals y(f) and p(g) are defined.

Zero: The integral of the zero function is zero: u(0) = 0.
Indicators: For a measurable set A € &, the integral u(1a) = u(A).
Positivity: For a positive function f > 0, the integral is positive: u(f) > 0.

Monotonicity: If f < g, then u(f) < u(g).
Positive linearity: For positive functions f, g and positive scalars a, f > 0,

plaf +pg) = au(f) +pu(g).

6. Linearity: For u-integrable functions f, g and all scalars a, f € R,

plaf +pg) = au(f) + pu(g).

7. Almost definite: For a positive function f > 0, a zero integral u(f) = 0 implies
that f = 0 p-almost everywhere.
8. Almost equal: If f = g p-almost everywhere, then u(f) = u(g)-

i A wWwN =

Proof. See Section 5.5 for a complete proof of Theorem 5.14. ]

Let us take a moment to discuss the contents of Theorem 5.14. First, we remark
that the results are not independent from each other; some of them can easily be
deduced from others. Second, keep in mind that positive functions and their integrals
are allowed to take the value +co, while signed functions and their integrals must
remain finite.

Properties (1) and (2) allow us to evaluate specific elementary Lebesgue integrals.
The key fact here is that the integral of the indicator of a measurable set equals the
measure of the set. This always remains true—even for very complicated sets.

Properties (3) and (4) concern the interaction between the integral and the
pointwise order on functions. Point (3) states that the integral is a positive operator: it
maps positive functions to positive numbers. Point (4) shows that the integral respects
the pointwise partial order relation on functions.

Properties (5) and (6) are both related to the homogeneity and additivity of the
integral. We can pass scalars through the integral, and the integral of a sum is the sum
of the integrals. Note that there is a subtle distinction between the statements that
reflects the differences between positive and signed functions. Linearity is the single
most important property of the Lebesgue integral.

Last, Properties (7) and (8) state that the integral is insensitive to the value of
a function on a negligible set. In particular, for a function f that is zero u-almost

Refer back to Section 5.3.3 for the
functional notation for integrals.
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everywhere, the integral pu(f) = 0. For positive functions only, the converse of the
latter statement is also true.

Most of the results in Theorem 5.14 are easy to derive from Definitions 5.11
and 5.13 of the Lebesgue integral. The two results on linearity make for a striking
exception. They require a significant number of intermediate steps, and they hinge on
the monotone convergence theorem (Theorem 5.18).

Exercise 5.15 (Integral properties). Try to prove items (1)—(4) and (7)—(8) in Theorem 5.14.
Hint: See Section 4.3.2.

The linear space of integrable functions

It is valuable to develop notation for the class of signed functions whose Lebesgue
integral is defined.

Definition 5.16 (Space of integrable functions). Let (X, %, u) be a measure space. Define
the functional

Il = /|f(x)| p(dx) for measurable f : X — R.
X

Introduce the class of finite-valued functions with a finite integral:
Li(p) = {f : X — R measurable : || f]|, ) < +oo}.

The class L; () is called the space of u-integrable functions.

Exercise 5.17 (The space of integrable functions). Explain in detail why L; (u) is a linear
space. Show that ||-||., (4) is a pseudonorm on Ly (u).

The linear space L; (1) has central importance in functional analysis and probability
theory. We postpone a detailed discussion to Lecture 11.

Convergence theorems

A core technical problem in analysis is to understand when we can interchange two
limiting processes. In particular, we may ask when we can pass a limit through an
integral. A major deficiency of the Riemann integral is the lack of a crisp answer to
this question. In contrast, the Lebesgue integral is designed so that limits behave
predictably. It is not true that we can always swap a Lebesgue integral with a limit, but
we can perform this operation under simple and easily verified conditions.

Monotone convergence

Levi’s monotone convergence theorem is the central fact in the theory of Lebesgue
integration. For an increasing sequence of positive functions, the limit of the integrals
equals the integral of the limit. We can use this result to establish more flexible
convergence theorems, and it also plays a critical role in developing other properties of
the integral (including linearity!). See the Problems section for some applications.

Theorem 5.18 (Lebesgue integral: Monotone convergence). Let (X, %, u) be a measure
space. Consider a pointwise increasing sequence (f; : X — Ry)jen of positive,

A pseudonorm is a positive function
that is positive homogeneous and
satisfies the triangle inequality. The
pseudonorm of a nonzero function
may be equal to zero.

An increasing sequence of functions
satisfies

fis1(x) = fj(x)

forallx € Xand j € N. An
increasing sequence always has a
pointwise limit f : X — R that can
take the value +oo.
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measurable functions. That is,
fi(x) T f(x) foreachx €X.
Then the sequence of Lebesgue integrals increases, converging to its limiting value:

(i) T r(f).

Let us emphasize that the proof of Theorem 5.18 only depends on Definition 5.11.
It uses none of the properties listed in Theorem 5.14.

Proof. Since the functions are increasing, the limiting function f = sup; f; is positive
and measurable (Example 4.16). Therefore, its integral u(f) is defined.
The super-level sets of the functions f; compose an increasing sequence of sets:

{fi>t}T1{f >t} asj— coforeacht > 0.

Indeed, the increase follows from the fact that fj(x) >  implies that fj,,(x) > . We
obtain the limit from the observation that f(x) > ¢ if and only if sup; fj(x) > ¢.
On the interval ¢ > 0, define the positive, decreasing functions

hj(t) .= p{f; >t} forjeN;
h(t) == p{f > t}.

By the increasing limit property of a measure (Proposition 2.30), we see that h;(f) T
h(t) for each t > 0. We may conclude that

u(fj) = /0 (1) dr 1 /0 h(e)dr = u(f),

via doubly monotone convergence of Riemann integrals (Theorem C.8). [ |

Exercise 5.19 (Monotone convergence: Integrable functions). Extend Theorem 5.18 to the
setting where (fj : j € N) is a pointwise increasing sequence of p-integrable functions.
Hint: Use linearity, which itself is a consequence of Theorem 5.18.

5.4.2 Fatou’s lemma

We continue with another convergence result, which gives a lower bound on the
smallest values attained by a sequence of integrals.

Theorem 5.20 (Lebesgue integral: Fatou’s lemma). Let (X, &, i) be a measure space.
. — . . Warning: This result is false
Consider a sequence (fj : X — R,);en of positive, measurable functions. Then the without the positivity

inferior limit of integrals is bounded below: assumption!
liminf; e p(f;) > p(liminfj e fj).
This argument uses some of the simpler properties of the integral from Theorem 5.14.

Proof. The function f := liminf;_, f;j is positive and measurable (Exercise 4.17), so
its integral u(f) is defined.
Recall that the inferior limit can be expressed as

f =liminf; .o fj = limj e infg>; fx =: limj e ;.
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For each j € N, we have introduced the positive, measurable function g; := infy>; fi.

By construction, the sequence (g : j € N) is pointwise increasing. Furthermore,

p(gj) < p(fi) for each k > j by the monotonicity of the integral (Theorem 5.14).
An application of monotone convergence (Theorem 5.18) delivers

p(f) = p(limje gj) = limj o0 p(8j)
< limj_e infrsj p(fi) = liminf; oo p(fj).

This is the required result. [ |

A convenient feature of Theorem 5.20 is that it requires neither the sequence of
functions nor their integrals to have a limit. As such, we can apply it impulsively,
without stopping to check that the limits exist. The cost for this flexibility is that the
theorem only yields a lower bound.

Exercise 5.21 (Fatou gap). Find a sequence (fj : R — R);en of positive functions on the
real line where liminf; ., A(fj) > A(liminf;_, fj). Hint: The mass can “leak out” at
+00.

Aside: Fatou’s lemma states that the Lebesgue integral is lower semicontinuous on
the class of positive, measurable functions.

Dominated convergence

The dominated convergence theorem is our main workhorse when we need to take
limits of Lebesgue integrals. It gives a simple sufficient condition under which we can
exchange the integral with a limit. See the Problems section for some applications.

Theorem 5.22 (Lebesgue integral: Dominated convergence). Let (X, &, p) be a measure
space. Consider a pointwise convergent sequence (fj : X — R);cn of measurable
functions: f; — f. Suppose that each function in the sequence is dominated by a

. . . Warning: The dominatin,
fixed, integrable function: J 3

function g cannot depend on the
index j. .

Ifil <|glforeach j e N where gelLi(u).
Then we can exchange the limit with the integral:
limj oo p(f) = p(limjeo ff)-
That is, u(fj) — p(f).

Unlike monotone convergence, the proof of dominated convergence depends on
the integral properties obtained in Theorem 5.14. In particular, it relies on linearity.

Proof. First, assume that f; > 0 for each index j. By monotonicity of the integral, the
functions f; and the limit function f are integrable because the dominating function
|g| is integrable. Recall that integrable functions only take finite values.

By Fatou’s lemma (Theorem 5.20),

liminf; e p(fj) = p(liminf; o f;) = p(f).
For each index j, we have |g| — f; > 0. Another application of Fatou’s lemma yields

liminfj e p(lg] = fj) 2 p(lgl - limsup;_,., fj) = u(lgl = f).
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Using the linearity of the integral, we can simplify this inequality to read

limsup;_,q, pu(fj) < p(f).

Combining these bounds, we find that

liminf; e p(fj) = (f) 2 limsup;_,., u(fj).

The inferior and superior limits coincide, so the limit exists. We deduce that the
integrals satisfy u(f;) — p(f).

Now, suppose that the functions f; are merely integrable. Both the sequence of
positive parts ((fj)+ : j € N) and the sequence of negative parts ((fj)- : j € N) are
dominated by |g|. Using Definition 5.13 and applying the result for positive functions
twice, we reach the conclusion that u(f;) — u(f). |

Exercise 5.23 (Lebesgue integral: Continuity fails). Find a sequence (fj : R — R);cy where
fi — [ pointwise but A(fj) -+ A(f). Hint: The mass can “leak out” at +oo.

5.4.4 Convergence pointwise and convergence almost everywhere

As a general principle, Lebesgue integrals have no interest in what a function does on
a negligible set. We can apply this intuition to extend the convergence theorems to the
case where the sequences converge almost everywhere.

First, we take a moment to elaborate on the difference between pointwise con-
vergence and almost-everywhere convergence. Consider a measure space (X, F, ).
Let (fj : X = R);jen be a sequence of measurable functions, and let f : X — R be
another measurable function. We compare two convergence concepts:

Pointwise convergence: fi(x) — f(x) foreveryx e X
Almost-everywhere convergence: fi(x) = f(x) for u-almost every x € X.

More precisely, almost-everywhere convergence means that ) o
Warning: The practical import of

. £ _ almost-everywhere convergence
,u{x €X: f](x) - f(x)} =0. depends on the measure. .

That is, the set of points where the sequence fails to converge is a negligible set for p.
It is clear that pointwise convergence implies almost-everywhere convergence, but the
converse is not true.

It may helpful to examine some simple examples. Let A be the Lebesgue measure
on the real line. Consider the functions

¥, 0<x<1
0, otherwise

fitx) = for j € N.

The function f = 1, is a pointwise limit and a A-almost-everywhere limit. The zero
function f = 0 is another A-almost-everywhere limit but not a pointwise limit. Of
course, the two A-almost everywhere limits agree A-almost everywhere.

It is not hard to construct sequences that converge almost everywhere but fail to

converge pointwise. A very simple example is Figure 5.2 (Pw versus ae).
On the interval [0, 1], the
(_1)jx]" 0<x<1 ) functions fj(x) = x/
f](x) = . for ] € N. converge pointwise to a
0, otherwise

nonzero function, but they
converge A-almost every-
Indeed, since f;(1) oscillates between +1, the sequence fails to converge at the point where to zero.

x = 1. But it still converges A-almost everywhere to the zero function.



5.5

5.5.1

5.5.2

Lecture 5: Abstract Integration 78

Exercise 5.24 (Almost everywhere for ). Consider the measurable space (R, B(R)).
Let §p be the Dirac measure at zero. Let fj : R — R be measurable functions.
Find a simple characterization of what if means for (f; : j € N) to converge almost
everywhere for .

Exercise 5.25 (Monotone convergence, almost everywhere). Prove that Theorem 5.18 re-
mains valid under the weaker condition that the functions are increasing almost
everywhere. That is, we assume that {x € X : fj(x) is increasing} is a p-almost-
everywhere set.

Exercise 5.26 (Dominated convergence, almost everywhere). Prove that Theorem 5.22
remains valid under the weaker condition that the functions are convergent almost
everywhere. That is, we assume that {x € X : lim;_, fj(x) exists} is a p-almost-
everywhere set.

*Properties of the integral: Proofs

In this section, we give a complete proof of Theorem 5.14. We rely on monotone
convergence (Theorem 5.18), whose proof is already finished. Throughout this section,
(X, &, p) is a fixed measure space.

Indicators

We begin with the easy fact that the p-integral of the indicator function of a set
coincides with the measure of the set. Let A € & be a measurable set with indicator
1a. The super-level sets of this function satisfy

A 0<t<1;

{1A>t}:{®, 1<t

By Definition 5.11 of the integral of a positive function,

o) 1
u(1p) = /0 w{la > 1) dt = /0 H(A)Ydt = p(A).

In particular, taking A = (), we confirm that the integral of the zero function is zero.

Monotonicity properties

The fact that a positive function has a positive integral is obvious. Just glance at
Definition 5.11 (the Lebesgue integral of a positive function), and recall that the
improper Riemann integral of a positive, decreasing function is a positive number
(Theorem C.7).

Next, we develop monotonicity properties for positive, measurable functions f, g :
X — R,. Suppose that 0 < f < g. For each t > 0,

plf >t} < p{g >t}

Indeed, the super-level sets satisfy the containment {f > t} C {g > t}, and measures
are monotone (Proposition 2.29). The result follows from Definition 5.11 and the
monotonicity of the improper Riemann integral (Theorem C.7).

Last, we consider integrable functions f, g : X — R. Suppose that f < g. The
positive and negative parts satisfy

fr<g and f >g.

Use Definition 5.13 (the Lebesgue integral of a signed function) and the monotonicity
of the Lebesgue integral for positive functions (obtained in the previous paragraph).
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Linearity properties

The proof that the integral is linear is surprisingly involved. We begin with the
case where the functions are positive; we remove the restriction afterward. It is
straightforward to check that the integral is (positively) homogeneous; the major effort
arises in the proof of additivity.

Positive homogeneity
First, we check that the integral is positively homogeneous. Fix a positive, measurable
function f : X — R, and a positive scalar & € R,. Calculate

paf) = [ wlaf>npdi=a [ pif>nd-apd). 6o

0 0
We have used the linear change of variables t +— at in the Riemann integral. (This
fact can be established by direct examination of the lower and upper sums. Otherwise,
take limits in Corollary C.6.)

Additivity for positive simple functions

Next, we establish that the integral is additive for positive, measurable functions that
take a finite number of values. This is the class SF, := SF, (%) we encountered in (5.1).
This result takes several steps, which we parcel into propositions.

Proposition 5.27 (Positive simple function: Standard form). A positive simple function
f € SF, can always be written in standard form:

n
f= E o a;1p, where @; > 0 and the A; € F are disjoint sets.
=

We can also upgrade the representation to canonical form where the coefficients are
o e . n
distinct and the sets cover the domain: 0 = ap < a3 < -+ < a, and J;.o Ai = X.

Proof. By definition, the range of a positive simple function f contains a finite number
of distinct values. We may construct the canonical representation as follows.

f - Zaerangef a ]l{f:a}-

Since f is measurable, the level set {f = a} is measurable for each a. For distinct
values of a, the level sets {f = a} are disjoint. Finally, the level sets cover the whole
domain. [

Proposition 5.28 (Lebesgue integral: Positive simple function). Let f € SF, be a positive
simple function, presented in standard form (Proposition 5.27). Then

n . . n
f= Zi:o a;l1p, implies u(f) = Zi:o a; p(A;).

In particular, the value of the integral does not depend on the choice of the standard
form representation of the simple function f.

Proof. Let f = X1 a;1a,, where the A; are disjoint. Suppose that f takes on the
distinct values 0 < f; < --- < t,. Write £y = 0.

Introduce the decreasing mass rearrangement h(t) := pu{f > t} for t > 0. From
its definition, we see that the function & is constant on each interval [f;_1, ;) for
j=1,...,r,and h is zero on the interval [#., +c0). Furthermore, since the sets A; are
disjoint, f exceeds ¢ on the set A; if and only if a; > t. Thus,

h(t) = p(Usase A = D (A,

iia;>t
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We have used (finite) additivity of the measure.
With this information, we can now compute the integral of f using our bare hands:

u(p = [ hwde= 37 =50 b

- Z;zl(tj —tj_1) Zi:amjﬂ (A
B Z;ﬂ g Zi:a,:[j p(A) = Z:lzo aip(A;).

The second relation holds because & is constant on each interval [#;_1, ;). We have
used summation by parts to pass from the second line to the third. [ |

Proposition 5.29 (Lebesgue integral: Additivity for positive simple functions). Let f, g € SF,,
be positive simple functions. Then u(f + g) = u(f) + u(g).

Proof. Let f and g be presented in canonical form:

m n
f= Zi:o a;1lp, and g = ijo Bils;.

As usual, the coefficients a;, f; > 0. The argument hinges on the disjoint cover
property:

m n

Ui:OAi :X and Uj:O B] :X

This representation makes it easy to write the sum f + g in standard form:

m n
fvg=>" ijo(a,- +B;) Lars;-

Indeed, the family {A; N B; for all i, j} is a disjoint cover of X. Therefore, every point
x € X belongs to exactly one of these sets, and (f + g)(x) = a; + f; when x € A; NB;.
Proposition 5.28 now delivers the integral of the sum:

HE+8) = D D o(ai+ By) u(Ai N By)

S 3 ik X [
= D (A + Z;;O Bin(B)) = p(f) + u(g)-

To compute the first large bracket, we used the fact that {A; N B; for all j} is a disjoint
family with union A;, and we used the additivity of the measure. The second bracket
is computed in an analogous fashion. Finally, we applied Proposition 5.28 again to
recognize the integrals u(f) and u(g). [

Additivity for positive functions
To derive additivity for positive functions, we use approximation by simple functions.
This argument relies on monotone convergence (Theorem 5.18)!

Proposition 5.30 (Lebesgue integral: Additivity for positive functions). Let f, g : X — R, be
positive, measurable functions. Then p(f + g) = u(f) + u(g).

Proof. In (5.2), we introduced the sequence (Q; : j € N) of staircase maps. According
to Exercise 5.10, these maps have two key properties. First, Q; o f is a positive simple
function for each j € N. Second, the sequence Q; o f T f pointwise. An evident

consequence is that (Q; o f) + (Qj o g) T f + g pointwise.
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By Proposition 5.29,

p((Qjo ) +(Qjeog)) =pu(Qjof)+u(Qjog).
To conclude, apply monotone convergence (Theorem 5.18) three times. [ |

Positive linearity
At this point, we stop to collect our results in an important theorem. This result is
significant because it holds for all positive functions, regardless of whether they have
finite integrals.

Theorem 5.31 (Lebegue integral: Positive linearity). Let f, g : X — R, be positive,
measurable functions, and let @, § > 0 be positive scalars. Then

plaf +pg) = au(f) + pu(g).

Proof. Combine the additivity of the integral for positive functions, Proposition 5.30,
with the positive homogeneity property (5.3). [ |

Linearity for integrable functions
Finally, we arrive at the last step in our proof that the Lebesgue integral is linear. Let
us emphasize again that linearity is the most important property of an integral.

Theorem 5.32 (Lebesgue integral: Linearity). Let f, g : X — R be p-integrable func-
tions, and let a, f € R be scalars. Then

plaf +pg) = ap(f) + Bu(g).

Proof. First, we check homogeneity. Note that scaling preserves the integrability of the
function f. Indeed, by the positive homogeneity property (5.3),

p(lafl) = u(lal - 1f]) = laf - u(If]) <+eo fora e R.

Restrict attention to the case @ > 0. Using the Definition 5.13 of the Lebesgue integral
and (5.3), we see that

u(af) = u(af, - af-) = plafy) - plaf-) = ap(fy) - ap(f) = au(f).

The case @ < 0 is similar.
Next, we prove that the integral is additive. To that end, note that a sum of integral
functions remains integrable:

pdf +gD < udfl+1gD) < udfD) + pdlgl) < +oo.

The first relation follows from the triangle inequality for |-| and the monotonicity of
the integral (Section 5.5.2). By Definition 5.13 and Theorem 5.31 on positive linearity,

p(f +8) = p((fe + &) — (S~ +8-))
=p(fs + &) —p(f~-+8-)
= [u(fo) + u(g)] = [u(f-) + p(g-)] = u(f) + u(g).
We have used the fact that the positive and negative parts of an integrable function are

integrable, as are sums of integrable functions.
Together, additivity and the homogeneity readily imply linearity. [ |



5.5.4

5.6

Lecture 5: Abstract Integration 82

Negligible sets

In this section, we establish that negligible sets do not play a role in determining the
value of the integral.

First, assume that f : X — R, is a positive function. We will verify that p(f) = 0
if and only if f = 0 p-almost everywhere. For the reverse direction, assume that
f = 0 p-almost everywhere. Equivalently, E := {f > 0} has measure u(E) = 0. By
monotonicity, the set {f > ¢} C E has measure zero for each ¢ > 0. By Definition 5.11
of the integral,

u(f) =/O wlf > tydr =o.

For the forward direction, suppose that u{f > 0} > 0. It follows that u{f > €} > ¢
for some € > 0. (Why?) Therefore,

£

u(f)=/omu{f>t}dt2/o u{f>t}dtz/0 p{f > eydt > 2

In particular, the integral p(f) # 0.

Next, suppose that f, g : X — R, are positive functions that are equal y-almost
everywhere. The reader may verify that the pointwise minimum f A g coincides
with both f and g p-almost everywhere. In particular, f — (f A g) = 0 p-almost
everywhere. By the first part,

p(f)=p(f-fA+(fAg)=ulf-(fAg))+u(fArg=nfArg).

We have used the fact (Theorem 5.31) that the integral is additive for positive functions.

By the same argument, u(g) = u(f A g). We conclude that u(f) = u(g).

Finally, suppose that f,g : R — R are p-integrable functions that are equal
p-almost everywhere. The reader may verify that f; = g, and f = g_ almost
everywhere for u. Thus,

pu(f) = p(fy) = p(f-) = p(gy) — p(g-) = n(g).

We have used Definition 5.13 of the Lebesgue integral and the result from the last
paragraph on positive functions that are equal almost everywhere.

Exercise 5.33 (Negligible sets: Without additivity). It is possible to prove these results
without using the fact that the integral is additive for positive functions. Give it a try.

*The Lebesgue integral via simple functions

The most important property of an integral is linearity. Although our construction
of the Lebesgue integral via super-level sets is geometrically intuitive, the linearity
property does not follow easily (see Section 5.5.3). Moreover, our treatment of the
Lebesgue integral relies heavily on properties of the Riemann integral.

In this section, we explore another approach to defining the Lebesgue integral
that makes the linearity property more-or-less obvious. We will confirm that the two
definitions are equivalent. With extra work (not included here), the approach in this
section can also be used to develop the Lebesgue integral without any reference to the
Riemann integral.

The approach in this section is the
standard way to introduce Lebesgue
integrals. Mathematically inclined
readers should become familiar with
these ideas.
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From indicators to positive simple functions

Let (X, F, 1) be a measure space. For now, let us forget that we have already defined
the Lebesgue integral and start from scratch. If all is right in the world, the u-integral
of the indicator 1 of a measurable set A should equal the measure of the set. Thus,
we begin by defining the integral for the class of indicator functions:

/]lA du := u(A) forall A e F.
X

Note that we allow the integral to take the value +co when the set A has infinite
measure.

Next, we wish to extend the integral to the class SF, of positive simple func-
tions (5.1). We do so by forcing the integral to be linear:

[ ata) =Y o [1nau= Y7 ama).

Since we have insisted that the coefficients a; are positive, the integral may take the
value +co, but the definition cannot produce any competing infinities (co — o). The
major difficulty is to confirm that (5.4) is a legal definition.

Problem 5.34 (*Lebesgue integral: Well-definition for simple functions). Prove that (5.4)
gives a well-defined result. That is, the value of the integral does not depend on
how we write the simple function as a positive linear combination of indicators. Hint:
We may require the a; to be distinct and the A; to be disjoint sets that cover R; see
Proposition 5.28.

The integral of a positive function

Our next goal is to extend the integral to all positive, measurable functions. To do so,
we approximate measurable functions by simple functions that are pointwise smaller;
see Figure 5.1. This illustration suggests how to construct the integral. For a positive
measurable function f : X — R,, define

/f du :=sup {/s du:seSFrands < f pointwise}. (5.5)
X X

This formula obviously produces a well-defined result in the range [0, +o0]. To work
with this definition, you may recall that Exercise 5.10 provides a concrete mechanism
for approximating a positive, measurable function below by a positive simple function.

The integral defined in (5.5) inherits positive linearity and other properties from
the definition of the integral for simple functions. A direct proof of this claim requires
some effort. In our setting, an alternative approach to establishing integral properties
is to verify that the new definition of the integral agrees with the old definition.

Proposition 5.35 (Lebesgue integral: Equivalence of definitions). For all positive, measurable
functions, the definition (5.5) of the Lebesgue integral via simple functions agrees with
Definition 5.11 via super-level sets.

Proof. Let (X, F, ) be a measure space, and let f : X — R, be a positive, measurable
function. We need notation to distinguish the two integrals from each other. To
that end, let u(f) denote the integral obtained from Definition 5.11, for which
we have established monotone convergence (Theorem 5.18) plus monotonicity and
linearity (Theorem 5.14). In contrast, let o (f) denote the integral (5.5) obtained by
approximation with simple functions.
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The goal is to prove that u(f) = po(f). We already know that u(s) = po(s) for
every positive simple function s € SF,. Indeed, the value of yy(s) in definition (5.4)
agrees with the value of p(s) computed in Proposition 5.28.

Recall the definition (5.2) of the staircase map Q;. According to Exercise 5.10, the
positive simple functions Q; o f increase pointwise to f. Thus,

po(f) = sup; po(Qj o f) = sup; u(Qj o f) = u(f).

The last relation is monotone convergence for p.
On the other hand, let (s; € SF, : j € N) be a maximizing sequence for the
supremum in (5.5). In particular, s; < f for all j € N. Then

po(f) = sup; po(s;) = sup; p(s;)
< sup; H(supy<; k) = p(sup; supr<; Sk) < p(f).

The two inequalities rely on the fact that u is monotone; the last equality holds by
monotone convergence for . [

The integral of a measurable function

Finally, to integrate a measurable function f : X — R that may take positive and
negative values, we split it into positive and negative parts, as before. Assume that
& |f]du < +co. Then we set

[raw=[foau- [ s an (5.6)

This formula produces a well-defined, finite value. It is not hard to see that the
integral (5.6) inherits linearity from the integral (5.5) for positive functions.

Problems

Problem 5.36 (Measurability). Let (X, F) and (Y, €) be measurable spaces. We say that
a function f : X — Y is measurable if

fHG)eF forallGe®. (5.7)

1. Consider the special case where (Y, €) = (R, B(R)). Confirm that the defini-
tion (5.7) is consistent with Definition 5.1 of a measurable function.

2. Suppose that € = 0(8;Y) is the o-algebra generated by a family & C (Y).
Prove that a function f : X — Y is measurable if and only if

f_l(S) €% foreachS €S.

In other words, we only need to check the sets that generate the g-algebra for
the codomain of f. Hint: See the proof of Proposition 4.2.

3. Deduce Proposition 4.2 directly from (2).

4. Let f: X > Yand g : Y — Z be measurable functions defined on suitable
measurable spaces. Show that the composition g o f is measurable.

In this context, a maximizing sequence
has the property that uo(s;) T u(f).
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Aside: In categorical terms, measurable functions are the morphisms between
measurable spaces. For an analogy, recall that continuous functions are the
morphisms between topological spaces.

Exercise 5.37 (Yet more inclusion—exclusion). Let (X, %, u) be a measure space. Let
A1, ..., A, be measurable sets, each with finite measure. In Exercise 2.47, we derived
the inclusion—exclusion identity

n
k+1
1 = -1 1A A---nA: -
Ui Ai Zkzl( ) Zi1<i2<-~-<ik A NNy

Deduce that
n
k
,Ll( ?:1 Al) - Zk:l(_l) " Zi1<i2<--~<ik 'U(Ail Ao n Aik).

Hint: The integral is a linear functional.

Exercise 5.38 (Lebesgue integral: Downward monotone convergsnce). Let (X, %, 1) be a
measure space. Consider a decreasing sequence (fj : X — R,) of positive, integrable

functions: f; | f. Prove that u(f;) | u(f).

Exercise 5.39 (LebegueE\tegral: Tonelli’s theorem for sums). Let (X, &, /J) be a measure
space. Let (fj : X — Ry)jen be a sequence of positive, measurable functions. Show
that, without further qualification,

-/X(Z:ilf]) du=) /ij dp.

Hint: Use monotone convergence!

Exercise 540 (Lebesgue integral: Domain decomposition). Let (X, F, 1) be a measure
space. Suppose that X = (J;_; E; for measurable sets E;. If the measurable function
f : X = R is either positive or integrable, then

/deu=Z;;/Ejfdu-

Problem 5.41 (Borel—-Cantelli I). Let (X, %, u) be a measure space. For a sequence
(fj : X = Ry)jen of positive, measurable functions, prove that

Z;il p(fj) < +co  implies p(limsup;_, fj) = 0.

Specialize this result to indicator functions, and then write the statement in terms of
sets. What is the interpretation? Hint: Write the limit superior as an inf-sup. Note that
the integral of the supremum tends to zero.

Problem 5.42 (Lebesgue integral: Differentiation under the integral). We often encounter
integrals that are parameterized by a real variable. Under modest conditions, we
can differentiate the integral with respect to the parameter by passing the derivative
through the integral.

Let u be a Borel measure on R, and let f : R X (a, b) — R be a bivariate function,
where a, b € R. Fix a point ¥y € (a, b). Assume that f (-, y) is g-integrable for each
¥ € (a, b). Define

F) = [ ey p@n fory € (a,b)
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1. Assume that limy,_,, f(x,y) = f(x,)0) for every x € R. Suppose that
If (x,y)] < |g(x)| for all y € (a, b), where g is u-integrable. Use dominated
convergence to conclude that

limy, ), F(y) = F()o).

In particular, if f(x, -) is continuous for each x, then F is continuous at yy. Hint:
You can interpret the limit as the limit of a sequence.

2. Suppose the partial derivative d,f : R X (a,b) — R exists. Assume that
1(0,f)(x,y)| < |g(x)| for each y € (a,b), where g is a fixed u-integrable
function. Deduce that F is differentiable at yy, and

F'(30) = /R (3y) () 70) p(d).

Hint: Use the mean-value theorem to argue that g also dominates the difference
quotients of f(x, -).
3. For a > 0, consider the parameterized integral

F(a) ::‘/R e " A(dx) = %.

Compute two alternative expressions for the nth derivative F(") (a) by differ-
entiating this relation repeatedly with respect to a. Specialize this formula to
a = 1, and discuss the result.

4. (*) Here is another example that can be treated by the same approach:

F(a) = / e sm}ix) Aldx) = g —arctan(a) fora > 0.
Ry

Verify the identity by differentiating under the integral sign and using standard
tools from calculus.

Problem 5.43 (Densities). Let (X, F, u) be a measure space, and let f : X — R, be
a positive, measurable function. We can define a function v : ¥ — [0,+c0] on
measurable sets via

v(A) := /fdu for all A € F.
A

The function f is called the density of v with respect to y. It is often written f = dv/dpu.
See Exercise 6.27 for an explanation of this notation.

1. Prove that v is a measure with v(X) = u(f).

2. From the definition of the integral, show that two positive functions f and g are
both densities of u if and only if f = g A-almost everywhere. Hint: Prove the
forward direction by contraposition. For the reverse direction, first establish the
case f = 0. Then consider the measurable function f — f A g.

3. Explain why p(A) = 0 implies that v(A) = 0 for every measurable set A. We
write this condition as v < u, and we say that v is absolutely continuous with
respect to U.

4. Consider the measure space (R, %(R), 1). Define

1 2/
Y(B) := —/e /2 )(dx) for Borel B € B(R).
Va2m J
Show that vy is a measure, which is called the standard Gaussian measure. What

is its density with respect to the Lebesgue measure A? (*) What is the total mass
of the measure?

The converse of (3) is called the
Radon-Nikodym theorem: v < u
implies that v has a density with
respect to (. See Lecture 22.
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5. Consider the measure space (N, ?(N), #). Define

1 1 1
[.l(A) = E A E #(dk) = ZkEA m for A c N.

Show that p is a probability measure on N, called the standard Poisson measure.
What is its density with respect to the counting measure #?

Problem 5.44 (Push-forward of a measure). Let (X, F, ) be a measure space, and let
f : X > R be a measurable function on the domain X. Define a function v : B(R) —
[0, +o0] via

v(B) := u(f~1(B)) forall B € B(R).

The measure v is called the push-forward of the measure p by the function f. It is
commonly denoted v = f.u.

1. Prove that v is a Borel measure on R. Hint: Use the definition of measurability
and the properties of the preimage.
2. Establish the change of variables formula:

v(g) = p(gof). (5.8)

Hint: Start with the case where g is positive and use Definition 5.11 of the
Lebesgue integral. This problem becomes much harder if you define the integral
as a limit of simple functions.

Problem 5.45 (*Measures from positive operators). Let (X, %) be a measurable space.
Introduce the set of positive, measurable functions: L, := {f : X — R, measurable}.
LetT : L, — [0, +o0] be an operator that satisfies

1. Monotonicity: f < g implies that T(f) < T(g) forall f, g € L,.

2. Positive linearity: T(af + ag) = aT(f) + pT(g) forall f,g e Lyand a, B > 0.

3. Monotone convergence: For every increasing sequence (f; : j € N) of functions in
L, with pointwise limit f, we have T'(f;) T T(f).

Define a function u : ¥ — [0, +oo] on measurable sets via
U(A) ;=T (1) forallAe F.

Prove that p is a measure. Deduce that measures are in one-to-one correspondence
with these positive operators.

Notes

All of this material is standard, and some version of these results may be found in any
book on real analysis. Nevertheless, the construction of the integral using super-level
sets is an unusual choice; it is motivated by the presentation in Lieb & Loss [LLo1]. The
problem on differentiation under the integral sign is drawn from Folland’s book [Folgg],
while the examples of this method are extracted from Conrad’s note [Con]. The
problem on constructing measures from positive operators is adapted from Pollard’s
book [Polo2].
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6.1

6. Product Measures

“Don’t find customers for your products, find products for your customers.”

—Seth Godin

“Tout dans la nature se modele sur la sphére, le cone et le cylindre, il faut apprendre
a peindre sur ces figures simples, on pourra ensuite faire tout ce qu’on voudra.”

“Everything in nature is modeled on the sphere, the cone, and the cylinder. You
must learn to paint these simple figures. You will then be able to paint anything
that you want.”

—Paul Cézanne, 1904

The theory of measure and integrals was initially developed to clarify the notion of
“length”. We outlined these ideas in Lecture 3, where we encountered the construction
of the Borel sets and the definition of the Lebesgue measure.

In this lecture, we turn to another classic problem: How can we assign a consistent
notion of “area” to subsets of the real plane? We know that the area of a rectangle
should equal the product of its width and its height, and our goal is to extend this
elementary idea to a wider class of sets. This labor requires the machinery of abstract
measure theory (Lecture 2) and abstract integration (Lecture 5).

Related questions arise in probability theory. Given two “independent” probabilistic
experiments, the probability that the pair of outcomes is in a set A X B equals the
product of the probability that the first outcome belongs to A and the probability that
the second outcome belongs to B. The problem is to determine the probability that the
pair of outcomes belongs to a set that is not “rectangular”. We will spend some energy
on the probabilistic interpretation later.

After developing a way to assign areas in the plane, we turn to the problem of
integrating a function on the plane. This investigation is tied to the question about
when we can interchange two integrals, which is addressed by the fundamental
theorem of Fubini and Tonelli.

Products of measurable space

A geometric rectangle is the product of a horizontal line segment and a vertical line
segment. The area of a rectangle is the product of the length of the horizontal segment
and the vertical segment. It stands to reason that we must begin with Cartesian
products of sets if we want to understand area and its generalizations.

Agenda:

15

Pwpn

Products of measurable spaces
Product measure
Fubini-Tonelli

Integration by parts
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Figure 6.1 (Cylinders and rectangles). The preimage 7;° L(E) of a set E C X7 under the
coordinate projection 77 onto X is called a Cartesian cylinder. Similarly, the preimage
of a measurable set in X under the coordinate projection 75 is a Cartesian cylinder.
The intersection of two Cartesian cylinders forms a Cartesian rectangle.

Cylinders and rectangles
Consider two domains X; and X;. Recall that the (Cartesian) product of the domains is

X:=X1 XXy = {(Xl,XZ) 1 X1 € Xy and x, € Xz}

For arbitrary subsets E, F C X, we can construct the (Cartesian) rectangle E X F C X.
Associated with the product space are the two coordinate projection maps:
M : X — Xy where m: (X1, X2) — Xq;
7y : X = Xy where 715 : (X1, X0) > Xo.
Using the coordinate projection maps, we can lift arbitrary sets in the factor spaces to
obtain (Cartesian) cylinders.
ﬂl_l(E) = {(X],)Cz) eX:x, € E} forE C Xi;
7y (F) = {(x1,X%2) € X:xp €F} forF C Xo.

In the two-dimensional product X, the intersection of a horizontal and vertical cylinder
yields a Cartesian rectangle. See Figure 6.1 for an illustration.

Measurable cylinders and product-measurable sets
Consider two measurable spaces (X1, %) and (Xa, %,). We would like to construct a
natural product of these measurable spaces. To do so, we must decide which sets will
be measurable in the product domain X = X; X Xj.

Right now, we only have a notion of what sets are measurable in X; and in X;. As
we have seen, we can lift the measurable sets in each domain to obtain cylinders:

n;'(E) for measurable E € F;;

n; 1 (F) for measurable F € %.
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A cylinder obtained from a measurable set is called a measurable cylinder. It is
reasonable to insist that every measurable cylinder should be a measurable set in the
product space. To achieve this goal, we simply define the measurable sets in the product
to be the elements of the o-algebra generated by all measurable cylinders.

Let us formalize this construction.

Definition 6.1 (Product of measurable spaces). Let (X;, &;) be measurable spaces for
i = 1,2. The product of the measurable spaces

(X) %) = (Xl)%l) X (XZr OJZ) = l—lizl Z(Xi’%i)

is the measurable space with the domain X = X; X X5. We equip it with the product
o-algebra &, which is generated by all measurable cylinders:

F=F XoFp = a({n;(E) :E€ F1} U {m, ' (F) : F € F2};X).

We abbreviate (X1, %;)? for the product of a measurable space with itself.

By construction, the product o-algebra is the smallest o-algebra on the product
space X X X in which the coordinate projections 77, 71, are measurable functions
(see Problem 5.36). This is the key reason that we construct the measurable sets using
cylinders.

Exercise 6.2 (Products of measurable spaces). In some instances, we can compute the
product of measurable spaces easily. Let (X;, %;) be a measurable spaces for i = 1, 2.

* Trivial o-algebras: Suppose that F; = {0, X;} for i = 1,2. What is the product
o-algebra?

* Finite o-algebras: Suppose that %; has finite cardinality for i = 1, 2. Show that
the product o-algebra has finite cardinality.

* Complete g-algebras: Suppose that X; is countable, and let & = P (X;) fori = 1, 2.

Show that the product o-algebra is the complete o-algebra on X; X Xj.

Exercise 6.3 (*Products: Associativity). Let (X;, ;) be measurable spaces for i = 1, 2, 3.

Check that the product is associative:
(X1, F1) X (X2, F2)) X (X3, F3) = (X1, F1) X (X2, F2) X (X3, F3)).
As a consequence, we can write the product measurable space without parentheses:
(X1, F1) X (X2, F2) X (X3, F3).
Hint: Show that the product o-algebra is
o({n;'(E;) : E; € Fand i = 1,2,3}).

By iterating this construction, we can define n-fold products.

Measurable rectangles

Consider a Cartesian rectangle E X F obtained from two measurable sets E € %; and
F € F,. This rectangle is the intersection of two measurable cylinders:

ExF=n'(E)nmy ' (F).

Since the measurable cylinders generate the o-algebra of measurable sets, the rectangle
E X F must also be measurable. Indeed, o-algebras are stable under (countable)
intersection. See Section 6.1.6 for further discussion.

This construction is analogous to the
product topology, which is the
smallest topology on the product
where each coordinate projection is a
continuous function.
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Exercise 6.4 (Rectangles generate the product-measurable sets in two dimensions). Let (X;, F;)
be measurable spaces for i = 1,2. Show that the rectangles generate the product
o-algebra:

GJ:?lngJz:U{EXF:Eegl andFe?iz}.

Let us note that this example only involves the product of two measurable spaces.

Example: Borel sets in Euclidean spaces

On the real line, the length is associated with the uniform distribution of mass, which
places one unit of mass per unit of length on the entire line. Similarly, the concept of

area is associated with a uniform distribution of mass over the Euclidean plane (R?).

This distribution should place one unit of mass per unit of area on the entire plane.
Before we turn to the construction, we need to introduce an appropriate measurable
space. Let us introduce and reconcile two possible approaches.

We reasoned that we should be able to define the length of any open interval in the
real line R. This led to the definition of the Borel sets %(R) as the smallest o-algebra
generated by the open intervals of R. Similarly, we should be able to define the area of
any open Euclidean ball in the plane R2. This idea leads to the definition of the Borel
measurable sets in the plane.

Definition 6.5 (Borel sets: Euclidean plane). The class B(R?) of Borel sets in the
Euclidean plane R? is the smallest o-algebra generated by open Euclidean balls:

B(R?) := g{D(x;r) : x € R® and r > 0}.

We have written D(x; r) := {y € R? : ||y — x|l < r} for the open ball centered at
x € R? with radius r > 0.

Exercise 6.6 (*Borel sets: Euclidean plane). Show that %(R?) is the o-algebra generated
by open subsets of the Euclidean plane R2. Hint: Every open set in the plane is a
countable union of open Euclidean balls. Look up “second-countable space.”

Just now, we have introduced the notion of a product of two measurable spaces. In
particular, we can consider the product (R, (R))? of the real line with itself. The
basic idea here is that every (measurable) cylinder in the plane is product-measurable,
and this gives rise to another class %(R)? of measurable sets. How can we reconcile
these two constructions?

Proposition 6.7 (Product of Borel sets: Euclidean plane). Consider the measurable space
(R, %(R)) given by the real line equipped with its Borel sets. Then

(R, B(R))* = (R?, B(R?)).

In other words, if we “square” the real line with its Borel sets, we obtain the real plane
equipped with its Borel sets.

*Proof. First, observe that the coordinate projections m; : R? — R are continuous
with respect to the Euclidean topology (generated by open balls in R?). Therefore,
Exercise 5.3 implies that 7; is a 9%(R?)-measurable function because %(R?) is also
generated by open balls in R2. In detail,

77 '(B) € B(R?) foreachB e B(R)andi=1,2.

As usual, ||-||2 denotes the Euclidean
norm.



6.1.5

Lecture 6: Product Measures 93

As a consequence,
B(R)* = o{n;'(B) : Be B(R) and i = 1,2} C B(R?).

For the converse, recall that the Borel sets % ([R?) in the plane are generated by open
sets (Exercise 6.6). Every open set G in the plane is a countable union of open rectangles
of the form (a, b) X (c, d). Now, each of these open rectangles is the intersection of
two cylinders, namely (a, b) X R and R X (c, d). As a consequence, G is a countable
combination of cylinders, so G € B(R)2. We deduce that B(R?) € B(R)2. [

Activity 6.8 (Borel sets: Euclidean plane). For E, F € %(R), note that the rectangle E X F
is a Borel set in the plane. Deduce that each singleton {x} C R? is Borel. Check that
geometric rectangles, like (a, b) X (c,d) and (a, b] X (c, d], are Borel. Note that
semi-infinite rectangles (—oo, b] X (—o0, d] are Borel. Explain why every open set and
every closed set in the plane is Borel. Check that each half-space {x € R? : a'x < b}
is Borel. What about convex sets? Can you think of more examples? .

We can extend these notions to higher-dimensional Euclidean spaces.

Definition 6.9 (Borel sets: Euclidean space). For 7 € N, the class (R") of Borel sets
in the Euclidean space R” is the smallest o-algebra generated by open Euclidean
balls:

B(R"™) := o{D(x;r) : x € R" and r > 0}.

We have written D(x;r) := {y € R" : ||y — x||2 < r} for the open ball centered
at x € R" with radius r > 0.

Exercise 6.10 (*Product of Borel sets: Euclidean space). For n € N, show that the n-fold
product of the real line satisfies (R, B(R))"” = (R", B(R")).

Warning 6.11 (*Borel sets: Infinite products). The statement analogous to Exercise 6.10
fails for an infinite product. Indeed, the open sets in %B(R"Y) may only contain
the intersections of a finite number of cylinders induced by open sets in the factor
spaces. .

Measurable functions on product spaces

Suppose that (X, %) is a product of measurable spaces (X;, %;) for i = 1,2. We can
specialize the Definition 5.1 of a measurable function to this setting. In detail, let
f : X1 XXz — R be a bivariate function. Then f is (product) measurable when

FHt, +00] = {(x,y) € Xy XXy : f(x,y) >t} € F foreacht € R.

What kind of functions are product measurable? As usual, the indicator function 1 of
a product-measurable set A € F is measurable. All linear combinations and products
of measurable functions are measurable. All countable combinations of measurable
functions are measurable. See Section 5.2.1 for general principles.

Exercise 6.12 (Product functions). Suppose that (X, %) is a product of measurable spaces
(X;,F;) fori=1,2. Let f : X; > R and g : X, — R be measurable functions. Show
that the function (x, y) — f(x)g(y) is product measurable.

Exercise 6.13 (*Measurable functions on R"). Consider the product space (R”, %(R")).
Show that every continuous function f : R” — R is product measurable. Show that
every lower-semicontinuous convex function f : R” — R is product measurable.
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In the particular case of (R”, 8(R")), we have the same principle about measurable
functions as we did in (R, %(R)). Indeed, most functions f : R” — R that you
encounter in practice are product measurable.

*General products of measurable spaces

For an arbitrary index set |, we can construct the product of an indexed family
{(Xi,%;) : i € |} of measurable spaces by adapting Definition 6.1. First, form the
Cartesian product X = [];¢ X; of the domains. Equip the product domain X with the
o-algebra

F = o(n; ' (E;) : E; € %; for some i € ).
In other words, F is generated by all measurable cylinders 7;” 1(E;) induced by all
measurable sets E; in the factor spaces X;.

Now, consider a Cartesian rectangle R := [];¢ E; formed as a product of measurable
sets E; € ;. When the index set | is countable, every such rectangle R is a measurable
set in the product.

In contrast, when | is uncountable, this rectangle R need not be measurable because
the o-algebra is only guaranteed to contain countable intersections of cylinders!
Although this technicality is sometimes inconvenient, the construction we have given
(starting with cylinders, not rectangles) is the mathematically natural one. Indeed, it
is the smallest family of measurable sets for which the coordinate projections are all
measurable functions.

This issue may seem esoteric, but it can arise in the study of continuous stochastic
processes. These processes contain an uncountable number of random variables. We
cannot simultaneously constrain the value of each random variable and be confident
that these outcomes compose a measurable set (called an event in this context). More
advanced probability courses address this matter, but we will not discuss it further in
this class.

Aside: For a comparison, consider a family of topological spaces equipped with the
product topology. In this setting, an open cylinder is defined as the preimage under
the coordinate projection of an open set in one of the factor spaces. The product
topology is the (smallest) topology generated by the open cylinders. Meanwhile,
consider a Cartesian rectangle obtained as the product of one open set from each
factor space. When we form the product of an infinite number of topological spaces,
the product topology may not contain all such rectangles because the topology
only contains finite intersections of open cylinders. Be careful!

Product measures

Consider two measure spaces (X1, F1, 1) and (Xa, Fo, t2). Let (X, F) be the product
of the associated measurable spaces. Our next job is to equip the product measurable
space with a canonical product measure g = 1 X Us.

Existence and uniqueness of product measure

For measurable rectangles, the value of the product measure should certainly equal
the product of the measures of the sides:

BEXF) = (u1 X u2)(EXF) := p1(E) - po(F) forEe Fand Fe Fp.  (6.1)

This definition agrees with our elementary concept of area. Indeed, when p; = s = 1
is the Lebesgue measure, then the product measure u = A X A of a Borel rectangle is
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the length subtended in its first coordinate times the length subtended in the second
coordinate.

Of course, the problem remains that measurable sets in the product space are more
complicated than simple rectangles. Indeed, the product o-algebra contains countable
unions and intersections of rectangles, which can be very intricate. The next result
guarantees that there is a unique measure on the product space that satisfies (6.1).

Theorem 6.14 (Product measure: Existence and uniqueness). Let (X;, %;, i;) be o-finite
measure spaces for i = 1, 2. The product (X, F) := (X1, F1) X (X2, F) carries a
unique measure p := ;X [, called the product measure, that satisfies

U(EXF) = pu1(E) - ua(F) forallE € &y and F € Fo. (6.2)

The triple (X, %, p) is called the product of the measure spaces.

The proof of Theorem 6.14 appears in Appendix D. The argument appeals to the
Hahn-Kolmogorov theorem and some tools from integration theory. Exercise 6.19
shows that we can also construct the product of a finite number of measures in the
natural way.

Example 6.15 (Product of Lebesgue measures). Consider the measure space (R, B(R), 1),
the real line equipped with Borel sets and the Lebesgue measure. According to
Proposition 6.7, the product of this space with itself is (R?, B(R?),A x 1). By
construction, the product measure satisfies

(AXA)(AxB)=A(A) - A(B) forBorel A,B C R.
For example, when the sets are half-open intervals,
(AxA)((a,b] x (c,d]) = M(a,b]) - M(c,d]) = |b—al -|d - c|.

This formula is valid for all real numbers that satisfy @ < b and ¢ < d. Thus, the area
of a rectangle is the product of side lengths.

For an arbitrary Borel set B € %(R?), we interpret (1 x 1)(B) as the area of the
set B. Since the Borel g-algebra contains all open sets and all closed sets, we may
assign an area to every subset of the plane that is either open or closed, and many
more besides.

We usually write A2 := A x A for the Lebesgue product measure on (R?, B(R?)).
The formation of products may be iterated. For n € N, we will write A" := A X --- X A
for the n-fold product of the Lebesgue measure, defined on the measurable space
(R, %(R™)). For a Borel set B € %B(R"), we interpret A" (B) as the n-dimensional
volume of B. .

Exercise 6.16 (Product measure: Dirac measures). Consider measure spaces (R, B(R), ;)
and (R, B(R), §,) for points x,y € R. What is the product space? Compute the
product measure of a measurable rectangle.

Exercise 6.17 (Product measure: Line measure). Consider measure spaces (R, B(R), &)
and (R, B(R), 1) for a point x € R. What is the product space? Compute the product
measure of a measurable rectangle.

Exercise 6.18 (Product measure: Counting measures). Consider the discrete measure space
(N, (N), #). What is the product of this measure space with itself? Compute the
product measure of a measurable rectangle. Can you compute the product measure of
a general product-measurable set? Hint: Reduce to singleton sets by using countable
additivity.

Warning: The construction of
product measures fails without
o-finiteness!



6.2.2

Lecture 6: Product Measures 96

Figure 6.2 (Integration over a product space). On a product space Xj X X», the integral
sums the values of a bivariate function f : X; X X3 — R weighted by the local product
measure (g X p2)(dx xdy) = p1(dx) pa(dy). The function f does not need to have
a product structure.

Exercise 6.19 (Product measure: Properties). Consider measure spaces (X;, ¥, ;) for
i =1,2,3. Show that the formation of product measures is associative:

(H1 X p2) X p3 = p1 X (f2 X f3).

In particular, the product pg X pa X s is well defined, and it has the property that

(p1 X p2 X p3)(Ey X Ex X E3) = p1(E1) - p2(Ez) - u3(Es)

for all measurable sets E; € F; fori =1, 2, 3.
Define the exchange operator R : (x,y) +— (¥, x). Show that product measures
are commutative, in the sense that

(p1 X p2)(A) = (2 X u1)(RA)  for measurable A € F; X Fo.

The action of an operator on a set is understood to mean the set obtained by applying
the operator to each element.

Aside: We cannot necessarily construct the product of an infinite number of
measures without further assumptions. The Kolmogorov extension theorem
(Appendix D) describes one important situation where the infinite product of
measures is meaningful.

Integration over product measure spaces

A product of measure spaces is just another measure space, so we can compute
integrals with respect to the product measure. As usual, the integral sums the values
of a measurable function, weighted by the local mass given by the product measure,
over the product domain. See Figure 6.2.

For integrals over product spaces, the notation is a little different from the univariate
case. Form the product (X, &, u) of two measure spaces (X1, F1, ¢1) and (Xg, Fo, U2).
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For a measurable function f : X — R whose integral is defined, we use the notation

[ utan.
X

The variable of integration x = (X1, X3) is written in boldface to emphasize that it is a
pair of coordinates rather than a single coordinate. We think about the differential dx
as an infinitesimal rectangle at the point x.

We may also write out the product measure p = pt1 X o in full, in which case it is
common to use other notations for the differential. For a function f : X; X X3 —» R
where the integral is defined,

F(xy) (p1 X p2)(dx x dy)
X1 %XXo

/ﬂwMM>
X

F(x,y) (p1 X p2)(dxdy).

X1 %XXo

These expressions suggest that the two variables may change independently. We can
think about the differential as representing an infinitesimal box at (x, y) that has
infinitesimal width dx and infinitesimal height dy. The second notation has the same
interpretation. For the Lebesgue measure A2 it is quite common to drop the measure
from the notation, so dx := A2(dx).

Example 6.20 (Product of Lebesgue measures). Let B € %(R?) be a Borel set in the plane.
As always, the integral of the indicator function of a set is the measure of the set. For
the product of Lebesgue measures,

/ 1g(x) A%(dx) = A%(B).
R2

We interpret the right-hand side as the area of the Borel set B. .

Interchange of integrals

As you know, we can also compute the area of a plane region by slicing it into thin
vertical strips and summing the areas of the strips along the horizontal direction.
Likewise, we can compute the area by slicing the region into thin horizontal strips and
summing the areas of the strips along the vertical direction. Similarly, if a function
describes the density of mass in a plane region, we can find the total mass by adding
up the mass of vertical strips or by adding up the mass of horizontal strips.

These geometric principles are intuitive. They suggest that we can compute the
integral of a bivariate function with respect to the Lebesgue product measure A2 = Ax A
by integrating with respect to one coordinate and then the other, in either order. More
generally, we would like to understand when we can compute integrals with respect to
a product measure {11 X (i by integrating along one coordinate and then the other.

*Measurability of sections

We can only integrate functions that are measurable. Therefore, the first step in
our investigation requires us to understand some properties of measurable bivariate
functions defined on a product space. In particular, we must verify that the univariate
sections of these functions remain measurable. The key fact is a related section property
for sets; see Figure 6.4.

Figure 6.3 (Slicing area).
We can compute the area of
a plane region by summing
the areas of vertical slices
or the areas of horizontal
slices.
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Figure 6.4 (Sections). Given a measurable set A in the product space X; X Xa, each
section Ay, and AY is a measurable set in the factor space.

Proposition 6.21 (Product space: Section property for sets). Let (X;, %;) be measurable
spaces for i = 1,2. For a set A C X; X Xy, define the sections

Ay ={yeXy:(x,y) e A} forx e Xy;

A :={xeX;:(x,y) e A} foryeX,.

If the set A € F1 X, F» belongs to the product g-algebra, then each section A, is a
measurable set in &, and each section A’ is a measurable set in F;.

*Proof. This argument hinges on the fact that the product ¥ := F; X, F, is the
smallest o-algebra that contains all measurable cylinders. Introduce the family Fget
that contains each product-measurable set whose sections are all measurable:

Foect := {A € F : all sections A, and A’ are measurable} C %.

Clearly, the empty set () and the product domain X; X X5 belong to Fse. In addition,
every measurable cylinder belongs to Fgec. The family Fye is stable under complements
because

(Ax = (Ay)° and (A9)Y = (A)".

Likewise, the family s is stable under (countable) unions because
(U?O:1 Ai)x = Ui, (A))x and (U(ix;1 Ai)y = Ui (A).

In summary, Fge¢ is a o-algebra that contains all measurable cylinders. Therefore,
Fsect Must contain the product o-algebra . We conclude that Fgey = F. [ ]

With this result at hand, we can easily derive an analogous section property for
functions.
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Exercise 6.22 (Product space: Section property for functions). Let (X;, %;) be measurable
spaces for i = 1, 2. For a function f : X; X X2 — R on the product, define the sections

fe:y f(x,y) foreachx € Xy;
fY:xm- f(x,y) foreachy € X,.

If f is measurable with respect to the product o-algebra F; X, F», then the section f;
is Fo-measurable for each x and the section f7 is F;-measurable for each y.

The Fubini—Tonelli theorem

The notorious Fubini-Tonelli theorem states that we can integrate a bivariate mea-
surable function with respect to a product measure by arranging the integrals in any
order we like. This result is true under, essentially, minimal conditions.

Theorem 6.23 (Fubini-Tonelli). Consider o-finite measure spaces (X;, %, ;) for
i=1,2. Let f : X3 XXy — R be a Borel measurable function.

1. Positive case: For a positive function f > 0,

f(x,y) (p1 X po)(dx x dy)

X1 XXy
= / ( / f(x,y) /uz(dy)) pa (dx) (6.3)
X1 Xz

2. Integrable case: The identities (6.3) also hold for a finite-valued function f
that is integrable with respect to p; X . In detail, integrability means that

/X Ve ) 2 i i) < ks,

The proof of Theorem 6.23 involves some new set theoretic tools. We postpone the
argument to Appendix D.4.

Let us emphasize that the statement of Theorem 6.23 only makes sense because of
the section property (Exercise 6.22). Indeed, the univariate integrals are understood
to mean

/ FO0y) p(dx) = / () (o)
X1 Xl
/ FO0) pa(dy) = / £ pa(dy).
X2 X2

These definitions require that all sections are measurable.

In the special case of the product A X A of Lebesgue measure on R?, the Fubini—
Tonelli theorem implies that the area of a measurable set in the plane equals both the
integral of the lengths of the horizontal slices and the integral of the lengths of the
vertical slices. We can obtain this statement by applying the theorem to the indicator
function 1p of a Borel set B € B(R?).

Exercise 6.24 (Product measure: Dirac measures). Consider measure spaces (R, B(R), ;)
and (R, B(R), ;) for points x, y € R. Compute the product measure (6 X ;) (B) of

Warning: This result can fail for
measures that are not o-finite! =

Warning: Confirm that the
function f is either positive or
integrable before applying this
result!
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an arbitrary Borel set B € %(R?). Hint: Write the measure of the set as an integral,
and invoke Fubini-Tonelli.

Exercise 6.25 (Product measure: Line measure). Consider measure spaces (R, B(R), dy)
and (R, B(R), 1) for a point x € R. Compute the product measure (J; X A)(B) of an
arbitrary Borel set B € B(R?).

Integration by parts

The Fubini-Tonelli theorem is an essential tool. One of the most important applications
of this result is a generalized integration by parts formula.

Problem 6.26 (Integration by parts). Let (X, %, u) be a o-finite measure space. Let
f : X — R, be a positive measurable function. Consider an increasing, continuously
differentiable function ¢ : R, — R, with ¢(0) = 0. Establish the identity

/X (¢ 0 f)(x) u(dx) = / wlx e R f(x) > 1) o (1) A(dD).

Ry

Instantiate the cases ¢(t) = t and ¢(t) = tP for p > 0 and ¢(t) = e’ — 1. Hint:
On the right-hand side, write the measure of the super-level set as the integral of an
indicator function, and invoke Fubini-Tonelli. You will also need the fundamental
theorem of calculus.

(*) What happens if ¢(0) # 0? Can you modify this result to handle the case where
@ is not necessarily increasing? What about the situation where ¢ is increasing but
may not be differentiable?

Problems

Exercise 6.27 (Densities). Let u be a o-finite measure, and let f : R — @+ be a positive,
measurable function. Recall that there is a measure v : B(R) — [0, +oo] on Borel
sets, determined by

v(B) := [3]’ du forall B € B(R).

For a v-integrable function g : R — R, show that

Ang=Agfdu-

This formulation explains the notation f = dv/du for the density f. Hint: Start with
the case where g is positive. Write out the definition of the integral on the left-hand
side. Express the measure of the super-level set as the integral of an indicator so that
we have access to Fubini-Tonelli.

Problem 6.28 (*Linear transformations). Let T : R? — R2 be an invertible linear map
with (nonzero) determinant, det(T). For each A%-integrable function f : R2 — R, we
will argue that

[ s = [ pn - aem) ), (6.4
R2 R2

This formula implements the linear change of variables x — Tx.

There is a direct proof of this formula
using approximation of g by simple
functions; see Proposition 9.5. This
approach may be less natural, given
our definition of the integral in terms
of super-level sets.
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. (*) Show that every invertible linear map T : R2 — R2 can be written as the

product of finitely many row-reduction operations of the form

To : (x1,x2) = (X2, %1);
T : (x1,%2) — (axy, x2) for a # 0;
T2 : (xl,xz) = (Xl + ﬁxz,xz) for ﬂ e R.

. Show that the result (6.4) holds when T is any one of Ty, T, T,. Hint: Use

Fubini-Tonelli, one-dimensional change of variables formulas (see Exercise 4.40),
and the translation invariance (Theorem 3.16) of the Lebesgue measure A.

. Deduce that the result (6.4) holds for every invertible linear map T. Hint: The

determinant of a product is the product of determinants.

. Conclude that the Lebesgue measure A? is invariant under orthogonal linear

transformations. Hint: The determinant of an orthogonal matrix equals one.

. A fortiori, show that the Lebesgue measure A? is invariant under all rigid motions

(i.e., an orthogonal linear transformation followed by a translation).

. Consider a Borel set B € %(R) in the real line. We can form another Borel set

C = B x {0} C R? that lies on the horizontal axis in the plane. Explain why
A2(C) = 0. Deduce that A2(TC) = 0 for each rigid motion T. Conclude that
“one-dimensional” Borel sets in the plane are negligible with respect to 12.

7. (*Multivariate case). Formulate and prove an extension of (6.4) for invertible linear

transformations on R”.

Problem 6.29 (**Bivariate change of variables). Let G : Q) — R? be a diffeomorphism on
an open subset ) C R2. That is, G is an injective function with a continuous derivative

DG :

Q — R?*2 that is everywhere invertible: |det(DG(x))| > 0 for all x € R2. For

each A2-integrable function f : Q — R, we will prove that

/ f(x) A*(dx) =/f(G(x))-Idet(DG(x))Mz(dx)- (6.5)
G(Q) Q

This formula implements the nonlinear change of variables x — G(x). The (absolute
value of the) determinant of the derivative is often called the Jacobian of the transfor-
mation. We begin with a sequence of standard reductions. This pattern of argument is
common when proving facts about Lebesgue integrals.

1.

If the identity (6.5) holds for each positive, measurable function f : Q — R,
deduce that it holds for all A?-integrable functions.

If the identity (6.5) holds for each positive, simple function f : Q — R, use
monotone convergence (Theorem 5.18) to argue that it holds for each positive,
measurable function.

If the identity (6.5) holds when f = 13, the indicator of a Borel set B C Q,
confirm that it holds for all positive, simple functions.

It is helpful to assume that DG is a bounded function. To do so, we restrict
attention to a compact set Q' C Q. Verify that G(Q’) is compact, and check that
the restriction DG : ' — R?*2 is bounded.

(*) Show that there is an increasing sequence Q; C Q5 C --- C Q of compact
sets Q; for which (J;2; Q; = Q.

Fix an arbitrary compact subset Q' C Q. Suppose that (6.5) holds when f = 1,
the indicator of an arbitrary Borel set B" C G(Q’). Using exhaustion by compact
sets, invoke monotone convergence to show that the identity (6.5) remains valid
for the indicator 1g of each Borel set B C Q.

Warning: A subset of a line in R?
need not be a Borel set in R?. =

The image of the set Q under the
function G is defined as

G(Q) :={Gy :y € Q}.

This method is called exhaustion by
compact sets.
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7. (**) A half-open geometric rectangle is a set of the form R = (a, b] X (¢, d] where

a < b and ¢ < d. Fix a parameter € > 0. Using the machinery from Appendix A,
show that each bounded Borel set B € %(R?) can be written as a finite union
of half-open geometric rectangles plus a set E C R? with Lebesgue measure
A%(E) < €:

Hint: Show that %([R?) is the “completion” of the algebra generated by the family
{(a,b] x (c,d] : a < b, c < d} of half-open rectangles.

. Using the last two parts, show that it is enough to prove that

/]lR(x)/lz(dX)=/ 1r(G (%)) - |det(DG (x))| A*(dx) (6.6)
R2 R2

where R C Q is an arbitrary half-open geometric rectangle.

. Let R € Q be any half-open geometric rectangle. Consider the function

Je-1(ry 1det(DG (x))] A% (dx)
J(R) := 2R

We can interpret J(R) as the average value of the Jacobian over the set R. By
subdividing the rectangle into a large number of tiny, congruent rectangles,
argue that J(R) = 1. Deduce that (6.6) is valid. Hint: The derivative DG is
bounded and continuous, so it is essentially a linear map on a small rectangle.
Invoke (6.4) to handle this case.

. (*) Formulate and prove an extension of (6.5) for integrals with respect to the

Lebesgue measure A" on the n-dimensional Euclidean space R”. Hint: There is
no conceptual difference from the two-dimensional case.

Exercise 6.30 (Polar coordinates). In two dimensions, one of the most valuable transfor-
mations replaces Cartesian coordinates (x, y) with polar coordinates (7 cos 6, r sin )
where r > 0 and 6 € (0, 27). Use the formula (6.5) and Fubini-Tonelli to show that

/ f(x,y) A(dx) A(dy) = / f(rcos@,rsin@)rA(dr) A(d6).
RxR 6e[0,2n] JreR,

This expression is valid for any measurable function f : R> — R that is either positive
of A%-integrable.

Exercise 6.31 (Gaussian integrals). This exercise outlines the classic calculation of a
Gaussian integral. Define

1.

2.
3.
4.

I::/[Re_x2 A(dx).

By applying Fubini-Tonelli (with justification), confirm that

%= / e~ () (A x 1) (dx x dy).
RxR
Use Exercise 6.30 to change to polar coordinates.
Compute the resulting integral with Fubini-Tonelli. What is the value of I?
Recall that the standard Gaussian measure on the real line takes the form

1 2
Y(B) := — /e_x 2 0(dx) for all Borel B € B(R).
Va2r JB

Confirm that y is a Borel probability measure on the real line.
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5. The standard Gaussian measure on R” takes the form

1

Y*(B) := —(2ﬂ)n/2

/ e I¥I5/2 3 (dx)  for all Borel B € B(R").
B

Confirm that y” is a Borel probability measure on R".

Problem 6.32 (*Sinc). For a parameter M > 0, observe that

/ sin(x) A(dx) =/
[omM] X xe[0,M]

sin(x) (/ e‘“x/l(da)) A(dx).
acR;

)

1. Compute the limiting value of this integral as M — oo. Hint: In sequence,
use Fubini-Tonelli, the fundamental theorem of calculus (FTC), dominated
convergence, and then the FTC again.

2. Prove that x +— sin(x)/x is not Lebesgue integrable with respect to A on R,.

3. For a parameter a > 0, confirm the following identity:

/ ) =< 2ax) = 7 ~ arctan(a).
R, X 2

Use Fubini-Tonelli here, rather than differentiating under the integral.

Notes

This lecture is based on [LLo1, Chap. 1] and [Tao11, Sec. 1.7]. The discussion of
Borel sets is adapted from [Wilg1]. The change of variables theorems are adapted
from Folland’s book [Folgg], but the proof here is somewhat different in detail. For
nonlinear transformations, the key step in the argument is extracted from [Schis].
Some of the applications of Fubini-Tonelli are drawn from Folland’s book [Folgg] and
Driver’s notes [Dri12].
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7.1

\ 7. Probability Spaces

“The purpose of this monograph is to give an axiomatic foundation for the
theory of probability. The author set himself the task of putting in their natural
place, among the general notions of modern mathematics, the basic concepts of
probability theory—concepts which until recently were considered to be quite
peculiar.

“This task would have been a rather hopeless one before the introduction
of Lebesgue’s theories of measure and integration. However, after Lebesgue’s
publication of his investigations, the analogies between measure of a set and
probability of an event, and between integral of a function and mathematical
expectation of a random variable, became apparent. These analogies allowed of
further extensions; thus, for example, various properties of independent random
variables were seen to be in complete analogy with the corresponding properties
of orthogonal functions. But if probability theory was to be based on the above
analogies, it still was necessary to make the theories of measure and integration
independent of the geometric elements which were in the foreground with Lebesgue.
This has been done by Fréchet.

“While a conception of probability theory based on the above general viewpoints
has been current for some time among certain mathematicians, there was lacking
a complete exposition of the whole system, free of extraneous complications...”

—A. N. Kolmogorov (1933), transl. Morrison (1950)

In today’s lecture, we will introduce Kolmogorov’s axiomatic model for probability
theory, laid out in his 1933 monograph, Grundbegriffe der Wahrscheinlichkeitsrechnung
or Foundations of Probability Calculus.

So, what was going on before 1933? Was the world deterministic’ No! In
fact, Palamedes was said to be rolling dice during the Siege of Troy. The point of
Kolmogorov’s formulation was to ground probability firmly in measure theory, providing
a mathematical unity to concepts that previously were disparate and vague.

With our knowledge of measure theory, we can easily state Kolmogorov’s model for
probability theory. But this model comes along with new terminology and interpreta-
tions that take some practice to acquire. The power and richness of this formulation
will reveal itself gradually as we proceed.

Kolmogorov’s model

A probabilistic experiment has an unpredictable result, although one often has prior
knowledge about the probability of particular outcomes occurring.

Example 7.1 (Basic probabilistic experiments). We consider four examples:
1. One coin: We flip a fair coin once. Is the outcome heads or tails?

2. First heads: We flip a fair coin repeatedly until the first heads turns up. How
many flips does it take?

Agenda:

1. Kolmogorov’s model

. The sample space

. The o-algebra of events
Probability measures

A wN

Kolmogorov reportedly wrote this
book to fund repairs on the roof of
his dacha.
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3. Linear darts: We throw a dart at the unit interval [0, 1] in the real line. The dart
always strikes the interval, and all positions are “equally likely”. Where does the
dart hit?

4. Square darts: We throw a dart at the unit square [0, 1]2 in the real plane. The
dart always strikes the square, and all positions are “equally likely”. Where does
the dart hit?

In this lecture, we will use these experiments as running examples. .

We can treat the two examples involving coins using elementary notions of discrete
probability, grounded in combinatorial reasoning. Each individual outcome can
be assigned a probability, which gives rise to a distribution of probability over the
individual outcomes of the experiment. Unfortunately, this is the wrong way to think
about probability.

To find the right path, we look to the third experiment on linear darts. How do we
make sense of a “uniform distribution” of probability? Indeed, the probability that the
dart strikes any particular point is zero. Eventually, we realize the correct way to think
about this experiment. The probability that the dart strikes a subset E of the interval
[0, 1] should equal the length of the set E. Once we achieve this enlightenment, it
becomes clear that we need measure theory to formalize linear darts, because measure
theory allows us to define length rigorously. The square darts experiment requires
measure theory as well.

As Kolmogorov explains, in the early 2oth century, mathematicians gradually
realized that measure theory provides a grand unification of all of probability theory.
The key insight is to shift our attention to sets of outcomes of a probabilistic experiment
and to construct a distribution of probability mass over these sets of outcomes. This
idea leads to the central definition in modern probability theory.

Definition 7.3 (Probability space). A probability space is a measure space (Q, F, P).

1. The sample space € is an abstract set of points, called sample points.

2. The master o-algebra & contains some subsets of (2, called events.

3. The probability measure P : ¥ — [0, 1] is a finite measure that satisfies
P(Q) = 1. It assigns a probability to each event.

In elementary examples, the sample space contains the possible outcomes of a
probability experiment. The master o-algebra contains sets of outcomes, called events.
The probability measure reports how probable it is that the outcome of the experiment
is contained in each event. Performing the experiment amounts to observing the
particular outcome wq € Q.

In the rest of this lecture, we will unpack this definition, providing concrete
examples and interpretations. Probability theory replaces the dry language of measure
theory with vivid words that suggest high-stakes wagers in the smoky back room of a
Macau casino. One of the early challenges in probability theory is to become fluent
with this new terminology.

The sample space

Probability theory is built on top of measure theory. We work with a fixed domain,
which we glorify with its own name.

Figure 7.1 (Linear darts).
The dart strikes the unit in-
terval at a uniformly ran-
dom position.

Activity 7.2 (Mumblety-peg). Look
up “mumblety-peg” in the dictionary.
Please do not attempt to play

mumblety-peg. n
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Definition 7.4 (Sample space). The sample space is a fixed set Q2 whose elements w
are called sample points or outcomes. This notation is standard.

In the simplest examples, the sample space provides a direct description of a
probability experiment. Each sample point w € Q is a possible outcome of the
experiment. Performing the experiment amounts to distinguishing a particular outcome
wo € Q.

Example 7.5 (Basic experiments). In our four experiments, it is easy to identify the sample
points and the sample space.

1. One coin: Recall that we flip a single fair coin. The sample space Q = {H, T}
consists of the outcomes H = heads and T = tails. The outcome wg of the
experiment is the (random) outcome of the coin flip.

2. First heads: We flip a fair coin until it turns up heads. The sample space
Q =1{1,2,3,...} = N. The outcome wg of the experiment is the (random)
number of flips that we perform before we see the first heads.

3. Linear darts: We throw a dart, which strikes the unit interval [0, 1] at a uniformly
random location. The sample space Q = [0,1]. The outcome wq of the
experiment is the random point in [0, 1] where the dart strikes.

4. Square darts: We throw a dart, which strikes the unit square [0, 1]? at a uniformly
random location. The sample space Q = [0,1]?. The outcome wg of the
experiment is the random point in [0, 1]? where the dart strikes.

In each of these cases, the sample space is simply the collection of possible outcomes
of the experiment. .

It is productive to take a broader view of the sample space. In many circumstances,
we are not performing a single experiment (or sequence of experiments) that we can
easily describe with a list of concrete outcomes. Rather, we may want to think about a
sample point w as describing the complete state of the system we are studying. The
sample space () contains all possible states that could occur. If we knew the actual
state wy of the system, then we would know the outcome of every possible experiment
that we might perform.

Example 7.6 (Statistical mechanics). Suppose that we measure the temperature of my
morning coffee at the beginning of class. This is a probabilistic experiment. One
natural sample space is just the set of positive numbers, which corresponds to the
temperature in degrees Kelvin.

But we might also want the sample space to include more information. For example,
a sample point might list the position, momentum, and type of each molecule in the
cup at each point in time. The sample space then consists of all possible sample points
of this type. Of course, some sample points are more likely than others.

Given a sample point, we can indeed compute the temperature of the coffee. We
can also compute other thermodynamic quantities, such as the viscosity (!). The
temperature alone gives us a very limited picture of the system, and we cannot ask
more complicated questions if this is the only piece of information that we have.

Even though a sample point gives a fundamental description of the state of the
system, it is not necessarily something that we can observe. .

Example 7.7 (Random number generator). A random number generator (RNG) is a mecha-
nism that takes a finite input, called a random seed, and produces a long (but finite)
sequence of pseudorandom bits. Computer scientists study the setting where the
random seed contains a small number of truly random bits that the RNG expands

You can think about Tyche, the Greek
goddess of chance, electing the
outcome wy according to her divine
whim. Tyche’s Roman counterpart is
named Fortuna.

In a classic thought experiment,
Maxwell’s demon is able to move all of
the molecules to to the top half of the
cup. This is a possible, but extremely
unlikely, state for the system.
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into a much longer sequence of pseudorandom bits. If we do not know the random
seed, then a (computationally bounded) statistical test cannot distinguish the list of
pseudorandom bits from an independent sequence of truly random bits.

We can model an RNG using a sample space Q2 whose points are all possible values
of the random seed. The RNG is a function that maps a random seed to a (finite)
binary sequence. Once we select a particular random seed wg, the output of the RNG
is deterministic. .

The RNG example suggests a useful way to think about other kinds of probability
models. Tyche chooses the state wq of the world. This determines the outcomes of
all (classical) experiments. To the observer, who does not know the exact state, the
experimental outcomes appear random. Performing a large number of experiments
can provide information about the state, but we may never be able to determine the
state completely from a limited family of experiments.

In elementary probability theory, the sample space plays a central role because it
lists the specific outcomes of a well-defined experiment. In more advanced applications,
the sample space recedes in importance. The identity wq of the distinguished sample
point also has limited significance (and we may not know w in any case).

The o-algebra of events

The main insight behind modern probability theory is to assign probabilities to sets
of outcomes of an experiment, not to individual outcomes. This shift in perspective is
crucial.

When we studied measure theory on the real line, we learned that it is not possible
to assign a consistent length to each subset of the real line. This led us to introduce
the family of Borel sets in the real line, which are sets that have a well-defined length.
Not every subset of the real line is a Borel set.

In the same way, we may not be able to assign a probability to every subset of the
sample space. Instead, we isolate a collection of subsets of the sample space that will
have well-defined probabilities. This collection must form a g-algebra, so that we can
define a (probability) measure on it.

Definition 7.8 (Master o-algebra of events). The master o-algebra F is a g-algebra on
the sample space Q. The sets E that belong to F are called events. Each event E is
a collection of sample points.

We use special language to talk about events. Suppose that wg € Q is the
distinguished sample point. If wg € E, we say that the event E occurs. If wg ¢ E, we
say that the event E does not occur. We will present more terminology in a minute.

Example 7.9 (Basic experiments). Let us describe the master o-algebra F of events that
we use for each of our experiments.

1. One coin: Recall that the sample space Q = {H, T}. The master o-algebra &
contains all subsets of the sample space:

F = {0, {1}, {T}, {1, T} }.

For example, if the outcome wq = T, then the events {T} and {H, T} occur. The
events () and {H} do not occur.

2. Firstheads: Recall that the sample space Q) = N. Once again, the master o-algebra
F contains all subsets of the sample space: F = % (N). Particular events include

Warning: In general, not every
subset of the sample space is an
event.
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things like
E={neN:niseven} and F={neN:n<10}.

For example, if the outcome wy = 7, then the event F occurs but E does not.

3. Linear darts: The sample space Q = [0, 1]. The master o-algebra of events is
F = A([0,1]), the collection of Borel sets in [0, 1]. In other words, events are
subsets of [0, 1] that have a well-defined length. The distinguished sample point
wp € [0, 1] is the location where the dart strikes. An event E occurs when the
dart lands in the set E; that is, wg € E.

4. Square darts: Now, the sample space Q = [0,1]2. The master o-algebra of
events is ¥ = B([0, 1]?), the collection of Borel sets in [0, 1]2. Events are those
subsets of [0, 1] that have a well-defined area. The distinguished sample point
wo € [0,1]? is the location where the dart strikes. An event E occurs when the
dart lands in the set E; that is, wq € E.

In these situations, we can identify the master o-algebra using considerations from
basic measure theory. It is not always so obvious. .

Since ¥ is a g-algebra, countable combinations of events are always events. When
we talk about events, we replace the abstract language of set theory with more concrete
terminology. Here are some of the most important examples. In the following, E, F € &
are events.

* () is called the impossible event. This event cannot occur because the distinguished
sample point wg ¢ 0.

e Q) is called the certain event. This event always occurs because the distinguished
sample point wy € Q.

e The event E€ := Q \ E is the event that E does not occur.

* The event E N F is the event that both E and F occur.

e If the events E and F are disjoint (E N F = (@), then we say that E and F are
mutually exclusive.

e The event E U F is the event that E or F occurs. This includes the possibility that
both E and F occur.

* The event EAF is the event that exactly one of E or F occurs.

e The event E \ F is the event that E occurs but F does not.

Further terminology will be introduced as needed.

When constructing a probability space, we generally prefer the master o-algebra F
to be as large as possible. We want as many events as we can get. This choice helps us
ensure that all sets that arise from our considerations remain events. This principle is
limited by the fact that we also need to construct interesting probability measures.

The reason for making the master o-algebra F as large as possible is so that we
do not have to think about it very often. Later, we will see that smaller o-algebras,
contained in %, play an important role in probability theory.

As a rule of thumb, if the sample space Q is finite or countable, then the master
o-algebra F = P(Q), the collection of all subsets of the sample space. If Q is (a
Borel subset of) the Euclidean space R”, then the master g-algebra & = %(Q),
the Borel sets in R” intersected with Q.

Figure 7.2 (An event in lin-
ear darts).

In detail, for a Borel set Q C R”,

B(Q) :={BNQ:Be B(R"}.
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Aside: More generally, if the sample space Q is a separable metric space, then we
can equip Q with the master o-algebra & = %(Q) of Borel sets, generated by the
open metric balls. In still more general settings, additional care may be warranted.

The probability measure

We have intimated that Tyche designates a “random” sample point wg € Q. So far, we
do not have a way to model what sample points are more or less likely. The probability
measure [P encapsulates this information.

Definition 7.10 (Probability measure). Let () be a sample space, equipped with a
master o-algebra %. A probability measure P : & — [0, 1] is a function with three
properties:

1. Impossible event: The probability P(0) = 0.

2. Certain event: The probability P(Q) = 1.

3. Countable additivity: For a countable sequence (A; € F : i € N) of mutually
exclusive events,

P(Uimr A) = Z22, P(A)-

Activity 7.11 (Probability measures). Since a probability measure is just a finite measure,
it satisfies all of the usual properties of a measure (Propositions 2.29 and 2.30).
In particular, we can use monotonicity, the inclusion—exclusion law, the countable
subadditivity property (called Boole’s law in this context), and the results on limits
of increasing and decreasing sequences of sets. Write out each of these results using
probabilistic notation and language.

In addition, check that P(E€) = 1 — P(E) for each event E € %. What does this
statement mean in words? .

For simple probability models, we can give an explicit description of the probability
measure.

Example 7.12 (Basic experiments). Here are the natural probability measures for our
experiments.

1. One coin: Recall that the sample space Q = {H, T} and the master o-algebra
F = P(Q). Since the coin is fair, the probability measure P assigns equal
probability to each singleton outcome:

P{H} := % and P{T}:= %

Of course, P(0) = 0 and P({H, T}) = 1.
2. First heads: Recall that Q = N and & = $(N). Since the coin is fair, we can use
combinatorial reasoning to determine the probability of each singleton outcome:

P({n}) :=27" forn e N.
The probability of a general event E C N is now determined by countable

additivity:
P(E) = ZYZEE P{n} = ZneE 27"

You may want to verify that this approach leads to a well-defined probability
measure on F.

Warning: A probability measure
assigns probabilities to events,
not sample points! "

The probability of nothing happening
is zero, or 0%. The probability of
something happening is one, or
100%.



Lecture 7: Probability Spaces m

3. Linear darts: Recall that Q = [0,1] and F = 9%([0, 1]). For an event E € F, the
probability is determined by geometric reasoning:

P(E) := length(E)

~ fenginco,m

In other words, the probability that the dart lands in a (Borel) subset E of
the interval [0, 1] is equal to its length A(E). Since the Lebesgue measure A
is translation invariant, this is the natural model for a uniform distribution of
probability. Theorem 3.16, on the properties of the Lebesgue measure, ensures
that P is a probability measure.

4. Square darts: Recall that Q = [0,1]? and % = %([0, 1]?). For an event E € F,
the probability is again determined by geometric reasoning:

area(E)

_ 2
area([0,1]2) A (E).

P(E) :=

The probability that the dart lands in a (Borel) subset E of the unit square [0, 1]?
is equal to its area A?(E). The Lebesgue measure A? on the plane is translation
invariant, so this is the natural model for a uniform distribution of probability.
Theorem 6.14, on the product measure, ensures that P is a probability measure.

In each of these cases, the probability measure is determined by direct reasoning. =

The linear darts example confirms that we need to use measure theory to develop a
rigorous account of probability. These examples also show that we can describe discrete
probability models using exactly the same measure-theoretic framework. When viewed
in this light, the difference between discrete and continuous probability blurs. Both
cases are unified.

Keep in mind that the probability PP is a measure, even though we are using a
different notation now. As a consequence, you will sometimes see the probability of an
event E € F written in terms of an integral:

IP(E):/Q]IE(w) [P’(dw):/Q]lEdIP’:/EdIP.

You may encounter other similar notations.

Finally, one more piece of terminology. In probability theory, we generally replace
the term “almost everywhere” with the term “almost sure”. Thus, an event E with
P(E) = 1 is called an almost sure event or, for emphasis, a P-almost sure event.

Aside: How much information do we need to determine a probability measure?
Let of be an algebra of events that generates the master o-algebra: o(d) = F.
If we can define a premeasure Py on of that satisfies Po(Q) = 1, then the Hahn-
Kolmogorov theorem (Appendix A) yields a unique probability measure P that
extends Py to . We will mostly construct probability measures from measures
that we have already defined.

Quiz
You should take the opportunity to construct a few probability models of your own.

Activity 7.13 (Probability spaces). What are the natural probability spaces for describing
the following probability experiments?
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1. Roll one fair die.

2. Roll two fair dice.

3. Flip 10 fair coins.

4. Flip a fair coin a countably infinite number of times.

5. A lightbulb has an exponential lifetime, with mean lifetime of 1000 hours.

Make sure to list the sample space, the master g-algebra of events, and a rule for
determining the probability of every event. .

This activity suggests that simple discrete probability spaces are easy to identify. It
is much less clear, however, how to construct a probability model for an infinite number
of coin flips. (Each infinite sequence of outcomes HTHTHHTT ... seems to have zero
probability!) Similarly, you may not find it obvious how to define a probability measure
that describes the exponential lifetime of a lightbulb. We will start working toward
these goals in the next lecture.

Applications

Application 7.14 (Probabilistic method). The probabilistic method is a fundamental ap-
proach for establishing the existence of an object that satisfies some property. In this
exercise, we will present some simple examples of this rich methodology. In particular,
we will consider applications to coding theory and combinatorics.

1. Let (Q, %, P) be a probability space. For an event E € &, show that the condition
P(E) > O implies that E # 0. In other words, an event with strictly positive
probability contains a sample point w € E that witnesses the property described
by the event.

2. (Warmup: Street art). Sometime during the night, Banksy paints the unit circle in
the plane so that a (measurable) subset of 23% of the circle is red and the rest is
blue. Regardless of the artistic quality, show that we can inscribe a square in the
circle so that all four vertices are blue. Hint: Choose the square at random, and
show that there is a positive probability that its vertices are all blue.

3. (Kraftinequality). A finite collection € of binary strings with finite lengths is called
a prefix-free code if no string in € is a prefix of another string in €. For each
i € N, let N; denote the number of strings of length i in €. Establish the Kraft
inequality, a limit on the number of codewords in a prefix-free code:

N;
E — <1
ieN 21

Hint: Flip a fair coin until the first time that the sequence of outcomes appears as
a string in ‘6. What is the probability that this event occurs on the ith flip?

4. (**Kraft-McMillan inequality). A finite collection € of binary strings with finite
lengths is called a uniquely decipherable code if no pair of strings in 6 concatenates
to form another string that appears in 6. For each i € N, let N; denote the
number of strings of length i in the code 6. Establish the Kraft-McMillan
inequality, a limit on the number of codewords in a uniquely decipherable code:

N;
E — <1
ieN 21

5. (*Diagonal Ramsey numbers). Consider a complete graph K;, on 7 vertices. Assign
each edge a color, either red or blue. A subgraph on r vertices is monochromatic

The unit circle is the set

{(x,y) e R? : x2 + y2 =1},

For example, the string “11” is a
prefix of the strings “1100” and
“11117.

For example, the concatenation “11”
+ “00” = “1100”. A uniquely
decipherable code cannot contain all
three of these strings.

The complete graph K;, is an
undirected combinatorial graph on n
vertices, and there is an edge
connecting each pair of distinct
vertices.
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if its edges are all red or all blue. The (diagonal) Ramsey number R(r) is the
least value of n for which the graph must contain a monochromatic subgraph on
r vertices, regardless of the choice of coloring. Ramsey (1929) showed that R(r)
is finite. We will develop a lower bound on the Ramsey number. Prove that

(rrl) <201 implies R(r) > n.

In particular, R(r) > |2"/2]. Hint: Choose the coloring at random. For each
fixed set S of r vertices, consider the event that S is monochromatic.

Notes

The axiomatic foundation of probability theory can be traced back to Kolmogorov’s
work. You may find a similar account in any serious book on probability. For example,
see Billingsley [Bil12] or Durrett [Duri9]. Our focus here is to connect probability
theory with the measure theory foundations we have already developed. We also hope
to build intuition about the role of the sample space, the master o-algebra of events,
and the probability measure.

For a survey of the probabilistic method, see the book of Alon & Spencer [AS16].
Most of our examples are drawn from their work. The geometric example of the
probabilistic method is adapted from Grimmett & Stirzaker [GSo1]. We will explore a
few more examples in upcoming lectures as we develop additional tools. Unfortunately,
the most interesting applications of the probabilistic method involve elaborate domain-
specific reasoning that is outside the scope of this course.
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8. Random Variables

“I took the law and threw it away.

There’s nothing wrong, it’s just for play.

There’s no law, no law anymore.

I want to steal from the rich and give to the poor.”

—Howling at the Moon (Sha-La-La), The Ramones (1984)

In the last lecture, we introduced the concept of a probability space. This is the
arena where probability theory takes place. In this lecture, we will develop the concept
of a real random variable, which you can think about as a single real-valued observation
of a probabilistic system. In the next lecture, we will introduce the expectation, which
gives the average value of a real random variable.

For motivation, recall that a probability space is a measure space (Q, F, P). The
sample space (Q is a set of sample points. The master g-algebra F contains events,
which are sets of sample points. The probability measure [P assigns a probability to
each event.

In simple examples, the sample space is just the collection of possible outcomes of
a concrete experiment. Before performing the experiment, we only have a probabilistic
description of the outcomes, represented by the probability measure on events. Once
we perform the experiment, we can observe the specific outcome wg € Q. Tyche, the
goddess of chance, elects the outcome wq at random. The prior probability that wq
belongs to any particular event is governed by the probability measure P.

In more sophisticated examples, the points in the sample space are interpreted as
possible states of the world. Each sample point gives the complete description, or state,
of a system that may be very complicated. A priori, the probability measure describes
what subsets of states are more or less likely. As before, chance determines what state
actually occurs. But the state itself may not be observable because of the complexity of
the model.

So, what do we observe? It is productive to think about experiments as measure-
ments that deliver pieces of information about the world. The outcomes of these
experiments are determined by the (inaccessible) state. This intuition leads us to
introduce the idea of a random variable, which is a function of the state. Since the
state is random, the outcome of the experiment is also random. The difference is
that we can observe the values of the random variables, but we may not be able to
observe the underlying state. Nevertheless, we can learn something about the state by
collecting observations.

Real random variables

We would like a formalism for describing a real-valued observable of a system that
exhibits probabilistic behavior. The following definition captures this idea.

Agenda:

BWN A

Random variables

. The law of a random variable
Distribution functions

. Types of random variables
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Definition 8.1 (Real random variable). Let (Q, %, [’) be a probability space. A real
random variable is a measurable function X : Q — R.

In other words, a random variable X maps each sample point w € Q to a real value
X (w). Once Tyche designates a particular sample point wq € €, the value X (wq) of
the random variable is completely determined. In fact, the choice wq of the sample
point determines the value of every random variable.

At first, this definition can be very confusing. A random variable is a fixed function
on the sample space; there is nothing random about it. All of the randomness comes
from the distribution of the sample point, which is modeled by the probability measure
[P on the sample space.

Example 8.2 (Basic experiments). For the basic probability experiments we discussed last
time, each sample space can be placed in correspondence with a subset of the real line.
Therefore, we do not have to look very far to find random variables.

1. One coin: The sample space Q = {H, T}, the og-algebra ¥ = P(Q), and the
probability measure [P is the uniform measure (P{w} is constant for all w € Q).
We can define the random variable

This is the indicator random variable of the event that the coin turns up heads.

2. Head count: Suppose we flip a fair coin »n times. We may consider the sample
space Q = {H, T}" with the g-algebra ¥ = P(Q). The probability measure on
Q is uniform; it satisfies P{w} = 27" for each w € Q. We can define a random
variable

X(w)=#{ie{l,...,n}: w; =H} foreach w € Q.

This random variable reports the number of heads that turn up in 7 coin flips.

3. First heads: Suppose we flip a fair coin 7 times. The sample space (2 = N, and the
o-algebra F = P(N). The probability measure satisfies P{w} = 2% for w € N.
We can obviously define the random variable

X(w) =w forwe Q.

This random variable counts the number of flips before the first heads turns up.
4. Linear darts: The probability space ([0, 1], %(][0, 1]), A). We can obviously define
the random variable
X(w)=w forwe[0,1].

This random variable reports the position where the dart strikes.

More interesting probability experiments lead to more interesting random variables. =
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Measurability is a crucial feature of the definition of a random variable. Recall that
a function X : Q — R is measurable when

X 'B):={weQ:X(w) eB} €F forall Borel B € B(R).

In words, the preimage of every Borel set is an event.

This construction will allow us to use the probability measure on the sample space to
determine the distribution of values of the random variable.

Remark 8.3 (*Random variables with extended values). It is sometimes convenient to work
with a random variable X that takes extended real values. Thatis, X : Q — R is
measurable with respect to %(R). In this course, random variables take finite values
unless extended values are explicitly allowed.

Aside: It is easy to extend the definition of a random variable beyond the real case.
Let (M, €) be a measurable space. An M-valued random variable is a measurable
function X : Q — M. That is,

X 1G) ={weQ: X(w)eG}eF forallGeE.

The preimage of every ¢-measurable set is an event. For the time being, when we
say “random variable,” we are always referring to a real random variable.

The law of a random variable

As we have noted, all of the randomness in a random variable comes from the
randomness inherent in the selection of the sample point. The probability distribution
on the sample space induces a distribution over the values of a random variable.

To see how this works, let X : Q — R be a real random variable. For each Borel
set B € B(R) in the real line, we can compute the probability

P(X7'(B)) =P{weQ: X(w) €B} =P{X €B}.

This is eminently reasonable because the preimage X ~!(B) is an event, so it has a
well-defined probability. This approach allows us to define a measure on the real line.

Definition 8.4 (Law of a random variable). Let (2, %, P) be a probability space, and
let X : Q — R be a real-valued random variable. The law of the random variable
is the Borel measure px on the real line defined by

px(B) :=P(X"'(B)) =P {X € B} for all Borel B € B(R).

The law of the random variable is also called the distribution of the random variable.
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Exercise 8.5 (The law is a probability measure). Check that the law py of a real random
variable X is a Borel probability measure. That is, pux is a Borel measure on R with

px(R) =1.

Here is an illustration of the relationship between the probability measure P and
the law px of the random variable X:

The random variable X pushes the distribution P of probability on the sample space
Q) forward to a distribution px of probability on the real line R. For each Borel set
B € B(R), the law tells us the probability ux (B) that the random variable X takes a
value in B.

Since the measure of a set is the integral of the indicator, we can represent the
probability of an event involving a random variable by integrating the law. For each
Borel set B € %(R),

P{XEB}=,UX(B)=/R]1|3(x)ﬂx(dx)=/R]leﬂx=/Bd,ux-

This relation is an example of the change of variables formula (5.8). Each of the
integrals represents the same thing, and you may encounter any one of these notations
out in the wild.

Example 8.6 (Basic experiments). Let us describe the probability laws for the random
variables arising from our basic experiments.

1. One coin: The indicator random variable X that the coin turns up heads follows
that BERNoULLI(1/2) distribution:

Hx = %50 + %51

The support of the law ux is the Borel set {0, 1}.
2. Head count: The random variable that counts the number of heads follows the
BIiNoMIAL(1/2, n) distribution.

px =27" X, (7) i

This is an example of the
push-forward of a measure that we
encountered in Problem 5.44.

See Definition 3.20 of the support of a
Borel measure on the real line.
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The support of the law ux is the Borel set {0, 1,2,..., n}.
3. First heads: The random variable X that reports the number of coin flips before
we see the first heads follows the GeomETRIC(1/2) distribution.

Hx = 220:1 276,

The support of the law py is the Borel set N.
4. Linear darts: The random variable X that describes the position of the dart follows
the uniForM|[0, 1] distribution.

ux = AC- n[0,1])

The support of the law ux is the Borel set [0, 1].

It usually takes more effort to ascertain the law, but it is always determined by pushing
forward the probability measure by the random variable. .

In practice, it is often the case that the probability space (Q2, &, P) fades into the
background. Instead, we may focus on the random variable X and its law px without
worrying too much about the underlying probability model. Furthermore, it is usually
not important to have an exact description of the function X : Q — R, because we
can pass to the distribution px on the real line and work there instead.

Distribution functions

There is an alternative way to represent the law of a real random variable that can be
more convenient in some circumstances. Instead of working with the law of the random
variable, we can work with the real-valued function that tabulates the cumulative
distribution of probability.

Definition 8.7 (Distribution function). Let X be a real random variable. Define the

function
Fx(a) =P{X <a} = ux(-oo,a] foracR.

The function Fy is called the (curmulative) distribution function of the random
variable, often abbreviated cdf or df.

Proposition 8.8 (Distribution function: Properties). The distribution function Fx : R —
[0, 1] of a real random variable X has the following properties.

1. Monotonicity: If a < b, then Fx(a) < Fx(b).
2. Asymptotes: We have lim,| o, Fx(a) = 0 and lim,40 Fx (a) = 1.
3. Right continuity: We have lim, |, Fx(x) = Fx(a) for each a € R.
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4. Law: For a < b, we have ux(a, b] = Fx(b) — Fx(a).
Exercise 8.9 (Distribution functions). Prove Proposition 8.8.

As we discussed in Lecture 3, every function that has properties (1)-(3) defines a
unique Borel probability measure that satisfies (4). This claim requires a somewhat
involved argument based on the Hahn—Kolmogorov theorem (Problem A.17).

Example 8.10 (Basic experiments). Here are the distribution functions associated with
the random variables in our basic experiments.

1. One coin: Here is an illustration of the distribution function Fx of the random
variable X that indicates whether the coin comes up heads.

2. Head count: Here is an illustration of the distribution function Fx of the random
variable X that counts the number of heads in 7 tosses.

3. First heads: Here is an illustration of the distribution function Fx of the random
variable X that counts the number of flips before a coin turns up heads.

4. Linear darts: Here is an illustration of the distribution function Fx of the random
variable X that describes where the dart strikes.

You can see that each of these distribution functions has the properties outlined in
Proposition 8.8. .

In summary, the law provides a complete description of the distribution of a real
random variable. The distribution function also provides a complete description of
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the distribution of a real random variable. It is easy to write the distribution function
in terms of the law. The distribution function also determines the law, but it only
gives an explicit expression for the measure of a (half-open) interval. As such, you
can always use the representation of the distribution that is most convenient for a
particular problem.

Livestock

As we say, you cannot run a ranch without any cattle. In this section, we will describe
the main breeds of random variables, and then we will introduce some specific animals
from these varieties. You should be familiar with these examples from previous courses;
they are listed here primarily for reference.

Flavors of random variables

The examples of random variables and distribution functions that we have seen suggest
a taxonomy of basic real random variables.

1. Indicator random variables: A fundamentally important random variable is the
indicator that an event occurs. Let E € F be an event. The associated indicator
random variable is

1, wce€E;
Tg(w) = 0 w¢E

for w € Q.

An example of an indicator random variable is the indicator that a coin comes up
heads. An indicator follows a BERNouLLI(p) distribution where p = P(E).

2. Discrete random variables: A random variable X is discrete if its law px can be
written as a countable sum of Dirac point masses:

Ux = Zil pibs, where a; € Rand p; > 0 and Zil pi=1.

For an example of a discrete random variable, consider the random variable
that counts the number of flips before we see the first heads. Indicator random
variables are also discrete.

3. Absolutely continuous random variables: A random variable X is absolutely contin-
uous if its law ux has a density fx with respect to the Lebesgue measure (see
Problem 5.43, Exercise 6.27). That is,

ux(B) = ‘/fo(x) A(dx) forall B € B(R), (8.1)

where fy : R — R, is a positive, measurable function with integral A(fx) = 1.
For an example of an absolutely continuous random variable, consider the
random variable that describes the position where the linear dart strikes the
interval [0, 1]. It is common to refer simply to “continuous” random variables,
even though this terminology is inaccurate.

4. Mixed random variables: A random variable X is called mixed if it is a mixture of a
discrete random variable and a continuous random variable. The law px has the
form

px = apy + (1 —a)uz fora € [0,1],
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where py is the law of a discrete random variable and pz is the law of a
continuous random variable. For example, consider the random variable

(1x(B) = 0.0018,(B) + 0.999 / e g, (1) A(d0).
B

This random variable models an electronic component that, with probability 0.1%,
burns out immediately when it is activated and otherwise has an exponential
lifetime with mean one.

5. Singular continuous: Not all random variables have mixed distributions. A random
variable X is said to be singular continuous if its distribution function Fy is
continuous, but its law px does not have a density with respect to the Lebesgue
measure. For an example, consider the Cantor distribution. Singular continuous
distributions also arise naturally in the study of particles undergoing Brownian
motion. It is good to be aware that this type of random variable exists, but we
will not discuss them again.

Let us emphasize that each of these random variables is modeled by its law, which
is a Borel measure on the real line. In this sense, measure theory provides a unified
view of discrete and continuous probability. Of course, when we make practical
calculations with random variables, we may still rely on different methods for discrete
and continuous examples.

Discrete random variables: Examples

We briefly introduce the main examples of discrete real random variables, with a few
comments on their applications.

Example 8.11 (Bernoulli). Let p € [0, 1]. A real random variable X ~ BERNOULLI(p)
has the law

px = (1-p)6o+pbi.

Bernoulli random variables model an experiment that succeeds with probability p.
The coin flip experiment provides an example. Every indicator random variable has a
Bernoulli distribution, so Bernoulli random variables arise when counting how many
events occur.

It is also common to encounter a signed Bernoulli random variable Y, which has
law py = (1 -p)é-1+pda. .

Example 8.12 (Discrete uniform). For a finite subset S C N, a random variable X ~
uN1FORM(S) follows the law

1
Hx :Zkes%&"

The uniform distribution models a situation where the random variable takes each
value in the set S with equal probability. Think about rolling a die or drawing a card
from a shuffled deck.

Among distributions supported on the finite set S, the distribution uniForRM(S) has
the maximum entropy. .

Example 8.13 (Binomial). Let p € [0,1] and n € N. A real random variable X ~
BINOMIAL(7, p) has the law

n p—
px = Zk:o pF(1-p)" " .

The entropy of a distribution is a
measure of how “random” it is; see
Problem 8.33. Entropy arises in
information theory and in statistical
physics.
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Binomial random variables model the total number of successes in a sequence of
independent experiments, each with success probability p. The head count experiment
provides an example. .

Example 8.14 (Geometric). Let p € (0,1). A random variable X ~ GEoMETRIC(p) has
the law

ux =) pA-p* o

If we perform independent trials of an experiment with success probability p, the
geometric random variable models the time at which the first success occurs. The first
heads experiment provides an example.

Geometric random variables have the special property of being memoryless: the
distribution of the waiting time for a success does not depend on how much time
has already elapsed. Among distributions supported on N with mean m > 0, the
GEOMETRIC(1/m) distribution has the maximum entropy. .

Example 8.15 (Poisson). A Poisson random variable X ~ poissoN(f) with mean > 0

has the law
0 ﬁk e -8
Hx = Zk:o k! Ok

A Poisson random variable models rare events. It describes the number of successes in
a sequence of independent trials with success probability p = 8/n as the number n of
trials increases.

Poisson random variables have the lovely stability property that a sum of indepen-
dent Poisson random variables remains Poisson.

I cannot resist sharing some classic examples where the Poisson distribution arises.
It has been used to describe the number of misprints on a page of the newspaper, the
number of Prussian cavalry officers kicked to death by their horses in a given year, and
the number of bombs that fell on a given district in London during the Blitz. .

Absolutely continuous random variables: Examples

Now, we turn to some of the main examples of continuous real random variables. Recall
that a continuous variable is determined by its density (with respect to the Lebesgue
measure); see the definition in (8.1).

Example 8.16 (Uniform). Let S € %B(R) be a bounded Borel set. A real random variable
X ~ uNtrForM(S) has the density

1
x)=—=1s(x) forxeR.
fe(x) =+ S s(x)
Uniform random variables model the situation when a value is equally likely to be
anywhere in the set S. Linear darts provides an example.
Among continuous distributions supported on a bounded interval, say [a, b], the
unirorM([a, b]) distribution has the maximum entropy. .

Example 8.17 (Exponential and Laplace). A random variable X ~ ExPONENTIAL(f) with
rate 8 > 0 has the density
fx(x) = Be P 1R (x) for x € R.

The exponential distribution arises in queueing theory and other problems involving
continuous waiting times. Exponential distributions have the elegant property of being
memoryless: the distribution of the waiting time does not depend on how much time

A proper definition of the term
“memoryless” requires the concept of
conditioning. See Exercise 20.27.

We will discuss methods for
establishing stability in Lecture 21.

See Problem 8.34.

See Exercise 20.27.
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has already elapsed. Among continuous distributions supported on R, with mean m,
the ExPONENTIAL(1/m) distribution has the maximum entropy.
A random variable Y ~ rapLAcE(f) with rate § > 0 has the density

fr(y) = ge-ﬁ'ﬂ for y € R.
Laplace random variables can arise from Bayesian regression models, and they now

play a role in the theory of differential privacy. .

Example 8.18 (Normal). A real random variable X ~ NORMAL(m, 0?) with mean m € R
and variance o2 > 0 has the density

e~ (x-m)?/(20%)
fx(x) = ——— forx eR.
2102

A normal random variable is also called a Gaussian random variable. When m = 0 and
02 = 1, we refer to this distribution as the standard normal distribution.

The normal distribution is the single most important continuous distribution because
of its role in the central limit theorem (Lecture 18). Normal random variables have the
remarkable stability property that an independent sum of normal random variables
remains normal. Among continuous distributions on R with mean m and variance o2,

the distribution NORMAL (71, 02) has the maximum entropy. .

Example 8.19 (Gamma and Beta). A random variable X ~ GammA(a, ) with shape
parameter a > 0 and rate parameter 3 > O has the density

a—le—ﬁxﬁa

fex) ==

W1R+(J€) for x € R.

Gamma distributions can arise from sums of exponential random variables and from
sums of squared Gaussian random variables, and they play a role in Bayesian inference.
A random variable Y ~ BETA(@, §) with shape parameters &, § > 0 has the density

yta-y
() =—F——"——1on(y) foryeR.
Bp Y
Beta distributions arise from geometric problems involving volumes of sections of
Euclidean balls, and they also play a role in Bayesian inference. .

Example 8.20 (Cauchy). A random variable X ~ caucHy(m, y) with location m € R
and scale y > 0 has the density
1 1

ny.l+((x—m)/y)2 for x € R.

fx(x) =

Cauchy random variables have very heavy tails. In fact, they do not even have a defined
expectation, so they are an extreme example that is useful to keep in mind. They have
the remarkable stability property that an independent sum of Cauchy random variables
remains Cauchy. .

*Joint distributions

It is common to encounter multiple random variables at once, so we need a framework
for studying them. For example, in the square darts example, we throw a dart at a

As usual, I' denotes Euler’s gamma
function, a kind of generalized
factorial.

As usual, B denotes the beta function,
a kind of generalized binomial
coefficient.
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square target [0, 1]? and record the position (X, Y) where it hits. Both the horizontal
coordinate X and the vertical coordinate Y are real random variables. How are they
related? What is the analog of the law of a single random variable? How can we
characterize the joint distribution?

In this section, we will show how to use measures to describe the distribution of a
pair of random variables. The extension to more random variables is straightforward,
at least in concept.

Pairs of random variables

We begin with the definition of a pair of random variables and some measurability
properties.

Definition 8.21 (Pair of random variables). Let (Q, %, [P) be a probability space. Con-
sider two random variables X : Q - Rand Y : Q — R. Then (X,Y) is called a
pair of real random variables.

Although we only assumed that the individual random variables are real-valued
measurable functions on the sample space, the pair is also a measurable function taking
values in the plane.

Exercise 8.22 (*Pair of random variables: Measurability). Consider two functions X,Y :
Q — R. Show that (X,Y) : Q — R? is a measurable function if and only if X and Y
are both random variables. For the pair, measurability means that

{((X,Y) B} i={weQ: (X(0),Y(w) €B}e€F forall B e B(R?).

That is, the preimage of a Borel set in the plane is an event. Hint: One direction depends
on the fact that the coordinate projections are measurable. The other direction uses the
fact that the o-algebra %(R?) is generated by measurable rectangles (Proposition 6.7);
see Proposition 4.2 for the pattern of argument.

Joint and marginal laws

Since (X,Y) is a measurable function, we are licensed to compute the probability of
any Borel set in 9%(R?). This leads to the notion of a joint distribution.

Definition 8.23 (Pair of random variables: Joint law and marginal laws). Let (X,Y) be a
pair of real random variables. The joint law is the Borel probability measure on
B(R?) defined by

uxy(B) ;=P {(X,Y) € B} forall Borel B € B(R?).

The law of the pair is also called the joint distribution. In this context, the
distributions of the individual random variables are called the marginal laws:

ux(B) :=P{X € B} and uy(B):=P{Y €B} foreachB e B(R).

The marginal distributions are defined without reference to each other.

Example 8.24 (Square darts). Recall the setting for the square darts example. We
equip the sample space Q = [0, 1]? with its Borel o-algebra & = %([0, 1]?) and the
Lebesgue measure A? restricted to [0, 1]?. The distinguished sample point wg € Q
describes the location where the dart strikes.
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In this context, the most natural random variables are the coordinate projections,
which describe the horizontal and vertical position of the dart:

X(w) =m(w) =w;
(@) (@) " forw = (w1, w2) € [0,1]2.

Y(w) = m(w) = w;
Since (X,Y) is the identity map on [0, 1]2, the joint law is simply the Lebesgue
measure on the unit square:

pxy(B) = A*(B) forall B € %([0,1]?).

By elementary geometric reasoning, we can see that the marginal laws are the Lebesgue
measures on the unit intervals:

px (B) = A(B);
py (B) = A(B)

For instance, the probability that X € B is the probability that (X,Y) € B x [0, 1],
which we can compute in terms of areas.

We can consider other pairs of random variables in this setting. For illustration,
consider the pair that repeats the horizontal location of the dart twice:

for all B € %&(][0, 1]).

(W(w), Z(w)) := (m(w), m(w)) for w = (w1, ) € [0,1]°.
The joint law is a “diagonal” measure:
pwz(B) =A{x e R: (x,x) € B} forB e %([0,1]?).
Once again, the marginal laws are both Lebesgue measure on the unit interval:
uw(B) =A(B) and uz(B)=A(B) forallBe R&([0,1]).

This discussion warns us that the marginal laws do not determine the joint law. .

8.5.3 Independence

As we saw in Example 8.24, the marginal laws are not enough to determine the joint
law. Nevertheless, there is a special case that merits attention.

Definition 8.25 (Pair of random variables: Independence). Let (X,Y') be a pair of real
random variables. We say that X and Y are independent if and only if the joint law
is the product of the marginal laws:

Hxy = Hx X Hy.
In terms of the probability measure, independence means that

P{(X,Y)e AxB}=P{X €A} -P{Y €B} forABe%(R).

Example 8.26 (Square darts). In the square darts example, the horizontal position X and
the vertical position Y of the dart are independent random variables. .

We will have much more to say about independence later (Lecture 13).
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Probability and integral

As with a single random variable, the joint law is simply the push-forward of the
probability measure by a function. As always, the measure of a set is the integral of
the indicator. Thus, for each plane Borel set B € B(R?),

P{(X,Y) € B} = uxy(B)

(8.2)
=/ 1s(x,y) ,UXY(dXXdJ’)=/ ]lsdﬂxy=/d#xy.
R2 R2 B

All the notations mean the same thing. In case the random variables X and Y are
independent, Fubini-Tonelli (Theorem 6.23) helps us compute these integrals.

We can connect the marginal laws with the joint law by integrating over a cylinder.
For example,

ux(B) = / duxy for areal Borel set B € B(R). (8.3)
BxR
This type of formula leads to concrete tools for working with joint distributions.

Specifying the joint distribution

A measure on the plane is a complicated thing. So we may ask whether there are
alternative mechanisms for specifying a joint distribution. In fact, there is a natural
analog of the distribution function.

Definition 8.27 (Joint distribution function). Let (X,Y) be a pair of real random
variables. The joint distribution function Fxy : R> — R, is defined as

ny(a, b) = P{X <aandY < b}
= uxy ((—o0,a] X (=0, b]) fora,b € R.

Theorem 8.28 (Joint distribution function). The joint law uxy determines the joint
distribution function Fxy. The joint distribution function Fxy is increasing and
right-continuous in each variable separately. As a, b | —oo, the limiting value of
Fxy(a, b) is zero. As a, b T +oo, the limiting value is one.

Conversely, any function F with these properties determines a unique Borel
probability measure p on R? with distribution function F.

*Proof. We omit the proof. It follows from the Hahn—Kolmogorov theorem (The-
orem A.12) in the same fashion as the construction of measures from distribution
functions on the line (Problem A.17). In this setting, we start with the algebra gen-
erated by half-open geometric rectangles (a, b] X (¢, d] because we can compute its
measure easily from Fyy. ]

Problems

Exercise 8.29 (Sums of measures). Measures are just positive functions on a og-algebra,
so we can form linear combinations. Suppose that , v are Borel probability measures
on (R, B(R)).

1. For a € [0, 1], show that ¢ + (1 — a)v is a Borel probability measure.
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2. Show that the integral is positive-linear in the measure. For a, > 0,

/h(x) (a/.t+/3v)(dx)=a/h(x) ,u(dx)+/3/h(x) v(dx).
R R R

What assumptions are required on the function h : R — R?

Exercise 8.30 (Algebras generated by random variables). Let X be a real random variable
on a probability space (Q, F, P). The o-algebra generated by the random variable X
is

o(X) :=o{X 1(B): B e B(R)}.

We can decide whether each event in ¢(X) occurs, given only the value of X (w). In
other words, o(X) reflects the knowledge we gain about the sample point by observing
the value of the random variable X.

1. Suppose that we flip a fair coin twice. What is the natural probability space?

2. Define a random variable X = 1 if the first coin comes up heads and X = 0
if the first coin comes up tails. What are the events in o(X)? What are their
probabilities?

3. Define a random variable Y = 1 if both coins show the same face and Y = 0 if
the coins show different faces. What are the events in g (Y)? What are their
probabilities?

4. How do the observations in the last two parts support the interpretation in the
problem statement?

Exercise 8.31 (Median). Let X be a real random variable on a probability space. A median
of the random variable is a number M € R with the property that

P{X<M}>1 and P{X>M}>1
As a warning, there could be more than one choice of M that satisfies this definition.

1. Compute the median value of a uNIFORM[O, 1] random variable.

2. For each p € [0,1], compute a median value of a BERNoOULLI(p) random
variable.

3. Prove that every real random variable has at least one median.

4. Show that the set of all medians of a random variable X composes an interval.

Problem 8.32 (*Skorokhod). Let X be a real random variable on an arbitrary probability
space with (cumulative) distribution function Fx. We can also realize X as a random
variable on the “universal” probability space U := ([0, 1], ([0, 1]), 1), where A is the
Lebesgue measure restricted to [0, 1]. To do so, we define an (extended) real random
variable on U by the formula

inflaeR: Fx(a) >u}, 0<u<l;
S(u) :={ —oo, u=0;
+00, u=1.

This is essentially the functional inverse of the cdf Fx. We call S a Skorokhod
representation of the random variable X.

1. Why is S a random variable? Hint: In the infimum, we can replace R with Q.



Lecture 8: Random Variables 128

2. Show that the distribution function Fg coincides with Fx. Hint: Do the endpoints
matter? Note that the infimum is attained for u € (0, 1), and S is an increasing
function on [0, 1].

3. Let U ~ untrorM|[0, 1]. Explain why S(U) has the same distribution as X.

Problem 8.33 (*Maximum entropy: Discrete case). Let X be a discrete, real random variable
with law

Ux = Ziez pibs, fora; € Rand p; > 0and Ziez pi = 1.

The entropy of the discrete variable X is defined as

entropy(X) := — Ziez pilogp;.

Note that the entropy does not depend on the support, just the probabilities. As we
will see, the entropy is a measure of the amount of “randomness” in the distribution.

1. Check that the entropy of a discrete random variable is a positive number.

2. (*) Show that p — — ;.7 pi log p; is a concave function for p € R”.

3. Compute the entropy of X ~ BERNoULLI(p) for p € [0, 1]. For what choice of p
is the entropy maximized? Minimized? Given an interpretation of these results.

4. Compute the entropy of X ~ uNiForM{O0, 1,2,..., n}.

5. Show that the uniform distribution is the maximum entropy distribution supported
on {0,1,2,..., n}. Hint: Reparameterize p; = e% for a; € R, and use Lagrange
multipliers.

6. Compute the entropy of X ~ GeoMETRIC(p) for p € [0, 1] in closed form. For
what choice of p is the entropy maximized? Minimized?

7. Among those distributions supported on N that have mean m > 0, show that
GEOMETRIC(1/m) is the maximum entropy distribution.

Problem 8.34 (*Maximum entropy: Continuous case). Let X be a continuous, real random
variable with density fy : R — R,. The entropy of the continuous variable X is
defined as

entropy(X) := — ‘/R(fx log fx) dA.

As before, the entropy does not depend on the support, just the density. As we will see,
the entropy is a measure of the “randomness” in the distribution.

1. Compute the entropy of X ~ unirorM( [0, a]) for a > 0.

2. Show by example that the entropy of a continuous random variable can be a
negative number.

3. (*) Show that the uniform distribution is the maximum entropy distribution
supported on {0,1,2,...,n}. Hint: Reparameterize fx = e for measurable
g : R — R, and use the Euler-Lagrange equations.

4. Compute the entropy of X ~ ExPONENTIAL(f) for § > 0.

5. (*) Among continuous distributions supported on R, with mean m > 0, show
that the ExpoNENTIAL(1/m) distribution has the maximum entropy.

6. Compute the entropy of X ~ NoRMAL(m, 02) for m € R and o2 > 0.

7. (*) Among continuous distributions supported on R with mean zero and variance
one, show that the standard normal distribution, NorRMAL(O, 1), is the maximum
entropy distribution.

Throughout this course, the
logarithm is the natural logarithm.
We enforce the convention that
0log0 =0.

Recall that the mean m of a
distribution on Z is defined as

m::Z ip;.
ieZ4 pi

Recall that the mean m and variance
o2 of a continuous distribution are
defined as
m:= / X fx (x)A(dx);
R

%= /R(x— m)? fx (x)A(dx).
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Aside: It is possible to define entropy-like quantities for more general classes of real
random variables. In particular, the information divergence between two random
variables is defined whenever one distribution has a density with respect to the
other (Exercise 6.27). We omit this development because it is outside the scope of
our course.

Applications

A basic challenge in computational mathematics is to generate random variables that
have a specified distribution. While a full discussion of this topic falls outside of the
scope of this course, the material in this lecture gives us the tools we need to explore
some of the basic methodologies for generating random variables.

Application 8.35 (Quantile sampling). Most programming languages have in-built function-
ality for generating uniform random variables: U ~ uniForM[O0, 1]. In this problem,
we will investigate how to use this source of randomness to generate other types of
random variables.

According to Problem 8.32, if X is a real random variable with cumulative distri-
bution function Fy, then the random variable S(U) has the same distribution as X.
Generating other types of (non-uniform) random variables thus reduces to finding a
formula for the function S. This approach is called quantile sampling, and it is the
preferred methodology when it can be implemented.

1. Find a formula for S for X ~ uniForM([c, d]) when ¢ < d and ¢, d € R.

2. Find S for a random variable X ~ BErRNouULLI(p) with success rate p € [0, 1].

3. A Cauchy random variable X is a continuous real random variable with density
fx and distribution function Fyx:

i) = =

1
. and Fx(a) = — arctan(a) forx,a € R.
7 1+x2 T

Find S for a Cauchy random variable.

4. Find S for a Laplace random variable X, which has density fx (x) = e~ ¥ /2 for
x €R.

5. (*) Use quantile sampling to generate 1000 realizations of each one of these
random variables, and plot a histogram of the values.

Application 8.36 (Getting used to rejection). Another standard methodology for generating
random variables is the technique of rejection sampling. In this case, suppose that
we would like to draw a sample from the distribution of a continuous, real random
variable X with density fy and law puyx.

Instead, we have access to samples from the distribution of another continuous,
real random variable Y with density gy and law py. We require that the likelihood
ratio satisfies a uniform bound. That is, for a constant M > 0,

MSM for all a € R.

gv(a)
For simplicity, you may assume that the proposal density is strictly positive: gy > O.
Rejection sampling proceeds as follows. We independently draw a random variable
Y and a uniform random variable U ~ unirorM[O0, 1] with law uy. Therefore, (Y, U)
has the joint law pyy = gy X py. Define the acceptance event

E={U -Mgy(Y) < fx(Y)}.
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If the event E occurs, then we report the value Y of the proposal. Otherwise, we
reject the sample from Y and start over. We will show that, in case of acceptance, the

reported sample value Y follows the same distribution as the target random variable X.

1. Explain why the probability of the acceptance event E can be computed by
evaluating the measure of a plane region under the joint law:

P(E) =P{U - -Mgy(Y) < fx(Y)}
= uyu{(y,u) e R*:u-Mgy(y) < fx(»)}.

Draw a sketch of this plane region.

2. Prove that P(E) = 1/M. Hint: Write the measure of the plane region as an
integral, and use Fubini-Tonelli. Proposition 9.5 is also relevant.

3. Elementary notions of conditional probability yield a formula for the distribution
of an accepted sample. For each Borel set B € %(R), prove that

P{Y € Band (Y, U) € E}

P{Y €B|E} := PE

=P{X € B}.

In other words, an accepted sample has the same law as the target random
variable. Hint: The pattern of argument is very similar to the computation of the
acceptance probability P(E).

4. What is the probability that it takes exactly k repetitions of the rejection sampling
procedure before we accept a sample? What is the expected number of repetitions
required to accept a sample? What kind of random variable models this situation?

5. Suppose we wish to generate a standard normal variable X using the random
variable Y ~ cauchy(0, 1) as the proposal. Compute the maximum value of
the likelihood ratio. On average, what is the expected number of repetitions
required to accept a sample?

6. Suppose that we wish to generate a standard normal variable X using the random
variable Y ~ rapLACE(1) as the proposal. Compute the maximum value of the
likelihood ratio. On average, what is the expected number of repetitions required
to accept a sample? Which proposal is better, Cauchy or Laplace?

7. (*) Describe two algorithms that use uniform random variables to generate
standard normal variables by combining quantile sampling (Application 8.35)
and rejection sampling. Implement your algorithms. Use each one to draw 1000
realizations of a standard normal variable, and plot a histogram. In each case,
how many uniform random variables did it take to complete the experiment?

Application 8.37 (*Box—Muller). Recall that a standard normal random variable Z variable
is a continuous distribution with density
22/2

1
¢z(2) ;= ——e” for z € R.

Var
As an illustration of the rejection sampling methodology (Application 8.36), we showed
that it is possible to generate normal distributions from Cauchy or Laplace random
variables. These methods are both a bit wasteful because we have to reject some of the
samples. In this problem, we will describe a methodology for using two independent
uniform random variables to generate two independent standard normal random
variables. This is called the Box—Muller transform.

The normal law is described in
Example 8.18, and the Cauchy law is
described in Example 8.20.

The Laplace law is described in
Example 8.17.
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1. A pair (X,Y) of independent standard normal random variables has the joint
probability density function

1
fer(x,y) = 5”2 for (x,y) € R
4

For the nonzero values of (X, Y), we can transform to polar coordinates (R, ©) €
R,y X [0,27) by the rule (X,Y) = (Rcos®, Rsin®). Find the joint law of
(R, ©) using the nonlinear transformation rule (Problem 6.29). Don’t forget the
Jacobian!

2. Changing variables again, calculate the joint probability density of the pair
(U, ®) where U = %RZ. What is the marginal distribution of U? The marginal
distribution of ®? Are they independent?

3. Consider an independent pair (Up, Uz) of uniform random variables: U; ~
untrForM([0, 1]) for i = 1,2. Explain how to transform (U, U) to obtain a
pair (X,Y) of independent standard normal variables.

Application 8.38 (Generative modeling). By pushing a random variable forward through a
function, we can obtain very complicated distributions. In particular, we have seen
that we can transform U ~ unirorM( [0, 1]) to any real probability distribution on
the line if we know its quantile function S; see Application 8.35.

The idea behind generative modeling is to use data to learn a function /i that
transforms a simple random variable (e.g., U) to a sample from the (approximate)
empirical distribution of the data. In this problem, we will explore a rudimentary
version of this idea. We will see how a simple artificial neural network can represent a
histogram distribution, but we will not consider the problem of training the network to
learn the histogram.

We say that a random variable X has a (finite) histogram distribution if it is an
absolutely continuous random variable with a piecewise constant density fx with a finite
number of pieces. That is, there is an increasing real sequence a; < dy < - -+ < dp41
and a positive real sequence ¢; > 0 with )} ; ¢; = 1 for which

Ci

fe(x) o= ———

for x € (a;,a;;1] andi =0,1,2,...,n.
i+1 — i

We set fx(x) =0 for x < a; and x > ay41, so the density has compact support. Each
interval (a;, a;,1] is called a bin, and we allow the bins to have different widths. The
height c; reflects the frequency with which we see items in the ith bin, relative to the
width of the bin.

An artificial neural network is simply a composition of structured functions, called
layers. In a basic feed-forward neural network, it is common that each layer is the
composition of an affine function with a nonlinearity. In this problem, we consider a
two-layer ReLU neural network with a single real input and a single real output, which
can be written compactly as

. k
gx) =a+ Zi:l Bi(vi(x — m;))s. (8.4)
In this expression, a, i, v;, m; € Rfori =1,...,k.

1. Sketch an example of a histogram distribution.
2. Find the distribution function Fx of a histogram random variable. Note that Fx
is piecewise affine, increasing, and continuous.

An affine function is the composition
of a linear map and a translation.
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3. Compute the Skorokhod representation S of the the histogram random variable;
see Problem 8.32. Note that S is piecewise affine and increasing. Moreover, when
the frequencies c; are strictly positive, the function S is continuous on (0, 1).

4. (*) Argue the following converse: Suppose that & : [0,1] — R is a piecewise
affine function with finitely many pieces, none constant. Prove that 2(U) follows
a finite histogram distribution. (This is true regardless of whether h is increasing
or continuous.)

5. Show that (8.4) describes a continuous, piecewise affine function on R with a
finite number of pieces. How many?

6. (*) Show that every continuous, piecewise affine function on R with a finite
number of pieces can be written in the form (8.4) for some k € N. What is the
minimal value of k possible? Hint: Observe that we can represent each of the
following hinge functions using a single term from the sum:

r(x—a;), x<a;
r(x—a;), x>ai "o, x> a;.

In this expression, € R and the a; are the edges of the bins in the histogram.
7. Conclude that we can represent each histogram distribution X with strictly
positive frequencies by passing a uniform variable U through an appropriate
neural network of the form (8.4).
8. (*) Conclude that we can approximate any histogram distribution X arbitrarily
well by passing a uniform variable U through a neural network (8.4). Can we
bound the coefficients ; and y;?

Notes

All of the material in this lecture is standard, and you will find similar presentations in
any book on probability theory. See Cover & Thomas [CTo6] for an introduction to
information theory and entropy. The problems on quantile sampling, rejection sampling,
and the Box—Muller transform were adapted from Owen’s manuscript [Owe13] by Rob
Webber and Ethan Epperly. I learned about the generative modeling idea from Helmut
Bolcskei. For the result that two-layer ReLU networks can represent an arbitrary
piecewise affine function, see the paper [Aro+18], for example.
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9.1

\ 9. Expectation & Jensen’s Inequality

“Take nothing on its looks; take everything on evidence. There’s no better rule.”

—Great Expectations, Charles Dickens

In the last lecture, we introduced the concept of a real random variable, which we
can think of as a single numerical observation of a probabilistic system. We will review
these ideas again at the beginning of this lecture.

In this lecture, we turn to another important question: What is the average value of
a real random variable? The average sums the values of the random variable, weighted
by the probability that it takes on a particular value. As a consequence, defining this
average properly requires an integral.

In probability theory, we refer to the expectation of a real random variable, rather
than the integral of the random variable. We will introduce the concept of expectation
for real random variables, and we will explore its properties. For the most parts, facts
about the expectation are simply translations of analogous facts about the integral.

Since the expectation is a type of weighted average, it enjoys some extra features
that a general integral does not. In pursuit of these results, we will define convex
functions and develop some of their basic properties. Then we will present Jensen’s
inequality, which describes how expectation interacts with a convex function.

Recap

A probability space (Q, F, P) is a triple, consisting of a sample space Q, a g-algebra F
of events, and a probability measure [P defined on these events. It is fruitful to think
about a probability space as a model for a very complex system that has unpredictable
behavior. The sample points w € Q capture all the possible states of the system, and
the probability measure [P describes which sets of states are more or less likely.

A real random variable X : QO — R is a real-valued measurable function on the

sample space. We can think about X as a real-valued observable of the complex system.

Since X is a function, the value X (w) of a random variable is determined by the sample
point w. Since we think about the sample point w as random, we also think about
the value X (w) as being random. When you see the symbol X, you should imagine a
randomly distributed real number.

To describe the distribution of a real random variable X, we introduced the law
ix ' F — [0, 1] of the random variable. The law is a Borel probability measure on
the real line that indicates what sets of real values are more or less likely:

ux(B) :=P{X € B} for each Borel set B € %B(R) in the real line.

Once we know the law px of a random variable, we can make probability calculations
involving the (individual) random variable X without reference back to the original
probability space.

Agenda:

15

2
3
4

Expectation

. Convex functions

. Jensen’s inequality
. Beyond the real line
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The distribution function Fx : R — [0, 1] provides an alternative representation
of the law of the random variable. It is defined as

Fx(a) :=P{X < a} = ux(—o,a] foreacha e R.

Like the law, the distribution function also contains a complete description of the
distribution of the random variable.

In case the random variable X is continuous, it also has a density fx : R — R, that
models the amount of probability mass per unit length on the real line. The density
provides another formula for the law:

ux(B) = /fX(x) A(dx). for each Borel set B.
B

Do not confuse the density function fx with the distribution function Fx. You should
also be alert that a random variable that is not continuous does not admit a density.

On many probability spaces, we have an abundant collection of real random
variables. In particular, for every event E € &, we can define the indicator random
variable 1g. Random variables are just (measurable) real-valued functions, so we can
scale them, add them, and multiply them together to produce more random variables.

In general, two real random variables X, Y can interact in complicated ways. To
describe the interaction completely, it is not enough to consider the marginal laws ux
and py. Rather, we need to evaluate the joint law

pxy(B) ;=P {(X,Y) € B} for each Borel set B € (R?) in the plane.

The joint law contains all of the information we need to understand the distribution of
outcomes of the pair (X, Y). We can define the joint law of any (finite) family of real
random variables in a similar fashion.

Expectation

What is the average value of a random variable? In analogy with a mechanical system,
we want to sum up the values of the random variable weighted by the probability that
it takes a particular value. In other words, we want to compute an integral.

Expectation and integration

By definition, a real random variable X : Q — R is a measurable function on the
sample space Q). Therefore, we can integrate the random variable with respect to the
probability measure [P using the Lebesgue integral defined in Lecture 2.

Definition 9.1 (Expectation). Let (Q, %, ?) be a probability space, andlet X : O — R
be a real random variable that may take extended values. The expectation of the
random variable is the number

E[X] := P(X) ::/QX(w)IP(dw) :=/QXd[P,

provided either that X is positive or that X is finite and [P-integrable.

Keep in mind that Definition 9.1 involves a Lebesgue integral. Therefore, for
positive random variables,

E[X] :=/ P{X >t} dt =/ P{X >t} A(dt) when X > 0. (9.1)
0 R,

We often write expectation without
brackets (E X). In this case,
nonlinear functions bind before the
expectation. For example,

E X2 := E[X?]. The notation P(X)
is analogous to the functional
notation for integrals, but we prefer
to write E[ X].
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Proposition 4.39 confirms the equivalence of the Riemann and Lebesgue integrals in
the last display. For finite-valued, integrable random variables,

E[X] :=E[X,] —E[X_] whenE|X| < +oo. (9.2)

Following our standard practice, let us carve out the class of random variables that
have finite expectation.

Definition 9.2 (Integrable random variables). We define the linear space of integrable
random variables:

L := Li(Q, % P) := {X : @ - R measurable : E |X]| < +oo}.

Warning 9.3 (Non-integrable random variables). Not every real random variable has
an expectation! For instance, a Cauchy random variable (Example 8.20) is not
integrable because the distribution has too much mass away from zero. In other
terms, a Cauchy variable has very heavy tails. Non-integrable random variables have
some unintuitive behavior, but they are not just a curiosity because they arise in
many applied problems. Nevertheless, we will focus on integrable random variables
in this course. .

Change of variables

Integration on an abstract space probably remains a little mysterious, but we can shift
our attention to the real line by means of the following result.

Proposition 9.4 (Law of the unconscious statistician). Let X be a real random variable
defined on a probability space, and let h : R — R be a measurable function. Then

E[h(X)] = /R h(x) px (),

provided either that h is positive or that h is ux-integrable. See Figure 9.1 for an
illustration.

Proof. This is just the change of variables formula from Problem 5.44. Now is the time
to make sure the details are clear.

First, we assume that h : R — R, is a positive, measurable function. The
composition & o X is positive and measurable, hence a positive random variable. By
definition, the integral on the right-hand side satisfies

/h(x) ux(dx) = / ux{x € R: h(x) >t} A(dr)
R R,

= / P(X '{x € R: h(x) > t}) A(dr)
R,

_ / P{weQ: h(X(w) >t} A(dr)
R,

:/ P {h(X) > t} A(dr) = E[R(X)].

Ry

We have used Definition 8.4 of the law ux and the definition (9.1) of the expectation
of the positive random variable h(X).

Less frivolous authors call this result
the change of variables formula.
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Figure 9.1 (Change of variables). To compute the expectation of a function /#(X) of a
random variable X, we can integrate the function h with respect to the law uy.

In case h : R — R is ux-integrable, its positive part h, and negative part h_ have
finite integrals with respect to ux. By definition of the integral of a signed function,

[ @ = [ oo ptan - [ no )
= E[R,(X)] - E[1_(X)] = E[h(X)].

We have applied the change of variables formula from the last paragraph twice, once
for h, and once for h_. Last, we use the definition (9.2) of the expectation of the
signed random variable h(X). [ |

For a striking example of Proposition 9.4, we can choose h : X + X to obtain

E[X] =/qux(dx). (9-3)

This accords with our familiar notions of expectation on the line. Heuristically, we
sum the value x of the random variable weighted by the probability ux (dx) that the
random variable takes the value x. See Figure 9.1.

It is instructive to instantiate the formula (9.3) for particular types of random
variables. When the random variable X is discrete,

Ux = i pi0q, implies E[X]= Zi:l a;p;. (9.4)

When the random variable X is continuous with density fx,
px(® = [ 0@ implies EIX] = [xfx(0A@D.  ©3)

B R

This calculation requires Proposition 9.5 below (see also Exercise 9.6). In other
words, (9.3) captures the familiar formulas from elementary probability and more.

9.2.3 Continuous random variables

For continuous random variables, there is an extension of Proposition 9.4 that displays
the role of the density more clearly.
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Proposition 9.5 (Expectation: Continuous random variable). Let X be a continuous real
random variable with density fx and with law pyx. For a measurable function
h:R-—>R,

E[h(X)] = /R (x) px (dx) = /R h(x) fic(x) A(dx),

provided that £ is positive or that the integral on the right-hand side is finite.

*Proof. We may assume that & : R — R, is a positive, measurable function. The
result for signed functions follows by splitting & into its positive and negative parts.
By definition (8.1) of the law ux in terms of the density fx, we have

/]lg(x) ux(dx) = ux(B) = / 1g(x) fx(x) A(dx).
R R

By linearity of the integral, the same relation holds for each positive simple function
s: Ry - R:

[ stuxtan = [ 560 f0 a0,
R R

Last, we use the staircase maps (5.2) to approximate h by an increasing limit of simple
functions: (Qj o h) T h. Apply the last display to the simple function s = Q; o h.
Invoke monotone convergence (Theorem 5.18) on reach the result for h. ]

Exercise 9.6 (*Expectation: Continuous random variable). Give an alternative proof of
Proposition 9.5 based on the definition (4.5) of the integral, the definition (8.1) of the
law px, and Fubini-Tonelli (Theorem 6.23). See also Exercise 6.27.

Properties of expectation

Since expectation is just a Lebesgue integral, it inherits all of the basic properties of
the Lebesgue integral.

Theorem 9.7 (Expectation: Properties). Let (2, %, [P) be a probability space, and
consider integrable real random variables X, Y € L;.

1. Indicators: The expectation of the indicator of an event equals the probability
of the event:
E[1g] = P(E) foreacheventE € F.

Unital: E[1] = 1.

Positive: If X > 0, then E[X] > 0.
Monotone: If X < Y, then E[X] < E[Y].
Linear: For all scalars a, 8 € R,

AW

E[aX + BY] = « E[X] + BE[Y].

6. Negligible sets: If X = Y P-almost surely, then E[X] = E[Y].

Proof. This is just a restatement of Theorem 5.14. [ ]

The only statement here that is special for the expectation is the unital property (2)
that the expectation reproduces the constant 1. This point reflects the interpretation of
the expectation is a (weighted) average. Another distinctive property of the expectation
is Jensen’s inequality, which we will discuss in Section 9.4.

Recall that a positive simple function
is a (finite) linear combination of
indicator functions with positive
coefficients.

Recall that probabilists say “almost
sure” instead of “almost everywhere”.
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The most important single property of expectation is linearity (4). Let us emphasize
that this result holds for all (integrable) random variables, regardless of how they are
related to each other. This innocuous result has extensive implications.

The statement (1) that the expectation of the indicator of an event is the probability
of the event also has many useful consequences. For arbitrary events E; € F with
i € N, we can compute

E [#{i e N : E; occurs}] =E [Z‘ix’:l ﬂEi] = Yo, P(E).

The first relation is a reinterpretation, and the second relation is Tonelli’s theorem
for sums. In other words, we can use indicators to count how many events in a given
family actually occur.

Activity 9.8 (Expectation: Positive random variables). As usual, results for the expectation
can be divided into results for positive random variables and results for integrable
random variables. We have not stated the specialized results for positive random
variables here, but they can be extracted from Theorem 5.14. Write out these results
using probabilistic language and terminology. .

Exercise 9.9 (Expectation: Range). Fix extended real numbers a,b € R. Let X : Q —
[a, b] be a real random variable that takes values in an interval, possibly infinite.
Assuming that the expectation E X is defined, show that

a<EX <b.

In other words, the expectation of X remains inside the range of possible values of X.
Hint: Use monotonicity of the expectation.

Convergence theorems

Since the expectation is just a Lebesgue integral, it also comes equipped with a family
of convergence theorems. These results follow from the analogous results for Lebesgue
integrals with only a change of notation.

Theorem 9.10 (Expectation: Monotone convergence). Let (X; : i € N) be a pointwise
increasing sequence of positive random variables that may take extended values.
Then

X; T X implies E[X;] TE[X].

Theorem 9.10 is just a restatement of Theorem 5.18. It holds without any further
qualification on the random variables. Indeed, an increasing sequence of positive
random variables has a limit, which is always a positive random variable (that may
take the value +00).

Theorem 9.11 (Expectation: Fatou’s lemma). Let (X; : i € N) be a sequence of positive
random variables that may take extended values. Then

liminf; e E[X;] > E [liminf;e0 X; ).

Theorem 9.11 is just a restatement of Theorem 5.20. It holds without any
qualification, except that the random variables must be positive.

Theorem 9.12 (Expectation: Dominated convergence). Let (X; : i € N) be a sequence
of random variables. Assume that the sequence is dominated by a fixed, integrable

In detail, X;41(w) > X;(w) for each
i € N and each w € Q. The random
variable X : Q — @J, is defined as
the limit of the increasing sequence.
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random variable:
|X;] < Y| foralli e N, whereY € L;(P).

Then
X; —» X implies E[X;] — E[X].

Theorem 9.12 is a specialization of Theorem 5.22. It is essential that the random
variables be dominated by a single random variable Y that is integrable.
For the expectation, a special case of Theorem 9.12 is often easier to use.

Corollary 9.13 (Expectation: Bounded convergence). Let (X; : i € N) be a sequence of
random variables. Assume that the sequence is uniformly bounded by a constant:
|X;| <M foralli € N, where M € R,.
Then
X; —» X implies E[X;] — E[X].

Proof. Apply Theorem 9.12 with the random variable Y (w) = M for all w € Q.
Constants are integrable with respect to a probability measure. [ |

All of these convergence theorems have counterparts, assuming only convergence
[P-almost surely. We omit explicit statements.

*Expectation in the plane

We have defined the expectation of a real-valued random variable. The definition can
be extended to pairs of real-valued random variables in an obvious way.

Definition 9.14 (Pairs of real random variables: Expectation). Let (X,Y) be a pair of
(finite-valued) real random variables. If both X and Y are P-integrable, we define

E(X,Y) := (EX,EY).

That is, the expectation of the random vector (X,Y) € R? is simply the vector of
the expectations.

Given a pair (X, Y) of real random variables with joint law pxy, we can compute
the expectation of a bivariate measurable function & : R> — R using the law of the
unconscious statistician:

E[h(X,Y)] = /RZ h(x,y) pxy(dx x dy). (9.6)

This formula is valid when £ is positive or when h is pxy-integrable. The proof is the
same as Proposition 9.4.

When (X,Y) is an independent pair, the joint law pyy = ux X py. Therefore,
we can invoke Fubini-Tonelli (Theorem 6.23) to pass from the double integral to an
iterated integral.

Similar results are valid for any random vector (X, ..., X,) € R" whose compo-
nents X; are real random variables.

Warning: The dominating
random variable Y cannot
depend on the index i. "

Warning: The constant M
cannot depend on the index i. =
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Figure 9.2 (Convex functions). Left: A convex function ¢ lies below its secants.
Right: A convex function ¢ lies above its tangents.

Convex functions on the real line

As we have seen, the expectation of a random variable is just the integral with respect
to the measure of probability. The expectation inherits all of the properties of the
integral, but it enjoys a few additional perquisites because it is a weighted average.
For example, we have already shown that the expectation reproduces constants.

For related reasons, expectation also interacts elegantly with convex functions. To
develop this idea, we first define the concept of a convex function, and we establish
some of the key properties. The proofs are included here for completeness, but the
reader may focus on the statements rather than the arguments.

Convex functions

Linear functions preserve linear equality relations. When we consider linear inequality
relations, we soon encounter convex functions. The following humble definition is
central to a large part of applied mathematics.

Definition 9.15 (Convex function). Let | € R be an interval of the real line, not
necessarily finite. A (finite-valued) function ¢ : | — R is convex if

Pp((1-1)x+71y) < (1-7) @(x)+T@(y) forallt € [0,1]

and all points x, y € I. A function ¥ : | — R is called concave if its negation — is
convex.

In words, a convex function lies below its secants. Dually, a convex function lies
above its tangents, as we will prove below in Proposition 9.19. The illustrations in
Figure 9.2 capture these two ideas.

Example 9.16 (Convex functions). Many familiar functions are convex or concave.

1. Affine functions: For a, b € R, the affine function ¢ — a + bt is convex on R.
2. Absolute powers: For p > 1, the function ¢ +— [£|P is convex on R.

3. Inverse powers: For p > 0, the function ¢ + ¢ 77 is convex on R,,.

4. Exponential: For 6 € R, the function ¢ > e% is convex on R.

5. Powers: For 0 < p < 1, the function ¢ + t” is concave on R,.
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6. Logarithm: The function ¢ + log ¢ is concave on R,.
7. Entropy: The function ¢ +— —flog is concave on R,.

You can verify these results using the tools from Section 9.3.4. We will encounter more
examples of convex functions later. .

Aside: We say that a function ¢ : | — R is strictly convex when

p(1-1)x+1y) <(1-17) @(x)+Tp(y) forallt e (0,1)

and all distinct points x, y € |. Strict convexity means that the graph of the function
does not contain any affine segments. Which of the functions in Example 9.16 are
strictly convex?

9.3.2 Continuity and subgradients

The key property of a convex function on the real line is that its secants are increasing.

This point is evident from Figure 9.2.

Lemma 9.17 (*Convex function: Secants). Let ¢ : | — R be a convex function on an
interval | of the real line. For each a € |, introduce the secant function:
_pla+h)-¢a)

(Dey)(a; h) = " whenh #0anda+h € l.

For fixed a € |, the function i + D(a;-) is increasing:
h <h’ implies (D¢)(a;h) < (Dy)(a;h’).

*Proof. This statement is an algebraic consequence of Definition 9.15. For example,
when i > 0, choose x = aand y = a+h’, andset T = h/h’ sothat (1-7)x+1y = a+h.
The other cases are similar. [

Lemma 9.17 has several significant consequences. First of all, convex functions are
essentially continuous.

Proposition 9.18 (Convex function: Continuity). A convex function ¢ : U — R on an open
interval U C R is continuous. In particular, ¢ is Borel measurable.

*Proof. Fix a € U, and let k > h > 0 be sufficiently small that a + k € U. Lemma 9.17
implies that
(Do)(a; —k) < (Dg)(a; h) < (Dy)(a; +k).
It follows that
|(D)(a; h)| < max {|(Dp)(a; +k)|, |(Dp)(a;-k)|} =: C.

Writing out the secant function on the left-hand side and rearranging, we see that ¢ is
right-continuous at a. That is,

lp(a+h)— @(a)|<Ch ash]O.

A similar argument shows that ¢ is left-continuous at a. [ |

Second, let us demonstrate that a convex function lies above its tangents in the
following sense.

Warning: A convex function on a

closed interval need not be
continuous at the endpoints.
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Proposition 9.19 (Convex function: Subgradient inequality). Let ¢ : U — R be a convex
function on an open interval U C R. For each a € U, there is a number g € R such

that
p(y)z¢(a)+g-(y—a) foralyeU. (9.7)
The number g appearing in (9.7) is called a subgradient of the convex function ¢¢ = The subgradient g is not necessarily
at the point a. If ¢ is differentiable at a, then g = ¢’(a) is uniquely determined. unique.

*Proof. Fix a point a € U. Let k > h > 0 be sufficiently small that a + k € U.
Lemma 9.17 implies that

(Dg)(a; —k) < (Dp)(a; h) < (Dp)(a;+k).

As h decreases to zero, the secant (D¢)(a; h) is decreasing and bounded below by
the left-hand side. Therefore,

g+ = infpso (D@)(a; h) = limp o (Dg)(a; h) < (Dy)(a; +k).
Writing out the secant (D¢)(a; +k) and rearranging,
pla+k) > pa)+g.k forallk >0witha+k e U.
A parallel argument shows that g_ := limyy (D¢)(a; h) satisfies
pa-k)> ¢p(a)—g-k forallk >0witha—-k e U.

Lemma 9.17 also guarantees that g_ < g,. Combining the last two displays, we realize
that the inequality (9.7) holds for any number g € [g_, g.]- [

Dual representation
The supremum of affine functions is always a convex function.

Proposition 9.20 (Supremum of affine functions). Let a;, b; € R for each j € ] in an
arbitrary index set. Define a function ¢ : R — R by the rule

@(x) :=sup{aj +bjx: j €]} foreachx e R.

Then ¢ is a convex function on its domain. The domain of an extended function
is the set of places where it is finite:

*Proof. Choose x,y € dom(¢) and 7 € [0, 1]. Calculate that dom(p) = {x € R : |@(x)] < 400}
e((1-1)x+71y) =sup{(1-71)(a;+bjx)+1(aj+bjy):jel}
< (I-71)sup{aj+bjx:jel|y+tsup{aj+bjy:jel}
=(1-1ex)+10(y).
Indeed, the supremum is subadditive and positively homogeneous. [ |

We may ask whether the converse holds. Can we write a convex function as the
supremum of affine functions? We can answer this question in the affirmative by
invoking the subgradient inequality. This result will play a role in our discussion of
conditional expectation.

Corollary 9.21 (Convex function: Dual representation). Let ¢ : U — R be a convex function
on an open interval U of R. Then there is a countable set | € R? for which

@(y) =sup{p(a)+g-(y—a):(a,g) €]} foralyelU.



9.3.4

9.4

Lecture 9: Expectation & Jensen’s Inequality 143

*Proof. For each rational a € U N Q, the subgradient inequality (9.7) furnishes a
subgradient g, for which

o(y) > ¢(a)+8,-(y—a) foralyeU.

For rational y € U N Q, we see that

@(y) =sup{p(a)+g.- (y—a) :acUNQ}.

Proposition 9.18 states that ¢ is continuous, so the same formula is valid forall y € U
because the rationals are dense in U. [

Sufficient conditions

How can we confirm that a real-valued function is convex? From a vast arsenal of
methods, let us select a few that are particularly useful. If you want, you can develop
proofs of these results from the material presented above.

Fact 9.22 (Convex functions: Closed convex cone). Let| C R be aninterval. If f, g : | = R
are convex functions and «, 8 > 0, then af + g is a convex function. Suppose that
f :=1lim; f; is the pointwise limit of a sequence f; : | — R of convex functions for
i € N. Then the limit f : | — R remains a convex function. .

Fact 9.23 (Convex function: First-derivative test). Suppose that ¢ : U — R is a differen-
tiable function on an open interval U of the real line. If the derivative ¢’ : U — R is
an increasing function, then ¢ is convex. .

Fact 9.24 (Convex function: Second-derivative test). Suppose that ¢ : U — R is a twice-
differentiable function on an open interval U of the real line. If the second derivative
¢” : U — R is a positive-valued function, then ¢ is convex. "

Another powerful method is to exhibit a dual representation of a function as the
supremum of affine functions. Then Proposition 9.20 guarantees convexity.

Exercise 9.25 (Convex functions: Examples). Use these methods to confirm that each of
the functions listed in Example 9.16 is a convex function.

Jensen’s inequality

We are now prepared to prove Jensen’s inequality, which describes how the expectation
interacts with a convex function.
The definition of a convex function ¢ : U — R involves a two-point inequality. In
particular,
1p(a)+1¢(b) > ¢(3a+3b) foralla,b e U. (9.8)

That is, the simple average of function values exceeds the function at the simple average
of the arguments.

Jensen’s inequality shows that the definition of convexity is self-improving. For
every probability measure, the expectation of the function exceeds the function of the
expectation. This result is an immediate consequence of the subgradient inequality.

Theorem 9.26 (Jensen’s inequality). Let ¢ : U — R be a convex function on an open
interval U € R, and assume that ¢ is bounded below. For each P-integrable random
variable X : Q — U that takes values in U,

E¢(X) 2 ¢(EX). (9.9)

Jensen’s inequality requires mild
conditions to ensure that all of the
expectations are defined. As we will
see, there are several ways to achieve
this goal.
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It is possible that the left-hand side equals +co.

The two-point inequality (9.8) is exactly the statement of Jensen’s inequality (9.9)
for the random variable X with the discrete law ux = %6,1 + %6;].

Proof. Without loss of generality, we may assume that the convex function ¢ : U — R,
takes positive values by adding a constant, since it is bounded below. Thus, the
expectation E ¢(X) is defined, although it may equal +co.

Instantiate the subgradient inequality (9.7) with the value a = E X. There is a
fixed number g € R, depending on a, for which

p(X(w) >¢pla)+g- - (X(w)—a) foreach w € Q.
Take the expectation of this inequality using monotonicity and linearity:

EoX) 2 E[p(a)+g- (X -a)]
= ¢(a)+g - (E[X] - a) = (EX).

We have used the fact that E X = a, and the expectation preserves constants. [ |

For concave functions, Jensen’s inequality is reversed.

Corollary 9.27 (Jensen’s inequality: Concave function). Let ¥ : U — R be a concave
function on an open interval U C R, and assume that v is bounded above. For each
P-integrable random variable X : ) — U that takes values in U,

Ew(X) < w(EX).

Exercise 9.28 (Jensen’s inequality: Concave function). Prove Corollary 9.27. Show that
Jensen’s inequality for concave functions is also valid under the assumption that v is
bounded below, rather than bounded above.

Exercise 9.29 (Jensen’s inequality: Integrable case). Assume that ¢ : U — R is a convex
function on an open interval. Let X : Q — U be a P-integrable random variable, and
further assume that ¢ (X) is [P-integrable. Establish that (9.9) is valid. What is the
analogous result for concave functions?

Exercise 9.30 (Jensen’s strict inequality). Jensen’s inequality holds with a strict inequality
if we add some additional assumptions. Assume that ¢ : U — R is strictly convex, and
the support of the law ux of the random variable X contains at least two values. Then

E ¢ (X) > ¢(EX),
provided that all of the expectations exist. Prove it.

Aside: The proof of Jensen’s inequality relies on the observation that a convex
function lies above one of its tangents. It is occasionally useful to extract this
argument in its pure form. Consider a function ¢ : U — R and a P-integrable
random variable X : O — U. Suppose that there exists g € R for which

o) > p(EX)+g-(y—-EX) forally e U.

Then E ¢ (X) > ¢(E X).
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Example: The GM—AM inequality

As a first example of the power of Jensen’s inequality, we will establish the basic
inequality between the generalized geometric mean (GM) and the arithmetic mean
(AM) of two numbers.

Proposition 9.31 (GM—AM inequality). Fix positive numbers p1,...,p, = 0 with sum
%, pi=1. Then

nop n o

nizl x;' < Zi:l pix; for all positive x; € R,. (9.10)
The left-hand side is a generalized geometric mean, while the right-hand side is a
generalized arithmetic mean.

In particular, for 7 € [0, 1], we deduce that
Xy T <1x+(1-1)y forallx,y > 0. (9.11)
This is the usual statement of the GM-AM inequality for two variables.

Proof. The proof combines the fact that the exponential function is convex (Exam-
ple 9.16) with Jensen’s inequality (Theorem 9.26).

If x; = O for any index i, then the inequality (9.10) obviously holds. Therefore, we
may assume that each x; > 0. Let us rewrite the quantity of interest:

[T = e (350, prost).

In light of this expression, we introduce the random variable X that takes the values
log(x;) with probability p;. The law is x = 2.7 PiOiog(x,)-

Using the formula (9.4) for the expectation of a discrete random variable, we can
reinterpret the last expression:

n n .
exp (Zi:1 pi log(Xi)) =exp(EX) < Eexp(X) = Zi:1 pielos .
The inequality is Jensen’s. Simplify both sides to reach the stated result. n

Exercise 9.32 (Young's inequality). From (9.11), deduce Young’s inequality. Let p > 1,
and define g > 1 by the conjugacy relation 1/p + 1/g = 1. Then

1 1
lxy| < . |x|P + r |yl forallx,y € R.

Exercise 9.33 (Continuous GM—AM inequality). Let X be a strictly positive real random
variable. Check that
exp(Elog(X)) < EX.

Explain why this is a “continuous” analog of the GM-AM inequality.

*Convexity: Beyond the real line

We have introduce convex functions and Jensen’s inequality on the real line, but these
ideas have a wider ambit. In this section, we give a brief presentation of convex
functions on the n-dimensional Euclidean space R”. Then we note that the analog of
Jensen’s inequality holds in this setting as well.
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Convex sets and functions

On the real line, we defined a convex function on an interval. In higher dimensions, a
convex function is defined on a domain called a convex set.

Definition 9.34 (Convexset). Let C C R”. The set C is convex when
(l1-1)x+7yeC foreacht € [0,1] andallx,y € C.

In other words, the set C contains the line segment connecting each pair of points
in the set.

There are many familiar examples of convex sets. For instance, in the plane, a
solid rectangle and a solid disc are both convex. In R”, the set of vectors with positive
entries is convex.

As in the univariate setting, a multivariate convex function is a function on a convex
set that lies below its secants.

Definition 9.35 (Convex function: Euclidean space). Let C C R” be a convex set. A
real-valued function ¢ : C — R is called convex if

p(l-1x+71y) < (1-1)@(x)+T9(y) forallr e [0,1] andallx,y € C.

A function ¥ : C — R is called concave if its negation —1 is convex.

Example 9.36 (Convex functions: Euclidean space). Many popular functions on R” are
convex or concave. Here are some examples, without proof.

1. Affine functions: For a € R and b € R", the affine function x — a + b'x is
convex on R”,

2. Positive quadratic forms: For a positive-semidefinite matrix A € R"*" the quadratic
function x — x"Ax is convex on R”.

. Norm powers: For a power p > 1, the function x — ||x||Z is convex on R”.

. Sum of exponentials: For @; € R, the function x > 1" | e** is convex on R".

. Entropy: The function x — — "' ; x; log x; is concave on R}.

. Geometric mean: For T € [0, 1], the function (x, y) — x"y!~7 is concave on R2.

o AW

The menagerie of additional examples is vast. .

Dual representation

As in the univariate case, every multivariate convex function lies above its tangents,
and these tangents provide a dual representation of the function.

Fact 9.37 (Convex function: Subgradients and dual representation). Let ¢ : C — R be a
convex function on an open convex set C C R”. For each a € C, there is a subgradient
vector g € R such that

p(y) > ¢pa)+g'(y—a) foralyeC.
Furthermore, there is a countable set | C R?" for which
¢(y) =sup{p(a)+g'(y-a): (a,g) €}

This expression represents the convex function as a supremum of affine functions. =«

Recall that A € R"*" ig
positive-semidefinite if and only if
u'Au > 0 for each u € R".
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9.5.3 Jensen’s inequality
Jensen’s inequality remains valid for multivariate convex functions.

Theorem 9.38 (Jensen’s inequality). Let ¢ : C — R be a convex function on an open
convex set C C R”, and assume that ¢ is bounded below. For each P-integrable
random vector X = (Xj,...,X,) : Q — C that takes values in C,

Eo(X) > p(EX).

It is possible that the left-hand side equals +co or that both sides equal +co.

*Proof sketch. Follow the pattern of the proof of Theorem 9.38. Use the multivariate
subgradient inequality (Fact 9.37) in place of the univariate form. [ |

Problems

Linearity of expectation is a powerful tool for solving problems. We begin with
several examples where this principle allows us to make short work of an potentially
challenging computation.

Exercise 9.39 (Inclusion—exclusion again). Let Eq, ..., E,; be events in a probability space.
From Exercise 2.47, recall the identity

n
_ 1y k+1
lune = Zk:l( 1 Zi1<-..<ik gy 0 -

Prove that
n
P(U™,E) = Zk=1(_1)k+1 Zil<-~-<ik P(E; N...Ey).

Hint: Expectation is linear.

Exercise 9.40 (Derangements). A permutation 7 : {1,...,n} — {1,..., n} is a bijective
function. A fixed point of a permutation 7 is a letter i for which 7 (i) = i. By elementary
counting arguments, there are a total of n! permutations on n letters. We may choose
one of these n! permutations uniformly at random.

1. For a random permutation on 7 letters, what is the expected number of fixed
points? Hint: For each i = 1, ..., n, consider the indicator of the event that i is a
fixed point.

2. What is the probability that a random permutation on 7 letters has no fixed
point? Hint: This is the keys problem (Problem 2.48).

3. What is the probability that a random permutation on 7 letters has k fixed
points?

4. *Ménages: Suppose that 7 man-woman couples attend a dinner party. They are
seated around a circular table, alternating between men and women. If one
such configuration is chosen uniformly at random, what is the probability that
no person is seated next to their partner?

Exercise 9.41 (Collect them all!). A certain brand of confection prints a joke on the inside
of each wrapper. You eagerly purchase one confection every day after lunch so that
you can share the joke with your officemates (who are equally enthusiastic about your
obsession, I'm sure). There are 7 distinct jokes, and each confection is equally likely
to contain each one of the jokes.
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1. Compute the expected number of days between reading the ith novel joke and
the (i + 1)th novel joke for each i = 0,...,n — 1.
2. Compute the expected number of days that it takes to encounter all 7 jokes.

Exercise 9.42 (Expectation and values). Information about the expectation of a random
variable can translate into information about its values. Let X be a positive, real random
variable.

1. Assume that EX = 0. Deduce that X = 0 almost surely. Hint: This is a
transliteration of one of the integral properties (Theorem 5.14).
2. Assume that E X < 4o00. Deduce that X < +co almost surely.

Problem 9.43 (Borel—Cantellil). Let (X}, : n € N) be an arbitrary sequence of positive
random variables. If the sum of expectations is finite, we can reach very strong
conclusions about the limit of the sequence. This result is a core tool for proving
almost-sure convergence.

1. Establish that
Z:_l E[X,] < 4o implies [E [lim SUP,;_ 00 Xn] =0.

In particular, lim sup,,_, ., X;; = 0 almost surely. Hint: Recall thatlim sup,,_,., X;, =
inf,en sup;s , X;. It is also convenient to make the simple bound sup; ., X; <
Z i>n Xi.

2. The classic formulation of the first Borel-Cantelli lemma follows when the random
variables are indicators. Translate the result for indicators into a statement about
events and the probability of the limit superior of a sequence of events. What
does this result mean in words? (How many of the events can occur?)

Exercise 9.44 (Mengoli). Use Jensen’s inequality to prove Mengoli’s inequality:

1 1 1 3
+—+ > — forx>1.
x—-1 x x+1 x

(*) Define the harmonic number H;, := ?:1 i
prove that H,, — oo as n — oo.

~! for n € N. Use Mengoli’s inequality to

Exercise 9.45 (*Isoperimetry for rectangles). The GM-AM inequality (Proposition 9.31)
admits an elegant geometric interpretation.

1. Among all plane rectangles with fixed perimeter, prove that a square has the
maximum area.

2. Equivalently, among all plane rectangles with fixed area, prove that a square has
the least perimeter.

3. Among all rectangular parallelopipeds in R” whose total side length is fixed,
prove that a regular cube has the maximum volume.

4. Equivalently, among all rectangular parallelopipeds with fixed volume, prove
that a regular cube has the minimum total side length.

Problem 9.46 (*Isoperimetry for polygons). Fix a natural number n > 3. Consider a
convex polygon with 7 sides with all n vertices on the unit circle. Among all such
polygons, prove that the regular n-gon has the maximum area. Hint: Use elementary

geometry, trigonometric identities, and Jensen’s inequality.

Next, we discuss some other results about convex functions.

Recall that an event E is almost sure
when P(E) = 1.
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Problem 9.47 (*Fenchel and Young). Let i : R — R U {+o0} be an arbitrary function.
Define the Fenchel-Young conjugate:

h*(s) :=sup{sx — h(x) : x e R} fors eR.

We explicitly allow both /2 and h* to take on the value +co. This construction can be
extended to functions in higher dimensions, where it is also an invaluable tool.

1. For every function &, prove that h* is a lower-semicontinuous convex function. As
a consequence, if we can show that a function ¢ is the Fenchel-Young conjugate
of some other function, then it must be the case that ¢ is convex.

2. For a, b € R, consider the affine function h(x) = a + bx for x € R. Compute
the conjugate h*.

3. For p > 1, consider the power function k(x) = |x|? for x € R. Compute h*.

4. For 6 € R, consider the exponential function i (x) = exp(0x). Compute h*.

5. Consider the negative entropy function 4(x) = x log x for x > 0; set h(x) = 400
for x < 0. Compute h*.

6. Establish the Fenchel-Young inequality. For every function 2 : R — R U {+o0},

sx < h*(s)+h(x) foralls,x € R. (9.12)

(*) When £ is a differentiable convex function, find conditions under which (9.12)
holds with equality.

7. Instantiate the Fenchel-Young inequality (9.12) for the power function h(x) =
|x|” with p > 1. Compare with Exercise 9.32.

8. Instantiate the Fenchel-Young inequality (9.12) for the negative entropy function
h(x) = xlogx. The result is not so interesting in one dimension, but it is a
precursor to the Boltzmann-Gibbs variational principle.

9. For every function h, confirm that h** := (h*)* < h.

10. (**) If h is a lower-semicontinuous (Isc) convex function, prove that h** = h.
Hint: There is a graphical proof based on studying the epigraphs.

Problem 9.48 (*Perspectives). Let ¢ : | — R be a function on an interval | of the real
line. We can define a bivariate function

hy(x;8) :=s-¢@(x/s) forxe€lands e R,,.

The function # is called the perspective transform of ¢. The perspective transform can
also be extended to higher dimensions.

1. Assuming that ¢ is convex, prove that the perspective transform h,, is a convex
function on | X R,,. In detail, show that

he(tx+(1-1)y;Ts+(1=1)f) S T-hy(x;8)+(1-7) - hy(y;1)

forallT € [0,1],forall x,y €|, and forall 5,f € R,,.

2. Consider the quadratic-over-linear function % : (x, y) — x2/y. Prove that h is
convex on R, X R,,.

3. Consider the divergence function & : (x,y) — x(logx — log y). Prove that h is
convex on R, X R,,.

4. Fix 7 € [0, 1]. Consider the Heinz mean h : (x,y) — x"y!~". Prove that h is
concave on R, X R,,.

5. Fix T € [0,1]. Let X,Y be strictly positive random variables. Using Jensen’s
inequality (Theorem 9.38), deduce that

E[X'Y!" "] < (EX)(EY)'™".

Explain how to derive Holder’s inequality (Theorem 11.5) from this statement.

The choice of the letter s reflects its
role as the slope of a line.
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Algorithm 9.1 (Randomized Quicksort). A recursive, randomized algorithm that sorts a
finite set of distinct real numbers in increasing order.

Input: The input S = {ay, ..., a;,} consists of m distinct real numbers
Output: The output y = (¥1,..., ¥m) is a list of the input elements in increasing order
1 function RandQuicksort(S = {as, ..., am})
2 if S = ( then return the empty list y = ().
3 Draw a random pivot K ~ uNtForm{1,..., m}
4 By comparing each element in S to ag, form two subsets
S_=A{a;:a; < ag}
S,={a;:a; >ag}
5 Recursively sort these two subsets:
y_ = RandQuicksort(S_)
¥.. = RandQuicksort(S.)
6  return the ordered list y = (y_, ag,y,)
Applications

Application 9.49 (First-moment method). Application 7.14 introduced the probabilistic
method, a foundational technique that uses probability to establish the existence of a
mathematical object with a distinguished property. In this application, we continue the
development by introducing the first-moment method, a mechanism where we compute
an expectation to demonstrate that a mathematical object exists. In these problems,
linearity of expectation is a useful tool to keep in mind.

1.

Let X be a real random variable, and fix a € R. Prove that E X > a implies that
X(w) > a for some w € Q. In other words, a bound on the expectation ensures
the existence of a particular type of sample point.

. With a more careful argument, prove that E X > a implies that X (w) > a for

some w € Q).

. Suppose that a circular corral has 17 fenceposts, but exactly 5 of them are rotten.

Prove that there exists a consecutive sequence of 7 fenceposts that contains at
least 3 rotten posts. Hint: For each k, define the indicator that post k is rotten.
Consider a random set of 7 consecutive fenceposts.

. Graph cuts: Let G = (V, E) be an undirected combinatorial graph. A cut is a subset

S of the vertices. The weight of a cut S is the number of edges e = {u, v} € E
with u € S and v € S or vice versa. Show that there is a cut whose weight is at
least (#E)/2.

. Vector balancing: Suppose that (#1, ..., #,) are unit-norm vectors in R?. Show

that there is a sequence (&1, ..., &,) € {£1}" of signs for which

n
||Z Eiu,-” < vn.
=1 2

Application 9.50 (Randomized Quicksort). For some computational problems, the most
elegant approach may involve a randomized algorithm, a procedure that makes random
choices during its execution. Surprisingly, randomized algorithms can arise in settings
(apparently) distant from probability theory.
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For instance, a fundamental challenge in computer science is to sort a list
(a1, ay,...,a,) of n real numbers in increasing order. For simplicity, we will as-
sume that the numbers are all distinct. There is a beautiful randomized recursive
algorithm for this problem, called randomized quicksort; see Algorithm 9.1. In this
application, we will analyze the algorithm.

1. Explain why RandQuicksort is a correct algorithm for sorting. More precisely,
suppose that the initial input is a set {x1,...,X,} of n distinct real numbers.
Prove that the output y = (31, ..., ¥») is an ordered list with the properties that
Y1 < Y2 < -+ < yp and that each element y; = x,(;) for a permutation 7 on
{1,...,n}.

2. Without loss of generality, you may assume that the initial input is already
ordered: x; < X3 < -+ < X. Why?

3. Argue that the algorithm (including the full recursion) compares a given pair x;
and x; with indices i < j either zero times or one time.

4. To analyze RandQuicksort, we need to count the number R of comparisons that
it makes. For indices i < j, let E;; be the event that the algorithm compares x;
and x; at some point during the execution. Verify that

E(R] = ) P(Ey).

Hint: Write R as a sum of indicators.

5. Establish that P(E;j) = 2/(j — i + 1) for each pair of indices with i < j. Hint:
The algorithm compares x; and x; if and only if (a) both x; and x; are in the
input of a recursive execution of the algorithm and (b) one of x; or x; is selected
as the pivot.

6. Deduce that E[R] < 2nlog n. Hint: The harmonic number H,, < log(n) + 1.

7. For context, what is the maximum number of comparisons that the algorithm
can make if it is most unlucky in the choice of pivots?

8. (*) Implement RandQuicksort. For each n = 2/ with 8 < i < 16, generate a list
of n distinct numbers. For each fixed choice of n, run randomized quicksort
100 times. Plot a histogram of the number of comparisons made. Compute the
empirical mean m(n) and standard deviation s(72) of the number of comparisons.
Now, as a function of n, plot error bands m(n) + s(n). Compare against the
trend f(n) = 2nlog n. A log-log scale is appropriate here.

Notes

The treatment of convex functions follows Gruber [Gruoy, Chap. 1]. For more about
convex functions, see books of Boyd & Vandenberghe [BVo4] and Rockafellar [Roc70].
The treatment of Jensen’s inequality is adapted from Williams’s book [Wilg1]. For
more learning about heavy-tailed random variables, see the book of Nair, Wierman, &
Zwart [NWZ22].

Some of the problems in this lecture are drawn from Alon & Spencer [AS16], from
Grimmett & Stirzaker [GSo1], and from Steele [Steo4]. For an overview of randomized
algorithms in computer science, including randomized quicksort, see the book of
Motwani & Raghavan [MRogs5].



\ 10. Moments & Tails

“ ‘Hallo, Pooh,” [Owl] said. ‘How’s things?’

‘Terrible and Sad,” said Pooh, ‘because Eeyore, who is a friend of mine, has lost his
tail. And he’s Moping about it. So could you very kindly tell me how to find it for
him?’

‘Well,” said Owl, ‘the customary procedure in such cases is as follows.’

‘What does Crustimoney Proseedcake mean?’ said Pooh. ‘For I am a Bear of Very
Little Brain, and long words Bother me.” ”

—Winnie-The-Pooh, A. A. Milne

A real random variable induces a distribution of probability on the real line. This
distribution is described by its law, which is a Borel probability measure. Equivalently,
the law is captured by its (cumulative) distribution function. These are complicated
objects. The law assigns a probability to every Borel set, while the distribution function
is a function on the entire real line. How can we acquire information about how the
probability is distributed?

The basic idea is that we can collect data about a probability distribution by
integrating it against test functions. This is a form of tomography:

Indeed, we can think about a skeleton as a distribution of bone mass in space. An
X-ray machine sends a beam of particles from a source through the skeleton onto an
exposure screen. The attenuation of the beam depends on the total amount of mass
that it passes through along the way. In other words, we can model the intensity at a
point on the exposure screen in terms of a line integral of the distribution.

In this lecture, we will see that we can perform a similar operation to collect
information about the law of a random variable. To do so, we compute the expectations
of functions of the random variable. Every such expectation provides a piece of data
about the law of the random variable. In particular, we will see that certain expectations
control the probability that the random variable takes large values.

. Moments

Tails

Markov’s inequality
. Integration by parts
. *Duality
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Moments

We formalize this discussion using the concept of a moment of a random variable.

Definition 10.1 (Moment). Let X be a real random variable with law px. A moment
of the random variable X is the integral of a test function h against the law ux.
Each moment takes the form

E[h(X)] = /Rh(x) tx(dx) for measurable h: R — R. (10.1)

In case h > 0, we allow the moment to take the value +oo. For signed h, we require
that h is ux-integrable.

Note that the formula (10.1) for the moment depends on Proposition 9.4, the law
of the unconscious statistician. Section 10.4 offers a more refined interpretation of a
moment as a linear functional of the law of the random variable.

Examples

Each moment provides a piece of information about the law px of the random variable.
The more moments we collect, the more data we have. Here are some examples of
moments and what we can do with them.

Example 10.2 (Indicators). Let i = 1 for a Borel set B € %(R). The associated moment

E[15(X)] = /R]ls(x) pix (dx) = pix (B) = P {X € B}.

In other words, the moment reports the probability that the random variable takes
a value in the Borel set B. On the Borel set B, the average amount of probability per
unit length is ¢ = px(B)/A(B). The number ¢ provides a coarse approximation of the
distribution over the set B. .

Example 10.3 (Intervals). By extending Example 10.2, we can see that moments of
intervals allow us to produce a piecewise constant approximation to the law of the
random variable. For example, consider the function h;, = 1, j4+1) for n € Z. Thus,

¢ = E[L sy (X)] = P{X € [n,n+1)}.

Using this information, we can form an approximation f of the law:

f= ZnEN Cnlinne1)-

On each interval, the value f(n) = ¢, of the approximation equals the probability that
X € [n,n+1). The piecewise constant approximation of the law is called a histogram,
and it is usually estimated from data. .

The most important classical moment is the first moment, or the center of mass.

Example 10.4 (Firstmoment). The moment associated with the identity function i (x) = x
is often called the first moment of the random variable:

my =E[X] = /qux(dx).

Note that the first moment may not be defined if x — x is not ux-integrable.

Figure 10.1 (Moment of an
indicator).

Figure 10.2
(Approximation via
moments).

Figure 10.3 (Ants on a
log).
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The first moment has a mechanical interpretation. It is the point where we need to
place a fulcrum to balance the distribution of mass. Indeed, the local mass px (dx) at
a point x induces torque (x — m) x (dx) around the point m;. The system balances
because the total torque at m; is zero:

[ = mipx(@n = [ (@) = m = my = my =o,
R R

In sequence, we have used the linearity of expectation, the fact that the expectation
reproduces constants, and the definition of the first moment. .

Moments in probability theory
There are a number of other moments that play an important role in probability theory.

Example 10.5 (nth polynomial moment). For a natural number n € N, the nth polynomial
moment of a real random variable X is

E[X"] =/Rx" wx (dx).

This moment may not be defined if the Lebesgue integral does not exist. It is common
to refer the the nth polynomial moment simply as the nth moment of the random
variable. -

Example 10.6 (pth absolute polynomial moment). For a real number p > 0, the pth
absolute polynomial moment of a real random variable X is

E[1X]"] = /R %l b (dx).

This moment is always defined since |X|P > 0, but it may take the value +co. .

Example 10.7 (Exponential moment). For a parameter 6 € R, the exponential moment of
a real random variable X is

E[e?X] = / e ux (dx).
R

This moment is always defined since e%* > 0, but it may take the value +co. .

You may have encountered the exponential moment in the guise of the moment
generating function, which we will discuss later. The following exercise justifies this
terminology.

Exercise 10.8 (Moment generating function). Let X be a bounded real random variable.
For all 6 € R, prove that

o Q"
060X _ i n
E[e™]=> " —EX"].
In combinatorics, the right-hand side is called the exponential generating function of
the polynomial moments. Hint: Use dominated convergence.

There are some other fundamental classes of moments that are used to characterize
the distribution of a real random variable. These examples will not play a central role
in this class, but you may wish to be aware of the definitions.
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Example 10.9 (*Characteristic function). The characteristic function of a real random
variable X is a complex-valued function yx : R — C on the real line. It is defined as

1x(0) = B[] = [ % )
::/cos(Hx) uX(dx)+i/sin(9x) wx (dx).
R R

The characteristic function yx(6) is defined and finite for all 8 € R because the
sine and cosine functions are bounded and measurable. The characteristic function
describes the global “frequency content” of the law px at real frequencies 0 € R. Like
the distribution function Fy, the characteristic function contains enough information
to determine the law pux. We postpone a full discussion until Lecture 21. .

Example 10.10 (*Stieltjes transform). The Stieltjes transform of a real random variable X
is a complex-valued function Gx : C — C on the complex plane. It is defined as

Gx(2) =E[(X —2)71] := /R(x - 2)" ' ux(dx) forzeC.

The Stieltjes transform is finite for all z € C whose imaginary part is nonzero. To
understand this function, observe that its imaginary part satisfies

1 . 1 n
;ImGX(S+1n):;AmﬂX(dX) fOI'S,T]ER.

The integrand is a Cauchy density centered at s with scale 7, so the integral is a
convolution of this Cauchy distribution with the law px. In other words, you can think
about the Stieltjes transform as a family of smoothed versions of the law. The Stieltjes
transform plays an important role in random matrix theory, but we will not discuss it
further. .

Aside: Some authors reserve the term “moment” specifically for polynomial mo-
ments. Throughout this course, we use the more general Definition 10.1.

Tails

Among many questions we may ask about a random variable, we can investigate the
probability that it takes a large value.

Definition 10.11 (Tails). Let X be a real random variable.

e The right tail probability at level t € Ris P {X > t}.
* The left tail probability at level t € R is P{X < —t}.
e The tail probability at level t € R, is P {|X]| > t}.

The right tail probability at level ¢ is the moment associated with the indicator
1|t +00). Similar interpretations apply to the other tail probabilities. See Figure 10.4.

Example 10.12 (Tails: Earthquakes). The right tail [P {X > ¢} describes the probability
that the magnitude exceeds a level . Let X be a random variable that models the
magnitude of an earthquake in Southern California, measured on the Richter scale.
For both scientists and insurance conglomerates, it is a matter of significant interest
to understand how the tail probability decays as the level ¢ increases. Do the tail

The Richter-Gutenberg scale for
measuring the magnitude of an
earthquake was invented by Charles
Francis Richter and Beto Gutenberg
in 1935 as part of a project sponsored
by the Caltech Seismology laboratory.
Richter became Professor at Caltech
in 1952.
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Figure 10.4 (Tails). The tails of a random variable capture the probability that the
random variable takes on a large value.

probabilities decay exponentially, so that the probability of seeing an earthquake with
large magnitude is exceptionally rare? Or do the tail probabilities decay polynomially
(according to a power law), so that the probability of a large-magnitude earthquake is
significant? .

The object of today’s lecture is to establish a near-equivalence between polynomial
decay of tail probabilities and the size of absolute polynomial moments:

1. Polynomial moments control tail decay.
2. Tail decay controls polynomial moments.

These claims depend on some very important tools that have wide application in
probability theory. We establish the first statement in Section 10.2.1 as a consequence
of Markov’s inequality. We establish the second statement in Section 10.3.1 as a
consequence of the integration by parts formula.

From polynomial moments to tails

In this section, we will show how to use moment information to extract information
about tail decay.

Markov's inequality

There is a very simple technique for bounding the right tail probability of a random
variable using the expectation of its positive part.

Theorem 10.13 (Markov’s inequality). For every real random variable X, the right tail
probability satisfies

P{X >t} < forall r > 0.

E[X:]
t

Note that the right-hand side is always defined, but may equal +co.

The result is named after A. A. Markov, although it was discovered by his adviser
P. L. Chebyshev. The terminology, however, has become standard. Markov’s inequality

Markov’s inequality is often stated for
positive random variables, in which
case it is redundant to take the
positive part.
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is what a Russian mathematician would call a “trivial but useful observation”, which is
considered high praise.

Proof. The idea behind the proof of Markov’s inequality is best captured with a picture:

In words, the indicator 1{X > ¢} is dominated by the hinge function X, /f.
More formally, let us fix a strictly positive level £ > 0. We calculate that

P{X >t} =E[1{X > t}] < E[X,/t] = E[X,]/t.

We have used the basic property that the expectation of an indicator coincides with
the probability of the event. The second bound follows from the monotonicity of
expectation and the fact that the indicator is bounded by the linear function. Last, we
use the linearity of expectation. [

Exercise 10.14 (Markov: Extreme examples). Find a nontrivial random variable for which

Markov’s inequality holds with equality. Hint: Look closely at the graphical proof.

Markov’s inequality can be used directly, but its full power arises when we apply it to
(monotone) transformations of a random variable. This result bounds tail probabilities
in terms of moments.

Corollary 10.15 (Markov’s inequality). Let X be a random variable, and let ¢ : R — R,
be an increasing, positive function. Then

P{X >t} < % when ¢ () > 0.

Proof. Since the function ¢ is increasing, we have the containment of events
{X >t} C{pX) = ¢(t)} foreacht e R.
By monotonicity of the probability measure,
P{X >t} <P{p(X) > @(t)} foreachteR.
Apply Theorem 10.13 to the (positive) random variable ¢ (X) at any strictly positive

level (t) > 0. [

Polynomial moments control tail decay

We will use a particular instance of Markov’s inequality. Let X be any real random
variable. For all p > 0,

E|X|P
P{X]| >t} < lﬂﬂ' forall t > 0. (10.2)

This result follows when we apply Corollary 10.15 to the positive random variable |X|
with the increasing function ¢ : t +— (#;)P.
Let us reinterpret the inequality (10.2):
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If E|X]|” < +co, then the tail probability P {|X| > ¢} decays at least as fast as
Const-t7P ast — oo.

In other words, the absolute polynomial moments of a random variable give upper
bounds on the rate at which the tail probability decays. In fact, the converse of this
statement is almost true. This is the object of the next section.

From tails to polynomial moments

In the last section, we used Markov’s inequality to bound a tail probability in terms
of a polynomial moment. In this section, we will show how to bound a polynomial
moment in terms of the tail probability.

Integration by parts

The key to this argument is the integration by parts formula. This result expresses
moments of a random variable in terms of tail probabilities.

Theorem 10.16 (Integration by parts). Let X be a positive real random variable. Let
¢ : Ry — R be an increasing, continuously differentiable function. Then

E[o(X)] = p(0) + / P (X > 1} o (1) A(dD).

R,

We can remove the assumption that ¢ is increasing, provided that the integral on
the right-hand side is defined.

Proof. This result is an easy exercise. See Problem 6.26 for a precursor to this result.

We will provide a complete proof because of its importance for us.
We can compute the expectation of E[@(X)] via the law of the unconscious
statistician (Proposition 9.4). As usual, we write px for the law of X. Then

Elg(X)] = /R () x (dx) = p(0) + /R [9(x) - (0)] px(dx)

= p(0) + /R [ /[ @A

= p(0) + /R [ /R n{tgm'(rwdw] i (dx)

px (dx)

= p(0) + /R [ /R Lsn) ux(dX)] ¢’ (1) A(dD)
= p(0) + /R Hx (X = 1} /(1) Adr).

In the first line, we have added and subtracted ¢(0), using the linearity of the integral
and the fact that ux (R) = 1. To pass to the second line, we apply the fundamental
theorem of calculus. We introduce an indicator function to represent the domain [0, x]
of integration for the variable ¢. Next, we invoke Fubini-Tonelli (Theorem 6.23) to
interchange the integrals, which is justified when ¢’ is positive or the resulting integral
is finite. Finally, we rewrite the indicator function in terms of the variable x and use
the fact that the integral of an indicator is the measure of the set. [ |

The notation for the indicator
functions is abbreviated for legibility.
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Observe that the special case @(x) = x coincides with the definition of the
expectation of a positive random variable:

E[X] :/R P{X >t} A(de).

There is a typographical difference between this expression and the definition (9.1) of
the expectation, owing to the change from a strict inequality (>) to a weak inequality
(=) in the tail. In fact, both expressions are equivalent because the Lebesgue measure
is insensitive to the values of the integrand on singletons. Have a close look at the
proof to confirm this point.

Problem 10.17 (*Integration by parts: Without derivatives). Find an extension of the integra-
tion by parts formula (Theorem 10.16) that holds when ¢ : Ry — R, is positive and
increasing, but not necessarily differentiable. Hint: Consider the Borel measure v on
R, that satisfies v([0, t]) = ¢(t) for t > 0.

From tail decay to polynomial moments

We will use another consequence of integration by parts. For an arbitrary real random
variable X and a positive number g > 0, Theorem 10.16 implies that

E[1X]7] =/ P{|X| >t} qt7 ' A(de). (10.3)
R,

This statement follows by considering the positive random variable |X| and the
increasing function ¢ : t + t9. It is possible that both sides of this expression equal
+o0 in case the tail probability decays slowly.

Now, suppose that X is a random variable whose tail probability satisfies

P{|X| >t} <Const-t” forallt > 0. (10.4)

Let us calculate the gth absolute moment, assuming that g < p.
E|X|7 = / P{IX| > t} - g¢97" A(dr)
R,

:/ P{X|> t}-qt”’_ll(dt)+/ P{|X| >t} - qt7 A(dr)
[0,1]

(1,40)

s/ l'qt"_l)t(dt)+/ Const -t~ P - gt771 A(dt)
[0,1]

(1,40)
Const -
e
p—q
The first relation is (10.3). In the second, we split the domain of integration at ¢ = 1.
In the first integral, we use the trivial bound P {|X| > ¢} < 1; in the second integral,
we use the assumption (10.4) about the tail decay. To evaluate the integrals, we use

standard calculus (antiderivatives and the fundamental theorem of calculus).
Let us reinterpret the computation in the last paragraph.

If the tail probability P {|X| > ¢} decays as least as fast as Const - t P as t — oo,
then the gth absolute moment [E | X |7 < +co for all g < p.

In other words, control on the rate of tail decay implies that some absolute polynomial
moments are finite.
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Along with the discussion in Section 10.2.1, we see that polynomial tail decay at
rate t P is almost equivalent to the moment E | X |P being finite. We will build on this
insight in the next lecture, on L, spaces.

Another way to understand these facts is to think about the alternative representa-
tion of the absolute moment as an integral:

EIXP = [ Jal” (@)
R

The integral is finite precisely when the tail probability ¢t — ux{|x| > t} of the
random variable decays fast enough to counteract the growth of the polynomial
function x +— |x|P as |x] — 0. We need Markov’s inequality (10.2) and the
integration by parts formula (10.3) to make this intuition rigorous.

*Duality between functions and measures

We conclude with some additional context for the concept of a moment. Later, these
ideas will resurface when we talk about how to define distances between probability
distributions.

A measure induces a linear functional on functions

Consider a measurable space (X, %). In our study of integration, we have seen that
each (finite) measure ¢ on & defines a real-valued functional on the linear space of
measurable, u-integrable functions:

(H, Yy :h— /hdu for p-integrable i : X — R.
X

This notation is similar to our notation for integrals, p(h) := fx hdy. Theorem 5.14
shows that the integral is a linear functional on the class of u-integrable functions.
Using the bracket, we can write

(4, ag +ph) =aly, &) +p(u, h) fora,feRandf,geLi(p).

Note that the class L; () of integrable functions depends on the measure y, so the
linearity property is not valid for the same functions for all measures.

A function induces a positive-linear functional on measures

Dually, a measurable function induces a real-valued functional on finite measures.
Formally, a measurable function h : X — R defines a map

(, hy:u— /hd,u for finite Borel measures p : F — R,.
X

This construction requires more thought, however, because the integral may not be
defined for all such measures.

To that end, we need to restrict our attention to a smaller class of measurable
functions. Consider the linear space

Cp :=C,(X;R) := {h : X > R bounded and measurable}.

For every function i € Cp(X; R), we can reliably define u(h) for every finite Borel
measure i on F. (Why?) In this case, p(h) must take a finite value.

The notation Cj, is temporary, and it
is at variance with standard
notations!
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As we saw in Exercise 8.29, measures are just functions that take positive real
values, so we can scale them by positive numbers and add them. For finite Borel
measure i, v : F = Ry,

(ap+ pBv)(E) = au(E) + Bv(E) fora,B > 0andE € F.

Furthermore, we can extend this relation from sets to functions. Using the bracket, we
can write

(ap+ Bv, h) = aly, h)+p{v, h) fora,B > 0and h € Cp(X; R).

In other words, a function i € C;(X; R) induces a positive-linear functional (-, i) on
finite Borel measures.

Aside: If the test function £ is positive, we can even drop the requirement that it is
bounded. In this case, the functional (-, &) on measures takes only positive values,
including perhaps +oo.

The linear space of signed measures

For many purposes, the results in the last paragraph are sufficient. Nevertheless, they
are not entirely satisfactory because they tempt us to form general linear combinations
of measures, such as au + Bv for real numbers a, f € R. This is problematic because
the resulting object may assign negative values to some measurable sets.

To patch this hole, we must generalize the definition of a measure to allow it to
take positive and negative values.

Definition 10.18 (Signed measure). Let (X, &) be a measurable space. A signed measure
is a function p : ¥ — R taking finite real values and with the properties

1. Empty set: u(0) = 0.
2. Countable additivity: For each sequence (A; € F : i € N) of disjoint measurable
sets,

1(Uiey A7) = 2525 p(Ay).

A signed measure that only takes positive values is called a positive measure.

A signed measure describes a distribution of mass on measurable sets, but it can
place negative mass on some sets. It may be helpful to think about a signed measure as
a model for a distribution of electric charge, since charge can be positive or negative.

It is easy to see that the signed measures form a (real) linear space under the usual
rules for scaling and addition of functions:

(ap+ Bv)(E) = au(E) + Bv(E) fora,f e RandE € F.
We introduce notation for the linear space of signed measures:
M; :=M1(X;R) := {u : F — R is a signed measure}.

This notation is fairly common, but not universal.
What does a signed measure look like? The answer is quite simple.

Warning: A signed measure can

I only take finite values.

We require the series on the
right-hand side to converge
absolutely.

A positive measure is what we
formerly called a finite measure.
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Theorem 10.19 (Hahn—Jordan). Let u be a signed measure on measurable space (X, F).
Then the signed measure can be decomposed as u = p+ — p— where both u, and
u— are (finite) positive measures on (X, F).

Problem 10.20 (Hahn—Jordan decomposition). Prove Theorem 10.19. Hint: Construct the
“maximal” set P € F for which u(P) > 0. Define

us(E) ;= u(ENP) and p_(E) := w(ENP) for all measurable E € F.

The decomposition is essentially unique in the sense that any other maximal positive
set P’ € F has the property that u(PAP’) = 0.

With this fact at hand, we can define the integral with respect to a signed measure
w. For all h € Cp(X; R),

/X hdp = p(h) = e (h) — p(h),

where . are the positive and negative parts of the signed measure u provided by the
Hahn-Jordan decomposition. Since the decomposition is unique up to negligible sets,
the integral is well defined.

It is also easy to check that the integral with respect to a signed measure y €
M; (X; R) is a linear function of the integrand:

ulag+ph) =au(g)+pu(h) foralla,Bf e Randg,h e Cp(X;R).
Dually, for a function h € Cp(X; R),
(ap+ Bv)(h) =au(h)+Pv(h) foralla,f € Rand u, v e M;(X;R).

You should verify that this statement is correct.
In other words, we can define a duality pairing:

where p € M;(X; R) is a signed measure;

(o by o= p(h) = /X hdp

where h € C(X; R) is a function.

For each signed measure, {u, -) is a linear functional on functions. For each function,
(-, h) is a linear functional on signed measures.

Aside: This presentation describes an algebraic duality of linear spaces. To extend
to a topological duality, we would need to equip the spaces with a notion of
convergence.

Perspective

We now have a more complete appreciation for the idea that a moment is a linear
functional of the law of a random variable. Indeed, with our new notation, a moment
takes the form (-, h) for a function /. We have also seen that this construction is dual
to the fact that an integral with respect to a (signed) measure u is a linear functional
(i, -) that acts on functions. Both of these perspectives are fundamental.

First, for a fixed positive measure 1, we can use the integral with respect to the
measure u to define a distance on p-integrable functions g, h € L; (u). For example,

lg = il = /R g - hld.

As before, we warn the reader that
this is a pseudonorm, not a norm.
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In the next lecture, we will generalize this idea to define other kinds of distances
between functions.

Second, by considering an appropriate class of test functions &, we can also use
integrals with respect to test functions to define a distance between signed measures
W, v € My. This requires some work, and we will take up this challenge in Lecture 17.

The alert reader may wonder why we have restricted our attention to the class Cj
of bounded functions, even though the definition of a moment explicitly allows more
general functions. The simple reason is that we need h € C, to define (i, h) for every
signed measure u € M.

If we consider test functions & from a larger class, then we must restrict our
attention to a smaller family of signed measures. This is precisely the point of the
discussion in this lecture. If the test function h grows like |x|” as |x| — oo, then the
associated moment / h duy is finite when the tail probability ux{|x| > t} decays at
least as fast as |#|~P. In other words, test functions that grow are paired with measures
that decay at infinity at a complementary rate.

Problems

Exercise 10.21 (Normal tails). It is useful to have simple and accurate approximations for
the upper tail of the normal random variable. Let Z ~ NorMAL(O, 1).

1. Show that P{Z > ¢} < %e‘tz/z for t > 0. Hint: Write the left-hand side as an
integral. Maximize the difference between the left-hand side and right-hand
side using calculus.

2. Show that P{Z > ¢} < #ﬁe‘tz/ 2 for r > 0. Hint: Write the left-hand side as

an integral, and introduce the extra factor 1 A .

Exercise 10.22 (Gaussian IBP). This innocuous exercise is very important for some parts
of probability theory. Let Z ~ NORMAL(0, 02).

1. Let f : R — R be a bounded function with a bounded, continuous derivative.
Prove the Gaussian integration by parts formula:

E[Zf(2)] = o* - E[f'(2)]. (10.5)

Hint: This is really just ordinary integration by parts from calculus.

2. (*) Extend the formula (10.5) to all f with f’ € Ly(y).

3. For p € N, evaluate E[Z?"] = E[Z - Z?V~!] by iterative application of Gaussian
integration by parts.

4. Deduce that (E |Z|P)/P < Const- o/pforallevenp = 2,4,6,.... Hint: Stirling.

5. (*) Extend the bound in the last part to all p > 0. Hint: Use the fact that
homogeneous moments are increasing (Theorem 11.4).

Problem 10.23 (Reconstruction). If we collect enough moment information, then we can
sometimes determine the distribution of a random variable completely.

1. Let X be a real random variable that takes values in {0, 1, 2, ..., n}. Suppose that
we know E XP? for p = 1, 2,..., n. Explain how to reconstruct the distribution of
X. Hint: A moment is a linear functional of the law ux. When is a Vandermonde
matrix nonsingular?

2. Continue with the assumptions from the previous part. Define the moment
generating function my (6) := E e%X for 6 € R. Explain how to reconstruct the
distribution of X from the function mix. Hint: Look at the derivatives at zero!
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Exercise 10.24 (Moment growth and tails). The rate of tail decay can also be captured
by the growth of polynomial moments. Here is an important example that arises in
high-dimensional probability and geometry.

1. Let X be a real random variable whose homogeneous moments grow at a rate no
faster than the square root. That is, assume there is a constant C; > 0 for which

(E|X|P)YP < C1/p foreach p > 0.

Develop a bound for P {|X| > ¢} using Markov’s inequality with the best choice
of the power p.

2. Conversely, suppose that X is a real random variable whose tail probability
satisfies the bound

P{X|>t}<Cy- e~ forallt > 0.

The constants Cy, c3 > 0 do not depend on #, but will depend on X. Using
integration by parts, prove that the homogeneous moments of | X| satisfy the
bound in (a). Hint: Look up Euler’s integral for the gamma function, and make a
change of variables.

3. Explain why the random variables in (a)-(b) are called subgaussian. Give an
example of a subgaussian random variable that is not a Gaussian (or a constant).

4. (¥) Show that the equivalent conditions in (a) and (b) are also equivalent to a
bound on the mgf:

m|X|(0) = |Ee9|X‘ < CS . eC4,92'

The constants Cs, C4 > 0 are independent of 6, but depend on X.
5. (*) Repeat parts (1) and (2) under the alternative assumption that

(E|X|P)}P < Cp for each p > 0.

These random variables are called subexponential. What is the analog of (4) in
this case?

Notes

In the literature, there is some inconsistency in the definition of the term “moment”,
and we have opted for the most expansive definition. The definition of the term
“tail” also varies somewhat, but the general idea is to capture the probability that a
random variable takes large or small values. The material on Markov’s inequality and
integration by parts is standard fare for a probability course. The discussion of duality
between measures and functions is adapted from the functional analysis literature; for
example, see Rudin [Rudg1].

The term “moment” appears to derive from a 1565 Latin translation of Archimedes
by Federico Commandino; see Figure 10.5. Commandino writes, “The center of gravity
of each solid figure is that point within it, about which, on all sides, parts of equal
moment stand.” Moment is being used in the sense of importance or “momentousness”.
Jeremy Bernstein tracked down this etymology while preparing notes for the 2019
implementation of this class.
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Figure 10.5 (Moment: Etymology). The term “moment” originates from Federico
Commandino’s 1565 book Liber de centro gravitatis solidorum. The sentence of
interest is “Centrum gravitatis ... momentorum consistunt.”
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\ 11. L, Spaces

“My reputation is far bigger than my sales. . . I was talking to Lou Reed the other day,
and he said that the first Velvet Underground record sold only 30,000 copies in its
first five years. Yet, that was an enormously important record for so many people. I
think everyone who bought one of those 30,000 copies started a band! So I console
myself in thinking that some things generate their rewards in second-hand ways.”

—Brian Eno, qtd. in “Lots of aura, no air play”
by Kristine McKenna, Los Angeles Times, 23 May 1982

In the last lecture, we saw that the polynomial moments of a random variable are
closely related to the decay of tail probabilities. This observation leads us to define the
space L, which consists of all random variables whose pth moment is finite.

These spaces play a central role in probability theory. We have already encountered
the L; space of integrable random variables. As we will see in the next lecture, the
L, space is very important because it allows us to place the notions of variance and
covariance in an appropriate context. Other L, spaces also arise from time to time,
and it is valuable to understand their properties all at once.

To begin our study, we will use Jensen’s inequality repeatedly to derive some basic
inequalities that are used to understand the structure of the L, spaces. Afterward, we
will develop the a notion of convergence in L,, and we will argue that L, spaces are
complete.

L, spaces

In the last lecture, we proved that polynomial moments are related to the decay of tail
probabilities. Let X be a real random variable, and let p > 0.

e If the polynomial moment [E |X|P < +oo, then the tail probability decays like
P{|X| >t} < Const-t7P forall t > 0.

e If the tail probability decays like P {|X| > ¢} < Const-¢~”, then the polynomial
moment [ |X |7 < +cowhen 0 < g < p.

In this section, we study the class of random variables whose pth moment is finite.

The space of p-integrable random variables
We begin by carving out some collections of random variables.

Definition 11.1 (L, space). For p > 0, the space L, := L,(P) := L,(Q, %, P) is

L, := {X : Q — R is a random variable with E |X|V < +co}.

Agenda:

1. L, spaces

2. Inequalities
3. Convergence
4. Completeness

Figure 11.1 (An LP space).
This is the first Velvet Un-
derground record.
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We call L, the space of p-integrable random variables or the space of random
variables with p moments.

We have already encountered the space L;, which is now subsumed under Defi-
nition 11.1. By the considerations above, the random variables in L, have tail decay
with rate at least £ 7. Conversely, every random variable with tail decay =7 for g > p
belongs to L. The most basic fact is that L, is a linear space.

Proposition 11.2 (L, isa linear space). For any probability space (€2, %, P) and for all p > 0,
the set L, (€2, %, P) becomes a linear space with the standard scalar multiplication and
addition of functions.

Proof. Let X,Y € Ly. Fora € R, it is clear that aX € Ly because
ElaX|? =|a| - E|X|P < +co.
Now, to verify that the sum X +Y € L, we first calculate that
X + Y|P < (2max{|X]|, |Y|})? = 2” max{|X|?, [Y|P} < 27 - (|IX|P +|Y|P).
This inequality holds pointwise. Using linearity, we take the expectation:
EIX+Y|P <2 (E|X|P+E|Y|P) < +o0.

Thus, L, is stable under scalar multiplication and sums. It is a linear space. [ |
Aside: Many authors write L? for the space of p-integrable random variables, with
the power p in the superscript. Some mathematicians (including the ones who
taught me) reserve superscripts in function spaces for differentiability properties,

while subscripts reflect integrability properties. These notes follow the latter
convention.

11.1.2 Homogeneous moments
It is productive to introduce a measure of the size of a random variable that belongs
to L. To do so, we will adjust the pth moment to obtain a positively homogeneous
functional.

Definition 11.3 (pth homogeneous moment). Let X be a real random variable. The
Warning: In spite of the notation,

pth homogeneous moment is l|- Il is only a pseudonorm. See

Corollary 11.13. "
X1l = 11X Iy, = (EX|")P. (11.1)

For every real random variable X, this functional is positively homogeneous:
laX]lp = la| - [|X||, forall @€ R. (11.2)

This result follows immediately from the linearity of expectation. We will collect some
less trivial properties of the homogeneous moments and then present an omnibus result
about the functional ||-|,.

11.1.3  Monotonicity of homogeneous moments

Our next result describes the relationships among the homogeneous moments of
different orders.
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Theorem 11.4 (Homogeneous moments: Monotonicity). For 0 < p < ¢, we have the

relation

Warning: The order of the norms
is reverse to the order of
inclusions. See Warning 11.22 for
additional context. n

IX|l, < |IX|l; for each random variable X.
In particular, for p < g, we have L; C L.

In words, there are fewer random variables with tails that decay quickly than
random variables with tails that decay slowly.

Proof. This result a direct consequence of Jensen’s inequality. When 0 < p < g, the
ratio r := ¢q/p > 1. Recall that the function ¢(t) := |t|” is convex for r > 1 and
bounded below by zero. Theorem 9.26 implies that

E|X|9=E [|X|P~(6//p)] > ([E |X|p)q/p_

This relation is valid, even when the left-hand side or both sides are infinite. Take the
1/q power to see that || X||; > [IX]|,- [

11.1.4  Holder’s inequality

To better understand the behavior of the homogeneous moments, let us develop a
bound for the homogeneous moments of a product.

Theorem 11.5 (Hélder’s inequality). Fix a probability space (Q,F,P). Consider
positive numbers p, ¢ > 1 with p~! + g~* = 1. For real random variables X € Lp
and Y € Lg, the product XY € Ly, and

XYy < [1X]lp - Y llg < +eo. (11.3)

Holder’s inequality expresses a duality relation between L, and L for dual indices
1/p+1/q = 1. We will give a standard proof based on a sequence of numerical
inequalities.

Proof. We recall the GM-AM inequality from (9.11):

'y " <1x+(1-1)y forte[0,1]andx,y > 0.
This result is an instant consequence of the fact that exp(-) is a convex function. By
the change of variables T = 1/p and 1 — 7 = 1/q, we arrive at Young’s inequality:

1 1
|xy| < E - x|P + a |yl forx,y € R. (11.4)

Holder’s inequality follows easily from this statement.
The key idea is to rescale the random variables X and Y to make full use of Young’s
inequality (11.4). Indeed, we have the pointwise inequality
Xyl 1 X 1oy

IXIpIY g ~ P XI5 a IYNE

Since both sides are positive, we may take the expectation without further justification:

LoxpP 1 |y
P IXll, 4 Yy
1 EIXPP 1 EY)

p XL vl

|XY| }
| <
IX11p 1Y [lg
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We have applied linearity of expectation and the definition (11.1) of the pth homoge-
neous moment. By assumption, 1/p + 1/g = 1. To complete the argument, we invoke
linearity of expectation on the left-hand side of the previous display, and we multiply
through by || X||,[|Y[l4- ]
Exercise 11.6 (Holder’s equality). Under what conditions does (11.3) hold with equality?
Exercise 11.7 (Geometric means: Concavity). Let X, Y be positive random variables. For
each 7 € [0, 1], show that

E[X'Y'" '] < (EX)"- (EY)'™".
Deduce that (x, y) — x"y!~7 is a concave function on R, x R,. Hint: Change variables
in Holder’s inequality.
Exercise 11.8 (Moments: Log-Convexity). Derive Lyapunov’s inequality. Let X be a positive
random variable. For real parameters 0 < p < r < g < +09,

EX" < (EXP)"-(EX?)'"" where r=1p+(1-1)q.

Equivalently, the function p + log(E X?) is convex for p > 0.
(*) Deduce that the logarithm of Euler’s gamma function is convex. Hint: Consider
an exponential random variable.

Minkowski's inequality
Next, we consider how the homogeneous moments of a sum compare with the
homogeneous moments of the summands.

Theorem 11.9 (Minkowski's inequality). Fix p > 1. Let X, Y € Lp. Then
1X + Y, < [ X[l + [[Y]lp- (11.5)

In other words, the pth homogeneous moment obeys the triangle inequality when
p=1

Proof. Following Riesz, we derive Minkowski’s inequality from Holder’s inequality. The
triangle inequality for real numbers implies the pointwise inequality

X+Y/P = X+Y|- [X+Y]P L <|X| | X+Y)P L+ Y] - | X+YPL
Take the expectation to obtain
IX+Y|h <E[IX|-IX+Y/P ' +E[|Y]- X +Y[P7!].

Apply Holder’s inequality to each term on the right, noting that the exponent g =
p/(p — 1) is conjugate to the exponent p. We reach

-1 -1
IX + Y1l < IXIpIX + Y1~ + 1Yl IX + Y11
This statement readily implies Minkowski’s inequality (11.5). [ |

Exercise 11.10 (Triangle equality). Under what conditions does (11.5) hold with equality?

Exercise 11.11 (Lower triangle inequality). Fix p > 1. Let X, Y € L,,. Verify that

IX+Yllp = [I1X1lp = Y1l

Warning: This result does not
hold for 0 < p < 1.
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Problem 11.12 (*The quasi-triangle inequality). For 0 < p < 1, the homogeneous moment
|||l does not satisfy the triangle inequality. Nevertheless, it does satisfy a quasi-triangle
inequality:

IX + Y, < 29771 (|IX ||, + 1Y []).-

Verify this statement. Hint: Show that |x + y|” < |x|P + |y|? for x,y € R.

The L, pseudonorm

We can summarize our discussion about the homogeneous moments for p > 1 in the
following result.

Corollary 11.13 (L, pseudonorm). Fix p > 1. Then ||-||, : L, — R, satisfies the properties
of a pseudonorm, (1)—(3) below, for all random variables X, Y € L.

1. Positive semidefinite: || X||, > 0 and ||0]|, = 0.

2. Positive homogeneous: ||aX||, = |a| - ||X]|, for all @ € R.
3. Triangle inequality: || X + Y[, < [ X]||, + [|Y]p.

4. Almost positive: If || X[, = 0, then X = 0 almost surely.

Proof. The first and last statements are a direct consequence of expectation properties
(Theorem 9.7). The second statement appears in (11.2). The third statement is
Minkowski’s inequality (Theorem 11.9). [ |

As usual, the pseudonorm induces a pseudometric on random variables in L;,. For
X,Y €Ly, we can consider the distance

dist, (X,Y) := [|X = Y]|,.

This function satisfies most of the properties (positivity, symmetry, triangle inequality)
of a metric. On the other hand, dist, (X, Y) = 0 only implies that X = Y almost surely.

As we will discuss in Section 11.2, the L, pseudonorm allows us to make the linear
space L, into a pseudo-Banach space.

L. spaces
We supplement our collection of L, (Q, %, P) with one more important example.

Definition 11.14 (Essential supremum; essentially bounded). For a real random variable
X, define the essential supremum:

esssup(X) :=inf{M € R : X < M almost surely}.

A random variable with ess sup(|X|) < +co is said to be essentially bounded.

Definition 11.15 (L, space; pseudonorm). The space Lo 1= Loo(P) 1= Lo (Q, F, P)
consists of random variables that are essentially bounded:

Lo :={X : Q — R is a random variable with ess sup(|X|) < +co}.
For a real random variable X, we write

1Xlleo := [IX]|L, := esssup(|X]).
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Thus, Lo = {X : || X||co < +00}.

Exercise 11.16 (L is a linear space). By direct argument, confirm that L, is a linear space
of real random variables.

The next problem explains the notation and the relationship between L, and the
other L, spaces.

Problem 11.17 (Essential supremum). Prove that the essential supremum of the absolute

value is the limit of the L, pseudonorms:

X[l = lim X1l

Deduce that ||||e : Lo — R is a pseudonorm on the linear space Le,.

The space L, is conjugate to the space L;. This is the extreme case of Holder’s
inequality.
Exercise 11.18 (Hélder'’s inequality). For random variables X € L; and Y € L, show that

XY €Ly, and
XYl < [ X[V ]|

*More L, spaces

There are some other spaces of random variables that are related to L, spaces. You
may encounter these from time to time, but they are less important in practice. First,
we introduce weak L, spaces, which are defined in terms of tail decay.

Definition 1119 (Weak L, space). For p > 0, the weak L, space L« := Ly oo (Q, F, P)
consists of the random variables X : Q — R whose tail probability decays at the
rate tP.

Lp,co := {X tsupso P P {|X| > 1} < +oo}.

Exercise 11.20 (Weak L), spaces). Fix p > 0. Show thatL, C L, C L, forall g < p.

Aside: You will sometimes encounter the space Ly := Lo(Q, F, ), which consists
of all random variables on the probability space (2, %, %). The notation is
problematic, and it is probably best avoided. In particular, there seems to be a
range of opinions about what topology L, carries.

*Probability versus functional analysis: Two warnings

If you have taken a functional analysis course, you have encountered variants of the L,
spaces that we have discussed. There are some intrinsic differences in these definitions
that can cause dizziness, confusion, and blood loss. Let us present two warnings that
describe the main differences between our approach to L, spaces and the functional
analysis approach.

Warning 11.21 (Functions versus equivalence classes). In functional analysis, it is common
to identify functions that are equal almost everywhere as the same function. In the
present context, here is the analogous approach. Define an equivalence class of
real random variables:

[X] :={Y : Q — R is a random variable : Y = X almost surely}.

The condition that defines the space
does not satisfy the triangle
inequality, so it is not a pseudonorm.
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We can collect the equivalence classes of p-integrable random variables:
Zp = {[X] : E[X|P < +00}.
The collection Zyisa linear space (formed as a quotient of L,). We can define
IXTHp = EIXI)YP for [X] € %,

On <%,,, the function ||-||, is actually a norm, rather than a pseudonorm.

Many probabilists prefer to treat random variables as ordinary functions (not
equivalence classes). We will do so in this class, in large part because functions are
more concrete objects for us to think about. This choice has some consequences.
For instance, we have to live with linear spaces equipped with pseudonorms, rather
than norms. Furthermore, many statements in probability have to be understood
as holding almost surely. .

Warning 11.22 (Inclusion of L, spaces). In functional analysis, we encounter sequence
spaces and function spaces that superficially resemble our L, spaces. For p > 0, we
may define

€,(N) := {a : N - R with Zi:l lai|P < +oo};

L,(R):={f:R—> [Rwith/ |f1” dA < +oo}.
R

In words, the sequence space ¢,,(N) contains sequences that are p-integrable with
respect to the counting measure. The function space L,(R) contains real functions
that are p-integrable with respect to the Lebesgue measure. Neither the counting
measure nor the Lebesgue measure is a probability measure, so these two spaces
have a different flavor from the L, spaces that arise in probability.

Indeed, the sequence spaces satisfy an inclusion that is reverse to the one in
Theorem 11.4:

0<p<q implies £,(N) C €4(N).

The function spaces satisfy no containments at all: L, (R) ¢ L;(R) forany p, g > 0.
Be careful! .

1.2 Convergence in L, spaces

1.21

For p > 1, the L, pseudonorm allows us to equip L, with a notion of convergence,
just as we do in a normed space. In this section, we briefly discuss what this type of
convergence means. Then we turn to the problem of showing that L, is complete:
every Cauchy sequence converges.

Convergence

We begin with the definition of convergence in L. From now on, we focus on the case
p € [1, o] so that we can benefit from the pseudonorm structure.

Definition 11.23 (L, convergence). Fix p € [1, c0]. A sequence (X; € L, : j € N) of
random variables converges in L, when there is a random variable X € L, for which

|X; = X]|l, >0 asi— oo.
j p
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We may also write X; — X in L.

By monotonicity (Theorem 11.4), it is easy to see that
IX; — X|l, — 0 implies [X;-X]|l; — 0 forallg < p.

In other words, convergence in L;, implies convergence in L, for all ¢ < p. Convergence
in L, is sometimes called convergence of pth moments.

Activity 11.24 (Convergence in L,). What does convergence in L, mean? Draw some
pictures to illustrate the concept. Hint: Recall that moments control tail decay and vice
versa. .

Unfortunately, convergence in L, is incomparable with the notions of pointwise
convergence and almost-sure convergence.

Problem 11.25 (*Convergence failures). Let us consider the “universal” probability space

(10,11, %([0,1]), 4).

1. Construct a sequence (X; : j € N) of random variables that converges almost
surely but does not converge in L;.

2. Construct a sequence (Y; : j € N) of random variables that converges in L; but
does not converge almost surely.

Recall that pointwise convergence always implies almost-sure convergence.

Warning 11.26 (L, limits are not necessarily unique). In contrast to the situation in
functional analysis, the limit of a convergent sequence in L, may not be unique.
Indeed, it is possible that X; — Y and X; — Y in L,, where the limits Y # Y".
Nevertheless, by the triangle inequality, we can quickly verify that the two limits
satisfy

Iy - Y[, =o.

As a consequence, Y = Y’ almost surely. .

Cauchy sequences

Next, we introduce a class of sequences of random variables with the property that
the tail of the sequence eventually enters an arbitrarily small ball and remains there.
These sequences are candidates for convergent sequences, but the definition does not
require us to identify the actual limit.

Definition 11.27 (L, Cauchy sequence). Fix p € [1, o0]. Let (X : j € N) be a sequence
of random variables in L,,. We say that the sequence is Cauchy when

sup; j>n 1Xi = Xjllp >0 as N — oo.

See Figure 11.2 for an illustration.

It is common to say that a Cauchy sequence “converges inside itself” or that it
“wants to converge.” The next exercise justifies the language.

Exercise 11.28 (Convergent sequences are Cauchy). Let (X; : j € N) be a sequence of
random variables in L, that converges to a limit X € L,. That is, || X; — X||, — 0.
Show that (Xj) is a Cauchy sequence.
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Figure 11.2 (Cauchy sequence). For each ¢ > 0, a Cauchy sequence (X; : j € N) in Lp
eventually enters an L, ball of radius € about an element X; where k = k(¢). The
entire tail of the sequence (X; : i > k) remains in that ball.

11.2.3 Completeness

In a general (pseudo)normed space, it is not always the case that a Cauchy sequence
converges. Instead, it is possible for the sequence to “slip through the cracks,”
approaching a limit that does not belong to the space. For example, the decimal
approximations 1, 1.4, 1.41, 1.414, ... are rational numbers that approach \/5 This
Cauchy sequence does not converge in Q, but it does converge in R.

This observation motivates the next definition, which is a standard concept from
functional analysis.

Definition 11.29 (Completeness). We say that a (pseudo)normed linear space is
complete when every Cauchy sequence converges to a limit in the space. A complete
(pseudo)normed space is called a (pseudo-)Banach space.

“You complete me.”

Theorem 11.30 (L, is complete). Fix p € [1,00]. Let (X; € L, : j € N) be a Cauchy
sequence in L,,. Then there is a random variable Y € L,, for which || X; — Y|, — 0. —Jerry Maguire (1991)
In other words, L, is complete.

*Proof. We will extract a subsequence (Xk, : n € N) from the original sequence that
converges within itself so fast that it is easy to produce a limit X;, — Y in L,. Then
we will demonstrate that the entire sequence converges to this limit: X; — Y in L.
Since (X : j € N) is Cauchy, we can select an increasing sequence (kj : n € N) of
indices for which
IX; — Xjll, <27" foralli,j > ky.

Then
E [ Xk — Xico|l = 1 Xkps = Xiey 1 < 1 Xir — Xk llp < 277

By Tonelli’s theorem for series (Exercise 5.39),

E [anl | Xipn = an|] = Zn:l E | Xk,,, — Xk,| < +oo.
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In particular, the series on the left-hand side converges almost surely because every
integrable (positive) random variable is almost surely finite (Exercise 9.42). As a
consequence,

Z:l (Xk,,, — Xk,) converges (absolutely) almost surely.

The sum telescopes, and we see that lim,_,., Xi, (@) exists for almost every w € Q.
Define the random variable

Y(w) :=limsup,,_,, Xk, (w) foreach w € Q.

Indeed, the limit superior yields a measurable function. We recognize that X, — Y
almost surely because the limit coincides with the limit superior whenever the limit
exists.

We have now produced a tentative limit Y for the original sequence (X; : j € N).
Our next task is to verify that the random variable Y belongs to L, and is indeed the
limit of the original sequence. By construction,

E|X; — Xk, P = 1X; —an||§ <27 forall j > k, and n > m.
Using Fatou’s lemma (Theorem 9.11), for fixed j > k;;,

27"P > liminf, . E |Xj — X, |P
> E [liminf,—e |Xj — X, [’] = E|X; - Y|P

Indeed, Xi, — Y almost surely, and the expectation is insensitive to the negligible set
where the sequence does not converge. This calculation ensures that X; — Y € L, for
each j € N. From Minkowski’s inequality, we deduce that Y € L,. Finally, we observe
that

limsup;_,., | X; = Y|, <27™.

Take m — oo to confirm that X; — Y in Ly, [ ]

Exercise 11.31 (*L, is completefor0 < p < 1.). Extend Theorem 11.30tothecase0 < p < 1.
Hint: You only need to use the quasi-triangle inequality in place of the triangle inequality.

Problem 11.32 (Closure and completeness). A linear subspace K C Ly is closed in Ly if it
contains all its limit points. More precisely, suppose (X; € K : i € N) is a sequence in
K that converges in L), to a limit point X € L,,. Then K is closed if and only if the limit
X € K. Prove that a subspace K of L, is closed if and only if the subspace K is complete.
Hint: You need to use the fact that convergent sequences are Cauchy and the theorem
that L, itself is complete.

Problems

Exercise 11.33 (Moments: Interpolation). Consider real parameters 1 < p < r < g < +oo.
Derive Littlewood’s inequality:
- 1 6 1-06
X1 < XIS X157 where — ==+ ==
rp q

In other words, a homogeneous moment whose order r lies between p and g is
bounded by an appropriate geometric mean of the pth and gth homogeneous moments.
The weight 6 in the geometric mean is computed by writing 1/r as a weighted average
of 1/p and 1/q.
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Problem 11.34 (L, pseudonorm: Duality). For p > 1, we can find an alternative “dual”
representation for the L, pseudonorm. Prove that

1 1
IX1l, = sup{E[XY] : [|Y]l; <1} where l; + 5 =1.

Hint: One direction follows from Hoélder’s inequality. The other direction requires the
selection of an appropriate random variable Y that depends on X.

Problem 11.35 (Holder: Beyond two factors). Holder’s inequality can be extended to
products of more than two random variables.

1. Consider a family (Xj, X5, ..., X;;) of real random variables. Fix numbers p; > 1
with the property that p;* +--- + p,! = 1. Establish that

1X1Xz - - - Xnlly < 1Xallp, - [1Xallp, - - (1 Xnllp, -

Hint: You can prove this quickly by induction.
2. Deduce that the weighted geometric mean is a concave function. For positive
numbers 7; > 0 with )} | 7; = 1, show that

T1 ,.T2 T
(X1, X250 00y Xp) 2 X X7 Xy

is a concave function on the set RY of positive vectors. Hint: Change variables
in Holder’s inequality, and interpret the statement as an invocation of Jensen’s
inequality.

Problem 11.36 (**Uniform smoothness and convexity). There are some beautiful geometric
inequalities that hold for random variables in L, spaces. These results are related to
the familiar parallelogram law in Euclidean space (Exercise 12.10), but they reflect the
fact that L, balls have varying curvature. The properties encoded by these results are
called uniform smoothness (p > 2) and uniform convexity (1 < p < 2). They play an
important role in more advanced studies of martingales.

1. For p > 2, prove the Gross’s two-point inequality: For all x,y € R,
2/
[3-(x+ylP+lx-yP)|"P <P+ (p-1)-y
Show that the inequality is reversed for 1 < p < 2. Hint: Define the function
u(t) =3 (Ix+VeylP +|x - Vey|P) fort e [0,1].

To control u(1) — u(0), develop a bound on the derivative u’ (). Exploit the
fact that ¢ > tP~! is convex for p > 2.
2. For p > 2, extend this result to real random variables X, Y € Lp:

2
1L (X + Y15 + 11X = YIE) |7 < IXI2 + (p - 1) - VI3

Show that the inequality is reversed for 1 < p < 2.
3. For p > 2, use Jensen’s inequality to derive that

LI +YI3+1X - YI3) < IXIE+(p-1) - V]2

Draw a picture to illustrate what this inequality means.
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Notes

Our development of L, spaces is inspired by Williams [Wilg1, Chap. 6]; in particular,
we have used his proof of Theorem 11.30.

For more results on L, spaces, see the books of Garling [Garo7], Lieb & Loss [LLo1],
and Steele [Steos]. The proof strategy for the uniform smoothness inequality is drawn
from [Tro22].
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12.1

\ 12. L, Spaces & Orthogonality

“Scarecrow: The sum of the square roots of any two sides of an isosceles triangle is
equal to the square root of the remaining side. Oh joy, rapture! I've got a brain!
How can I ever thank you enough?

“Wizard: Well, you can’t.”
—The Wizard of Oz, 1939

In the last lecture, we introduced the scale of L, (Q; F; P) spaces associated with a
probability space (where p > 0). These are linear spaces containing random variables
that have finite pth absolute polynomial moments. We saw that these spaces decrease
in size as the power p increases.

For p > 1, the L, space is equipped with a pseudonorm ||-||,. The pseudonorm
induces a notion of convergence, and we saw that each L, space is complete. That is,
every Cauchy sequence in L, converges to a limit in Lj,.

In this lecture, we undertake a deeper investigation of the space L,. In addition
to all the properties outlined above, the L, space is equipped with a pseudo-inner
product. This structure allows us to define orthogonal random variables, and it is the
right context for introducing the variance and covariance.

The inner-product geometry also permits us to define the orthogonal projection of
a random variable onto a subspace. Later, we will see that the orthogonal projection
serves as the foundation for the concept of conditional expectation, which is one of the
most important ideas in probability theory.

Square-integrable random variables

To begin, let us set the stage with the formal definitions, which specialize the more
general notions from Lecture 11.

Definition 12.1 (Ly space). The space Ly := Ly (P) := Ly(Q, F, P) is defined as
Ly := {X : Q — R is a random variable with E |X|? < +oco}.
For a random variable X € L, the L, pseudonorm is defined as
IX Il := 11Xl = (E[X[*)">.

We refer to Ly as the space of square-integrable random variables.

According to Proposition 11.2, the space L is a linear space. Corollary 11.13
ensures that ||-||2 is a pseudonorm on Ly; in particular, it satisfies the triangle inequality.
Theorem 11.30 states that L, is complete: every Cauchy sequence in L, converges to a
random variable in L,.

Agenda:

Lo spaces
Cauchy-Schwarz
Inner-product geometry
Covariance

Orthogonal projection

VAWM -
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12.2  The Cauchy-Schwarz inequality

The most basic fact about the space L, is an inequality that gives a bound for the = “May the Schwartz be with you!”
expectation of a product of square-integrable random variables. This result specializes
Holder’s inequality (Theorem 11.5). Because of its importance, we will give an
independent proof.

—Spaceballs (1987)

Theorem 12.2 (Cauchy—Schwarz). For square-integrable, real random variables X, Y € . ) .

L, th d XY € L. Furth Warning: This “Schwarz” is

2, the product € L;. Furthermore, spelled without a “t”!
IE[XY]] < E|XY[ = |IXY]1 < [ X[21IY]]2 (12.1)

Proof. This argument is due to Schwarz. For any parameter ¢ € R, observe that
0<E(X+Y)>=¢&-(EX?) +2¢-E[XY] + (EY?).

The left-hand inequality holds because the expectation of a positive random variable is
positive. The expectation is finite because L is a linear space. To obtain the equality,
we expand the square and invoke the linearity of expectation.

According to the quadratic formula, a quadratic polynomial &2a + 2¢b + ¢ > 0 for
all ¢ € R if and only if the discriminant (2b)? — 4ac < 0. That is,

(E[XY])* < (EX?) - (EY?)
To obtain the (stricter) result with absolute values, simply make the change of variables
X+ |X|and Y — [|Y]. [ |

Exercise 12.3 (Cauchy—Schwarz: Equality). Suppose that the Cauchy-Schwarz inequality
holds with equality:
IELXY]] = [IXl2[1Y[|2-

What can we deduce about the relationship between X and Y? Hint: Under what
circumstances is E(¢X +Y)? > 0 for all ¢ € R?

Exercise 12.4 (L, triangle inequality). Use the Cauchy-Schwarz inequality (Theorem 12.2)
to verify that
IX+Y[2 < [IX[2+ 1Yl forX,Y € L.

Hint: Specialize the proof of Minkowski’s inequality (Theorem 11.9).

12.3  The L, pseudo-inner product

The Cauchy-Schwarz inequality (Theorem 12.2) allows us to introduce an inner-product
geometry on the space of square-integrable random variables.

Definition 12.5 (Lp pseudo-inner product). For square-integrable, real random variables
X,Y € L,, define
X, Y):=(X, Y), =E[XY].

In particular, (X, X) = || X]|2.

The Cauchy-Schwarz inequality ensures that the pairing (-, ) : Ly X Ly — R is
defined for all square-integrable random variables.

Exercise 12.6 (L pseudo-inner product: Properties). Show that the pairing (-, -) on Ly
meets the definition of a pseudo-inner product, (1)-(3) below. Let X,Y, Z € L,.
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1. Positive semidefinite: (X, X) > 0.
2. Symmetric: (X, Y) = (Y, X).
3. Bilinear: For all real scalars a, 8 € R,

(aX +BY, Z) = a(X, Z) + BY, Z);
(Z, aX + BY) = a(Z, X) + B{Z, Y).

4. Almost positive: If (X, X) = 0, then X = 0 almost surely.

Exercise 12.6 tells us that (-, -) behaves almost exactly like the inner products
that we encounter in linear algebra and functional analysis. The only caveat is that
(X, X) =0 only allows us to conclude that X = 0 almost surely.

Aside from the latter point, we can now think about random variables in L,
geometrically, exploiting intuitions we have already developed. Indeed, the pseudo-
inner product gives us a notion of the “alignment” between two random variables. This
brings us to the next definition.

Definition 12.7 (Orthogonality). Let X,Y € L,. If (X, Y') = 0, then we say that X and
Y are orthogonal random variables. We may write X L Y to denote orthogonality.

Example 12.8 (Indicators: Orthogonality). Suppose that A and B are mutually exclusive
events. Then the indicator random variables are orthogonal:

E[1ale] = E[1g] = 0.
More generally, if A N B = E, then the indicators 14 and 15 are orthogonal if and only
if E is a negligible event: P(E) = 0. .

Geometrically, orthogonal random variables behave like vectors at right angles to
each other. In particular, they enjoy a Pythagorean relation.

Exercise 12.9 (L, Pythagorean theorem). Let X,Y € L,. Then
(X, Y)=0 implies [IX+YI[3=[IX]I3+[YI3.

Hint: Use bilinearity of the pseudo-inner product.

Even without orthogonality, we have an identity for the squared lengths of two
random variables.

Exercise 12.10 (L, parallelogram law). Let X,Y € L. Then
IX + Y15 + 11X = Y5 = 20113 + 2V [13.

In other words, the total squared length of the diagonals of a parallelogram equals the
total squared length of the four sides.

The Pythagorean relation and the parallelogram law depend crucially on the fact
that we are using the L, pseudonorm to measure magnitudes. These results fail in
other L, spaces (p # 2), although there are some very interesting substitutes (see
Problem 11.36).

We have already seen that L, is complete (Theorem 11.30), so the pseudo-inner
product structure makes L, into a pseudo-Hilbert space.

Warning: Orthogonality random

variables need not be
“independent”.

Figure 12.1 (Pythagorean
relation).

Figure 12.2 (Parallelogram
law).
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Covariance and variance

The space L, of square-integrable random variables supports another pseudo-inner
product structure that plays a special role in probability theory. One reason that two
random variables may have a large pseudo-inner product is that they both have large
expectations. It can be valuable to subtract the expectations before asking how closely
the random variables are aligned with each other.

Definition 12.11 (Covariance). Let X,Y € L,. Define the covariance
Cov(X,Y) =(X-EX,Y-EY)=E[XY] - (EX)(EY).

If Cov(X,Y) = 0, then we say that X and Y are uncorrelated.

Example 12.12 (Indicators: Covariance). For two events A and B, the covariance of the
indicators satisfies
Cov(1a,1g) = E[1ang] — E[1a] E[15]
=P(ANB)—-P(A) - P(B).

If A and B are mutually exclusive events, then the covariance is always negative. If
A C B, then the covariance is always positive. .

Exercise 12.13 (Covariance pseudo-inner product). Show that Cov defines a pseudo-inner
product on Ly. That is, Cov is positive semidefinite, symmetric, and bilinear. What can
we conclude about X when Cov(X, X) = 0?

The pseudonorm associated with the covariance form should be familiar to you.

Definition 12.14 (Variance). Let X € L. The variance of X is defined as

Var[X] := Cov(X, X).

Exercise 12.15 (Variance). Check that the variance satisfies the familiar definitions:
Var[X] = E[(X - EX)?] = EX? - (EX)%

Confirm that the square-root of the variance is a pseudonorm on L,. Establish the
variational formulation:

Var[X] = infaer E[(X — @)?] = infger [|X — all3. (12.2)

In words, the variance computes the expected squared deviation of a random
variable X from its average value EX. So the variance is a summary quantity
that describes how much a random variable fluctuates around its mean value. The
relation (12.2) gives us an important new insight about the expectation. Indeed, E X
is the constant (random variable) that best approximates the random variable X with
respect to the Ly pseudo-norm. This innocent observation will turn out to be very
important.

Since the variance is the quadratic form induced by a bilinear form, we can
decompose the variance of a sum in terms of the covariances of the summands.

Proposition 12.16 (Variance: Pythagorean relation). Consider square-integrable real random
variables Xj, ..., X, € L,. Then

n n
Var [Zi:l Xi] = Zi:l Var[X;] + 2 leiqg Cov(X;, Xj).

Warning: Uncorrelated random
variables need not be
“independent”, which is a
stronger requirement. See
Lecture 13.
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In particular,
Cov(X;, Xj) =0wheni # j implies Var [Z?_l X,-] = Z?_l Var[X;].

In other words, the variance of a sum of mutually uncorrelated random variables equals
the sum of the variances.

Exercise 12.17 (Variance: Pythagorean relation). Verify Proposition 12.16.

A valuable feature of the Pythagorean relation (Proposition 12.16) is the relatively
weak hypothesis of mutual uncorrelation. It does not require “independence”, a much
stronger property that we will discuss in the next lecture.

Since the covariance is a pseudo-inner product, it satisfies its own Cauchy-Schwarz
relation.

Exercise 12.18 (Covariance: Cauchy—Schwarz). Let X,Y € L,. Prove the Cauchy-Schwarz
inequality for the covariance.

|Cov(X,Y)|* < Var[X] - Var[Y].

Hint: This is an immediate consequence of Theorem 12.2.

Last, we define the correlation between two random variables. This quantity
reflects whether two random variables have the same trend, opposite trends, or no
relationship on average.

Definition 12.19 (Correlation). Let X,Y € L,. The correlation between X and Y is

Cov(X,Y)
Var[X] - Var[Y]

e [-1,+1].

o(X,Y) :=

We use the convention that p(X,Y) = 0 if either Var[X] = 0 or Var[Y] = 0.

The upper and lower bounds on correlation derive from the Cauchy-Schwarz
inequality (Exercise 12.18) for the covariance.

Activity 12.20 (Correlation). If |o(X,Y)| = 1, what can we deduce about X and Y?
Sketch pairs of random variables whose correlation is maximal (+1) and minimal (—1).
Draw a picture of two uncorrelated random variables, each with nonzero variance. =

Orthogonal projection

In Exercise 12.15, we saw that the expectation E X is the constant random variable
that is closest to X with respect to the L, pseudonorm. In this section, we generalize
this observation by showing that every (complete) linear subspace in L, contains a
random variable Y at minimal distance from X.

Theorem 12.21 (L, orthogonal projection). Let K C L, be a complete linear subspace.
For each random variable X € L,, there is a random variable Y € K with two
properties:

1. Minimal distance: || X — Y ||, = inf{||X - W] : W € K}.
2. Orthogonalerror: X —Y L Z forall Z € K.

Moreover, each of the properties (1) or (2) implies the other.

Recall that a subspace of L; is
complete if and only if it is closed
(Problem 11.32).
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Figure 12.3 (Orthogonal projection). The primal characterization (1) states that an
orthogonal projection achieves the minimal distance d from X to the subspace K. The
dual characterization (2) states that the residual vector X — Y from an orthogonal
projection is orthogonal to the subspace K.

The random variable Y € K promised by Theorem 12.21 is called (a version of)
the orthogonal projection of X onto the subspace K. In general, there may be many
versions of the orthogonal projection. Fortunately, if Y, Y’ are both versions, then
lY —=Y’|l2 = 0 so that Y = Y’ almost surely.

Modulo the latter point, Theorem 12.21 indicates that the geometry of orthogonal
projection in L, is similar to orthogonal projection in inner-product spaces you have
encountered before. See Figure 12.3.

Warning 12.22 (Completeness). We must confirm that the subspace K is complete
before we can be confident that the orthogonal projection onto K exists. In our
context, the easiest way to do so is to argue that K = L, (Q’, %', P’) for some other
probability space (Q’, F’, P’) and invoke Theorem 11.30. .

Proof of the orthogonal projection theorem

The main challenge in proving the result on orthogonal projection, Theorem 12.21, is
to find a candidate Y for an orthogonal projection of X onto the subspace K. To do so,
we construct a minimizing sequence. Then we prove that this minimizing sequence is
Cauchy, and we extract its limit.

A minimizing sequence

Define the distance d := inf{||X — W]||, : W € K} from X to the subspace K. By
definition of the infimum, there is a sequence (Y, € K : n € N) that approaches the
minimum distance from X to K. That is,

| X —Ypllo | inf{||X —-W|l: WeK}=d asn— o.
See Figure 12.4. Our first task is to prove that the minimizing sequence (Y;) has a
limit in K.

The minimizing sequence is Cauchy

Let us argue that the minimizing sequence is Cauchy. We need to obtain detailed
information about the distance ||Y; — Yj||2 for large indices i, j. Since we only have
information about the distances || X — Y;|| and || X — Yj||2, it is natural to invoke the

Warning: Orthogonal projections

are not necessarily unique!
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Figure 12.4 (Minimizing sequence). A minimizing sequence (Y1, Y5, ¥3,...) has the
property that || X — Yy ||2 approaches the infimal value d := infy ¢ || X — Y]||2.

parallelogram law (Exercise 12.10) to understand the geometry of these random
variables.

Fix indices i, j € N. Apply the parallelogram law to the random variables %(X -Y)
and %(X —Y;) to obtain

1305 =ll; = 31X =Yl + 31X = %1 - X - 305+ )

—dz2/2 —d2/2 >d?

The first two members of the right-hand side tend to d?/2 as i,j — oo because
(Y,) is a minimizing sequence. To see that the last member exceeds d?, note that
%(Y,- —Yj) € K because Y; and Y; belong to the subspace K. The number d? is the
minimum squared distance from X to any point in K. Thus,

Sup; j>nN IY; = Yill2 >0 as N — oo.

Indeed, the previous argument shows that this limit cannot be strictly positive, but it
most certainly cannot be strictly negative.

The limit of the minimizing sequence

We determine that (Y, : n € N) is a Cauchy sequence contained in the complete
subspace K. As a consequence, there is a random variable Y € K for which ||Y,, = Y| —
0 as n — oo. We must demonstrate that this random variable Y is a version of the
orthogonal projection of X onto K.

The limit achieves the minimal distance
First, let us show that Y achieves the minimum distance from X to the subspace K.
This is intuitively clear; the proof involves the triangle inequality:

IX =Yz <X =Yall2+ [|Ya = Y2 > d asn — oo

Indeed, the quantity || X — Y, || — d because (Y;,) is a minimizing sequence. The
quantity ||¥;, — Y||2 — 0 because Y is an L limit of (V;). In summary, || X — Y2 = d.

Minimal distance implies orthogonality of error
Next, we check that the residual X — Y is orthogonal to every random variable Z € K.
This requires a variational argument. We perturb Y slightly in the direction Z, and we
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note that the distance to X must increase. By a close analysis of the change in distance,
we can extract an orthogonality relation.

Fix Z € K. For each real number ¢ € R, the random variable Y + {Z € K because
K is a subspace. Since Y minimizes the distance from X to K,

IX - (Y+E2)|5 > 1X - Y5

Write the squared pseudonorms as pseudo-inner products, and use bilinearity to expand
and cancel terms. By choosing sgn(¢) = sgn({(Z, X —Y)), we arrive at the relation

=2[¢| - KZ, X = V)| + 1§17 - 11213 = o.
Divide through by |¢|, and take the limit as |£| | O to determine that |[(Z, X —Y)| = 0.

Orthogonality of residual implies minimal distance
To show that the primal and dual characterizations of the orthogonal projection
are equivalent, it remains to show that the dual characterization implies the primal.
This result uses the Pythagorean relation (Exercise 12.9) to exploit the orthogonality
between the residual and the subspace.

Suppose that Y € Kand Z L (X —Y) for all Z € K. For each random variable
W €K,

IX-WE=IX-V)+Y -WF=IX-Y3+Y -W|3> X -Y|3.

Indeed, since K is a subspace, the random variable Z := Y — W belongs to K. By
assumption, Z L X — Y. Therefore, we can apply the Pythagorean relation. The last
inequality holds because the L, pseudonorm is positive. Finally, by taking the infimum
of the last display over W € K, we realize that

inf{|| X -W]|ls: W €K} > || X =Y.
This is the primal characterization of the orthogonal projection.

Uniqueness

Finally, we must show that every version of the orthogonal projection is equal almost
surely. To that end, suppose that there are two distinct versions Y, Y’ of the orthogonal
projection of X onto K. Define the residual random variables £ := X — Y and
E’ := X —Y’. According to the parallelogram law (Exercise 12.10),

d* = 2|13El3 + 2lI3E'13 = I3 (E+ B)3 + 1 3(E - B3
=X = 3V + Y5+ 15V =Y)I3 > d? + 5llY = Y'|13.
Indeed, || E ||% =d?= ||E’||§ by the primal characterization of the orthogonal projection.
Since %(Y +Y’) € K, this random variable lies at least a distance of d away from X.

We must conclude that
Y =Y’|l2=0.

As a consequence, Y = Y’ almost surely.

Problems

Exercise 12.23 (Chebyshev i druz’ya). Beyond Markov’s inequality, there are many useful
probability inequalities. Here are some basic results that often arise in practice.
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1. Chebyshev: Use Markov’s inequality to prove Chebyshev’s inequality. For each

X €Ly,
Var[X]
t2

P{X-EX|>t}< for each t > 0.

(*) For fixed t > 0, find a random variable with E X = O where Chebyshev’s
inequality holds with equality. Hint: Look at the graphical proof of Markov’s
inequality.

2. For each positive random variable X € L, with EX > 0, use Chebyshev’s
inequality to deduce that

Var[X]
P{X=0} < ————.

3. *Paley-Zygmund: Prove the Paley-Zygmund inequality, which complements the

last result. For positive X € Ly,

(1-0)*(EX)?

P{X>0(EX)} > EX7]

for 6 € [0,1].
Hint: Consider complementary events {X > fEX} and {X < 0 EX}.

4. *Chebyshev—Cantelli: For X € L,, establish a one-sided version of Chebyshev’s
inequality:

Var[X]

———— fort >0.
Var[X] + t2 o

P{X-EX >t} <

Problem 12.24 (*Reverse Cauchy—Schwarz). In general, there is no complementary lower
bound to the Cauchy-Schwarz inequality. Nevertheless, if we assume that two random
variables are almost proportional, it is possible to obtain a satisfactory reversal.

1. Let X, Y € L, be positive random variables that satisfy the pointwise inequality

X
0<m< v < M for fixed numbers m, M > 0.

Prove the reverse Cauchy-Schwarz inequality:
G
ELXY] 2 — - [1X]l2 - [V ]l2-

where A := (m+ M)/2 and G := VmM. Recall that the ratio G/A < 1 by the
GM-AM inequality (9.11). Hint: The key observation is the positivity relation
(M-X/Y)(X]Y —m) > 0.

2. Deduce Kantorovich’s inequality: For a positive random variable Z that satisfies
the pointwise inequality 0 < m < Z < M,

_ %
E[Z]-E[Z7'] < (5)

where A= (m+M)/2 and G = VmM, as above.

Problem 12.25 (*Jensen defect). In general, there is no lower bound complementary to
Jensen’s inequality. Nevertheless, for functions that are “moderately” convex, we can
obtain an elegant expression for the gap between the two sides of Jensen’s inequality.
This result is due to Holder.
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Let ¢ : U — R be a twice-differentiable convex function on an open interval U of
the real line. Assume that

m< f’(t) <M forallt € U.
Prove that there is a value ¢ € [m, M] for which
E[o(X)] - p(EX) = 1¢ - Var[X].
Hint: Apply Jensen’s inequality to the two convex functions

po(t) = zMt* — ¢(1);
p1(t) = (1) - ymt’.
Problem 12.26 (Madame Covary). In this problem, we will explore the geometry of
covariance and correlation. Let K C L, be the set of real random variables in L, with
expectation zero.

1. Explain why K is a linear subspace. (*) Argue that K is complete.

2. For X € Ly, find an explicit, simple formula for an orthogonal projection of X
onto K.

3. Use (2) to define an orthogonal projection map P : L, — K. Verify that P is
linear, idempotent (P?2 = P), and self-adjoint with respect to the L, pseudo-inner
product ((PX, Y) = (X, PY)).

4. For X,Y € Ly, express the covariance Cov(X,Y) and variance Var[X] in terms
of the L, pseudo-inner product and the map P.

5. Sketch a pair of random variables with strictly positive variance that have
o(X,Y)=0.

6. Confirm that |p(X, Y)| < 1. (*) Determine conditions for equality.

Problem 12.27 (Pavlov). Orthogonal projection is closely connected with conditional
expectation. This problem begins to develop your intuition. Let X,Y € L,. Define

K:=Ky :={Z € Ly : Z = h(Y) for measurable 1 : R — R}.

The orthogonal projection of X onto Ky provides a first definition of the conditional
expectation E[X | Y]. Technical details will appear in Lecture 19.

1. Show that K is a complete linear subspace of Ly. Hint: Show that Ky is isomorphic
to Lo (py), which is complete.

2. Let X = g(Y) € L, for a measurable function g : R — R. Find an orthogonal
projection of X onto K.

3. If the pair (X, Y) is independent, find an orthogonal projection of X onto K.

4. (*) Assume that X is a discrete random variable that takes integer values. Then
X has the law px = };c7 pi6; where }};c7 p; = 1 and p; > 0. Consider the
random variable Y = | X|. Find an orthogonal projection of X onto K.

5. (*) Let Y = g(X) for measurable g. Find an orthogonal projection of X onto K.

Problem 12.28 (Orthogonal projection: Properties). Orthogonal projection of random vari-
ables shares many properties with orthogonal projection in a finite-dimensional linear
space. Let K be a complete linear subspace of Ly, and define the orthogonal complement

Kt :={Y ely: (Y, X)=0forall X € K}.

For a random variable X € L,, let P(X) := Py (X) denote any version of the orthogonal
projection of X onto K. Define P*(X) := X — P(X) to be a version of the error in the
orthogonal projection.

Properly speaking, P and P are not
functions, so you should use this
notation with caution.
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1.

N o v oA

Orthogonal complement: Show that K* is a complete linear subspace of L. Show
that P*(X) is a version of the orthogonal projection of X onto K*.

. Linearity: Let X,Y € Ly and «, B € R. Show that aP(X) + BP(Y) is a version

of the orthogonal projection of aX + BY onto K. Show that aP*(X) + SP*(Y)
is a version of the orthogonal projection of aX + Y onto K*.

. Idempotency: Show that P(P(X)) = P(X) almost surely. Establish the same

property for P*.

. Orthogonality: Show that (P (X), P*(X)) = 0.

Orthogonal decomposition: Confirm that P(X) + P*(X) = X almost surely.
Pythagorean theorem: Show that ||P(X)||% + ||Pl(X)||§ = ||X||§
Contraction: Deduce that
sup{[|P(X)l2 : [ Xl <1} = 1;
sup{[P*(X)l2 : I X]l2 < 1} = 1.
Nesting: Suppose that M C K is a complete linear subspace. Show that the

orthogonal projection of X onto M coincides with the orthogonal projection of
Py (X) onto M. That is, Pm o Px = Pp. In addition, show that Px o Py = Pp.

Problem 12.29 (Riesz representation). A linear functional on Ly is alinearmap ¢ : L, —» R
that takes real values. The Riesz representation theorem states that every bounded
linear functional can be represented as an inner product. That is, there is a random
variable Y € L, depending only on ¢, for which ¢(X) = (Y, X). The purpose of this
problem is to establish this important fact.

1.

8.

Uniqueness: Suppose that there are random variables Y,Y’ € L, that both
represent the linear functional: ¢@(X) = (Y, X) and ¢@(X) = (Y’, X). Show
that Y = Y’ almost surely. Hint: Consider X =Y —Y".

. Trivial case: If ¢ (X) = 0 for all X € Ly, find a representation of ¢ as an inner

product. From now on, assume that ¢ # 0.

. Continuity: The norm of the linear functional is defined as

ol :=sup{l@(X)| : [ X]l2 < 1}.

We say that ¢ is bounded when || @|| < +oc0. Show that ¢ is continuous if and
only if it is bounded.

. Null space: Introduce the null space K := {X € Ly : ¢(X) = 0} of the linear

functional. Show that K is a complete linear subspace of Ly. Hint: K is the inverse
image of a closed set under a bounded linear map.

. Orthogonal complement: Show that K is a complete linear subspace of L,. Argue

that K* contains a nontrivial random variable Z. More precisely, “nontrivial”
means that {Z # 0} is an event with strictly positive probability.

. A projection onto the kernel: Fix a random variable Z € K* with ||Z]|; = 1.

For another fixed random variable X € L,, define the random variable W :=
W(X) := ¢(X)Z - ¢(Z)X. Show that W € K. (*) In fact, W (X) is a version
of the orthogonal projection of X onto K. Why?

. Representation: Continuing from the last part, use the observation that (Z, W) =

0 to deduce that ¢(X) = (Y, X) for a random variable Y € L, that does not
depend on X.
Norm: Show that ||Y]|2 = || ¢]|-

Problem 12.30 (*Orthogonal projection: Convex set). A nonempty set K C L, of random
variables is convex if

X,Y eK implies (1-7)X+7tY €K forallte [0,1].
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We say that a (convex) subset K C L, is closed if every Cauchy sequence in K converges
to a limit in K.

Let X € L, be a random variable, and let K C L, be closed and convex. A random
variable Y € K is called an orthogonal projection of X onto K if

IX = Yl = inf{||[X = Wllo: W € K}.

1. Show that a linear subspace in L; is convex.

2. Show that {Z € L, : || Z]|, < 1} is convex and closed for p > 2.

3. If K is closed and convex, prove that every random variable X € L, has an
orthogonal projection onto K.

4. What is the dual characterization of an orthogonal projection? In other words,
what can we say about (Z, X —Y) for Z € K?

5. Show that any point Y € K that satisfies the dual characterization is an orthogonal
projection.

Applications

Application 12.31 (Gauss & Markov). Suppose that we observe paired real-valued data
((x4,yi) :i=1,...,n). For unknown a, € R, suppose that the responses follow the
linear model

Vi=axxi+mn; fori=1,...,n.

We assume that the random errors satisfy E[n;] = 0 and Var[n;] = o2 for all i and
Cov(n;,nj) =0 forall i # j. We can estimate the true model by means of an ordinary
least-squares (OLS) problem:

o 1 o
minimize cr 5 Zi:l (yi — ax;)?.
Let a be the solution to the OLS problem. This problem explores the motivation for
using OLS.

1. By direct calculation, confirm that the estimator 4 is a linear function of the
observed responses (y;). In this context, we think about the covariates (x;) as
fixed numbers.

2. Check that the estimator is unbiased: E[d] = dy.

3. Among unbiased estimators for a, as a linear function of (y;), prove that the
OLS estimator 4 has minimum variance. This fact is called the Gauss-Markov
theorem.

Let us upgrade to a multivariate linear model. Consider paired data (x;,y;) € R* xR
fori =1,...,n. For an (unknown) vector a, € R", suppose that the responses follow
the linear model

yi=alx;+mn; fori=1,...,n.

Maintain the same assumptions on the random errors 77;. We can estimate the true
model by means of the ordinary least-squares problem:

L 1 n
minimizezern - E i:l(yi —a'x;)>.
Let @ be the solution to the OLS problem.

4. Show that a is the minimum-variance unbiased estimator of a@.
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Application 12.32 (*Cramér, Rao, and Fisher). In statistics, we try to construct methods for
making inferences from data. Consider a distribution that is specified by one or more
parameters. For instance, a normal distribution NORMAL(m, 62) depends on the mean
m € R and the variance o > 0. Given some samples drawn from the distribution, we
may try to estimate one of the parameters of the distribution.

There are two simple quantities that reflect the quality of an estimator. The bias
measures how far, on average, the parameter estimate lies from the true parameter
value. The variance measures how much the parameter estimate fluctuates, on average,
over the choice of a random sample. Among all estimators with a given bias, we prefer
the one with the lowest variability. Therefore, to evaluate the quality of a particular
estimator, it is helpful to have a lower bound on the variance of the estimator. This
problem explores a fundamental method for producing such a bound.

Consider a parameterized family of probability density functions fy : RY - R,
For simplicity, we assume that the parameter 0 € U, an open interval of the real line,
and that 6 — fy(x) is differentiable for each x € R?. Define the score function

s(0;x) := dg(log fy(x)) for 6 € Uand x € R?.

The logarithm of the density reflects the likelihood that the parameter value is 8, given
an observed value x € R%. The score function measures how quickly this likelihood
changes as we vary the parameter 6.

1. Let W, S € L. Show that

|Cov(W, )|
Var[W] > T[S]

2. Compute the score function of the density fp of a NorRMAL (8, 02) distribution on
R. Compute the score function of the density of a NorMAL(m, 8) distribution
on R where 6 > 0.

3. The score function is very useful for working with complicated densities that are
hard to normalize. For a bounded, measurable function & : R — R, consider
the Gibbs distribution:

1
fo(x) := Z—e‘gh(x) for x € R.
0

The constant Zy is chosen to ensure that fp is a density. Compute the score
function.

4. Consider a family (Xg : 8 € U) of random variables taking values in R?.
Suppose that X has density fp : R — R,. Under appropriate regularity
conditions, show that the expected score is zero:

E[s(6; X4)] = O.

Hint: Differentiate the relation f fo(x) A4(dx) = 1, and use dominated conver-
gence to draw the derivative through the integral.
5. Define the Fisher information that X g contains about the parameter 6:

1(0) := Var[s(6; Xp)].

2
0= [ (M) fo (%) A9 (dx).

Confirm that

fo(x)
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6. Calculate the Fisher information for Xy ~ NOorRMAL(6, 02). Calculate the Fisher
information for Xy ~ NORMAL(m, 0).

7. Let W : RY — R be a measurable function. Under appropriate regularity
conditions, show that

Cov (W (Xg),s(6;Xg)) = 0g(E[W (X)]).

This is essentially just integration by parts. You can discover the definitions of
score functions and Fisher information if you start at the right-hand side of this
relation and work backward.

8. Define the mean function 7(6) := E[W(Xg)]. Establish the Cramér-Rao
inequality:

1097 (0)]

Var[W(X4)] > 100)

What does this have to do with statistics? Suppose that W (Xg) is an estimator for
the parameter 6. That is, given an observation X g, the function W (Xy) produces an
approximation for the parameter 6. Since the data X g is random, the value W (Xy)
of the estimator is random too. Define the bias of the estimator:

bias(W (Xy)) := 1(0) — 0.
We say that W (X ) is an unbiased estimator of 6 if the bias equals zero.

9. For an unbiased estimator, find a simplification of the Cramér—Rao inequality.

10. Let X ~ NorMAL(6, 02) where o2 is known. Given this single observation,
find an unbiased estimator W (X) for the mean 6. Compute the variance,
Var[W (X)], of the estimator. Compare the result with the Cramér-Rao bound.

11. For 6 > 0, suppose we know that X ~ NorMAL(0, 8). Find an unbiased estimator
W (X) for the variance parameter §. Compute the variance Var[W (X)] of the
estimator. Compare the result with the Cramér—Rao bound.

12. (*) Suppose that X is a continuous real random variable with density fy. Let
(X1,...,X,) be an independent family where each X; has the same distribution
as X. Show that I(Xy,...,X,;) = n-I(X). In particular, we can simplify the
Cramér—Rao bound when we collect i.i.d. data.

13. (*) There is nothing special about continuous random variables. Develop an
analog of this theory in case that Xy has a density with respect to some other
measure g on R4,

In Application 7.14, we saw that probability can be used to verify the existence
of objects that have distinguished properties. Application 9.49 showed how we can
implement this program by computing the expectation of a random variable. There is
a further extension called the second-moment method, which uses information about
the first two moments in combination with the inequalities from Exercise 12.23. The
second-moment method is a useful tool in graph theory, number theory, additive
combinatorics, algorithms (e.g., constraint satisfaction problems), and other areas.
Most interesting applications of the second-moment method are a bit complicated, but
we can offer an elegant example from analytic number theory.

Application 12.33 (Second-moment method: Prime factors). A powerful intuition from
number theory is that prime numbers are “randomly distributed”. Of course, this
statement is not literally true, but it underlies applications of prime numbers in
computer science (including crytography, fingerprinting, etc.). It also invites the use of
probabilistic methods in number theory.

Recall that “i.i.d.” stands for
independent and identically
distributed.
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In this problem, we establish a special case of the Turan—Kubilius inequality. Given
a random integer from a finite interval, this result provides an estimate for the number
of prime factors contained in a given set.

Define the set N := {1, 2,3,..., N} of natural numbers; assume N > 6. Fix an
arbitrary finite set P C N of prime numbers, each smaller than P, where P < N. We
define the logarithmic size of the set P to be

e(P) = Zpepp_l.

Draw a random number I ~ UNIFORM(N). The random number I has a random
number W of prime factors in the set P:

W:=#{peP:p|I}.

Our goal is to study the behavior of W and deduce number-theoretic conclusions.

1. For each natural number d < N, define the indicator random variable X := 14,;.

Prove that 1
[ElXa]l - d™"| <

_ _ 1
IVar[X4] —-d™'(1-d™)| < 5

Hint: In the interval N, how many numbers are divisible by d?
2. Observe that the random variable W = ) ,cp X,. Calculate that the expectation
satisfies the bound

p
EW -¢(P)| < —.
| P =<+

Recall that £ (P) is the logarithmic size of the set P.

3. Show that there exists a number n € N with at least £(P) — 1 prime factors from
the set P. Show that there is a number n € N with at most £ (P) + 1 prime factors
from P.

4. For distinct prime numbers p, g € N, show that

1
|Cov(Xp, Xg)| < —.
N

Hint: Note that p | [ and g | I if and only if pq | I.
5. Calculate the variance of W'

P2
Var[W] < €(P) + —.
(W] < 0P+ 3
Hint: Use the fact that W is a sum to write the variance as a (double) sum of
covariances.
6. For t > 0, verify that

P W —€(P)| 2 (I} <

t2

P2

HoNem |-

7. Suppose that P2 < N < P3. Argue that an integer n < N can have at most two
prime factors larger than P.
8. (***Mertens) Consider the set P = {2,3,5,7,11,..., P}. Prove Mertens’s second
theorem:
|¢(P) — loglog P| < Const.

Hint: There is an elementary argument; see [YY87, Probs. 171-174].

For natural numbers a, b € N, recall
that a | b means that a divides b.
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9. For large N, deduce that most numbers in {1,..., N} have about loglog N
distinct prime factors. Give a formal mathematical statement of this result.
10. (*) There is nothing special about the set N = {1,..., N}. Extend these results

to any interval of the natural numbers with cardinality N.

Notes

Our development of Ly spaces is also inspired by Williams [Wilg1, Chap. 6]. The proof
of Theorem 12.21 is drawn from his book, although the argument is standard.

For more on inequalities in L, spaces, see the books of Garling [Garo7], Lieb &
Loss [LLo1], and Steele [Steo4]. The treatment of the Cramér-Rao inequality is
adapted from [CBgo; L.C98]. The example of the second-moment method is adapted
from treatments by Alon & Spencer [AS16] and by Tao [Taob].
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13.1

\ 13. Independence

“When in the Course of human events, it becomes necessary for one people to
dissolve the political bands which have connected them with another, and to assume
among the powers of the earth, the separate and equal station to which the Laws
of Nature and of Nature’s God entitle them, a decent respect to the opinions of
mankind requires that they should declare the causes which impel them to the
separation.”

—The Declaration of Independence, 4 July 1776

One of the features of probability theory that distinguishes it from ordinary measure
theory is the idea of independence and the related idea of conditioning. In this lecture,
we will begin to explore what it means for a collection of probabilistic experiments to
be independent from each other.

So, what do we mean when we say that two experiments are independent?
Heuristically, the outcome of one experiment has no bearing on the outcome of the
second. If we know the outcome of the first experiment, the distribution of outcomes
of the second experiment remains unchanged.

More concretely, suppose that I flip a coin and you roll a die. If these experiments
are independent, then we anticipate that...

1. The face of the coin has no influence on the value of the die.

2. No event involving the coin informs us about any event involving the die.

3. No random variable determined only by the outcome of the coin flip is correlated
with any random variable determined only by the outcome of the die.

You can start to appreciate that these desiderata are much stronger than the assumption
that two particular random variables are uncorrelated.

In this lecture, we first summarize the elementary notions of independence from
basic probability theory. Afterward, we discuss how to generalize these ideas to reach
a definition of what it means for two collections of events to be independent from each
other. We will see that this general definition subsumes all of the elementary notions of
independence. Last, we will explore the connection between independence of random
variables and product measures.

Elementary independence

We begin with the definition of the elementary conditional probability, which is the
probability that one event occurs, given that another event has occurred. Two events
are independent if the occurrence of one event does not change the probability that
the other event occurs. Afterward, we discuss what it means for two random variables
to be independent.

Agenda:

1. Elementary independence

2. Independence of o-algebras

3. Independence and product
measure

4. Kolmogorov extension

theorem
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Figure 13.1 (Conditional probability). Given that the event E occurs, the event A occurs
if and only if A N E occurs (red). Meanwhile, the event A does not occur if and only if
AC N E occurs (blue).

Conditional probability
As usual, we fix a master probability space (Q, F, ). Consider an event E € F with
strictly positive probability: P(E) > 0. Suppose that we have knowledge that the event
E occurs. That is, the distinguished sample point wy € E. In general, this piece of
information is not sufficient to determine the sample point w, completely. Nevertheless,
it does allow us to update our prior knowledge of the probability that another event,
say A € F, occurs. If E occurs, then the only way for A to occur is for A N E to occur.
Likewise, the only way for A not to occur is for A° N E to occur. In other words, we
want to restrict our attention to events of the form B N E for B € &. See Figure 13.1.
This observation suggests that we need to consider a new distribution of probability
over events BN E with B € %. Each of these events has an a priori probability P(B N E).
But these values may not compose a probability distribution because P(Q2 NE) = P(E),
which may not equal one. Therefore, we need to rescale the prior probabilities to
obtain a new probability distribution over the events restricted to E. These arguments
lead to an important elementary definition.

Definition 13.1 (Elementary conditional probability: Events). Let E € & be an event with
strictly positive probability: P(E) > 0. The probability that an event A € F occurs,
given that E occurs, is defined as

P(ANE)

PAIE) =5

In other words, the conditional probability P(A|E) is the proportion of the
probability P(E) that is attributable to the event P(A N E) occurring.

Exercise 13.2 (Elementary conditional probability: Events). With the assumptions of Defi-
nition 13.1, confirm that {B N E : B € %} is a o-algebra contained in %, called the
restriction of & to the event E. Check that [P(- | E) is a probability distribution on the
restricted o-algebra.
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13.1.2  Independence of events

The definition of conditional probability leads directly to the notion of independence.
Two events A, B with strictly positive probability are independent when knowledge
that B occurs does not change the probability that A occurs, and conversely:

P(A|B) =P(A) and P(B|A)=P(B).

Using Definition 13.1, we quickly see that each one of these relations is equivalent to
the condition that P(A N B) = P(A) - P(B). We enshrine this formula in a definition.

Definition 13.3 (Elementary independence: Events). Two events A, B € F are indepen-
dent when
P(ANB) =P(A) - P(B). (13.1)

Note that Definition 13.3 no longer requires an assumption that the probability of
each event is strictly positive. Indeed, if either event has zero probability, then both
sides of the relation (13.1) equal zero. Definition 13.3 agrees with the elementary
notion of independence of events.

Exercise 13.4 (Independence: Complements). Show that the events A, B are independent
if and only if the events A, B¢ are independent.

13.1.3  Independence of random variables

Next, we turn to a definition of independence for random variables. To say that two
random variables are independent, we want to make sure that neither one of the
random variables provides information about the value of the other. We can formulate
this idea in terms of the events associated with the random variables.

Definition 13.5 (Elementary independence: Random variables). Let X, Y be real random In Section 13.2, we will connect this

variables on a probability space. The random variables X and Y are independent definition with the previous
when Definition 8.25 of independent

random variables.

P{XecAandY eB} =P{X cA}-P{Y €B} foralABeRB(R). (13.2)

We sometimes write X Il Y to mean that X and Y are independent random
Warning: Do not conflate

variables. See Figure 13.2. STty (B% . 17) it
independence (X 1 Y)! .

In other words, two random variables X and Y are independent when the probability
that (X,Y) € A X B equals the product of the probabilities that X € Aand Y € B
for all Borel sets A, B. From this fact, independence appears to be related to product
measures; we will pursue this observation in Section 13.2.

Definition 13.5 involves a lot of events, but this is inevitable because we must be
sure that no set of values of X informs us about the probability of any set of values of
Y occurring. As a particular consequence,

P{X <aandY <b}=P{X <a}-P{Y <b} foralla,beR. (13.3)

The formulation (13.3) is the standard way of defining independence of random
variables in introductory courses.

In fact, the relation (13.3) implies that the apparently stronger relation (13.2) holds.
This claim requires Dynkin’s theorem on intersection-stable systems; see Example E.7.

Exercise 13.6 (Independence: Indicators). Check that two events A, B are independent if
and only if their indicator random variables 15 and 1g are independent.
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Figure 13.2 (Independence: Random variables). A pair (X,Y) of random variables
is independent when the probability that (X,Y) € A X B equals the product of the
probability that X € A and the probability that Y € B.

Independence and product measures

The elementary definition of independence for random variables (Definition 13.5)
suggests a connection between independence and product measure. This insight is
valid, and it works both directions.

The joint distribution of an independent pair of random variables

Suppose that X and Y are independent random variables. According to Definition 13.5,
this statement means precisely that

P{XeAYeB}=P{XecA} -P{Y eB} forallABce%(R).

This relation determines the (joint) distribution pyy of the pair (X,Y) € R? on
rectangles in terms of the marginal distributions px and py:

Uxy (AXB) = ux(A) - uy(B) forall A,B € B(R).

Theorem 6.14 states that the distribution pxy has a unique extension to the product
o-algebra B(R) x B(R) = B(R?). This extension is the product measure given by
the marginal distributions. That is,

Hxy = Hx X Hy.
We encapsulate this argument in a proposition.

Proposition 13.7 (Independent random variables: Joint distribution). Consider independent
real random variables X and Y with distributions px and py on the Borel sets of
the real line. Then the joint distribution of the pair (X,Y) is the product measure
Uxy = Mx X My on the Borel sets in R2. That is, Definition 8.25 is consistent with
Definition 13.5.

The product measure defines an independent pair of random variables

Conversely, suppose that px and py are probability distributions on the Borel sets of
the real line. Our goal is to build a probability space that supports two independent
random variables X and Y with marginal laws ux and py.
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To do so, we simply construct the product probability space (R2, B(R?), ux X fy).
Introduce the coordinate functions:

X =m(w,w;) =w; and Y = m (w1, w) = wy for w € R2,

You should check that the marginal distribution of X is pux, while the marginal
distribution of Y is puy. The pair (X, Y) obviously has the joint distribution pxy =
Hx X Hy, SO

P{(X,Y)e AxB}=P{X €A} -P{Y eB} forallA Bec AB(R).

In other words, the random variables X and Y are independent. We will generalize
this result below in Theorem 13.24.

Expectation and independence

The connection between independence and product measures tells us how to compute
the expectation of a function 2(X,Y). In particular, we have an elegant result for the
expectation of a product function.

Proposition 13.8 (Independent random variables: Expectation). Suppose that (X, Y) is an
independent pair of real random variables with marginal laws pux and py. Suppose
that f € Ly (ux) and g € L1 (uy). Then

E[f(X)g(¥)] =E[f(X)] - E[g(Y)]. (13.4)

Proof. The result is just an application of Fubini-Tonelli (Theorem 6.23). Indeed,
EF 08 = [ F(080) p (dxx )
= [ 1080 (xx )@ x )

- ( / () uy(dy)) ( / () uy(dy)) — E[f(X)] - E[g(Y)].
R R

The first relation is (9.6), the (multivariate) law of the unconscious statistician. We
have used Proposition 13.7 to see that the joint distribution is the product of the
marginal distributions. Then we invoked Fubini-Tonelli to replace the integral over
the product measure with an iterated integral. The last relation is Proposition 9.4, the
law of the unconscious statistician. [ |

Exercise 13.9 (Independence and expectation). Let X and Y be real random variables with
marginal laws gy and py. For all bounded, measurable functions f,g : R — R,
suppose that

E[f(X)g(WM)] =E[f(X)] -E[g(Y)]

Prove that X and Y are independent. Hint: Consider indicator functions.

Exercise 13.10 (Independence and functions). Let X and Y be real random variables. Prove
that the pair (X, Y) is independent if and only if the pair (f(X), g(Y)) is independent
for all measurable functions f, g : R — R.
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Independence versus uncorrelation
For comparison, recall that two real random variables X, Y € L, are uncorrelated when

E[XY] = E[X] - E[Y].

This is the very simplest case of the calculation (13.4). On the other hand, uncorrelation
does not allow us to extend this result to any other functions. We can now appreciate
that it is far easier for two random variables to be uncorrelated than for two random
variables to be independent.

This discussion hints at the strength of the independence assumption. Even if we
process each of the independent random variables in an arbitrary way (but without
reference to the other), we cannot make them correlated with each other!

Exercise 13.11 (Independence: Expectation of a product). Let X,Y € L; be independent
random variables, not necessarily in L,. Show that E[XY] = E[X] - E[Y].

Exercise 13.12 (Independence: Variance). Suppose that X, Y € L, are independent random
variables. Show that Var[X + Y] = Var[X] + Var[Y].

Independence and o-algebras

We can think about o-algebras as carrying information. If we know whether each
event in a og-algebra occurs, then we have acquired some information about the
distinguished sample point wy. It is natural to extend the concept of independence
from events and random variables to a general notion of independence of o-algebras.
This definition is flexible enough to subsume the elementary definitions of independence
from before—and more things besides.

Example: Coin flips

Consider the elementary probability experiment where we flip two fair coins. To model
this experiment, we introduce the sample space Q = {HH, HT, TH, TT}, the o-algebra
F = 9(Q), and the uniform probability measure [P on the sample space.
Let us extract a sub-c-algebra that contains the events that are determined by the
first coin flip:
%, := {0, {HH, HT}, {TH, TT}, Q}.

You may check that €; is a g-algebra contained in F. If we see that the first coin turns
up H, say, we can decide whether each of the events in 6; has occurred or not. So 6;
captures the knowledge we attain by observing the value of the first coin flip.

Likewise, we can extract a sub-g-algebra that contains the events that are deter-
mined by the second coin flip:

%, := {0, {HH, TH}, {HT, TT}, Q}.

If we observe that the second coin turns up T, say, we can decide whether each of
the events in €, has occurred or not. The knowledge about the second coin does not
determine whether either of the nontrivial events in €; has occurred.

Now, consider a pair of events, each drawn from one of the sub-o-algebras. For
instance, let G; = {HH, HT} and G, = {HH, TH}. Observe that

P{G1 NGy} =3 =P{G} P{Gy}.

In other words, the events G; and G, are independent. By further investigation, we
can see that every event in 6; is independent from every event in 6,. In other words,
6, and 6, provide independent pieces of information about the experiment.
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Independent o-algebras

We want to capture the idea that one o-algebra provides no information about the
events in another g-algebra.

Definition 13.13 (Independence: o-algebras). Let (2, F, P) be a probability space. Let
€6; C F be a o-algebra contained in ¥ for each i = 1,2. We say that the two o
algebras 6; and 6, are independent when

P(Gy N Gz) =P(Gy) - P(Gy) forall G; € 6; and all G, € 6,.

In words, independence means that every event in the first o-algebra 6, is in-
dependent from every event in the second o-algebra 6,. Let us emphasize that
Definition 13.13 involves not only events but also the probability measure. Indepen-
dence reflects how the probabilities are assigned to events in the two o-algebras.

Independent events

As a first application of Definition 13.13, let us explain how it captures the elementary
notion of independence of events. Recall that an event A € F generates the o-algebra
o({A}) ={0,A A5, Q}.

Definition 13.14 (Independence: Events). Let A,B € F be events. We say that the
events A and B are independent when the events generate o-algebras o ({A}) and
o ({B}) that are independent.

Exercise 13.15 (Independence: Events). Confirm that Definition 13.14 is equivalent with
the elementary Definition 13.3.

Activity 13.16 (Sigma-algebra generated by events). Propose a definition of the g-algebra
generated by a countable family (A; : i € N) of events. .

Sigma-algebras generated by random variables

Before we continue, let us give a formal definition of the o-algebra generated by some
random variables.

Definition 13.17 (Sigma-algebra generated by a random variable). For a real random
variable X, define
o(X):=o({X"1(B) : B e B(R)}).

More generally, for a countable family (X; : i € N) of real random variables, define

o(X;:ieN):=0o{X '(B) :Be B(R)and i € N}.

In other words, the g-algebra generated by a random variable X consists of all
events that are the preimages of Borel sets. If we know the value X (w) of the random
variable, then we can determine whether or not an arbitrary event in ¢(X) has
occurred. The general definition is similar in spirit.

Independent random variables
Definition 13.13 also contains the notion of independence for random variables.

Definition 13.18 (Independence: Random variables). Let X, Y be real random variables.
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We say that the random variables X and Y are independent when they generate
o-algebras (X) and ¢(Y) that are independent.

Exercise 13.19 (Independence: Random variables). Confirm that Definition 13.18 is equiva-
lent with the elementary Definition 13.5.

Problem 13.20 (Dependence and measurability). Let X, Y be real random variables. Show
that Y is measurable with respect to the g-algebra ¢ (X) if and only if Y = f(X) for a
Borel measurable function f : R — R.

Independent families of g-algebras

We can generalize Definition 13.13 further to address the independence of larger
families of o-algebras.

Definition 13.21 (Independence: Sequence of g-algebras). Consider a countable collec-
tion (6; € F : i € N) of sub-g-algebras in &. These o-algebras are independent
when

n
PGy n-nG,) =[] _ PGy

whenever n € N, and i; < --- < i, are distinct indices, and G,-j €% for each
j=1,...,n.

Activity 13.22 (Independence: Countable collections). Develop a definition of what it means
for a countable family of events to be independent. Develop a definition of what it
means for a countable family of random variables to be independent. .

Warning 13.23 (Pairwise independence). Consider a family (X; : i € ) of real random
variables. Suppose that we know that each pair (X;, X;) is independent. This
property is called pairwise independence. Unfortunately, pairwise independence does
not even imply that a triple (X;, Xj, X¢) of distinct random variables is independent!

Similarly, for k > 3, the assumption that each sub-family of k random variables is
independent does not imply that any set of (k + 1) random variables is independent.
In particular, if you want to know that the entire collection of random variables is
independent, you must enforce this property explicitly.

Although this may seem like a technicality, it is a common source of errors.
Moreover, the concept of k-wise independence plays an important role in the theory
of algorithms. For example, see Application 13.36. .

Why?

This abstract perspective would be sterile if it only allowed us to talk about things
that we already understand, such as independent events and independent random
variables. Even without further applications, it is useful for us to start thinking about
o-algebras as carrying information about the state of the world. From this point of
view, independent ¢g-algebras carry independent information.

In fact, there are relatively simple things that are hard to describe accurately
without this machinery. For example, consider three real random variables X, Y, Z.
We can easily define what it means for the pair (X, Y) to be independent from the
random variable Z. Indeed, we just require that o (X, Y) is independent from o(Z).

In fact, there are even settings where independence of g-algebras models something
that we cannot easily describe using only events or random variables. For an example,
see Section E.2, on the Kolmogorov o-1 law.
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Kolmogorov’s extension theorem

In Section 13.2.2, we saw that it is possible to build a probability space that supports two
independent random variables with specified marginal laws. We would like to perform
the same feat with a countable list of marginal laws to construct an independent
sequence of random variables. The next result asserts that we can always achieve
this goal. It provides a technical foundation for the theory of discrete-time stochastic
processes.

Theorem 13.24 (Kolmogorov extension). Let (1, U2, U3, ... ) be a sequence of proba-
bility measures defined on the Borel sets of the real line. There exists a probability
space (Q, F, P) on which we can define an independent sequence (X1, Xz, X3,...)
of real random variables where the law of X; is u; for each index i € N. That is,

P {(Xil,...,Xl'n) S Bi1 XX B,‘n} = l_[;lzl P {Xij S Bij} = l_[;ﬂ ,Uij(Bij)

for all n € N, and distinct indices i; < --- < i, € N, and Borel sets B;; € B(R)
forj=1,...,n.

See Appendix E for the proof of the Kolmogorov extension theorem.

The key point here is that Theorem 13.24 furnishes a probability space containing
a (countable) sequence of independent random variables. The precise construction is
not important—just the fact that the probability space exists. The probability measure
[P packs up all the information about the joint distribution of the random variables,
so we can use P to compute the probability of any event in %, which happens to be
the product o-algebra %(R)N. At the same time, when we study an independent
sequence, we will typically focus on the individual random variables X; and their laws
Ui, rather than the underlying probability space.

Example 13.25 (A sequence of coin flips). Suppose that we want to exhibit a model for
a countable sequence of independent fair coin flips. In this case, we consider laws
Ui ~ BERNOULLI(1/2) for each i € N. Kolmogorov’s extension theorem yields a
probability space (2, &, P) that supports an independent family (X; : i € N) of real
random variables, where each X; ~ BERNOULLI(1/2). .

Example 13.26 (A sequence of normal variables). Another important example involves the
sequence (; ~ NORMAL(O, 1) for each i € N. In this case, Kolmogorov’s extension
theorem yields a probability space (Q, %, P) that supports an independent family
(Z; : i € N) of real random variables where Z; ~ NorMAL(0, 1) for each i € N. .

Warning 13.27 (*Countable product of Borel o-algebra). Unlike the case of a finite
product, &(RN) # B(R)N. The reason is a mismatch between the definitions of
the product topology and the product o-algebra. Indeed, the product o-algebra
%B(R)N contains all countable intersections of measurable cylinders. But the product
topology on RN only contains finite intersections of open cylinders. The Borel
o-algebra %(RN) is generated by the product topology, and the product topology
has only a limited stock of open sets. .

Problems

Exercise 13.28 (Mixture). Let X and Y be real random variables on a probability space.
For a € [0, 1], let I be a BERNOULLI(a) random variable that is independent from X
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and Y. Define the random variable

X, ifI=1;
VA
Y, ifI=0.

Express the law of Z in terms of the laws of X and Y.

Problem 13.29 (Poisson coin flips). Suppose that we flip a fair coin N times, where
N ~ proisson(f). Let X denote the number of heads that turn up, and let Y denote
the number of tails that turn up. Show that the pair (X, Y) is independent. Bizarrely,
if we are given the number N of flips, then the pair (X, Y) is no longer independent.

Exercise 13.30 (Minimum and maximum). Consider an i.i.d. family (X, ..., X}) of random
variables where X; ~ X. In this exercise, we explore the distribution of the maximum
and minimum.

1. Let Y = max; X;. Show that the distribution function Fy of the maximum
satisfies
Fy(a) = Fx(a)" fora € R.

2. Let Z = min; X;. Show that the distribution function F of the minimum satisfies
Fz(a)=1-(1-Fx(a))" foraeR.

3. Suppose that X ~ ExPONENTIAL(f}), an exponential random variable with rate
B > 0. Determine the distribution of the maximum and the minimum of n
i.i.d. copies of X.

Exercise 13.31 (Variance representations). There are several ways to write the variance of a
random variable X € L, by introducing an independent copy Y of the random variable
X. Verify that

Var[X] = 3 E[(X - Y)?] = E[(X = Y)}] = E[(X - Y)2].

Problem 13.32 (*Mutual information). Let X and Y be discrete random variables taking

values in N. Write fx and fy for the marginal probability mass functions and fxy for
the joint mass function. Define the mutual information

fXY(XrY) )
KX)-fr(YV))

We can interpret the mutual information as the amount of randomness in Y that is
explained by X, or vice versa.

I(X;Y) ::[Elog(

1. Observe that I(X,Y) = 0 when the pair (X, Y) is independent.
2. Show that
a(loga—1logh) >a—-h foralla,h>0.

Under what condition does equality hold? Hint: Apply the subgradient inequality
(Proposition 9.19) to the negative logarithm.
3. Argue that I(X,Y) > 0 with equality only if (X, Y) is independent.

Exercise 13.33 (Chebyshev correlation inequalities). Let X be a real random variable with
law px. Consider ux-integrable functions f, g : R — R. In this problem, we will
show that it is possible to bound expectations E[ f(X)g(X)] when the functions f, g
are monotone. These inequalities are often used in statistical physics applications. The
results appear here because the proof relies on independence.

That is, Y has the same law as X, and
the pair (X,Y) is independent.

These results are often called
Chebyshev’s “other” inequalities.
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1. First, assume that f and g both are increasing. Let Y be an independent copy of
X, and verify that

E[(f(X)-f(Y)-(g(X)-g(¥)] =o0.
2. Deduce the Chebyshev correlation inequality:
E[f(X)g(X)] = E[f(X)] - E[g(X)].

3. Now, assume that f is increasing and g is decreasing. Establish a complementary
rearrangement inequality:

E[f(X)g(X)] < E[f(X)] - E[g(X)].
4. As an example, confirm that
E[Xe %%] < E[X] - E[e"%X] for6 > 0.

This inequality arises when bounding the derivative of a moment generating
function.

Problem 13.34 (Generalized Minkowski). Consider independent real random variables X
and Y with laws uy and py. For a measurable function f : R> — R and a power
p = 1, the generalized Minkowski inequality states that

J

This relation holds whenever the integrals are defined.

p 1/p 1/p
ux(dx)] S/R(/R |f e MIP px(dx)]  py(dy).

/R F(xy) iy (dy)

1. If we define the partial expectation Ex with respect to X and the partial
expectation Ey with respect to Y, show that we can rewrite the inequality in the
compact form

[Ex [Ey f(X,V)P]'7 < Ey [(Ex [f (X, V)I?)"7].

2. Show how to derive Minkowski’s inequality (Theorem 11.9) as a consequence of
this relation. Hint: Let Y be a Bernoulli random variable.

3. Establish the generalized Minkowski inequality. Hint: Introduce an independent
copy Y’ of Y, and note that

Ey f(X, V)P = |Ey f(X, V)P [Ey f(X,Y)].
Proceed in the same manner as Riesz’s proof of the simpler Minkowski inequality.

Problem 13.35 (*Pairwise independence: Subset sums). In this problem, we show that it is
possible to construct 2™ — 1 random variables that are pairwise independent, given a
family of m fully independent random variables.

Consider an i.i.d. family (X, ..., X;) of BERNouULLI(1/2) random variables. For
each nonempty subset S C {1,2,3,..., n}, define

Ys = (Zies Xl-) mod 2.

It is clear that each random variable Ys is Bernoulli because it takes values in {0, 1}.

1. For each set S, prove that Y5 ~ BERNOULLI(1/2).

2. For two distinct sets S, T, prove that the pair (Ys, Y1) is independent.

3. Find three random variables (YR, Y5, Y1) that are not independent. Hint: Consider
the case RUS =T.
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Applications

Application 13.36 (*Hashing and pairwise independence). Hashing is a method for taking a
long string and mapping it to a short “key” that can be used as a summary of the string.
Hashing maps are often chosen randomly with the intention that two input strings
are very unlikely to map to the same key value. At the same time, it is important to
construct and apply the hashing map quickly. These desiderata lead us to consider
random variables that have limited randomness and limited independence.

In this problem, we use a small dose of number theory to construct pairwise
independent random variables and an associated hashing scheme. Fix a (large) prime
number p. Let Xj, X5 ~ uniForM{0, 1,2,3,...,p — 1} be independent. Construct
the random variables

Yj=(X1+jXp) modp forj=0,1,2,...,p—-1.

It takes approximately 2 log, p random bits to form X; and X5, so we obtain p random
variables Y; from a modest number of coin flips. As we will see, these random variables
can be used to construct a hashing scheme.

1. Show that ¥; ~ untFormM{0, 1,2,...,p — 1}.
2. For each pair (i, j) of distinct indices, show that the pair (Y}, ;) is independent.
3. Show that there is a triple (Y;, ¥}, Y;) that is not independent.

What does this have to do with hashing? We would like to summarize each potential
input value in {0, 1,2,...,p — 1} by a short key. To that end, fix a natural number
n < p. Let H be a (small) family of functions with domain {0, 1,2,...,p — 1} and
codomain {0, 1,2,...,n — 1}. The functions in H are called hash functions.

Draw a hash function & uniformly at random from the family H. For this choice of
h, we say that a pair (i, j) of inputs collides when k(i) = h(j). A good family of hash
functions will limit the probability of a collision.

We say that the family H of hash functions is 2-universal when each pair (i, j) of
values has a small collision probability:

1
P {n(i) = h())} < - foralldistinct i, j € {0,1,2,...,p ~ 1},

The idea is that the hash is very likely to map two distinct inputs i, j to two distinct
keys h(i), h(j). Therefore, we can use the key as a summary of the input.

4. Consider a 2-universal family H. Let S C {0,1,2,...,p — 1} be a fixed, but
unknown, set of inputs. Choose an input i € S, and bound the expected number
of j € S that collide with i if we pick h € H uniformly at random. How big
should the set {0,1,2,...,n — 1} of keys be in comparison with #S?

Here is a simple construction of a 2-universal hash function, based on pairwise
independence. We construct a family H of hash functions that is indexed by values
a,be{0,1,2,...,p — 1}. The associated function is defined as

hap(j) := [(a+ jb) mod p] mod n.

We draw a hash h randomly by picking a, b independently and uniformly at random,
with the constraint that b # 0.

5. Show that H is 2-universal.
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Application 13.37 (*Second-moment method: Graph thresholds). As another application of
the second-moment method, we will show that a certain class of random graphs is
either very likely or very unlikely to contain a clique containing four vertices, depending
on the exact parameter choices.

An Erdés-Rényi graph G(n, p) is an undirected, combinatorial graph drawn at
random from the following distribution. The graph has n vertices, and each edge
appears independently with probability p. A clique is a set C of vertices that is completely
connected; that is, the graph contains the edge connecting each pair of vertices in the
clique C.

We may ask about whether it is probable that an Erdés-Renyi graph G(n, p)
contains a clique on four vertices. The answer depends on how the edge probability
p scales with the number n of vertices. Problems like this arise when studying the
connectivity properties of networks. For example, is it likely that there are four
individuals in a social network where each pair is friends with each other?

1. Let S be a fixed set of four vertices in G(#, p). Show that the probability that S
is a clique is exactly p®.
2. Let X;, denote the number of cliques on four vertices in a random instance of

G(n, p). Deduce that
4.6

n n
[IE[XI’L]:(4_)'p6z ZZ .

In particulay, if p < n?/3, then it is likely that the graph contains no clique on
four vertices.

3. (¥) Consider the asymptotic setting where p = p(n). Assume that p/n
Argue that P {X,, = 0} — 1 as n — co. What does this statement mean?

4. Suppose that Z is a positive, real random variable. If Var[Z] < (E Z2), show
that P{Z > 0} > 0.

5. (**) Assume that p > n?/3. Show that Var[X,,] < (E X,,). Hint: Subsets sharing
two or more vertices are not independent, so you have to make conditional
variance computations. Unfortunately, this is not trivial.

6. If p > n??3, deduce that G(n, p) is very likely to contain a clique on four
vertices.

7. (*) In the asymptotic setting where p/n%° — oo, show that P {X,, > 1} — 1 as
n — oo. What does this statement mean? In fact, X, ~ E X, for large n.

2/3

Notes

The overarching discussion of independence is adapted from Williams [Wilg1]. See
Motwani & Raghavan [MRogs5] for some discussion of k-wise independence and its
applications. For more information about correlation inequalities, see [AS16]. Some
of the problems are drawn from Grimmett & Stirzaker [GSo1]. The example of the
second-moment method is from Alon & Spencer [AS16].
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\ 14. Independent Sums

“Les dieux avaient condamné Sisyphe a rouler sans cesse un rocher jusqu’au sommet
d’'une montagne d’oti la pierre retombait par son propre poids. Ils avaient pensé
avec quelque raison qu’il n’est pas de punition plus terrible que le travail inutile et
sans espoir...

“La lutte elle-méme vers les sommets suffit a remplir un couer d’homme. Il faut
imaginer Sisyphe heureux.”

“The gods had condemned Sisyphus to ceaselessly roll a boulder up to the summit
of a mountain, at which point the stone would fall back down because of its
own weight. They had thought, with some reason, that there is no more terrible
punishment than useless and hopeless labor...

“The struggle itself toward the heights suffices to fill a man’s heart. One must
imagine Sisyphus happy.”

—Albert Camus, Le Mythe de Sisyphe, 1942

So far, we have been focusing on measure theory and probability foundations. In this
lecture, we begin our study of stochastic processes, which are collections of (dependent)
random variables. Stochastic processes are used to model probabilistic phenomena in
computational mathematics, engineering, statistics, and other disciplines. Therefore,
insights about the behavior of stochastic processes have a wide range of implications.

This course covers three types of sequential stochastic processes. In this lecture,
we will start to investigate the behavior of the partial sums of a sequence of inde-
pendent random variables, also known as an independent sum. Among other things,
independent sums can be used to model random walks, statistical experiments, and
Monte Carlo integration. Later, we will consider a more sophisticated type of stochastic
process, called a martingale, that models the payoff in a repeated sequence of fair
games, where the strategy can evolve depending on historical outcomes.

Stochastic processes

First, we introduce the concept of a general stochastic process.

Definition 14.1 (Stochastic process). Let (Q, F, ) be a probability space. A stochastic
process is a family (X; : t € T) of real random variables defined on the probability
space. The set T is called the index set. Stochastic processes are often called random
processes.

Let us emphasize that the random variables that compose a stochastic process are
typically not independent from each other. It is hard to say much about a stochastic
process without adding some kind of additional structure. To that end, we will

Agenda:

. Stochastic processes

. Independent sums

. Model applications

. Empirical behavior

. Weak law of large numbers

UuhWN -

The Greek word stokhazomai means
“to aim at a target.”
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impose assumptions about how the random variables interact with each other. These
assumptions allow us to model particular phenomena, and they allow us to develop a
richer understanding of these examples.

Historically, the index set was denoted by the letter T because it usually models
time. In particular, we may consider discrete-time and continuous-time models, but
there are other possibilities.

* Discrete-time process: The index set T equals N or Z, or Z.

* Continuous-time process: The index set T equals R, or R.

* Spatial process: The index set T C R". These examples are often called random
fields.

In this course, we will focus on discrete-time stochastic processes, which we will usually
denote by (X}, : n € N) or something similar. The letter n reminds us that the index
is an integer. Continuous-time processes require much more technical machinery, and
it is best to acquire a firm understanding of the discrete-time setting before turning
to this subject (e.g., in ACM 118). Stochastic processes with a spatial index, such as
Gaussian processes, are also very important in applications (ACM 118 or ACM 217).

Independent sums

We begin our study of discrete-time stochastic processes with a particularly simple
class of models, based on independent random variables.

The probability space
First, let us recall Kolmogorov’s extension theorem (Theorem 13.24). Consider a
sequence (y; : i € N) of probability distributions on the Borel sets in R. Then there
exists a probability space (Q, F, P) that supports an independent sequence (Y; : i € N)
of real random variables, where the marginal law of Y; is y; for each index i € N.
This fact serves as the technical foundation for the theory of discrete-time stochastic
processes, because it ensures that we can construct an independent sequence of random
variables with arbitrary distributions. We usually do not lavish much attention on
the underlying probability space, preferring to operate with the random variables
themselves.

Some random processes

Given an independent sequence of real random variables, we can construct a new
random sequence from the partial sums.

Definition 14.2 (Independent sum). Consider an independent sequence (Y; : i € N)
of real random variables. Define the random variables

Xo:=0 and X, := Z?_l Y; forneN.

That is, (X, : n € Z,) is the sequence of partial sums of the sequence (Y; : i € N).
The family (X, : n € Z.) is a discrete-time stochastic process, called an independent
sum process or a partial sum process.

The random variables in a partial sum process are not independent from each other.
Indeed, X;, and Xj both involve the summands Y; for i < n A k. Nevertheless, the
dependency among the X, is both simple and manageable.
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It is also productive to consider some related random processes, obtained by
rescaling the partial sum process. In particular, we define the running average.

Definition 14.3 (Running average). Consider an independent sequence (Y; : i € N) of
real random variables. Define the random variables

- 1 n
X, = EZI_ZIY,- for n € N.

Then (X, : n € N) is a discrete-time stochastic process, called the running average
of the process (Y; : i € N).

Applications

Independent sums and running averages are simple models, but they have a wide
range of applications. In this section, we outline some of the main examples.

Random walks

Consider a particle that begins its life at the origin of the real line. Every second, the
particle jumps to a new location by adding a random increment to its current location.
In the most basic setting, each increment is independent from all previous increments
and from the current location of the particle. This stochastic process is called a random
walk on the real line.

Formally, we consider an independent sequence (Y; : i € N) of random increments.
Then the partial sum process X,, = ),/ ; ¥; describes the position of the particle after
n steps.

In the simplest case, the increments are chosen to be independent and identically
distributed (i.i.d.) random variables. It is common to express this condition by writing
Y; ~ Y ii.d., where Y is some fixed random variable. We also say that the Y; are
i.i.d. copies of Y.

In particular, we may consider the distribution Y ~ unirForMm{*1} for the incre-
ments. Then the particle travels on the integers, at each time moving randomly left or
right by one position. This process is called the simple random walk on the integers
Z. At time n, the random location X, of the particle has the marginal distribution
X, ~ 2BiNoMIAL(R, 1/2) — n.

The random walk is a discrete model for diffusion that tracks individual particles,
rather than the density of particles. For example, you can imagine a single molecule of
a chemical diffusing in a solvent.

Renewals

Consider (real-world) events that happen periodically after some random interval of
time. For example, a decaying radioactive mass might omit a photon. Or a customer
might arrive at the cash register of a convenience store to purchase a highly caffeinated
energy shot. These are examples of renewal processes.

We can model the arrivals by an independent sequence (Y; : i € N). The random
variable Y; describes the time between events i and i — 1. The partial sum process
Xn = X1, Y; is the total amount of time that elapses before 1 events occur.

The most common model for renewals takes the interarrival times ¥; to be i.i.d. copies
of an exponential random variable Y ~ EXPONENTIAL(A) with rate A € R,. In this
case, the partial sum process X, has the marginal distribution X, ~ camma(n, 1) with
shape parameter nn € N and rate A.

The symbol ~ means “has the
distribution.”
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Independent experiments

Consider a sequence of independent experiments that may succeed or fail. For example,
you flip a coin repeatedly and declare success each time the coin turns up heads.
Another example: every summer, you apply to a funding agency for money to support
your latest brilliant research idea; you record a success if you are awarded the grant.
Another example: Every day, a man named Sisyphus attempts to push a large boulder
to the top of a hill. In some of these cases, the assumption of independence is perhaps
questionable.

We can model the success or failure of these trials using an independent sequence
Y; of Bernoulli random variables, where Y; = 1 if the ith trial succeeds and Y; = 0 if
the ith trial fails. The partial sum process X, = );I" | ¥; describes the total number of
successes in the first 7 trials. Similarly, the running average process X,, = n~* Ly
describes the proportion of successes during the first 7 trials.

When we repeat the same experiment over and over again, then we can model the
successes Y; as i.i.d. copies of a Bernoulli random variable ¥ ~ BERNoULLI(p). In this
case, the partial sum process X, follows the marginal distribution X;, ~ BINOMIAL(#, p).
The running average X, has expectation p, and it serves as an empirical estimate for
the success probability p.

Statistical estimation

Suppose that we randomly select a member from a population and enroll them in
a study. Perhaps, we administer each participant an experimental treatment for
cholesterol and measure the reduction in cholesterol levels after two months. Perhaps,
the tech overload administering an influential website would like to assess whether a
new content selection algorithm increases the amount of time a typical visitor spends
watching capybara videos.

When the experiment has a real-valued outcome, we can model the response Y; of
each subject as a real-valued random variable. Since we have randomized the choice
of participants in the study, the responses (Y; : i € N) form an independent sequence.
The running average X,, = n~* 2.1, serves as an empirical estimate for the expected
response. When participants are registered sequentially, the running average provides
an evolving picture of our current estimate for the expected response.

In statistical estimation, it is also common to model the responses as i.i.d. copies
of a fixed random variable Y. In this setting, however, we may not have strong prior
knowledge about the properties of the random variable Y. Therefore, it is desirable to
develop results about the running average that hold under weak assumptions.

Monte Carlo integration

Independent sums also arise in the design of computer algorithms. Here is a basic exam-
ple that is the starting point for a very important class of techniques in computational
mathematics and statistics.

Suppose that we wish to approximate the integral /Q f du, where p is a probability
measure on Q and f € L; (u) is integrable. This problem is called numerical quadrature.
When Q = R and p is a standard distribution (e.g., Gaussian or Laplace), there are
very effective quadrature methods based on deterministic rules. On the other hand,
when Q is a high-dimensional space or p is a complicated distribution, it can be tricky
to evaluate the integral using a fixed rule. Instead, we may turn to a probabilistic
method called Monte Carlo integration.

Draw an independent sequence (Z; € Q : i € N) of random variables, each with
the distribution y. In practice, this step can be very challenging, but we shall assume
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that it has been accomplished.

For each index i € N, we compute ¥; = f(Z;). The sequence (Y; : i € N) is
independent, and the marginal distribution of Y; is the push-forward of p by the
function f. (See Problem 5.44.) Therefore, the running average of the ¥; serves as an
empirical approximation of the integral:

%=2S" v d
n= Z i=1 i~ o f K.
The question, of course, is how many samples 7 we need to approximate the integral
to a certain tolerance and with a specified probability of error. The answer depends on
both the probability measure p and the function f.

Empirical behavior of independent sums

Now that we are persuaded of the potential utility of the partial sum model, we
can start to ask how this stochastic process behaves. The independence of the
underlying sequence leads to some simple observations. We will also exhibit some
simple experiments that motivate the technical questions we will pursue.

Mean and variance

Consider a sequence (Y; : i € N) consisting of independent copies of a real random
variable Y. Form the partial sum process X,, = 2.7 ; Y; for i € Z,. Using linearity, we
quickly determine the expectation:

n .
E[X.J =Y. E[Vi]=n-E[Y] Y 200rY el

Since independent random variables are uncorrelated (Exercise 13.11), the Pythao-
gorean relation (Proposition 12.16) implies that the variance of the independent sum
is additive. We find that

Var[X;,] = Z?:l Var[Y;] = n-Var[Y] ifY € L,.

In other words, the average value of the nth partial sum Xj, is just n times the average
of the increment Y. The standard deviation of X, is just y/n times the standard
deviation stdev(Y) of the increment Y'; this is the typical scale for fluctuations around
the mean.

We remark that neither of the calculations uses the full power of the independence
assumption. To compute the mean, we do not need any assumptions beyond integra-
bility. To compute the variance, we only require mutual uncorrelation, which is far
weaker than independence. In later investigations, however, independence will play a
stronger role.

Sample paths

Probabilists use sample paths to picture the evolution of a random process. Recall that
a real random variable is a real-valued function on the sample space. Therefore, each
sample point w € Q determines the trajectory of the partial sum process for all times:
(X, (w) : n € N). A priori, the sample point is random, and so the trajectory of the
stochastic process is random. Once Tyche distinguishes a sample point wy, the entire
history of the partial sum process is sealed.

For discrete-time processes, it is convenient to illustrate the sample paths using a
piecewise linear interpolant of the discrete values. Figure 14.1 contains an illustration.

Recall that stdev(Y) :=

Var[Y].
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Figure 14.1 (Sample paths). The trajectory (X (w) : n € N) of a discrete-time random
process is a function of the sample point w € Q. The (random) trajectory is called a
sample path. You can see that different sample points w and w’ result in different
trajectories.

Figure 14.2 (Sample paths for the running average). This plot displays the first 500 time
steps of 500 sample paths of the running average X, of a series of coin flips, taking
values +1. The orange line marks the expected value: E[X}] = 0.

14.4.3 Sample paths of the running average

We can perform computer experiments to get a picture of the random distribution of
sample paths. This project requires a particular choice of distribution for the increment
Y. Let us consider Y ~ unirorMm{+1}, which we can regard as a model for a single
flip of a fair coin (+1 = heads and —1 = tails). More topically, it models a vote
in an election where each candidate is equally favored (+1 = Gryffindor and -1 =
Slytherin).

The running average X,, = n~! I, Y; is the total of the first n outcomes, relative
to the number 7 of trials. For coins, X,, is the difference between the proportion of
heads and the proportion of tails in the first 72 coin flips. For votes, X, is the difference
between the proportion of votes in favor of Gryffindor and the proportion of votes in
favor of Slytherin after n ballots have been cast.

Figure 14.2 displays the first 500 time steps of 500 random sample paths of the
running average. The orange line marks the expected value: E[X,,] = 0 for all n € N.
We can see that the collection of sample paths forms a funnel that tapers inward toward
the expectation as the time horizon 7 increases. This plot raises some questions:
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Figure 14.3 (Sample paths of the standardized sum). This plot displays the first 500
time steps of 500 sample paths of the standardized sum T, of a series of coin flips,
taking values +1. The orange line marks the expected value: E[T;;] = 0. The blue
envelope marks the long-term extreme values, as predicted by theory.

* Limits: As n — oo, it appears that most of the sample paths tend toward zero.
Does the limit of the running average indeed approach the expectation? In what
sense do we understand this limit?

* Concentration: At a given time 7, how unlikely is it to see a value of X, that
differs substantially from the expectation? What is the probability that X,, takes
a value in the typical range?

Our challenge is to produce good concentration bounds for the running average at
a given time n and to prove limit theorems as n — oo.

Sample paths of the standardized sum

By choosing an alternative scaling of the partial sum process, we can explore how
much the partial sums fluctuate around the mean value. We continue to work with the
distribution Y ~ uniForM{=1}. Observe that

Var[X,,] = Z; Var[Y;] = n.

In other words, the typical scale for fluctuations of the nth partial sum about the mean
is \/n. Therefore, we consider the standardized sum

1 n
T, = ﬁ Zi:l Y; forneN.

By construction, E[T;,] = 0 and Var[T,,] = 1. Thus, each of the standardized sums has
the same scale, and they are comparable with each other.

Figure 14.3 displays the first 500 time steps of 500 random sample paths of the
standardized sum. The orange line marks the expectation value: E[T;,] = 0 for
all n € N. We can see that the collection of sample paths quickly settle down to a
consistent profile. At a given time 7, the shade of gray reflects how many sample paths
are passing through a given value. There are more near the expectation, and fewer
farther away. The density (along a vertical line at a given time) appears to be stable as
time evolves. This plot raises some questions:

* Distribution: As n — oo, does the density of sample paths settle down to a
limiting distribution?
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* Envelope: Sample paths occasionally stray away from the bulk, taking unusually
large values. Can we quantify the extreme values that a sample path is likely to
achieve?

To answer the first question, we need to decide what it means for a sequence of
distributions to converge to another distribution. The second question has a beautiful
answer (called the law of the iterated logarithm), but it requires a delicate analysis
that we will not pursue in this class (but see Lecture 26).

Independent sums: Overview

In the last section, we have raised a number of questions about independent sums. In
this part of the class, we will develop good (but not always optimal) answers to these
questions. The investigation splits into two parts:

1. Nonasymptotic results: We will be interested in methods for describing the behavior
of a particular sum X, for a fixed value of n. These results are very useful in
practice because they apply to explicit sums that we have in our hands.

2. Asymptotic results: We will also derive information about the long-time behavior
of a rescaled sum, such as the running average X,, or the standardized sum Tj,, as
the time horizon 7 tends to infinity. These results are valuable because they are
very clean, and they provide powerful heuristics for thinking about independent
sums with many terms.

As it happens, there is a deep relationship between nonasymptotic results and
asymptotic results. Indeed, our primary strategy for proving limit laws is to establish
an appropriate result for a finite sum and take the limit. This idea is summarized in a
quotation that is attributed to Kolomogorov:

I “Behind every limit theorem is an inequality.” —A. N. Kolmogorov

Our results for independent sums share another common feature that is worth
emphasis. Because of the independence assumption, we can use simple properties of
the individual summands to derive strong conclusions about the behavior of the entire
sum. This approach is exemplified in the computation of the mean and variance in
Section 14.4.1, but it holds more widely. You can think about this idea as a kind of
“local to global” principle. It highlights the power of the independence assumption.

Problems

Exercise 14.4 (Independent sums). Let X and Y be independent, real random variables.
Suppose that X and Y have marginal laws px and py. Define the sum Z = X +Y.

1. Show that the law of Z satisfies

uz(B)=/Rl/RllB(x+y)uy(dy)

2. Deduce that the distribution function of Z satisfies

ux(dx) forall B € B(R).

Fz(a) = /RFy(a —x) ux(dx) = /RFX(a —y) uy(dy) fora e R.
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3. Now, assume that Y is a continuous random variables with density fy. Show
that Z is a continuous random variable with density

fz(a) = /Rfy(a —x) px(dx) fora € R.

Hint: Start with (1) and invoke Fubini-Tonelli (Theorem 6.23). Although you
might be tempted to differentiate the formula in (2), this approach requires a
hard technical argument.

4. Specialize the last formula to the case where both X and Y are continuous.

Exercise 14.5 (Some stable random variables). There are some very special classes of
random variables that are stable under addition. In this problem, you are invited to
confirm stability in three cases. These results can be obtained more simply using the
methods from Lecture 21.

1. Let X and Y be independent random variables with poisson(1) distributions.
Show that Z = X + Y follows the poisson(2) distribution.

2. Let X and Y be independent random variables with NorMAL(0, 1) distributions.
Show that Z = X + Y follows the NorMAL(0, 2) distribution.

3. (*) Let X and Y be independent random variables with cauchy(0, 1) distributions.
Show that Z = X + Y follows the caucuy(0, 2) distribution.

Notes

Independent sums are one of the primary objects of study in elementary probability
and in probability theory. You will find some presentation of this material in almost
any probability book that you open.
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\ 15. The Law of Large Numbers

“A-breaking rocks in the hot sun.
I fought the law, and the law won.”

—I Fought the Law by Sonny Curtis
The Crickets (1960); Bobby Fuller Four (1966); The Clash (1977)

In many contexts, we perform repeated trials of an experiment that produces a
real-valued result. The goal of this process is to observe the outcomes of experiments
so that we can make inferences about the probability distribution underlying the
sequence of outcomes. In particular, we may want to estimate the expected value of
the distribution by averaging the observed outcomes. The law of large numbers asserts
that this approach is valid.

The law of large numbers

Suppose that Y is a real random variable. Let (Y; : i € N) be independent, identical
copies of Y. Our goal is to estimate the expectation EY from the observed values
Y, v,....

A natural approach is to form the running average X,, := n~! 2.1 Y; of the first
n observations. For a fixed number 7 of observations, statisticians often call X, the
sample average. Using linearity of expectation, it is easy to see that

EX,=EY foreachn €N, provided that Y € L;.

Using additivity of variance for independent random variables, we find that

1
Var[X,,] = - Var[Y] for each n € N, provided that Y € L,.

In other words, the running average is an unbiased estimator for the expectation of Y,
and the variance of the estimator declines as the number 7 of observations increases.
These arguments suggest that the running average serves as an increasingly accurate
estimate for EY as we increase the number 7 of observations.

We would like to quantify this intuition about the long-run behavior of the running
average with a result like “X,, — EY as n — oo”. A statement of this form is called a
law of large numbers (LLN) for the running average.

There are many different kinds of LLNs for the running average. One major
dichotomy reflects the type of convergence that we establish. Weak LLNs assert that
the running average converges in probability to the expectation. Strong LLNs assert
that the running average converges almost surely to the expectation. We will elaborate
on this distinction below.

Agenda:

1

2
3.
4

. Chebyshev’s weak law

. Almost-sure convergence
Kolmogorov’s strong law
. Cantelli’s strong law


https://www.youtube.com/watch?v=NDUFBt8Ue0A
https://www.youtube.com/watch?v=OgtQj8O92eI
https://www.youtube.com/watch?v=AL8chWFuM-s
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LLNs also differ in the precise assumptions that they place on the underlying
distribution of the family (Y; : i € N). For example, some LLNs concern the case
where each of the summands follows the same distribution, while other results allow
the summands to follow dissimilar distributions. LLNs also proceed from particular
hypotheses about the integrability of the summands (e.g., L; or L), and the difficulty
of the proof is usually inverse to the strength of the assumptions.

Chebyshev’s weak law of large numbers

The weak law of large numbers (WLLN) is a limit theorem that describes the running
average of a sequence of i.i.d. copies of a random variable Y. This result tells us that
the running average X,, of the sequence provides a sequence of point estimates for the
expectation EY.

Convergence in probability
To state the result, let us introduce a new mode of convergence for random variables.

Definition 15.1 (Convergence in probability). A sequence (W, : n € N) of real random
variables converges in probability to a real random variable W when

lim P{|W, —W]|>t}=0 foreacht >0.
n—oo

Roughly, convergence in probability means that is eventually unlikely for W, to
differ from W by more than any positive threshold ¢ > 0.

Aside: Convergence in probability is closely related to convergence in L;. In
general, these two modes of convergence are incomparable. Nevertheless, under an
additional assumption that the random variables (W, : n € N) form a “uniformly
integrable” family, the two modes of convergence coincide. See Lecture 25.

Chebyshev’s variance inequality

The key to proving our first LLN is a fundamental variance inequality. This result was
originally framed by Bienaymé. Chebyshev apparently provided the first proof, and his
name is now associated with the statement. Chebyshev’s inequality controls the tail
decay of a random variable in terms of its variance. This result is a powerful tool for
studying independent sums because the variance of an independent sum is additive.

Proposition 15.2 (Chebyshev’s variance inequality). Let X € L, be a real random variable.
Then

Var[X
P{X-EX|>1) < a];[z I forans>o.
Proof. This is an instant consequence of Markov’s inequality (Theorem 10.13). [ |

The weak law

The simplest version of the WLLN follows as an immediate consequence of Chebyshev’s
inequality.

Theorem 15.3 (Chebyshev's WLLN). Let Y € L, be a real random variable, and consider
an i.i.d. sequence (Y; : i € N) of copies of Y. The running averages X, of the
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Figure 15.1 (Weak law of large numbers). The weak law of large numbers concerns the
running average X,, of an i.i.d. sequence of copies of Y. It asserts that the sample
paths of X;, converge in probability to the expectation E Y. The blue sample paths lie
within the band E[Y] + t. The red sample path has escaped from the band.

sequence converge in probability to E Y. Explicitly,
lim;, 0o P {IXn -EY| > t} =0 foreacht > 0.

The argument depends heavily on the assumption that Y € L, so that we can
compute variances.

Proof. We can apply Chebyshev’s variance inequality to the running average X, using
the calculations at the start of Section 15.1. Indeed,

- - 1
EX,=EY and Var[X,]= zVar[Y].

Invoke Proposition 15.2 to reach the bound

Var[Y]
nt?

P{|X,-EY|>1t} < for all > 0. (15.1)

Last, take the limit of (15.1) as n — oo. [ |

See Figure 15.1 for an illustration of what the WLLN means for the sample paths of
the running average. In words, we fix a level ¢ > 0 for the deviations of the running
average away from the expectation E Y. At a given time n, a large proportion (blue)
of the sample paths are likely to fall within the band E Y + £, but a small proportion
(red) may escape. As the time horizon n — oo, the proportion of paths within the
band at time n increases to 100%.

On the positive side, the proof of Theorem 15.3 is very easy. On the negative side,
the assumption that Y € L, seems unnecessarily strict (maybe Y € L; is enough?).
Furthermore, convergence in probability is not a very impressive type of convergence.
In the next section, we will discuss an improvement.

Problem 15.4 (*WLLN: Integrable distribution). Prove that the conclusion of Theorem 15.3
holds when Y € L;. Hint: For each level ¢ > 0, you can approximate the random
variable Y by a bounded random variable Yp that satisfies |Yz| < B.

Problem 15.5 (WLLN: Non-identical distributions). Formulate and prove a WLLN for the
running average that holds when the family (Y; : i € N) is not necessarily identically
distributed. What are natural assumptions on the variances?
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Exercise 15.6 (*WLLN: Pairwise independence). Show that the WLLN holds under the
weaker assumption that (Y; : i € N) is pairwise independent. That is, the pair (Y}, ¥;)
is independent for all i, j. See Warning 13.23 for a brief discussion.

Kolmogorov’s strong law of large numbers

In this section, we will discuss a better class of result, called the strong law of large
numbers (SLLN).

Almost-sure convergence

Before we can present the strong law, it is productive to elaborate on the type of
convergence involved.

Definition 15.7 (Almost-sure event). Let A € F be an event with [P(A) = 1. This kind
of event is called P-almost sure or almost sure or just a.s.

The notion of an almost-sure event in probability theory is the companion to the
notion of an almost-everywhere set in measure theory. The terminology changes to
reflect the probabilistic setting.

Of course, the certain event £ is an almost-sure event. In contrast, an almost-sure
event does not necessarily occur. We usually do not specify the probability distribution
[P when discussing almost-sure events unless it is required for clarity. The concept
leads to a mode of convergence.

Definition 15.8 (Almost-sure convergence). Consider a sequence (W, : n € N) of real
random variables defined on the same probability space (Q, %, P). We say that
W, converges almost surely to a random variable W when

P{weQ: W, (w) > W(w)}=1.

We often write W,, — W a.s. to denote this type of convergence.

In other words, for a randomly chosen sample point w, there is a 100% chance that
the associated sample path W, (w) converges to the limiting value W (w). Equivalently,
almost-sure convergence asserts that

P{weQ: W,(w)-» W(w)}=0.
We can also express this relation as
P {limsup,,_,, |W;, — W| >0} = 0.

The compact set-builder notation suppresses the role of the sample point in the last
expression.

From this relation, we can start to see that almost-sure convergence is a stronger
notion that convergence in probability. Recall that W,, — W in probability when

SUP;so limy oo P {|W,, — W] > £} = 0.

The time variable 7 and the level ¢ appear outside the probability, whereas they appear
inside for almost-sure convergence.

The limit superior is defined as
lim sup,,_,, an
= limy 00 SUp;j>p aj

=inf,en SUpj>y aj.
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Figure 15.2 (Strong law of large numbers). The strong law of large numbers concerns
the running average X, of an i.i.d. sequence of copies of Y. It asserts that the running
average converges almost surely to the expectation E Y. There is a zero probability
that a sample path fails to converge to the expectation.

Problem 15.9 (Convergence: Implications). Show that W,, — W pointwise implies that
W, — W almost surely. Show that W, — W almost surely implies W,, — W in
probability. By example, argue that neither of these implications can be reversed in
general.

The SLLN

With this preparation, we can state an optimal version of the strong law of large
numbers.

Theorem 15.10 (Kolmogorov's SLLN). Let Y € L; be a real random variable, and
consider an i.i.d. sequence (Y; : i € N) of copies of Y. The running averages

X,=n"! 1 Y; of the sequence converge almost surely to E'Y. Explicitly,
P{X, > EY}=1.

Figure 15.2 illustrates what almost-sure convergence means in this context. In
words, the probability of encountering a stray sample path that does not converge to
the expectation is zero.

A direct proof of Theorem 15.10 is delicate, and we prefer to spend our effort on
other things. You may find the argument in many textbooks on probability theory,
such as [Shig6, Sec. IV.3]. For a sketch of the proof, see Problem 15.21. We will prove
a variant (Theorem 15.11) of the SLLN later in this lecture.

Instead, let us discuss what Kolmogorov’s SLLN means. First of all, the assumption
that Y € L; is necessary to ensure that its expectation E Y is finite. Under this minimal
assumption, the result states that the running averages converge almost surely to the
expectation. For a randomly chosen sample point w € Q, there is a 100% chance
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that the sample path X,,(w) — EY. (In particular, the running averages converge in
probability because of Exercise 15.9.)

Implications of the SLLN
The SLLN has important implications for statistics and for probability theory.

The sample average estimator

First, the SLLN gives an asymptotic justification for the sample average estimator for
the population mean. Let Y be a real random variable that describes the distribution
of some variable associated with a population. Suppose that we sample 7 individuals
independently at random from the population (with replacement), and we record the
values Y; of their responses. By construction of the sample, the Y; are i.i.d. copies of Y.

For example, Y might model the number of “friends” that a member of a social
networking site has. We select n random members of the site, and we inquire about
the number Y; of “friends” that each of these individuals has.

We can estimate the population mean E Y using the sample mean X,, = n~! Y.
The SLLN tells us that, as we sample more and more individuals, we can have 100%
confidence that X,, — E Y. In other words, the SLLN gives a long-run guarantee that
the sample average estimator tends to the population mean under the weakest possible
assumption (Y € L;).

Aside: In some applications, we may encounter “heavy-tailed” random variables
that do not have an expectation. The SLLN does not apply in these cases. Potential
examples include things like the magnitude of earthquakes or the value of certain
financial assets.

Frequentist interpretation of probabilities

Second, the SLLN justifies the frequentist interpretation of probabilities. Let (Q, F, P)
be a probability space. Let A be an event with probability p = P(A). How can we
understand what this probability means? Here is one approach.

Imagine that we can perform an experiment and observe whether or not the event
A occurs. Let Y = 1 be the indicator random variable that the event occurs. Of course,
EY =P(A) =p.

Now, suppose that we can perform repeated independent trials of this experiment
and observe whether A occurs in each trial. If so, we obtain a sequence (Y; : i € N) of
i.i.d. copies of the indicator Y = 1. The running average X,, gives the proportion of
the first n trials in which the event A occurs. The SLLN states that, with probability
one, X, — EY = p. In other words, we can think about the probability p of the event
A as the long-run proportion of times that the event occurs.

Aside: Some philosophers question whether it even makes sense to talk about
repeated experiments. For example, the 2020 US presidential election only
happened one time, in all its awful glory. Does it make sense to talk about the
“probability” of an outcome of the election in the frequentist sense? Bayesians
would argue that, instead, probabilities reflect our prior assumptions, updated
based on available evidence. There is also a school of thought that probabilities
are “degrees of belief.” Other authors regard probabilities as a reflection of one’s
willingness to wager on the outcome. These debates are extra-mathematical.

Cantelli’'s SLLN

We will prove another strong law of large numbers, due to Cantelli.
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Theorem 15.11 (Cantelli's SLLN). Let Y € L4, and consider an i.i.d. sequence (Y; : i €
N) of copies of Y. Then the running average X,, — E Y almost surely.

In contrast with Kolmogorov’s SLLN (Theorem 15.10), the hypotheses of Cantelli’s
SLLN are more generous. The assumption that Y € L, allows us to give a short,
transparent proof. The approach extends the argument behind Chebyshev’s WLLN
(Theorem 15.3) by using some stronger tail bounds.

Problem 15.12 (Cantelli: Non-identical distributions). Formulate and prove a version of
Cantelli’s strong law when (Y; : i € N) are independent but may not have the same
distribution.

Exercise 15.13 (*Cantelli: Four-wise independence). Show that Cantelli’s strong law holds
when (Y; : i € N) under the weaker assumption of four-wise independence. That
is, (Y;,Y}, Yk, Yy) is independent for all indices i, j, k, £. See Warning 13.23 for some
discussion.

The lemmata of Borel & Cantelli

An important ingredient in the proof of Cantelli’s strong law is a classic result, called
the first Borel-Cantelli lemma.

Proposition 15.14 (Borel—Cantellil). Let (A, : n € N) be a sequence of events. Then
Zj_l P(A,) < +oo implies P(limsup,,_,, An) = 0.

Recall that lim sup,,_,c, Ay := ey Uisn Ai.

The limit superior, lim sup,,_,, Ay, is the event that an infinite number of the events
A, occur. The Borel-Cantelli lemma concerns the case where the total probability
>, P(A,) is finite. In this situation, with probability one, only a finite number of the
events A; occur.

Proof. This result follows when we apply Problem 5.41 to the indicator random variables
of the events. We can also give a direct proof.
Fix an index 7 € N. By definition of the limit superior and the union bound,

P(limsupn—)oc Al’l) < P(UiznAi) < Z I]:D(Al)

i>n

As n — oo, the latter sum converges to zero because the entire sequence of probabilities
is summable. [

Problem 15.15 (*Borel-Cantelli ). There is a partial converse of Proposition 15.14 under
an additional independence assumption.

1. For numbers 0 < p,, < 1, demonstrate that

nn:l(l —pn) =0 if and only if anl Pn = +00.

2. Assume that the family (A, : n € N) of events is independent. Prove the second
Borel-Cantelli lemma:

Z:l P(A;) =+oo implies P(limsup,_,.,Ay) =1.

Hint: Take complements and use the first part.
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Figure 15.3 (The funnel). At time 7 € N, a sample path X,,(w) of the running average
is very likely to lie inside the “funnel” with envelope +n~1/8

15.4.2  Proof of Cantelli’s strong law
To simplify matters, we can and will assume that the random variable Y is centered.

Exercise 15.16 (Cantelli: Centering). Prove that we can take EY = 0 without loss of
generality.

The main technical ingredient in the proof of Cantelli’s theorem is the following
claim, which we establish in Section 15.4.3.

Claim 15.17 (Cantelli: Tail bounds). Assume that EY = 0, and abbreviate M := E |Y|*.
For all n € N, we have

P{IX,| > n"V/8} <3M - n73%

In other words, as the time 7 increases, the running average X,, is increasingly
unlikely to fall outside a “funnel” around zero. See Figure 15.3. The key facts are that
the funnel narrows to zero and that the probabilities are summable over time. You
should compare this bound with the one that arises in the proof of Chebyshev’s WLLN.

Proof of Theorem 15.11. Without loss, assume that EY = 0, and grant that Claim 15.17
is valid. We must show that X,, — 0 almost surely.

For each n € N, define the event A, that the sample path (X (w) : k € N) lies
outside the “funnel” at time n. That is,

A, = {w €eQ: | X,(w)| > n_l/g}.

Claim 15.17 implies that

o] (o] -3/2
Zn:l P(A,) <3M Zn:l n < +00,

The Borel-Cantelli lemma (Proposition 15.14) yields
P(limsup,,_,, As) = 0. (15.2)

With probability one, only a finite number of the events A, occur. As a consequence,
X, — 0 almost surely.
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Here are the details. For each sample point w € 2, we can define the number
N(w) :=sup{n e N: w € A,} =sup{nla,(w) : n € N}.

In other words, N (w) is the last time 7 that the sample point w belongs to an event
A,. The function w +— N(w) is measurable because it is a countable supremum of
measurable functions. The relation (15.2) ensures that the (extended) random variable
N < +o0o0 with probability one. Furthermore,

P{we Q: N(w) <+ and |X,(w)| < n /8 forall n > N(w)} = 1.
As a particular consequence of the last display, it holds that
[P’{w eQ: [ X,(w)| — O} =1.

We conclude that X;, — 0 almost surely. [

Cantelli tail bounds: Proof
Finally, we must establish Claim 15.17. This result uses Markov’s inequality to convert
moment information into tail information, and it relies on independence to obtain a
good bound for the moment.

Assume that EY = 0, and write M := E |Y|*. Markov’s inequality (Theorem 10.13)
applied to | X, |* ensures that

P{IXal 2 078} < 02 E|Xu|* = 075 E X

where X, := )7, Y; is the (unnormalized) partial sum.
We bound the fourth moment of the partial sum by direct computation:

4 _ n
E|X,|*=E [Zi’j,k,gzl VY|

_ n 4 21,2
_Zizl[EYi +6Zi<k[E[Yi Yel
=n-EY*+3n(n-1) - (EY?)?
<n-EY*+3n(n-1)-EY* < 3n?M.

To reach the first relation, we expand the fourth power of the sum. Since the sequence
(Y; : i € N) consists of independent random variables with mean zero, the summands
with an unpaired index have expectation zero. What remains are the terms where
all indices are the same: i = j = k = £. Also remaining are the terms where
i = j < k = € or one of the other five other permutations of the letters in this
formula. By independence and identical distribution, since i < k, we can see that
[E[Yl.zYkz] = (EY?)? < EY*, where the last relation is Jensen’s inequality. Finally, we
write M := EY* and combine terms.

Problems

Problem 15.18 (Kolmogorov’'s maximal inequality). Kolmogorov improved Chebyshev’s
inequality as follows. Consider an independent family (Y3,...,Y;) of zero-mean

random variables in L. Introduce the partial sums X = Zle X, fork=1,...,n.

Then 1
P {maxp<p | Xx| =t} < 2 -Var[X,] fort > 0.

This bound is called Kolmogorov’s maximal inequality. In Lecture 26, we will develop
some far-reaching generalizations using martingale methods.

We explicitly allow N (w) = +oo.
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1. Use the union bound and Chebyshev’s inequality to obtain a (much) weaker tail
bound for maxj <, | Xk|.

2. For each k = 1,..., n, define the event E that |X;| > ¢ while |X;| < ¢ for all
J < k. Show that these events are mutually exclusive.

3. Argue that (X, — Xi) is independent from the family (Y3,...,Y:). Hence,
(X5, — Xy ) is independent from Xj and from Ej.

4. Verify that E[1g, Xk (X, — Xi)] = 0.

5. For each k = 1,... n, show that

1 1
P(Er) < 7 ElTe, Xl < 5 E[Te.X,].
6. Sum these inequalities to conclude that the maximal inequality holds.

Problem 15.19 (*Independent sums in Ly: Convergence theory). Consider an independent
sequence (Y, Y3, ¥3,...) € Ly of square-integrable random variables. We assume that
the random variables are centered and have controlled variance:

E[Y;]=0 forie N and Zjo_l Var[Y;] < +o0.

Define the partial sums X, := },"; ¥; for n € N. By direct arguments, we can show
that the partial sums converge to a limit in L, and almost surely. Later, in Lecture 25,
we will learn how to obtain the same results from a martingale argument.

1. Lo convergence: Show that (X,, : n € N) is a Cauchy sequence in L,, so it
converges to a limit in L.

2. *Almost-sure convergence: A fortiori, demonstrate that (X, : n € N) converges
almost surely. Hint: It suffices to prove that max, ,>n |Xin — X,| — 0 almost
surely as N — oo. For this purpose, you can apply the Kolmogorov maximal
inequality (Problem 15.18) to maxy <, |Xy+x — Xn| and take a limit as n — oo.

Problem 15.20 (*Kronecker's lemma). Consider two sequences (a, : n € N) and (x, :
n € N) of real numbers. Assume that 0 < a,, T +oc0. Prove the following statement:

o Xj . 1 n
Z_ — converges 1mp11es — Z x; —> 0 asn — oo.
i=1 q; an i=1

Hint: Use summation by parts.

Problem 15.21 (**Slytherins). In this problem, we will establish two versions of the strong
law of large numbers (SLLN). These results have weaker hypotheses than Cantelli’s
SLLN (Theorem 15.11), but the proofs are commensurately harder. See Lecture 25 for
some alternative approaches using martingale methods.

Consider an independent sequence (Y1, Y5, ¥3,...) € Ly of square-integrable random
variables. We assume that the random variables are centered and have controlled

variance:
Var[Y;]

l‘Z

E[Y;]=0 forie N and Zi:l < 400,
We do not assume identical distribution at this point. Define the partial sums X, :=
2 Y forneN.

1. Ly SLLN: Use Problem 15.19 to establish that )}, ¥;/i converges almost surely as
n — oo, Apply Kronecker’s lemma (Problem 15.20) to conclude that X,,/n — 0
almost surely. Formulate a SLLN for the running average of independent,
square-integrable real random variables.

The Ly SLLN is about as good as it
gets unless we make stronger
hypotheses to link the summands,
such as an i.i.d. assumption.
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2. **Kolmogorov's SLLN: Now, assume that (Y¥; : i € N) are i.i.d. copies of an
integrable random variable Y € L;. Prove Kolmogorov’s SLLN (Theorem 15.10).
Hint: Apply the L, SLLN to the truncated random variables Y; 1y, <;.

Problem 15.22 (Renewal theorem). Independent sums arise in the study of waiting times
for (real-world) events to occur, such as emission of a photon from a radioactive mass
or the completion of a task by a computer server. In this problem, we establish the
renewal theorem, a fundamental result that describes how many events occur per unit
time in the long run. This result has many practical applications (e.g., in queuing), as
well as theoretical application (e.g., in the study of Markov chains).

Let Y € L; be positive random variable that models the waiting time, and write
m = EY for the expected waiting time. Now, consider ani.i.d. sequence (Y1, Y3, ¥3,...)
of copies Y. For each time ¢ > 0, define a random variable NN; that counts the total
number of events that have occurred up to time ¢:

Ny:=sup{neN: Y1+ +---+Y, <t}

If no event has occurred by time ¢, then N; = 0. We will prove that

N; 1

— — — almost surely. (15.3)
t m

In words, in the long-run, the number of events per unit time is the reciprocal of the

wait time with probability one.

1. For each t € R, explain why N; is a (finite) real random variable.

2. As usual, define the partial sums X, := },!' ; ¥;. Explain why X,,/n — m almost
surely as n — oo.

3. Show that N; — oo almost surely as ¢ — co. Hint: For each n € N, the event
{N; = n} ={X,, <t}.

4. Deduce that

X X
Pl o and 14N
N; 1+ N

—m ast — 00} =1.
5. Verify the pair of inequalities

Xn, SL<X1+N,.
Ny, — N N;

6. Confirm that the upper and lower bounds in the last display converge almost
surely to m. Conclude that the renewal theorem (15.3) is valid.

Applications

Application 15.23 (Monte Carlo integration). Monte Carlo integration is a fundamental
computational method for approximating integrals. It is most suitable for high-
dimensional integrals and for integrals with respect to a distribution that may be hard
to sample directly. We explore the simplest form of the method.

Abstractly, suppose that pu is a probability measure on R?. Let f: R% — R be a
p-integrable function. We would like to evaluate the integral

I='/Rdfdu.
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The Monte Carlo approach proceeds by drawing independent random samples
Y1, Y5, ¥3,... from the distribution pu. Then we compute Xi = f(Y%), and we form the

approximation
i, =1 > X
n= n k=1 k-

1. For each n, show that [, is an unbiased estimator. That is, E [,, = I.

2. Use Kolmogorov’s SLLN to explain what happens as n — co. (Does Cantelli’s
SLLN apply?)

3. From now on, assume that f2 is u-integrable. Give a bound for the variance
Var[f n]. (*) Use the central limit theorem (Lecture 18) to describe the fluctuations
of the error | I, — I| as n — oo.

4. In practice, we only get a finite number of samples. For n samples, about how
big do you anticipate the error |f,, — I| will be? Does the ambient dimension d
play a direct role?

5. Explain how to use Monte Carlo integration to estimate two numerical constants
via the formulas

= 4/ 1{x* +y* <1} A*(dx xdy) = 3.14159 2653589793 23846 ..
[0,1]2

y=- / log(x) e~ A(dx) = 0.57721 56649 01532 86060. . . .
(0,00)

6. For each integral, perform the following computer experiment. Let n = 10’ for
i =1,2,3,4,5. Estimate the integral using 7 samples. Repeat 1000 times. Make
a histogram of the estimates. Report the mean and variance of the distribution.
Discuss.

7. For each integral, perform the following computer experiment. Draw 1000
samples X;. Compute the sample path 7 > I,,. Repeat this process 100 times.
Plot all 100 sample paths on the same graph with translucent lines. Discuss.

8. (*) Approximate the integral for y using Gauss-Laguerre quadrature with n = 2!
samples for i = 1, ..., 8. Estimate the convergence rate. Discuss.

Notes

You will find similar material on laws of large numbers in any book on probability
theory.
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\ 16. Concentration Inequalities

“Concentrate all your thoughts upon the work at hand. The sun’s rays do not burn
until brought to a focus.”

—Alexander Graham Bell

A concentration inequality bounds the probability that a random variable takes a
value that is significantly different from its expectation:

P{X-EX|>t}<....

Concentration inequalities are nonasymptotic: they deliver concrete information about
particular random variables, so they are well suited for applications. Indeed, con-
centration inequalities are among the most widely used tools in modern statistics,
mathematics of data science, and related fields.

In this lecture, we develop the basic theory of concentration inequalities for
independent sums. These results give very strong bounds on the tail probabilities of
an independent sum with a fixed number of terms. In many situations, we can obtain
tail bounds with exponential decay—or sometimes even better.

Example: Chebyshev’s inequality

We have already encountered the simplest concentration result. Indeed, Chebyshev’s
variance inequality provides a bound for the tail probability of a random variable in
terms of its variance.

Recall that the variance may be defined as the expected squared deviation of a
random variable from its expectation:

Var[Y] := E(Y —EY)?.

Thus, we can think about the standard deviation, stdev(Y) := y/Var[Y], as the scale
on which the random variable typically fluctuates around its expectation. Note that
the standard deviation has the same units as the random variable. We can restate
Chebyshev’s inequality as follows.

Proposition 16.1 (Chebyshev). Let X € L, be a real random variable. Then
P{|X —EX|>stdev[X] -t} <1At% forallt>O0.

Chebyshev’s inequality is a natural tool for studying a sum of mutually uncorrelated
random variables. In this case, the variance of the sum is the sum of the variances.

Agenda:

. Chebyshev’s inequality

. Exponential moments

. The Laplace transform method
. Hoeffding’s inequality

. Bernstein’s inequality

UuhWN -

Recall that A denotes the minimum of
two numbers.
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Example 16.2 (Concentration: Uncorrelated sum). Consider a family (Y3,...,Y,) € Ly of
mutually uncorrelated real random variables that are square integrable. Introduce the
ordinary sum X := ), ¥;. By the Pythagorean relation (Proposition 12.16),

n
0% = Var[X] = Zi:l Var[Y;].
Chebyshev’s inequality yields the tail bound
P{X-EX|>0-t}<1At™? fort>O0.

This is a concentration inequality for a sum of uncorrelated random variables. .

Let emphasize again that Proposition 16.2 holds whenever the summands are
mutually uncorrelated. We need neither independence nor identical distribution.
Furthermore, the standard deviation o is a natural scale for studying the deviation of
X from its expectation. On this scale, the tail probability decays at least as fast as £ 2
for all £ > 0. See Figure 16.1 for an illustration.

Example 16.3 (Concentration: Running average). As a particular example, consider an
independent sequence (Yi, Y3, ¥3,...) of copies of a random variable Y € L,. Let
X, :=n"! 1 Y; be the running average. Since independent random variables are
uncorrelated (Exercise 13.11), Example 16.2 implies that

1
<

_t_z fort > 0.

P {|X _EY|> stdev[Y] - t}
n =

Vn

A striking feature of this formulation is that the scale for concentration decreases as the
number 7 of summands grows. Making the change of variables ¢ +— #+/n, we have the
alternative expression

_ 1
P{|X, - EY| > stdev[Y] - ¢} < —5 fort>o0.
In other words, the probability of a fluctuation larger than a fixed size decreases as the
number of summands grows. .

We may summarize the key points. Chebyshev’s inequality is a concentration
inequality: it gives a bound for the probability that a random variable is far from its
expected value. For uncorrelated sums, Chebyshev’s inequality exploits the fact that
the variance is additive. The resulting bound only involves the coarsest features of the
individual summands (that is, their variances). It operates under weak assumptions
(square-integrability), and it is very easy to use.

On the other hand, Chebyshev’s inequality gives rather limited information on the
tail decay. If we want to improve, we need to pose further assumptions. In the rest of
this lecture, we will see that we can obtain much steeper concentration if we require
that the summands are independent and bounded.

Exponential moments

As we saw in Lecture 10, bounds on polynomial moments are roughly equivalent to
polynomial bounds on tail decay. In this section, we take this idea to an extreme by
introducing the concept of an exponential moment. Exponential moments provide a
way to check that the tails of a random variable decay exponentially fast.
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Figure 16.1 (Chebyshev’s inequality). This diagram depicts the bound produced by
Chebyshev’s inequality. It shows that the probability of a deviation on the scale of the
standard deviation o decays at least quadratically.

Moment and cumulant generating functions

To begin, let us introduce two functions that pack up information about the exponential
moments of a random variable.

Definition 16.4 (Mgf and cgf). Let X be a real random variable. Define the moment
generating function (mgf):

mx(6) := Ee’®  foreach 6 € R.
Define the curmulant generating function (cgf):
&x(0) :=log my (0) = logEe®  for each 6 € R.

The mgf and cgf are always defined, but they can take extended real values.

The mgf and cgf are useful only for random variables that have very rapidly decaying
tails. In particular, observe that, for an a.s. bounded random variable X € L, the
mgf my(0) and cgf &x(0) take finite values for all § € R. The mgf and cgf are
also valuable for random variables that have exponential tail decay, in which case the
generating functions may not be finite on the whole real line (Exercise 16.11).

Properties of exponential moments
Let us summarize some of the basic properties of the mgf and cgf.

Exercise 16.5 (Mgf: Convexity). Prove that my is a positive, convex function. Hint: The
mgf is an average of positive, convex functions.

Exercise 16.6 (Cgf: Shifts). Show that éx.,(60) = Ex(0) + ab for each scalar a € R.
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Problem 16.7 (Cgf: Convexity and exponential means). For simplicity, assume that X is a
bounded, nonconstant random variable. Similar results hold for random variables
whose cgf éx (0) is finite on a neighborhood of 8 = 0.

1. Observe that {x(0) = 0 without qualification.

2. Using bounded convergence, compute the first and second derivative of &x ().

3. Deduce that 3 (0) = E[X] and ¢/ (0) = Var[X].

4. (*) Prove that {x is a strictly convex function. Hint: Rewrite ¢/ () as the variance
of a nonconstant random variable related to X.

5. (*) Using Jensen’s inequality, verify that

1
(-0)
Note that limg_,q 0~ 1¢&x(0) = E[X].
6. (*) More generally, show that 8 — 0~ 1&x(6) is an increasing function. These

results support the interpretation of 01y () as an exponential mean of the
random variable X, which is a type of weighted average parameterized by 6.

1
infX < &x(-0) <EX < Eg‘X(H) <supX forO >0.

Examples

In this section, we undertake mgf and cgf calculations for some important classes
of random variables. We typically use cgfs to study the concentration of a random
variable about its mean, so it is often more natural to study the cgf of a centered
random variable.

Exercise 16.8 (Cgf: Bernoulli distribution). Let Y ~ BERNoOULLI(p) be a Bernoulli random
variable with mean p € [0, 1]. Calculate that the mgf takes the form

my(0)=1+p-(e?—1) forall 0 € R.
Deduce that cgf satisfies the bound &y (0) < p - (e? — 1) for all 6 € R.

Exercise 16.9 (Cgf: Poisson distribution). Let Y ~ poisson(f) be a Poisson random
variable with mean 8 € R,. Calculate that the cgf of the centered variable Z =Y —EY

takes the form
&(0)=eP? —BO—1 forall 0 € R.

This is an example of an unbounded random variable whose cgf is finite on the whole
real line. How fast does ¢ (6) grow as 8 — —co and as 8 — +00?

Exercise 16.10 (Cgf: Normal distribution). Let Z ~ NORMAL(0, 0?) be a centered normal
random variable with variance o2 € R,. Calculate that the cgf takes the form

26>

2
This is another example of an unbounded random variable whose cgf is finite on the

whole real line. Hint: Complete the square in the exponential, change variables, and
use the fact that the standard normal density has total mass one.

&,(0) = for all 8 € R.

Exercise 16.11 (Cgf: Exponential distribution). Let Y ~ ExPONENTIAL(3) be an exponential
random variable with mean 8 € R,. This is an example of an unbounded random
variable whose cgf is only finite on part of the real line.

1. Calculate that the cgf takes the form

&y(0) = —log(1— pO) forall 6 < 1.

Recall that a function with two
continuous derivatives is convex if
and only if the second derivative is
positive.
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2. Show that the cgf of the centered random variable Z =Y — E Y satisfies

B262/2
1- Bo;

&7(0) < forall @ < 1.

The factor $? in the numerator is the variance of Z. Hint: For 6 > 0, compare
the full Taylor series. For 6 < 0, use a second-order Taylor expansion with exact
remainder.

3. Plot the cgf ¢~ () and the upper bound. Observe that they agree to second order
at 0 =0.

Exercise 16.12 (Tails control exponential moments). Let X be a real random variable.
Suppose that there are strictly positive constants a, b > 0 for which

P{|IX| >t} <ae™® forallr>o.

Find an upper bound for myx (), and deduce that mx (0) is finite on an open interval
containing 6 = 0. Hint: Use integration by parts (Theorem 10.16).

Cumulants are additive

The cgf is an ideal tool for studying independent sums because the cgf of an independent
sum is the sum of the cgfs. This property will serve as a powerful substitute for the
additivity of the variance for an uncorrelated sum (Proposition 12.16).

Proposition 16.13 (Cgf: Additivity). Consider an independent family (Y3, ...,Y},) of real
random variables, and form the sum X = 3} ; ¥;. Then

n
myx(0) = l_[i:l my,(6) for each 6 € R.

In particular, taking logarithms,

éx(0) = Z:l:l &y, () foreach 6 € R.

Proof. This result follows from a short, magical calculation:

mx(0) =Ee™ =E[ [ ™ =[] _ Ee™=]]_ my(0).

i=1 i=1 i=1

Of course, the exponential of a sum is the product of the exponentials. Since the
family (Y; : i = 1,..., n) of random variables is independent, the expectation of a
product of functions of independent random variables is the product of the expectations
(Proposition 13.8). Since all the exponentials are positive, there are no concerns about
integrability. [ |

Exercise 16.14 (Cgf: Binomial distribution). Using Exercise 16.8 and Proposition 16.13,
deduce that the cgf of a random variable X with the BiNoMIAL(7, p) distribution
satisfies

&x(0) <np-(e?—1) forall 6 € R.

Consider the centered binomial variable Z = X — E[X]. Confirm that
£z(0) <np-(e” - 0-1).

The similarity with the Poisson cgf bound (Exercise 16.9) is no accident!
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Exercise 16.15 (Cgf: Gamma distribution). Consider the gamma random variable X ~
GAMMA( 1, B) with shape n € N and scale § € R,. Form the centered random variable
Z = X —EX. Show that the cgf satisfies

np262/2
1- 50,

Hint: When the shape parameter n is a natural number, the camma(n, 8) random
variable is a sum of i.i.d. exponential random variables with mean f3.

$z(0) < for < gL

*Generating functions

You may wonder about the “generating function” terminology. As you saw in Prob-
lem 10.23, the derivatives of the mgf at zero deliver the polynomial moments of the
random variable:

(Dmyx)(0) =EXP foreachp € Z,.

In words, my is the exponential generating function of the sequence (EX? : p € Z,)
of polynomial moments. See also Exercise 10.8.
Similarly, we define the pth cumulant x;, of the random variable to be

(DP&x)(0) =: k,(X) for each p € N.

In words, {x is the exponential generating function of the sequence (x,(X) : p € N)
of cumulants of X.

What are these cumulants? The first two are familiar: x3(X) = EX and
k2(X) = Var[X]. Higher-order cumulants are harder to write down and inter-
pret. Although cumulants are less intuitive than moments, they have a number of
algebraic properties that make them more fundamental objects. We have glimpsed
this fact in Proposition 16.13. See also Problem 16.37.

The Laplace transform method

We have used Markov’s inequality several times to obtain tail bounds when we
control polynomial moments. Chebyshev’s inequality provides one immediate example.
Likewise, we can use Markov’s inequality to obtain tail bounds when we control
exponential moments.

Tail bounds via cgfs

Let us show how to use the cumulant generating function to derive tail bounds with
exponential decay (or better!). To use this result, it suffices to have good upper bounds
on the cgf.

Theorem 16.16 (Laplace transform method). Let X be a real random variable. Then,
foreacht € R,

P{X >t} < exp (~supg.o(0