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Compressive sampling is well-known to be a useful tool used to resolve the energetic
content of signals that admit a sparse representation. The broadband temporal spec-
trum acquired from point measurements in wall-bounded turbulence has precluded
the prior use of compressive sampling in this kind of flow, however it is shown here
that the frequency content of flow fields that have been Fourier transformed in the
homogeneous spatial (wall-parallel) directions is approximately sparse, giving rise
to a compact representation of the velocity field. As such, compressive sampling
is an ideal tool for reducing the amount of information required to approximate the
velocity field. Further, success of the compressive sampling approach provides strong
evidence that this representation is both physically meaningful and indicative of spe-
cial properties of wall turbulence. Another advantage of compressive sampling over
periodic sampling becomes evident at high Reynolds numbers, since the number of
samples required to resolve a given bandwidth with compressive sampling scales as
the logarithm of the dynamically significant bandwidth instead of linearly for periodic
sampling. The combination of the Fourier decomposition in the wall-parallel direc-
tions, the approximate sparsity in frequency, and empirical bounds on the convection
velocity leads to a compact representation of an otherwise broadband distribution
of energy in the space defined by streamwise and spanwise wavenumber, frequency,
and wall-normal location. The data storage requirements for reconstruction of the full
field using compressive sampling are shown to be significantly less than for periodic
sampling, in which the Nyquist criterion limits the maximum frequency that can be
resolved. Conversely, compressive sampling maximizes the frequency range that can
be recovered if the number of samples is limited, resolving frequencies up to several
times higher than the mean sampling rate. It is proposed that the approximate sparsity
in frequency and the corresponding structure in the spatial domain can be exploited to
design simulation schemes for canonical wall turbulence with significantly reduced
computational expense compared with current techniques. C© 2014 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4862303]

I. INTRODUCTION

Compressive sampling, which employs optimization-based algorithms to reconstruct a signal
from a set of measurements, presents a means of circumventing Nyquist limitations on sample size
and thus reducing the amount of data required for signal reconstruction. This approach is valid only
if the measurement signals are sparse with respect to a known orthogonal basis. The technique has
been applied, for example, in magnetic resonance imaging (MRI),1 also for MRI applied to the inter-
rogation of bubble-flow interactions in multiphase flows, Tayler et al.2 Other authors have also suc-
cessfully used compressive sampling techniques in fluid dynamics, e.g., Tu and Rowley,3 Jovanovic,
Schmid, and Nichols,4 Jovanovic and Schmid,5 however the application of compressive sampling
in turbulence modeling has been thwarted because the broadband spectrum that is observed in
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wall-bounded turbulence based on spatially localized spectral measurements lacks the requisite
signal sparsity.

Frequency domain (temporal) analysis of data is not often attempted or explored in either
experiment or simulation because of the associated requirements for the storage of large time-
resolved datasets. The frequency spectrum of wall-bounded turbulence is known to be broadband
when measured locally in space, with the local bandwidth dependent on the wall normal location
and the Reynolds number. For this reason, it is necessary to acquire many samples to resolve the
frequency content of the flow so as to satisfy the Nyquist criterion. Most of the samples are needed
just to resolve the high-frequency, low-energy modes of the flow so they do not alias onto the lower
frequency modes.

When a sinusoidal signal of frequency f0 is sampled periodically at a rate fs, each sinusoid with
frequency |f0 − Nfs|, where N is an integer, also interpolates the samples. These spurious modes are
called aliases of the fundamental signal. Bilinski6 suggests that aliasing effects can be eliminated
by sampling randomly in time because the aliases do not interpolate the randomized samples. As a
consequence, randomized sampling seems to offer a way to reduce the number of samples required
for perfect reconstruction of the signal below the rate predicted by the Nyquist criterion.

To extract frequency content from randomized samples, additional care becomes necessary. If
a Fast Fourier Transform (FFT) is used, then fuzzy aliasing will occur (i.e., aliasing that is more
diffuse than in the case of periodic sampling) because the Fourier basis functions are not orthogonal
on the set of randomized samples. Bilinskis6 describes several techniques to remove, or at least
attenuate, fuzzy aliasing when a FFT is applied to nonperiodic samples.

In recent work,7–9 we have demonstrated that key features of the fluctuating velocity in fully
developed wall turbulence can be captured by approximating the transfer function (or resolvent)
at each wavenumber/frequency combination, i.e., under a triple Fourier decomposition in the ho-
mogeneous directions, between forcing arising from the interaction between different scales, and
the velocity response. A basis for the wall-normal direction can be obtained by singular value de-
composition of the resolvent, where the singular functions (or resolvent modes) represent the most
amplified velocity response to the “most dangerous” input forcing and are ordered by the magnitude
of the amplification arising from the forcing. As such, a low-rank approximation can be obtained
by retaining a limited number of singular functions; recognizable statistical and structural features
of wall turbulence can be identified in even the rank-1 approximation, in which only the principal
singular functions are investigated.9

For canonical turbulent pipe and channel flows, the output of this analysis at each (k, n, ω),
where k and n are the streamwise and spanwise wavenumbers, respectively, and ω is the frequency,
consists of a three-dimensional, three velocity component propagating wave which we hypothesize
can be considered to represent a building block of wall turbulence. These are deemed resolvent
modes; they represent the most amplified disturbance. This model provides a natural order reduction
by emphasizing only the amplified resolvent modes with wall normal coherence that allows matching
of the fluctuation field and neglecting those that contribute a negligible amount.10 It also suggests
storing only (complex) coefficients for the wall-normal variation of the Fourier mode amplitudes
over a range of wavenumber/frequency combinations instead of a long series of instantaneous direct
numerical simulations (DNS) velocity fields. In theory, given the correct amplitudes and phases
for the coefficients, both are complete representations of the velocity field, but the wavenumber-
frequency combination is extremely compact: the velocity field at any instance in space and time,
x0 and t0, can be obtained by simply evaluating the linear sum of Fourier modes at that x0 and t0,
i.e., advancing a set of waves that propagate relative to each other, as determined by their relative
streamwise wavespeeds, k. While a powerful reduction of information already, this investigation
of the application of compressive sampling reveals that not all coefficients are active for a given
wavenumber combinations, such that the array of coefficients is not fully populated.

Theory and experiment motivated the scientific hypothesis that the velocity field admits a sparse
representation after an appropriate transformation into the frequency domain, namely, that the
number of energetic frequencies among all resolvent modes with a given (k, n) is limited. Under this
hypothesis, compressive sampling is an ideal tool for reducing the amount of information required
to approximate the velocity field. Indeed, one of the early papers11 on compressive sampling shows



015109-3 Bourguignon et al. Phys. Fluids 26, 015109 (2014)

that random samples in time suffice to acquire a frequency-sparse signal, making this a potentially
useful tool to formulate a compact representation of the velocity field.

However, we can infer a stronger result from the effectiveness of compressed sensing in this
application: the success is itself serves as a validation of the hypothesis that the velocity field admits
a sparse representation in frequency. The mathematical signal processing literature establishes
rigorously that sparsity does not occur by accident. First of all, a generic signal never has a sparse
representation.12 Furthermore, when a signal does admit a representation as a sum of a small number
of frequency modes, every other representation requires a large number of frequency modes.13–16

In this paper, it is shown using DNS of turbulent pipe flow that when wall-bounded turbulence is
Fourier decomposed in the homogeneous spatial (wall-parallel) directions, and in time, as explored
by McKeon and Sharma,7 a compact representation of the velocity field can be found by applying
compressive sampling to identify the energetically dominant frequencies of the most energetic spatial
Fourier modes, because their frequency content turns out to be approximately sparse,17 in the sense
that the signal is close (in the L2 sense) to an exactly sparse signal. The fact that compressed sensing
works, i.e., we can approximate the velocity field with a small number of frequencies, provides
strong evidence that this representation is physically meaningful and indicative of special properties
of wall turbulence. The use of compressive sampling in wall-bounded turbulence is demonstrated
by a series of tests, based on synthetic velocity fields with known frequency content, aimed at
verifying the output from the compressive sampling routine. The data storage requirements for
reconstruction of the full field using compressive sampling are shown to be significantly less than
for periodic sampling, in which the Nyquist criterion limits the maximum frequency that can be
resolved; conversely, compressive sampling maximizes the frequency range that can be recovered
if the number of samples is limited, resolving frequencies up to several times higher than the mean
sampling rate. The paper is organized as follows. An introduction to our specific implementation
of compressive sampling and the datasets to which it was applied is given in Sec. II, results are
summarized in Sec. III, before conclusions are drawn in Sec. IV.

II. METHODOLOGY

Two different types of data sets were used to investigate the application of compressive sampling
to wall-bounded turbulence, specifically for the pipe flow geometry shown in Figure 1. Frequency
analysis was performed to confirm that the frequency content is approximately sparse and to validate
the use of both periodically and randomly sampled DNS data. The details of the compressive
sampling approach and the data sets used in this study are described in Secs. II A–II C.

A. Problem formulation

In all cases, compressive sampling was applied to the Fourier-transformed three-dimensional
(spatial) velocity fields in order to reconstruct their temporal variation. It is well-known18, 19 that
the Fourier series decomposition in the homogeneous (spatial and temporal) directions is optimal
in the sense that it maximizes the turbulent kinetic energy captured for a given number of basis

FIG. 1. Schematic of pipe geometry and nomenclature.
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functions; the Fourier modes are known to be the (orthogonal) eigenmodes of the linear Navier-
Stokes (NS) equations in the homogeneous directions. We focus on the efficiency, or compactness, of
the reconstruction of the streamwise velocity component, i.e., the reduction in storage requirements,
here; subsequent work will investigate the three-dimensional velocity field and offer an interpretation
into the characterization of wall turbulence that can be obtained using the compressive sampling
technique. As such, we consider here only the streamwise velocity, u, by way of example and denote
the coefficients of the 2D Fourier series representation in the streamwise and azimuthal directions
by ck, n(r, t), henceforth referred to as the 2D spatial Fourier modes and indexed by (k, n). The full
streamwise velocity field, u, is then given by

u(x, r, θ, t) =
∑
k,n

ck,n(r, t) ei(kx+nθ), (1)

normalized such that ∑
k

∑
n

ck,n(r, t)c∗
k,n(r, t) = u′2(r, t). (2)

Here, ∗ denotes the complex conjugate. Only the positive k half plane is retained since the spectrum of
a real-valued signal is symmetric. The 2D Fourier spectra were integrated in the wall-normal direction
and averaged in time to identify the 2D Fourier modes that contribute most to the streamwise
turbulence intensity, effectively a crude Proper Orthogonal Decomposition (POD) over a limited
resolvable parameter space.

After Fourier decomposition in the homogeneous directions (the optimal choice in the L2 sense
as described above with respect to Eq. (1)), the full vector velocity field û(x, r, θ, t) can be written in
terms of streamwise and azimuthal wavenumbers (k, n) and angular frequencies ω = 2π f as follows:

u(x, r, θ, t) =
∑
k,n,ω

ck,n,ω(r )ei(kx+nθ−ωt), (3)

which can be interpreted7 as a summation of propagating waves with relative magnitude and phase
given by the complex-valued coefficients ck,n,ω. The radial distribution of momentum associated
with each (k, n, f) combination is given by ck,n,ω(r ). Here, the wavenumbers and frequencies are
non-dimensionalized with the pipe radius, R, and centerline velocity, Ucl.

B. Compressive sampling

The theory of compressive sensing (Candés et al.11) suggests that for sparse signals that are
sampled randomly in time, the solution of a constrained convex optimization problem to recover
sparse energetic content is a computationally efficient problem. For the Fourier coefficient represen-
tation given in Eq. (3), the formal optimization problem for the recovery of sparse energetic content,
namely, a few large Fourier coefficients for a given (k, n), is

Minimize over all ck,n,2π jdf

Nopti∑
j=1

|ck,n,2π jd f (r )|, (4)

for each r, under the constraint

Nopti∑
j=1

ck,n,2π jd f (r )ei2π jd f ts = ck,n(r, ts), ∀ts, (5)

where Nopti and df are the number of samples and the frequency resolution, respectively. Since this
corresponds to optimization at each radial grid point, we term this a “local optimization.”

Alternatively, a “global optimization” problem may be formulated based on the minimiza-
tion of the �2-(energy) norm of the coefficients of the basis functions (the temporal Fourier
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coefficients), i.e.,

Minimize

Nopti∑
j=1

∫ 1

0
ck,n,2π jd f (r )c∗

k,n,2π jd f (r )rdr, (6)

under the constraint
Nopti∑
j=1

ck,n,2π jd f (r )ei2π jd f ts = ck,n(r, ts), ∀ts . (7)

The latter method only needs to be applied once, instead of at each wall-normal location separately,
and tends to select basis functions (frequencies) that are energetic over a wide range of wall-normal
locations. However, the optimization algorithm converges significantly slower due to the significant
increase in the number of constraints from Ns (the number of samples) to Ns × Nr (the number of
samples times the number of grid points in the radial direction).

Constrained optimization problems such as those in Eqs. (4)–(6) will identify a sparse represen-
tation of the signal, i.e., a few energetic temporal Fourier modes, provided that such a representation
exists and that sufficient samples have been acquired. The number Ns of samples required for perfect
reconstruction can be estimated using an empirical relationship obtained in Tropp et al.,20 henceforth
called the sparsity relationship,

Ns >= 1.7 K log

(
�

K
+ 1

)
, (8)

where K is the number of energetic frequencies in the approximately sparse signal and � is the
bandwidth, or ratio of the highest to lower frequency of interest. Evidently, the number of samples
scales as the logarithm of the input signal bandwidth, in contrast to the linear scaling associated with
periodic sampling. Alternatively, the lower the number of energetic frequencies present in the input
signal the broader the frequency range that can be resolved with compressive sampling. The sparsity
relationship has been justified theoretically by other studies, including Candés et al.,11 Donoho21 and
the analysis in Tropp et al.;20 however, the numerical constant 1.7 results from a linear regression
on experimental data in Ref. 20, and appears to be problem specific.

In practice, application of the compressive sampling technique to a randomly sampled signal
requires selection of the input frequency range and resolution for the constrained minimization
problem, [df, Nopti × df], such that the sparsity relationship is satisfied and the frequency resolution
appropriate to capturing the energetic content in the signal is obtained. Either the number and band-
width of the energetic frequencies must be known, a conservative estimate must be made or iteration
must be performed before applying compressive sampling. Extensive studies of synthetic velocity
fields,17 not described here in the interests of brevity, were used to investigate the combinations
of sampling and optimization parameters in the compressive sampling minimization problems of
Eqs. (4) and (6) that lead to the correct recovery of the input frequencies for modes spanning the
frequency content of the full turbulent velocity field. For simplicity, the input frequencies were
chosen to be equi-spaced within the optimization frequency range, i.e., df = const (but this is not a
requirement of the technique).

In all cases, for correctly selected sampling and optimization parameters, the frequency range
that could be resolved by compressive sampling is significantly broader than the range that could
be resolved using periodic sampling with the same number of samples and sampling duration.
The highest recoverable frequency was found to be about 6 times higher than the mean sampling
frequency (fs = 0.3). The maximum error in the recovered signal was always 1% or less.

However, in cases when either the number of input frequencies was increased or the sampling
duration (which is related to the resolvable bandwidth � of the signal in Eq. (8)) was decreased such
that the sparsity relationship (Eq. (8)) was violated, the success of the convex optimization degraded
significantly, there was a “leaking” of energy into adjacent frequencies, and several erroneous
frequency peaks were identified.
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Note that the minimum and maximum frequencies used to reconstruct the signal can, respec-
tively, be lower than the inverse of the sampling duration and higher than the mean sampling rate.
In contrast, in the case of periodic sampling, the minimum and maximum frequencies of the Fourier
series representing the input signal are directly related to the sampling parameters: the minimum
frequency corresponds to the inverse of the sampling duration, and the maximum frequency equals
the sampling rate for complex-valued signals and half the sampling rate for real-valued signals.

A conclusion from our studies reported here and in Bourguignon17 is that the compressive
sampling technique seemed to perform slightly better than predicted by the sparsity relationship of
Eq. (8), i.e., the constant takes a value lower than 1.7. One possible explanation for this improvement
is differing requirements for a successful optimization: the amplitude of the coefficients was required
to contain at least 10% of the peak frequency energy in our studies, whereas matching of the input
signal up to machine precision was used by Tropp et al.20 to determine a multiplicative constant
of 1.7.

In this work, the minimization problems of Eqs. (4) and (6) were solved with Matlab using the
CVX toolbox for convex optimization;22, 23 an example of the code used is shown in the Appendix.
Results from each of the two optimization approaches are compared in Sec. III B. Sparse frequencies
were identified as those for which the amplitude of the corresponding coefficients contained at least
10% of the peak frequency energy. Other choices could be made, for example, requiring matching of
the input signal up to machine precision.20 The frequency spectrum was subsequently integrated in
the wall-normal direction to identify the dominant frequencies, defined as the frequencies containing
not less than 10% of the energy in the peak frequency.

C. DNS velocity fields

The DNS velocity fields were kindly provided by Wu24 who used the second-order finite
difference code described in Wu and Moin24 at Re = 24 580, or Reτ = Ruτ /ν = 685 where
uτ = √

τw/ρ, τw is the mean wall shear stress, ρ is the fluid density, and ν is the kinematic viscosity,
and with a domain length of 30R (kmin = 0.21). The number of grid points in the streamwise,
wall-normal, and azimuthal directions was, respectively, 2048 ×256 × 1024. The DNS data were
subsampled by a factor of 4 in the streamwise and azimuthal directions to decrease the size of the
data files. The flow domain is large enough for the spatially-averaged velocity profile and streamwise
turbulence intensity profile to be converged, even with the subsampling. Three sets of velocity fields
were studied: one sampled under a temporally periodic scheme, one with randomized sampling and
one containing equivalent length records under both types of sampling.

For the first dataset, the flow was periodically sampled in time at a rate of 1 sample every 7.2
dimensionless time units, based on the pipe radius and bulk velocity. A total of 21 samples was
taken over 150 dimensionless time units. The number of samples and sampling duration for the first
data set was not chosen by the authors and constrained the number of 2D spatial Fourier modes
whose frequency content could be resolved with the available data. The 21 periodically sampled
DNS velocity fields were used to check whether the frequency content of the 2D spatial Fourier
modes was indeed approximately sparse, as described in Sec. III A.

The range of correctly resolved 2D Fourier modes in the periodically sampled DNS, i.e., those
modes with (k, n) resolved within a single velocity field and with frequency content free from
aliasing effects across the temporal record, was estimated by comparing the frequency range that can
be resolved from specific sampling parameters with empirical bounds on the frequency content of
the flow (Figure 2). The dynamically significant frequency content in wall-bounded turbulence can
be estimated as a function of the streamwise wavenumber under the assumption that the highest and
lowest streamwise convection velocities, namely, 2π f/k, correspond, respectively, to the centerline
velocity and 10 times the friction velocity, uτ . The upper bound comes from an extrapolation to
turbulent flow of the analysis of the Orr-Sommerfeld equation by Joseph25 which showed that the
real parts of the eigenvalues, which can be interpreted as disturbance convection velocities, are
restricted to the range set by the laminar base profile. The lower bound was estimated based on the
near-wall experimental measurements of Morrison et al.,26 who determined a minimum convection
velocity of approximately ten times the friction velocity, u = 10uτ , or 0.44Ū at Re = 24 580. This
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FIG. 2. Frequency range resolved by the periodically sampled DNS data (delimited by the two horizontal dashed lines)
compared to the empirical upper and lower bounds on the DNS frequency content (solid lines) as a function of the streamwise
wavenumber k. The shaded area shows the time-resolved streamwise wavenumber range for the available data. Notice that
while the area of the graph (resolution) goes up as the product of resolution of f and k, the area between the two lines grows
linearly in k. The consequence of this is that resolving only the area between the two lines of constant c is more efficient as
Reynolds number increases.

value for the lowest convection velocity is broadly supported in the literature, as summarized by
LeHew et al.27

These upper and lower bounds on the frequency content as a function of the streamwise
wavenumber are depicted as straight lines in Figure 2. The shaded area shows the range of wavenum-
ber/frequency space that can be considered fully resolved. The highest frequency that could be
resolved with the available DNS data is given by the inverse of the sampling rate fmax = 1

7.2 = 0.14
(recall that the frequency normalization is performed with bulk velocity); at k = 0.69, the modal
streamwise convection is equal to the centerline velocity. Part of the frequency content of all 2D
spatial Fourier modes with k ≥ 0.69 is therefore aliased to lower frequencies, meaning that such
modes cannot be considered correctly resolved within the constraints of our framework. Therefore,
only the frequency content of the lowest three streamwise wavenumbers k = 0.21, 0.42, and 0.63,
for various azimuthal wavenumbers, can be accurately extracted from the available DNS data by
applying a FFT in time, because the Nyquist criterion is satisfied for these three modes. Note that the
energetic range of k can be estimated to exceed k = 5 by consideration of the k location corresponding
to the near-wall activity with a dominant streamwise wavelength of 1000 viscous wall-units.

The second set was obtained by random temporal sampling in order to enable application of
compressive sampling. A new run of the turbulent pipe flow DNS was performed by Wu,24 and
the velocity fields were recorded at the 50 sampling time instants shown on Figure 3, randomly
distributed over 100 dimensionless time units. The number of samples, Ns and the total sample
length were selected by consideration of synthetic velocity fields.17

In order to enable a fair comparison between the periodic and randomized sampling approaches,
a third dataset was constructed from the first 14 periodically sampled fields from the first dataset and

0 10 20 30 40 50 60 70 80 90 100
t
s

FIG. 3. The 50 DNS sampling time instants randomly distributed over 100 dimensionless time units based on the radius and
bulk velocity. The last sampling time instant is at τ = 96.57.
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14 velocity fields randomly chosen from the 50 fields available (total non-dimensional sample length
of 100 dimensionless time units in each case). In this case, the minimum and maximum frequencies
for the FFT are given by fmin = 0.01 and fmax = 0.13; consequently, only the 2D Fourier modes
corresponding to the lowest three streamwise wavenumbers could be fully resolved (the other modes
had higher frequencies aliased to the range [0.01, 0.13]). Similarly, for the randomly sampled series,
the full frequency content of the most energetic 2D Fourier modes could be resolved for k ≤ 1.47
instead of k ≤ 4.3 when the 50 samples were used.

III. RESULTS AND DISCUSSION

In this section, we first confirm the approximate sparsity of the 2D Fourier modes in the
frequency domain. Then we demonstrate the success of compressive sensing in randomly sampled
DNS velocity fields, describe the associated compact representation of wall-bounded turbulence and
provide a brief comparison of the results with those from periodically sampled DNS fields.

A. Sparsity check based on periodically sampled DNS data

An explicit check for approximate sparsity of the velocity field in the frequency domain under
the 2D Fourier mode decomposition, an essential component for success of compressive sampling,
was performed using the periodically sampled DNS data before proceeding to apply compressive
sampling. The frequency spectrum of the most energetic 2D Fourier modes was computed as a
function of the wall-normal distance by performing an FFT of the 21 samples available, in time, at
each wall-normal location. Only the modes with k ≤ 0.63 which are free from aliasing effects were
considered.

The time-averaged profiles in the wall-normal direction, y = 1 − r, of the three most energetic
2D Fourier modes are plotted on Figure 4. The modes are tall in the wall-normal direction and extend
to the centerline. A representative frequency spectrum corresponding to the mode (0.42, 5), which
contains significant energy but is not one of the three most energetic 2D Fourier modes and thus
potentially represents a tougher test of sparsity, is plotted on Figure 5 as a function of the wall-normal
distance, together with the empirical bounds on the frequency content corresponding to convection
velocities equal to the centerline velocity and 10 times the friction velocity. The frequency spectrum
exhibits vertical contours of constant energy, highlighting the wall-normal coherence of the energetic
2D Fourier modes, which suggests constant phase speed in the propagating wave interpretation of the
modes. The frequency content of all the modes studied was always approximately sparse, exhibiting
between one and three dominant frequencies; all other frequencies contain at least an order of
magnitude less energy than the dominant frequency(ies). The dominant frequencies fall in between

(a) (b)

FIG. 4. Wall-normal profile (y = 1 − r) of the magnitude (a) and phase (b) for the first three most energetic modes (k, n)
= (0.21, −2) (dotted, “x”), (k, n) = (0.42, 3) (dashed, diamonds), and (k, n) = (0.21, 2) (solid) of the periodically sampled
DNS flow field.
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FIG. 5. Representative frequency spectrum as a function of the wall-normal distance for the 2D Fourier mode (k, n) = (0.42,
5) extracted from the periodically sampled DNS data using a temporal FFT, showing approximate sparsity in the frequency
domain. The contour levels span an order of magnitude. The empirical upper and lower bounds on frequency corresponding
to convection velocities equal to the centerline velocity and 10 times the friction velocity are demarcated by the two vertical
lines.

the two empirical bounds on the frequency content. Hence, even though turbulent pipe flow exhibits
a continuous frequency spectrum when measured locally in space, a sparse representation in the
frequency domain is obtained under this particular decomposition of the velocity field. As such, we
now exploit the reduction in the number of samples required for success of compressive sampling,
thus validating our original hypothesis, and explore key features of this representation.

B. Application of compressive sampling to frequency analysis of randomly sampled
DNS velocity fields

The application of compressive sampling to the turbulent velocity field was investigated using
the second, randomly sampled DNS dataset (Figure 3). The optimization parameters Nopti and
df resulting in the highest frequency resolution that still satisfies the sparsity relationship were
determined by analysis of the frequency content of several 2D Fourier modes. An optimization
frequency range from −1 to 1 allows for both upstream and downstream propagating waves, and with
a frequency increment of 0.005 results in the highest frequency resolution that can be obtained with
the given number of samples. Only the downstream propagating waves carry a significant fraction
of the streamwise turbulence intensity, but the noise is spread over both upstream and downstream
propagating waves, leading to a sparser solution. (The presence of negative optimization frequencies
is required for the optimization to converge, and it was found that more sparse solutions are obtained
using both positive and negative optimization frequencies, instead of increasing the upper bound on
the optimization frequencies.) The fundamental frequency is then fmin = 0.005 (half the inverse of the
sampling duration) and the number of optimization frequencies is 400. By way of comparison, the
flow would have to be sampled for 200 dimensionless time units (instead of 100) in order to obtain
a fundamental frequency of 0.005 using periodic sampling, and 400 samples would be required as
opposed to 50 in the case of compressive sampling.

Figure 6 shows an example of the radially integrated power spectral density corresponding to
correctly extracted frequency content of the 2D Fourier mode (k, n) = (0.21, 2). Most of the energy is
concentrated in the range [0, 0.1], while the basis functions corresponding to higher frequencies, as
well as negative frequencies corresponding to upstream propagating modes, only capture the noise.
Note, however, that the optimization does not converge if the frequency range is restricted to [0, 0.1]
because in that case the high frequency noise above the noise floor cannot be resolved. The noise
floor is about 5 orders of magnitude lower than the peak. The distribution of energy with respect to
distance from the wall and the corresponding detailed radially integrated power spectral density are
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FIG. 6. Power spectral density for the 2D Fourier mode (k, n) = (0.21, 2) from the randomly sampled DNS obtained via
optimal compressive sampling.

shown in Figures 7(a) and 7(b). The frequency spectrum in the range [0, 0.1] contains two dominant
frequencies f = 0.035 and 0.040, with an energy content of not less than 10% of the peak value.

The solution to the convex optimization problem was shown to be robust with respect to
variations of the fundamental and maximum frequencies, as long as the sparsity relationship is
satisfied, and the maximum frequency is high enough to resolve the noise. When the resolution is
increased by lowering the fundamental frequency, the width of the peak in the power spectral density
stays constant, but the number of frequencies within the peak increases, resulting in a violation of
the sparsity relationship (Eq. (8)). Figures 7(b) and 7(d) show that when the resolution is doubled
in a local minimization in y (Eq. (4)) the number of dominant frequencies within the peak increases
from 2 to 4, and the frequency spectrum as a function of the wall-normal distance exhibits distorted
contours (Figures 7(a) and 7(c)), indicative of a violation of the sparsity relationship, Eq. (8). The
minimum number of samples required to resolve the spectrum correctly is 32, whereas for the
spectrum on Figure 7(d) 57 samples are needed, but only 50 are available. This issue is an artefact
of imposing a discrete frequency resolution onto a velocity series obtained in the temporal rather
than frequency domain.

The 2D Fourier modes can be reassembled by summation over the basis functions (temporal
Fourier modes). The reconstructions of the 2D Fourier mode amplitude variation based on summation
over the sparse frequencies identified in Figure 7 are compared with the true amplitude from the
DNS in Figures 8(a) and 8(c). The frequency f = 0.030 is not considered to be a dominant frequency,
based on the criterion that dominant frequencies need to contain at least 10% of the peak energy, but
is retained here such that the superposition of the three most energetic frequencies captures over 90%
of the energy in the 2D Fourier mode (k, n) = (0.21, 2). Relaxation of the criterion distinguishing
sparse/dominant frequencies to those containing, say, 1% of the energy associated with the most
dominant mode would also admit f = 0.065, with an associated increase in the percentage of energy
captured.

When the sparsity relationship is violated by increasing the number of optimization frequencies
to 800 and therefore halving the frequency resolution to fmin = 0.0025, the results degrade differently
depending on whether a global (Eq. (6)) or local (Eq. (4)) minimization (in the wall-normal direction)
is used. In the case of local minimization, the dominant frequencies can vary slightly from one
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(a) (b)

(c) (d)

FIG. 7. Power spectral density over the frequency range f ∈ [0, 0.1] as a function of the wall-normal distance (a) and (c) and
integrated in the wall-normal direction (b) and (d) for the 2D Fourier mode (k, n) = (0.21, 2) from the randomly sampled
DNS. The top and bottom rows correspond to a local minimization with, respectively, 400 and 800 optimization frequencies.
The dots in (b) and (d) indicate the dominant frequencies.

wall-normal location to the next, leading to distorted wall-normal amplitude profiles that span only a
portion of the radius, as can be seen by comparison of Figures 7(a) and 7(c) and Figures 8(a) and 8(c).
In the case of global minimization, corresponding to the results in Figures 8(b) and 8(d), the energy
is spread over more frequencies and the contribution of each dominant frequency to the streamwise
turbulence intensity decreases when the resolution is doubled and the sparsity relationship is violated.
However, the wall-normal profiles of the temporal Fourier modes are still smooth and span the whole
radius, as shown in Figure 8(d).

Figure 8 shows that the amplitude variation of the 2D Fourier modes reconstructed by summation
of the amplitudes of the dominant frequency components extracted via compressive sampling do
not change when the sparsity relationship is no longer satisfied, implying that the same amount of
energy is captured by the dominant frequencies, but distributed differently among them. Similarly, the
dominant frequencies obtained using the local or global minimizations were shown to be identical for
the 2D Fourier modes studied, as were the reconstructed 2D Fourier modes, illustrating the robustness
of the method. However, the wall-normal profiles of the temporal Fourier modes were smoother in the
case of global minimization (see Figure 8), justifying the choice of the global minimization method
to analyze the 2D Fourier modes. Henceforth, we present the frequency content of a broad range
of energetic 2D Fourier modes analyzed via compressive sampling using the global optimization
method of Eq. (6) and the optimization parameters df = 0.005 and f ∈ [ − 1, 1].

C. Features of the sparse representation

Having determined the correct sampling parameters for this application of compressive sampling
and determined the effects of deviating too far from them, we now explore key features of the Fourier
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FIG. 8. Wall-normal profiles of the Fourier modes (k, n, ω) = (0.21, 2, 2π f) from the randomly sampled DNS, for the
different dominant frequencies, compared to the time average of the original and reconstructed signals computed using the
local (a) and global (b) minimizations in the wall-normal direction with 400 optimization frequencies, and the local (c) and
global (d) minimizations with 800 optimization frequencies. The maximum frequency for the optimization is 1 in both cases.

modes recovered by the technique, which have some physical significance associated with the sparsity
of the representation, as discussed in Sec. I above.

The most energetic 2D Fourier mode (k, n) = (0.21, 2) described in Figure 7 was explored
further as a representative example of the low streamwise wavenumber modes. The temporal Fourier
modes corresponding to the three most energetic frequencies f = 0.030, 0.035, and 0.040 of this
2D Fourier mode shown in Figure 8(b) together contain 91% of the streamwise turbulence intensity
compared to 52% for the peak frequency alone. Isocontours of the real part of the full 2D Fourier
mode and the reconstruction from the three dominant frequencies are shown in Figure 9 (with correct
account taken of the wall-normal phase variations). The reconstructed signal clearly captures the
wall-normal extent of the full mode, but lacks some of the small-scale variability. However, the
presence of dominant frequencies adjacent to the peak frequency, which can be interpreted as a
(dispersive) range of wavespeeds, does capture the apparent amplitude modulation in time of the full
2D Fourier mode at a fixed height (see, for example, the increase in magnitude of the reconstructed
and full 2D Fourier modes from the first to the second period at y ≈ 0.4).

Another two 2D Fourier modes (k, n) = (1.05, 2) and (k, n) = (3.14, 4) were selected for
illustration purposes and represent the range of streamwise wavenumbers that can be analyzed with
the 50 velocity fields available. The isocontours of the real part of the two 2D Fourier modes in
a wall-normal-temporal plane are plotted on Figures 10(a) and 10(c) and the wall-normal profile
of their dominant temporal Fourier modes is shown on Figures 10(b) and 10(d). A comparison
between Figures 9 and 10 shows that the energetic radial extent of the reconstructed 2D Fourier
mode decreases as the streamwise wavenumber increases, and the reconstructed modes contain less
and less energy near the wall. In addition, the sparse frequency reconstruction captures less of the
total energy in the 2D Fourier modes than in the (k, n) = (0.21, 2) case. A reconstruction of the
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(a) (b)

FIG. 9. Isocontours of the real part of the 2D Fourier mode (k, n) = (0.21, 2) from the randomly sampled DNS, as a function
of the wall-normal distance and time. (a) All frequencies included. (b) The three most energetic frequencies recovered from
compressive sampling recover the large scale features of the full signal.

(k, n) = (1.05, 2) mode using the three sparse frequencies is shown in Figure 11(a). The corresponding
full field was shown in Figure 10(a); there are still common key features, but the agreement between
the reconstruction and the full mode is less satisfactory than for the (k, n) = (0.21, 2) case.

Upon further inspection, two different zones of approximately uniform momentum in the wall-
normal direction can be identified for the higher wavenumber cases, as observed in Figure 10(c)

(a) (b)

(c) (d)

FIG. 10. Isocontours of the real part of the 2D Fourier modes (k, n) = (1.05, 2) (a) and (k, n) = (3.14, 4) (c) from the
randomly sampled DNS as a function of the wall-normal distance and time. Wall-normal profiles of the Fourier modes (k, n,
ω) = (1.05, 2, 2π f) (b) and (k, n, ω) = (3.14, 4, 2π f) (d) for the different dominant frequencies compared to the time average
of the original and reconstructed signals. The reconstructions with three or four frequencies capture a significant amount of
the energy in the original signal.
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(a) (b)

FIG. 11. (a) Isocontours of the real part of the 2D Fourier mode (k, n) = (1.05, 2) reconstructed with only the three most
energetic frequencies recovered from compressive sampling. The corresponding full field was shown in Figure 10(a). (b)
Time-averaged power spectral density in the wall-normal direction for the 2D Fourier mode (k, n) = (3.14, 4) from the
randomly sampled DNS. Here, q is the quantum number, related to the number of zero crossings of the radial amplitude
profile.

above and below y = 0.1R. Close to the wall, these zones are short in the wall-normal direction
whereas further from the wall, the uniform momentum zones have a radial wavelength of about a
quarter radius inferred from the sharp peak in the radial power spectrum shown in Figure 11(b). This
spectrum was obtained by applying a FFT in the radial direction to the 2D Fourier mode amplitude
(without windowing because the profile vanishes at the boundaries, the wall, and the centerline),
and can therefore be assumed periodic with a fundamental wavelength equal to R. The spectrum is
decomposed by quantum number, q, which in this case corresponds to the number of zero crossings
of the mode amplitude plus one. Using a sharp Fourier filter (here with a cutoff at the 14th mode),
the “near-wall type uniform momentum zones” can be separated from the “core uniform momentum
zones” in the wall-normal direction, as shown in Figures 12(a) and 12(b) for (k, n) = (3.14, 4). The
filter successfully separates the two different types of uniform momentum zones that are integrated
in Figure 10(c).

In terms of the compressive sampling approach, the contributions of these two types of zones
to the full 2D Fourier modes, and in particular any variation in sparse frequency content, cannot be
distinguished. However, separate minimization problems for each zone can be solved after use of the
sharp radial filter. The frequency content of the near-wall uniform momentum zones is broadband
and cannot be captured using compressive sampling with the chosen sampling parameters, reflecting
the decrease in the energy captured near the wall as k increases observed on Figures 10(b) and 10(d).
However, the sparse frequency representation in the core improves when only the core uniform
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FIG. 12. (a) Isocontours of the real part of the 2D Fourier mode (k, n) = (3.14, 4) low-pass filtered and (b) high-pass filtered
showing the two different zones present in the wall-normal direction.



015109-15 Bourguignon et al. Phys. Fluids 26, 015109 (2014)

TABLE I. Frequency analysis of 5 representative modes using only 14 snapshots acquired over 100 dimensionless time units
from two different runs of the turbulent pipe flow DNS. The dominant frequencies obtained via compressive sampling (CS)
analysis of the randomly sampled DNS and their streamwise energy content (in % of the 2D Fourier mode energy content)
are reported in the second and third columns, respectively. The fourth and fifth columns correspond to the frequencies and
respective energy content obtained by FFT of the periodically sampled DNS.

(k,n) f (CS) % u′2 (CS) f (FFT) % u′2 (FFT)

(0.21,2) 0.035 82 0.03 51
0.040 14 0.04 20

(0.42,−3) 0.065 95 0.06 21
0.07 58

(0.63,−2) 0.09 23 0.08 50
0.105 29 0.110 27
0.110 23 . . . . . .

(1.05,2) 0.180 59 . . . . . .

(1.47,2) 0.255 15 . . . . . .
0.260 25 . . . . . .
0.265 8 . . . . . .

momentum zones are considered. Compressive sampling thus can be used to give insight into the
compactness of representation that can be achieved in different regions of the flow using the (k, n,
ω) decomposition, and, more fundamentally, variations in sparsity in the frequency domain with
wall-normal location and spatial wavenumber (assuming that the sampling parameters have been
correctly chosen to resolve the corresponding bandwidth).

Besides the three representative (k, n) values described above, compressive sampling was applied
to a broad range of 2D Fourier modes. The technique successfully captured sparse frequency content
in the core of the pipe for energetic 2D Fourier modes ranging in size from the largest modes

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

y

m
ag

ni
tu

de

DNS
f=0.035 N

s
=14

f=0.035 N
s
=50

f=0.040 N
s
=14

f=0.040 N
s
=50

FIG. 13. Comparison between the time-averaged wall-normal profile of the 2D Fourier mode (k, n) = (0.21, 2) from the
randomly sampled DNS and its two dominant frequencies obtained using compressive sampling. The mode shapes obtained
with 14 and 50 snapshots show robust similarity.
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(a) (b)

(c)

FIG. 14. Power spectral density of a superposition of three Fourier modes with unit magnitude and frequencies f = 0.035,
0.052, 0.087 sampled 50 times during 100 time units computed using (a) periodic sampling with FFT, and (b) compressive
sampling with a frequency increment of df = 0.01 and (c) df = 0.001, showing the improvement in resolution obtained with
compressive sampling.

(k = 0.21) all the way down to the near-wall type modes of size λ+
x = 1000 (k = 4.3). Implications

of this finding will be discussed in Sec. IV below.

D. Comparison with periodic sampling

The compressive sampling approach was briefly compared with periodic sampling using the
third dataset (containing equal numbers of samples over identical total sample lengths) to emphasize
the superiority of the former method in resolving the frequency content of the most energetic 2D
Fourier modes when only a limited amount of data are available.

The dominant frequencies and their energy content for five representative 2D Fourier modes,
as obtained from the FFT and compressive sampling, are reported in Table I. The frequencies
obtained from the two techniques match relatively well, especially for the two modes with the
lowest streamwise wavenumber, even though the samples were generated by two different runs of
the DNS and the statistics would not be expected to be converged in either case. The dominant
frequencies obtained by compressive sampling applied to either 14 or 50 samples are identical, but
the wall-normal profiles of the temporal Fourier modes vary slightly, as shown in Figure 13 and
the energy content of the dominant frequencies is higher when 50 samples are used instead of 14.
This energy content is also higher than for the frequencies obtained via FFT, with, respectively,
96% vs. 71% of the energy in the dominant frequencies for the first mode, and 95% vs. 79%
for the second. In other words, the compressive sampling solution requires less basis functions
(frequencies) to capture a given percentage of streamwise turbulence intensity than the solution
obtained with periodic sampling.
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Conversely, compressive sampling also provides a way to increase the frequency resolution for
a given number of samples above the Nyquist limit, since many more frequencies can be chosen
to perform the optimization than the number of samples available. Consider a toy temporal signal
composed of three Fourier modes ei2π ft with frequencies f = 0.035, 0.052, 0.087 and unit magnitude,
sampled 50 times over 100 time units. The PSD found by FFT of the periodically sampled signal is
shown in Figure 14(a). The minimum and maximum frequencies that can be resolved are given by
fmin = 0.01 and fmax = 0.49 (note that the maximum frequency nearly equals the sampling frequency
rather than half the sampling frequency because the input signal is complex-valued), and the three
input frequencies are not clearly recovered for these sample parameters.

The same signal, now randomly sampled but with the same total number of samples over the
same total sample length, was also interrogated using compressive sampling and two different values
of frequency resolution. The first one matched the periodic sampling case, df = fmin = 0.01 and
the second one was ten times higher df = 0.001. The PSDs are plotted on Figures 14(b) and 14(c).
For the lower resolution case, frequencies away from the input frequencies have significantly lower
energy content than in the periodically sampled case, and the input frequencies are more clearly,
but not definitively, identified. The PSD exhibits a lower level of noise, or equivalently, a sparser
solution than the PSD obtained via FFT of periodic samples. For the higher-resolution case, the
three input frequencies are recovered exactly, because the set of temporal Fourier modes used for
the optimization includes the three input frequencies, and the noise floor drops even further.

IV. CONCLUSIONS

The success of compressive sampling, or conversely the presence of a sparse representation of
the energetic streamwise velocity field in the frequency domain under this formulation, has strong
implications for our understanding of wall turbulence, and for future requirements on both data
sampling and simulation strategies.

First and foremost, the sparse representation is likely to have physical significance as a property
of wall turbulence. Consider the frequency content of all the dominant modes identified in this study,
shown in Figure 15(a) as a function of the streamwise wavenumber. Within a resolution error of df
=±0.0025, all the frequencies fall in between the lower and upper empirical bounds corresponding to
convection velocities equal to, respectively, 10 times the friction velocity and the centerline velocity.
Note that a range of azimuthal wavenumbers were considered for each k (an effective integration in
the azimuthal direction); in the full (k, n) domain there are significantly less frequencies associated

FIG. 15. Frequency content of the 2D Fourier modes as a function of the streamwise wavenumber, k (a range of azimuthal
wavenumbers, n, was considered at each k). The two solid lines indicate the upper and lower empirical bounds on the
frequency content from consideration of the convection velocities and the dashed line shows the streamwise wavenumber
corresponding to the near-wall type modes. The shaded areas highlight the dynamically significant bandwidth and streamwise
wavenumber range at (a) Re = 24 580 and (b) extrapolated to Re = 300 000. Dots represent 2D Fourier modes considered in
this study.
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with each wavenumber pair. Nonetheless, a visual identification of sparsity in the frequency domain
in Figure 15 is still possible.

Clearly, under the Fourier decomposition described here, the energetic turbulent activity is
confined to a much smaller domain than the range of frequencies and streamwise wavenumbers
resolved by the simulation, which are denoted by the gray shaded area. Using the empirically
defined, but physically and observationally justified, convection velocity limits of ten times the
friction velocity and the centerline velocity together with a compressive sampling approach suggests
that a truly compact representation of the energetic content of wall turbulence is possible. In the
three-dimensional frequency/streamwise/spanwise wavenumber space, (k, n, ω), this corresponds
to a shrinking of a cuboid, defined by minimum and maximum energetic streamwise and spanwise
wavenumbers and frequencies across the whole wall-normal domain, to a “pancake” demarked by
the convection velocity limits and the radially local range of n. This pancake is not fully populated in
the frequency domain, and as such this representation leads to a significant reduction of complexity.

McKeon and Sharma7 and subsequent works8 have described the resolvent framework for
determining the form of the nonlinear interactions giving rise to a specific resolvent mode shape.
The fact that only a sparse set of frequencies are active, or energetic, for a given wavenumber
pair imposes additional constraints beyond triadic and physical compatibility of interacting modes.
Further development of the sparsity result in the context of the resolvent framework is reserved for
future work, but the discovery of a sparse representation is believed to be important to ongoing
resolvent analysis.

The advantage of compressive sampling over periodic sampling in the case of approximately
sparse data will become even more evident at higher Reynolds number, because the dynamically
significant frequency range increases with Reynolds number. A simple extrapolation of Figure 15(a),
namely, retaining the upper and lower empirical bounds on the convection velocity and recalculating
the maximum k required to capture the near-wall activity for a Reynolds number that is an order of
magnitude higher leads to the results of Figure 15(b). Extending the k range by an order of magnitude
leads to linearly proportional (with coefficient one) broadening of the frequency range, implying that
ten times more periodically sampled velocity fields would be needed in order to resolve the frequency
content via FFT. The number of samples required for compressive sampling scales as the logarithm
of the bandwidth, leading to an exponential gain in terms of number of samples required to fully
resolve the frequency domain compared to the corresponding requirement for periodic sampling.

The reduction of complexity identified above suggests strategies for new, efficient simulation
techniques for canonical wall-bounded turbulent flows, such as the pipe flow explored here. The
expense of direction numerical simulation is proportional to the range of scales to be resolved; a
simulation strategy that exploits our compact representation to reduce the dimensionality of the
problem will limit that range and thus reduce the stiffness of the problem. Further, we propose
that the correspondence of high wavenumber modes with high frequencies indicated in Figure 15
suggests the possible efficiency of scale-dependent time-stepping schemes.

The present study has used solely streamwise velocity data from DNS as the input to the com-
pressive sampling optimization, in an effort to recover wall-normal coherence within a particular
decomposition of the field. Clearly, obtaining experimental data capable of resolving a range of
streamwise and spanwise wavenumbers and frequencies over sizable wall-normal extents, at turbu-
lent Reynolds numbers, represents a significant challenge, even to such techniques as tomographic
Particle Image Velocimetry (PIV). As such, progress in this regard has come via phase-locking
to synthetic modes rather than decomposing unperturbed wall turbulence.8, 28 However, efforts to
extract a sufficient characterization of the full turbulent velocity field to allow the use of compressive
sampling to extract resolvent modes in an experimental turbulent boundary layer are under way. Fu-
ture work also includes analysis of the potential of the technique to recover the full three-component
velocity field.
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APPENDIX: MATLAB CODE USED TO SOLVE THE CONVEX OPTIMIZATION PROBLEM

% Nr is the number of grid points in the radial direction
% Ns is the number of samples
% 2D_Fourier(Nr,Ns) is the 2D Fourier mode as a function of the
wall-normal

% distance r discretized over Nr points and the Ns number of samples
% (time instant ts)
% F_out(Nr,Nopti) is the output of the minimization corresponding to
% the frequency content as a function of the wall-normal distance.

Nopti=10∗Ns; % number of frequencies for the
optimization

f=(-Nopti/2+1:1:Nopti/2)/(Nopti/2); % equispaced frequencies for the
optimization

C=exp(-1i∗2∗pi∗ts∗f); % constraint matrix: output must
match input

% at the sampling time instants

for j=1:Nr
cvx_begin
cvx_quiet(true)

variable x(Nopti) complex;
minimize(norm(x,1)); % minimize the sum of the absolute

value
% of the temporal Fourier

coefficients
subject to
C ∗ x==2D_Fourier(j,:)’;

cvx_end
F_out(j,:)=x;

end.
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