LIVING ON THE EDGE: PHASE TRANSITIONS
IN CONVEX PROGRAMS WITH RANDOM DATA

DENNIS AMELUNXEN, MARTIN LOTZ, MICHAEL B. MCCOY, AND JOEL A. TROPP

ABSTRACT. Recent research indicates that many convex optimization problems with random constraints exhibit
a phase transition as the number of constraints increases. For example, this phenomenon emerges in the ¢;
minimization method for identifying a sparse vector from random linear measurements. Indeed, the ¢, approach
succeeds with high probability when the number of measurements exceeds a threshold that depends on the sparsity
level; otherwise, it fails with high probability.

This paper provides the first rigorous analysis that explains why phase transitions are ubiquitous in random
convex optimization problems. It also describes tools for making reliable predictions about the quantitative aspects
of the transition, including the location and the width of the transition region. These techniques apply to regularized
linear inverse problems with random measurements, to demixing problems under a random incoherence model,
and also to cone programs with random affine constraints.

The applied results depend on foundational research in conic geometry. This paper introduces a summary
parameter, called the statistical dimension, that canonically extends the dimension of a linear subspace to the class
of convex cones. The main technical result demonstrates that the sequence of intrinsic volumes of a convex cone
concentrates sharply around the statistical dimension. This fact leads to accurate bounds on the probability that a
randomly rotated cone shares a ray with a fixed cone.

1. MOTIVATION

A phase transition is a sharp change in the character of a computational problem as its parameters vary.
Recent research suggests that phase transitions emerge in many random convex optimization problems
from mathematical signal processing and computational statistics; for example, see [DT09b, Sto09, OH10,
CSPW11, DGM13, MT14b]. This paper proves that the locations of these phase transitions are determined by
geometric invariants associated with the mathematical programs. Our analysis provides the first complete
account of transition phenomena in random linear inverse problems, random demixing problems, and random
cone programs.

1.1. Vignette: Compressed sensing. To illustrate our goals, we discuss the compressed sensing problem, a
familiar example where a phase transition is plainly visible in numerical experiments [DT0O9b]. Let xy € R? be
an unknown vector with s nonzero entries. Let A be an m x d random matrix whose entries are independent
standard normal variables, and suppose we have access to the vector

Z()ZAx()ERm. (11)

This serves as a model for data acquisition: we interpret zy as a collection of m independent linear mea-
surements of the unknown x;. The compressed sensing problem requires us to identify x, given only the
measurement vector zp and the realization of the measurement matrix A. When the number m of mea-
surements is smaller than the ambient dimension d, we cannot solve this inverse problem unless we take
advantage of the prior knowledge that x; is sparse.

The method of ¢; minimization [CDS01, CT06, Don06a] is a well-established approach to the compressed
sensing problem. This technique searches for the sparse unknown xy by solving the convex program

minimize |lx|l; subjectto zp= Ax, (1.2)

where | x|, := Zle |x;|. This approach is sensible because the ¢; norm of a vector can serve as a proxy for the

sparsity. We say that (1.2) succeeds at solving the compressed sensing problem when it has a unique optimal
point X and ¥ equals the true unknown xy; otherwise, it fails.
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FIGURE 1.1: The phase transition phenomenon in compressed sensing. This diagram shows the empirical
probability that the ¢; minimization method (1.2) successfully identifies a vector x, € R with s nonzero entries
given a vector zq consisting of m random measurements of the form zy = Axy where A is an m x d matrix with
independent standard normal entries. The brightness of each point reflects the observed probability of success,
ranging from certain failure (black) to certain success (white). [left] The ambient dimension d = 100. [right]
The ambient dimension d = 600.

Figure 1.1 depicts the results of a computer experiment designed to estimate the probability that (1.2)
succeeds as we vary the sparsity s of the unknown xy and the number m of random measurements. We
consider two choices for the ambient dimension, d = 100 and d = 600. For each choice of s and m, we construct
a vector xo with s nonzero entries, we draw m random measurements according to the model (1.1), and we
solve the problem (1.2). The brightness of the point (s, m) indicates the probability of success, estimated
from 50 independent trials. White represents certain success, while black represents certain failure. The
plot evinces that, for a given sparsity level s, the ¢; minimization technique (1.2) almost always succeeds
when we have an adequate number m of measurements, while it almost always fails when we have fewer
measurements. Appendix A contains more details about this experiment.

Figure 1.1 raises several interesting questions about the performance of the ¢; minimization method (1.2)
for solving the compressed sensing problem:

« What is the probability of success? For a given pair (s, m) of parameters, can we estimate the
probability that (1.2) succeeds or fails?

» Does a phase transition exist? Is there a simple curve m =y (s) that separates the parameter space
into regions where (1.2) is very likely to succeed or to fail?

« Where is the edge of the phase transition? Can we find a formula for the location of this threshold
between success and failure?

« How wide is the transition region? For a given sparsity level s and ambient dimension d, how big
is the range of m where the probability of success and failure are comparable?

« Why does the transition exist? Is there a geometric explanation for the phase transition in com-
pressed sensing? Can we export this reasoning to understand other problems?

There is an extensive body of work dedicated to these questions and their relatives. See the books [EK12, FR13]
for background on compressed sensing in general. Section 10 outlines the current state of knowledge about
phase transitions in convex optimization methods for signal processing. In spite of all this research, a complete
explanation of these phenomena is lacking. The goal of this paper is to answer the questions we have posed.
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1.2. Notation. Before moving forward, let us introduce some notation. We use standard conventions from
convex analysis, as set out in Rockafellar [Roc70]. For vectors x,y € R%, we define the Euclidean inner product
(x, yy:= Z?Zl x;y; and the squared Euclidean norm | x| := (x, x). The Euclidean distance to a set Sc R is
the function

dist(-,S) :R? =R, where dist(x,S):=inf{|x—yl:yeS}

and R, denotes the set of nonnegative real numbers. The unit ball B4 and unit sphere S9-1 in R are the sets
B? .= {xe RY: x| < 1} and gd-1.= {xe RY: x| = 1}.

An orthogonal basis U € R*¢ for R is a matrix that satisfies U U =1, where I is the identity.

A convex cone C c R? is a convex set that is positively homogeneous: C = 7C for all 7 > 0. Let us emphasize
that the vertex of a convex cone is always located at the origin. For a closed convex cone C, the Euclidean
projection Il¢(x) of a point x onto the cone returns the point in C nearest to x:

Mc(x):=argmin{|x—yl:yeC}. (1.3)
For a general cone C c R?, the polar cone C° is the set of outward normals of C:
C°:= {ueRd:(u, x)<0 forall xeC}. 1.4

The polar cone C° is always closed and convex.

We make heavy use of probability in this work. The symbol P{-} denotes the probability of an event, and E[-]
returns the expectation of a random variable. We reserve the letter g for a standard normal random vector,
i.e., a vector whose entries are independent Gaussian random variables with mean zero and variance one.
We reserve the letter 8 for a random vector uniformly distributed on the Euclidean unit sphere. The set of
orthogonal matrices forms a compact Lie group, so it admits an invariant Haar (i.e., uniform) probability
measure. We reserve the letter Q for a uniformly random orthogonal matrix, and we refer to Q as a random
orthogonal basis or a random rotation.

2. CONIC GEOMETRY AND PHASE TRANSITIONS

In the theory of convex analysis, convex cones take over the central role that subspaces perform in linear
algebra [HUL93, p. 90]. In particular, we can use convex cones to express the optimality conditions for a
convex program [HUL93, Part VII]. When a convex optimization problem includes random data, the optimality
conditions may involve random convex cones. Therefore, the study of random convex optimization problems
leads directly to questions about the stochastic geometry of cones.

This perspective is firmly established in the literature on convex optimization for signal processing
applications. Rudelson & Vershynin [RV08, Sec. 4] analyze the ¢, minimization method (1.2) for the
compressed sensing problem by examining the conic formulation of the optimality conditions. They apply
deep results [Gor85, Gor88] for Gaussian processes to bound the probability that #; minimization succeeds.
Many subsequent papers, including [Sto09, OH10, CRPW12], rely on the same argument.

In sympathy with these prior works, we study random convex optimization problems by considering the
conic formulation of the optimality conditions. In contrast, we have developed a new technical argument
to study the probability that the conic optimality conditions hold. Our approach depends on exact formulas
from the field of conic integral geometry [SW08, Chap. 6.5]. In this context, the general idea of using integral
geometry is due to Donoho [Don06b] and Donoho & Tanner [DT09a]. The specific method in this paper was
proposed in [MT14b], but we need to install additional machinery to prove that phase transitions occur.

Sections 2.1-2.4 outline the results we need from conic integral geometry, along with our contributions to
this subject. We apply this theory in Sections 2.5 and 2.6 to study some random optimization problems. We
conclude with a summary of our main results in Section 2.7.

2.1. The kinematic formula for cones. Let us begin with a beautiful and classical problem from the field of
conic integral geometry:

What is the probability that a randomly rotated convex cone shares a ray with a fixed convex
cone?

See Figure 2.1 for an illustration of the geometry. Formally, we consider convex cones C and K in R%, and we
draw a random orthogonal basis Q € R?*“, The goal is to find a useful expression for the probability

P{C N QK # {0}}.



4 D. AMELUNXEN, M. LOTZ, M. B. MCCOY, AND J. A. TROPP

QK

QK
C C

FIGURE 2.1: Randomly rotated convex cones. Let C and K be nontrivial convex cones, and let Q be a random
orthogonal basis. The cone C is fixed, and QK is a randomly rotated copy of K. [left] The two cones have a
trivial intersection. [right] The two cones share a ray.

As we will discuss, this is the key question we must answer to understand phase transition phenomena in
convex optimization problems with random data.

In two dimensions, we quickly determine the solution to the problem. Consider two convex cones C and K
in R?. If neither cone is a linear subspace, then

P{C N QK # {0}} = min{v2(C) + v2(K), 1},

where v,(-) returns the proportion of the unit circle subtended by (the closure of) a convex cone in R?. A
similar formula holds when one of the cones is a subspace. In higher dimensions, however, convex cones
can be complicated objects. In three dimensions, the question already starts to look difficult, and we might
despair that a reasonable solution exists in general.

It turns out that there is an exact formula for the probability that a randomly rotated convex cone shares a
ray with a fixed convex cone. Moreover, in d dimensions, we only need d + 1 numbers to summarize each cone.
This wonderful result is called the conic kinematic formula [SW08, Thm. 6.5.6]. We record the statement here,
but you should not focus on the details at this stage; Section 5 contains a more thorough presentation.

Fact 2.1 (The kinematic formula for cones). Let C and K be closed convex cones in R, one of which is not a
subspace. Draw a random orthogonal basis Q € R%*4. Then

d 4
P{CNQK#{0}} =) (1+(=1D"") Y vi(0)- vaysi—j(K).
i=0 j=i
For each k=0,1,2,...,d, the geometric functional vy maps a closed convex cone to a nonnegative number, called
the kth intrinsic volume of the cone.

The papers [AB12, MT14b] have recognized that the conic kinematic formula is tailor-made for studying
random instances of convex optimization problems. Unfortunately, this approach suffers a serious weakness:
We do not have workable expressions for the intrinsic volumes of a cone, except in the simplest cases. This
paper provides a way to make the kinematic formula effective. To explain, we need to have a closer look at
the conic intrinsic volumes.

2.2. Concentration of intrinsic volumes and the statistical dimension. The conic intrinsic volumes, intro-
duced in Fact 2.1, are the fundamental geometric invariants of a closed convex cone. They do not depend on
the dimension of the space in which the cone is embedded, nor on the orientation of the cone within that
space. For an analogy in Euclidean geometry, you may consider similar quantities defined for compact convex
sets, such as the usual volume, the surface area, the mean width, and the Euler characteristic [Sch93].

We will provide a more rigorous treatment of the conic intrinsic volumes in Section 5. For now, the only
formal property we need is that the intrinsic volumes of a closed convex cone C in R? compose a probability
distribution on {0,1,2,...,d}. That is,

d
Y n(C)=1 and v (C)=0 fork=0,1,2,...,d.
k=0
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FIGURE 2.2: Concentration of conic intrinsic volumes. This plot displays the conic intrinsic volumes v (C) of
a circular cone C c R'28 with angle n/6. The distribution concentrates sharply around the statistical dimension
8(C) = 32.5. See Section 3.4 for further discussion of this example.

Figure 2.2 displays the distribution of intrinsic volumes for a particular cone; you can see that the sequence
has a sharp peak at its mean value. Our work establishes a remarkable new fact about conic geometry:

For every closed convex cone, the distribution of conic intrinsic volumes concentrates sharply
around its mean value.

This result is our main technical achievement; Theorem 6.1 contains a precise statement.
Because of the concentration phenomenon, the mean value of the distribution of conic intrinsic volumes
serves as a summary for the entire distribution. This insight leads to the central definition of the paper.

Definition 2.2 (Statistical dimension: Intrinsic characterization). Let C be a closed convex cone in R%. The
statistical dimension §(C) of the cone is defined as

d
5(0):= ) kvk(C).
k=0
The statistical dimension of a general convex cone is the statistical dimension of its closure.

As the name suggests, the statistical dimension reflects the dimensionality of a convex cone. Here are some
properties that support this interpretation. First, the statistical dimension increases with the size of a cone.
Indeed, for nested convex cones C c K c R, we have the inequalities 0 < §(C) < §(K) < d. Second, the
statistical dimension of a linear subspace L always satisfies

6(L) =dim(L). (2.1)

In fact, the statistical dimension is a canonical extension of the dimension of a linear subspace to the class
of convex cones! Section 5.6 provides technical justification for the latter point, while Sections 3, 4, and 5
establish various properties of the statistical dimension.

2.3. The approximate kinematic formula. We can simplify the conic kinematic formula, Fact 2.1, by
exploiting the concentration of intrinsic volumes.

Theorem I (Approximate kinematic formula). Fix a tolerance n€ (0,1). Let C and K be convex cones in R%, and
draw a random orthogonal basis Q € R?*?. Then

S(C)+8(K)sd-aVd = P{CNQK# {0} <n;
S(C)+8(K)z2d+ayVd = P{CNQK#{0}}=1-1.

The quantity ay := \/8log(4/m). For example, apo1 <7 and ag o1 <9
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In Section 7, we derive Theorem I along with some more precise results.

Theorem I says that two randomly rotated cones are likely to share a ray if and only if the total statistical
dimension of the two cones exceeds the ambient dimension. This statement is in perfect sympathy with the
analogous result for random subspaces. We extract the following lesson:

We can assign a dimension 6(C) to each convex cone C. For problems in conic integral geometry,
the cone behaves much like a subspace with approximate dimension §(C).

In Sections 2.5 and 2.6, we use Theorem I to prove that a large class of random convex optimization problems
always exhibits a phase transition, and we demonstrate that the statistical dimension describes the location of
the phase transition.

Remark 2.3 (Gaussian process theory). If we replace the random orthogonal basis in Theorem I with a
standard normal matrix, we obtain a different problem in stochastic geometry. For the Gaussian model, we can
establish a partial analog of Theorem I using a comparison inequality for Gaussian processes [Gor85, Thm. 1.4].
Rudelson & Vershynin [RV08, Sec. 4] have used a corollary [Gor88] of this result to study the ¢; minimization
method (1.2) for compressed sensing. Many subsequent papers, including [Sto09, OH10, CRPW12], depend
on the same argument. In contrast to Theorem I, this approach is not based on an exact formula. Nor does it
apply to the random orthogonal model, which is more natural than the Gaussian model for many applications.

2.4. Calculating the statistical dimension. The statistical dimension arises from deep considerations in
conic integral geometry, and we rely on this connection to prove that phase transitions occur in random
convex optimization problems. There is an alternative formulation that is often useful for calculating the
statistical dimension of specific cones.

Proposition 2.4 (Statistical dimension: Metric characterization). The statistical dimension §(C) of a closed
convex cone C in R satisfies

8(C)=E[IMc(g)1?], (2.2)
where g € R? is a standard normal vector; |-|| is the Euclidean norm, and Il¢ denotes the Euclidean projection (1.3)
onto the cone C.

The proof of Proposition 2.4 appears in Section 5.5. The argument requires a classical result called the
spherical Steiner formula [SWO08, Thm. 6.5.1].

The metric characterization of the statistical dimension provides a surprising link between two perspectives
on random convex optimization problems: our approach based on integral geometry and the alternative
approach based on Gaussian process theory. Indeed, the formula (2.2) is closely related to the definition of
another summary parameter for convex cones called the Gaussian width; see Section 10.3 for more information.
This connection allows us to perform statistical dimension calculations by adapting methods [RV08, Sto09,
OH10, CRPW12] developed for the Gaussian width.

We undertake this program in Sections 3 and 4 to estimate the statistical dimension for several important
families of convex cones. Although the resulting formulas are not substantially novel, we prove for the first
time that the error in these calculations is negligible. Our contribution to this analysis forms a critical part of
the rigorous computation of phase transitions.

2.5. Regularized linear inverse problems with a random model. Our first application of Theorem I
concerns a generalization of the compressed sensing problem that has been studied in [CRPW12]. A linear
inverse problem asks us to infer an unknown vector x, € R? from an observed vector z, € R” of the form

2y = AX(), (23)

where A e R™*? is a matrix that describes a linear data acquisition process. When the matrix is fat (m < d),
the inverse problem is underdetermined. In this situation, we cannot hope to identify x, unless we take
advantage of prior information about its structure.

2.5.1. Solving linear inverse problems with convex optimization. Suppose that f:R% — R is a proper convex
function® that reflects the amount of “structure” in a vector. We can attempt to identify the structured
unknown xg in (2.3) by solving a convex optimization problem:

minimize f(x) subjectto zy= Ax. 2.4

1The extended real numbers R:=RU {+oo}. A proper convex function has at least one finite value and never takes the value —oco.
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FIGURE 2.3: The optimality condition for a regularized inverse problem. The condition for the regularized
linear inverse problem (2.4) to succeed requires that the descent cone 2(f,xp) and the null space null(4) do
not share a ray. [left] The regularized linear inverse problem succeeds. [right] The regularized linear inverse
problem fails.

The function f is called a regularizer, and the formulation (2.4) is called a regularized linear inverse problem.
To illustrate the kinds of regularizers that arise in practice, we highlight two familiar examples.

Example 2.5 (Sparse vectors). When the vector x, is known to be sparse, we can minimize the ¢; norm to
look for a sparse solution to the inverse problem. Repeating (1.2), we have the optimization

minimize |lx|l; subjectto zp= Ax. (2.5)
This approach was proposed by Chen et al. [CDS01], motivated by work in geophysics [CM73, SS86].

Example 2.6 (Low-rank matrices). Suppose that Xj is a low-rank matrix, and we have acquired a vector of
measurements of the form z; = &7 (Xy), where &/ is a linear operator. This process is equivalent with (2.3).
We can look for low-rank solutions to the linear inverse problem by minimizing the Schatten 1-norm:

minimize || X|ls, subjectto zy=.(X). (2.6)
This method was proposed in [RFP10], based on ideas from control [MP97] and optimization [Faz02].

We say that the regularized linear inverse problem (2.4) succeeds at solving (2.3) when the convex program
has a unique minimizer ¥ that coincides with the true unknown; that is, X = x9. To develop conditions for
success, we introduce a convex cone associated with the regularizer f and the unknown x.

Definition 2.7 (Descent cone). The descent cone 2(f,x) of a proper convex function f:R? — R at a point
x € R is the conic hull of the perturbations that do not increase f near x.

2(f,x):=J{yeR?: fx+71y) < f)}.
>0
The descent cones of a proper convex function are always convex, but they may not be closed. The descent
cones of a smooth convex function are always halfspaces, so this concept inspires the most interest when the
function is nonsmooth.
To characterize when the optimization problem (2.4) succeeds, we write the primal optimality condition in
terms of the descent cone; cf. [RV08, Sec. 4] and [CRPW12, Prop. 2.1].

Fact 2.8 (Optimality condition for linear inverse problems). Let f be a proper convex function. The vector xy is
the unique optimal point of the convex program (2.4) if and only if 2(f, xp) Nnnull(A) = {0}.

Figure 2.3 illustrates the geometry of this optimality condition. Despite its simplicity, this result forges a
crucial link between the convex optimization problem (2.4) and the theory of conic integral geometry.
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2.5.2. Linear inverse problems with random data. Our goal is to understand the power of convex regularization
for solving linear inverse problems, as well as the limitations inherent in this approach. To do so, we consider
the case where the measurements are generic. A natural modeling technique is to draw the measurement
matrix A at random from the standard normal distribution on R™*4. In this case, the kernel of the matrix A is
a randomly oriented subspace, so the optimality condition, Fact 2.8, requires us to calculate the probability
that this random subspace does not share a ray with the descent cone.

The kinematic formula, Fact 2.1, gives an exact expression for the probability that (2.4) succeeds under the
random model for A. By invoking the approximate kinematic formula, Theorem I, we reach a simpler result
that allows us to identify a sharp transition in performance as the number m of measurements varies.

Theorem II (Phase transitions in linear inverse problems with random measurements). Fix a tolerance
n€(0,1). Let xy € R? be a fixed vector, and let f:R? — R be a proper convex function. Suppose A€ R™ % has
independent standard normal entries, and let zy = Axy. Then

m<6(2(f, %)) — an\/ﬁ = (2.4) succeeds with probability <n;
m=6(2(f, %)) + an\/ﬁ = (2.4) succeeds with probability =1-n.

The quantity ay := /8log(4/mn).

Proof. The standard normal distribution on R™*4 is invariant under rotation, so the null space L = null(A)
is almost surely a uniformly random (d — m)-dimensional subspace of R?. According to (2.1), the statistical
dimension §(L) = d — m almost surely. The result follows immediately when we combine the optimality
condition, Fact 2.8, and the kinematic bound, Theorem I. O

Under minimal assumptions, Theorem II proves that we always encounter a phase transition when we
use the regularized formulation (2.4) to solve the linear inverse problem with random measurements. The
transition occurs where the number of measurements equals the statistical dimension of the descent cone:
m = 8(2(f, x0)). The shift from failure to success takes place over a range of about O(vV'd) measurements.

Here is one way to think about this result. We cannot identify x, € R from the observation z, € R” by
solving the linear system Ax = zy because we only have m equations. Under the random model for A, the
regularization in (2.4) effectively adds d — §(2(f,xo)) more equations to the system. Therefore, we can
typically recover xo when m = §(2(f,xo)). This interpretation accords with the heuristic that the statistical
dimension measures the dimension of a cone.

There are several reasons that the conclusions of Theorem II are significant. The first implication provides
evidence about the minimum amount of information we need before we can use the convex method (2.4) to
solve the linear inverse problem. The second implication tells us that we can solve the inverse problem reliably
once we have acquired this quantum of information. Furthermore, Theorem II allows us to compare the
performance of different regularizers because we know exactly how many measurements each one requires.

Remark 2.9 (Prior work). A variant of the success condition m = §(2(f, %)) + O(Vd) from Theorem II already
appears in the literature [CRPW12, Cor. 3.3(1)]. This result depends on the argument of Rudelson &
Vershynin [RV08, Sec. 4], which uses the “escape from the mesh” theorem [Gor88] to verify the optimality
condition, Fact 2.8, for the optimization problem (2.4). There is some evidence that the success condition
accurately describes the performance limit for (2.4) with random measurements. Stojnic [Sto09] presents
analysis and experiments for the ¢; norm, while Oymak & Hassibi [OH10] study the Schatten 1-norm. Results
from [DMMO09b, Sec. 17] and [BLM13a] imply that Stojnic’s calculation is asymptotically sharp.

Nevertheless, the prior literature offers no hint that the statistical dimension determines the location of
the phase transition for every convex regularizer. In fact, we can derive a variant of the failure condition
from Theorem II by supplementing Rudelson & Vershynin’s approach with a polarity argument. A similar
observation appeared in Stojnic’s paper [Stol13] after our work was released.

2.5.3. Computer experiments. We have performed some computer experiments to compare the theoretical
and empirical phase transitions. Figure 2.4[left] shows the performance of (2.5) for identifying a sparse
vector in R'% from random measurements. Figure 2.4[right] shows the performance of (2.6) for identifying a
low-rank matrix in R3°*3% from random measurements. In each case, the heat map indicates the observed
probability of success with respect to the randomness in the measurement operator. The 5%, 50%, and 95%
success isoclines are calculated from the data. We also draft the theoretical phase transition curve, promised
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FIGURE 2.4: Phase transitions for regularized linear inverse problems. [left] Recovery of sparse vectors.
The empirical probability that the ¢; minimization problem (2.5) identifies a sparse vector xy € RI% given
random linear measurements zy = Axy. [right] Recovery of low-rank matrices. The empirical probability that
the S; minimization problem (2.6) identifies a low-rank matrix X, € R30%30 given random linear measurements
zo = </ (Xp). In each panel, the heat map indicates the empirical probability of success (black = 0%; white =
100%). The yellow curve marks the theoretical prediction of the phase transition from Theorem II; the red curve
traces the 50% success isocline calculated from the data.

by Theorem II, where the number m of measurements equals the statistical dimension of the appropriate
descent cone; the statistical dimension formulas are drawn from Sections 4.3 and 4.4. See Appendix A for the
experimental protocol.

In both examples, the theoretical prediction of Theorem II coincides almost perfectly with the 50% success
isocline. Furthermore, the phase transition takes place over a range of O(vd) values of m, as promised.
Although Theorem II does not explain why the transition region tapers at the bottom-left and top-right
corners of each plot, we have established a more detailed version of Theorem I that allows us to predict this
phenomenon as well; see Section 7.1.

2.6. Demixing problems with a random model. In a demixing problem [MT14b], we observe a superposi-
tion of two structured vectors, and we aim to extract the two constituents from the mixture. More precisely,
suppose that we have acquired a vector z; € R? of the form

zo=x0+Uyp (27)

where x, yo € R? are unknown and U € R%*¢ is a known orthogonal matrix. If we wish to identify the pair
(%0, ¥0), we must assume that each component is structured to reduce the number of degrees of freedom.
In addition, if the two types of structure are coherent (i.e., aligned with each other), it may be impossible
to disentangle them, so it is expedient to include the matrix U to model the relative orientation of the two
constituent signals.

2.6.1. Solving demixing problems with convex optimization. Suppose that f and g are proper convex functions
on RY that promote the structures we expect to find in x, and yo. Then we can frame the convex optimization
problem

minimize f(x) subjectto g(y)<g(y) and zy=x+Uy. (2.8)
In other words, we seek structured vectors x and y that are consistent with the observation zy. This
approach requires the side information g(yy), so a Lagrangian formulation is sometimes more natural in
practice [MT14b, Sec. 1.2.4]. Here are two concrete examples of the demixing program (2.8) that are adapted
from the literature.
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xo—UZ(g,y0) (x:gWT(z0-x)) = gyo)}

{x:g(UT (20— x)) < g(yo)}

~—

{x: f(x) = f(x)} {x: f(x) = f(x)}

xo+ 2(f, x0) xo+ 2(f, x0)

FIGURE 2.5: The optimality conditions for convex demixing. The condition for the convex demixing prob-
lem (2.7) to succeed requires that the cones 2(f,xp) and —U2(g, yp) do not share a ray. [left] The convex
demixing method succeeds. [right] The convex demixing method fails.

Example 2.10 (Sparse + sparse). Suppose that the first signal x, is sparse in the standard basis, and the
second signal Uy is sparse in a known basis U. In this case, we can use ¢; norms to promote sparsity, which
leads to the optimization

minimize |lx]; subjectto |yl <llyol; and zo=x+Uy. 2.9

This approach for demixing sparse signals is sometimes called morphological component analysis [SDCO3,
SEDO5, ESQDO05, BMS06].

Example 2.11 (Low-rank + sparse). Suppose that we observe Z; = X+ % (Yp) where Xj is a low-rank matrix,
Yy is a sparse matrix, and % is a known orthogonal transformation on the space of matrices. We can minimize
the Schatten 1-norm to promote low rank, and we can constrain the ¢; norm to promote sparsity. The
optimization becomes

minimize [ X|ls, subjectto [Y|;<[Y%l; and Zy=X+%(Y). (2.10)
This demixing problem is called the rank—sparsity decomposition [CSPW11].

We say that the convex program (2.8) for demixing succeeds when it has a unique solution (%,y) that
coincides with the vectors that generate the observation: (%,¥) = (xo, o). As in the case of a linear inverse
problem, we can express the primal optimality condition in terms of descent cones; cf. [MT14b, Lem. 2.4].

Fact 2.12 (Optimality condition for demixing). Let f and g be proper convex functions. The pair (xo, yo) is the
unique optimal point of the convex program (2.8) if and only if 2(f,x9) N (-U2(g, yo)) = {0}

Figure 2.5 depicts the geometry of this optimality condition. The parallel with Fact 2.8, the optimality
condition for a regularized linear inverse problem, is striking. Indeed, the two conditions coalesce when the
function g in (2.8) is the indicator of an appropriate affine space. This observation shows that the regularized
linear inverse problem (2.4) is a special case of the convex demixing problem (2.8).

2.6.2. Demixing with a random model for coherence. Our goal is to understand the prospects for solving the
demixing problem with a convex program of the form (2.8). To that end, we use randomness to model the
favorable case where the two structures do not interact with each other. More precisely, we choose the matrix
U to be a random orthogonal basis. Under this assumption, Theorem I delivers a sharp transition in the
performance of the optimization problem (2.8).
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Theorem III (Phase transitions in convex demixing with a random coherence model). Fix a tolerance n € (0,1).
Let xo and yy be fixed vectors in R%, and let f:R? — R and g :R% — R be proper convex functions. Draw a random
orthogonal basis U € R%*4, and let zy = xo + Uyy. Then

5(2(f,%0))+6(2(g,y0))=d+ an\/ﬁ = (2.8) succeeds with probability <n;
8(2(f, %)) +6(2(g y0)) <d-ayVd = (2.8) succeeds with probability =1-1.

The quantity a,:=+/8log(4/n).

Proof. This theorem follows immediately when we combine the optimality condition, Fact 2.12, with the
kinematic bound, Theorem I. To simplify the formulas, we invoke the rotational invariance of the statistical
dimension, which follows from either Definition 2.2 or Proposition 2.4. O

Under minimal assumptions, Theorem III establishes that there is always a phase transition when we use
the convex program (2.8) to solve the demixing problem under the random model for U. The optimization is
effective if and only if the total statistical dimension of the two descent cones is smaller than the ambient
dimension d.

2.6.3. Computer experiments. Our numerical work confirms the analysis in Theorem III. Figure 2.6[left]
shows when (2.9) can demix a sparse vector from a vector that is sparse in a random basis U for R,
Figure 2.6[right] shows when (2.10) can demix a low-rank matrix from a matrix that is sparse in a random
basis % for R3%*35, In each case, the experiment provides an empirical estimate for the probability of success
with respect to the randomness in the coherence model. We display the 5%, 50%, and 95% success isoclines,
calculated from the data. We also sketch the theoretical phase transition from Theorem III, which occurs when
the total statistical dimension of the relevant cones equals the ambient dimension; the statistical dimensions
of the descent cones are obtained from the formulas in Sections 4.3 and 4.4. See [MT14b, Sec. 6] for the
details of the experimental protocol.

Once again, we see that the theoretical curve of Theorem III coincides almost perfectly with the empirical
50% success isocline. The width of the transition region is O(v/d). Although Theorem III does not predict the
tapering of the transition in the top-left and bottom-right corners, the discussion in Section 7.1 exposes the
underlying reason for this phenomenon.

2.7. Contributions. It takes a substantial amount of argument to establish the existence of phase transitions
and to calculate their location for specific problems. Some parts of our paper depend on prior work, but much
of the research is new. We conclude this section with a summary of our contributions. Section 10 contains a
detailed discussion of the literature; additional citations appear throughout the presentation.

This paper contains foundational research in conic integral geometry:

o We define the statistical dimension as the mean value of the distribution of intrinsic volumes, and we
argue that the statistical dimension canonically extends the linear dimension of a subspace to the
class of convex cones. (Definition 2.2 and Section 5.6)

« We demonstrate that the metric characterization of the statistical dimension coincides with the
intrinsic characterization, and we use this connection to establish some properties of the statisti-
cal dimension. The statistical dimension is also related to the Gaussian width. (Definition 2.2,
Proposition 2.4, Proposition 3.1, Proposition 5.12, and Proposition 10.2)

« We prove that the distribution of intrinsic volumes of a convex cone concentrates sharply about the
statistical dimension of the cone. (Theorem 6.1)

e The concentration of intrinsic volumes leads to an approximate version of the kinematic formula for
cones. This result uses the statistical dimension to bound the probability that a randomly rotated
cone shares a ray with a fixed cone. (Theorem I and Theorem 7.1)

Building on this foundation, we establish a number of applied results concerning phase transition phenom-
ena in convex optimization problems with random data:

e We prove that a regularized linear inverse problem with random measurements must exhibit a
phase transition as the number of random measurements increases. The location and width of the
transition are controlled by the statistical dimension of a descent cone. Our work confirms and
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FIGURE 2.6: Phase transitions for convex demixing. [left] Sparse + sparse. The empirical probability that
the convex program (2.9) successfully demixes a vector xo € R!%0 that is sparse in the standard basis from a vector
Uy, € R190 that is sparse in the random basis U. [right] Low rank + sparse. The empirical probability that the
convex program (2.10) successfully demixes a low-rank matrix X € R3°*3% from a matrix % (¥p) € R3°*3% that is
sparse in the random basis 7. In each panel, the heat map indicates the empirical probability of success (black
= 0%; white = 100%). The yellow curve marks the theoretical phase transition predicted by Theorem III. The
red curve follows the empirical phase transition.

extends the earlier analyses based on polytope angles [Don06a, DT09a, KXAH11, XH12] and those
based on Gaussian process theory [RV08, Sto09, OH10, CRPW12]. (Theorem II, Theorem 7.1, and
Proposition 9.1)

« The paper [MT14b] proposes convex programming methods for decomposing a superposition of two
structured, randomly oriented vectors into its constituents. We prove that these methods exhibit a
phase transition whose properties depend on the total statistical dimension of two descent cones.
This work confirms a conjecture [MT14b, Sec. 4.2.2] about the existence of phase transitions in these
problems. (Theorem III and Theorem 7.1)

e The work [AB12] studies cone programs with random affine constraints. Building on this analysis, we
show that a cone program with random affine constraints displays a phase transition as the number
of constraints increases. We can predict the transition using the statistical dimension of the cone.
(Theorem 8.1)

« Section 4 contains a recipe for estimating the statistical dimension of a descent cone. The approach
is based on ideas from [CRPW12, App. C], but we provide the first proof that it delivers accurate
estimates. This result rigorously explains why the bounds computed in [Sto09, OH10] closely match
observed phase transitions. (Theorem 4.3 and Propositions 4.5 and 4.7)

e The approximate kinematic formula also delivers information about the probability that a face of a
polytope maintains its dimension under a random projection. This argument clarifies the connection
between the polytope-angle approach to random linear inverse problems and the approach based on
Gaussian process theory. (Section 10.1.1)

As an added bonus, we provide the final ingredient needed to resolve a series of conjectures [DMMO09a,
DJM13, DGM13] about the coincidence between the minimax risk of denoising and the location of phase
transitions in linear inverse problems. Indeed, Oymak & Hassibi [OH13] have recently shown that the
minimax risk is equivalent with the statistical dimension of an appropriate cone, and our results prove that
the phase transition occurs at precisely this spot. See Section 10.4 for further details.
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3. CALCULATING THE STATISTICAL DIMENSION

Section 2 demonstrates that the statistical dimension is a fundamental quantity in conic integral geometry.
Through the approximate kinematic formula, Theorem I, the statistical dimension drives phase transitions in
random linear problems and random demixing problems. A natural question, then, is how we can determine
the value of the statistical dimension for a specific cone.

This section explains how to compute the statistical dimension directly for a few basic cones. In Section 3.1,
we present some useful properties of the statistical dimension. Sections 3.2-3.5 contain some example
calculations, in increasing order of difficulty. See Table 3.1 for a summary. We discuss general descent cones
later, in Section 4.

3.1. Basic facts about the statistical dimension. The statistical dimension has a number of valuable
properties. These facts provide useful tools for making computations, and they strengthen the analogy
between the statistical dimension of a cone and the linear dimension of a subspace.

Proposition 3.1 (Properties of statistical dimension). Let C be a closed convex cone in RY. The statistical
dimension obeys the following laws.

(1) Intrinsic formulation. The statistical dimension is defined as
6(C):=kfbkvk(C) (3.1
where vy,..., v denote the conic intrinsic volumes. (See Section 5.1.)
(2) Gaussian formulation. The statistical dimension satisfies
5(C)=E[IMc(g)?] where g ~ NORMAL(O,1,). (3.2)
(3) Spherical formulation. An equivalent expression is
8(C)=dE[IMc@)?] where @ ~UNIFORM(S4™Y). (3.3)
(4) Polar formulation. The statistical dimension can be expressed in terms of the polar cone:
5(C) =E[dist*(g, C)]. (3.4
(5) Mean-squared-width formulation. Another alternative formulation reads
8(C)=E[(sup,ccnpa (¥, )°] where g ~ NORMAL(0,1,). (3.5)
(6) Rotational invariance. The statistical dimension does not depend on the orientation of the cone:
S(UC)=68(C) for each orthogonal matrix U € R4, (3.6)

(7) Subspaces. For each subspace L, the statistical dimension satisfies (L) = dim(L).
(8) Complementarity. The sum of the statistical dimension of a cone and that of its polar equals the ambient
dimension:
6(C)+6(C°) =d. 3.7)
This generalizes the property dim(L) + dim(L") = d for each subspace L c R,
(9) Direct products. For each closed convex cone K c R?,
6(CxK)=56(C)+6(K). (3.8)
In particular, the statistical dimension is invariant under embedding:
5(Cx1{041)=6(0).
The relation (3.8) generalizes the rule dim(L x M) = dim(L) + dim(M) for linear subspaces L and M.
(10) Monotonicity. For each closed convex cone K c R%, the inclusion C c K implies that §(C) < §(K).
We verify the equivalence of the intrinsic volume formulation (3.1) and the metric formulation (3.2) below
in Proposition 5.12. It is possible to establish the remaining facts on the basis of either (3.1) or (3.2). In

Appendix B.4, we use the metric characterization (3.2) to prove the rest of the proposition. Many of these
elementary results have appeared in [Sto09, CRPW12] in a slightly different form.



14 D. AMELUNXEN, M. LOTZ, M. B. MCCOY, AND J. A. TROPP

TABLE 3.1: The statistical dimensions of some convex cones.

Cone Notation Statistical dimension Location
The nonnegative orthant R4 1d Sec. 3.2
The second-order cone L4+l 3d+1) Sec. 3.2
Symmetric positive- s Ln(n+1) Sec. 3.2
semidefinite matrices

Descent cone of the ¢ norm . DU oo, %) d-1s Sec. 3.3
at an s-saturated vector x in R

Circular cone in R? of angle a Circy(a) dsin®(a) + O(1) Sec. 3.4

ini i log(d) + O(1

Chambers of finite reflection Cy og(d) (1 Sec. 3.5

groups acting on R? Ce 3log(d) +0(1)

3.2. Self-dual cones. We say that a cone C is self-dual when C° = —C. Self-dual cones are ubiquitous in the
theory and practice of convex optimization. Here are three important examples:

(1) The nonnegative orthant. The cone [R%j'f ={xe R4:x;=0fori= 1,...,d} is self-dual.

(2) The second-order cone. The cone L4*! := {(x,7) € R x| < 7} is self-dual. This example is
sometimes called the Lorentz cone or the ice-cream cone.

(3) Symmetric positive-semidefinite matrices. The cone $7*":={X € R;’y}’f : X = 0} is self-dual, where
the curly inequality denotes the semidefinite order. Note that the linear space Ry of nx n symmetric
matrices has dimension %n(n +1).

For a self-dual cone, the computation of the statistical dimension is particularly simple; cf. [CRPW12, Cor. 3.8].
The first three entries in Table 3.1 follow instantly from this result.
Proposition 3.2 (Self-dual cones). Let C be a self-dual cone in R%. The statistical dimension 6(C) = %d.

Proof. Just observe that §(C) = 1[6(C) +6(C°)] = $d. The first identity holds because of the self-dual property
of the cone and the rotational invariance (3.6) of statistical dimension. The second equality follows from the
complementarity law (3.7). O

3.3. Descent cones of the ¢, norm. Recall that the ¢, norm of a vector x € R? is defined as

.....

The descent cones of the /., norm have a simple form that allows us to calculate their statistical dimensions
easily. We have drawn this analysis from [McC13, Sec. 6.2.4]. Variants of this result drive the applications
in [DT10a, JFF12]. Section 4 develops a method for studying more general types of descent cones.

Proposition 3.3 (Descent cones of the £, norm). Consider an s-saturated vector x € R%; that is,
#{i:|xil = |xloo} =5 wherel<s=<d.

Then
Do, %) =d - %S.

Proof sketch. The ¢, norm is homogeneous and invariant under signed permutation, so we may assume that
the s-saturated vector x € R% takes the form

x=01,...,1,Xs41,...,x5)T where 1> x5, =-+-=x43=0.
The descent cone of the ¢, norm at the vector x can be written as
D(I-loo, ) = (—RS) x RE™S,
We may now calculate the statistical dimension:
82, %) =6(RS) +6(R) = s+ (d-s)=d - 1s.
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FIGURE 3.1: Normal cone at the vertex of a permutahedron. The signed permutahedron £, (x) generated
by [left] the vector x = (3,—1) and [right] the vector x = (3,—2). In each panel, the darker cone is the normal
cone A (P4 (x),x), and the lighter cone is its polar. Note that the normal cone does not depend on the generator
x provided that the entries of x are distinct.

The first identity follows from the direct product law (3.8) and the rotational invariance (3.6) of the statistical
dimension. The next relation depends on the rule for subspaces and the calculation of the statistical dimension
of the nonnegative orthant from Section 3.2. O

3.4. Circular cones. The circular cone Circy(a) in R? with angle 0 < a < 7 is defined as
Circy(a) := {x e R : x; = || x| cos(a)}.

In particular, the cone Circy (%) is isometric to the second-order cone L. Circular cones have numerous

applications in optimization; we refer the reader to [BV04, Sec. 4], [BTNO1, Sec. 3], and [AG03] for details.
We can obtain an accurate expression for the statistical dimension of a circular cone by expressing the

spherical formulation (3.3) in spherical coordinates and administering a dose of asymptotic analysis.

Proposition 3.4 (Circular cones). The statistical dimension of a circular cone satisfies
8(Circy(@)) = dsin®(a) + O(1). (3.9)
The error term is approximately equal to cos(2a). See Figure 4.1[left] for a plot of (3.9).

Turn to Appendix D.1 for the proof, which seems to be novel. Even though the formula in Proposition 3.4
is simple, it already gives an excellent approximation in moderate dimensions. See [MT14a, Sec. 6.3]
or [MHWG13] for refinements of Proposition 3.4 that appeared after our work.

3.5. Normal cones of a permutahedron. We close this section with a more sophisticated example. The

(signed) permutahedron generated by a vector x € R? is the convex hull of all (signed) coordinate permutations
of the vector:

2 (x):=conv{o(x): 0 a coordinate permutation} (3.10)

P, (x) :=conv{o(x): 0 asigned coordinate permutation}. (3.11D)

A signed permutation permutes the coordinates of a vector and may change the sign of each coordinate. The

normal cone ¥ (E, x) of a convex set E c R at a point x € E consists of the outward normals to all hyperplanes
that support E at x, i.e.,

N(E, x) := {sele:<s, y-x)<0 forall yeE}. (3.12)
Figure 3.1 displays two signed permutahedra along with the normal cone at a vertex of each one.
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We can develop an exact formula for the statistical dimension of the normal cone of a nondegenerate
permutahedron. In Section 9, we use this calculation to study a signal processing application proposed
in [CRPW12, p. 812].

Proposition 3.5 (Normal cones of permutahedra). Suppose that x is a vector in R? with distinct entries. The
statistical dimension of the normal cone at a vertex of the (signed) permutahedron generated by x satisfies

(N (P (x),x)=Hy and &6(N(P:(x),x)=3Ha,
where Hy := Z?:I i~! is the dth harmonic number.

The proof of Proposition 3.5 appears in Appendix D.4. The argument relies on the intrinsic formulation (3.1)
of the statistical dimension, and it illustrates some deep connections between conic geometry and classical
combinatorics.

4. THE STATISTICAL DIMENSION OF A DESCENT CONE

Theorems II and III allow us to locate the phase transition for a class of convex optimization problems with
random data. To apply these results, however, we must be able to compute the statistical dimension for the
descent cone of a convex function. In this section, we describe a recipe that delivers an accurate estimate for
the statistical dimension of a descent cone.

In Section 4.1, we explain how to obtain an upper bound for the statistical dimension of a descent cone.
Section 4.2 provides an error estimate for this method. In Sections 4.3 and 4.4, we apply these ideas to study
the descent cones of the £; norm and the Schatten 1-norm.

4.1. A recipe for the statistical dimension of a descent cone. There is an elegant way to obtain an upper
bound for the statistical dimension of a descent cone of a convex function. Recall that the subdifferential 4 f (x)
of a proper convex function f:R% — R at a point x € R is the closed convex set

afx):={seR?: f(y) = f(x) + (s, y—x) forall yeR}.

There is a classical duality between descent cones and subdifferentials [Roc70, Chap. 23]. As a conse-
quence, we can convert questions about the statistical dimension of a descent cone into questions about the
subdifferential.

Proposition 4.1 (The statistical dimension of a descent cone). Let f:R% — R be a proper convex function, and
let x € R%. Assume that the subdifferential 0 f(x) is nonempty, compact, and does not contain the origin. Define
the function

J(¥):=J(z; 0f (x)) :=E[dist* (g,7-0f(x))] forT=0 4.1)
where g ~ NORMAL(0,I). We have the upper bound
5(2(f,x) < ing J(T). 4.2)
T=

Furthermore, the function ] is strictly convex, continuous at T =0, and differentiable for T = 0. It achieves its
minimum at a unique point.

Proof. The inequality (4.2) generalizes some specific arguments from [CRPW12, App. C], and it is easy to
establish. We use the polarity relation (3.4) to compute the statistical dimension:

dist? (g, U T-df(x))

720

8(2(f,%)=6(2(f,0)°) =E[dist* (g,2(f,x)°)] =E

:[E[irzlg dist? (g,r-@f(x))].

Indeed, the statistical dimension of the descent cone equals the statistical dimension of its closure, which
can be expressed as a double polar. The second identity uses (3.4) and the fact that polarity is an involution
on closed convex cones. The third identity follows from the fact that, under our technical assumptions, the
polar of the descent cone is the cone generated by the subdifferential [Roc70, Cor. 23.7.1]; see Appendix B.1
for details. The last identity holds because the distance to a union is the infimal distance to any one of its
members. To reach (4.2), we pass the expectation through the infimum.

The analytic properties of the function J are new, and they demand substantial effort. Lemma C.2 in
Appendix C.1 contains the proof of the remaining claims. |
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RECIPE 4.1: The statistical dimension of a descent cone.

Assume that f:R? — R is a proper convex function and x € R¢
Assume that the subdifferential 0 f (x) is nonempty, compact, and does not contain the origin

(1) Identify the subdifferential S=4f(x).

(2) For each 7 =0, compute (1) =E[dist*(g,785)].

(3) Find the unique solution, if it exists, to the stationary equation J'(r) = 0.
(4) If the stationary equation has a solution 7, then §(2(f,x)) < J (7).

(5) Otherwise, the bound is vacuous: §(2(f,x)) < J(0) =d.

Proposition 4.1 suggests a method for studying the statistical dimension of a descent cone: Minimize the
function J by setting its derivative to zero. We formalize this approach in Recipe 4.1. In Section 4.3 and 4.4,
we discuss some examples where this recipe is provably effective.

Remark 4.2 (Prior work). Rudelson & Vershynin [RV08, Sec. 4] established a bound for the Gaussian width
of the descent cone of the ¢; norm at a sparse vector using a geometric argument. Stojnic [Sto09] obtained a
substantial refinement of this estimate using linear programming duality. Oymak & Hassibi [OH10] developed
a related method to study the descent cone of the Schatten 1-norm at a low-rank matrix. The paper [CRPW12,
App. C] clarifies the calculations of Stojnic and Oymak & Hassibi using geometric polarity arguments. The
result (4.2) extends the latter approach to a general convex function.

4.2. An error estimate for the descent cone recipe. The papers [Sto09, OH10] contain computational
evidence that the ideas behind Recipe 4.1 lead to accurate upper bounds in some special cases. Among the
major contributions of this paper is an error estimate that explains why the descent cone recipe works so
well. This result is an essential ingredient in our method for locating the phase transition of a random convex
program. Indeed, we need this theorem to ensure that we can calculate the statistical dimension of a descent
cone correctly.

Theorem 4.3 (Error bound for descent cone recipe). Let f be a norm on R%, and fix a nonzero point x € R%.

Then
2sup{lsl:sedf(x)}

f/ ’ 4.3)

0= (}23 J@; 0f () -5(2(f,%) <
where the function J is defined in (4.1).

The proof of Theorem 4.3 is technical in nature, so we defer the details to Appendix C.2. The application of
this result requires some care because many different vectors x can generate the same subdifferential 0 f (x)
and hence the same descent cone 2(f, x). From this class of vectors, we ought to select one that maximizes
the value f(x/|xll).

Remark 4.4 (Related work). In an independent paper that appeared shortly after this work was released,
Foygel & Mackey [FM14] developed another error bound for the descent cone recipe. These two results
operate under different assumptions, and the two bounds are effective in different regimes. It remains an
open question to find an optimal error estimate for Recipe 4.1.

4.3. Descent cones of the ¢; norm. When we wish to solve an inverse problem with a sparse unknown, we
often use the ¢; norm as a regularizer; cf. (2.5), (2.9), and (2.10). Our next result summarizes the calculations
required to obtain the statistical dimension of the descent cone of the ¢; norm at a sparse vector. When we
combine this proposition with Theorems II and III, we obtain the exact location of the phase transition for ¢,
regularized inverse problems whose dimension is large.

Proposition 4.5 (Descent cones of the ¢; norm). Let x be a vector in R? with s nonzero entries. Then the
normalized statistical dimension of the descent cone of the ¢1 norm at x satisfies the bounds
2 5(@0-lI,x)

w(s/d) - Ve < p <wy(s/d). 4.4)
N




18 D. AMELUNXEN, M. LOTZ, M. B. MCCOY, AND J. A. TROPP

Circular cones _
Descent cones of the £, norm Descent cones of the Schatten 1-norm
e 1 1 1
1S
R7)
=}
Q
:g 3/4 a3 a4
=
=
2 1/2
) 12
a 1/2
17
= Aspect ratio
.g 1/4 14 v=1
= /4 v=1/2
é v—0
3]
4 o 0
0 n/8 nl4 3n/4 mi2 0 114 112 3 1 % 114 12 34 1
a: Angle of cone p: Nonzeros/dimension p: Rank/smaller dimension

FIGURE 4.1: Asymptotic statistical dimension computations. In each panel, we take the dimensional param-
eters to infinity. [left] Circular cones. The plot shows the normalized statistical dimension §(-)/d of the circular
cone Circg(a). [center] ¢; descent cones. The curve traces the normalized statistical dimension §(-)/d of the
descent cone of the ¢; norm on R? at a vector with |pd] nonzero entries. [right] Schatten 1-norm descent
cones. The normalized statistical dimension §(-)/(mn) of the descent cone of the S; norm on R™*" at a matrix
with rank |pm] for several fixed aspect ratios v = m/n. As the aspect ratio v — 0, the limiting curve is p — 2p — p?.

The function v : [0,1] — [0, 1] is defined as

[e9}
w(p):= ing {p(l +12)+(1- p)f (u—-12% W du}. (4.5)
7= T
The integral kernel ¢(u) := 2ime 12 s q probability density supported on [0,00). The infimum in (4.5) is
achieved for the unique positive T that solves the stationary equation

T T 1-p
See Figure 4.1[center] for a plot of the function (4.5).

Proposition 4.5 is a direct consequence of Recipe 4.1 and the error bound in Theorem 4.3. See Appendix D.2
for details of the proof; Appendix A.2 explains the numerical aspects.

Let us emphasize the following consequences of Proposition 4.5. When the number s of nonzeros in the
vector x is proportional to the ambient dimension d, the error in the statistical dimension calculation (4.4) is
vanishingly small relative to the ambient dimension. When x is sparser, it is more appropriate to compare the
error with the statistical dimension itself. Thus,

- (d-y(sid)-6(20l1,x) - 2

5@, x) @i, »)

We have used the observation that 6(@(|I-|I1 ,x)) = s—1, which holds because 2(|-l;,x) contains the (s—1)-
dimensional subspace parallel with the minimal face of the ¢; ball containing x.

when s> vd +1.

Remark 4.6 (Prior work). Except for the first inequality in (4.4), the calculations and the resulting formulas
in Proposition 4.5 are not substantially novel. Most of the existing analysis concerns the phase transition in
compressed sensing, i.e., the ¢; minimization problem (2.5) with Gaussian measurements. In this setting,
Donoho [Don06b] and Donoho & Tanner [DT09a] obtained an asymptotic upper bound, equivalent to the
upper bound in (4.4), from polytope angle calculations. Stojnic [Sto09] established the same asymptotic
upper bound using a precursor of Recipe 4.1; see also [CRPW12, App. C]. In addition, there are some heuristic
arguments, based on ideas from statistical physics, that lead to the same result, cf. [DMMO09a] and [DMMO09b,
Sec. 17]. Very recently, Bayati et al. [BLM13a] have shown that, in the asymptotic setting, the compressed
sensing problem undergoes a phase transition at the location predicted by (4.4).
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4.4. Descent cones of the Schatten 1-norm. When we wish to solve an inverse problem whose unknown is
a low-rank matrix, we often use the Schatten 1-norm S; as a regularizer, as in (2.6) and (2.10). The following
result gives an asymptotically exact expression for the statistical dimension of the descent cone of the S;
norm at a low-rank matrix. Together with Theorems II and III, this proposition allows us to identify the exact
location of the phase transition for S; regularized inverse problems as the ambient dimension goes to infinity.

Proposition 4.7 (Descent cones of the S; norm). Consider a sequence {X(r, m, n)} of matrices where X (r, m, n)
has rank r and dimension m x n with m < n. Suppose that r, m, n — oo with limiting ratios r/m — p € (0,1) and
m/n—ve(0,1]. Then

5(2(l-Ils,, X (r,m,n)))

mn

—y(p,v). 4.7
The function v : [0,1] x [0,1] — [0,1] is defined as

a+
p(l+rz)+(1—p)f (u-1)7¢y(w) du
a-VvtT

w(p,v):= %gg {pv+ (1-pv) } (4.8)

The quantity y:= (v—pv)/(1-pv), and the limits of the integral are a+ :=1+/y. The integral kernel ¢, is a
probability density supported on [a-, a]:

1
@y (u) = m\/(u2 —-a?)(a? -u?) foruela-,a.l.
The optimal value of 7 in (4.8) satisfies the stationary equation
ar y )
L_VT (?—1)-(py(u)du—ﬁ. 4.9)

See Figure 4.1[right] for a visualization of the curve (4.8) as function of p for several choices of v. The operator
v returns the maximum of two numbers.

See Appendix D.3 for a proof of Proposition 4.7. Appendix A.2 contains details of the numerical calculation.

Remark 4.8 (Prior work). The literature contains several papers that, in effect, contain loose upper bounds
for the statistical dimension of the descent cones of the Schatten 1-norm [RXH11, OKH11]. We single out
the work [OH10] of Oymak & Hassibi, which identifies an empirically sharp upper bound via a laborious
argument. The approach here is more in the spirit of the weak upper bound in [CRPW12, App. C], but our
argument leads to the asymptotically correct estimate.

5. CONIC INTEGRAL GEOMETRY AND THE STATISTICAL DIMENSION

To prove that the statistical dimension controls the location of phase transitions in random convex
optimization problems, we rely on methods from conic integral geometry, the field of mathematics concerned
with geometric properties of convex cones that remain invariant under rotations, reflections, and embeddings.
Here are some of the guiding questions in this area:

e What is the probability that a random unit vector lies at most a specified distance from a fixed cone?
o What is the probability that a randomly rotated cone shares a ray with a fixed cone?

The theory of conic integral geometry offers beautiful and precise answers to these questions, phrased in
terms of a set of geometric invariants called conic intrinsic volumes.

In Section 5.1, we formally introduce the intrinsic volumes of a cone and we compute the intrinsic volumes
of some basic cones. We state the key facts about intrinsic volumes in Section 5.2. Sections 5.3 and 5.4
contain more advanced formulas from conic integral geometry, which are essential tools in our approach to
phase transitions. In Section 5.5, we establish the equivalence of the two characterizations of the statistical
dimension, given in Definition 2.2 and Proposition 2.4. Section 5.6 explains why the statistical dimension is
canonical.

The material in this section is adapted from the book [SWO08, Sec. 6.5] and the dissertation [Ame11].
The foundational research in this area is due to Santalé [San76, Part IV]. Modern treatments depend on the
work of Glasauer [Gla95, Gla96]. In these sources, the theory is presented in terms of spherical geometry,
rather than in terms of conical geometry. As noted in [AB12], the two approaches are equivalent, but the
conic viewpoint provides simpler formulas and has other benefits that are revealed by deeper structural
investigations.
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CO

FIGURE 5.1: The intrinsic volumes of a convex cone in two dimensions. The closed convex cone C c R?
has four faces: one two-dimensional face (dark shading), two one-dimensional faces (the boundary rays), and
one zero-dimensional face (the origin). The projection I (g) of a standard normal vector g onto K lies in the
two-dimensional face when g is in the dark region, on a one-dimensional face when g is in the white region, and
in the zero-dimensional face when g is in the light region. Each intrinsic volume of the cone C can be expressed
in terms of the solid angle a« measured in radians: v2(C) = a/(27) and v;(C) =1/2 and vy(C) = (r — @)/ (27).

5.1. Conic intrinsic volumes. We begin with the definition of the intrinsic volumes of a convex cone. Recall
that a cone is polyhedral if it can be written as the intersection of a finite number of halfspaces. Polyhedral
cones are automatically closed and convex.

Definition 5.1 (Intrinsic volumes: Polyhedral case). Let C be a polyhedral cone in R%. Foreach k=0,1,2,...,d,
the kth (conic) intrinsic volume vi(C) is given by
vk (C) := P{II¢(g) lies in the relative interior of a k-dimensional face of C}.

As usual, g is a standard normal vector in R?. See Figure 5.1 for an illustration.

For a polyhedral cone, it is clear that the sequence of intrinsic volumes forms a probability distribution on
{0,1,2,...,d}. The definition also delivers insight about several fundamental examples.

Example 5.2 (Linear subspaces). Let L; be a j-dimensional subspace in R?. Then L; is a polyhedral cone
with precisely one face, so the map II;; projects every point onto this j-dimensional face. Thus,

1, k=j

~ fork=0,1,2,...,d.
0, k#j

vi(Lj) = {
Apply the intrinsic formulation (3.1) of the statistical dimension to confirm that §(L;) = j.

Example 5.3 (The nonnegative orthant). The nonnegative orthant R? is a polyhedral cone. The projection
Ma (g) lies in the relative interior of a k-dimensional face of the orthant if and only if exactly k coordinates

of g are positive. Each coordinate of g is positive with probability one-half and negative with probability
one-half, and the coordinates are independent. Therefore, the intrinsic volumes of the orthant are given by

vi(RY) = 2—‘1(]‘5) for k=0,1,2,...,d.

In other words, the intrinsic volumes coincide with the probability density of a BINOMIAL(d,%) random
variable. Apply the intrinsic formulation (3.1) of the statistical dimension to confirm that §(R?) = 3d.

Let us explain briefly how to extend the definition of conic intrinsic volumes to the general case. We can
equip the family of closed convex cones in R? with the conic Hausdorff metric® to form a compact metric space.
The polyhedral cones are dense in this metric space, and the conic intrinsic volumes are continuous with

2The conic Hausdorff metric is obtained by identifying each closed convex cone C < R? with the spherical convex set CnS4~1. Then
we invoke the familiar construction of the Hausdorff metric on the sphere.
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respect to the metric. Therefore, we may define the intrinsic volumes of a general closed convex cone by
approximation.

Definition 5.4 (Intrinsic volumes: General case). Let C be a closed convex cone in R%, and let {C;: i =
1,2,3,...} cR? be a sequence of polyhedral cones that converges to C in the conic Hausdorff metric. For each
k=0,1,2,...,d, the kth (conic) intrinsic volume v (C) is given by the limit

Vi (C) := lim v (Cy).
1—00
It can be shown that this limit does not depend on the approximating sequence.

Let us warn the reader that the projection formula in Definition 5.1 breaks down for a general closed convex
cone because the limiting process does not preserve facial structure. To learn more about the construction
behind Definition 5.4, see the book [SWO08, Sec. 6.5], the thesis [Amel1], or the paper [MT14a]. The
spherical Steiner formula, Fact 5.7, provides an alternative geometric interpretation of the intrinsic volumes.

5.2. Properties of conic intrinsic volumes. The intrinsic volumes of a closed convex cone satisfy a number
of important relationships that we outline here.

Fact 5.5 (Properties of intrinsic volumes). Let C be a closed convex cone in R%. The intrinsic volumes of the cone
obey the following laws.
(1) Distribution. The intrinsic volumes describe a probability distribution on {0,1,...,d}:

d
Y (@ =1 and v (C)=z0 fork=0,1,2,...,d. (5.1
k=0

(2) Polarity. The intrinsic volumes reverse under polarity:
vp(C)=v4_1(C°) for k=0,1,2,...,d. (5.2)
(3) Gauss—-Bonnet formula. When C is not a subspace,
d d

1
Y n@©)= Y wn(©=r. (5.3)
=0 =1 2
k even k odd

(4) Direct products. For each convex cone K c RY,

(CxK)= Y vi(0)-vj(K) fork=0,1,2,...,d+d' (5.4)
i+j=k
The facts (5.1), (5.2), and (5.3) are drawn from [SWO08, Sec. 6.5]. See [Amel1, Prop. 4.4.13] or [MT14a,
Cor. 5.1] for a proof of the product rule (5.4).

5.3. The spherical Steiner formula. We continue with a selection of more sophisticated results from conic
integral geometry. These formulas provide detailed answers, expressed in terms of conic intrinsic volumes, to
the geometric questions posed at the beginning of Section 5. To state the first result, we introduce a family of
geometric functions.

Definition 5.6 (Tropic functions). Let Ly be a k-dimensional subspace of R?. Define
I{(e):==P{IMI, @)> =} foreelo,1], (5.5)
where 0 is uniformly distributed on the unit sphere in R?.

Basic geometric reasoning reveals that I ,‘f (€) is the proportion of points on the sphere S¢~! that lie within an
angle arccos(y/€) of the subspace L. Our terminology derives from the approximate geographical fact that
the tropics lie within a fixed angle (23°26') of the equator; the usual term regularized incomplete beta function
is longer and less evocative.

The core fact in conic integral geometry is the spherical Steiner formula [Hot39, Wey39, Her43, All48,
San50], which describes the fraction of points on the sphere that lie at most a fixed angle from a closed
convex cone.
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Fact 5.7 (Spherical Steiner formula). Let C be a closed convex cone in R®. For each €€ [0, 1],

d
P{Ic@I*=¢e} =Y vi(O) IZ(e). (5.6)
k=0

The spherical Steiner formula often serves as the definition of conic intrinsic volumes. The formula (5.6)
can also be derived from the definition here. For a proof of Fact 5.7 in the spirit of this work, see [SWO0S,
Thm. 6.5.1] or [MT14a, Prop. 3.4].

5.4. The conic kinematic formula. Next, we present another major result from the theory of conic integral
geometry. This statement involves partial sums of the intrinsic volumes.

Definition 5.8 (Tail functionals). Let C be a closed convex cone in R¢. For each k=0,1,2,...,d, the kth tail
functional is given by

d
(C):= vk(C) + Vg1 (O +-+-= Y v;(C). (5.7)
j=k
The kth half-tail functional is defined as
d
he(C) = v (C) + vg12(C) +--= ) v;(C). (5.8)
=k
j—]k even

The two types of tail functionals are related through the following interlacing inequality.
Proposition 5.9 (Interlacing). For each closed convex cone C in R? that is not a linear subspace,
2h (C) = 13 (C) =2 hg 1 (C)  foreach k=0,1,2,...,d - 1.

We establish Proposition 5.9 in Appendix E.

With this notation, we can present a modern formulation of the conic kinematic formula, which provides an
exact expression for the probability that a randomly oriented convex cone has a nontrivial intersection with a
fixed convex cone.

Fact 5.10 (Conic kinematic formula). Let C and K be closed convex cones in R%, and assume that C is not a
subspace. Then

P{CN QK #{0}} =2 14,1 (C x K). 5.9
For a linear subspace Ly_,, in R? with dimension d — m, this expression reduces to the Crofton formula

P{CNQLg-m # (0} =2 111 (C). (5.10)

The compact notation here disguises the equivalence between (5.9) and Fact 2.1. To verify this point, expand
the half-tail functional using (5.8) and apply the direct product rule (3.8). See [SWO08, p. 261] for a proof of
Fact 5.10.

Remark 5.11 (Extended kinematic formula). By induction, the kinematic formula generalizes to a family
{C,Ky,...,K;} of closed convex cones in R?. If C is not a subspace, then

P{CNQiKin---NQ:K; #{0}} =2hy441(Cx Ky x -+ x Kp.). (5.11)

Each matrix Q; € R"*" is a random orthogonal basis, chosen independently from the others. This result can be
used to analyze demixing problems with more than two constituents. See the follow-up work [MT13] for
details.
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5.5. Characterizations of the statistical dimension. In Section 2, we presented two different ways of
thinking about the statistical dimension. Definition 2.2, offers an intrinsic characterization in terms of
the conic intrinsic volumes, and it links the statistical dimension to the theory of conic integral geometry.
Proposition 2.4 provides a metric characterization that leads to powerful tools for calculating the statistical
dimension for specific cones. The following result applies the spherical Steiner formula to verify that the two
formulations coincide.

Proposition 5.12 (Statistical dimension: Equivalent characterizations). For each closed convex cone C in R%,

d
SO =E[IMc(@I?] = Y kv ().
k=0

Proof. The Gaussian formulation (3.2) and the spherical formulation (3.3) of statistical dimension coincide,
SO

1
E[ITc(@I?]=dE[ITIc@)]*] = dfo P{ITc@)]* = €} de.

We have used integration by parts to express the expectation as an integral of tail probabilities. The Steiner
formula (5.6) and the definition (5.5) of the tropic function allow us to write the probability as a sum:

d 1 d d
E[ITc(@I*]=d Y vk(C) A P{IML, @)% =e}de =Y vp(C)(dE[IML @)1%])= Y kvi(O).
k=0 k=0 k=0

where L; is an arbitrary k-dimensional subspace. The last identity follows from elementary geometric
reasoning. 0

5.6. The statistical dimension is canonical. The intrinsic characterization of the statistical dimension,
Definition 2.2, has a significant consequence from the point of view of integral geometry. We summarize the
ideas for the benefit of geometers; other readers may prefer to skip this material.

Let €,; denote the family of closed convex cones in R?, equipped with the conic Hausdorff metric to form a
compact metric space. A geometric functional v:%,; — R is called a continuous, rotation-invariant valuation if
it satisfies the properties

(1) Valuation I. For the trivial cone, v({0}) = 0.

(2) Valuation II. If C,K € ¢; and CUK € %, then v(CUK) + v(CnK) = v(C) + v(K).

(3) Rotation invariance. For each C € %, we have v(UC) = v(C) for each orthogonal matrix U € R%*4,
(4) Continuity. If C; — C in %, then lim;_, v(C;) — v(C).

Continuous, rotation-invariant valuations are natural geometric measures defined on convex cones. Many of
the valuations that arise in conic geometry are also localizable, which is a subtle technical property [SWO08,
p.- 254].

In particular, each intrinsic volume vy is a continuous, rotation-invariant, localizable valuation on the set
of closed convex cones. It follows from the intrinsic formulation (3.1) that the statistical dimension inherits
these technical properties. It is known that each continuous, rotation-invariant, and localizable valuation
on %, is determined by the values it takes on linear subspaces; see [Gla95, Satz 4.2.2], [Gla96, Thm. 5],
or [SWO08, Thm. 6.5.4]. Therefore,

The statistical dimension § is the unique continuous, rotation-invariant, localizable valuation
on the set €, of closed convex cones that satisfies §(L) = dim(L) for each subspace L.

In other words, the statistical dimension canonically extends the linear dimension to the class of closed convex
cones.

The long-standing spherical Hadwiger conjecture states that the condition of localizability is unnecessary
here. More precisely, the conjecture posits that every continuous and rotation-invariant valuation on the set of
closed convex cones can be expressed as a linear combination of the conic intrinsic volumes. For a discussion
of the spherical Hadwiger conjecture, see the works [McM93, p. 976], [KR97, Sec. 11.5], and [SWO08, p. 263].
The conjecture currently stands open for d = 4.
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6. INTRINSIC VOLUMES CONCENTRATE AT THE STATISTICAL DIMENSION

The main technical result in this paper describes a new property of conic intrinsic volumes: The intrinsic
volumes of a closed convex cone concentrate near the statistical dimension of the cone on a scale determined
by the statistical dimension. This phenomenon is depicted in Figure 2.2.

Theorem 6.1 (Concentration of intrinsic volumes). Let C be a closed convex cone. Define the transition width

w(C):=v/6(C)A(C?),

and introduce the function

() :=4ex (ﬂ) for 120 (6.1)
A P =" ‘
Then
k_.<6C)-A+1 = 1 (O)=1-pc); (6.2)
kr=6C)+2 = 4%, O=s  pc). (6.3)

The tail functional ty is defined in (5.7). The operator A returns the minimum of two numbers.

See Section 6.1 for a discussion of Theorem 6.1. In Section 6.2 and 6.3, we summarize the intuition
behind the proof, and we follow up with the technical details. Later, Sections 7-9 highlight applications
in conic geometry, optimization theory, and signal processing. The follow-up work [MT14a] contains some
improvements on Theorem 6.1.

6.1. Discussion. Theorem 6.1 states that the sequence {#;(C): k=0,1,2,...,d} of tail functionals drops from
one to zero near the statistical dimension 6(C), and the transition occurs over a range of O(w(C)) indices.
Owing to the fact (5.1) that the intrinsic volumes form a probability distribution, we must conclude that the
intrinsic volumes v (C) are all negligible in size, except for those whose index k is close to the statistical
dimension §(C). We learn that the intrinsic volumes of a convex cone C with statistical dimension 6(C) are
qualitatively similar with the intrinsic volumes of a subspace with dimension about §(C).

Theorem 6.1 contains additional information about the rate at which the tail functionals of a cone transit
from one to zero. To extract this information, it helps to note the weaker inequality

) 4e_/12/(16w2(C))’ 0<1<w?)
<
pc(A) 4eM16, A= w?(C).

We see that (6.2) and (6.3) are vacuous until A ~4w(C). As A increases, the function pc (1) decays like the tail
of a Gaussian random variable with standard deviation < 2v2w(C). When A reaches w?(C), the decay slows
to match the tail of an exponential random variable with mean < 16. In particular, the behavior of the tail
functionals depends on the intrinsic properties of the cone, rather than the ambient dimension.

(6.4)

6.2. Heuristic proof of Theorem 6.1. The basic ideas behind the argument are easy to summarize, but the
details demand some effort. Let C be a closed convex cone in R%. Recall the spherical Steiner formula (5.6):

d
P{Ic@)I*=¢e} =Y vi(O) IL(e), (6.5)
k=0
where @ is uniformly distributed on the sphere S?~! and the tropic function I ]‘j is defined in (5.5).

Concentration of measure on the sphere implies that the random variable ||II¢(0)]? is typically very close
to its expected value §(C)/d, determined by (3.3). Thus, the left-hand side of (6.5) is very close to one when
ed < §(C) and very close to zero when ed > §(C).

As for the right-hand side of (6.5), recall that the tropic function I,‘j (¢) is the proportion of points on the
sphere within a distance of v1—¢ from a fixed k-dimensional subspace. Once again, concentration of measure
ensures that I,‘f (¢) is close to zero when k < ed and close to one when k > ed. Therefore, the sum on the
right-hand side of (6.5) is approximately equal to the tail functional ¢,,4(C).

Combining these two observations, we conclude that the sequence {(C):k=0,1,2,...,d} of tail functionals
makes a sharp transition from one to zero when k = 6(C). It remains to make this reasoning rigorous and to
determine the range of k over which the transition takes place.
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6.3. Proof of Theorem 6.1. Let C be a closed convex cone in R, and define ¢ := k, /d. The first part of the
argument requires a technical lemma that we prove in Appendix E. This result quantifies how much of the
sphere in R? lies within an angle arccos(k/d) of a k-dimensional subspace.

Lemma 6.2 (The tropics). For all integers 0 < k < d, the tropic function I ,’f(lc/ d) =0.3.

We begin by expressing the tail functional #, (C) in terms of the probability that a spherical variable lies near
the cone C.

d
te, (O =Y, vl +(1-1{©)]
k=k,
d d

=Y wOIfE©+1-I{ ©) Y v(©)
k=0 k=k,

<P{ITc@)I* = e} +0.7 1, (C). (6.6)

The first identity is the definition (5.7) of the tail function. To reach the second inequality, we inspect the
definition (5.5) to see that I]‘j (¢) is a decreasing function of k when the other parameters are fixed. In the
third line, we invoke the Steiner formula (5.6) to rewrite the first sum. The bound for the second sum follows
and the definition (5.7) of the tail functional and from Lemma 6.2 seeing that € = k. /d.

Rearranging (6.6), we obtain the bound

t, (C) =4P{d |Tc(0)* = de} < 4P{d ITIc (@)1 = 5(C) + A}. (6.7)

The last inequality depends on the fact that € = k. /d and the definition (6.3) of k.. In other words, the tail
functional is dominated by the probability that a random point on the sphere is close to the cone.

To estimate the probability in (6.7), we need a tail bound for the squared norm of the projection of a
spherical variable onto a cone. This result is encapsulated in the following lemma. The approach is more or
less standard, so we defer the details to Appendix E.

Lemma 6.3 (Tail bound for conic projections). For each closed convex cone C in RY,
-A%/8

m for A=0. (68)

P{d ITc@)]% 2 5(C) + A} < exp(

Introducing (6.8) into (6.7), we reach the upper bound (6.3) on the tail functional.
To develop the lower bound (6.2) on the tail functional #;_(C), we use a polarity argument. Note that

da d—k-
(O =) (@@=} v(C)=1~1ta +1(C°). (6.9)
k=k- k=0

The first identity is the definition (5.7) of the tail functional #;_(C). The second relation holds because of the
fact (5.2) that polarity reverses intrinsic volumes, and the last part relies on (5.7) and the property (5.1) that
the intrinsic volumes sum to one. Owing to the complementarity law (3.7) and the definition (6.2) of k_,

d—k_+1=6(C)+6(C)—k-+1=6(C°)+A.

Therefore, we may apply (6.3) to obtain an upper bound on the tail functional #;_;_,1(C®). Substitute this
bound into (6.9) to establish the lower bound on the tail functional #; (C) stated in (6.2).

7. APPROXIMATE KINEMATIC BOUNDS

We are now prepared to establish an approximate version of the conic kinematic formula, expressed in
terms of the statistical dimension. Most of the applied results in this paper ultimately depend on this theorem.
The proof combines the exact kinematic formula (5.9) with the concentration of intrinsic volumes, guaranteed
by Theorem 6.1.

Theorem 7.1 (Approximate kinematics). Assume that A =0. Let C be a convex cone in RY. For a (d - m)-
dimensional subspace Ly, it holds that
m=6C)+A = P{CNQLs;pnZ{0}<  pcl);

(7.1)
m<6C)-2 = P{CNQLs_p#10}}=1-pc(A).
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For any convex cone K in RY, it holds that
5(O)+6(K)<d-20 = P{CNQK#{0}<  pcA)+px);

(7.2)
5(O+86(K)=d+21 = P{CNQK#{0}}=1-(pcA)+pxA).

The functions pc and pg are defined by the expression (6.1).

We discuss Theorem 7.1 below in Section 7.1. The proof appears in Section 7.2. In Section 7.3, we derive
Theorem I from a similar, but slightly easier argument. The follow-up work [MT13] contains an improvement
on Theorem 7.1.

7.1. Discussion. Theorem 7.1 has an attractive interpretation. The first statement (7.1) shows that a
randomly oriented subspace with codimension m is unlikely to share a ray with a fixed cone C, provided
that the codimension m is larger than the statistical dimension §(C) of the cone. When the codimension m is
smaller than the statistical dimension §(C), the subspace and the cone are likely to share a ray.

The transition in behavior expressed in (7.1) takes place when the codimension m of the subspace changes
by about w(C) = v/5(C) A5(C®). This point explains why the empirical success curves taper in the corners of the
graphs in Figure 2.4. Indeed, on the bottom-left side of each panel, the relevant descent cone is small; on the
top-right side of each panel, the descent cone is large, so its polar is small. In these regimes, the result (7.1)
shows that the phase transition must occur over a narrow range of codimensions.

The second statement (7.2) provides analogous results for the probability that a randomly oriented cone
shares a ray with a fixed cone. This event is unlikely when the total statistical dimension of the two cones
is smaller than the ambient dimension; it is likely to occur when the total statistical dimension exceeds the
ambient dimension.

For the case of two cones, it is harder to analyze the size of the transition region. Since the probability
bounds in (7.2) are controlled by the sum p¢(A) + px(A), we can only be certain that the probability estimate
depends on the larger of the two quantities. It follows that the width of the transition does not exceed the
larger of w(C) = v/&6(C) AS(C°) and w(K) = vV6(K) A6(K°). This observation is sufficient to explain why the
empirical success curves taper at the top-left and bottom-right of the graphs in Figure 2.6. Indeed, these are
the regions where one of the descent cones is small and the polar of the other descent cone is small.

7.2. Proof of Theorem 7.1. We may assume that C and K are both closed because P{Cn QK # {0}} =
P{C n QK # {0}}, where the overline denotes closure. This is a subtle point that follows from the discussion of
touching probabilities located in [SWO08, pp. 258-259].

Let us begin with the first set (7.1) of results, concerning the probability that a randomly oriented subspace
intersects a fixed cone along a ray. Consider the first implication, which operates when m = §(C) + A. The
implication clearly holds when C is a subspace. When C is not a subspace, the Crofton formula (5.10) shows
that

P{CNQL# {0} =2 hps1(C) < 1, (C),

where the inequality depends on the interlacing result, Proposition 5.9. The concentration of intrinsic volumes,
Theorem 6.1, demonstrates that the tail functional satisfies the bound
tm(C) < pc(A) when m=6(C)+A.

This completes the first bound. The second result, which holds when m < §(C) — A, follows from a parallel
argument.

The conic kinematic formula is required for the second set (7.2) of results, which concern the probability
that a randomly oriented cone intersects a fixed cone nontrivially. Consider the situation where §(C) + §(K) <
d —2A. The kinematic formula (5.9) yields

P{CNQK #{0}} =2hy,1(Cx K) <1;(Cx K), (7.3)

where the inequality follows from the interlacing result, Proposition 5.9.
We rely on a simple lemma to bound the tail functional of the product in terms of the individual tail
functionals.

Lemma 7.2 (Tail functionals of a product). Let C and K be closed convex cones. Then

trsc)+sx)+241 (C x K) = t150)+41 (C) + L15+41 (K).
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The proof appears in Appendix E. See the follow-up work [MT14a] for an improvement on this result.
Since the tail functionals are weakly decreasing, our assumption that §(C) + 6 (K) < d — 2\ implies that
t4(C x K) < t150)+8x)+2241 (C x K) = t150)+41 (C) + fr5x)+21 (K).

Theorem 6.1 delivers an upper bound of p¢(A) + px(A) for the right-hand side. Introduce these bounds into
the probability inequality (7.3) to complete the proof of the first statement in (7.2). The second result follows
from an analogous argument. O

7.3. Proof of Theorem I. The simplified kinematic bound of Theorem I involves an argument similar with
the proof of Theorem 7.1. First, assume that §(C) + §(K) < d — A. As before, the kinematic formula (5.9) and
the interlacing result, Proposition 5.9, ensure that

P{CNQK #{0}} =2hy.1(Cx K) < t;(C x K). (7.4)

The product rule (3.8) for cones shows that §(C x K) = §(C) + 6(K) < d — A, so the implication (6.3) in
Theorem 6.1 yields

-A%/8
td(c x K) < prK(/l) < 4exp(m) < 48_12/(8‘1). (75)

Substitute the inequality (7.5) into the kinematic bound (7.4). Then make the change of variables A — a, Vd,
where a;, := \/8log(4/n), to obtain the estimate

P{CNQK #{0}} <7n.
This establishes the first part of Theorem I. The argument for the second part follows the same pattern. [

8. APPLICATION: CONE PROGRAMS WITH RANDOM CONSTRAINTS

The concentration of intrinsic volumes has far-reaching consequences for the theory of optimization. This
section describes a new type of phase transition phenomenon that appears in a cone program with random
affine constraints. We begin with a theoretical result, and then we exhibit some numerical examples that
confirm the analysis.

8.1. Cone programs. A cone program is a convex optimization problem with the following structure:
minimize <(u, x) subjectto Ax=b and xeC, (8.1)

where C cR? is a closed convex cone. The decision variable x € R?, and the problem data consists of a vector
ue R a matrix A€ R™*% and another vector b € R™. This formalism includes several fundamental classes of
convex programs:

(1) Linear programs. If C = R?, then (8.1) reduces to a linear program in standard form.

(2) Second-order cone programs. If C =1%*!, then (8.1) is a type of second-order cone program.

(3) Semidefinite programs. When C = $7*", we recover the class of (real) semidefinite programs.
In addition to their flexibility and modeling power, cone programs enjoy effective algorithms and a crisp
theory. We refer to [BTNO1] for further details.

The cone program (8.1) can exhibit several interesting behaviors. Let us remind the reader of the
terminology. A point x that satisfies the constraints Ax = b and x € C is called a feasible point, and the cone
program is infeasible when no feasible point exists. The cone program is unbounded when there exists a
sequence {x;} of feasible points with the property (u, x;) — —oco.

Our theory allows us analyze the properties of a random cone program. It turns out that the number m of
affine constraints controls whether the cone program is infeasible or unbounded.

Theorem 8.1 (Phase transitions in cone programming). Let C be a closed convex cone in R%. Consider the
cone program (8.1) where b is a fixed nonzero vector, while the vector u € R and the matrix A € R™*% have
independent standard normal entries. Then

m<6(C)—-A = (8.1) is unbounded with probability =1 - pc(A);
m=6(C)+A = (8.1) is infeasible with probability =1 - p¢(A).
The function pc is defined by the expression (6.1).
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FIGURE 8.1: Phase transitions in random cone programs. For each cone C; in (8.2), we plot the empirical
probability that the cone program (8.1) with random affine constraints is feasible. The solid gray curve traces
the logistic fit to the data, and the finely dashed line is the empirical 50% success threshold, computed from
the regression model. The coarsely dashed line marks the statistical dimension §(C;), which is the theoretical
estimate for the location of the phase transition.

Proof Amelunxen & Biirgisser [AB12, Thm. 1.3] have shown that the intrinsic volumes of the cone C control
the properties of the random cone program (8.1):

P{(8.1) is infeasible} = 1 — t,,(C);
P{(8.1) has a unique minimizer} = v, (C);
P{(8.1) is unbounded} = t;,,41 (C).

We apply Theorem 6.1 to see that the tail functional #,,,(C) is extremely close to one when the number m of
constraints is smaller than the statistical dimension §(C). Likewise, t,,(C) is extremely close to zero when the
number m of constraints is larger than the statistical dimension. We omit the details, which are analogous
with the proof of Theorem 7.1. O

8.2. A numerical example. We have conducted a computer experiment to compare the predictions of
Theorem 8.1 with the empirical behavior of a generic cone program. For this purpose, we study some random
second-order cone programs. In each case, the ambient dimension d = 396, and we consider three options for
the cone C in (8.1):

C1 :=Circg(ay); (8.2a)
C, := Circ gz (a2) x Circg a(az); (8.2b)
C3 := Circgy3(as) x Circgy3(as) x Circg 3 (as). (8.20)

1

The angles satisfy tan?(a;) = + and tan?(a,) = 1 and tan?(a3) = ;. Using the product rule (3.8) and the

integral expression (D.1) for the statistical dimension of a circular cone, numerical quadrature yields

6(Cy) =66.67; 6(Cy) =51.00; 6(C3) =35.50.

Theorem 8.1 indicates that a cone program (8.1) with the cone C; and generic constraints is likely to be
feasible when the number m of affine constraints is smaller than §(C;); it is likely to be infeasible when the
number m of affine constraints is larger than §(C;).

We can test this prediction numerically. For each i =1,2,3 and each me {1,2,3,..., [%d]}, we perform the
following steps 50 times:

(1) Independently draw a standard normal matrix A€ R™*4 and standard normal u € R% and b € R™.
(2) Use the MATLAB package CVX to solve the cone program (8.1) with C = C;.
(3) Report failure if CVX declares the cone program infeasible.
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TABLE 8.1: Phase transitions in random cone programs. For each cone C; listed in (8.2), we compare the
theoretical location of the phase transition, equal to the statistical dimension §(C;), with the empirical location
ui, computed from the logistic regression model in Figure 8.1. The last column lists the errors |6(C;) — ;| /d,
relative to the dimension d = 396 of the problem.

Cone Theoretical Empirical Error

O] 66.67 66.88 0.054%
Co 51.00 51.70 0.177%
Cs 35.50 36.06 0.141%

For each i =1,2,3, Figure 8.1 displays the empirical success probability, along with a logistic fit (Appendix A.3).
We also mark the theoretical estimate for the location of the phase transition, which equals the statistical
dimension §(C;). Table 8.1 reports the discrepancy between the theoretical and empirical behaviors.

9. APPLICATION: VECTORS FROM LISTS?

This section describes a situation where our results prove that a particular linear inverse problem does not
provide an effective way to recover a structured vector. Indeed, a significant contribution of our theory, which
has no parallel in the current literature, is that we can obtain negative results as well as positive results.

In [CRPW12, Sec. 2.2], Chandrasekaran et al. propose a method for recovering a vector from an unordered
list of its entries, along with some linear measurements. Here is one way to frame this problem. Suppose
that x € R? is an unknown vector. We are given the vector y; = xé, whose entries list the components of xy in
weakly decreasing order. We also collect data zy = Axy where A is an m x d matrix. To identify xy, we must
solve a structured linear inverse problem.

To solve this problem, Chandrasekaran et al. propose to use a convex regularizer f that exploits the
information in yg. They consider the Minkowski gauge of the permutahedron (3.10) generated by y,.

Ixll 2y :=inf{z > 0:x€ T P (y0)},
and they frame the regularized linear inverse problem
minimize  [xl »(,,) subjectto zo=Ax. 9.1

It is natural to ask how many linear measurements we need to be able to solve this inverse problem reliably.
Our theory allows us to answer this question decisively when the measurements are random.

Proposition 9.1 (Vectors from lists?). Let x, € R? be a fixed vector with distinct entries. Suppose we are given

the data yy = xé and zy = Axo, where the matrix A€ R™*% has standard normal entries. In the range 0 < A < \/Hy,
it holds that

m<d-Hy—-AVvHy = (9.1) succeeds with probability < 4e_12“6;
m=d-Hy+AvHy; = (9.1) succeeds with probability =1 - 4e N6,
The dth harmonic number Hy satisfies logd <H, < 1+logd.

Proposition 9.1 yields the depressing assessment that we need a near-complete set of linear measurements to
resolve our uncertainty about the ordering of the vector. Nevertheless, we do not need all of the measurements.
It would be interesting to understand how much the situation improves for vectors with many duplicated
entries.

Proof. This result follows from Fact 2.8 and the kinematic bound (7.1) in Theorem 7.1 as soon as we compute
the statistical dimension of the descent cone of the regularizer |-| Py AL the point xy. By construction, the
unit ball of |- 2y coincides with the permutahedron & (yy), which equals & (xp) by permutation invariance.
Therefore,

DU 2y0) » X%0) = DUl 2 (xy) » X¥0) = A (P (x0), X0)°.
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FIGURE 9.1: Vectors from lists? The empirical probability that the convex program (9.1) correctly identifies a
vector xg in R19° with distinct entries, provided an unordered list y, of the entries of xy and m random linear
measurements zy = Axy. The solid gray curve marks the logistic fit to the data. The midpoint of the logistic curve
1 =95.17 (finely dashed line), while the theory predicts a phase transition at the statistical dimension § = 94.81
(coarsely dashed line). The error relative to the dimension |u—8|/d = 0.36%.

The second identity holds because a closed descent cone coincides with the polar of the normal cone of
the sublevel set; see Appendix B.1 for details. Figure 3.1 illustrates the corresponding facts about signed
permutahedra. To compute the statistical dimension, we apply the complementarity law (3.7) to see that

6(@(“”9010) ’xO)) = d_é(ﬂ(t@(xo))x())) = d_Hdv

where the second relation follows from Proposition 3.5. Apply the kinematic result (7.1) for subspaces, and
invoke (6.4) to simplify the error bound pc (). O

Remark 9.2 (Signed vectors). An equally disappointing result holds for the problem of reconstructing a
general vector from an unordered list of the magnitudes of its entries, along with some linear measurements.
In this case, the appropriate regularizer is the Minkowski gauge of the signed permutahedron (3.11). We can
use Proposition 3.5 to compute the statistical dimension of the descent cone. For a d-dimensional vector with
distinct entries, we need about d — %Hd random measurements to succeed reliably.

9.1. A numerical example. We present a computer experiment that confirms our pessimistic analysis. Fix
the ambient dimension d = 100. Set xy = (1,2,...,100) and y, = x(l). For each m = 85,86,...,100, we repeat the
following procedure 50 times:

(1) Draw a matrix A € R”*¢ with independent standard normal entries, and form z, = Ax;.
(2) Use the MATLAB package CVX to solve the linear inverse problem (9.1).
(3) Declare success if the solution % satisfies || X — xpll < 107°.

Figure 9.1 displays the outcome of this experiment. As usual, the phase transition predicted at the statistical
dimension d —Hy is very close to the empirical 50% mark, which we obtain by performing a logistic regression
of the data (see Appendix A.3).

10. RELATED WORK

To conclude the body of the paper, we place our work in the context of the literature on geometric analysis
of random convex optimization problems. We trace four lines of thought on this subject. The first draws from
the theory of polytope angles; the second involves conic integral geometry; the third is based on comparison
inequalities for Gaussian processes; and the last makes a connection with statistical decision theory. Our
results have some overlap with earlier work, but our discovery that the sequence of conic intrinsic volumes
concentrates at the statistical dimension allows us to resolve several subtle but important questions that have
remained open until now.
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10.1. Polytope-angle calculations. The theory of polytope angles dates to the work of Schléfli in the
1850s [Sch50b]. In pioneering research, Vershik & Sporyshev [VS86] used polytope-angle calculations to
analyze random convex optimization problems. They were able to estimate the average number of steps
that the simplex algorithm requires to solve a linear program with random constraints as the number of
decision variables tends to infinity. This research inspired further theoretical work on the neighborliness
of random polytopes [VS92, AS92, BH99]. More recently, Donoho [Don06b] and Donoho & Tanner [DTOS5,
DTO09a, DT10a, DT10b] have used similar ideas to study specific regularized linear inverse problems with
random data. The papers [XH11, KXAH11] contain some additional work in this direction. Let us offer a
short, qualitative summary of this research.

Donoho [Don06b] analyzed the performance of the convex program (1.2) for solving the compressed
sensing problem described in Section 1.1. In the asymptotic regime where the number s of nonzeros
is proportional to the ambient dimension d, he obtained a lower bound m = y(s) on the number m of
Gaussian measurements that are sufficient for the optimization to succeed (the weak threshold). Numerical
experiments [DT09b] suggest that this bound is sharp, but the theoretical analysis in [Don06b] falls short of
establishing that a phase transition actually exists and identifying its location rigorously. Finite-dimensional
results with a similar flavor appear in [DT10b].

Donoho [Don06b] also established an asymptotic lower bound on the number m of random measurements
sufficient to recover all s-sparse vectors in R? with high probability (the strong threshold). Using different
methods, Stojnic [Sto09] has improved this bound for some values of the sparsity s. These bounds are not
subject to numerical interrogation, so we do not have reliable evidence about what actually happens. Indeed,
it remains an open question to prove that a strong phase transition exists and to identify its exact location in
the regime where the sparsity is proportional to the ambient dimension.

Donoho & Tanner [DT09a] have also made a careful study of the behavior of the convex program (1.2)
in the asymptotic regime where the sparsity s « d. In this case, they succeeded in proving that weak and
strong thresholds exist, and they obtained exact formulas for the thresholds. More precisely, at the computed
thresholds, they show that the probability of success jumps from one to 1—¢, where ¢ is positive. Although
these results do not ensure that certain failure awaits on the other side of the threshold curve, they do
establish that the behavior changes.

Donoho & Tanner [DT05, DT09a] provide similar results for the problem of recovering a sparse nonnegative
vector by solving the ¢; minimization problem (1.2) with an additional nonnegativity constraint. Once again,
they obtain lower bounds on the number of Gaussian measurements required for weak and strong success.
These bounds are sharp in the ultrasparse regime s = o(logd). The earlier work of Vershik & Sporyshev [VS92]
contains results closely related to the weak transition estimate from [DT09a].

Other authors have used polytope angle calculations to develop theory for related ¢; minimization problems.
For example, Khajehnejad et al. [KXAH11] provide an analysis of the performance of weighted ¢, regularizers.
Xu & Hassibi [XH11] obtain lower bounds for the number of measurements required for stable recovery of a
sparse vector via ¢, minimization.

Finally, let us mention that Donoho & Tanner [DT10a] have obtained a more complete theory about the
location of the phase transition for a regularized linear inverse problem where the ¢, norm is used as a
regularizer. Their results, formulated in terms of projections of the hypercube and orthant, are a consequence
of a geometric theorem that goes back to Schlifli [Sch50a]; see the discussion [SWO08, p. 299].

10.1.1. Faces of randomly projected polytopes. It may be helpful if we elaborate on the relationship between
the proof techniques in this paper and the approach described above. For concreteness, we focus on the ¢,
minimization method (1.2) for the compressed sensing problem, but the ideas apply more broadly.

Suppose that we have acquired the vector zy = Axy, where A is a standard normal matrix and x; is a vector
with s+ 1 nonzero entries. We may assume that |xgll; = 1. Define the cross-polytope P:={x: |x|; <1}, and
note that the sparse vector xy lies in an s-dimensional face F of the cross-polytope P. Donoho shows that (1.2)
succeeds if and only if AF is an s-dimensional face of the projected polytope AP. In other words, we must
determine whether a face of the polytope “survives” a random projection. Donoho [Don06b] and Donoho &
Tanner [DT09a] use the polytope-angle theory to address this question.

The approximate kinematic formula, Theorem I, provides a muscular approach to the same problem. For
a face F of a polytope P, we define cone(F, P) := cone(P — x), where x is any point in the relative interior of
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the face [Grii68, p. 297]. In the context of the ¢; minimization problem above, cone(F, P) coincides with the
descent cone 2(|-|l1,xo). The discussion in [SW08, Chap. 8.3] yields the following observation.

Fact 10.1. Let F be an s-dimensional face of a polytope P in RY, let L be a m-dimensional subspace of R%, and
let Q € R4*? be a random rotation. Then

P{Ilo.F is an s-dimensional face of gL P} = P{QL" ncone(F, P) = {0}}.

In other words, the probability that a face F of a polytope P in R? maintains its dimension under projection onto
a random m-dimensional subspace is equal to the probability that a random (d —m)-dimensional subspace does
not share a ray with cone(F, P). When m < §(cone(F, P)) or, equivalently, §(cone(F, P)) + (d — m) = d, Theorem I
shows that a random (d — m)-dimensional subspace is likely to share a ray with cone(F, P). Therefore, the
face F is unlikely to survive the projection onto an m-dimensional subspace. Conversely, the face F is likely
to survive when m = 6 (cone(F, P)). This analysis applies to any polytope, so our theory provides new results
about a fundamental problem in combinatorial geometry.

10.1.2. Commentary. The analysis of structured inverse problems by means of polytope-angle computations
has led to some striking conclusions, but this approach has inherent limitations. First, the method is restricted
to polyhedral cones, which means that it is silent about the behavior of many important regularizers, including
the Schatten 1-norm. Second, it requires detailed bounds on all angles of a given polytope (equivalently, all
the intrinsic volumes of the normal cones of the polytope), which means that it is difficult to extend beyond a
few highly symmetric examples. For this reason, most of the existing results are asymptotic in nature. Third,
because of the intricacy of the calculations, this research has produced few definitive results of the form “the
probability of success jumps from zero to one at a specified location.”

We believe that our analysis supersedes most of the research on weak phase transitions for ¢; regularized
linear inverse problems that is based on polytope angles. We have shown for the first time that there is a
transition from absolute success to absolute failure, and we have characterized the location of the threshold
when the sparsity s = v/d +1. On the other hand, our error estimate for the statistical dimension of the descent
cone of the #; norm at a sparse vector is not very accurate when s < v/d. The independent work of Foygel &
Mackey [FM14, Prop. 1] contains a bound that improves our result in this sparsity regime.

It is not hard to extend our analysis to the other settings discussed in this section. Indeed, we can easily
study regularized inverse problems involving weighted ¢; norms and ¢; norms with nonnegativity constraints.
We can effortlessly derive phase transitions for ¢.,-regularized problems using Proposition 3.3. Bounds for
strong transitions are also accessible to our methods. We have omitted all of this material for brevity.

10.2. Conic intrinsic volumes. Research on polytope angles has largely been supplanted by spherical and
conical integral geometry [Gla95, SW08]. Several authors have independently recognized the power of this
approach for analyzing random instances of convex optimization problems.

Amelunxen [Amel1] and Amelunxen & Biirgisser [AB13, AB12] have shown that conic geometry offers
an elegant way to perform average-case and smoothed analysis of conic optimization problems. Their work
requires detailed computations of conic intrinsic volumes, which can make it challenging to apply to particular
cases. We can simplify some of their techniques using the new fact, Theorem 6.1, that intrinsic volumes
concentrate at the statistical dimension. Theorem 8.1 is based on their research.

McCoy & Tropp [MT14b] have used conic intrinsic volumes to study the behavior of regularized linear
inverse problems with random measurements and regularized demixing problems under a random model.
This approach leads to both upper and lower bounds for weak and strong phase transitions in a variety of
problems. As with Amelunxen’s work [Ame11], this research depends on detailed computations of conic
intrinsic volumes. As a consequence, it was not possible to rigorously locate the phase transition, nor was
there any general theory to inform us that phase transitions must exist in general. By combining the ideas
from [MT14b] with Theorem 7.1, the present work reaches stronger conclusions than [MT14b].

10.3. Analysis based on Gaussian process theory. The work we have discussed so far depends on various
flavors of integral geometry. There is a completely different technique for analyzing linear inverse problems
with random data that depends on a comparison inequality [Gor85, Thm. 1.4] for Gaussian processes due to
Gordon. Gordon [Gor88] explains how to use this comparison to find accurate bounds on the probability that
a randomly oriented subspace intersects a subset of the sphere.
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Rudelson & Vershynin [RV08] were the first authors to observe that Gordon’s work is relevant to the
analysis of the ¢; minimization method (1.2) for the compressed sensing problem. Stojnic [Sto09] refined
their method enough that he was able to establish an empirically sharp condition for ¢; minimization to
succeed. Oymak & Hassibi [OH10] extended Stojnic’s approach to study the low-rank recovery problem (2.6)
with random measurements. Later, Chandrasekaran et al. [CRPW12] observed that the same approach can
be used to analyze the regularized linear inverse problem (2.4) with random measurements whenever the
regularizer f is convex. In particular, the result [CRPW12, Cor. 3.3(1)] is equivalent with the success condition
from Theorem II, modulo the exact value of the constant a,,.

None of these authors has examined the failure condition for random linear inverse problems, but we have
observed that it is possible to obtain such a result by incorporating a polarity argument. We can also extend
the Gaussian process approach to obtain a success condition for demixing, but it does not yield a failure
condition for these problems. After this paper was written, Stojnic [Sto13] developed some related results.

10.3.1. The Gaussian width. This line of work uses a summary parameter for convex cones called the Gaussian
width. For a convex cone C c R%, the width is defined as

w(C) :=E[supccnga-1 (¥, &)

The Gaussian width w(C) is proportional to the classical mean width [Sch93, p. 42] of the set Cn S4-1 The
width w(C) also has a numerical relationship with the statistical dimension §(C), which is not surprising in
view of the mean-squared-width formulation (3.5).

Proposition 10.2 (Statistical dimension & Gaussian width). Let C be a convex cone. Then
w?(C) <6(C) < w?(C) +1. (10.1)

The lower bound in (10.1) requires little more than Jensen’s inequality. The upper bound depends on some
concentration arguments. See Appendix F for a short proof.

10.3.2. Commentary. In light of Proposition 10.2, the statistical dimension and the Gaussian width are
essentially equivalent as summary parameters for cones. This observation allows us to bridge the chasm
between two perspectives on random convex optimization problems: the approach based on integral geometry
and the approach based on Gaussian process theory. Even in the simple case of ¢; minimization (1.2), this
connection is entirely new; cf. [XH12, pp. 312-313].

This link yields many insights. For example, all of the statistical dimension calculations here lead to
analogous estimates for the Gaussian width. In particular, Theorem 4.3 provides the first accurate lower
bounds for the Gaussian width of a descent cone. Furthermore, we can use the intrinsic characterization of
the statistical dimension, Definition 2.2, to study cones that are not accessible to the metric characterization,
Proposition 2.4. For instance, consider the results for permutahedra in Proposition 3.5.

Despite these connections, we did not arrive at the statistical dimension by squaring the Gaussian width.
Rather, Definition 2.2 emerges from Theorem 6.1, our result that the conic intrinsic volumes concentrate. To
travel from this definition to the Gaussian width, we must take several long steps: Proposition 5.12 leads to
the metric characterization of the statistical dimension, Proposition 2.4; we apply Proposition 3.1 to obtain
the mean-squared-width formulation (3.5) of statistical dimension; and Proposition 10.2 sandwiches the
mean-squared-width formulation by the Gaussian width.

10.4. Minimax denoising. Several authors [DMMO09a, DJM13, DGM13] have remarked on the power of
statistical decision theory to empirically predict the location of the phase transition in a regularized linear
inverse problem with random data. For the compressed sensing problem, two recent papers [BM12, BLM13a]
provide a rigorous explanation for this coincidence. But there is no general theory that illuminates the
connection between these two settings. Our work and a recent paper of Oymak & Hassibi [OH13] together
resolve this issue. In short, Oymak & Hassibi show that the minimax risk for denoising is essentially the same
as the statistical dimension, while our research proves that a phase transition must occur at the statistical
dimension. Let us elaborate.

A classical problem in statistics is to estimate a target vector x, given an observation of the form zy = xp+0g
where g is a standard normal vector and ¢ is an unknown variance parameter. When the unknown vector x,
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has specified properties (e.g., sparsity), we can often construct a convex regularizer f that promotes this type
of structure [CRPW12]. A natural estimation procedure is to solve the convex optimization problem
Xy :=argmin )/f(x)+%||zo—x||2. (10.2)
xeRd
The regularization parameter y > 0 negotiates a tradeoff between the structural penalty and the data fidelity
term. One way to assess the performance of the estimator (10.2) is the minimax MSE risk,> defined as

1
Rinm (%) := sup inf = E[ 1%, — xol%].
'mm (X0) U>I0) 730 o2 [” Y oll ]

In other words, the risk identifies the relative mean-square error for the best choice of tuning parameter y at
the worst choice of the noise variance o?.

The papers [DMMO09a, DJM13, DGM13] examine several regularizers f where the minimax risk empirically
predicts the performance of the linear inverse problem (2.4) with a Gaussian measurement matrix A. The
authors of this research propound a conjecture that may be expressed as follows.

Conjecture 10.3 (Minimax risk predicts phase transitions). Suppose that A€ R™* is a matrix with independent
standard normal entries, and let f:R? — R be a proper convex function. Then

m= Rym(x0) +o(d) = (2.4) succeeds with probability 1 - o(1);
m< Rpm(xg) +o(d) = (2.4) succeeds with probability o(1).

The order notation here should be interpreted heuristically.

To the best of our knowledge, this claim has been established rigorously only for the ¢; norm [BLM13a,
Thm. 8] in the asymptotic setting. The paper [BLM13a] also includes analysis for a wider class of matrices.

Together, our paper and the recent paper [OH13] settle Conjecture 10.3 in the nonasymptotic setting for
many regularizers of interest. Indeed, Oymak & Hassibi [OH13] prove that

| Rinm (x0) — 8(2(f, %0)) | = O(V ).

Their result holds under mild conditions on the regularizer f that suffice to address most of the phase
transitions conjectured in the literature. Our result, Theorem II, demonstrates that the phase transition in the
linear inverse problem (2.4) with a standard normal matrix A€ R™*4 occurs when

|m-8(2(f,x0))| = 0Va).

Combining these two results, we conclude that, in some generality, the minimax risk coincides with the
location of the phase transition in a regularized linear inverse problem with random measurements.

APPENDIX A. COMPUTER EXPERIMENTS

We confirm the predictions of our theoretical analysis by performing computer experiments. This ap-
pendix contains some of the details of our numerical work. All experiments were performed using the CVX
package [GB13] for MATLAB with the default settings in place.

A.1. Linear inverse problems with random measurements. This section describes the two experiments
from Section 2.5 that illustrate the empirical phase transition in compressed sensing via ¢; minimization and
in low-rank matrix recovery via Schatten 1-norm minimization.

In the compressed sensing example, we fix the ambient dimension d = 100. For each m=1,2,3,...,100 and
each s=1,2,3,...,100, we repeat the following procedure 50 times:

(1) Construct a vector x, € R? with s nonzero entries. The locations of the nonzero entries are selected at
random; each nonzero equals +1 with equal probability.

(2) Draw a standard normal matrix A€ R”*4 and form z; = Ax,.

(3) Solve (2.5) to obtain an optimal point X.

(4) Declare success if |%— xp| < 107°.

3The usual definition of the minimax risk involves an additional supremum over a class of distributions on the target xy. In many
applications, the symmetries in the regularizer f allow a straightforward reduction to the case of a fixed target xq. See [OH13, Sec. 6.4].



PHASE TRANSITIONS IN RANDOM CONVEX PROGRAMS 35

All random variables are drawn independently in each step and at each iteration. Figures 1.1[left] and 2.4[left]
show the empirical probability of success for this procedure. We performed a similar experiment for ambient
dimension d = 600. In this case, we iterate over s€ {1,7,13,...,595} and m € {0,6,12,...,600}; Figure 1.1[right]
displays a subset of this data.

In the compressed sensing experiment, 50 trials suffice to estimate the probability because of the concen-
tration phenomenon established in Theorem II. Furthermore, the experiment does not appear particularly
sensitive to the success tolerance 10~ above. Limited tests confirm that tolerances with orders of magnitude
1073 through 1077 give essentially the same results. The value 10~ was chosen as a stringent condition
that would be insensitive to numerical errors produced by the CVX software package. Nevertheless, we
encountered some numerical problems in the experiment with d = 600, which led to a few spurious failures in
Figure 1.1[right].

We take a similar approach in the low-rank matrix recovery problem. Fix n =30, and consider square n x n
matrices. For each rank r = 1,2,...,n and each m = 1,29,58,87,..., n?, we repeat the following procedure 50
times:

(1) If r = [v/m] +1, declare failure because the number of degrees of freedom in an n x n rank-r matrix
exceeds the number m of measurements.
(2) Draw a rank-r matrix Xo = Q QZT , Where Q; and Q, are independent n x r matrices with orthonormal
columns, drawn uniformly from an appropriate Stiefel manifold [Mez07].
(3) Draw a standard normal matrix A€ [R”””Z, and define <7 (X) := A-vec(X), where the vectorization
operator stacks the columns of a matrix. Form the vector of measurements zy = . (X).
(4) Solve (2.6) to obtain an optimal point X.
(5) Declare success if | X — Xollp < 1075.
As before, all random variables are chosen independently. Readers interested in reproducing this experiment
should be aware that this procedure required nearly one month to execute on a desktop workstation.
Figure 2.4[right] displays the results of this experiment. Once again, the probability of success and failure is
relatively insensitive to the precise tolerance 10~° used above.

A.2. Statistical dimension curves. The formulas (4.4) and (4.7) for the statistical dimension of the descent
cones of the ¢; norm and the Schatten 1-norm do not have a closed form representation. Nevertheless, we
can evaluate these expressions using simple numerical methods. Indeed, in each case, we solve the stationary
equation (4.6) and (4.9) using the rootfinding procedure fzero, which works well because the left-hand side
of each equation is a monotone function of 7. To evaluate the integral in (4.4), we use the command erfc. To
evaluate the integral in (4.7), we use the quadrature function quadgk.

We have encountered some numerical stability problems evaluating (4.4) when the proportional sparsity
p = sl/d is close to zero or one. Similarly, there are sometimes difficulties with (4.7) when the proportional
rank p = r/m or the aspect ratio v = m/n are close to zero or one. Nevertheless, relatively simple code based
on this approach is usually reliable. Software is available online [McC14].

A.3. Logistic regression. Several of the experiments involve fitting the logistic function
1
0(x):= TroGopiD

to the data, where By, 8; € R are parameters. We use the command glmfit to accomplish this task. The center
1 :=—PBo/ By of the logistic function is the point such that ¢(u) = %

APPENDIX B. BACKGROUND ON CONIC GEOMETRY

Sections B.1-B.3 below provide some important facts from convex geometry that we will use liberally.
Section B.4 establishes the properties of the statistical dimension listed in Proposition 3.1.

B.1. Representation of descent cones. Let f:R% — R be a proper convex function. Recall that the descent
cone of f at a point x is given by

2(f,%) = J{yeR?: fx+1y) < f0)}.

7>0

The normal cone of a convex set E at a point x is defined as
N (E,x):={seR%:(s, y-x)<0 forall yeE}.
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The polar of a descent cone has some attractive duality properties. First, the polar of a descent cone coincides
with the normal cone of a sublevel set:

D(f,%)° =N (E,x) where E={yeR%:f(y)<fx)} (B.1)

If the descent cone is closed, we can apply the bipolar theorem [Roc70, Thm. 14.1] to transfer the polar
in (B.1) from the normal cone to the descent cone. Second, there is a duality between descent cones and
subdifferentials. Recall that

of(x):= {sERd:f(y)zf(x)+(s, y—x) for allyeRd}.

Assuming that the subdifferential df(x) is nonempty, compact, and does not contain the origin, the re-
sult [Roc70, Cor. 23.7.1] provides that

2(f,%)° =cone(@f(x):=J1-0f (). (B.2)

720

The expression 7-0f(x) represents dilation of the subdifferential by a factor 7. The relation (B.2) offers a
powerful tool for computing the statistical dimension of a descent cone, as described in Proposition 4.1.
Related identities hold under weaker technical conditions [Roc70, Thm. 23.7]; these results can be used to
establish the formula (4.2) without the compactness assumption.

B.2. Euclidean projections onto sets. Let E c R? be a closed convex set. The Euclidean projection onto the
set E is the map

ap:RY—E where mp(x):= argmin{|lx—y|:ye€E}.
The projection takes a well-defined value because the norm is strictly convex. Let us note some properties of
the distance and projection maps. First, the function dist(;, E) is convex [Roc70, p. 34]. Next, the maps &g
and I- g are nonexpansive with respect to the Euclidean norm [Roc70, Thm. 31.5 et seq.]:

e -2l <lx—yl and [A-zp) @) -A-zr) I <lx-yl forallx,yeR? (B.3)

As a consequence, the projection s is continuous, and the distance function is 1-Lipschitz with respect to the
Euclidean norm:

|dist(x, E) — dist(y, E)| < lx—yll for all x,y e R%. (B.4)
The squared distance is differentiable everywhere, and the derivative satisfies
Vdist®(x,E) =2 (x—mwp(x)) for all xeRY. (B.5)

This point follows from [RW98, Thm. 2.26].

B.3. Euclidean projections onto cones. Let C c R? be a closed convex cone. Recall that the Euclidean
projection onto the cone C is the map

Mc:RY - C where Tc(x):= argmin{llx—y|:yeC}.

We have used a separate notation for the projection onto a set because the projection onto a cone enjoys
a number of additional properties [HUL93, Sec. II1.3.2]. First, the projection onto a cone is nonnegative
homogeneous: I¢(r x) = T (x) for all T =0. Next, the cone C induces an orthogonal decomposition of R4,

x=Hc@) +Mc(x) and (Hc(x), Oee(x)) =0 for all x € R, (B.6)
The decomposition (B.6) yields the Pythagorean identity
%01 = e (@)1 + [ Tee ()] for all x e RY. (B.7)
It also implies the distance formulas
dist(x,C) = |x - Tc(x)[ = M ()| for all x e RY. (B.8)

The squared norm of the projection has a nice regularity property, which follows from a short argument based
on (B.5), (B.6), and (B.8):

VIHc@®)|?=2Mc(x) for all xeRY. (B.9)
Indeed, V |II¢(x)]? = Vdist?(x, C°) = 2(x — I~ (x)) = 211 (x). Finally, the projection map decomposes under
Cartesian products. For two closed convex cones C; c R% and C, c R% the product C; x C, c RU1*% satisfies

¢, <, ((%1,%2)) = (¢, (%1), ¢, (x2)) forall x; € R% and x, € R%. (B.10)
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The relation (B.10) is easy to check directly.

B.4. Proof of Proposition 3.1. Let us verify the elementary properties of the statistical dimension delineated
in Proposition 3.1. These results follow quickly from the orthogonal decomposition (B.7) and basic facts
about a standard normal random vector.

(1) The intrinsic formulation (3.1) simply restates Definition 2.2.
(2) The Gaussian formulation (3.2) follows from Proposition 2.4 or the equivalent Proposition 5.12.

(3) To derive the spherical formulation (3.3) from (3.2), we introduce the spherical decomposition
g = R0, where R := | gll is a chi random variable with d degrees of freedom that is independent from
the spherical variable . By nonnegative homogeneity and independence,

§(C)=E[R* @] = E[R*]-E[ITIc(O)I°] = d E[ITIc6)11%],
where the last equality follows because E [ gl?] = d.

(4) The polar identity (3.4) is a direct consequence of the distance formula (B.8), which implies that
ITc(g) |l = dist(g, C°).

(5) The supremum formulation (3.5) also follows from (3.2). Using the Pythagorean decomposition (B.7),
we observe that

SUPyecnpd (¥ 8 =SuPyecapa (¥, Mc(g) +1ce(8)) < supyecnpa (¥, Mc(g).

The second inequality is immediate from the definition (1.4) of the polar cone. Choose y to be the
unit vector in the direction II¢(g) to see that

SUPyccnBd ¥, & =IMc(@l.
Square the expression, and take the expectation to complete the argument.

(6) The rotational invariance property (3.6) follows immediately from the fact that a standard normal
vector is rotationally invariant.

(7) To compute the statistical dimension of a subspace, note that the Euclidean projection of a standard
normal vector onto a subspace has the standard normal distribution supported on that subspace, so
its expected squared norm equals the dimension of the subspace.

(8) The complementarity law (3.7) follows from the Pythagorean identity (B.7).

(9) We obtain the direct product rule (3.8) from the observation (B.10) that projection splits over a direct
product, coupled with the fact that projecting a standard normal vector onto each of two orthogonal
subspaces results in two independent standard normal vectors.

(10) Finally, we verify the monotonicity law. Polarity reverses inclusion, so K° = C°. Using the polarity
identity (3.4) twice, we obtain

5(C) =E[dist*(g,C°)] <E[dist*(g,K*)] = 6(K).

This completes the recitation.

APPENDIX C. THEORETICAL RESULTS ON DESCENT CONES

This appendix contains the theoretical analysis that permits us to calculate the statistical dimension of a
descent cone. In particular, we prove Proposition 4.1 and establish Theorem 4.3.

C.1. The expected distance to the subdifferential. In this section, we complete the proof of Proposition 4.1.
This result forms the basis for Recipe 4.1, which lets us compute the statistical dimension of a descent cone.
We must show that the function J: 7 — E[dist*(g,7-df(x))] exhibits a number of analytic and geometric
properties. The hypotheses of the proposition ensure that 4 f(x) is a nonempty, compact, convex set that does
not contain the origin. For clarity, we establish an abstract result that only depends on the distinguished
properties of the subdifferential. Let us begin with a lemma about a related, but simpler, function.

Lemma C.1 (Distance to a dilated set). Let S be a nonempty, compact, convex subset of R? that does not contain
the origin. In particular, there are numbers that satisfy b< |s| < B for all s€ S. Fix a point u € R%, and define the
function

Ju: 17— dist®(u,7S) forT=0. (c.n
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The following properties hold.
(1) The function J is convex.
(2) The function J, satisfies the lower bound
Ju(®)=(@b- Il uell)? forall T = |lull /b. (C.2)
In particular; J, attains its minimum value in the compact interval (0,2 ||ull / b].
(3) The function J, is continuously differentiable, and the derivative takes the form

2
I, @ = - (u—mrs(u), wrs(w)) for v>0. (C.3)

The right derivative J,,(0) exists, and J,,(0) = lim; o J}, (7).
(4) The derivative admits the bound

|J.@| <2B(llul+7B) forall t=0. C4
(5) Furthermore, the map u— J,,(7) is Lipschitz for each 7 = 0:
|7.@ - T,@|<2Blu-yl forall u,yeR?. (C.5)

Proof These claims all take some work. Along the way, we also need to establish some auxiliary results to
justify the main points.
Convexity. For T > 0, convexity follows from the representation

. 2 . 2 . 2
]u(T)Z(gElg ||u—Ts||) = (‘L’g:lg |Iu/T—s||) = (7 -dist(u/1,9))". (C.6)

By way of justification, the distance to a closed convex set is a convex function [Roc70, p. 341, the perspective
transformation [HUL93, Sec. IV.2.2] of a convex function is convex, and the square of a nonnegative convex
function is convex by a direct calculation.

Continuity. The representation (C.6) shows that the function J,, is continuous for 7 > 0 because the distance
to a convex set is a Lipschitz function, as stated in (B.4). To obtain continuity at 7 = 0, simply note that

Ju(®) = Ju(O)| = |lu-mes @) - llul®| <2 Ku, wes@)|+ wes@)|* <2|lull (€B)+ (¢B)* —0 as e — 0.

Indeed, each point in €S is bounded in norm by B, so the projection 7 .s(x) admits the same bound. Continuity
implies that J, is convex on the entire domain 7 = 0.
Attainment of minimum. Assume that 7 = ||u|//b. Then

dist(u,78) = inf |rs—ul =inf (tls| - lul)=71b-|ul =0.
sesS seS

Square this relation to reach (C.2). As a consequence, for all 7 > 2| ull /b, we have J,(t) > J,(0) = |ul?>. If
follows that any minimizer of J,, must occur in the compact interval [0,2 |||l /b]. Since J, is continuous, it
attains its minimal value in this set.

Differentiability. We obtain the derivative from a direct calculation:

I, (1) = (%[Tz dist*(u/7,8)) = 27 - dist*(u/7, S) + 72 (2 (/1) - ws(u/ 7)), —0/7%)

2, 2
= ;(dlst (u,78) —(u—mr5(w), uy) =—;(u—7rfs(u), 7rs(u)

The first relation follows from (C.6). The second relies on the formula (B.5) for the derivative of the squared
distance. To obtain the last relation, we express the squared distance as ||u— 7,s(w)|?.

Right derivative at zero. The right derivative J,(0) exists, and the limit formula holds because J,, is a proper
convex function that is continuous on [0,00] and differentiable on (0,00); see [Roc70, Thm. 24.1].

Continuity of the derivative. The expression (C.3) already implies that J/, is continuous for 7 > 0 because the
projection onto a convex set is continuous [RW98, Thm. 2.26]. Continuity of the derivative at zero follows
from the limit formula for the right derivative at zero.

Bound for the derivative. Given the formula (C.3), it is easy to control the derivative when 7 > 0:

2 2
VAGIE —lu=—mrs@ll sl < — (lull +7B)(tB) = 2B (lull + 7B).

We obtain the estimate for 7 = 0 by taking the limit.
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Lipschitz property. We obtain the Lipschitz bound (C.5) from (C.3) after some effort. Fix t > 0. The
optimality condition [HUL93, Thm. II1.3.1.1] for a projection onto a closed convex set implies that

(y=7os®), wes()) 2y —es(y), wrsw))  for all u,y e RY.

As a consequence,

(u—r5(), Trs(W)) — (¥ =25, es(W)) <{(w—7r5(W) = (¥ = A5()), Ars(W))
SA-7rs) (W) — A=) P s < lu—yl - (TB).

The last relation relies on the fact (B.3) that the map I- ;g is nonexpansive. Reversing the roles of u and y
in the last calculation, we see that

[(u—7rs(w), wrs()) —(y—7:5(y), Azs(M)| < @B)-llu—yll.
Combining this estimate with the expression (C.3) for the derivative, we reach
|7 = T,(@| <2B-lu-yl.

For 7 =0, the result follows when we take the limit as 7 | 0. O

With this result at hand, we are prepared to prove a lemma that confirms the remaining claims from
Proposition 4.1.

Lemma C.2 (Expected distance to a dilated set). Let S be a nonempty, compact, convex subset of R? that does
not contain the origin. Consider the function

J(1):=E[dist*(g,79)] =E[Jg(m)] for T=0.

The function J is strictly convex, continuous at T = 0, and differentiable for T > 0. It attains its minimum at a
unique point. Furthermore,

J@=E[J,()] foralz=0. (C.7)
For T =0, we interpret J'(t) as a right derivative.
Proof. These properties will follow from Lemma C.1, and we continue using the notation from this result.

Continuity at zero. Imitating the continuity argument in Lemma C.1, we find that
J(&) = J(0) =E[Jg(e) — Jg(0)] <E[211gl Imes(g)ll + Imes()I*] <2Vd - (eB) + (eB)* —0 ase— 0.

This is all that is required.

Differentiability. This point follows from a routine application of the Dominated Convergence Theorem.
Indeed, for every 7 =0, the function /() =[E[J¢(7)] takes a finite value, and Lemma C.1 establishes that ]é, is
continuously differentiable. For each compact interval I, the bound (C.4) ensures that

Esup,c; |/()| <Esup,e; (2B(Igl+7B)) <2BVd+2B*(sup,¢; 7)< oo.

The convergence theorem now implies that J'(1) = % ElJg(M]=EJg(r)] for all 7> 0.

Convexity. The function J is convex for 7 = 0 because it is an average of functions of the form Jg, each of
which is convex.

Strict convexity. We argue by contradiction. We have shown that J is convex and differentiable. If J were not
strictly convex, its graph would contain a linear segment. More precisely, there would be numbers 0=p <7t
and 1 € (0,1) for which

E[Jg((mp+ (1 -m))8)] =E[1- Jg(p) + (1 =) Jg(@)] (C.8)

The convexity of /g ensures that, for each g, the bracket on the right-hand side is no smaller than the bracket
on the left-hand side. Therefore, the relation (C.8) holds if and only if the two brackets are equal almost
surely with respect to the Gaussian measure. But note that

Jo(np + 1 —-m1) =dist? (0, o + A —-m1)S) = (np + 1 —m7)*- inf HE
<@mp*+a —n)rz)-ggg Isli? =n-dist?(0, pS) + (1 —n) - dist*(0,7S) = n- Jo(0) + (1 = 1) - Jo (7).
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The strict inequality depends on the strict convexity of the square, together with the fact that the infimum is
strictly positive. On account of (B.4), the squared distance to a convex set is a continuous function, so there is
an open ball around the origin where the same relation holds. That is, for some ¢ >0,

Jump+ A -m1) <n-Julp)+ (1 -m)-Ju(r) when |ull <e.

This statement contravenes (C.8).
Attainment of minimum. The median of the random variable | g| does not exceed Vd. Therefore, when
b =vd, we have

J@) 2E[Jg(@)| gl < Vd]-P{ligl < Vd} = %[E[(rb— Igl)?| gl = Vd] = %(rb— vay.

The first inequality follows from the law of total expectation, and the second depends on (C.2). In particular,
J(¥) > J(0) = d when 7 >2b~'Vd. Thus, any minimizer of J must occur in the compact interval [0,2b~1Vd].
Since J is continuous and strictly convex, it attains its minimum at a unique point. O

C.2. Error bound for descent cone calculations. In this section, we prove Theorem 4.3, which provides an
error bound for Proposition 4.1. We require a standard result concerning the variance of a Lipschitz function
of a standard normal vector.

Fact C.3 (Variance of a Lipschitz function). Let F:R% — R be a function that is Lipschitz with respect to the
Euclidean norm:
|Fw) - F)| <M llu-yl forall uyer’.

For a standard normal vector g in R%, we have
Var (F(g)) < M. (C.9)
Fact C.3 is a consequence of the Gaussian Poincaré inequality; see [Bog98, Thm. 1.6.4] or [LedO1, p. 49].

Proof of Theorem 4.3. Let f:R? — R be a norm, and fix a nonzero point x € R?. According to [HUL93,
Ex. VI.3.1], the subdifferential of the norm satisfies

S:=0fx)={seR?:(s, x)= f(x) and f°(s)=1}, (C.10)

where f° is the norm dual to f. Thus, S is nonempty, compact, convex, and it does not contain the origin.
As in Lemmas C.1 and C.2, we introduce the functions

Ju:t—dist?(w,7S) and J:1—E[Jg(1)],

where g is a standard normal vector. Proposition 4.1 provides the upper bound Einf;»¢ Jg(7) <infr> /(7).
Our objective is to develop a reverse inequality.

We establish the result by linearizing each function Jg around a suitable point. Lemma C.2 shows that the
function J attains its minimum at a unique location, so we may define

Ty :=argmin J(1).
7=0

Similarly, for each u € R, Lemma C.1 shows that J, attains its minimum at some point 7, > 0. For the moment,
it does not matter how we select this minimizer. Since J, is convex and differentiable, we can bound its
minimum value below using the tangent at 7,. That is,

%Eg Ju(@) =Ju(Tw) =2 Ju(Ts) + (Ty—T) ];,(T*)

Should 7, =0, we interpret J;,(t4) as a right derivative. Replacing u by the random vector g and taking the
expectation, we reach

E|inf Jo(] = E[Jg(r)] +E[(7g~7.) - Jp(7.)]
=J@ ) +E[(Tg—14) (Jgm) —E[J(:)])] +El1g = 7] -E[Jg(4)]
= J(1.) +E[(1g ~Elrg])- (J (1) ~E[J4(r)])] +Elrg 741 -J'(72)
2 inf J(1) ~ (Varlrg] -Var U @a]) 2 +Elrg =741 J'(x.). (C.11)

To reach the second line, we add and subtract the constant E | ]’g(r*)]. Next we use the fact that the second
parenthesis has zero mean to replace the constant 7, in the first parenthesis by the constant E[7g]. Then we
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invoke (C.7) to identify the derivative of J. The last inequality depends on Cauchy-Schwarz. From here, we
obtain the conclusion (4.3) as soon as we estimate the two error terms. The advantage of this formulation is
that the Lipschitz properties of the random variables allow us to control their variances.

First, let us demonstrate that the last term on the right-hand side of (C.11) is nonnegative. Abbreviate
e1:=E[tg—74]-J'(14). There are two possibilities to consider. When 7, >0, the derivative J'(r4) = 0 because
7, minimizes J. Thus, e; =0. On the other hand, when 7, =0, it must be the case that the right derivative
J'(14) 20, or else the minimum of the convex function J would occur at a strictly positive value. Since 74 =0,
we see that the quantity e; = 0.

To compute the variance of 74, we need to devise a consistent method for selecting a minimizer 7, of J,.
Introduce the closed convex cone K := cone(S), and notice that

inf J, (1) = inf dist®(u,7S) = dist® (u, K).
720 7=0

In other words, the minimum distance to one of the sets 78 is attained at the point Ilx(u). As such, it is
natural to pick a minimizer 1, of J, according to the rule

Tu::inf{TEO:HK(u)ETS}:aL}((;x))’m. (C.12)

The latter identity follows from the expression (C.10) for the subdifferential S. In light of (C.12),

[Tu—1y|= L|<H (w) -Hk(y), x)| < "i"wln (w) -Mx) < M-||u—y||

u y f(x) K K » = f(x) K K = f(x) .

We have used the fact (B.3) that the projection onto a closed convex set is nonexpansive. Fact C.3 delivers
(Var(rg)? < 2L ___1 (C.13)

T felxD

Finally, let us turn to the remaining variance term in (C.11). We have already computed the Lipschitz
bound we need for the analysis. Indeed, the inequality (C.5) states that

|Ju (@) =Ty (T)| < (2 supges lIsl)-llu—yll.

Another invocation of Fact C.3 delivers the estimate
1/2

(Var[]é(r*))) <2supge lIsll. (C.14)
To complete the proof, we combine the inequalities (C.11), (C.13), (C.14), and the fact that e; = 0. This is
the advertised result (4.3). ]

APPENDIX D. STATISTICAL DIMENSION CALCULATIONS

This appendix contains the details of the calculations of the statistical dimension for several families of
convex cones: circular cones, ¢; descent cones, and Schatten 1-norm descent cones.

D.1. Circular cones. First, we approximate the statistical dimension of a circular cone.

Proof of Proposition 3.4. We begin with an exact integral expression for the statistical dimension of the circular
cone C = Circy(a). The spherical formulation (3.3) of the statistical dimension asks us to average the squared
norm of the projection of a random unit vector 8 onto the cone. Introduce the angle §:= () := arccos(6;)
between 0 and the first standard basis vector (1,0,...,0). Elementary trigonometry shows that the squared
norm of the projection of 8 onto the cone C admits the expression

1, 0<pf<a,
F(B):=Mc@)]* =X cos’(B-a), asf<Z+a,
0, Z+as<psm.

To obtain the exact statistical dimension §(C) from (3.3), we integrate F(¢) in polar coordinates in the usual
way (cf. [SWO08, Lem. 6.5.1]) to find

r(zd)

Q) =d ———F—
VaT(3(d-1)

fo " sind-2 (B)F(B)dp. (D.1)
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We can approximate the integral by a routine application of Laplace’s method [AF03, Lem. 6.2.3], which
yields

d-2 2w (T -3/2
fo sin2(p) F(p) dp = | = F(3 )+ 0.
To simplify the ratio of gamma functions, recall Gautschi’s inequality [OLBC10, Sec. 5.6.4]:
VEr(4d)
I(3(d-1)

Combine the last three displays to reach the expression (3.9).
To obtain the more refined estimate cos(2a) for the error term, one may use the fact that the intrinsic
volumes of a circular cone satisfy

vVd-2< V.

3(d=-2)

C
vk (Circg(@)) = ( k-1

)sink_l(a) cos®* V(@) fork=1,...,d—1. (D.2)
This formula is drawn from [Amel1l, Ex. 4.4.8]. We are using the analytic extension to define the binomial
coefficient. The easiest way to study this sequence is to observe the close connection with the density of a
binomial random variable and to apply the interlacing result, Proposition 5.9. In the interest of brevity, we
omit the details. O

D.2. Descent cones of the /; norm. In this section, we show how to use Recipe 4.1 and Theorem 4.3 to
compute the statistical dimension of the descent cone of the ¢; norm at a sparse vector. This is a warmup for
the more difficult, but entirely similar, calculation in the next section.

Proof of Proposition 4.5. Since the ¢; norm is invariant under signed permutations, we may assume that the

sparse vector x € R? takes the form x = (xy,..., xs,0,...,0), where x; > 0. To compute § (2l ,x)), we use the
subdifferential bound (4.2) for the statistical dlmensmn of a descent cone:
5(2(Ill1,x) < inf E[dist*(g,7-dl1xll1)]. (D.3)
Observe that the subdifferential of the ¢; norm at x has the following structure:
i =1, i=1,...,
weolxl, < Y ' ¥ (D.4)
lu;l<1, i=s+1,...,d.

We can compute the distance from a standard normal vector g to the dilated subdifferential as follows.

s d
dist’ (g,7-0llxlh) = }_(gi~*+ ) Pos’(lgil - 1),
i=1 i=s+1
where Pos(a) := a v 0 and the operator v returns the maximum of two numbers. Indeed, we always suffer an
error in the first s components, and we can always reduce the magnitude of the other components by the
amount 7. Taking the expectation, we reach

[E[dist2 (g7-0lxl1)] = s(1+‘r‘2)+(d—s) \/gf (u—T)Ze_uzlzdu. (D.5)
T

Introduce this expression into (D.3) and normalize by the ambient dimension d to reach

P01,
22, x) ”1 P {(S/d)(1+‘[ +(1—s/d)[f (u-1’e ””du} (D.6)

This expression matches the upper bound in (4.4).

Now, we need to invoke the error estimate, Theorem 4.3. An inspection of (D.4) shows that the sub-
differential d||x|; depends on the number s of nonzero entries in x but not on their magnitudes. It follows
from (B.2) that, up to isometry, the descent cone 2(||-Il;,x) only depends on the sparsity s. Therefore, we
may as well assume that x = (1,...,1,0,...,0). For this vector, ||x/||x|/l; = v/s. Second, the expression (D.4)
for the subdifferential shows that |lull < v/d for every subgradient u € d|x||. Therefore, the error in the
inequality (D.6) is at most 2v/d/s. We reach the lower bound in (4.4).
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Finally, Lemma C.2 shows that the brace in (D.6) is a strictly convex, differentiable function of t with a
unique minimizer. It can be verified that the minimum does not occur at 7 = 0. Therefore, we determine the
stationary equation (4.6) by setting the derivative of the brace to zero and simplifying. ]

D.3. Descent cones of the Schatten 1-norm. Now, we present the calculation of the statistical dimension
of the descent cone of the Schatten 1-norm at a low-rank matrix. The approach is entirely similar with the
argument in Appendix D.2.

Proof of Proposition 4.7. Our aim is to identify the statistical dimension of the descent cone of the Schatten
1-norm at a fixed low-rank matrix. The argument here parallels the proof of Proposition 4.5, but we use
classical results from random matrix theory to obtain the final expression. Our asymptotic theory demonstrates
that this simplification still results in a sharp estimate.

We begin with the fixed-dimension setting. Consider an m x n real matrix X with rank r. Without loss of
generality, we assume that m < n and 0 < r < m. The Schatten 1-norm is unitarily invariant, so we can also
assume that X takes the form

2 0

X=10 o

] where X =diag(o;,02,...,0,) and o;>0fori=1,...,r.

The subdifferential bound (4.2) for the statistical dimension of a descent cone states that

5(2(I-ls,, X)) < inf E[dist*(G,7-01Xlls, )], (D.7)

where we compute distance with respect to the Frobenius norm. The m x n matrix G has independent standard
normal entries, and it is partitioned conformally with X:

G= Gu G where G isrxr and Gois(m-—r1)x(n-r).
G:1 G
According to [Wat92, Ex. 2], the subdifferential of the Schatten 1-norm at X takes the form
I, 0]
o0lXls, = 0 W o1(W) =1y, (D.8)
where g1 (W) denotes the maximum singular value of W. It follows that
2
. G -1l Gp . 2
00X )* = f —TWI?.
dist(G,7-01Xls,) ” Gay o, +01(1I5|1/)51 1G22 —TWIIE
Using the Hoffman-Wielandt Theorem [HJ90, Cor. 7.3.8], we can derive
9 m-r 2 m-r 9
01(1%51 1G22 —TW I 201(11%51 Y (0i(G22) —10;(W))" = Y Pos®(0(Gzz) — 1),

i=1 i=1

where ¢;(-) is the ith largest singular value. Combining the last two displays and taking the expectation,

m-r
E[dist*(G,T-01Xlls,)] =r(m+n-r+7*)+E| Y Pos*(0i(Ga2) —7)|. (D.9)
i=1
Introduce this expression into (D.7):
m-r
5(2(I-s,,X)) < in(f) {r(m+ n—-r+13)+E| Y Pos*(0:(Ga) - 1) } (D.10)
= i=1

We reach a nonasymptotic bound on the statistical dimension.

Next, we apply the error bound, Theorem 4.3. The expression (D.8) shows that the subdifferential | X|ls,
depends only on the rank of the matrix X and its dimension, so the descent cone 2(|-|s,,X) has the same
invariance. Therefore, we may consider the m x n rank-r matrix X =1, 0, which verifies | X/ (| X|||ls, = vT.
Each subgradient Y € 0| X| s, satisfies the norm bound || Y |lg < /m. We conclude that the error in (D.10) is no
worse than 2vm/r.

It is challenging to evaluate the formula (D.10) exactly. In principle, we could accomplish this task using
the joint singular value density [And84, p. 534] of the Gaussian matrix G,. Instead, we set up a framework
in which we can use classical random matrix theory to obtain a sharp asymptotic result.
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Consider an infinite sequence {X (r, m, n)} of matrices, where X (r, m, n) has rank r and dimension m x n with
m < n. For simplicity, we assume that the problem parameters r, m, n — co with constant ratios r/m=:p € (0,1)
and m/n =:v € (0,1]. The general case follows from a continuity argument. After a change of variables
17— 1y/n—r and a rescaling, the expression (D.9) leads to

min[E[distz(G,r\/n—r-GIIX(r,m,n)Ilsl)]
1 m-r
=pv+p(l-pv)(1+7%)+(1-p)(1-pv)-E P Y Pos’(gi(Z2)-1)|. (D.11)
- i

Here, G is an m x n standard normal matrix. The matrix Z has dimension (m —r) x (n—r), and its entries are
independent NORMAL(0, (n — r)~!) random variables.

Observe that the expectation in (D.11) can be viewed as a spectral function of a Gaussian matrix. We can
obtain the limiting value of this expectation from a variant of the Marc¢enko-Pastur Law [MP67].

Fact D.1 (Spectral functions of a Gaussian matrix). Fix a continuous function F:R;, — R. Suppose p,q — oo

and p/q — y € (0,1]. Let Z,q be a p x g matrix with independent NORMAL(0, g~!) entries. Then

E

1 14 a;
;ZF(Ui(qu)) —»f F(u) - @y (u)du.
i=1 a

The limits a+ := 1+ ,/y. The kernel ¢, is a probability density supported on [a_,a,]:

1
@y (u) = m\/(u2 —-a?)(a? -u?) foruela-,a.l.

Fact D.1 is usually stated differently in the literature. The result here follows from the almost sure weak
convergence of the empirical spectral density of a sample covariance matrix to the Mar¢enko—Pastur den-
sity [BS10, Thm. 3.6] and the almost sure convergence of the extreme eigenvalues of a sample covariance
matrix [BS10, Thm. 5.8], followed by a change of variables in the integral. We omit the uninteresting details
of this reduction.

Let us apply Fact D.1 to our problem. The limiting aspect ratio y of the matrix Z satisfies
m-r v(l-p)

n-r 1l-pv’

As r,m, n — oo, we obtain the limit, pointwise in 7 =0,

1

m-—r
E|—— ) Pos’(0i(Z)~7)

a+
—»f Pos?(u—1) - @y (u)du.
i=1 a

Simplifying the latter integral and introducing it into (D.11), we reach

inf{ % E[dist? (G, 7vn—r1-01X(r,m s, )] }

720
a+
- inf{pv+p(1 —ov(1+7%)+(1-p)(1 —pv)f (u—1)? -(py(u)du}.
720 a-Vvt
By itself, pointwise convergence does not imply convergence of the infimal values. The limit above follows
from the fact that all of the functions involved are strictly convex. For the details, see [McC13, p. 105].

Rescaling the error estimate for (D.10), we see that the error in the normalized statistical dimension is at
most 2/(ny/mr), which converges to zero as the parameters grow. We obtain the asymptotic result

1 ay
—6(2(I-lls, , X (r,m,n))) — inf {pv+p(1—pv)(1+12) +(1-p) —pv)f (u—r)z.(py(u)du}.
mn 720 a-Vvt

This is the main conclusion (4.7). To obtain the stationary equation (4.9), we differentiate the brace with
respect to T and set the derivative to zero. |
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D.4. Permutahedra and finite reflection groups. In this section, we use a deep connection between conic
geometry and classical combinatorics to compute the statistical dimension of the normal cone of a (signed)
permutahedron. This computation is based on the intrinsic characterization of statistical dimension in
Definition 2.2, which is also restated in (3.1).

A finite reflection group is a finite subgroup & of the orthogonal group* that is generated by reflections across
hyperplanes [ST54, Ste59, CM72, BB10]. Each finite reflection group partitions R? into a set {UCy : U € 4} of
polyhedral cones called chambers. The chambers of the infinite families A;_; and BC,; of irreducible finite
reflection groups are isometric to the cones

Ca={xeR%:x;<---<x4} and Cpc:={xeR?:0<x < <x4}.
It turns out that the chambers C4 and Cpc coincide with the normal cones of certain permutahedra.

Fact D.2 (Normal cones of permutahedra). Suppose that the vector x has distinct entries. Then the normal cone
N (PP(x),x) is isometric to C4 and the normal cone A (2, (x), x) is isometric to Cpc.

See [HLT11, Sec. 2] or [Zie95, Ex. 7.15] for a proof of Fact D.2.
We claim that the statistical dimensions of the chambers C4 and Cp¢ can be expressed as

0(Ca)=Hy and 6(Cge) = %Hd, (D.12)

where H, := Zzzl i~! is the dth harmonic number. Proposition 3.5 follows immediately when we combine this
statement with Fact D.2.

Let us explain how the theory of finite reflection groups allows us to deduce the expression (D.12) for
the statistical dimension of the chambers. First, it follows from [BZ09] and the characterization [SWOS8,
Eq. (6.50)] of intrinsic volumes in terms of polytope angles that

||
9]’
where 54 ;= {U € 4 : dim(null(I- U)) = k}. Define the generating polynomial of the intrinsic volumes

Vi(Cy) =

RIS NP
="

This polynomial is a well-studied object in the theory of finite reflection groups, and it has many applications
in conic geometry as well [Amel1l, Sec. 4.4]. For our purposes, we only need the relationships

d
Gy ()= Y vi(Cq)s* =
k=0

d d
qy=1 and “TL@)= Y kvi(Cy) =5(Cy).
S k=1

These points follow immediately from (5.1) and the intrinsic formulation (3.1) of the statistical dimension.

The roots {{x : k= 1,...,d} of the polynomial g4 are called the (negative) exponents of the reflection
group [CM72, Sec. 7.9]. Factoring the generating polynomial, we obtain a concise expression for the
statistical dimension:

d 1
l_kgll—ck'

We can deduce the value of the large parenthesis because of the normalization g (1) = 1. The exponents
associated with the groups A;_; and BC, are collected in [CM72, Tab. 10], from which it follows immediately
that

s=

_dag (L) 4 e
8(Cq) =~ (D_(Ell—(k) ds,}:[l(s Ck)

d

1 1 ¢
6(Ca) = Z % and 6(Cpc) = > Z
k=1 k=1

This completes the proof of the claim (D.12).

|~

Remark D.3 (Related work). The intrinsic volumes of chambers of finite reflection groups, and more generally
of polyhedral cones, have appeared in many different contexts. For example, the papers [DK10, KS11]
relate the intrinsic volumes of regions of hyperplane arrangements to the characteristic polynomial of the
arrangement. This result can be used to give an alternative derivation of (D.12).

“The orthogonal group consists of the set of orthogonal matrices equipped with the group operation of matrix multiplication.
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APPENDIX E. TECHNICAL LEMMAS FOR CONCENTRATION OF INTRINSIC VOLUMES
This appendix contains the technical results that undergird the proof of the result on concentration of
intrinsic volumes, Theorem 6.1, and the approximate kinematic bound, Theorem 7.1.

E.1. Interlacing of tail functionals. First, we establish the interlacing inequality for the tail functionals.
This result is a straightforward consequence of the Crofton formula (5.10).

Proof of Proposition 5.9. Let L;_,1 be a linear subspace of dimension d — k+1, and let L;_; be a linear
subspace of dimension d — k inside L;_x,;. The Crofton formula (5.10) shows that the half-tail functionals
are weakly decreasing:

2h141(C) =P{CNQLy— # {0} <P{CNQLg—11 # {03} = 211 (O),

where the inequality follows from the containment of the subspaces. We can express the tail functional #; as
the average of the half-tail functionals:

31(C) = 3 [ A (C) + hrsr (O)].
Therefore, 2h(C) = 1;(C) = 2hg,1 (C). |
E.2. Bounds for tropic functions. We continue with the proof of Lemma 6.2, which provides a bound on

the tropic functions. This argument is based on an approximation formula from the venerable compendium of
Abramowitz & Stegun [AS64, Sec. 26.5.21].

Fact E.1 (Approximation of beta distributions). Let X be a BETA(a, b) random variable. Assume that a+ b > 6
and (a+b-1)(1 - x) = 0.8. Define the quantity y via the formula
3w (1-g5) —w2 (1-55)]

y= — where wy = b0 and w, = (a1 -x)'3.

2 2
wi
b a

Then
P{X<x}=®(y)+e(x) with |e(x)]<5-107.

The function ® represents the cumulative distribution of a standard normal random variable.

Proof of Lemma 6.2. We need to show that the tropic function I ,‘f (k/d) = 0.3 for all integers k and d that satisfy
l<k=d-1. (The cases k=0 and k = d are trivial.) To accomplish this goal, we represent the tropic function
in terms of a beta random variable, and we apply Fact E.1 to approximate its value.

Let X ~ BETA(a, b) with shape parameters a = %k and b = %(d — k). In particular, E[X] = k/d. It is well
known [Art02, Sec. 2] that the tropic function can be expressed in terms of this random variable:

1- I (k/d) =P{ 01, @) < k/d} = P{X <E[X]}.

We must show that this probability is bounded above by 0.7.

First, the mean-median-mode inequality [vdVW93] implies that the mean k/d of X is smaller than the
median when k > 1d, so the probability is bounded by 0.5 in this regime.

Second, the cases where a+ b < 6 correspond with the situation where d < 12. We can enumerate the cases
where d <12 and 0 < k < d/2. In each case, we verify numerically that the required probability is less than 0.7.

It is easy to check that for a = 3k, b= 3(d - k), and x = k/d, the inequality (a+b—1)(1-x) = 0.8 holds when
0<k< %d and d = 12. Instantiating the formula from Fact E.1 and simplifying, we reach

@ d-2k <£
3 Vdkd-k 3

Indeed, for each d, the extremal choice is k = 1. The function ® is increasing, so we conclude that

V2

y:

PiX<k/d}<® +5-1072 < 0.69.

The latter bound results from numerical computation. ]
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E.3. The projection of a spherical variable onto a cone. In this section, we establish Lemma 6.3, which
controls the probability that a spherical random variable has an unusually large projection on a cone. Although
the lemma is framed in terms of a spherical random variable, it is cleaner to derive the result using Gaussian
methods. We require an exponential moment inequality [Bog98, Cor. 1.7.9] that ultimately depends on the
Gaussian logarithmic Sobolev inequality.

Fact E.2 (Exponential moments for a function of a Gaussian variable). Suppose that F:R? — R satisfies
EF(g) = 0. Assume moreover that F belongs to the Gaussian Sobolev class H'(y,), i.e., the squared norm of its
gradient is integrable with respect to the Gaussian measure. Then

25/ (1-2.
EeF® < ([Ee(f"” IIVF(g)IIZ) a2

when 0<¢ < 3. (E.1D)
Using this exponential moment bound, we reach an elegant estimate for the moment generating function
of the squared projection of a standard normal vector onto a cone.

Sublemma E.3 (Exponential moment bounds). Let K c R% be a closed convex cone. Then

< 1. (E.2)

2
(I ()28 (K)) 2§76(K) )
Eet (Mk(g <exp(—l_4|€| for —z<é<

Proof The result is trivial when ¢ = 0, so we may limit our attention to the case where the parameter ¢ is
strictly positive or strictly negative. First, suppose that ¢ > 0. Consider the zero-mean function
F(g) =g’ -6(K) with [VF(g)*=4|Tx(@]*. (E.3)

The gradient calculation follows from (B.9), and it is easy to see that F € H' (y;) because the projection onto a
cone is a contraction. The exponential moment bound (E.1) delivers the estimate

EetF8) < (et ||nK<gJ||2)2f’“‘25) = ex (252 6K ) , ([EefF(g))zf’“‘za
< — :

The second relation follows when we add and subtract ¢ 6(K) in the exponential function. We have compared
the moment generating function of F(g) with itself. Solving the relation, we obtain the inequality

2826(K)
1-4¢
This is the bound (E.2) for the positive range of parameters.
Now, we turn to the negative range of parameters, which requires a more convoluted argument. To make
the analysis clearer, we continue to assume that ¢ >0, and we write the negation explicitly. Replacing F by
—F, the exponential moment bound (E.1) yields

[EeEF(g)Sexp( ) foro<¢&<i.

28/(1-2¢)

Ee $F®) — pel-F®) < ([Ee'f ”HK(g]”Z) (E.4)

This time, we cannot identify a copy of the left-hand side on the right-hand side. Instead, let us run the
moment comparison argument directly on the remaining expectation:

[Ee‘f ”HK(g)“2 = ef(s(K) . IEeEF(g) < ef&(K) ([Eef “HK(g)llz)Zf/(l—Zf) .
The last inequality follows from the exponential moment bound (E.1), just as before. Solving this relation, we

obtain
E(1-286(K)

Eel k@12 _ (
e exp Y

) foro<é<g.
Introduce the latter inequality into (E.4) to reach

2
Ee*F® <exp (—26 S(K) )

1-4¢
This estimate addresses the remaining part of the parameter range in (E.2). O

With this result at hand, we can easily prove the tail bound for the projection of a spherical random variable
onto a cone.
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Proof of Lemma 6.3. For a parameter ¢ > 0, the Laplace transform method [BLM13b, Sec. 2.1] delivers
P{d [Tc(0)]% 2 5(C) + A} < e 14010 [ fdITMc@,

Let R be a chi random variable with d degrees of freedom, independent from 6. Using Jensen’s inequality, we
can bound the expectation:

Eesd M@ _ g o ER) MO o o IMc(ROI® _ | &M@
Combining these results, we obtain
P{d ITc(0) 1% = 5(C) + A} < e ¢4 . Eef IMc@I*-0(C) (E.5)
Substitute the inequality for the moment generating function (E.2) with K = C into (E.5) to reach

(2525((:)

P{d IMc@)I° =5(C) + A} <e**-exp -y

) for 0<é<q.
Select £ = A/(46(C) +4A) to determine that

(E.6)

, -A%/8
P{d I @)1 2 5(C) + 2} < exp| =~ +A)'

This completes the first half of the argument.
The second half of the proof results in an analogous bound with C replaced by C°. Note that

P{d Ic(@)1? = 5(C) + A} =P{d (ITc(@)1? - 1)+ (d - §(C) = A} =P{5(C°) —d |- (0)* = A}.

The second relation follows from the Pythagorean identity (B.7) and the complementarity law (3.4). Repeating
the Laplace transform argument from above, with & > 0, we obtain the inequality

P{d ITc@)]1 = 5(C) + A} < e™h . Ee¢ (Meo @I°-0(C), (E.7)
Introduce the bound (E.2) with K = C° into (E.7) to see that
28256(C°)

P{d ITIc(@)]? = 8(C) + A} < e—“-exp( T2

) for 0<é<i

Choose ¢ =A/(46(C°) +4A) to reach

-12/8
P{d ITIc(@)]> = 5(C) + A} < — . E.8
{d IMc@)°=6(C) + }><eXp(5(Co)+/1 (E.8)
Combine the probability bounds (E.6) and (E.8) and identify the transition width w?(C) to complete the
proof. O

E.4. Tail functionals of a product. Finally, we argue that the tail functional of a product cone is controlled
by the tail functionals of the two summands.

Proof of Lemma 7.2. Let C,K c R be closed convex cones. Define independent random variables X and Y
that take values in {0,1,...,d} and whose distributions are given by the intrinsic volumes of the cones C and K,
respectively. That is,

P{X=kl=vx(C) and P{Y=k}=vi(K) fork=0,1,2,...,d.
According to the rule (5.4) for the intrinsic volumes of a product cone,
PIX+Y=kl=1v(CxK) fork=0,1,2,...,2d.

By dint of this identity, we can use probabilistic reasoning to bound the tail functionals of the cone v (C x K).
Indeed, observe that

PIX+Y=20(C)+0(K)+21 =P{X=25(C)+ A} +P{Y 26(K) + A}.
We can rewrite this inequality in terms of tail functionals:

s +6k)+241 (C x K) < 150)+ 11 (C) + Lsx+41 (K).

This is the advertised conclusion. O
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APPENDIX F. STATISTICAL DIMENSION AND GAUSSIAN WIDTH

This appendix contains a short proof of Proposition 10.2, which states that the Gaussian width of a spherical
convex set is comparable with the statistical dimension of the cone generated by the set.

Proof of Proposition 10.2. Let C be a convex cone in R?; we may assume C is closed. It is easy to check that
the statistical dimension of C dominates its squared Gaussian width:

w?(C):= (Esup ecnsa (¥, ©) ' <(E SUPyecrgd (V) ) < [E[(supyGCde ¥y, g))z] =5(C).

The first inequality holds because we have enlarged the range of the supremum. Afterward, we invoke
Jensen’s inequality, and we recognize the supremum form (3.5) of the statistical dimension.

For the reverse inequality, define the random variable Z := Z(g) := SUP e cngd-1 (y, 8, and note that
w(C) =EZ. The function g — Z(g) is 1-Lipschitz because the supremum is restricted to a subset of the
Euclidean unit sphere. Therefore, we can bound the fluctuation of Z as follows.

E[Z%] - w*(C) =E[(Z-EZ)?*] =Var(Z) < 1. (F.1)

The last inequality follows from Fact C.3
As a consequence of (F.1), we obtain the required bound §(C) < w?(C) +1 as soon as we verify that
5(C) <E[Z?]. Since Z? is a nonnegative random variable,

E[Z?] 2E[Z% g\ oo (®)] = E [(Supyecnsd-l ¥ g>)2'ﬂRd\co(g)]r

where 1 denotes the indicator of the event E. We claim that the right-hand side of this inequality equals
the statistical dimension §(C). Indeed, for any x ¢ C°, we must have sup ,ccnga-1 (¥, %) =supyecaga-1 (¥, X)
because the supremum over the ball occurs at a unit vector. On the other hand, when x € C°, we have the
relation SUP yecnBd-1 {y, x) =0. Combine these observations to reach

E[Z72] 2 E[(supyecasit 7> ) Tauc (@) =E[(sup,ecrpar (0 @)

On account of (3.3), we identify the right-hand side as the statistical dimension §(C). O
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