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Designing Statistical Estimators That Balance
Sample Size, Risk, and Computational Cost

John J. Bruer, Joel A. Tropp, Volkan Cevher, and Stephen R. Becker

Abstract—This paper proposes a tradeoff between computa-
tional time, sample complexity, and statistical accuracy that
applies to statistical estimators based on convex optimization.
When we have a large amount of data, we can exploit excess
samples to decrease statistical risk, to decrease computational
cost, or to trade off between the two. We propose to achieve
this tradeoff by varying the amount of smoothing applied to
the optimization problem. This work uses regularized linear
regression as a case study to argue for the existence of this
tradeoff both theoretically and experimentally. We also apply our
method to describe a tradeoff in an image interpolation problem.

Index Terms—Smoothing methods, statistical estimation, con-
vex optimization, regularized regression, image interpolation,
resource tradeoffs

I. MOTIVATION

MASSIVE DATA presents an obvious challenge to sta-
tistical algorithms. We expect that the computational

effort needed to process a data set increases with its size. The
amount of computational power available, however, is growing
slowly relative to sample sizes. As a consequence, large-scale
problems of practical interest require increasingly more time
to solve. This creates a demand for new algorithms that offer
better performance when presented with large data sets.

While it seems natural that larger problems require more
effort to solve, Shalev-Shwartz and Srebro [1] showed that
their algorithm for learning a support vector classifier actually
becomes faster as the amount of training data increases. This
and more recent works support an emerging viewpoint that
treats data as a computational resource. That is, we should be
able to exploit additional data to improve the performance of
statistical algorithms.

We consider statistical problems solved through convex
optimization and propose the following approach:
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We can smooth statistical optimization problems more
and more aggressively as the amount of available
data increases. By controlling the amount of smooth-
ing, we can exploit the additional data to decrease
statistical risk, decrease computational cost, or trade
off between the two.

Our prior work [2] examined a similar time–data tradeoff
achieved by applying a dual-smoothing method to (noiseless)
regularized linear inverse problems. This paper generalizes
those results, allowing for noisy measurements. The result is
a tradeoff in computational time, sample size, and statistical
accuracy.

We use regularized linear regression problems as a specific
example to illustrate our principle. We provide theoretical and
numerical evidence that supports the existence of a time–data
tradeoff achievable through aggressive smoothing of convex
optimization problems in the dual domain. Our realization of
the tradeoff relies on recent work in convex geometry that
allows for precise analysis of statistical risk. In particular, we
recognize the work done by Amelunxen et al. [3] to identify
phase transitions in regularized linear inverse problems and
the extension to noisy problems by Oymak and Hassibi [4].
While we illustrate our smoothing approach using this single
class of problems, we believe that many other examples exist.

A. Related Work and Our Contributions

Other researchers have identified related tradeoffs. Bot-
tou and Bousquet [5] show that approximate optimization
algorithms exhibit a tradeoff between small- and large-scale
problems. Agarwal et al. [6] address a tradeoff between error
and computational effort in statistical model selection problems.
Shalev-Shwartz et al. [7] establish a time–data tradeoff in
a binary classification problem. Berthet and Rigollet [8]
provide rigorous lower bounds for sparse PCA that trade off
computational efficiency and sample size. Daniely et al. [9]
formally establish a time–data tradeoff in learning halfspaces
over sparse vectors. Shender and Lafferty [10] identify a
tradeoff by introducing sparsity into the covariance matrices
of ridge regression problems. See [11] for a review of some
recent perspectives on computational scalability that lead to
time–data tradeoffs. Our work identifies a distinctly different
tradeoff than these prior works.

Our approach bears most similarity to that of Chandrasekaran
and Jordan [12]. They use an algebraic hierarchy of convex
relaxations to achieve a time–data tradeoff for a class of
denoising problems. The geometric intuition they develop also
motivates our current work. In contrast, we use a continuous
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sequence of relaxations based on smoothing and provide
practical examples that are different in nature.

B. Roadmap to a Time–Data Tradeoff

In Section II, we present the regularized linear regression
model. In Section III, we highlight recent work that establishes
a geometric opportunity for a time–data tradeoff. In Section IV,
we discuss the role of smoothing in solving convex optimization
problems and describe a computational opportunity for a time–
data tradeoff. We use a dual-smoothing scheme in Section V
to seize both opportunities and create a time–data tradeoff.
In Sections VI and VII we provide theoretical and numerical
evidence of this tradeoff for sparse vector and low-rank matrix
regression problems. We then use our approach to achieve
a time–data tradeoff for an image interpolation problem in
Section VIII.

II. REGULARIZED LINEAR REGRESSION

In this section, we describe the regularized linear regression
problem that we use as a case study to illustrate our time–data
tradeoff.

A. The Data Model

Assume that we have a data set {(ai, bi ) : i = 1, . . . ,m}
comprising m samples, where the ai ∈ Rd are the inputs, and
the bi ∈ R are the responses of a statistical model. We call
m the sample size, and we consider the case where m < d.
Given a vector of parameters x\ ∈ Rd , we relate the inputs
and responses through the linear equation

b = Ax\ + v, (1)

where the ith row of A ∈ Rm×d is the input ai , the ith entry
of b ∈ Rm is bi , and the entries of v ∈ Rm are independent,
zero-mean random variates. The goal of the regression problem
is to infer the underlying parameters x\ from the data.

B. Prediction Error and Statistical Risk

Let x̂ be an estimate of the true vector x\ . We evaluate the
accuracy of this estimate using the notion of prediction error.
The average squared prediction error of an estimate x̂ is

R( x̂) =
1
m
‖Ax̂ − Ax\ ‖2 . (2)

For a given measurement matrix A and parameter vector x\

in the data model (1), we call Ev [R( x̂)] the statistical risk of
the estimator.

Without knowing the true parameters x\ , we cannot compute
this quantity. We can, however, measure how closely the
estimate x̂ relates the inputs to the (noisy) observations in
our given data set by computing

R̂( x̂) :=
1
m

Ax̂ − b2 . (3)

The quantity R̂( x̂) is an estimate of R( x̂). In the regression
setting, this is the (normalized) residual sum of squares; we
will call it the empirical risk.

C. The Regularized Linear Regression Problem

In linear regression, it is common to require that x̂ minimize
the empirical risk. In our case, however, we have fewer samples
than the number of parameters (i.e., m < d), and so we instead
solve

x̂ := arg min
x

f (x)

subject to ‖Ax − b‖ ≤
√

m · Rmax =: ε, (4)

where the proper convex function f : Rd → R ∪ {+∞} is a
regularizer, and Rmax is the maximal empirical risk we will
tolerate. The following sections illustrate the potential for a
time–data tradeoff in solving this optimization problem.

III. A GEOMETRIC OPPORTUNITY

In this section, we discuss how sample size affects the
robustness of the regularized regression problem (4) to noise.
The connection leads to a geometric opportunity for a time–data
tradeoff.

A. Descent Cones and Statistical Dimension

Before we can introduce the relevant result, we must provide
two definitions.

Definition III.1 (Descent cone). The descent cone of a proper
convex function f : Rd → R ∪ {+∞} at the point x ∈ Rd is
the convex cone

D ( f ; x) :=
⋃
τ>0

{
y ∈ Rd : f (x + τy) ≤ f (x)

}
.

The descent cone D ( f ; x) comprises the directions that
decrease f locally at x. We quantify the “size” of this convex
cone using the notion of statistical dimension.

Definition III.2 (Statistical dimension [3, Def. 2.1]). Let C ∈
Rd be a closed convex cone. Its statistical dimension δ(C) is
defined as

δ(C) := Eg
[
‖ΠC (g)‖2

]
,

where g ∈ Rd has independent standard Gaussian entries, and
ΠC is the projection operator onto C.

The quantity δ(D ( f ; x\ )) plays a critical role in the behavior
of the regularized linear regression problem (4).

B. A Phase Transition

Amelunxen et al. [3] proved that, under certain randomized
data models with noiseless measurements, the regularized linear
regression problem (4) undergoes a phase transition when
the number m of samples equals δ(D ( f ; x\ )). Oymak and
Hassibi [4] characterized the stability of this phase transition
in the presence of noise. Their work considers the formulation

minimize ‖Ax − b‖2 subject to f (x) ≤ f (x\ ), (5)

which is equivalent to (4) for some choice of the parameter
Rmax. We present a restatement of their result here using our
notational conventions.
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Fact III.3 (The phase transition for regularized linear regres-
sion [4, Thm. 3.3]). Assume that the measurement matrix A
is chosen according to the Haar measure on the ensemble of
matrices in Rm×d with orthonormal rows. In particular, this
requires m ≤ d. For such a measurement matrix, let b = Ax\+v
be a (random) observation vector with v ∼ NORMAL(0, σ2Im ).

Let x? (which depends on b and A) be a minimizer of (5).
Set δ = δ(D ( f ; x\ )). Let R(x?) denote the average squared
prediction error (2) and R̂(x?) denote the empirical risk (3)
of x?. Then there exist constants c1, c2 > 0 such that

• Whenever m < δ,

max
σ>0

Ev
[
R(x?) | A]
σ2 = 1,

and

lim
σ→0

Ev [R̂(x?) | A]
σ2 = 0,

with probability 1 − c1 exp
(
−c2(m − δ)2/d

)
.

• Whenever m > δ,
�����
max
σ>0

Ev
[
R(x?) | A]
σ2 − δ

m

�����
≤ tm−1

√
d,

and
�����
lim
σ→0

Ev [R̂(x?) | A]
σ2 −

(
1 − δ

m

) �����
≤ tm−1

√
d,

with probability 1 − c1 exp(−c2t2).
The probabilities are taken over A.

Notice that this result indeed describes a phase transition at
m = δ(D ( f ; x\ )). When the number m of samples is smaller
than this quantity, the worst-case statistical risk is simply the
noise power σ2, and the regularized linear regression problem
has no robustness to noise. That is, as the number of samples
increases towards the phase transition, the statistical accuracy
of the solution does not improve. After crossing the phase
transition, however, additional samples decrease the worst-case
risk at the rate 1/m.

Additionally, the result gives us guidance in choosing the
parameter Rmax in our formulation of the regularized linear
regression problem (4). If we have a reasonable estimate of
the noise power σ2, we use the worst-case expected empirical
risk and set

Rmax = σ
2 *.

,
1 −

δ
(
D ( f ; x\ )

)
m

+/
-
,

and therefore we set

ε = σ
(
m − δ

(
D ( f ; x\ )

))1/2
. (6)

Remark III.4. Fact III.3 considers partial unitary measurement
matrices A. Oymak and Hassibi also present numerical experi-
ments that exhibit similar behavior when A has independent
standard Gaussian entries. While the location of the phase
transition remains the same, the choice of the parameter Rmax
in the regression problem (4) then depends on the spectrum of
A.

C. A Geometric Opportunity

Chandrasekaran and Jordan [12] argue that enlarging convex
constraint sets can make corresponding statistical optimization
problems easier to solve. These geometric deformations,
however, create a loss of statistical accuracy. In the presence
of large amounts of data, they argue that one could tune the
relaxation to trade off between statistical and computational
performance.

We see a similar opportunity in the regularized linear
regression problem and illustrate it in Fig. 1. By enlarging the
sublevel sets of the regularizer f , we increase the statistical
dimension of the descent cone of f at x\ . Fact III.3 tells
us that the solution to the regression problem with the
relaxed regularizer f̃ will have higher risk. If, however, the
relaxed regularizer results in a problem that is easier to solve
computationally, then we have a tradeoff between sample size,
computational time, and statistical accuracy.

While our work builds on the geometric motivation of [12],
we employ an entirely different approach to realize the tradeoff.
They use a discrete sequence of relaxations based on an
algebraic hierarchy, while we propose a continuous sequence
of relaxations based on a dual-smoothing technique.

IV. A COMPUTATIONAL OPPORTUNITY

In this section, we discuss the computational benefit of
smoothing optimization problems, and we show how smoothing
in the dual domain can reduce the computational cost of solving
the regularized linear regression problem.

A. Convexity and Smoothness

Let us start with two definitions we will need throughout
the remainder of this section. We measure the convexity of a
function fµ using the notion of strong convexity.

Definition IV.1 (Strong convexity). A function fµ : Rd → R
is µ-strongly convex if there exists a positive constant µ such
that the function

x 7→ fµ (x) − µ

2
‖x‖2 ,

is convex.

Higher values of the constant µ correspond to “more convex”
functions.

We measure the smoothness of a function g using the
Lipschitz constant of its gradient ∇g.

Definition IV.2 (Lipschitz gradient). A function g : Rm → R
has an L-Lipschitz gradient if there exists a positive constant
L such that

‖∇g(z1) − ∇g(z2)‖ ≤ L ‖ z1 − z2‖ ,

for all vectors z1, z2 ∈ Rm .

Lower values of the Lipschitz constant L correspond to
smoother functions g.
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Fig. 1. A geometric opportunity. Panel (a) illustrates the sublevel set and descent cone of a regularizer f at the point x \ . Panel (b) shows a relaxed regularizer
f̃ with larger sublevel sets. The shaded area indicates the difference between the descent cones of f̃ and f at x \ . Fact III.3 shows how this difference in the
size of the descent cones translates into a difference in statistical accuracy. We may compensate for this loss of statistical accuracy by choosing a relaxation f̃
that allows us to solve the optimization problem faster.

B. The Benefit of Smoothness

We focus on first-order methods—iterative algorithms that
only require knowledge of the objective value and a gradient
(or subgradient) at any given point—to solve the regularized
linear regression problem (4). Nemirovski and Yudin [13] show
that the best achievable convergence rate for such an algorithm
that minimizes a convex objective with a Lipschitz gradient
is O(1/γ1/2) iterations, where γ is the numerical accuracy.
Nesterov [14] provides an algorithm achieving this rate, the
first of a class of algorithms known as accelerated gradient
methods. For a unified framework describing these algorithms
and their convergence properties, see [15].

Common choices of regularizer in (4), such as the `1
norm, are nonsmooth. Nesterov [16] provides a method to
approximate some nonsmooth objectives with smooth ones. He
shows that a specific class of first-order methods can then solve
the smoothed problem at a faster convergence rate, albeit with
some approximation error. Beck and Teboulle [17] generalize
Nesterov’s approach.

While applying a primal smoothing method to the regularized
linear regression problem (4) may seem attractive, the geometric
opportunity described in the previous section relies critically on
the nonsmoothness of the regularizer f . Indeed, if we smooth
f by any amount, its descent cones become halfspaces, and
we lose all control over their size. We instead consider a
method to smooth the dual of the optimization problem. This
technique preserves the geometric opportunity while allowing
for a computational speedup.

C. The Dual Problem

The properties of smoothness and convexity relate to each
other through duality. We present a variation of a result in [18].

Fact IV.3 (The duality between convexity and smoothing
[18, Prop. 12.60]). If the proper closed convex function
fµ : Rd → R ∪ {+∞} is µ-strongly convex, then its convex
conjugate f ∗µ : Rd → R ∪ {+∞} is differentiable and ∇ f ∗µ is
1
µ -Lipschitz, where f ∗µ (x∗) = − infx∈Rd

{
fµ (x) − 〈x∗, x〉

}
.

As the convexity of the function fµ increases, so does the
smoothness of its conjugate f ∗µ . In order to see how we may
exploit this duality between convexity and smoothing, we
must first derive the Lagrangian dual of the regularized linear
regression problem.

We replace the regularizer f in the regularized linear
regression problem (4) with a µ-strongly convex function fµ
to obtain new estimators of the form

x̂µ := arg min
x

fµ (x) subject to ‖Ax − b‖ ≤ ε . (7)

The dual problem is then

maximize gµ (z, t) := inf
x




fµ (x) −
(
z
t

)T (
Ax − b
ε

)


subject to ‖ z‖ ≤ t,

where we used the fact that ‖Ax − b‖ ≤ ε is a conic constraint,
and the second-order cone is self-dual. Since ε ≥ 0, we
can eliminate the dual variable t to obtain the unconstrained
problem

maximize gµ (z) := inf
x

{
fµ (x) − 〈z, Ax − b〉 − ε ‖ z‖

}
.

(8)
Note that the dual function gµ is not smooth. We can, however,
rewrite it as the composite function

gµ (z) = inf
x

{
fµ (x) − 〈AT z, x〉

}
+ 〈z, b〉 − ε ‖ z‖

= − f ∗µ (AT z) + 〈z, b〉︸                   ︷︷                   ︸
g̃µ (z)

− ε ‖ z‖︸   ︷︷   ︸
h(z)

, (9)

where f ∗µ is the convex conjugate of fµ . We use the strong
convexity of the regularizer fµ to show that g̃µ has a Lipschitz
gradient, and so this is really a decomposition of the dual
function gµ into smooth (g̃µ) and nonsmooth (h) components.
In particular, we have the following lemma.

Lemma IV.4. Let fµ : Rd → R ∪ {+∞} be the regularizer in
the regression problem (7). Assume that fµ is coercive (i.e.,
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Algorithm 1. Auslender–Teboulle
Input: measurement matrix A, observed vector b, parameter ε

1: z0 ← 0, z0 ← z0, θ0 ← 1
2: for k = 0, 1, 2, . . . do
3: yk ← (1 − θk )zk + θk zk
4: xk ← arg minx { f (x) + 〈yk, b − Ax〉}
5: zk+1 ← Shrink

(
zk − (b − Axk )/(Lµ · θ), ε/(Lµ · θ)

)
6: zk+1 ← (1 − θk )zk + θk zk+1
7: θk+1 ← 2/(1 + (1 + 4/θ2

k
)1/2)

8: end for

fµ (x) → +∞ as ‖x‖ → +∞) and µ-strongly convex. Then the
function g̃µ as in (9) has gradient

∇g̃µ (z) = b − Axz,

where
xz := arg min

x

{
fµ (x) − 〈AT z, x〉

}
. (10)

Furthermore, ∇g̃µ is Lipschitz continuous with Lipschitz
constant at most Lµ := µ−1 ‖A‖2.

Proof: As given in (9), we have that

g̃µ (z) = 〈z, b〉 − f ∗µ (AT z),

where f ∗µ is the convex conjugate of fµ . Since we have assumed
that fµ is µ-strongly convex, Fact IV.3 tells us that f ∗µ is
differentiable. Indeed,

f ∗µ (AT z) = − inf
x

{
fµ (x) − 〈AT z, x〉

}
.

The coercivity and strong convexity of fµ guarantee both
that the infimum is attained and that the minimizer is unique.
Therefore, ∇ f ∗µ (AT z) = Axz , with xz as given by (10).

Furthermore, Fact IV.3 tells us that ∇ f ∗µ is Lipschitz
continuous with parameter µ−1. Therefore,

‖∇g̃µ (z1) − ∇g̃µ (z2)‖ = ‖A ·
(
∇ f ∗µ (AT z2) − ∇ f ∗µ (AT z1)

)
‖

≤ ‖A‖ · µ−1 ‖AT z2 − AT z1‖
≤ µ−1 ‖A‖2 ‖ z2 − z1‖ ,

for all z1, z2 ∈ Rm .
We can now solve the composite dual problem (8) using

an accelerated gradient method [19], [15]. Provided that the
regularized regression problem (7) is strictly feasible, then
strong duality holds for (7) and (8) by Slater’s condition [20,
Sec. 5.2.3]. Note that A having full row rank is sufficient
to guarantee strict feasibility. Therefore, if we solve the dual
problem (8) to obtain an optimal dual point z?, we may use (10)
to find the unique optimal primal point xz? .

D. Example: Auslender–Teboulle

In Algorithm 1, we list an accelerated gradient method
originally due to Auslender and Teboulle [21] and adapted by
Becker et al. [22] to the regularized regression problem. We
use this algorithm as an example to illustrate our time–data
tradeoff, and the following analysis could be performed for
other iterative methods. In particular, recent work by Tran-Dinh
and Cevher [23] provides a first-order primal–dual framework

that contains the necessary convergence guarantees on the
primal feasibility gap.

Note that Algorithm 1, line 5 is the solution to the composite
gradient mapping (see [19])

zk+1 ← arg min
z∈Rm

{
g̃µ (zk ) + 〈−∇g̃µ (zk ), z − zk 〉

+
1
2

Lµθk ‖ z − zk ‖2 + h(z)
}
,

and the map Shrink is given by

Shrink(z, t) = max
{

1 − t
‖ z‖ , 0

}
· z.

We have the following bound on the feasibility gap of primal
iterates xk at each iteration k.

Theorem IV.5 (Primal feasibility gap). Assume that the
regularizer fµ in the linear regression problem (7) is µ-
strongly convex. Apply Algorithm 1 to the corresponding dual
problem (8), and let z? be the optimal dual point. For any
k ≥ 0,

��� ‖Axk − b‖ − ε ��� ≤
2 ‖A‖2 ‖ z?‖

µk
. (11)

See Appendix B for the proof. Note that the right-hand side
of the bound (11) becomes smaller as the strong convexity
parameter µ increases (or equivalently, as the Lipschitz constant
Lµ decreases).

We can relate (11) back to the empirical risk (3) of xk by
recalling that ‖Axk − b‖ = (mR̂(xk ))1/2 and ε = (mRmax)1/2,
where m is the sample size. Disregarding the impact of µ on
the size of the optimal point z?, this bound suggests that, as
the convexity of the regularizer fµ increases, the number of
iterations sufficient for Algorithm 1 to converge to the preset
empirical risk target Rmax decreases.

E. A Computational Opportunity

The geometric opportunity in Section III suggests replacing
the regularizer f in the regularized linear regression prob-
lem (4) with a relaxed regularizer f̃ that is easier to optimize.
Theorem IV.5 suggests that choosing fµ in (7) to be a strongly
convex approximation of f is a suitable relaxation.

Becker et al. [22] previously explored replacing non-strongly
convex regularizers with strongly convex relaxations in order to
achieve computational speedups in conic optimization problems
(including the regularized linear regression problem). In their
work, however, the amount of relaxation was chosen in an
ad hoc manner primarily to facilitate the use of accelerated
gradient methods. Instead, we propose to synthesize the above
geometric and computational opportunities into a tunable time–
data tradeoff, whereby we can choose the amount of relaxation
in a principled manner.

V. A TIME–DATA TRADEOFF

In this section, we show how to achieve a time–data
tradeoff by exploiting both the geometric and computational
opportunities of the previous sections.
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A. A Dual-smoothing Method

In Section IV, we showed that if the regularizer in the
regression problem (7) is strongly convex, then we may use
an accelerated gradient method such as Algorithm 1 to solve
the dual problem (8). Many common regularizers such as the
`1 norm are not strongly convex, and so we must provide an
appropriate relaxation method before applying Algorithm 1.

The procedure we use essentially applies Nesterov’s primal-
smoothing method from [16] to the dual problem; see [22].
Given a regularizer f in (4), we introduce a family { fµ : µ > 0}
of strongly convex majorants:

fµ (x) := f (x) +
µ

2
‖x‖2 .

Clearly, fµ is µ-strongly convex, and so we may use any
of these relaxations as the objective in (7). Note that these
majorants also have larger sublevel sets, and their descent cones
have larger statistical dimension. They are indeed relaxations
that allow us to realize both the geometric and computational
opportunities of the previous two sections.

B. Computational Cost

To assess the computational cost of solving (8), we must
know two things: the number of iterations necessary for
convergence and the cost of each iteration. In practice, we
terminate Algorithm 1 when the relative primal feasibility
gap |‖Axk − b‖ − ε | /ε is smaller than some tolerance. Theo-
rem IV.5 allows us to bound the number of iterations sufficient
to guarantee this occurrence.

Corollary V.1 (Iteration bound). Apply Algorithm 1 to solve
the smoothed dual problem (8), and let z? be the optimal dual
point. Assume that the measurement matrix A has orthonormal
rows and that the noise vector v in the data model (1)
has distribution NORMAL(0, σ2Im ), so that Fact III.3 applies.
Set ε = σ(m − δ)1/2, where δ = δ(D ( fµ ; x\ )); cf. (6).
Terminate the algorithm when the relative primal feasibility
gap |‖Axk − b‖ − ε | /ε ≤ γ. Then the number k of iterations
sufficient for convergence satisfies the upper bound

k ≤ 2 ‖ z?‖
γµσ
√

m − δ
.

Note that increasing the smoothing parameter µ will also
cause δ, and possibly ‖ z?‖, to increase. This suggests some
limit to the amount of dual-smoothing we may apply to the
regularizer f for any given sample size m if we are to achieve
a computational speedup.

The particular choice of the original regularizer f affects the
cost of each iteration only in Algorithm 1, line 4. Fortunately,
many regularizers of interest admit relatively inexpensive solu-
tions to this subproblem by way of their proximity operators; we
will see specific examples in the following sections. Provided
that this step is indeed inexpensive, the dominant cost of each
iteration comes from calculating the matrix–vector products
involving the measurement matrix A ∈ Rm×d . Therefore, the
dominant cost of each iteration is O(md).

In particular, this suggests that the computational cost will
rise as O(m1/2) if the smoothing parameter µ (and hence δ)

stays constant as the sample size m increases. Increasing the
smoothing parameter µ is critical for achieving a speedup when
we have more samples.

C. Choosing a Smoothing Parameter

Choosing an appropriate value for the smoothing parameter
µ is vital. The result due to Oymak and Hassibi [4]—given
as Fact III.3—tells us both the number of samples required
such that the estimator (7) is robust to noise and how the
statistical error varies with the number of samples. We look
at three schemes for choosing µ that satisfy different goals.
Taken together, these schemes span the time–data tradeoff.

1) Constant Smoothing: The simplest method requires us
to choose a constant value of µ. Larger values of µ lead to
larger values of δ = δ(D ( fµ ; x\ )), the location of the phase
transition. Additionally, they lead to higher worst-case levels
of statistical risk. Therefore, we choose a relatively small
value of µ, minimizing the error introduced by the relaxation
of the regularizer. Let us call this baseline value µ and let
δ := δ(D ( fµ ; x\ )). We will reference these quantities in the
following schemes. Under this scheme, computational cost
rises and statistical risk falls as the sample size increases.

Remark V.2. It is important to note that the phase transition
occurs over a region of sample sizes. To avoid this area, we
specify a baseline number of measurements m that is greater
than the baseline statistical dimension δ. Choosing m = δ+

√
d

appears sufficient and conservative. For a further discussion
of the phase transition region, see [3] and the subsequent
work [24] with refined results.

2) Constant Risk: If the number m of samples is greater
than the baseline sample size m, that means we could relax
the regularizer further—by increasing µ—while maintaining
the baseline level of risk. To do this, we choose the largest
value of µ such that

δ
(
D ( fµ ; x\ )

)
m

=
δ

m
.

Note that this results in the lowest computational cost while
retaining robustness to noise (at a fixed level of risk).

3) A Tunable Balance: In reality, however, we will want
some compromise between these two schemes. The constant
smoothing scheme will become increasingly more expensive
computationally, and the constant risk scheme provides no
statistical improvement as the number of samples grows.

The idea behind this balanced scheme is to increase the
smoothing parameter µ in a way such that both the computa-
tional cost and the risk decrease as the sample size increases.
We choose a scaling parameter α ≤ 1 and set µ to be the
largest value such that

δ
(
D ( fµ ; x\ )

)
m

=
δ

m + (m − m)α
. (12)

Recall that under the constant smoothing scheme, the risk will
scale as m−1, where m ≥ m is the number of samples. Under the
balanced scheme, however, we take the excess measurements
m − m and have them effectively reduce the risk at the rate
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m−α . Note that choosing α = 1 recovers the constant smoothing
scheme, while choosing α = −∞ recovers to the constant risk
scheme. The “best” choice of α depends on the priorities of
the practitioner.

D. Connection to the Noiseless Problem

Our previous work [2] examined the case where the linear
measurements in the data model (1) contained no noise, i.e.,
when v = 0. In that case, we used a heuristic choice of the
smoothing parameter µ to effect a time–data tradeoff. The
approach in this paper, however, lets us consider the noiseless
problem as simply a special case of the noisy version.

Without noise in the measurements, we can recover the
unknown signal x\ exactly. In other words, the recovered
estimate has zero statistical risk. Therefore, our tradeoff
in computational time, sample size, and statistical accuracy
collapses to one in time and sample size only. As such, we
may use all of the excess samples to reduce computational
time, and we pay no penalty in statistical risk. By choosing
the smoothing parameter using the “constant risk” method
above, we recover the unknown signal faster than the “constant
smoothing” method without losing any accuracy. Note that we
recover the noiseless optimization problem and algorithm by
choosing the maximum tolerated empirical risk Rmax = 0 in
regularized regression problem (7).

E. The Time–Data Tradeoff

We summarize the tradeoff between time, data, and accuracy
as follows:

When we have excess samples in the data set, we
can exploit them to decrease the statistical risk of
our estimator or to lower the computational cost
through additional smoothing. A tradeoff arises from
the balance between these two competing interests.

The following sections evidence the existence of this tradeoff
for particular examples. We emphasize, however, that the
main idea of combining these geometric and computational
opportunities to realize a tradeoff is more broadly applicable.

VI. EXAMPLE: SPARSE VECTOR REGRESSION

In this section, we examine a time–data tradeoff for sparse
vector regression problems.

A. The Dual-smoothed Problem

Assume that the parameter vector x\ ∈ Rd in the data
model (1) is sparse. The `1 norm serves as a convex proxy for
sparsity, so we choose it as the regularizer in the regression
problem (4). This problem is equivalent to the LASSO of
Tibshirani [25].

We apply the dual-smoothing procedure from Section V-A
to obtain the relaxed regularizer

fµ (x) = ‖x‖`1 +
µ

2
‖x‖2 . (13)

The corresponding primal problem (7) is equivalent to the
elastic net of Zou and Hastie [26]. The composite dual is given
by (9).

To apply Algorithm 1 to the dual-smoothed sparse vector
regression problem, we must calculate the primal iterate xk
from the current dual iterate yk (Algorithm 1, line 4). This
step can be written as

xk ← µ · SoftThresh(AT yk, 1),

where SoftThresh is the map given component-wise by

[SoftThresh(x, t)]i = sgn (xi ) ·max {|xi | − t, 0} .
This operation is inexpensive, and so the total cost of each
iteration in Algorithm 1 is O(md) operations.

B. Calculating the Statistical Dimension

In order to choose the smoothing parameter µ using
Section V-C, we need to be able to calculate the statistical
dimension of the descent cone of the relaxed regularizer fµ
at a sparse vector x. The following result provides an upper
bound on this quantity that depends only on the sparsity of x
and the magnitude of its largest entry.

Proposition VI.1 (Statistical dimension bound for the dual-s-
moothed `1 norm). Let x ∈ Rd be s-sparse, and define the
normalized sparsity ρ := s/d. Let fµ be as in (13). Then

δ
(
D ( fµ ; x)

)
d

≤ ψ(ρ),

where ψ : [0, 1]→ R is the function given by

ψ(ρ) = inf
τ≥0

{
ρ

[
1 + τ2(1 + µ ‖x‖`∞ )2

]

+ (1 − ρ)

√
2
π

∫ ∞

τ
(u − τ)2e−u

2/2 du
}
.

The proof is substantially similar to that in [3]. In our case,
however, the resulting function ψ depends on the magnitudes
of the nonzero entries of the vector x. We use ‖x‖`∞ as
the upper bound for each entry in order to establish the
proposition. Therefore, our result is most accurate for signals
x that have low dynamic range (i.e., the nonzero entries
of x have magnitude close to ‖x‖`∞). Note that ψ(0) = 0,
ψ(1) = 1, and ψ is increasing. Furthermore, as we increase the
smoothing parameter µ, the statistical dimension will increase
for ρ ∈ (0, 1).

With this information, we can now examine the time–data
tradeoff resulting from the smoothing schemes presented in
Section V-C.

C. Numerical Experiment

In Fig. 2, we show the results of a numerical experiment
that reveals the time–data tradeoff enabled by the smoothing
schemes in Section V-C. See Appendix A-A for the method-
ological details.

Most practitioners use a fixed smoothing parameter µ that
depends on the ambient dimension or sparsity but not on the
sample size. For the constant smoothing case, we choose the
smoothing parameter µ = 0.1 based on the recommendation
in [27] for the noiseless case. It is common, however, to see
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Fig. 2. Sparse vector regression experiment. The panels show (a) the average computational cost and (b) the estimated statistical risk over 10 random
trials of the dual-smoothed sparse vector regression problem with ambient dimension d = 40 000, normalized sparsity ρ = 5%, and noise level σ = 0.01 for
various sample sizes m. The red curve (circles) represents using a fixed smoothing parameter µ = 0.1, the orange curve (diamonds) results from adjusting the
smoothing parameter µ to maintain the baseline risk, and the blue curve (crosses) uses the balanced scheme (12) with scaling parameter α = 0.9. For all
schemes, the baseline smoothing parameter µ = 0.1, and the baseline sample size m = 10 000. The error bars indicate the minimum and maximum observed
values. The dashed black lines show the predicted risk based on Proposition VI.1 and Fact III.3.

much smaller choices of µ; see [28], [29]. We compare this
to the constant risk case and our balanced method with α =
0.9. We choose the scaling parameter α = 0.9 simply as a
demonstration. This serves to illustrate how additional samples
allow us the flexibility to trade off statistical accuracy and
computational cost.

In the experiment, we fix both the ambient dimension
d = 40 000 and the normalized sparsity ρ = 5%. To test
each smoothing approach, we generate and solve 10 random
sparse vector regression problems for each value of the sample
size m = 10 000, 12 000, 14 000, . . . , 38 000. Each problem
comprises a random measurement matrix A ∈ Rm×d with
orthonormal rows and a random sparse vector x\ whose 2000
nonzero entries are ±1. Both are chosen uniformly at random
from their respective sets. We use the baseline smoothing
parameter µ = 0.1 and the baseline sample size m = 10 000,
which is roughly δ(D ( fµ ; x\ ))+

√
40 000. We stop Algorithm 1

when the relative primal feasibility gap |‖Axk − b‖ − ε | /ε is
less than 10−3, where ε is set according to (6). This condition
allows us to accurately predict the risk of the resulting estimator
x̂ by using Fact III.3.

In Fig. 2(a), we see that the total computational cost1

increases with sample size under the constant smoothing
scheme. Meanwhile, the constant risk scheme displays a
decrease in total cost as the sample size increases. The balanced
scheme, however, shows an initial drop in cost before rising
again. This shows the high cost of performing dense matrix
multiplication at each iteration. The balanced scheme (α = 0.9)
smooths more aggressively than the constant scheme, and
so it achieves an overall speedup. It, however, smooths less

1We compute total cost as k · md, where k is the number of iterations
taken, and md is the dominant cost of each iteration.

aggressively than the constant risk scheme, and so it (like the
constant smoothing scheme) cannot overcome the high cost of
the matrix multiplications as the sample size grows.

Even so, the cost required for 38 000 samples under the
constant smoothing scheme is 3.8× higher than that of the
balanced scheme. Furthermore, the cost of the balanced scheme
with 38 000 samples is still less than the cost of the constant
smoothing scheme with 10 000 samples.

In order to determine whether the cost is worth paying, we
refer to Fig. 2(b) showing the risk as a function of sample size.
The constant risk scheme behaves as expected, and the constant
smoothing decreases risk the most as the sample size increases.
The risk in the balanced scheme decreases by a factor of 2.0×
as the sample size grows from 10 000 to 38 000 samples.

While the risk under the balanced scheme is 1.8× the risk
under the constant smoothing scheme at a sample size of 38 000,
it requires roughly 1/4 of the computational cost. Put another
way, as the balanced scheme moves from 10 000 samples
to 38 000 samples, risk decreases by a factor of 2.0× and
computational cost decreases by 1.7×.

Note that the risk predictions (depicted by black dashed
lines) resulting from Fact III.3 and the statistical dimension
calculation in Proposition VI.1 are quite accurate. This means
that given a fixed sample size and a target risk level, we
can actually calculate the necessary value of the smoothing
parameter µ to achieve that risk level.

We emphasize that we use the same algorithm to test all
three smoothing approaches, so the relative comparison between
them is meaningful. The observed improvement shows that we
have indeed identified a time–data tradeoff by smoothing.
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VII. EXAMPLE: LOW-RANK MATRIX REGRESSION

In this section, we examine a time–data tradeoff for low-rank
matrix regression problems.

A. The Dual-smoothed Problem

We may also use the data model (1) when the underlying
signal is a matrix. Let X \ ∈ Rd1×d2 be the true matrix, and
let A ∈ Rm×d be a measurement matrix, where d := d1d2.
Then the observations are given by b = A ·vec(X \ ), where vec
returns the (column) vector obtained by stacking the columns
of the input matrix.

Assume that X \ is low-rank. The Schatten 1-norm ‖·‖S1 —
the sum of the matrix’s singular values—serves as a convex
proxy for rank, and so we choose f = ‖·‖S1 as the regularizer
in the regression problem (4). Toh and Yun consider this natural
extension to the LASSO in [30]. We apply the dual-smoothing
procedure from Section V-A to obtain the relaxed regularizer

fµ (X ) = ‖X ‖S1 +
µ

2
‖X ‖2F . (14)

The relaxed primal problem is again (7), and the composite
dual is given by (9).

To apply Algorithm 1 to the dual-smoothed low-rank matrix
regression problem, we must calculate the primal iterate Xk

from the dual iterate yk (Algorithm 1, line 4). This step can
be written as

Xk ← µ · SoftThreshSingVal(mat(AT yk ), 1),

where SoftThreshSingVal applies soft-thresholding to the sin-
gular values of a matrix, and mat is the inverse of the vec
operator. Given a matrix X and its SVD U · diag(σ) · VT , we
can express SoftThreshSingVal as

SoftThreshSingVal(X, t) = U · diag (SoftThresh(σ, t)) · VT ,

where SoftThresh is simply the soft-thresholding operator on
vectors. The SVD of mat(AT z) has cost O(d1d2

2) = O(dd2)
(for d1 ≤ d2). Since the number m of measurements will
be larger than d2, the dominant cost of each iteration of
Algorithm 1 is still O(md) operations.

B. Calculating the Statistical Dimension

As in the sparse vector case, we must be able to compute
the statistical dimension of the descent cones of fµ at a given
low-rank matrix X . In the case where the unknown matrix
is square, the following result gives an upper bound on the
statistical dimension depending on the rank of the matrix and
the magnitude of its largest singular value.

Proposition VII.1 (Statistical dimension bound for the dual-s-
moothed Schatten 1-norm). Let X ∈ Rd1×d1 have rank r , and
define the normalized rank ρ := r/d1. Let fµ be as in (14).
Then

δ
(
D ( fµ ; X )

)
d2

1

≤ ψ(ρ) + o (1) ,

where ψ : [0, 1]→ R is the function given by

ψ(ρ) := inf
0≤τ≤2

{
ρ + (1 − ρ)

[
ρ
(
1 + τ2(1 + µ ‖X ‖)2

)
+

(1 − ρ)
12π

[
24(1 + τ2) cos−1(τ/2) − τ(26 + τ2)

√
4 − τ2

] ]}
.

The proof is substantially similar to that in [3]. Their
technique also provides a statistical dimension bound when
the matrix is non-square. In our case, the resulting function
ψ depends on the magnitude of each of the nonzero singular
values of X . To establish our proposition, we use the largest
singular value ‖X ‖ as an upper bound. Therefore, this result is
most accurate when all the nonzero singular values are close
to ‖X ‖. The behavior of ψ is also similar to that of the sparse
vector example.

With this information, we can now examine the time–data
tradeoff resulting from the smoothing schemes presented in
Section V-C.

C. Numerical Experiment

Fig. 3 shows the results of a substantially similar numerical
experiment to the one performed for sparse vector regression.
Again, current practice dictates using a smoothing parameter
that has no dependence on the sample size m; see [31], for
example. In our tests, we choose the baseline smoothing
parameter µ = 0.1 recommended by [27]. As before, we
compare the constant smoothing, constant risk, and balanced
(α = 0.9) schemes. See Appendix A-B for the methodological
details.

In this case, we use the ambient dimension d = 200 ×
200 and set the normalized rank ρ = 5%. We test each
method with 10 random trials of the low-rank matrix re-
gression problem for each value of the sample size m =

10 000, 12 500, 15 000, . . . , 37 500. The baseline sample size
m = 10 000 corresponds roughly to δ(D ( fµ ; X \ ))+

√
200 · 200,

where X \ is the true random low-rank matrix.
The random measurement matrices are again partial unitary,

and the nonzero singular values of the random low-rank
matrices X \ are 1. We solve each problem with Algorithm 1
using the same relative primal feasibility gap tolerance of
10−3 as the stopping criterion. In this case, the statistical
dimension bound given in Proposition VII.1 overestimates
the risk incurred by a small amount. Therefore, we have
not included the theoretical risk levels in Fig. 3(b), but the
calculations still have value in determining an appropriate
value of the scaling parameter α and, thereby, in computing
the smoothing parameter µ.

In Fig. 3, we see the same qualitative behavior as in the
sparse vector case. The constant smoothing scheme decreases
risk the most over the range of sample sizes, but its cost contin-
ues to rise as the number of samples increases. The constant risk
scheme provides the largest computational speedup but provides
no improvement in statistical accuracy. The balanced method,
however, achieves a 1.6× reduction in total computational cost
from m = 10 000 to m = 37 500 while reducing risk by a factor
of 1.9×. The observed speedup over the constant smoothing
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Fig. 3. Low-rank matrix regression experiment. The panels show (a) the average computational cost and (b) the estimated statistical risk over 10 random
trials of the dual-smoothed low-rank matrix regression problem with ambient dimension d = 200 × 200, normalized rank ρ = 5%, and noise level σ = 0.01 for
various sample sizes m. The red curve (circles) represents using a fixed smoothing parameter µ = 0.1, the orange curve (diamonds) results from adjusting the
smoothing parameter µ to maintain the baseline risk, and the blue curve (crosses) uses the balanced scheme (12) with scaling parameter α = 0.9. For all
schemes, the baseline smoothing parameter µ = 0.1, and the baseline sample size m = 10 000. The error bars indicate the minimum and maximum observed
values.

scheme at m = 37 500 is 4.6× while incurring statistical risk
only 1.5× greater.

VIII. EXAMPLE: IMAGE INTERPOLATION

In this section, we apply our tradeoff principle to an image
interpolation problem.

A. The Optimization Problem

We let X \ be the matrix of pixel intensities of a grayscale
image, and we observe the vector of pixels b := A(X \ ), where
A is the linear operator that returns a vector of m specific pixels
from the original image. We assume that we know the operator
A, and therefore, we know the locations of the pixels being
subsampled. To reconstruct the full image from the subsampled
image, we solve

minimize ‖W (X )‖`1 +
µ

2
‖W (X )‖2

subject to A(X ) = b,

whereW is the two-dimensional discrete cosine transformation
with vectorized output. We use TFOCS [32], [22] to solve
this dual-smoothed `1-analysis problem, and we use the Spot
Toolbox2 to implement the linear operators W and A.

B. Numerical Experiment

Fig. 4 shows the results of an image interpolation experiment
on a grayscale image of size 2867×1906 pixels. We solved the
interpolation problem for pairs (ρ, µ) of the sampling density

2http://www.cs.ubc.ca/labs/scl/spot/

and smoothing parameter. At each iteration, we record the peak
signal-to-noise ratio (PSNR) of the current iterate Xk , where

PSNR(Xk ) = 10 · log10

(
d1d2

‖Xk − X \ ‖F

)
, (15)

and X \ is the original image of size d1 × d2 pixels. See
Appendix A-C for the methodological details.

The frontiers shown in solid blue lines indicate the Pareto
efficient allocations of sample size and computational time
for three different levels of PSNR. These allocations are
achieved by employing additional smoothing as the sampling
density increases. That is, as ρ increases, we can increase the
smoothing parameter µ to achieve the same level of accuracy
in the reconstructed image faster. The dashed red line, on the
other hand, shows the result if we keep a constant smoothing
parameter of µ = 0.02 throughout the run of the experiment.

Without aggressive smoothing, the computational cost to
reach the desired level of accuracy is several times higher.
Indeed, for a reconstruction quality of 32 dB PSNR and a
sampling density of ρ = 40%, using the smoothing parameter
µ = 0.02 is 3.6× slower than using µ = 0.32. This illustrates
the benefit of smoothing these optimization problems more
and more aggressively as the sampling density increases.

IX. CONCLUSION

The examples we have presented indeed show time–data
tradeoffs achieved through dual-smoothing. We believe that
our method can be used to show tradeoffs in other statisti-
cal problems solved using convex optimization. The key is
understanding precisely how manipulating the geometry of
the optimization problem affects the accuracy of the solution.
This allows for the determination of whether the speedup

http://www.cs.ubc.ca/labs/scl/spot/
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Fig. 4. Image interpolation. The graph shows the observed Pareto frontier in our image interpolation experiment where we treat the sampling density ρ and
computational time as the two resources that we trade off. The solid blue lines give the Pareto frontiers achieved by aggressively smoothing the problem as we
increase the sampling density ρ. These frontiers correspond to three different accuracy levels of the reconstructed images given as a peak signal-to-noise-ratio
(PSNR). The dashed red line shows the frontier achieved for 32 dB PSNR accuracy with a fixed smoothing parameter µ = 0.02 as sampling density ρ increases.
Our aggressive smoothing outperforms the constant smoothing by a large margin. The grid of images shows 450 × 450 pixel patches of: (a) the original image,
(b) the original image subsampled at ρ = 40%, (c) the reconstructed image with ρ = 40% and µ = 0.02 (32.1 dB PSNR), and (d) the reconstructed image
with ρ = 40% and µ = 0.32 (32.2 dB PSNR). The shown reconstructions are of the same quality despite the differing values of µ.

from a computationally beneficial relaxation is worth the
loss of statistical accuracy. At the moment, this process
may require some amount of numerical experimentation. As
the geometric understanding of these optimization problems
increases, however, we envision a richer theory of similar
tradeoffs.

APPENDIX A
NUMERICAL METHODOLOGY

This section describes the numerical experiments presented
in Sections VI-C, VII-C, and VIII-B. All of the experiments
discussed herein were performed on a 12-core workstation
under MATLAB 2014a and OS X 10.9.5.

A. Sparse Vector Regression

The data for the sparse vector regression experiment in Sec-
tion VI-C were generated as follows. Fix the ambient dimension
d = 40 000. For each of the smoothing schemes described in
Section V-C (using α = 0.9 in the balanced scheme) and each
value of the sample size m = 10 000, 12 000, 14 000, . . . , 38 000,
perform 10 trials of this procedure, and average the results:
• Generate a sparse vector x\ with 2000 nonzero entries

placed uniformly at random, each taking the value either
−1 or +1 independently with equal probability.

• Choose a measurement matrix A ∈ Rm×40 000 uniformly
at random from the ensemble of m × 40 000 matrices
with orthonormal rows (see [33] for the numerical details,
as some care must be taken to ensure the appropriate
distribution).

• Set the baseline smoothing parameter µ = 0.1 and the
baseline sample size m = 10 000, which is approximately
δ(D ( fµ ; x\ )) +

√
40 000.

• Calculate the smoothing parameter µ according to the
current scheme and the resulting statistical dimension
δ = δ(D ( fµ ; x\ )).

• Set the parameter ε = σ(m − δ)1/2.
• Use the Auslender–Teboulle algorithm (Algorithm 1) to

solve the dual-smoothed sparse vector regression problem.
• Stop the algorithm when the relative primal feasibility

gap |‖Axk − b‖ − ε | /ε < 10−3.
• Store the computational cost k ·m ·40 000 and the (average)

squared prediction error ‖A( x̂ − x\ )‖2 /m, where x̂ is the
final value of the primal iterate.

B. Low-rank Matrix Regression

The data for the low-rank matrix regression experiment in
Section VII-C were generated as follows. Fix the ambient
dimensions d = d1d2 = 200 · 200 = 40 000. For each of the
smoothing schemes described in Section V-C (using α = 0.9
in the balanced scheme) and each value of the sample size
m = 10 000, 12 500, 15 000, . . . , 37 500, perform 10 trials of this
procedure, and average the results:
• Generate a low-rank matrix X \ := Q1Q

T
2 , where the Qi

are chosen uniformly at random from the ensemble of
200 × 10 matrices with orthonormal columns.

• Choose a measurement matrix A ∈ Rm×40 000 uniformly
at random from the ensemble of m× 40 000 matrices with
orthonormal rows.

• Set the baseline smoothing parameter µ = 0.1 and the
baseline sample size m = 10 000, which is approximately
δ(D ( fµ ; x\ )) +

√
40 000.

• Calculate the smoothing parameter µ according to the
current scheme and the resulting statistical dimension
δ = δ(D ( fµ ; x\ )).

• Set the parameter ε = σ(m − δ)1/2.
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• Use the Auslender–Teboulle algorithm (Algorithm 1)
to solve the dual-smoothed low-rank matrix regression
problem.

• Stop the algorithm when the relative primal feasibility
gap |‖A · vec(Xk ) − b‖ − ε | /ε < 10−3.

• Store the computational cost k ·m ·40 000 and the (average)
squared prediction error ‖A · vec(X̂ − X \ )‖2 /m, where
X̂ is the final value of the primal iterate.

C. Image Interpolation

The data for the image interpolation experiment in Sec-
tion VIII-B were generated as follows. We loaded a 16-bit
grayscale TIFF image of size d = 2867×1906 pixels into MAT-
LAB. For each sampling density ρ = 10%, 12.5%, . . . , 97.5%,
we performed the following procedure for each of the smooth-
ing parameters µ = 0.01, 0.02, 0.04, . . . , 5.12:
• Choose an ordered subset of ρd pixels from the image

uniformly at random.
• Using the Spot Toolbox, construct both the subsampling

operator A that returns the random (ordered) subset of
pixels as a column vector and the 2D DCT operator W
(opDCT2).

• Generate the subsampled observations b by applying A
to the image.

• Use the TFOCS solver solver_sBPDN_W to solve the
`1-analysis problem with parameters ε = 0 and µ. Set the
TFOCS options to tell the solver that ‖A‖2 = ‖W‖2 = 1.
Use the history feature of TFOCS to record the peak signal-
to-noise ratio (15) of each iterate, and set the solver to
stop after 200 iterations or when the observed PSNR is
greater than 40 dB.

• Record the time taken, the history of PSNRs, and the
number of iterations completed.

APPENDIX B
PROOF OF THEOREM IV.5

This appendix provides the proof used to bound the feasibility
gap of the primal iterates as a function of the number of
iterations taken.

Proof of Theorem IV.5: Let g be the dual function (9).
Define G := −g, G̃ = −g̃, and H = −h, so that G, G̃, H
are convex. By Lemma IV.4, the function G̃ has a Lipschitz
continuous gradient with parameter Lµ . Therefore, it has a
quadratic upper bound, and we find

G(z?) = inf
z

G(z) = inf
z

(G̃(z) + H (z))

≤ inf
z

{
G̃(yk ) +

〈
∇G̃(yk ), z − yk

〉
+

Lµ
2
‖ z − yk ‖2 + H (z)

}
,

for any k ≥ 0. Note that this quantity is a composite gradient
mapping and, for our choice of H , equals

J (zk+1) := G̃(yk ) +
〈
∇G̃(yk ), zk+1 − yk

〉
+

Lµ
2
‖ zk+1 − yk ‖2 + H (zk+1),

where

zk+1 = Shrink
(
yk − L−1

µ ∇G̃(yk ),
ε

Lµ

)
.

Now since J is Lµ-strongly convex in zk+1, it has the quadratic
lower bound

J (yk ) − J (zk+1) = G(yk ) − J (zk+1) ≥ Lµ
2
‖yk − zk+1‖2 .

We then have

G(z?) ≤ J (zk+1) ≤ G(yk ) − Lµ
2
‖yk − zk+1‖2 ,

and so

Lµ
2
‖yk − zk+1‖2 ≤ G(yk ) − G(z?) = g(z?) − g(yk ).

By the definition of the Shrink operator, the dual iterate zk+1
may take on either of two values. When

‖yk − L−1
µ ∇G̃(yk )‖ ≤ ε

Lµ
,

zk+1 = 0. An application of the reverse triangle inequality and
some rearranging gives that

1
Lµ

(‖∇G̃(yk )‖ − ε ) ≤ ‖yk ‖ = ‖yk − zk+1‖ ,

and so

��� ‖∇G̃(yk )‖ − ε ���
2 ≤ L2

µ · ‖yk − zk+1‖2 .

Otherwise, the iterate zk+1 takes the value(
1 − ε

Lµ ‖yk − L−1
µ ∇G̃(yk )‖

)
· (yk − L−1

µ ∇G̃(yk )),

and we can compute

L2
µ · ‖yk − zk+1‖2 =


∇G̃(yk ) + ε *

,

yk − L−1
µ ∇G̃(yk )

‖yk − L−1
µ ∇G̃(yk )‖

+
-



2

.

By the reverse triangle inequality, we have

��� ‖∇G̃(yk )‖ − ε ���
2 ≤ L2

µ · ‖yk − zk+1‖2 ,
the exact same bound as above. Therefore, we can conclude
that for all k ≥ 0,

��� ‖Axk − b‖ − ε ���
2 ≤ 2 ‖A‖2

µ
·
(
g(z?) − g(yk )

)
,

where we use Lemma IV.4 to substitute for Lµ and ∇G̃(yk ).
The quantity on the right is bounded by the standard con-

vergence result for the Auslender–Teboulle algorithm (see [21,
Thm 5.2] and [15, Coro. 1]):

g(z?) − g(yk ) ≤ 2Lµ ‖ z?‖2
k2 =

2 ‖A‖2 ‖ z?‖2
µ · k2 .

We rearrange terms and take the square root to complete the
proof.



BRUER et al.: DESIGNING STATISTICAL ESTIMATORS THAT BALANCE SAMPLE SIZE, RISK, AND COMPUTATIONAL COST 13

REFERENCES

[1] S. Shalev-Shwartz and N. Srebro, “SVM optimization: inverse depen-
dence on training set size,” in Proc. 25th Annu. Int. Conf. Machine
Learning (ICML 2008), pp. 928–935, ACM, 2008.

[2] J. J. Bruer, J. A. Tropp, V. Cevher, and S. R. Becker, “Time–Data
Tradeoffs by Aggressive Smoothing,” in Advances in Neural Information
Processing Systems 27 (NIPS 2014), pp. 1664–1672, 2014.

[3] D. Amelunxen, M. Lotz, M. B. McCoy, and J. A. Tropp, “Living on the
edge: A geometric theory of phase transitions in convex optimization,”
Information and Inference, vol. to appear, 2014.

[4] S. Oymak and B. Hassibi, “Sharp MSE Bounds for Proximal Denoising,”
arXiv, 2013, 1305.2714v5.

[5] L. Bottou and O. Bousquet, “The tradeoffs of large scale learning,” in
Advances in Neural Information Processing Systems 20 (NIPS 2007),
pp. 161–168, 2008.

[6] A. Agarwal, P. L. Bartlett, and J. C. Duchi, “Oracle inequalities for
computationally adaptive model selection,” arXiv, 2012, 1208.0129v1.

[7] S. Shalev-Shwartz, O. Shamir, and E. Tromer, “Using More Data to
Speed-up Training Time,” in Proc. 15th Int. Conf. Artificial Intelligence
and Statistics, pp. 1019–1027, 2012.

[8] Q. Berthet and P. Rigollet, “Computational Lower Bounds for Sparse
PCA,” arXiv, 2013, 1304.0828v2.

[9] A. Daniely, N. Linial, and S. Shalev-Shwartz, “More data speeds up
training time in learning halfspaces over sparse vectors,” in Advances in
Neural Information Processing Systems 26 (NIPS 2013), pp. 145–153,
2013.

[10] D. Shender and J. Lafferty, “Computation-Risk Tradeoffs for Covariance-
Thresholded Regression,” in Proc. 30th Int. Conf. Machine Learning
(ICML 2013), pp. 756–764, 2013.

[11] M. I. Jordan, “On statistics, computation and scalability,” Bernoulli,
vol. 19, no. 4, pp. 1378–1390, 2013.

[12] V. Chandrasekaran and M. I. Jordan, “Computational and statistical
tradeoffs via convex relaxation,” Proc. Natl. Acad. Sci. USA, vol. 110,
no. 13, pp. E1181–E1190, 2013.

[13] A. S. Nemirovsky and D. B. Yudin, Problem complexity and method
efficiency in optimization. A Wiley-Interscience Publication, New York:
John Wiley & Sons Inc., 1983.

[14] Y. E. Nesterov, “A method for solving the convex programming problem
with convergence rate O(1/k2),” Dokl. Akad. Nauk SSSR, vol. 269, no. 3,
pp. 543–547, 1983.

[15] P. Tseng, “On Accelerated Proximal Gradient Methods for Convex-
Concave Optimization,” tech. rep., Department of Mathematics, Univer-
sity of Washington, Seattle, WA, May 2008.

[16] Y. Nesterov, “Smooth minimization of non-smooth functions,” Math.
Program., vol. 103, no. 1, pp. 127–152, 2005.

[17] A. Beck and M. Teboulle, “Smoothing and first order methods: a unified
framework,” SIAM J. Optim., vol. 22, no. 2, pp. 557–580, 2012.

[18] R. T. Rockafellar and R. J.-B. Wets, Variational Analysis. New York:
Springer, 1997.

[19] Y. Nesterov, “Gradient Methods for Minimizing Composite Objective
Function,” Tech. Rep. 2007/76, CORE, Université catholique de Louvain,
Louvain-la-Neuve, Belgium, 2007.

[20] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge:
Cambridge University Press, 2004.

[21] A. Auslender and M. Teboulle, “Interior gradient and proximal methods
for convex and conic optimization,” SIAM J. Optim., vol. 16, no. 3,
pp. 697–725, 2006.

[22] S. R. Becker, E. J. Candès, and M. C. Grant, “Templates for convex cone
problems with applications to sparse signal recovery,” Math. Program.
Comput., vol. 3, no. 3, pp. 165–218, 2011.

[23] Q. Tran-Dinh and V. Cevher, “Constrained convex minimization via
model-based excessive gap,” in Advances in Neural Information Process-
ing Systems 27 (NIPS 2014), pp. 721–729, 2014.

[24] M. B. McCoy and J. A. Tropp, “The achievable performance of convex
demixing,” arXiv, Sept. 2013, 1309.7478v1.

[25] R. Tibshirani, “Regression shrinkage and selection via the Lasso,” J. R.
Stat. Soc. Ser. B Stat. Methodol., vol. 58, no. 1, pp. 267–288, 1996.

[26] H. Zou and T. Hastie, “Regularization and variable selection via the
elastic net,” J. R. Stat. Soc. Ser. B Stat. Methodol., vol. 67, pp. 301–320,
2005.

[27] M.-J. Lai and W. Yin, “Augmented l(1) and Nuclear-Norm Models with
a Globally Linearly Convergent Algorithm,” SIAM J. Imaging Sci., vol. 6,
no. 2, pp. 1059–1091, 2013.

[28] J.-F. Cai, S. Osher, and Z. Shen, “Linearized Bregman Iterations for
Compressed Sensing,” Math. Comp., vol. 78, no. 267, pp. 1515–1536,
2009.

[29] S. Osher, Y. Mao, B. Dong, and W. Yin, “Fast linearized Bregman
iteration for compressive sensing and sparse denoising,” Commun. Math.
Sci., vol. 8, no. 1, pp. 93–111, 2010.

[30] K.-C. Toh and S. Yun, “An accelerated proximal gradient algorithm for
nuclear norm regularized linear least squares problems,” Pac. J. Optim.,
vol. 6, no. 3, pp. 615–640, 2010.

[31] J.-F. Cai, E. J. Candès, and Z. Shen, “A singular value thresholding
algorithm for matrix completion,” SIAM J. Optim., vol. 20, no. 4, pp. 1956–
1982, 2010.

[32] S. Becker, E. J. Candès, and M. Grant, “TFOCS v1.2 user guide,” 2012.
[33] F. Mezzadri, “How to generate random matrices from the classical

compact groups,” Notices Amer. Math. Soc., vol. 54, no. 5, pp. 592–604,
2007.

John J. Bruer received the B.A. (summa cum laude)
degree in Mathematics from New York University,
New York, NY, USA, in 2008. He is currently
a candidate for the Ph.D. degree in Applied and
Computational Mathematics at the California Institute
of Technology, Pasadena, CA, USA. His research
interests include optimization, machine learning, and
statistics.

Joel A. Tropp is Professor of Applied & Compu-
tational Mathematics at the California Institute of
Technology. He earned the Ph.D. degree in Compu-
tational Applied Mathematics from the University
of Texas at Austin in 2004. Prof. Tropp’s interests
lie at the interface of applied mathematics, electrical
engineering, computer science, and statistics. His
work has been recognized with the 2008 PECASE,
the EUSIPCO 2010 Best Paper Award, and the 2011
SIAM Outstanding Paper Prize. He is a 2014 Thom-
son Reuters Highly Cited Researcher in Computer

Science.

Volkan Cevher received the B.S. (valedictorian)
degree in electrical engineering in 1999 from Bilkent
University in Ankara, Turkey, and he received the
Ph.D. degree in Electrical and Computer Engineering
in 2005 from the Georgia Institute of Technology in
Atlanta. He held research scientist positions at the
University of Maryland, College Park from 2006 to
2007 and at Rice University in Houston, Texas, from
2008 to 2009. Currently, he is an Assistant Professor
at the Swiss Federal Institute of Technology Lausanne
with a complimentary Faculty Fellow appointment at

the Electrical and Computer Engineering Department at Rice University. His
research interests include signal processing, optimization, machine learning,
and information theory. He received a Best Paper Award at SPARS in 2009
and an ERC StG in 2011.



14 JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING

Stephen R. Becker is an assistant professor in
the Applied Math department at the University of
Colorado at Boulder. Previously he was a Goldstine
Postdoctoral fellow at IBM Research T. J. Watson lab
and a postdoctoral fellow at the Laboratoire Jacques-
Louis Lions at Paris 6 University. He received his
Ph.D. in Applied and Computational Mathematics
from the California Institute of Technology in 2011,
and bachelor degrees in Math and Physics from
Wesleyan University in 2005. His work focuses
on large-scale continuous optimization for signal

processing and machine learning applications.


	Motivation
	Related Work and Our Contributions
	Roadmap to a Time–Data Tradeoff

	Regularized Linear Regression
	The Data Model
	Prediction Error and Statistical Risk
	The Regularized Linear Regression Problem

	A Geometric Opportunity
	Descent Cones and Statistical Dimension
	A Phase Transition
	A Geometric Opportunity

	A Computational Opportunity
	Convexity and Smoothness
	The Benefit of Smoothness
	The Dual Problem
	Example: Auslender–Teboulle
	A Computational Opportunity

	A Time–Data Tradeoff
	A Dual-smoothing Method
	Computational Cost
	Choosing a Smoothing Parameter
	Constant Smoothing
	Constant Risk
	A Tunable Balance

	Connection to the Noiseless Problem
	The Time–Data Tradeoff

	Example: Sparse Vector Regression
	The Dual-smoothed Problem
	Calculating the Statistical Dimension
	Numerical Experiment

	Example: Low-rank Matrix Regression
	The Dual-smoothed Problem
	Calculating the Statistical Dimension
	Numerical Experiment

	Example: Image Interpolation
	The Optimization Problem
	Numerical Experiment

	Conclusion
	Appendix A: Numerical Methodology
	Sparse Vector Regression
	Low-rank Matrix Regression
	Image Interpolation

	Appendix B: Proof of Theorem IV.5
	References
	Biographies
	John J. Bruer
	Joel A. Tropp
	Volkan Cevher
	Stephen R. Becker


