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Abstract
The randomly pivoted Cholesky algorithm (RPCholesky)
computes a factorized rank-𝑘 approximation of an 𝑁 ×𝑁
positive-semidefinite (psd) matrix. RPCholesky requires
only (𝑘 + 1)𝑁 entry evaluations and (𝑘2𝑁) additional
arithmetic operations, and it can be implemented with
just a few lines of code. The method is particularly use-
ful for approximating a kernel matrix. This paper offers
a thorough new investigation of the empirical and theo-
retical behavior of this fundamental algorithm. For matrix
approximation problems that arise in scientific machine
learning, experiments show that RPCholesky matches
or beats the performance of alternative algorithms. More-
over, RPCholesky provably returns low-rank approxima-
tions that are nearly optimal. The simplicity, effective-
ness, and robustness of RPCholesky strongly support
its use in scientific computing and machine learning
applications.
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1 MOTIVATION

Kernel methods [57] are a class of machine learning tools for interpolation, regression, clustering,
and summarization of data. For small to medium data sets (say, with fewer than 105 points), the
literature contains evidence that kernel methods are effective for many learning tasks in scientific
computing [10, 48, 52, 53, 57, 61]. For particular problems, carefully designed kernel methods can
compete with or exceed the performance of neural networks [6, 7, 42, 49].
Kernel methods distill information about the pairwise similarities of𝑁 data points into a dense

positive-semidefinite (psd) kernel matrix with dimensions 𝑁 ×𝑁. We must compare two data
points to determine each entry of the kernel matrix, so it can be burdensome to compute and
store all𝑁2 entries. To perform data analysis tasks with the kernel matrix, we solve linear systems
or least-squares problems, or we perform eigenvalue decompositions. With direct algorithms,
these linear algebra primitives require(𝑁3) arithmetic. This scalingmakes it prohibitive to apply
kernel methods to the largest data sets.
Yet the situation is not hopeless. Even for high-dimensional data, the eigenvalues of the kernel

matrix can decay surprisingly quickly [3, 70]. This phenomenon has a profound consequence for
computation.When spectral decay is present, we can replace the full kernel matrix with
a low-rank approximation to accelerate kernel methods without much loss of accuracy.
This approach can be used to accelerate kernel interpolation [1], kernel ridge regression [23, 44,
55], and kernel spectral clustering [27]. Indeed, “low-rank kernelmethods” can run orders ofmag-
nitude faster than directmethods that require a full decomposition of the dense kernelmatrix (see,
e.g., Section 4.3).
With this context in view, we pose a computational question: What are the best algo-

rithms for finding a low-rank approximation of a large psd kernel matrix?Here are some
desiderata:

1. Entry evaluations. We would like to compute a rank-𝑘 approximation after revealing only
(𝑘𝑁) entries of the kernel matrix, such as the 𝑘 most salient columns.

2. Arithmetic and storage. The method should only expend (𝑘2𝑁) additional arithmetic,
which is the cost to orthogonalize 𝑘 vectors of dimension 𝑁. The method should return the
approximation in factored form, using only (𝑘𝑁) storage.

3. Approximation quality. The error in the computed rank-𝑘 approximation should be com-
petitive with the best approximation that has rank 𝑟, where 𝑟 is a number not much smaller
than 𝑘.

4. Reliability, robustness, simplicity. The method should have consistent performance, and
it should succeed for all inputs. The method should be easy to implement, and it should not
require the user to adjust parameters.

The randomly pivoted Cholesky algorithm (RPCholesky) is a fundamental numeri-
cal method that enjoys all four of these qualities. RPCholesky enhances the classic pivoted
partial Cholesky method with an adaptive, probabilistic rule for selecting the next pivot column.
We have found that this simple modification consistently produces excellent low-rank matrix
approximations, even when alternative pivot rules fail. See Algorithm 1 for pseudocode.
The RPCholesky algorithmhas a subtle history (Section 3), but it is fair to say that thismethod

has never received the attention that it deserves. Our purpose is to bring this powerful algorithm
into the light. We offer two main contributions:
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PRACTICAL APPROXIMATION OF A KERNEL MATRIX WITH FEW ENTRY EVALUATIONS 997

ALGORITHM 1 RPCholesky.

Input: Psd matrix 𝑨 ∈ ℂ𝑁×𝑁 ; approximation rank 𝑘
Output: Pivot set 𝖲 = {𝑠1, … , 𝑠𝑘}; matrix 𝑭 ∈ ℂ𝑁×𝑘 defining Nyström approximation 𝑨 = 𝑭𝑭∗

Initialize 𝑭 ← 𝟎𝑁×𝑘 and 𝒅 ← diag𝑨 ▹ Evaluate diagonal of input matrix
for 𝑖 = 1 to 𝑘 do
Sample pivot 𝑠𝑖 ∼ 𝒅∕

∑𝑁

𝑗=1
𝒅(𝑗) ▹ With probability proportional to residual diagonal

𝒈 ← 𝑨(∶, 𝑠𝑖) ▹ Evaluate column 𝑠𝑖 of input matrix
𝒈 ← 𝒈 − 𝑭(∶, 1 ∶ 𝑖 − 1)𝑭(𝑠𝑖, 1 ∶ 𝑖 − 1)

∗ ▹ Remove overlap with previously chosen columns
𝑭(∶, 𝑖) ← 𝒈∕

√
𝒈(𝑠𝑖) ▹ Update approximation

𝒅 ← 𝒅 − |𝑭(∶, 𝑖)|2 ▹ Track diagonal of residual matrix
𝒅 ← max{𝒅, 𝟎} ▹ Ensure diagonal remains nonnegative

end for

1. Empirical performance. We provide the first numerical evidence that RPCholesky is a
competitive technique for approximating large kernel matrices that arise in scientific machine
learning. Compared to alternative algorithms, RPCholesky has greater speed, accuracy, or
reliability.

2. Rigorous error bounds. We develop a new theoretical analysis that describes the perfor-
mance of the RPCholesky algorithm, as given in Algorithm 1. Our analysis gives a clear
picture of why RPCholesky is effective.

In summary, we present a slate of results to suggest that RPCholesky is the leading method
for low-rank approximation of large, psd kernel matrices. The effectiveness, robustness, and sim-
plicity of RPCholesky strongly recommend it for modern applications in scientific computing
and machine learning.

1.1 Plan for paper

The rest of the paper is organized as follows. Section 2 introduces RPCholesky and its basic
properties, and Section 3 outlines history and related work. Section 4 applies RPCholesky to
kernel ridge regression and kernel spectral clustering problems, and Section 5 establishes error
bounds. Section 6 offers some conclusions.

1.2 Notation

The elements of a matrix 𝑨 ∈ ℂ𝑁×𝑁 are written [𝑨(𝑖, 𝑗)]1≤𝑖,𝑗≤𝑁 , while the submatrices of 𝑨 are
expressed using MATLAB notation. For example, 𝑨(∶, 𝑖) represents the 𝑖th column of 𝑨 and
𝑨(𝖲, ∶) denotes the submatrix of 𝑨 with rows indexed by the set 𝖲. The conjugate transpose of
a (rectangular) matrix 𝑭 is denoted as 𝑭∗, and the Moore–Penrose pseudoinverse is 𝑭†. We write
𝚷𝑭 for the orthogonal projector onto the column span of 𝑭.
The function 𝜆𝑖(𝑨) outputs the 𝑖th largest eigenvalue of a psd matrix 𝑨. The symbol ⪯ denotes

the psd order on Hermitian matrices: 𝑯 ⪯ 𝑨 if and only if 𝑨 −𝑯 is psd. We say 𝑨 is rank-
𝑟 when rank𝑨 ≤ 𝑟. The symbol ⟦𝑨⟧𝑟 refers to a best rank-𝑟 approximation of a psd matrix
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998 CHEN et al.

𝑨, which can be obtained from an 𝑟-truncated eigendecomposition. A best rank-𝑟 approxima-
tion may not be unique, so we employ this notation only in contexts where it leads to an
unambiguous interpretation.

2 RANDOMLY PIVOTED CHOLESKY

In large-scale kernelmethods, it is expensive to evaluate all the entries of the psd kernelmatrix. As
a cheaper alternative, we can try to approximate the kernelmatrix by adaptively evaluating a small
number of the columns. In Section 2.1, we introduce the column Nyström approximation, which
is optimal among all approximations using a given set of columns. In Section 2.2, we describe the
pivoted partial Cholesky algorithm as an efficient strategy for forming a column Nyström approx-
imation. In Section 2.3, we design a rule for selecting the columns (aka “pivots”) in the pivoted
partial Cholesky algorithm that leads to the RPCholesky algorithm. In Sections 2.4 and 2.5, we
summarize simple numerical experiments with RPCholesky. Last, in Section 2.6, we present a
new error bound for RPCholesky that explains why the method is effective.

2.1 Nyström approximation of a psd matrix

Let 𝑨 ∈ ℂ𝑁×𝑁 be an arbitrary psd matrix (not necessarily arising from a kernel computation). To
approximate the matrix using a given subset 𝖲 of the column indices, we can employ the column
Nyström approximation [43, §19.2]:

𝑨 ∶= 𝑨(∶, 𝖲)𝑨(𝖲, 𝖲)†𝑨(𝖲, ∶) where 𝖲 ⊆ {1, … ,𝑁}. (2.1)

Since psd matrices are self-adjoint, we note that𝑨(𝖲, ∶) = 𝑨(∶, 𝖲)∗. When the set 𝖲 contains 𝑘 col-
umn indices, the Nyström approximation𝑨 yields a rank-𝑘 psd approximation with the following
desirable properties:

1. The Nyström approximation 𝑨 agrees with the target matrix 𝑨 in the distinguished columns.
That is, 𝑨(∶, 𝖲) = 𝑨(∶, 𝖲).

2. The range of the Nyström approximation 𝑨 coincides with the span of the distinguished
columns: range(𝑨) = range(𝑨(∶, 𝖲)).

3. With respect to the psd order, the Nyström approximation 𝑨 satisfies the bounds 𝟎 ⪯ 𝑨 ⪯ 𝑨.

In fact, the Nyström approximation is the maximal psd matrix that satisfies properties (2) and
(3). See [5, Theorem 5.3] for a rigorous statement.
We measure the quality of a Nyström approximation 𝑨 using the trace-norm error:

tr(𝑨 − 𝑨). (2.2)

Since𝑨 ⪯ 𝑨, the trace-norm error is always nonnegative. Other norms are possible, but the trace-
norm error is especially meaningful in the kernel learning context [37, §5.2.4]. Our goal is to find
a set 𝖲 of 𝑘 column indices that makes the trace-norm error as small as possible.
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PRACTICAL APPROXIMATION OF A KERNEL MATRIX WITH FEW ENTRY EVALUATIONS 999

ALGORITHM 2 Pivoted partial Cholesky algorithm.

Input: Psd matrix 𝑨 ∈ ℂ𝑁×𝑁 ; approximation rank 𝑘
Output: Pivot set 𝖲 = {𝑠1, … , 𝑠𝑘} and matrix 𝑭 ∈ ℂ𝑁×𝑘 defining Nyström approximation 𝑨 = 𝑭𝑭∗

Initialize 𝑭 ← 𝟎𝑁×𝑘

for 𝑖 = 1 to 𝑘 do
Select a pivot 𝑠𝑖 ∈ {1, … ,𝑁} ▹ See Section 2.3 for pivot rules
𝒈 ← 𝑨(∶, 𝑠𝑖) ▹ Evaluate the 𝑠𝑖 column of the input matrix 𝑨
𝒈 ← 𝒈 − 𝑭(∶, 1 ∶ (𝑖 − 1))𝑭(𝑠𝑖, 1 ∶ (𝑖 − 1))

∗ ▹ Remove the influence of previously chosen columns
𝑭(∶, 𝑖) ← 𝒈∕

√
𝒈(𝑠𝑖)

end for

2.2 The pivoted partial Cholesky algorithm

We can efficiently compute a Nyström approximation (2.1) via the pivoted partial Cholesky
algorithm, presented as Algorithm 2.
Conceptually, the algorithm begins with an initial approximation 𝑨(0) = 𝟎 and an initial resid-

ual𝑨(0) = 𝑨. At each step 𝑖 = 1, 2, 3, … , 𝑘, we adaptively select a new column index 𝑠𝑖 ∈ {1, … ,𝑁},
called a pivot, using some pivot rule (Section 2.3). Then we evaluate the 𝑠𝑖 column 𝑨(𝑖−1)(∶, 𝑠𝑖) of
the current residual, and we use this column to update the approximation and the residual:

𝑨(𝑖) = 𝑨(𝑖−1) +
𝑨(𝑖−1)(∶, 𝑠𝑖)𝑨

(𝑖−1)(𝑠𝑖, ∶)

𝑨(𝑖−1)(𝑠𝑖, 𝑠𝑖)
;

𝑨(𝑖) = 𝑨(𝑖−1) −
𝑨(𝑖−1)(∶, 𝑠𝑖)𝑨

(𝑖−1)(𝑠𝑖, ∶)

𝑨(𝑖−1)(𝑠𝑖, 𝑠𝑖)
.

(2.3)

We can also track the diagonal of the residual 𝑨(𝑖) using the formula

diag(𝑨(𝑖)) = diag(𝑨(𝑖−1)) −
1

𝑨(𝑖−1)(𝑠𝑖, 𝑠𝑖)
⋅ |𝑨(𝑖−1)(∶, 𝑠𝑖)|2. (2.4)

The function | ⋅ |2 ∶ ℂ𝑁 → ℝ𝑁+ returns the entrywise squared magnitude of a vector. This obser-
vation supports stopping rules based on functions of the diagonal entries of the residual, such as
its trace.
The practical implementation of pivoted partial Cholesky (Algorithm 2)maintains the approxi-

mation in factored form:𝑨(𝑖) = 𝑭(∶, 1 ∶ 𝑖)𝑭(∶, 1 ∶ 𝑖)∗ where 𝑭 ∈ ℂ𝑁×𝑘. We generate the columns
of the factor 𝑭 sequentially. The 𝑖th column 𝑭(∶, 𝑖) is obtained by evaluating the 𝑠𝑖 column𝑨(∶, 𝑠𝑖)
of the input matrix and removing the influence of the previously selected columns.
The following classic result [72, pp. 24] connects the pivoted partial Cholesky algorithm with

the column Nyström approximation.

Property 2.1 (Pivoted partial Cholesky computes a Nyström approximation). The pivoted partial
Cholesky algorithm (Algorithm 2) with psd input matrix 𝑨 and with pivot set 𝖲 = {𝑠1, … , 𝑠𝑘}
returns the column Nyström approximation 𝑨 = 𝑨(∶, 𝖲)𝑨(𝖲, 𝖲)†𝑨(𝖲, ∶) in the factorized form
𝑨 = 𝑭𝑭∗.
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1000 CHEN et al.

Indeed, at each step of the pivoted partial Cholesky algorithm, 𝑨(𝑖) is the Nyström approxima-
tion of 𝑨 using the columns indexed by {𝑠1, … , 𝑠𝑖}.
What are the computational costs? For 𝑘 steps of the pivoted partial Cholesky algorithm, we

evaluate 𝑘𝑁 entries of the input matrix 𝑨, plus any other entries required to implement the pivot
rule.We expend(𝑘2𝑁) additional arithmetic operations, and the algorithmneeds(𝑘𝑁) storage.
In practice, we often run the pivoted partial Cholesky method until the trace-norm error falls

below a specified threshold: tr(𝑨 − 𝑨) ≤ 𝜂 ⋅ tr 𝑨. This modification requires an uncertain number
of steps, but it controls the error level and ensures that 𝑨 can be reliably used in place of 𝑨 for
downstream computations.

2.3 Pivot selection rules

In the pivoted partial Cholesky algorithm, we select a new pivot at each step. Although there are
several natural strategies, it has long remained unclear how to quickly and reliably select pivots
that result in matrix approximations that control the trace-norm error (2.2).
We have already seen that we can track the diagonal of the residual matrix via (2.4). One princi-

pled approach for pivot selection is to exploit the information contained in the diagonal. Indeed,
the diagonal entries of a psd matrix𝑨 ∈ ℂ𝑁×𝑁 are nonnegative, and they control the off-diagonal
entries via the inequality

|𝑨(𝑖, 𝑗)| ≤ √
𝑨(𝑖, 𝑖)𝑨(𝑗, 𝑗) for each 1 ≤ 𝑖, 𝑗 ≤ 𝑁.

Thus, a large diagonal entry 𝑨(𝑗, 𝑗) indicates that column 𝑗 might contain large-magnitude
entries. By eliminating such a column,we canhope to substantially reduce the trace of the residual
at each step. We outline several established strategies based on this intuition.

2.3.1 Greedy pivoting

Because of the significance of large diagonal entries, wemight be tempted to use a greedy pivoting
strategy. At step 𝑖 of the pivoted partial Cholesky method, the greedy method selects the pivot 𝑠𝑖
by finding the position of the largest diagonal entry of the residual matrix 𝑨(𝑖−1), with ties broken
arbitrarily. In symbols, the greedy pivot rule is

𝑠𝑖 ∈ argmin1≤𝑗≤𝑁 𝑨(𝑖−1)(𝑗, 𝑗). (2.5)

This greedy pivoting strategy has long been used in scientific computing and kernel machine
learning, under the name “Cholesky with complete pivoting” [36]. The strategy is entirely based
on exploiting the large diagonal entries without exploring any smaller ones. The overemphasis on
exploitation makes the greedy method brittle, as this algorithm is often derailed by the presence
of outlier columns.

2.3.2 Uniform random pivoting

The opposite strategy from greedy pivoting is to sample each pivot uniformly at random:

𝑠𝑖 ∼ uniform{1, … ,𝑁} for each 𝑖 = 1, … , 𝑘.
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PRACTICAL APPROXIMATION OF A KERNEL MATRIX WITH FEW ENTRY EVALUATIONS 1001

If we select a pivot that we have already seen, we can draw a sample again. Uniform sampling has
been popular in kernel machine learning since the works of Williams & Seeger [69] and Drineas
&Mahoney [21]. Uniform sampling has the reverse problem from the greedymethod: it randomly
explores without exploiting any information from the diagonal. As a result, uniform sampling
leads to a poor approximation when there are small sets of columns that are distinct from all the
others.

2.3.3 Adaptive random pivoting

This paper advocates for a third way. The randomly pivoted Cholesky (RPCholesky) algorithm
balances exploration of the columns with exploitation of the information available from the diag-
onal. At the 𝑖th step, RPCholesky adaptively samples the pivot 𝑠𝑖 according to the probability
distribution that is proportional to the diagonal entries of the current residual 𝑨(𝑖−1):

ℙ{𝑠𝑖 = 𝑗} =
𝑨(𝑖−1)(𝑗, 𝑗)

tr 𝑨(𝑖−1)
for 𝑗 = 1,… ,𝑁. (2.6)

Algorithm 1 contains a simple implementation of RPCholesky. See Section 3 for the history and
some related algorithms.

2.3.4 Pivoting with a Gibbs distribution

In retrospect, we realize that the greedy method, uniform sampling, and RPCholesky are con-
nected. Consider the pivot rule that selects the next pivot 𝑠𝑖 from a Gibbs probability distribution
that is proportional to the diagonal entries of the residual matrix 𝑨(𝑖−1), after raising them to a
power 𝛽 ∈ [0,∞]:

ℙ{𝑠𝑖 = 𝑗} =
𝑨(𝑖−1)(𝑗, 𝑗)𝛽∑𝑁

𝑘=1
𝑨(𝑖−1)(𝑘, 𝑘)𝛽

for each 𝑗 = 1,… ,𝑁. (2.7)

The greedy method arises from the 𝛽 → ∞ limit (“zero temperature”), while uniform sampling
arises from the 𝛽 → 0 limit (“infinite temperature”). RPCholesky takes the intermediate value
𝛽 = 1 (“not too hot, not too cold”). Our analysis (Section 5) proves that RPCholesky (𝛽 = 1)
yields rigorous error bounds, while we provide examples (Appendix C) where the extreme strate-
gies (𝛽 → 0 and 𝛽 → ∞) fail. The literature contains empirical evidence that values 𝛽 ∉ {0, 1,∞}
can be effective for some matrices [60].

2.4 Numerical results: Illustrative examples

In this section, we present two stylized examples to highlight the benefits of the RPCholesky
method and the potential weaknesses of some othermatrix approximation algorithms. Real-world
examples appear in Sections 2.5 and 4.
We applied several column Nyström approximation schemes to two kernel matrices:
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1002 CHEN et al.

F IGURE 1 Rank-𝑘 approximation of Gaussian kernel matrices. Median relative trace-norm error
tr
(
𝑨 − 𝑨(𝑘)

)
∕ tr 𝑨 and 20% -80% quantile bars for several Nyström-based column approximation methods for

Smile (left) and Spiral (right) examples. Selected pivots (colored stars) and data points (gray circles) for uniform,
greedy, and RPCholesky methods are shown next to each panel.

1. Smile: A Gaussian kernel matrix constructed from 104 data points depicting a smile in ℝ2.
The smile is located in [−10, 10] × [−10, 10] and the kernel bandwidth is 𝜎 = 2.0. The eyes are
constructed from 102 points, making them easy to miss for certain sampling methods.

2. Spiral: A Gaussian kernel matrix constructed from 104 data points in ℝ2 depicting the loga-
rithmic spiral (e0.2𝑡 cos 𝑡, e0.2𝑡 sin 𝑡) for non-equispaced parameter values 𝑡 ∈ [0, 64]. The kernel
bandwidth is 1000, making the outer edge of the spiral a region of outliers in the data.

For each data set, Figure 1 tracks the mean relative trace-norm error tr(𝑨 − 𝑨)∕ tr(𝑨) over 100
independent trials. The pivots selected by different Nyström-based column selection methods
with 𝑘 = 40 are shown next to each panel. See Appendix A for additional computational details.
These tests bring to light the failure modes of uniform sampling and the greedy method.

Uniform sampling fails to select the pivots representing less populated regions of the
data space, such as the eyes in the Smile example. The greedy method heavily empha-
sizes outliers, leading to poor approximation accuracy in the Spiral example. By con-
trast, RPCholesky avoids these failure modes and achieves high accuracy for both test
problems.
Figure 1 also evaluates two other randomized column selection schemes for Nyström approxi-

mation: determinantal point process (DPP) sampling [17] and ridge leverage score (RLS) sampling
[2, 45, 56] (using the RRLS algorithm [45]). These methods offer strong theoretical guarantees,
yet existing samplers are complicated and require care in implementation to avoid failure. In
practice, they also require far more entry evaluations than RPCholesky to achieve the same
approximation quality.
Computational cost is another important difference between variousNyström column selection

methods. One simplemeasure of cost is the total number of entry evaluations required to generate
the pivots and then form the Nyström approximation. Uniform sampling is the cheapest Nys-
tröm method, requiring just 𝑘𝑁 entry evaluations. The greedy method and RPCholesky follow
closely behind, requiring (𝑘 + 1)𝑁 entry evaluations. For the examples in Figure 1, RLS sampling
requires roughly 3𝑘𝑁 entry evaluations and DPP sampling (using the vfx sampler [29]) requires
between 80𝑘𝑁 and 200𝑘𝑁 entry evaluations, making these latter two methods comparatively
expensive.
RLS sampling and DPP sampling exhibit other performance issues in addition to the high

cost. RLS sampling often fails to provide a high-quality approximation for the 𝐒𝐦𝐢𝐥𝐞 kernel
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PRACTICAL APPROXIMATION OF A KERNEL MATRIX WITH FEW ENTRY EVALUATIONS 1003

matrix. With an approximation rank of 𝑘 = 40, there is a 95% chance of missing both eyes,
which is better than the 99.6% chance of missing both eyes with uniform sampling, but still indi-
cates a failure mode for the RLS algorithm. DPP sampling using the vfx algorithm [29] often
fails to produce any output, generating an error that the matrix is close to rank-deficient. With
existing software, it is necessary to switch to a slower GS sampler [29] based on a complete
eigendecomposition of the matrix 𝑨. Even the GS sampler fails for the Smile kernel matrix for
𝑘 ≥ 140.

2.5 Numerical results: Real data

To confirm that the findings of Section 2.4 extend to real data sets, we compare different
Nyström methods on a testbed of kernel matrices formed from twenty data sets in the LIB-
SVM [15], OpenML [64], and UCI [22] repositories. These examples are cataloged in [23,
Table 1]. We subsample each data set to 𝑁 = 104 points, standardize each feature, and form
the Gaussian kernel matrix with bandwidth 𝜎 =

√
𝑑, where 𝑑 is the number of features. (See

Section 4.1 for a primer on kernel matrices.) We omit DPP sampling due to its high computa-
tional cost, and we include the block RPCholesky method (introduced below in Section 3.4)
with block size 𝑇 = 100. For each method, we report the median relative trace error over ten
trials.
Results are shown in Table 1. RPCholesky achieves the lowest trace error on every problem

in the testbed. It achieves 8 × 107 and 5 × 103 times lower error than uniform and RLS sampling
for the data set COMET_MC_SAMPLE with the fastest spectral decay. RPCholesky achieves a more
modest 3× improvement over the greedy method in this example.

2.6 Theoretical results

Given the excellent empirical performance of the RPCholesky algorithm, it is natural to seek a
more rigorous explanation.We present the first proof that RPCholesky (as given in Algorithm 1)
attains error bounds that are nearly optimal within the class of column Nyström approximations.
See Section 3.6 and Appendix C for prior theoretical work.
Let 𝑨 be a psd target matrix, and let 𝑨 be a rank-𝑘 column Nyström approximation of the

form (2.1). Then it is appropriate to compare the approximation error, tr(𝑨 − 𝑨), against the error
tr(𝑨 − ⟦𝑨⟧𝑟) attained by a best rank-𝑟 psd approximation ⟦𝑨⟧𝑟 where the parameter 𝑟 ≤ 𝑘.
ANyströmapproximation𝑨using𝑘 randomly chosen columns is called an (𝑟, 𝜀)-approximation

of the target matrix 𝑨 when

𝔼 tr(𝑨 − 𝑨) ≤ (1 + 𝜀) ⋅ tr(𝑨 − ⟦𝑨⟧𝑟) (2.8)

for parameters 𝑟 ∈ ℕ and 𝜀 > 0. The expectation averages over the randomchoice of columns (e.g.,
the random pivots in RPCholesky). Our theory addresses the following question:

Question 2.2. How many columns 𝑘 are sufficient to guarantee that a randomized column
Nyström method attains an (𝑟, 𝜀)-approximation (2.8) for every 𝑁 ×𝑁 psd input matrix?
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1004 CHEN et al.

TABLE 1 Comparison of Nyström methods.

Unif RLS Greedy B-RPChol RPChol Opt

sensit_vehicle 1.57e-1 1.40e-1 2.07e-1 1.37e-1 1.37e-1 8.77e-2
yolanda 1.46e-1 1.39e-1 2.08e-1 1.37e-1 1.36e-1 8.41e-2
YearPredictionMSD 1.30e-1 1.20e-1 1.73e-1 1.18e-1 1.16e-1 6.79e-2
w8a 1.42e-1 1.17e-1 1.91e-1 1.14e-1 1.05e-1 6.09e-2
MNIST 1.21e-1 1.10e-1 1.67e-1 1.07e-1 1.06e-1 5.83e-2
jannis 1.11e-1 1.10e-1 1.28e-1 1.09e-1 1.09e-1 5.45e-2
HIGGS 6.73e-2 6.31e-2 8.51e-2 6.14e-2 6.07e-2 2.96e-2
connect_4 5.81e-2 5.07e-2 6.48e-2 4.85e-2 4.81e-2 2.25e-2
volkert 5.35e-2 4.42e-2 5.92e-2 4.26e-2 4.17e-2 1.99e-2
creditcard 4.83e-2 3.71e-2 5.77e-2 3.26e-2 3.01e-2 1.31e-2
Medical_Appointment 1.74e-2 1.43e-2 1.92e-2 1.31e-2 1.29e-2 4.59e-3
sensorless 1.20e-2 7.78e-3 8.70e-3 8.23e-3 5.80e-3 2.11e-3
ACSIncome 9.93e-3 5.55e-3 8.35e-3 4.26e-3 4.02e-3 1.27e-3
Airlines_DepDelay_1M 4.19e-3 2.37e-3 2.64e-3 1.93-3 1.78e-3 5.08e-4
covtype_binary 9.10e-3 2.12e-3 1.41e-3 1.26e-3 1.04e-3 2.97e-4
diamonds 1.31e-3 2.40e-4 1.12e-4 1.70e-4 5.85e-5 1.30e-5
hls4ml_lhc_jets_hlf 3.78e-4 7.30e-5 6.68e-5 5.36e-5 4.38e-5 1.04e-5
ijcnn1 3.91e-5 3.09e-5 2.86e-5 2.62e-5 2.13e-5 4.67e-6
cod_rna 6.00e-4 1.36e-5 9.19e-6 1.37e-5 5.05e-6 9.86e-7
COMET_MC_SAMPLE 3.65e-3 2.44e-7 1.2e-10 6.43e-5 4.3e-11 3.5e-12

Note: Relative trace error of rank-1000 Nyström approximation of kernel matrices produced by the RLS, uniform, RPCholesky,
greedy, and block RPCholesky methods on a testbed of examples. The error of the optimal rank-1000 approximation is shown
for reference, and we report the median error of ten trials. RPCholesky achieves the smallest approximation error for every
test problem.
Abbreviations: RLS, ridge leverage score; RPCholesky, randomly pivoted Cholesky algorithm.

To achieve an (𝑟, 𝜀)-approximation for a worst-case matrix, a column Nyström approxi-
mation must use at least 𝑘 ≥ 𝑟∕𝜀 columns. For example, see Theorem C.1. We will estab-
lish that RPCholesky achieves an (𝑟, 𝜀)-approximation for every psd matrix after access-
ing only a little more than 𝑟∕𝜀 columns. Here is a partial statement of our main result
(Theorem 5.1):

Theorem 2.3 (Randomly pivoted Cholesky: simplified bound). Fix 𝑟 ∈ ℕ and 𝜀 > 0, and let 𝑨 be
a psd matrix. The column Nyström approximation 𝑨(𝑘) produced by RPCholesky (Algorithm 1)
attains the error bound (2.8) provided that the number of columns, 𝑘, satisfies

𝑘 ≥ 𝑟

𝜀
+ 𝑟 log

(
1

𝜀𝜂

)
where 𝜂 ∶=

tr(𝑨 − ⟦𝑨⟧𝑟)
tr(𝑨)

. (2.9)

For comparison, Table 2 presents the best available upper bounds on the number 𝑘 of columns
for RPCholesky and other column Nyström approximation methods to achieve (2.8). These
bounds are expressed in terms of 𝑟, 𝜀, 𝑁, and the relative approximation error 𝜂 defined in (2.9).
DPP sampling satisfies the strongest error bounds of all the methods in Table 2. To achieve an
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PRACTICAL APPROXIMATION OF A KERNEL MATRIX WITH FEW ENTRY EVALUATIONS 1005

TABLE 2 Bounds for column Nyström approximations.

Method Number 𝒌 of columns to achieve (2.8) Reference

Greedy method (1 − (1 + 𝜀)𝜂)𝑁 Theorem C.2
Uniform sampling* (𝑟 − 1)∕(𝜀𝜂) + 1∕𝜀 [28], Theorem C.3
DPP sampling 𝑟∕𝜀 + 𝑟 − 1 [11, 35], Theorem C.4
RLS sampling† 65(𝑟∕𝜀 + 𝑟) log((4∕𝜂)(𝑟∕𝜀 + 𝑟)) Theorem C.6
RPCholesky 𝑟∕𝜀 + 𝑟 log(1∕(𝜀𝜂)) Theorem 5.1
RPCholesky 𝑟∕𝜀 + 𝑟 + 𝑟log+(2

𝑟∕𝜀) Theorem 5.1
Lower bound 𝑟∕𝜀 [19, 35], Theorem C.1

Note: Upper bounds and a lower bound on the number of columns that several Nyström approximation schemes use to pro-
duce an (𝑟, 𝜀)-approximation (2.8). The parameter 𝜂 is the relative error (see Theorem 2.3). All logarithms have base e, and
log+(𝑥) ∶= max{log 𝑥, 0} for 𝑥 > 0. *The result for uniform sampling assumes the diagonal entries of 𝑨 are all equal. †See
Section C.5 for discussion.

(𝑟, 𝜀)-approximation with DPP sampling, it suffices to take the number 𝑘 of columns as

𝑘 ≥ 𝑟

𝜀
+ 𝑟 − 1. (2.10)

RPCholesky satisfies the second strongest error bound (2.9). The main difference between the
DPP result (2.10) and the RPCholesky result (2.9) is the multiplicative factor log(1∕𝜂) present
in the latter. However, because the relative error 𝜂 appears inside the logarithm, this factor has
only a modest impact on the computational scaling. Indeed, log(1∕𝜂) is between 2.4 and 26 for
all twenty examples in Table 1. We establish Theorem 2.3 in Section 5, which contains additional
results and discussion.
The bound on the approximation rank for RPCholesky is at least 65× smaller than the bound

for RLS sampling. However, this quantitative dependence may be a result of the proof technique
that overstates the difference between the methods. See Section C.5 for the proof of the RLS error
bounds and related discussion.
The error bounds for RPCholesky are also significantly stronger than the bounds for the

greedy method and uniform sampling. For a worst-case matrix 𝑨, the greedy method requires
Θ(𝑁) columns to approach the best rank-𝑟 approximation error (Section C.2), while the uniform
sampling method requires Θ(𝑟∕𝜂) columns (Section C.3). In contrast, RPCholesky uses a
number of columns that is independent of the dimension 𝑁 and depends only logarithmically
on the relative error 𝜂. These results help explain why RPCholesky does not exhibit the same
failure modes as the greedy method and uniform sampling.

3 HISTORY, RELATEDWORK, AND EXTENSIONS

To understand the history of the RPCholesky algorithm, we must reinterpret it as a randomly
pivoted QR algorithm. Indeed, almost all of the existing theoretical and numerical work that is
relevant to RPCholesky is framed in terms of randomly pivoted QR algorithms, which—unlike
RPCholesky—require reading all entries of the input matrix. In this section, we will explore this
connection, discuss prior work, and describe related algorithms.
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1006 CHEN et al.

3.1 Nyström approximations and projection approximations

We begin with an alternative perspective on the column Nyström approximation. Let 𝑨 ∈ ℂ𝑁×𝑁
be a psd matrix, and select any factorization 𝑨 = 𝑩∗𝑩 where the factor 𝑩 ∈ ℂ𝑀×𝑁 . For any sub-
set 𝖲 ⊆ {1, … ,𝑁} of column indices, the Nyström approximation𝑨 = 𝑨(∶, 𝖲)𝑨(𝖲, 𝖲)†𝑨(𝖲, ∶) of the
target matrix 𝑨 admits the representation

𝑨 = 𝑩∗𝚷𝑩(∶,𝖲)𝑩,

where𝚷𝑴 denotes the orthogonal projector onto range(𝑴). To check this claim, set𝑴 = 𝑩(∶, 𝖲)

and decompose the projector as𝚷𝑴 = 𝑴(𝑴∗𝑴)†𝑴∗.
Equivalently, the Nyström approximation takes the form

𝑨 = 𝑩∗𝑩 where 𝑩 = 𝚷𝑩(∶,𝖲)𝑩.

We call 𝑩 a column projection approximation of 𝑩 with respect to the column index set 𝖲. The
trace-norm error in the Nyström approximation can be expressed in terms of the projection
approximation:

tr(𝑨 − 𝑨) = ‖𝑩 − 𝑩‖2F.
Therefore, the problem of finding a set 𝖲 of 𝑘 columns to minimize the trace-norm error in the
Nyströmapproximation of𝑨 is the same as the problemof finding a set 𝖲 of 𝑘 columns tominimize
the squared Frobenius-norm error in the projection approximation of the factor 𝑩. Additionally,
the projection approximation 𝑩 is the best Frobenius-norm approximation of 𝑩 with the same
range as 𝑩(∶, 𝖲).

3.2 Partial Cholesky and partial QR

Just as we compute the columnNyström approximation by means of the pivoted partial Cholesky
algorithm, we can compute a column projection approximation via the classical column-pivoted
partial QR algorithm (Algorithm B.1 in the appendix).
Here is a conceptual description. For an input matrix 𝑩, the column-pivoted partial QR

algorithm initializes the approximation 𝑩(0) = 𝟎 and the residual 𝑩(0) = 𝑩. At each step 𝑖,
we choose a column index 𝑠𝑖 using some pivot rule (Section 3.3). The updated approxima-
tion 𝑩(𝑖) is the projection approximation of 𝑩 with respect to the selected columns {𝑠1, … , 𝑠𝑖}.
The updated residual is 𝑩(𝑖) = 𝑩 − 𝑩(𝑖). We repeat for 𝑘 steps or until we trigger a stopping
criterion.
The relationship between pivoted partial QR and pivoted partial Cholesky is classical [36, §5.2]:

Property 3.1 (Pivoted partial Cholesky and pivoted partial QR). Assume that 𝑨 = 𝑩∗𝑩. Suppose
pivoted partial Cholesky (Algorithm 2) selects pivot set 𝖲 and outputs an approximation 𝑨, while
partial QR (Algorithm B.1) selects the same pivot set 𝖲 and outputs an approximation 𝑩. Then the
approximations satisfy 𝑨 = 𝑩∗𝑩.
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PRACTICAL APPROXIMATION OF A KERNEL MATRIX WITH FEW ENTRY EVALUATIONS 1007

While pivoted partial QR and pivoted partial Cholesky are algebraically related,
these procedures have different computational costs. To construct a rank-𝑘 approxi-
mation of a rectangular matrix 𝑩 ∈ ℂ𝑀×𝑁 , pivoted partial QR reads all 𝑀𝑁 entries
of 𝑩 and expends (𝑘𝑀𝑁) additional arithmetic operations. By contrast, pivoted par-
tial Cholesky constructs a rank-𝑘 approximation of a psd matrix 𝑨 ∈ ℂ𝑁×𝑁 by looking
at just 𝑘𝑁 matrix entries (ignoring the pivot rule) and expending (𝑘2𝑁) additional
operations.

3.3 Pivot rules

The goal of column-pivoted partial QR is to identify the “most important” columns of a
rectangular matrix. There is an extensive literature on pivot selection rules for QR decompo-
sitions (see [34] and the references therein). The most sophisticated methods, called strong
rank-revealing QR algorithms, enjoy powerful approximation guarantees but are intricate and
computationally expensive.
We can also consider simpler strategies that are computationally cheaper, akin to the diagonal

pivot rules used in pivoted partial Cholesky. If𝑨 = 𝑩∗𝑩, then the diagonal entries of𝑨 agree with
the squared column norms of 𝑩. That is,

𝑨(𝑗, 𝑗) = ‖𝑩(∶, 𝑗)‖2
2

for each 𝑗 = 1,… ,𝑁.

This correspondence allows us to equip partial QR with analogs of the partial Cholesky pivoting
strategies. In particular, greedy pivot rules are classical [36, §1].
From our current vantage, it is natural to consider a randomly pivoted QR method (Algo-

rithm B.2 in the appendix with 𝑇 = 1) that is akin to randomly pivoted Cholesky (Algorithm 1).
At each step 𝑖 of this method, we sample the next pivot 𝑠𝑖 in proportion to the squared column
norms of the residual 𝑩(𝑖−1).

3.4 Blocking

A standard strategy for accelerating (column-pivoted) QRmethods is to select a block of columns
to eliminate at each step [33, Section 5.2.3]. In particular, we can consider a blocked variant of
randomly pivoted QR (Algorithm B.2 in the appendix with 𝑇 > 1). Let 𝑇 ≥ 1 be a block size
parameter. At each step 𝑖, we sample 𝑇 pivot columns independently with probability propor-
tional to the squared column norms of the residual 𝑩(𝑖−1). We project out these columns and
repeat.
Analogously, we can develop a blocked version of RPCholesky (Algorithm 3 with 𝑇 > 1).

At each step 𝑖, we sample 𝑇 pivot columns independently with probability proportional to the
diagonal entries of the residual 𝑨(𝑖−1). We eliminate these columns and repeat.
Both of these methods require careful implementation to manage potential issues with

numerical stability. In particular, block RPCholesky repeatedly computes a full Cholesky
decomposition of a square matrix that might be numerically rank-deficient. We can address this
issue by adding a positive multiple of the identity to this matrix; see Algorithm 3 for details. Block
randomly pivoted QR, on the other hand, can suffer from loss of orthogonality in the computed
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1008 CHEN et al.

ALGORITHM 3 RPCholesky: Block variant.

Input: Psd matrix 𝑨 ∈ ℂ𝑁×𝑁 ; block size 𝑇; tolerance 𝜂 or approximation rank 𝑘 which is a multiple of 𝑇
Output: Pivot set 𝖲; matrix 𝑭 defining Nyström approximation 𝑨 = 𝑭𝑭∗

Initialize 𝑭 ← 𝟎𝑁×𝑘 , 𝖲 ← ∅, and 𝒅 ← diag𝑨 ▹ Evaluate diagonal of input matrix
for 𝑖 = 0 to 𝑘∕𝑇 − 1 do ▹ Alternatively, run until

∑𝑁

𝑗=1
𝒅(𝑗) ≤ 𝜂 tr 𝑨

Sample 𝑠𝑖𝑇+1, … , 𝑠𝑖𝑇+𝑇
iid
∼ 𝒅∕

∑𝑁

𝑗=1
𝒅(𝑗) ▹ Probability prop. to diagonal elements of residual

𝖲′ ← 𝑈𝑛𝑖𝑞𝑢𝑒({𝑠𝑖𝑇+1, … , 𝑠𝑖𝑇+𝑇})

𝖲 ← 𝖲 ∪ 𝖲′

𝑮 ← 𝑨(∶, 𝖲′) ▹ Evaluate columns 𝖲′ of input matrix
𝑮 ← 𝑮 − 𝑭𝑭(𝖲′, ∶)∗ ▹ Remove overlap with previously chosen columns
𝑹 ← 𝐶ℎ𝑜𝑙(𝑮(𝖲′, ∶) + 𝜀mach tr(𝑮(𝖲

′, ∶))𝐈) ▹ Stabilized Cholesky 𝑮(𝖲′, ∶) ≈ 𝑹∗𝑹
𝑭(∶, 𝑖𝑇 + 1 ∶ 𝑖𝑇 + |𝖲′|) ← 𝑮𝑹−1 ▹ Update approximation
𝒅 ← 𝒅 − 𝑆𝑞𝑢𝑎𝑟𝑒𝑑𝑅𝑜𝑤𝑁𝑜𝑟𝑚𝑠(𝑮𝑹−1) ▹ Track diagonal of residual matrix
𝒅 ← max{𝒅, 𝟎} ▹ Ensure diagonal remains nonnegative

end for
Remove zero columns from 𝑭

𝑸 matrix; see a standard numerical linear algebra reference (e.g., [33, Chapter 5]) for discussion
on stably computing a QR decomposition.
How does block RPCholesky compare to simple RPCholesky? Usually, the block

RPCholesky method is faster. When block RPCholesky with block size 𝑇 = 50 is applied to
a 105 × 105 kernel matrix (see Section 4.2), we obtain a 5× speedup using the 𝓁1 Laplace ker-
nel (4.4) and a 20× speedup after switching to the Gaussian kernel. As demonstrated in Table 1,
the approximation quality of block RPCholesky and simple RPCholesky is similar for many
inputs. However, block RPCholesky can produce a significantly worse approximation on some
inputs, leading to a 106× higher trace-norm error when applied to the COMET_MC_SAMPLE exam-
ple, for example. The theoretical and empirical properties of block RPCholesky are studied in
the follow-up paper [24], which introduces an “accelerated RPCholesky” method that remedies
the deficits of block RPCholesky.

3.5 Randomly pivoted QR: Origins

We believe that the randomly pivoted QR method was first proposed in the theoretical computer
science literature on column subset selection problems. In 2004, Frieze et al. [28] studied projec-
tion approximations where a set of column indices is chosen randomly by sampling in proportion
to the squared column norms of the input matrix. In 2006, Deshpande et al. [19, 20] described
a procedure that applies the Frieze et al. approximation iteratively, projecting out the contribu-
tions of previously selected columns at each step. They called the resulting method “adaptive
sampling,” in contrast to the one-shot sampling method of Frieze et al. Their approach is essen-
tially the same as block randomly pivotedQR,modulo implementation details. Aswewill explain,
the blocking is central to their proposal. We have chosen to use the terminology “(block) ran-
domly pivoted QR” in this work because it clarifies the relationship with standard linear algebra
algorithms.
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PRACTICAL APPROXIMATION OF A KERNEL MATRIX WITH FEW ENTRY EVALUATIONS 1009

3.6 Randomly pivoted QR: Theory

In 2006, the original papers [19, 20] on randomly pivoted QR (i.e., adaptive sampling) focused on
proving approximation guarantees. Here is a typical result.

Proposition 3.2 (Deshpande et al. [20, Theorem 1.2]). Fix a matrix 𝑩 ∈ ℝ𝑀×𝑁 , a target approxi-
mation rank 𝑟, and a tolerance 𝜀 ∈ (0, 1). Set the block size 𝑇 ≥ 𝑟∕𝜀. After 𝑠 steps, the block randomly
pivoted QR method (Algorithm B.2) produces a random projection approximation 𝑩 with rank
𝑘 = 𝑠 ⋅ 𝑇 that satisfies

𝔼‖𝑩 − 𝑩‖2F ≤ (1 − 𝜀)−1‖𝑩 − ⟦𝑩⟧𝑟‖2F + 𝜀𝑠‖𝑩‖2F.
Using Property 3.1, we obtain a parallel result for block RPCholesky (Algorithm 3). Fix a psd

input matrix 𝑨 ∈ ℝ𝑁×𝑁 , an approximation rank 𝑟, and a tolerance 𝜀 ∈ (0, 1). Set the block size
𝑇 ≥ 𝑟∕𝜀. After choosing 𝑘∕𝑇 blocks of columns, block RPCholesky produces a randomNyström
approximation 𝑨 with rank 𝑘 that satisfies

𝔼 tr(𝑨 − 𝑨) ≤ (1 − 𝜀)−1 tr(𝑨 − ⟦𝑨⟧𝑟) + 𝜀𝑘∕𝑇 tr(𝑨).
Assuming 𝜀 ≤ 1∕2, this result guarantees an (𝑟, 3𝜀)-approximation with rank

𝑘 =
𝑟

𝜀
+ 𝑟 ⋅

log(1∕𝜂)

𝜀 log(1∕𝜀)
where 𝜂 =

tr(𝑨 − ⟦𝑨⟧𝑟)
tr(𝑨)

.

For comparison, our result Theorem 2.3 guarantees an (𝑟, 𝜀)-approximation with approximation
rank 𝑘 = 𝑟∕𝜀 + 𝑟 log(1∕(𝜂𝜀)), which is always a stronger bound.
More seriously, Proposition 3.2 requires the user to fix the approximation rank 𝑟 and error tol-

erance 𝜀 in advance. The block size 𝑇 is adapted to both parameters. Furthermore, the statement
is vacuous in case the block size 𝑇 = 1. In other words, the existing theory is silent about the ver-
sions of these algorithms that we recommend for use in practice, which have fixed block size and
stopping rules that depend on the observed error.
Our paper provides the first analysis of RPCholesky that does not require unrealistic parame-

ter choices and that addresses the fundamental case where the block size 𝑇 = 1. See Section 5 for
the details, including a new error bound (Corollary 5.2) for randomly pivoted QR with 𝑇 = 1. In
the followup paper [24], we extend our analysis to handle the case of a fixed block size 𝑇 > 1.

3.7 Randomly pivoted QR: Empirical work

In the period from 2009 to 2013, researchers in applied machine learning explored the empirical
performance of randomly pivoted QR for approximating kernel matrices. In sharp contrast to our
findings for RPCholesky (Section 4), their conclusions were pessimistic.
We must stress that the existing numerical work applies randomly pivoted QR to a kernel

matrix to obtain a column projection approximation at a cost of (𝑘𝑁2) operations (they run
Algorithm B.2 with input 𝑨). These studies do not apply RPCholesky to obtain a column
Nyström approximation at the lesser cost of (𝑘2𝑁) operations.
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1010 CHEN et al.

In their review of kernel approximation, Kumar et al. reported [41, Table 3] that randomly
pivoted QR (Algorithm B.2) was 60× to 800× slower than the Nyström approximation (2.1) with
uniformly sampled columns. For data sets with 𝑁 > 4000 data points, they did not even run the
randomly pivoted QR algorithm because they considered it impractical. Summarizing their find-
ings, they emphasized “the computational and storage burdens” (pp. 990) and they stated that
the algorithm “requires a full pass through [the kernel matrix] 𝑲 at each iteration and is thus
inefficient for large 𝑲” (pp. 989).
The literature describes some attempts [39–41, 67] to improve randomly pivoted QR, but the

algorithm fell into disuse over the subsequent decade.

3.8 Randomly pivoted Cholesky: Origins

In 2017, Musco & Woodruff [46, pp. 3] briefly noted that one can perform “adaptive sampling”
more efficiently, given access to the Grammatrix. Their observation suggests an algorithm similar
to block RPCholesky (Algorithm 3). This paper does not include an implementation or report
any numerical experiments.
Randomly pivoted Cholesky also appears in a 2020 paper of Poulson [47]. Rather than using

RPCholesky for low-rank approximation, Poulson uses RPCholesky to sample from a projec-
tion DPP. In Poulson’s work, the input matrix 𝑨 is always a rank-𝑘 orthoprojector, RPCholesky
is always run for exactly 𝑘 steps, and the computational output is the set 𝖲 of pivots; the factor 𝑭
is discarded.
To the best of our knowledge, the papers [46, 47] are the sole references to RPCholesky in the

literature. Neither paper documents numerical experiments or provides a theoretical analysis of
RPCholesky for the low-rank approximation task.

3.9 Comparison with random Fourier features

Random Fourier features (RFF) [50] is a popular Monte Carlo method for the low-rank approx-
imation of a psd kernel matrix (Section 4.1) associated with a translationally invariant kernel.
The main disadvantage of RFF that the approximation error 𝑨 ≈ 𝑨 converges at the Monte
Carlo rate (𝑘−1∕2), whereas RPCholesky is spectrally accurate, producing approximations
comparable to a best low-rank approximation. For applications where a high-accuracy approx-
imation is important, RFF fares significantly worse than Nyström methods like RPCholesky
[23]. However, RFF can be useful in applications where a fast, crude approximation of 𝑨
is sufficient.

4 APPLICATIONS TO KERNELMACHINE LEARNING

In this section, we undertake a numerical study to evaluate the performance of RPCholesky
on benchmark kernel computations from scientific machine learning. Section 4.2 treats a kernel
ridge regression problem that arises in quantum chemistry, and Section 4.3 discusses a kernel
spectral clustering problem from molecular biophysics.
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PRACTICAL APPROXIMATION OF A KERNEL MATRIX WITH FEW ENTRY EVALUATIONS 1011

4.1 Kernel methods: Basics

Kernelmethods [57] are designed for analyzing data in a general domain , equippedwith a kernel
function 𝐾 ∶  ×  → ℂ. We interpret the kernel function as a measure of similarity between a
pair of data points. Suppose that 𝒙1, … , 𝒙𝑁 ∈  is a list of 𝑁 data points. We can form a kernel
matrix 𝑨 ∈ ℂ𝑁×𝑁 that tabulates the pairwise similarities:

𝑨(𝑖, 𝑗) ∶= 𝐾(𝒙𝑖, 𝒙𝑗) for 1 ≤ 𝑖, 𝑗 ≤ 𝑁.
We say that the kernel function 𝐾 is positive definite if the kernel matrix 𝑨 is psd for every family
of 𝑁 data points in  and every natural number 𝑁. For example, the inner-product kernel and
the Gaussian kernel are both positive-definite kernels on ℂ𝑑:

𝐾(𝒙, 𝒚) = 𝒙∗𝒚 (inner-product kernel);

𝐾(𝒙, 𝒚) = exp

(
−

1

2𝜎2
‖𝒙 − 𝒚‖22) (Gaussian kernel).

The parameter 𝜎 > 0 is called the bandwidth of the Gaussian kernel. Kernel methods reduce data
analysis tasks in  to linear algebra computations on the kernel matrix 𝑨.
We have seen that RPCholesky quickly and reliably finds a low-rank approximation of a

psd kernel matrix. Equivalently, the pivots 𝖲 of RPCholesky identify a modest number of data
points {𝒙𝑠 ∶ 𝑠 ∈ 𝖲} that can be used to summarize the data set. Therefore, we can incorporate
RPCholesky into the computational pipeline to obtain more scalable algorithms for kernel
machine learning. We will elaborate on this idea in the next two sections.

4.2 Kernel ridge regression

One powerful application for RPCholesky is to accelerate kernel ridge regression (KRR) [57,
§4.9.1]. We will study an application in quantum chemistry.

4.2.1 Functional regression

KRR is a nonlinear extension of least-squares regression that approximates an unknown input–
output map using a positive-definite kernel function 𝐾 ∶  ×  → ℂ and input–output pairs
(𝒙1, 𝑦1), … , (𝒙𝑁, 𝑦𝑁) ∈  × ℂ. As output, KRR provides a prediction function of the form

𝑓(⋅ ; 𝜷) ∶=

𝑁∑
𝑖=1

𝛽𝑖𝐾
(
𝒙𝑖, ⋅

)
, (4.1)

with the coefficient vector 𝜷 chosen to minimize a regularized least-squares loss:

min
𝜷∈ℂ𝑁

1

𝑁

𝑁∑
𝑗=1

||||𝑓(𝒙𝑗 ; 𝜷) − 𝑦𝑗||||
2

+ 𝜆

𝑁∑
𝑖,𝑗=1

𝛽𝑖𝛽𝑗𝐾
(
𝒙𝑖, 𝒙𝑗

)
.
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1012 CHEN et al.

ALGORITHM 4 RPCholesky-accelerated kernel ridge regression.

Input: Data points 𝖷 = {𝒙1, … , 𝒙𝑁} ⊆ ℂ𝑑; output values 𝒚 ∈ ℂ𝑁 ; approximation rank 𝑘;
regularization parameter 𝜆 > 0
Output: Pivots 𝖲 and coefficients 𝜷 defining a prediction function 𝑓(⋅) by (4.3)
𝑨 ← 𝐾𝑒𝑟𝑛𝑒𝑙𝑀𝑎𝑡𝑟𝑖𝑥(𝖷)

(∼, 𝖲) ← 𝑅𝑃𝐶ℎ𝑜𝑙𝑒𝑠𝑘𝑦(𝑨, 𝑘)

𝜷 ←
(
𝑨(𝖲, ∶)𝑨(∶, 𝖲) + 𝜆𝑁 𝑨(𝖲, 𝖲)

)−1
𝑨(𝖲, ∶)𝒚

Explicitly, the vector 𝜷 is the solution to a linear system

𝜷 = (𝑨 + 𝜆𝑁 𝐈)−1𝒚, (4.2)

where 𝑨 is the 𝑁 ×𝑁 kernel matrix induced by the input data 𝒙(𝑖) and 𝒚 is the vector of
output values.

4.2.2 Restricted KRR via RPCholesky

Directly computing the vector 𝜷 via (4.2) would require solving a dense linear system at (𝑁3)
cost. As a faster alternative, we can solve a restricted version of the KRR problem at (𝑘2𝑁) cost,
where 𝑘 is a user-definable parameter. Restricted KRR was proposed by Smola and Bartlett [59]
and developed in subsequent works [23, 55, 56].
In restricted KRR, we first identify a set 𝖲 = {𝑠1, … , 𝑠𝑘} ⊆ {1, … ,𝑁} of 𝑘 landmarks that achieve

good coverage over the data set. Next, we find a restricted prediction function

𝑓
(
⋅ ; 𝜷

)
=

𝑘∑
𝑖=1

𝛽𝑖𝐾
(
𝒙𝑠𝑖 , ⋅

)
(4.3)

by solving the regularized least-squares problem

min
𝜷∈ℂ𝑘

1

𝑁

𝑁∑
𝑗=1

||||𝑓(𝒙𝑗 ; 𝜷 )
− 𝑦𝑗

||||
2

+ 𝜆

𝑘∑
𝑖,𝑗=1

𝛽𝑖𝛽𝑗𝐾
(
𝒙𝑠𝑖 , 𝒙𝑠𝑗

)
.

The coefficient vector 𝜷 ∈ ℂ𝑘 is given by a smaller linear system

𝜷 =
(
𝑨(𝖲, ∶)𝑨(∶, 𝖲) + 𝜆𝑁 𝑨(𝖲, 𝖲)

)−1
𝑨(𝖲, ∶)𝒚.

involving a 𝑘 × 𝑘matrix, which is relatively inexpensive to solve. Forming and solving this system
requires (𝑘2𝑁) operations. Evaluating the prediction function (4.3) for restricted KRR requires
just (𝑘) operations, which improves on the (𝑁) cost of evaluating (4.1).
In past work, the landmark set 𝖲 has been selected by uniform random sampling [23, 55], ridge

leverage score sampling [56], or greedy procedures [59]. To improve on these approaches, we
propose choosing the landmarks 𝖲 to be the pivot set chosen by RPCholesky, resulting in the
RPCholesky-accelerated KRR method shown in Algorithm 4. We demonstrate below that the
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PRACTICAL APPROXIMATION OF A KERNEL MATRIX WITH FEW ENTRY EVALUATIONS 1013

RPCholesky-based approach leads to improved out-of-sample prediction accuracy compared to
previous landmark selection approaches.

4.2.3 QM9 data

To showcase the effectiveness of RPCholesky-accelerated KRR, we use Algorithm 4 to predict
the highest occupied molecular orbital (HOMO) energy of organic molecules from the QM9 data
set [51, 54]. The HOMO energy quantifies the electron-donating capacity of a molecule, and it
is traditionally obtained using expensive first-principles calculations. As a modern alternative, a
recent “Editor’s Pick” journal article [61] proposes applying KRR to predict HOMO energies, and
the authors train their prediction function on the QM9 data set due to its large size andmolecular
diversity. Here, we evaluate the RPCholesky-accelerated KRRmethod on the HOMO prediction
task with the QM9 data.
To represent molecules as vectors for KRR, we use a standard feature set based on the Coulomb

repulsions between the atomic nuclei and the nuclear charges [61, §III.A]. We standardize the
data and, following [61], evaluate the similarity between data points using the positive-definite 𝓁1
Laplace kernel:

𝐾(𝒙, 𝒚) = exp

(
−
1

𝜎

∑𝑑

𝑗=1
||𝒙(𝑗) − 𝒚(𝑗)||). (4.4)

We divide the data into 100,000 data points for training and roughly 33,000 data points for testing
and set the bandwidth 𝜎 and the ridge parameter 𝜆 using cross-validation.
Forming and storing the full kernel matrix for the QM9 data set would require 40 GB

and 4 trillion arithmetic operations (20,000× the operation count for the Smile matrix
from Section 2.4). Because of this high computational cost, previous authors [61] applied
KRR using a random subsample of 𝑁 ≤ 64,000 training points, but they remarked that
the approximation quality improves with the size of the data (see their Figure 8). In
contrast, our RPCholesky-accelerated computational approach allows us to use all 𝑁 =

100,000 training points at a modest computational cost (5 min on a laptop computer for
𝑘 = 1000).
Figure 2 displays the results for the test portion of the data set (𝑁test = 3.3 × 104 data points).

The out-of-sample prediction errors aremeasured using the symmetricmean absolute percentage
error:

SMAPE =
1

𝑁test

𝑁test∑
𝑖=1

||||𝑦test𝑖
− 𝑓

(
𝒙test
𝑖
; 𝜷

)||||
1

2

||||𝑦test𝑖

|||| + 1

2

||||𝑓(𝒙test𝑖
; 𝜷

)||||
. (4.5)

The SMAPE for RPCholesky, uniform sampling, and RLS sampling are similar, with uniform
sampling being the slight favorite. The greedy method has notably worse performance than the
three othermethods, andwewere unable to useDPP sampling because of the large values𝑁 = 105

and 𝑘 = 103.
Nevertheless, RPCholesky leads to higher accuracy than uniform sampling for the extremal

molecules in the test set which have the greatest number of atoms (29 atoms). Across these nine
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1014 CHEN et al.

F IGURE 2 Kernel ridge regression for QM9 data. Left: Prediction error (4.5) for several Nyström algorithms.
Right: Relative trace-norm error.

TABLE 3 Out-of sample prediction for QM9 data.

Compound # Composition Uniform Greedy RLS RPCholesky

1996 CC(C)CC1CO1 0.481 0.034 0.036 0.035
8664 CC(CO)(C=O)C=O 0.475 0.039 0.030 0.033
13,812 CC(O)C1CC1CO 0.473 0.045 0.023 0.022
64,333 CC1(C)CCOC(=N)O1 0.538 0.032 0.084 0.077
81,711 OC1C2CC1OCCO2 0.536 0.007 0.019 0.018
109,816 CCC1C(O)C1CC#C 0.516 0.062 0.018 0.016
118,229 COCC(C)OC(C)C 0.529 0.051 0.018 0.017
122,340 CC1C(CCCO)N1C 0.533 0.002 0.035 0.027
131,819 OCCCN1C=NC=N1 0.486 0.081 0.028 0.026
Average 0.507 0.039 0.033 0.030

Note: Symmetric absolute percentage error for the nine largest molecules in the test portion of the QM9 data set. The smallest
errors in each row are marked in bold.
Abbreviations: RLS, ridge leverage score; RPCholesky, randomly pivoted Cholesky algorithm.

molecules, Table 3 shows that RPCholesky is 10%–30% more accurate than RLS and greedy piv-
oting, and RPCholesky achieves 17× smaller prediction errors than uniform sampling. This
observation suggests that RPCholesky is more effective at representing less populated regions of
data space, as seen earlier in the Smile example (Section 2.4). The importance of sampling diverse
data points in kernel ridge regression to boost outlier predictive performancewas also emphasized
in the recent work [25].

4.3 Kernel spectral clustering

We can also use RPCholesky to accelerate kernel spectral clustering [58, 66]. We will study an
application in molecular biophysics.
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PRACTICAL APPROXIMATION OF A KERNEL MATRIX WITH FEW ENTRY EVALUATIONS 1015

4.3.1 Kernel clustering

In kernel spectral clustering, we use a positive-definite kernel function 𝐾 ∶  ×  → ℂ to com-
pute similarities between data points 𝒙1, … , 𝒙𝑁 . Then we find a low-dimensional embedding
𝑽 ∈ ℂ𝑁×𝑚 of the 𝑁 data points into 𝑚-dimensional Euclidean space that preserves the kernel-
based similarities as well as possible. Afterward, we apply the conventional 𝑘-means algorithm
[8] to cluster the rows of 𝑽.
Specifically, the embedding matrix 𝑽 is chosen to minimize the kernel-based distortion

1

2

∑𝑁

𝑖,𝑗=1
𝐾(𝒙𝑖, 𝒙𝑗)‖𝑽(𝑖, ∶) − 𝑽(𝑗, ∶)‖2

while also satisfying the isotropy condition:

∑𝑁

𝑖=1

(∑𝑁

𝑗=1
𝐾(𝒙𝑖, 𝒙𝑗)

)
𝑽(𝑖, ∶)∗𝑽(𝑖, ∶) = 𝐈.

The exact solution is described in [12]. We construct the symmetrically scaled transition
matrix 𝑯 = 𝑫−1∕2𝑨𝑫−1∕2, where 𝑨 ∈ ℂ𝑁×𝑁 is the kernel matrix and 𝑫 ∈ ℂ𝑁×𝑁 is the diago-
nal matrix that lists the row sums of 𝑨. Then we calculate the 𝑚 dominant eigenvectors 𝑼 =[
𝒖1 ⋯ 𝒖𝑚

]
∈ ℂ𝑁×𝑚 of the transition matrix𝑯. The optimal embedding matrix 𝑽 is obtained

from the diagonal rescaling 𝑽 = 𝑫−1∕2𝑼. We note that there are several nonequivalent ver-
sions of spectral clustering; we use the present version because it is effective and widely used
in biochemistry [32, 53] and amenable to acceleration by RPCholesky.

4.3.2 Accelerated kernel clustering via RPCholesky

Directly computing the eigendecomposition of 𝑯 = 𝑫−1∕2𝑨𝑫−1∕2 would require (𝑁3) opera-
tions. However, there is a faster approach due to Fowlkes et al. [27] that requires just (𝑘2𝑁)
operations, where 𝑘 is a parameter.
In this approach, we replace the kernel matrix𝑨with a rank-𝑘 approximation𝑨(𝑘) and replace

the diagonal matrix 𝑫 with the diagonal matrix 𝑫̂ listing the row sums of 𝑨(𝑘). We form the
approximate transition matrix 𝑯̂ = 𝑫̂−1∕2𝑨(𝑘)𝑫̂−1∕2 and compute its 𝑚 dominant eigenvectors
𝑼̂ =

[
𝒖̂1 … 𝒖̂𝑚

]
. Just as before, we obtain an embedding 𝑽̂ = 𝑫̂−1∕2𝑼̂, and we apply k-means

clustering to the rows of 𝑽̂.
Fowlkes et al. [27] used Nyström approximation with uniform sampling to obtain the

low-rank approximation 𝑨(𝑘). We propose to replace uniform sampling with RPCholesky,
and we will demonstrate that this modification can significantly enhance the cluster-
ing accuracy. Our RPCholesky-accelerated spectral clustering algorithm is presented in
Algorithm 5.

4.3.3 Alanine dipeptide trajectories

Kernel spectral clustering has become a popular approach for interpreting molecular dynam-
ics (MD) data sets in computational biochemistry [32]. A typical MD data set consists of the
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1016 CHEN et al.

ALGORITHM 5 RPCholesky-accelerated spectral clustering.

Input: Data points 𝖷 = {𝒙1, … , 𝒙𝑁} ⊆ ℂ𝑑; eigenvector count𝑚; approximation rank 𝑘
Output: Partition of labels {1, … ,𝑁} into clusters 𝖢1 ∪⋯ ∪ 𝖢𝑐

𝑨 ← 𝐾𝑒𝑟𝑛𝑒𝑙𝑀𝑎𝑡𝑟𝑖𝑥(𝖷)

𝑭 ← 𝑅𝑃𝐶ℎ𝑜𝑙𝑒𝑠𝑘𝑦(𝑨, 𝑘)

𝑫̂ ← diag(𝑭(𝑭∗𝟙))

𝑮 ← 𝑫̂−1∕2𝑭

(𝑼,∼, ∼) ← 𝑆𝑉𝐷(𝑮, ‘econ’)

𝑽̂ ← 𝑫̂−1∕2𝑼

𝖢1, … , 𝖢𝑐 ← k-means(𝑽̂(∶, 1 ∶ 𝑚)) ▹ Cluster the rows of 𝑽̂(∶, 1 ∶ 𝑚)

(𝑥, 𝑦, 𝑧)-positions of the backbone (non-hydrogen) atoms in a simulated biomolecule. Spectral
clustering is used to identify the metastable (long-lived) conformations of the molecule, which
help determine the molecular functionality.
Alanine dipeptide (CH3 − CO − NH − C𝛼HCH3 − CO − NH − CH3) is a commonly studied

molecule which has emerged as a benchmark when developing and testing numerical methods.
The metastable states of alanine dipeptide are well-described by the dihedral angles 𝜙 between C,
N, C𝛼, and C and 𝜓 between N, C𝛼, C, and N. Yet even without access to this 𝜙–𝜓 feature space,
we can identify the metastable states by applying spectral clustering using the (𝑥, 𝑦, 𝑧)-positions
of the backbone atoms.
We downloaded one of the 250ns alanine dipeptide trajectories documented in [68], which

includes the positions of the backbone atoms at intervals of 1ps, leading to 𝑁 = 2.5 × 105 data
points in ℝ30. Because of the large size of the data set, it would be extremely expensive to
apply spectral clustering directly. To make these computations tractable, the biochemistry lit-
erature often applies subsampling to the data and then runs spectral clustering codes for a
day or more on high-performance workstations [53, Section 4]. Here we document an alter-
native approach using RPCholesky-accelerated spectral clustering, which uses all 𝑁 = 2.5 ×

105 data points while retaining a modest computational cost (20 s on a laptop computer for
𝑘 = 150).
In our approach, we first quantify the similarity between alanine dipeptide configurations

using a Gaussian kernel with bandwidth 𝜎 = 0.1nm. We then apply Algorithm 5 to form a low-
dimensional embedding and find clusters in the data. Because the first three eigenvalues of
𝑫̂−1∕2𝑨𝑫̂−1∕2 are much larger than the rest, we cluster based on the dominant 𝑚 = 3 eigen-
vectors. We use the k-means algorithm to identify 𝑐 = 4 clusters and present the results in
Figure 3.
To measure the error, we obtain reference clusters by running RPCholesky with 𝑘 = 1000

columns. These reference clusters are consistent with [68, Figure 4]. For each method and each
approximation rank 10 ≤ 𝑘 ≤ 200, we calculate the fraction of incorrect labelings for the best per-
mutation of the cluster labels. We average over 1000 independent trials and plot the resulting
errors in Figure 3 (top left). We find that RPCholesky reliably produces a near-perfect clustering
(top right panel) after reading just 𝑘 = 150 of the 𝑁 = 2.5 × 105 columns. In contrast, given the
same approximation rank, uniform, RLS, and greedy sampling frequently produce an incorrect
clustering (bottom panels). With 𝑘 = 150 columns, RPCholesky gives a 9× to 14× smaller
misclassification rate than uniform, RLS, or greedy sampling.
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PRACTICAL APPROXIMATION OF A KERNEL MATRIX WITH FEW ENTRY EVALUATIONS 1017

F IGURE 3 Spectral clustering for alanine dipeptide trajectories. Top left: Misclassification rate, averaged
over 1000 independent trials. Top right: Example of correct clustering (< 0.2%misclassification) produced by
RPCholesky with rank 𝑘 = 150. Bottom: Incorrect clusterings (> 2%misclassification) produced by uniform,
RLS and greedy sampling with rank 𝑘 = 150. Black dots mark data points selected as pivots. RLS, ridge leverage
score; RPCholesky, randomly pivoted Cholesky algorithm.

4.3.4 Comparison with neural networks

The recent journal article [6] compared an RPCholesky-accelerated kernel method with a
conventional neural network for the semisupervised clustering of alanine dipeptide trajecto-
ries. Given a fixed number of parameters, the RPCholesky-accelerated approach was found to
improve the accuracy, speed, and interpretability.

5 THEORETICAL ANALYSIS OF RPCHOLESKY

Given the appealing computational profile and empirical performance of the RPCholesky algo-
rithm, we would like to understand when it is guaranteed to produce an accurate low-rank
approximation. In this section, we will prove the following new result.

Theorem 5.1 (Randomly pivoted Cholesky). Let𝑨 be a psdmatrix. Fix 𝑟 ∈ ℕ and 𝜀 > 0. The rank-
𝑘 column Nyström approximation 𝑨(𝑘) produced by 𝑘 steps of RPCholesky (Algorithm 1) attains

 10970312, 2025, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22234, W

iley O
nline L

ibrary on [10/03/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



1018 CHEN et al.

the bound

𝔼 tr
(
𝑨 − 𝑨(𝑘)

) ≤ (1 + 𝜀) ⋅ tr(𝑨 − ⟦𝑨⟧𝑟),
provided that the number 𝑘 of columns satisfies

𝑘 ≥ 𝑟

𝜀
+ min

{
𝑟 log

(
1

𝜀𝜂

)
, 𝑟 + 𝑟 log+

(
2𝑟

𝜀

)}
. (5.1)

The relative error 𝜂 is defined by 𝜂 ∶= tr(𝑨 − ⟦𝑨⟧𝑟)∕ tr(𝑨). As usual, log+(𝑥) ∶= max{log 𝑥, 0} for
𝑥 > 0, and the logarithm has base e.

Let us emphasize that we do not need any prior knowledge to run RPCholesky and attain this
approximation guarantee. In fact, for any number 𝑘 of steps, the error bound is valid for any pair
(𝑟, 𝜀) that satisfies the relation (5.1).
The major takeaway from Theorem 5.1 is that RPCholesky must produce an (𝑟, 𝜀)-

approximation as soon as the number 𝑘 of columns satisfies

𝑘 ≥ 𝑟

𝜀
+ 𝑟 log

(
1

𝜀𝜂

)
.

The logarithmic factor is typically a modest constant. For example, log(1∕𝜂) is between 2.4 and
26 for all the examples in Table 1. Therefore, this bound is comparable with the minimal cost of
𝑘 ≥ 𝑟∕𝜀 columns (Theorem C.1). Turning back to Table 2, we see that RPCholesky improves on
the uniform samplingmethod,where the number 𝑘 of columns can depend linearly on the relative
error 1∕𝜂 (Section C.2). It also improves on the greedymethod, in which the number 𝑘 of columns
may be proportional to the dimension 𝑁 in the worst case (Section C.3).
Theorem 5.1 includes a second bound that demonstrates that RPCholesky produces an (𝑟, 𝜀)-

approximation when the number 𝑘 of columns satisfies

𝑘 ≥ 𝑟

𝜀
+ 𝑟 + 𝑟 log+

(
2𝑟

𝜀

)
. (5.2)

This alternative error bound is significant because it completely eliminates the dependence on the
relative error 𝜂, at the cost of a quadratic dependence on 𝑟. We believe this quadratic dependence
is a limitation of the proof technique, rather than a feature of the algorithm.
In the special case that rank(𝑨) ≤ 𝑟, our analysis (Lemma 5.5) ensures that 𝑨 = 𝑨(𝑘) for any

𝑘 ≥ 𝑟. We note that both greedy and DPP sampling achieve a perfect approximation quality when
𝑘 ≥ rank(𝑨), but the same is not true for uniform sampling or for RLS sampling.
Due to the close relationship between RPCholesky and randomly pivoted QR (Section 3.1),

our analysis also leads to the following new error bound:

Corollary 5.2 (Randomly pivotedQR).Fix amatrix𝑩 ∈ ℂ𝑀×𝑁 , a target approximation rank 𝑟, and
a tolerance 𝜀 > 0. The rank-𝑘 columnprojection approximation𝑩(𝑘) produced by 𝑘 steps of randomly
pivoted QR (Algorithm B.2 with block size 𝑇 = 1) attains the bound

𝔼‖𝑩 − 𝑩(𝑘)‖2F ≤ (1 + 𝜀) ⋅ ‖𝑩 − ⟦𝑩⟧𝑟‖2F,
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PRACTICAL APPROXIMATION OF A KERNEL MATRIX WITH FEW ENTRY EVALUATIONS 1019

provided that the number 𝑘 of columns satisfies

𝑘 ≥ 𝑟

𝜀
+ min

{
𝑟 log

(
1

𝜀𝜂

)
, 𝑟 + 𝑟 log+

(
2𝑟

𝜀

)}
.

The relative error 𝜂 is defined by 𝜂 ∶= ‖𝑩 − ⟦𝑩⟧𝑟‖2F∕‖𝑩‖2F.
In follow-up work [24], we extended these results to address block randomly pivoted QR (Algo-

rithm B.2) and block RPCholesky (Algorithm 3) with a fixed block size 𝑇 > 1. This analysis is
more complicated and requires several additional ideas.

5.1 Proof of Theorem 5.1

Let 𝑨 be a psd input matrix. Recall the definition (2.3) of the approximation 𝑨(𝑖) and residual 𝑨(𝑖)
matrices generated by the pivoted partial Cholesky algorithm. Recall that RPCholesky samples
each pivot from the distribution (2.6).
The proof of Theorem 5.1 is based on the properties of the expected residual function:

𝚽(𝑨) ∶= 𝔼
[
𝑨(1) ||𝑨] = 𝑨 − 𝑨2

tr𝑨
. (5.3)

This function returns the expectation of the residual𝑨(1) after applying one step of RPCholesky
to the psd matrix 𝑨. The equality (5.3) follows from a short computation using the sampling dis-
tribution (2.6) and the definition (2.3) of the residual. Note that 𝚽 is defined on psd matrices of
any dimension.
The first lemma describes some basic facts about the expected residual function𝚽.We postpone

the proof to Section 5.2.

Lemma 5.3 (Expected residual). The expected residual map 𝚽 defined in (5.3) is positive,
monotone, and concave with respect to the psd order. That is, for all psd 𝑨,𝑯 with the same
dimensions,

𝟎 ⪯ 𝚽(𝑨) ⪯ 𝚽(𝑨 +𝑯); (5.4)

𝜃𝚽(𝑨) + (1 − 𝜃)𝚽(𝑯) ⪯ 𝚽(𝜃𝑨 + (1 − 𝜃)𝑯) for all 𝜃 ∈ [0, 1]. (5.5)

The second lemma describes how the trace of the residual declines after multiple steps of the
RPCholesky procedure. This is the key new ingredient in our argument. The proof appears in
Section 5.3.

Lemma 5.4 (Contraction rate). Consider the 𝑘-fold composition of the expected residual (5.3):

𝚽◦𝑘 ∶= 𝚽◦𝚽◦ ⋯ ◦𝚽
⏟⎴⎴⎴⏟⎴⎴⎴⏟

𝑘 times

for each 𝑘 ∈ ℕ.
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1020 CHEN et al.

Fix 𝑟 ∈ ℕ. For each psd matrix𝑯 and each Δ > 0,

tr 𝚽◦𝑘(𝑯) ≤ tr(𝑯 − ⟦𝑯⟧𝑟) + Δ tr𝑯 when 𝑘 ≥ 𝑟 tr
(
𝑯 − ⟦𝑯⟧𝑟)
Δ tr𝑯

+ 𝑟 log+

(
1

Δ

)
.

Last,we present a boundwhich shows that the error after 𝑘 steps of RPCholesky is comparable
with the error in the best rank-𝑘 approximation. This lemma improves on an earlier result [19,
Proposition 2] by reducing a (𝑘 + 1)! factor to 2𝑘, but the proof is entirely different. This bound is
responsible for the final term in eq. (5.2), and the proof appears in Section 5.4.

Lemma 5.5 (Error doubling). For each psdmatrix𝑨, the residual matrix𝑨(𝑘) after applying 𝑘 steps
of RPCholesky satisfies

𝔼 tr𝑨(𝑘) ≤ 2𝑘 tr(𝑨 − ⟦𝑨⟧𝑘) for each 𝑘 ∈ ℕ.

With these results at hand, we quickly establish the main error bound for RPCholesky.

Proof of Theorem 5.1. Fix a psd matrix 𝑨. By the concavity (5.5) of the expected residual map (5.3)
and a matrix version of Jensen’s inequality [14, Theorem 4.16], the residual matrices satisfy

𝔼𝑨(𝑗) = 𝔼
[
𝔼
[
𝑨(𝑗) ||𝑨(𝑗−1)]] = 𝔼𝚽(𝑨(𝑗−1)) ⪯ 𝚽(𝔼𝑨(𝑗−1)) for each 𝑗 ∈ {1, … , 𝑘}.

Next, by monotonicity (5.4) of 𝚽 and the last display,

𝔼𝑨(𝑘) ⪯ 𝚽(𝔼𝑨(𝑘−1)) ⪯ 𝚽◦𝚽(𝔼𝑨(𝑘−2)) ⪯ ⋯ ⪯ 𝚽◦𝑘(𝑨).

Using the fact that the trace is linear and preserves the psd order,

𝔼 tr
(
𝑨 − 𝑨(𝑘)

)
= 𝔼 tr𝑨(𝑘) ≤ tr 𝚽◦𝑘(𝑨).

Next, we apply Lemma 5.4 with𝑯 = 𝑨 and Δ = 𝜀𝜂 to see that

𝔼 tr
(
𝑨 − 𝑨(𝑘)

) ≤ (1 + 𝜀) ⋅ tr(𝑨 − ⟦𝑨⟧𝑟) when 𝑘 ≥ 𝑟

𝜀
+ 𝑟 log+

(
1

𝜀𝜂

)
,

where we have recognized the relative error 𝜂. Last, we can replace log+ with log because the
statement holds trivially for any Nyström approximation with any number of columns if 𝜀𝜂 ≥ 1.
By a similar argument,

𝔼 tr
(
𝑨 − 𝑨(𝑘)

)
= 𝔼 tr𝑨(𝑘) ≤ tr 𝚽◦(𝑘−𝑟)(𝔼𝑨(𝑟)).

We can apply Lemma 5.4 with𝑯 = 𝔼𝑨(𝑟) and Δ = 𝜀𝜂 ⋅ tr 𝑨∕𝔼 tr𝑨(𝑟) to see that

𝔼 tr
(
𝑨 − 𝑨(𝑘)

) ≤ tr(𝔼𝑨(𝑟) − ⟦𝔼𝑨(𝑟)⟧𝑟) + 𝜀 tr(𝑨 − ⟦𝑨⟧𝑟) (5.6)

provided the number of columns satisfies

𝑘 − 𝑟 ≥ 𝑟 tr
(
𝔼𝑨(𝑟) − ⟦𝔼𝑨(𝑟)⟧𝑟)
𝜀 tr(𝑨 − ⟦𝑨⟧𝑟) + 𝑟 log+

(
𝔼 tr𝑨(𝑟)

𝜀 tr(𝑨 − ⟦𝑨⟧𝑟)
)
. (5.7)
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PRACTICAL APPROXIMATION OF A KERNEL MATRIX WITH FEW ENTRY EVALUATIONS 1021

This bound can be simplified as follows. Observe that the (random) residual matrix𝑨(𝑟) is a Schur
complement of𝑨, so it satisfies 𝔼𝑨(𝑟) ⪯ 𝑨. By the Ky Fan variational principle [71, Theorem 8.17],
the best rank-𝑟 approximation error in the trace norm is monotone with respect to the psd order,
so

tr
(
𝔼𝑨(𝑟) − ⟦𝔼𝑨(𝑟)⟧𝑟) ≤ tr(𝑨 − ⟦𝑨⟧𝑟).

Additionally, Lemma 5.5 guarantees that 𝔼 tr𝑨(𝑟) ≤ 2𝑟 tr(𝑨 − ⟦𝑨⟧𝑟). Using these facts, we can
simplify (5.6)–(5.7) to show that

𝔼 tr
(
𝑨 − 𝑨(𝑘)

) ≤ (1 + 𝜀) ⋅ tr(𝑨 − ⟦𝑨⟧𝑟) when 𝑘 ≥ 𝑟 + 𝑟

𝜀
+ 𝑟 log+

(
2𝑟

𝜀

)
,

This completes the proof of the second bound. □

5.2 Proof of Lemma 5.3

Let 𝑨,𝑯 be psd matrices, and recall the definition (5.3) of the expected residual map 𝚽. First, to
prove that 𝚽 is positive, note that

𝚽(𝑯) =

(
𝐈 −

𝑯

tr𝑯

)
𝑯 ⪰ 𝟎.

Next, to establish concavity, we choose 𝜃 ∈ [0, 1], set 𝜃 ∶= 1 − 𝜃, and make the calculation

𝚽(𝜃𝑨 + 𝜃𝑯) − 𝜃𝚽(𝑨) − 𝜃𝚽(𝑯) =
𝜃𝜃

𝜃 tr𝑨 + 𝜃 tr𝑯

(√
tr𝑯

tr𝑨
𝑨 −

√
tr 𝑨

tr𝑯
𝑯

)2
⪰ 𝟎.

Last, to establish monotonicity, observe that 𝚽 is positive homogeneous; that is, 𝚽(𝜏𝑨) = 𝜏𝚽(𝑨)
for 𝜏 ≥ 0. Invoking the concavity property (5.5) with 𝜃 = 1∕2,

𝚽(𝑨 +𝑯) = 2𝚽

(
𝑨 +𝑯

2

)
⪰ 𝚽(𝑨) + 𝚽(𝑯) ⪰ 𝚽(𝑨).

We have used the positivity of 𝚽(𝑯) in the last step.

5.3 Proof of Lemma 5.4

We break the proof into several steps.

5.3.1 Step 1: Reduction to diagonal case

First, we show that it suffices to consider the case of a diagonal matrix. Let 𝑯 be an 𝑁 ×𝑁 psd
matrix with eigendecomposition 𝑯 = 𝑽𝚲𝑽∗. The definition (5.3) of the expected residual map
implies that

𝚽(𝑯) = 𝑽𝚽(𝚲)𝑽∗.
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1022 CHEN et al.

By iteration, the same relation holds with 𝚽◦𝑘 in place of 𝚽. In particular, tr 𝚽◦𝑘(𝑯) = tr𝚽◦𝑘(𝚲).
Therefore, we may restrict our attention to the diagonal case where𝑯 = 𝚲.

5.3.2 Step 2: Identification of worst-case matrix

Second, we obtain an upper bound on tr 𝚽◦𝑘(𝚲). We accomplish this goal by identifying the
worst-case set of eigenvalues. Because the map 𝚲 ↦ tr𝚽◦𝑘(𝚲) is concave and invariant under
permutations of its arguments, averaging together some of the eigenvalues 𝜆1, … , 𝜆𝑁 of 𝚲 can
only increase the value of tr 𝚽◦𝑘(𝚲). Therefore, by introducing the function

𝑓𝑘(𝑎, 𝑏, 𝑟, 𝑞) ∶= tr𝚽
◦𝑘

(
diag

(
𝑎

𝑟
, … ,

𝑎

𝑟
⏟⎴⏟⎴⏟
𝑟 times

,
𝑏

𝑞
, … ,

𝑏

𝑞
⏟⎴⏟⎴⏟
𝑞 times

))
,

we obtain the upper bound

tr 𝚽◦𝑘(𝚲) ≤ 𝑓𝑘(tr⟦𝚲⟧𝑟, tr(𝚲 − ⟦𝚲⟧𝑟), 𝑟, 𝑁 − 𝑟). (5.8)

For further reference, we note that 𝑓𝑘(𝑎, 𝑏, 𝑟, 𝑞) is weakly increasing as a function of 𝑞. Indeed,
for every tuple (𝑎, 𝑏, 𝑟, 𝑞),

𝑓𝑘(𝑎, 𝑏, 𝑟, 𝑞) = tr𝚽
◦𝑘

(
diag

(
𝑎

𝑟
, … ,

𝑎

𝑟
⏟⎴⏟⎴⏟
𝑟 times

,
𝑏

𝑞
, … ,

𝑏

𝑞
⏟⎴⏟⎴⏟
𝑞 times

))
= tr𝚽◦𝑘

(
diag

(
𝑎

𝑟
, … ,

𝑎

𝑟
⏟⎴⏟⎴⏟
𝑟 times

,
𝑏

𝑞
, … ,

𝑏

𝑞
⏟⎴⏟⎴⏟
𝑞 times

, 0

))

≤ tr 𝚽◦𝑘
(
diag

(
𝑎

𝑟
, … ,

𝑎

𝑟
⏟⎴⏟⎴⏟
𝑟 times

,
𝑏

𝑞 + 1
,… ,

𝑏

𝑞 + 1
⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟

𝑞+1 times

))
= 𝑓𝑘(𝑎, 𝑏, 𝑟, 𝑞 + 1).

We have exploited the fact that 𝚽 is defined for matrices of every dimension.

5.3.3 Step 3: Dynamics of the error

Next, we derive a worst-case expression for the error 𝑓𝑘(𝑎, 𝑏, 𝑟, 𝑞). We accomplish this task by
identifying a discrete-time dynamical system that describes the evolution of the residuals. For
each 𝑘 = 0, 1, 2, …, define the nonnegative quantities 𝑎(𝑘) and 𝑏(𝑘) via the relation

𝚽◦𝑘
(
diag

(
𝑎

𝑟
, … ,

𝑎

𝑟
⏟⎴⏟⎴⏟
𝑟 times

,
𝑏

𝑞
, … ,

𝑏

𝑞
⏟⎴⏟⎴⏟
𝑞 times

))
=∶ diag

(
𝑎(𝑘)

𝑟
, … ,

𝑎(𝑘)

𝑟
⏟ ⎴⎴⏟ ⎴⎴⏟

𝑟 times

,
𝑏(𝑘)

𝑞
, … ,

𝑏(𝑘)

𝑞
⏟⎴⎴⏟⎴⎴⏟

𝑞 times

)
.

By the definition (5.3) of the expected residual map 𝚽, the quantities 𝑎(𝑘) and 𝑏(𝑘) satisfy the
recurrence relations

𝑎(𝑘) − 𝑎(𝑘−1) = −

(
𝑎(𝑘−1)

)2
𝑟
(
𝑎(𝑘−1) + 𝑏(𝑘−1)

) and 𝑏(𝑘) − 𝑏(𝑘−1) = −

(
𝑏(𝑘−1)

)2
𝑞
(
𝑎(𝑘−1) + 𝑏(𝑘−1)

)
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PRACTICAL APPROXIMATION OF A KERNEL MATRIX WITH FEW ENTRY EVALUATIONS 1023

with initial conditions 𝑎(0) = 𝑎 and 𝑏(0) = 𝑏. This construction guarantees 𝑓𝑘(𝑎, 𝑏, 𝑟, 𝑞) = 𝑎(𝑘) +

𝑏(𝑘). Additionally, the quantities 𝑎(𝑘) and 𝑏(𝑘) converge as 𝑞 → ∞ to limiting values 𝑎(𝑘) and 𝑏
(𝑘) ≡

𝑏, where the sequence 𝑎(𝑘) satisfies

𝑎
(𝑘)
− 𝑎

(𝑘−1)
= −

(
𝑎
(𝑘−1))2

𝑟
(
𝑎
(𝑘−1)

+ 𝑏
) with initial condition 𝑎(0) = 𝑎.

It follows that

𝑓𝑘(𝑎, 𝑏, 𝑟, 𝑞) ≤ 𝑎(𝑘) + 𝑏 ≤ 𝑎 + 𝑏.
We have used the facts that 𝑓𝑘(𝑎, 𝑏, 𝑟, 𝑞) is increasing in 𝑞 and 𝑎

(𝑘) is decreasing in 𝑘.

5.3.4 Step 4: Comparison with continuous-time dynamics

All that remains is to determine how quickly 𝑎(𝑘) decreases as a function of 𝑘. To that end, we pass
from discrete time to continuous time. At each instant 𝑡 = 0, 1, 2, …, the discrete-time process 𝑎(𝑡)

is bounded from above by the continuous-time process 𝑥(𝑡) satisfying the ODE

d

d𝑡
𝑥(𝑡) = −

𝑥(𝑡)2

𝑟(𝑥(𝑡) + 𝑏)
with initial condition 𝑥(0) = 𝑎.

The comparison between discrete- and continuous-time processes holds because 𝑥 ↦ −𝑥2∕(𝑟𝑥 +

𝑟𝑏) is decreasing over the range 𝑥 ∈ (0,∞). Next, assuming Δ(𝑎 + 𝑏) ≤ 𝑎, we can use separation
of variables to solve for the time 𝑡⋆ at which 𝑥(𝑡⋆) = Δ(𝑎 + 𝑏):

𝑡⋆ = ∫
Δ(𝑎+𝑏)

𝑥=𝑎

−
𝑟(𝑥 + 𝑏)

𝑥2
d𝑥 = 𝑟𝑏

(
1

Δ(𝑎 + 𝑏)
−
1

𝑎

)
+ 𝑟 log

(
𝑎

Δ(𝑎 + 𝑏)

)
≤ 𝑟𝑏

Δ(𝑎 + 𝑏)
+ 𝑟 log

(
1

Δ

)
.

It follows (even for Δ(𝑎 + 𝑏) > 𝑎) that

𝑎
(𝑘) ≤ Δ(𝑎 + 𝑏) when 𝑘 ≥ 𝑟𝑏

Δ(𝑎 + 𝑏)
+ 𝑟 log+

(
1

Δ

)
.

To conclude, substitute 𝑎 = tr⟦𝚲⟧𝑟 and 𝑏 = tr(𝚲 − ⟦𝚲⟧𝑟) and combine with (5.8).
5.4 Proof of Lemma 5.5

Let𝑷denote the orthogonal projection onto the𝑘 dominant eigenvectors of𝑨 and set𝑷⟂ ∶= 𝐈 − 𝑷.
Apply the Ky Fan variational principle [71, Theorem 8.17] to write

tr
(
𝑨(1) − ⟦𝑨(1)⟧𝑘−1) = min{ 𝑁∑

𝑗=𝑘

𝒖∗
𝑗
𝑨(1)𝒖𝑗 ∶ 𝒖𝑘, … , 𝒖𝑁 orthonormal

}
.
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1024 CHEN et al.

Choose the vectors 𝒖𝑘+1, … , 𝒖𝑁 to be unit-norm eigenvectors 𝒗𝑘+1(𝑨), … , 𝒗𝑁(𝑨) associated with
the smallest eigenvalues. To choose the last vector 𝒖𝑘, let us separately consider the cases
𝑷(𝑠1, 𝑠1) = 0 and 𝑷(𝑠1, 𝑠1) > 0, where 𝑷(𝑖, 𝑖) denotes the (𝑖, 𝑖)-entry of 𝑷.
On the event 𝑷(𝑠1, 𝑠1) = 0, choose 𝒖𝑘 ∶= 𝒗1(𝑨) and apply the crude bound

tr
(
𝑨(1) − ⟦𝑨(1)⟧𝑘−1) ≤

𝑁∑
𝑗=𝑘

𝒖∗
𝑗
𝑨(1)𝒖𝑗

≤
𝑁∑
𝑗=𝑘

𝒖∗
𝑗
𝑨𝒖𝑗 = tr(𝑨 − ⟦𝑨⟧𝑘) + 𝜆1(𝑨).

(5.9)

This relation holds because 𝑨(1) ⪯ 𝑨 and
∑𝑁

𝑗=𝑘+1
𝜆𝑗(𝑨) = tr(𝑨 − ⟦𝑨⟧𝑘).

On the event 𝑷(𝑠1, 𝑠1) > 0, choose 𝒖𝑘 ∶= 𝑷𝐞𝑠1∕‖𝑷𝐞𝑠1‖, and observe that 𝒖𝑘 is orthonormal to
the other vectors by the choice of 𝑷. This gives the bound

tr
(
𝑨(1) − ⟦𝑨(1)⟧𝑘−1) ≤

𝑁∑
𝑗=𝑘+1

𝒖∗
𝑗
𝑨(1)𝒖𝑗 +

𝐞∗𝑠1𝑷𝑨
(1)𝑷𝐞𝑠1

𝐞∗𝑠1𝑷𝐞𝑠1

≤ tr(𝑨 − ⟦𝑨⟧𝑘) + (𝑷𝑨(1)𝑷)(𝑠1, 𝑠1)

𝑷(𝑠1, 𝑠1)
.

(5.10)

Using the facts that 𝑨(1) = 𝑨 − 𝑨𝐞𝑠1𝐞
∗
𝑠1
𝑨∕𝑨(𝑠1, 𝑠1) and 𝑷𝑨 = 𝑨𝑷, it follows

(𝑷𝑨(1)𝑷)(𝑠1, 𝑠1) = (𝑨𝑷)(𝑠1, 𝑠1) −
((𝑨𝑷)(𝑠1, 𝑠1))

2

𝑨(𝑠1, 𝑠1)
=
(𝑨𝑷)(𝑠1, 𝑠1)(𝑨𝑷⟂)(𝑠1, 𝑠1)

𝑨(𝑠1, 𝑠1)
.

Combine the bounds (5.9) and (5.10) and sum over the selection probabilities ℙ{𝑠1 = 𝑖} =
𝑨(𝑖, 𝑖)∕ tr 𝑨 to evaluate

𝔼
[
tr
(
𝑨(1) − ⟦𝑨(1)⟧𝑘−1)] ≤ tr(𝑨 − ⟦𝑨⟧𝑘) + ∑

𝑷(𝑖,𝑖)=0

𝑨(𝑖, 𝑖)

tr 𝑨
⋅ 𝜆1(𝑨) +

∑
𝑷(𝑖,𝑖)>0

𝑨(𝑖, 𝑖)

tr 𝑨
⋅
(𝑨𝑷)(𝑖, 𝑖)(𝑨𝑷⟂)(𝑖, 𝑖)

𝑨(𝑖, 𝑖)𝑷(𝑖, 𝑖)

≤ tr(𝑨 − ⟦𝑨⟧𝑘) + 𝑁∑
𝑖=1

(𝑨𝑷⟂)(𝑖, 𝑖)

tr 𝑨
⋅ 𝜆1(𝑨)

=

(
1 +

𝜆1(𝑨)

tr 𝑨

)
tr(𝑨 − ⟦𝑨⟧𝑘).

(5.11)

The middle line uses the inequalities

𝑷𝐞𝑖 = 𝟎 ⇒ 𝑨(𝑖, 𝑖) = (𝑨𝑷)(𝑖, 𝑖) + (𝑨𝑷⟂)(𝑖, 𝑖) = (𝑨𝑷⟂)(𝑖, 𝑖).

and (𝑨𝑷)(𝑖, 𝑖) ≤ 𝜆1(𝑨)𝑷(𝑖, 𝑖).
Since 𝜆1(𝑨) ≤ tr 𝑨, the bound (5.11) can be weakened to give

𝔼 tr
(
𝑨(1) − ⟦𝑨(1)⟧𝑘−1) ≤ 2 tr(𝑨 − ⟦𝑨⟧𝑘).
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PRACTICAL APPROXIMATION OF A KERNEL MATRIX WITH FEW ENTRY EVALUATIONS 1025

By iterating, we conclude that

𝔼 tr𝑨(𝑘) ≤ 2𝔼 tr(𝑨(𝑘−1) − ⟦𝑨(𝑘−1)⟧1) ≤ 4𝔼 tr(𝑨(𝑘−2) − ⟦𝑨(𝑘−2)⟧2) ≤⋯ ≤ 2𝑘 tr(𝑨 − ⟦𝑨⟧𝑘).
This estimate is the statement of the doubling bound.

6 CONCLUSION

This work has demonstrated the utility of RPCholesky for low-rank approximation of a psd
matrix 𝑨 ∈ ℂ𝑁×𝑁 . RPCholesky allows us to accelerate many kernel algorithms, such as kernel
ridge regression and kernel spectral clustering. RPCholesky reduces the computational cost of
these kernel methods from(𝑁3) operations to just(𝑘2𝑁) operations, where the approximation
rank 𝑘 can be much smaller than the matrix dimension 𝑁.
Numerical experiments suggest that RPCholesky improves over other column Nyström

approximation algorithms in terms of arithmetic operations and memory footprint. Given a fixed
approximation rank 𝑘, RPCholesky requires a very small number of entry evaluations, just
(𝑘 + 1)𝑁. RPCholesky typically produces approximations that match or improve on the greedy
method, uniform sampling, RLS sampling, andDPP sampling.Moreover, theoretical error bounds
guarantee that RPCholesky converges nearly as fast as possible in the expected trace norm.
Taken as a whole, this work paves the way for greater use of RPCholesky in the future. Addi-

tionally, we believe RPCholesky can be pushed even further, for example, through combinations
with acceleratedmethods for prediction, clustering, and other learning tasks. The future is indeed
bright for this simple yet surprisingly effective algorithm.
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APPENDIX A: DETAILS OF NUMERICAL EXPERIMENTS
The numerical experiments in Sections 2.4 and 4 are implemented in Python with code avail-
able at https://github.com/eepperly/Randomly-Pivoted-Cholesky. Below we provide further
implementation details for RPCholesky, DPP sampling, RLS sampling, and greedy pivoting:
RPCholesky. All the RPCholesky results in Sections 2.4 and 4 use the simple RPCholesky

method (Algorithm 1) with block size 𝑇 = 1.
DPP sampling. We use the DPP samplers from the DPPy Python package [29]. However, the

samplers from this package all produce error messages when tried on certain inputs, particularly
when 𝑘 is large and 𝑨 is nearly low-rank. The theoretically fastest alpha sampler cannot be used
for our numerical comparisons since it has error messages for both the Smile and Spiral exam-
ples. For this reason, we used the vfx sampler [18] when assessing the entry access cost of DPP
sampling, and we produced Figure 1 using the comparatively slow GS sampler which requires a
full eigendecomposition of 𝑨. All these DPP samplers generate exact samples from the 𝑘-DPP
distribution (C.1); we did not test with inexact samplers based on MCMC [4].
RLS sampling. Several RLS sampling algorithms have been introduced in the literature,

including recursive ridge leverage scores (RRLS) [45], SQUEAK [13], and BLESS [56]. The anal-
ysis and experiments in this paper are based on the RRLS algorithm [45], which is implemented
in the recursiveNystrom method [63] for Python. For comparison, we have also implemented
RLS sampling by directly forming the matrix 𝑨(𝑨 + 𝜆𝐈)−1 and sampling 𝑘 indices with proba-
bility weighted defined by the ridge leverage scores (C.5). Even with the ridge leverage scores
computed exactly in this way, the relative trace-norm error for the Smile example with 𝑘 = 100 is
still roughly 10−2, five orders of magnitude larger than the error due to RPCholesky. This indi-
cates that the poor performance of RLS on this example is not due to errors in the approximation
of the ridge leverage scores.
Greedy pivoting. Following the original release of this work as an arXiv preprint, S. Steiner-

berger [60] pointed out that the greedy pivoting method exhibits degenerate behavior if many
diagonal entries of the residual matrix are tied for the largest value, up to floating point errors.
In case of a tie, existing implementations of the greedy algorithm select columns according to the
default ordering, always choosing the first column with the maximal diagonal value. The impact
of the ordering can be removed by randomly pre-shuffling the data {𝒙1, … , 𝒙𝑁}, which we did
for the Smile and Spiral data sets in figure 1. Pre-shuffling slightly improved the performance
of greedy pivoting for the Spiral data. We note that existing implementations of greedy pivoting,
such as LAPACK’s pstrf, do not perform this shuffling and process the data in the given order.

APPENDIX B: PSEUDOCODE FOR QRMETHODS
Pseucode for column-pivoted partial QR and block randomly pivoted QR are provided as
Algorithm B.1 and Algorithm B.2.

APPENDIX C: COMPARISONWITH OTHERMETHODS
In this section, we give an example which shows that any Nyström method needs at least 𝑟∕𝜀
columns to guarantee a (𝑟, 𝜀)-approximation (Section C.1). Then, we analyze how many columns
are needed to obtain a (𝑟, 𝜀)-approximation using the greedy method (Section C.2), uniform sam-
pling (SectionC.3), DPP sampling (SectionC.4), andRLS sampling (SectionC.5). The proofs in this
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ALGORITHM B. 1 Column-pivoted partial QR.

Input: Matrix 𝑩 ∈ ℂ𝑀×𝑁 ; approximation rank 𝑘
Output: Pivot set 𝖲 = {𝑠1, … , 𝑠𝑘}; matrices 𝑸 ∈ ℂ𝑀×𝑘 and 𝑹 ∈ ℂ𝑘×𝑁 defining approximation 𝑩 = 𝑸𝑹
Initialize 𝑸 ← 𝟎𝑀×𝑘 and 𝑹 ← 𝟎𝑘×𝑁

for 𝑖 = 1 to 𝑘 do
Select a pivot column 𝑠𝑖 ∈ {1, … ,𝑁} ▹ See Section 3.3
𝒈 ← 𝑩(∶, 𝑠𝑖) ▹ Extract 𝑠𝑖 column of input matrix
𝒈 ← 𝒈 − 𝑸(∶, 1 ∶ 𝑖 − 1)𝑹(1 ∶ 𝑖 − 1, 𝑠𝑖) ▹ Remove projection on previously chosen columns
𝒈 ← 𝒈∕‖𝒈‖ ▹ Normalize
𝑸(∶, 𝑖) ← 𝒈 ▹ Update approximation
𝑹(𝑖, ∶) ← 𝒈∗𝑩

end for

ALGORITHM B. 2 Block randomly pivoted partial QR (aka adaptive sampling [20]).

Input: Matrix 𝑩 ∈ ℂ𝑀×𝑁 ; block size 𝑇; approximation rank 𝑘 which is a multiple of 𝑇
Output: Pivot set 𝖲; matrices 𝑸 and 𝑹 defining approximation 𝑩 = 𝑸𝑹
Initialize 𝑸 ← 𝟎𝑀×𝑘 , 𝑹 ← 𝟎𝑘×𝑁 , and 𝖲 ← ∅

Initialize 𝒑 ← 𝑆𝑞𝑢𝑎𝑟𝑒𝑑𝐶𝑜𝑙𝑢𝑚𝑛𝑁𝑜𝑟𝑚𝑠(𝑩)

for 𝑖 = 0 to 𝑘∕𝑇 − 1 do

Sample 𝑠𝑖𝑇+1, … , 𝑠𝑖𝑇+𝑇
iid
∼ 𝒑∕

∑𝑁

𝑗=1
𝒑(𝑗) ▹ Probability prop. to squared column norms of residual

𝖲′ ← 𝑈𝑛𝑖𝑞𝑢𝑒({𝑠𝑖𝑇+1, … , 𝑠𝑖𝑇+𝑇})

𝖲 ← 𝖲 ∪ 𝖲′

𝑮 ← 𝑩(∶, 𝖲
′
) ▹ Evaluate columns 𝖲′ of input matrix

𝑮 ← 𝑮 − 𝑸𝑹(∶, 𝖲′) ▹ Remove projections on previously chosen columns
𝑮 ← 𝑂𝑟𝑡ℎ(𝑮) ▹ Orthonormalize
𝑸(∶, (𝑖𝑇 + 1) ∶ (𝑖𝑇 + |𝖲′|)) ← 𝑮 ▹ Update approximation
𝑹((𝑖𝑇 + 1) ∶ (𝑖𝑇 + |𝖲′|), ∶) ← 𝑮∗𝑩

𝒑 ← 𝒑 − 𝑆𝑞𝑢𝑎𝑟𝑒𝑑𝐶𝑜𝑙𝑢𝑚𝑛𝑁𝑜𝑟𝑚𝑠(𝑮∗𝑩) ▹ Track squared column norms of residual
𝒑 ← max{𝒑, 𝟎} ▹ Ensure 𝒑 remains nonnegative

end for
Remove zero columns from 𝑸 and zero rows from 𝑹

section consolidate the existing literature, and we have attempted to streamline the derivations
and obtain sharper constants.

C.1 Lower bound
Here, we prove a lower bound on the number of columns needed for any Nyström method to
achieve a (𝑟, 𝜀)-approximation of a worst-case matrix.

Theorem C.1 (Nyström lower bound [19, 35]). Fix 𝑟 ≥ 1 and 𝜀 > 0. There exists a psd matrix 𝑨 ∈
ℂ𝑁×𝑁 such that any rank-𝑘 Nyström approximation with

𝑘 < 𝑟∕𝜀

columns has error tr
(
𝑨 − 𝑨(𝑘)

)
> (1 + 𝜀) ⋅ tr

(
𝑨 − ⟦𝑨⟧𝑟).
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Proof. We adapt the proof of [35, Lemma 6.2]. We consider the matrix

𝑨 =

⎛⎜⎜⎜⎜⎝
𝑩

𝑩

⋱

𝑩

⎞⎟⎟⎟⎟⎠
⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟

𝑀𝑟×𝑀𝑟

, where 𝑩 =

⎛⎜⎜⎜⎜⎝
1 𝛿 ⋯ 𝛿

𝛿 1 ⋮

⋮ ⋱

𝛿 ⋯ 1

⎞⎟⎟⎟⎟⎠
⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟

𝑟×𝑟

.

We consider the rank-𝑘 Nyström approximation 𝑨(𝑘) that selects 𝑘1 columns from the first block,
𝑘2 columns from the second block, and so forth. The approximation error satisfies

tr(𝑨 − 𝑨(𝑘))

tr(𝑨 − ⟦𝑨⟧𝑟) = 1

𝑟

𝑟∑
𝑖=1

𝑀 − 𝑘𝑖
𝑀 − 1

(
1 +

1

𝛿−1 + 𝑘𝑖 − 1

)
≥ 𝑀 − 𝑘

𝑀 − 1
⋅
1

𝑟

𝑟∑
𝑖=1

(
1 +

1

𝛿−1 + 𝑘𝑖 − 1

)
We use the convexity of 𝑓(𝑥) = 1

𝑥
to calculate

1

𝑟

𝑟∑
𝑖=1

(
1 +

1

𝛿−1 + 𝑘𝑖 − 1

)
≥ 1 + 1

𝛿−1 + 𝑘∕𝑟 − 1
.

Last, we choose𝑀 large enough and 𝛿 close enough to 1 so that

tr(𝑨 − 𝑨(𝑘))

tr(𝑨 − ⟦𝑨⟧𝑟) > 1 + 𝜀
for each 𝑘 < 𝑟

𝜀
. □

C.2 The greedy method
The greedy method (2.5) is a column Nyström approximation with a long history in numerical
analysis [36] under the name complete pivoting or diagonal pivoting. The papers [9, 26] popularized
the method in the context of kernel computations. Despite its popularity, however, the greedy
method is known to failwhen applied to certain inputmatrices [36, Ex. 2.1], and the greedymethod
exhibits poor performance for most of the kernel matrices appearing in Sections 2.4, 4.2, and 4.3.
Below in TheoremC.2, we construct a worst-casematrix𝑨 that is approximated at a slow 1 − 𝑘∕𝑁
rate using the greedy method.

Theorem C.2 (Greedy method). Fix 𝑟 ≥ 1 and 𝜀 > 0. Then, the greedy method has the following
properties:

(a) For any psd input matrix 𝑨 ∈ ℂ𝑁×𝑁 , the greedy method with

𝑘 ≥ (1 − (1 + 𝜀)𝜂)𝑁
columns produces an approximation satisfying 𝔼 tr

(
𝑨 − 𝑨(𝑘)

) ≤ (1 + 𝜀) ⋅ tr(𝑨 − ⟦𝑨⟧𝑟).
(b) There exists a psd matrix 𝑨 ∈ ℂ𝑁×𝑁 such that the greedy method with

𝑘 < (1 − (1 + 𝜀)𝜂)𝑁

columns has error 𝔼 tr
(
𝑨 − 𝑨(𝑘)

)
> (1 + 𝜀) ⋅ tr

(
𝑨 − ⟦𝑨⟧𝑟).

As usual, we have defined the relative error 𝜂 ∶= tr(𝑨 − ⟦𝑨⟧𝑟)∕ tr(𝑨).
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1032 CHEN et al.

Proof. To prove part (a), observe at each iteration 1 ≤ 𝑖 ≤ 𝑘 there are at most 𝑁 − 𝑖 + 1 nonzero
entries in the diagonal of the residual matrix 𝑨(𝑖−1), and the largest entry is incorporated into the
pivot set 𝖲. Consequently,

tr 𝑨(𝑖) ≤ (
1 −

1

𝑁 − 𝑖 + 1

)
tr 𝑨(𝑖−1) =

𝑁 − 𝑖

𝑁 − 𝑖 + 1
tr𝑨(𝑖−1).

By induction, it follows that tr 𝑨(𝑘) ≤ 𝑁−𝑘

𝑁
tr𝑨 and

tr 𝑨(𝑘)

tr(𝑨 − ⟦𝑨⟧𝑟) ≤
(
1 −

𝑘

𝑁

)
tr 𝑨

tr(𝑨 − ⟦𝑨⟧𝑟) =
1 −

𝑘

𝑁

𝜂
.

If 𝑘 ≥ (1 − (1 + 𝜀)𝜂)𝑁, the right-hand side is bounded by 1 + 𝜀, establishing part (a).
To prove part (b), consider the matrix

𝑨 =

⎡⎢⎢⎢⎢⎣
𝑩

𝑪

⋱

𝑪

⎤⎥⎥⎥⎥⎦
, where 𝑩 =

⎡⎢⎢⎢⎢⎣
1

1

⋱

1

⎤⎥⎥⎥⎥⎦
⏟⎴⎴⎴⏟⎴⎴⎴⏟
(𝑁−𝑟𝑀)×(𝑁−𝑟𝑀)

, 𝑪 =

⎡⎢⎢⎢⎢⎣
1 1 ⋯ 1

1 1 ⋯ 1

⋮ ⋮ ⋱ ⋮

1 1 ⋯ 1

⎤⎥⎥⎥⎥⎦
⏟⎴⎴⎴⏟⎴⎴⎴⏟

𝑀×𝑀

.

In lieu of a good tie-breaking rule, the greedy method chooses entries from the 𝑩 block before the
𝑪 blocks. An explicit calculation shows

tr(𝑨 − 𝑨(𝑘))

tr(𝑨 − ⟦𝑨⟧𝑟) = 𝑁 − 𝑘

𝑁 −𝑀 − 𝑟 + 1
=
1 −

𝑘

𝑁

𝜂

for each 𝑘 ≤ 𝑁 −𝑀. This relative error strictly exceeds 1 + 𝜀 as long as 𝑘 < (1 − (1 + 𝜀)𝜂)𝑁, which
establishes part (b). □

C.3 Uniform sampling
Another popular column Nyström approximation method is uniform sampling [21, 69]. In this
method, 𝑘 columns are selected uniformly at random, either with or without replacement. The-
oretically and empirically, the accuracy is higher using uniform sampling without replacement,
which avoids the issue of duplicate column selections [39]. Uniform sampling leads to accurate
approximations when the dominant 𝑟 eigenvectors have mass that is spread out equally over all
the coordinates (a property known as “incoherence”) [31]. However, uniform sampling leads to
inaccurate approximationswhen the dominant eigenvectors havemass that is highly concentrated
on a subset of the vertices.
Uniform sampling is typically applied to a kernel matrix 𝑨 with ones on the diagonal, but

diagonal sampling [28] is a more general method that randomly selects pivots with probabili-
ties proportional to diag𝑨. Diagonal sampling is guaranteed to produce a (𝑟, 𝜀)-approximation
when the number of columns satisfies 𝑘 ≥ (𝑟 − 1)∕(𝜖𝜂) + 1∕𝜀, as we will prove in Theorem C.3.
This bound shows that diagonal sampling accurately approximates the dominant rank-one com-
ponent of a psd matrix, but it can produce inaccurate approximations of the dominant rank-𝑟
component for 𝑟 > 1. A better option for approximating the dominant rank-𝑟 component with
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PRACTICAL APPROXIMATION OF A KERNEL MATRIX WITH FEW ENTRY EVALUATIONS 1033

𝑟 > 1 is RPCholesky, which is equivalent to performing diagonal sampling iteratively on the
residual matrix.

Theorem C.3 (Diagonal sampling [28]). Fix 𝑟 ≥ 1 and 𝜀 > 0. Then, diagonal sampling has the
following error properties:

(a) For any psd input matrix 𝑨 ∈ ℂ𝑁×𝑁 , diagonal sampling with

𝑘 ≥ 𝑟 − 1

𝜂
𝜀−1 + 𝜀−1

columns produces an approximation satisfying 𝔼 tr
(
𝑨 − 𝑨(𝑘)

) ≤ (1 + 𝜀) ⋅ tr(𝑨 − ⟦𝑨⟧𝑟).
(b) If 𝑟 ≥ 2, there exists a psd matrix 𝑨 ∈ ℂ𝑁×𝑁 such that diagonal sampling with

𝑘 <
𝑟 − 1

𝜂
(
√
𝜀−1 + 1 − 1)2

columns has error 𝔼 tr
(
𝑨 − 𝑨(𝑘)

)
> (1 + 𝜀) ⋅ tr(𝑨 − ⟦𝑨⟧𝑟).

As usual, we have defined the relative error 𝜂 ∶= tr(𝑨 − ⟦𝑨⟧𝑟)∕ tr(𝑨).
Proof. Part (a) improves on the earlier error bound [28, Equation (4)], and it is proved using a
more detailed argument with the same technique. We assume the sampling is conducted with
replacement, which leads to higher error. The trace-norm error takes the form

tr
(
𝑨 − 𝑨(∶, 𝖲)𝑨(𝖲, 𝖲)†𝑨(𝖲, ∶)

)
= tr

(
𝑨1∕2

(
𝐈 − 𝚷𝑨1∕2(∶,𝖲)

)
𝑨1∕2

)
= ‖𝑨1∕2(𝐈 − 𝚷𝑨1∕2(∶,𝖲)

)‖2F,
where 𝚷𝑨1∕2(∶,𝖲) is the orthogonal projector onto the range of 𝑨1∕2(∶, 𝖲). Since 𝑨1∕2𝚷𝑨1∕2(∶,𝖲) is
the optimal Frobenius norm approximation of 𝑨1∕2 in the row space of 𝑨1∕2(𝖲, ∶), we observe the
inequality

‖‖𝑨1∕2(𝐈 − 𝚷𝑨1∕2(∶,𝖲)

)‖‖2F ≤ ‖‖‖‖‖𝑨1∕2 −
(

𝑟∑
𝑗=1

𝒗𝑗𝒗
∗
𝑗

)(
tr 𝑨

𝑘

𝑘∑
𝑗=1

𝐞𝑠𝑗𝐞
∗
𝑠𝑗

𝑨(𝑠𝑗, 𝑠𝑗)

)
𝑨1∕2

‖‖‖‖‖
2

F

,

where 𝐞𝑠𝑖 is the unit vector in the direction of the 𝑖th random pivot and 𝒗𝑖 denotes the 𝑖th eigen-
vector of 𝑨. Taking transposes and using the orthonormal basis of eigenvectors 𝒗1, … , 𝒗𝑁 , we
calculate ‖‖‖‖‖𝑨1∕2 −

(
𝑟∑
𝑗=1

𝒗𝑗𝒗
∗
𝑗

)(
tr 𝑨

𝑘

𝑘∑
𝑗=1

𝐞𝑠𝑗𝐞
∗
𝑠𝑗

𝑨(𝑠𝑗, 𝑠𝑗)

)
𝑨1∕2

‖‖‖‖‖
2

F

=

𝑟∑
𝑖=1

‖‖‖‖‖𝑨1∕2
(
𝐈 −

tr𝑨

𝑘

𝑘∑
𝑗=1

𝐞𝑠𝑗𝐞
∗
𝑠𝑗

𝑨(𝑠𝑗, 𝑠𝑗)

)
𝒗𝑖

‖‖‖‖‖
2

+

𝑁∑
𝑖=𝑟+1

‖‖𝑨1∕2𝒗𝑖‖‖2
Using the characterization of tr

(
𝑨 − ⟦𝑨⟧𝑟) in terms of the eigenvalues 𝜆1(𝑨) ≥⋯ ≥ 𝜆𝑁(𝑨), we

find
𝑁∑

𝑖=𝑟+1

‖‖𝑨1∕2𝒗𝑖‖‖2 = 𝑁∑
𝑖=𝑟+1

𝜆𝑖(𝑨) = tr
(
𝑨 − ⟦𝑨⟧𝑟)
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1034 CHEN et al.

Next, observe that the random vectors

𝑨1∕2

(
tr 𝑨

𝐞𝑠𝑗𝐞
∗
𝑠𝑗

𝑨(𝑠𝑗, 𝑠𝑗)
𝒗𝑖

)

are independent for 𝑖 = 1, … , 𝑘, and each vector has mean 𝑨1∕2𝒗𝑖 and expected square norm tr 𝑨.
This allows us to calculate

𝔼
‖‖‖‖‖𝑨1∕2

(
𝐈 −

tr𝑨

𝑘

𝑘∑
𝑗=1

𝐞𝑠𝑗𝐞
∗
𝑠𝑗

𝑨(𝑠𝑗, 𝑠𝑗)

)
𝒗𝑖

‖‖‖‖‖
2

=
tr𝑨 − 𝜆𝑖(𝑨)

𝑘
.

Summing over 𝑖 = 1, … , 𝑟 guarantees the error bound

𝔼 tr
(
𝑨 − 𝑨(𝒌)

) ≤ 𝑟 − 1

𝑘
tr𝑨 +

(
1 +

1

𝑘

)
tr(𝑨 − ⟦𝑨⟧𝑟),

which completes part (a) of the theorem.
To prove part (b), we assume the sampling is conducted without replacement and consider the

𝑁 ×𝑁 matrix

𝑨 =

⎡⎢⎢⎢⎢⎣
𝑩

⋱

𝑩

𝑪

⎤⎥⎥⎥⎥⎦
, where 𝑩 =

⎡⎢⎢⎢⎢⎣
1 𝛿 ⋯ 𝛿

𝛿 1 ⋯ 𝛿

⋮ ⋮ ⋱ ⋮

𝛿 𝛿 ⋯ 1

⎤⎥⎥⎥⎥⎦
⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟

𝑀×𝑀

, 𝑪 =

⎡⎢⎢⎢⎢⎣
1 1 ⋯ 1

1 1 ⋯ 1

⋮ ⋮ ⋱ ⋮

1 1 ⋯ 1

⎤⎥⎥⎥⎥⎦
⏟⎴⎴⎴⏟⎴⎴⎴⏟

𝑁−𝑀(𝑟−1)×𝑁−𝑀(𝑟−1)

.

Next, consider the rank-𝑘Nyströmapproximation𝑨(𝑘) that selects𝑘1 columns from the first block,
𝑘2 columns from the second block, and so forth. The Schur complement of 𝑩 with respect to any
𝑘𝑖 distinct columns has trace

(𝑀 − 𝑘𝑖)

(
1 +

1

𝛿−1 + 𝑘𝑖 − 1

)
(1 − 𝛿).

Using the fact tr(𝑨 − ⟦𝑨⟧𝑟) = (1 − 𝛿)(𝑟 − 1)(𝑀 − 1), we calculate

tr(𝑨 − 𝑨(𝑘))

tr(𝑨 − ⟦𝑨⟧𝑟) ≥ 1

𝑟 − 1

𝑟−1∑
𝑖=1

𝑀 − 𝑘𝑖
𝑀 − 1

(
1 +

1

𝛿−1 + 𝑘𝑖 − 1

)
.

We use the convexity of 𝑓(𝑥) = 1

𝑥
and the fact that 𝔼𝑘𝑖 =

𝑀𝑘

𝑁
for 1 ≤ 𝑖 ≤ 𝑟 − 1, calculate

𝔼 tr(𝑨 − 𝑨(𝑘))

tr(𝑨 − ⟦𝑨⟧𝑟) ≥ 𝑀 − 𝑘

𝑀 − 1

(
1 +

1

𝛿−1 +
𝑀𝑘

𝑁
− 1

)
.

The worst case occurs when we take 𝛿 =
√

𝜀

𝜀+1
and let the dimensions𝑀 and𝑁 grow to infinity,

with fixed aspect ratio. Then, we use the identity 𝜂𝑁 = (𝑟 − 1)(𝑀 − 1)(1 − 𝛿) to show that the
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PRACTICAL APPROXIMATION OF A KERNEL MATRIX WITH FEW ENTRY EVALUATIONS 1035

right-hand side converges

𝑀 − 𝑘

𝑀 − 1

(
1 +

1

𝛿−1 +
𝑀𝑘

𝑁
− 1

)
→ 1 +

1

𝛿−1 +
𝑘𝜂

(𝑟−1)(1−𝛿)
− 1

To make this quantity smaller than 1 + 𝜀, uniform sampling requires at least

𝑘 ≥ (𝑟 − 1)(1 − 𝛿)

𝜂

[
𝜀−1 + 1 − 𝛿−1

]
=
𝑟 − 1

𝜂
(
√
𝜀−1 + 1 − 1)2

columns. This completes the proof of part (b). □

C.4 Determinantal point process sampling
Determinantal point process (DPP) sampling [17] is a column Nyström approximation method
that selects a pivot set of cardinality |𝖲| = 𝑘 according to the distribution

ℙ
{
𝖲 = {𝑠1, … , 𝑠𝑘}

}
=

det𝑨(𝖲, 𝖲)∑|𝖲′|=𝑘 det𝑨(𝖲′, 𝖲′) . (C.1)

DPP sampling has nearly optimal (𝑟, 𝜀)-approximation properties, aswewill show inTheoremC.4.
However, implementing DPP sampling for large 𝑘 values remains expensive relative to peer
methods [4, 18].
In the DPP sampling literature, there is a surprising connection between RPCholesky and 𝑘-

DPP sampling: when we apply 𝑘 steps of RPCholesky to a rank-𝑘 orthogonal projection matrix,
we obtain exactly the same distribution as 𝑘-DPP sampling [30, 47]. This observation leads to
one of the standard strategies for 𝑘-DPP sampling, based on a reduction to rank-𝑘 orthogonal
projection matrices [38]:

1. Calculate the full eigendecomposition of the target matrix.
2. Randomly select a set of 𝑘 eigenvectors with probability proportional to the product of the 𝑘

associated eigenvalues.
3. Form the orthogonal projection matrix using the 𝑘 eigenvectors.
4. Apply RPCholesky to the projection matrix to obtain the set 𝖲.

In step 1, the full eigendecomposition requires (𝑁3) operations. It is much cheaper to apply
RPCholesky directly, which is equivalent to performing 1-DPP sampling iteratively on the
residual matrix.

Theorem C.4 (𝑘-DPP sampling [11, 35]). Fix 𝑟 ≥ 1 and 𝜀 > 0. Then, the Nyström approximation
produced by 𝑘-DPP sampling has the following properties:

(a) For any psd input matrix 𝑨 ∈ ℂ𝑁×𝑁 , 𝑘-DPP sampling with

𝑘 ≥ 𝑟∕𝜀 + 𝑟 − 1
columns produces an approximation satisfying 𝔼 tr

(
𝑨 − 𝑨(𝑘)

) ≤ (1 + 𝜀) ⋅ tr(𝑨 − ⟦𝑨⟧𝑟).
(b) There exists a psd matrix 𝑨 ∈ ℂ𝑁×𝑁 such that 𝑘-DPP sampling with

𝑘 < 𝑟∕𝜀 + 𝑟 − 1

columns leads to error 𝔼 tr
(
𝑨 − 𝑨(𝑘)

)
> (1 + 𝜀) ⋅ tr

(
𝑨 − ⟦𝑨⟧𝑟).
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1036 CHEN et al.

Proof. These results were essentially proved in [11, Theorem 1] and [35], but for completeness
we provide a streamlined derivation here. Let 𝑨∕𝑨(𝖲, 𝖲) denote the Schur complement of 𝑨 with
respect to the coordinates 𝖲 = {𝑠1, … , 𝑠𝑘}. Recall the Crabtree–Haynsworth determinant identity
[16, Lem. 1]:

(𝑨∕𝑨(𝖲, 𝖲))(𝑖, 𝑗) =
det𝑨(𝖲 ∪ {𝑖}, 𝖲 ∪ {𝑗})

det 𝑨(𝖲, 𝖲)
(C.2)

for 𝑖, 𝑗 ∉ 𝖲. Also recall the determinant identity [35, Lem. 2.1]:∑
|𝖲|=𝑘 det 𝑨(𝖲, 𝖲) = 𝑒𝑘(𝜆1(𝑨), … , 𝜆𝑁(𝑨)), (C.3)

where

𝑒𝑘(𝜆1(𝑨), … , 𝜆𝑁(𝑨)) =
∑
|𝖲|=𝑘

∏
𝑖∈𝖲

𝜆𝑖(𝑨)

is the 𝑘th elementary symmetric polynomial evaluated on the eigenvalues of 𝑨. Using (C.2) and
(C.3), we can calculate the error of 𝑘-DPP sampling exactly:

𝔼 tr(𝑨 − 𝑨(𝑘)) =

∑|𝖲|=𝑘 det𝑨(𝖲, 𝖲) tr(𝑨∕𝑨(𝖲, 𝖲))∑|𝖲′|=𝑘 det 𝑨(𝖲′, 𝖲′) =

∑|𝖲|=𝑘∑𝑖∉𝖲
det 𝑨(𝖲 ∪ {𝑖}, 𝖲 ∪ {𝑖})∑|𝖲′|=𝑘 det 𝑨(𝖲′, 𝖲′)

= (𝑘 + 1)

∑|𝖲|=𝑘+1 det𝑨(𝖲, 𝖲)∑|𝖲′|=𝑘 det 𝑨(𝖲′, 𝖲′) = (𝑘 + 1)
𝑒𝑘+1(𝜆1(𝑨), … , 𝜆𝑁(𝑨))

𝑒𝑘(𝜆1(𝑨), … , 𝜆𝑁(𝑨))
,

Remarkably, this error is the same for a diagonal and non-diagonal matrix, so we might as well
assume 𝑨 is diagonal. Next, as noted by [35], the function

𝑓(𝑥1, … , 𝑥𝑁) =
𝑒𝑘+1(𝑥1, … , 𝑥𝑁)

𝑒𝑘(𝑥1, … , 𝑥𝑁)

is concave, non-decreasing in all of its arguments, and invariant under permutations of its argu-
ments. Therefore, averaging together some of the arguments cannot decrease the value of 𝑓. For
every (𝑥1, … , 𝑥𝑁), it follows that

𝑓(𝑥1, … , 𝑥𝑁) ≤ 𝑓
(

𝑟∑
𝑖=1

𝑥𝑖
𝑟
, … ,

𝑟∑
𝑖=1

𝑥𝑖
𝑟

⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟
𝑟 times

,

𝑁∑
𝑖=𝑟+1

𝑥𝑖
𝑁 − 𝑟

,… ,

𝑁∑
𝑖=𝑟+1

𝑥𝑖
𝑁 − 𝑟

⏟⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⏟
𝑁−𝑟 times

)

Additionally, for every (𝑎, 𝑟, 𝑏, 𝑁),

𝑓
(𝑎
𝑟
, … ,

𝑎

𝑟
⏟⎴⏟⎴⏟
𝑟 times

,
𝑏

𝑁 − 𝑟
,… ,

𝑏

𝑁 − 𝑟
⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟

𝑁−𝑟 times

)
= 𝑓

(𝑎
𝑟
, … ,

𝑎

𝑟
⏟⎴⏟⎴⏟
𝑟 times

,
𝑏

𝑁 − 𝑟
,… ,

𝑏

𝑁 − 𝑟
⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟

𝑁−𝑟 times

, 0
)

≤ 𝑓(𝑎
𝑟
, … ,

𝑎

𝑟
⏟⎴⏟⎴⏟
𝑟 times

,
𝑏

𝑁 − 𝑟 + 1
,… ,

𝑏

𝑁 − 𝑟 + 1
⏟⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⏟

𝑁−𝑟+1 times

)
.
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PRACTICAL APPROXIMATION OF A KERNEL MATRIX WITH FEW ENTRY EVALUATIONS 1037

Consequently, 𝑘-DPP sampling achieves the worst-case error for the diagonal matrix

𝑨 = diag
(𝑎
𝑟
, … ,

𝑎

𝑟
⏟⎴⏟⎴⏟
𝑟 times

,
𝑏

𝑁 − 𝑟
,… ,

𝑏

𝑁 − 𝑟
⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟

𝑁−𝑟 times

)
(C.4)

in the limit as 𝑎 → ∞ and 𝑁 → ∞. Assuming diagonal 𝑨 and 𝑘 ≥ 𝑟, the dominant error arises
when 𝑘-DPP sampling selects just 𝑟 − 1 of the 𝑟 large diagonal entries. The error is explicitly

lim
𝑁,𝑎→∞

𝑓
(𝑎
𝑟
, … ,

𝑎

𝑟
⏟⎴⏟⎴⏟
𝑟 times

,
𝑏

𝑁 − 𝑟
,… ,

𝑏

𝑁 − 𝑟
⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟

𝑁−𝑟 times

)
= lim
𝑁,𝑎→∞

[
𝑏 +

𝑎

𝑟
⋅

( 𝑟

𝑟−1

)( 𝑁−𝑟

𝑘−𝑟+1

)(𝑎
𝑟

)𝑟−1( 𝑏

𝑁−𝑟

)𝑘−𝑟+1
(𝑟
𝑟

)(𝑁−𝑟
𝑘−𝑟

)(𝑎
𝑟

)𝑟( 𝑏

𝑁−𝑟

)𝑘−𝑟
]

=
(
1 +

𝑟

𝑘 − 𝑟 + 1

)
𝑏,

whence

𝔼 tr(𝑨 − 𝑨(𝑘)) ≤ (
1 +

𝑟

𝑘 − 𝑟 + 1

)
𝑏.

Because this is an explicit expression for the worst-case error, setting 𝑘 ≥ 𝑟

𝜀
+ 𝑟 − 1 always guar-

antees an (𝑟, 𝜀)-approximation. Conversely, when 𝑘 < 𝑟

𝜀
+ 𝑟 − 1, 𝑘-DPP sampling fails to produce

an (𝑟, 𝜀)-approximation for a diagonal matrix of the form (C.4) with 𝑁 and 𝑎 chosen sufficiently
high. □

C.5 Ridge leverage score sampling
Ridge leverage score (RLS) sampling [2, 13, 45, 56] is a Nyström approximation with a sampling
distribution that is potentially more tractable than in DPP sampling. To perform RLS sampling
with parameter 𝜆 > 0, we first introduce the vector of ridge leverage scores:

𝓵𝜆 = diag(𝑨(𝑨 + 𝜆𝐈)−1). (C.5)

Then, we calculate the vector of sampling probabilities [45]:

𝒑 = min
{
1, 𝑓 ⋅ 𝓵𝜆

}
,

where 𝑓 > 1 is the oversampling factor. Last, we generate the coordinate set 𝖲 ⊆ {1, … ,𝑁} by inde-
pendently including each index 𝑖 with probability 𝒑(𝑖). The available implementations of RLS
sampling [13, 45, 56] are all fairly complicated, as they require selecting parameters 𝜆 and 𝑓 and
approximating the resulting RLS sampling distribution. Because of these preprocessing steps, RLS
sampling requires a significantly higher number of entry evaluations than RPCholesky for a
fixed approximation rank 𝑘. In practice, we have found that RLS is also less reliable.
In 2017, Musco & Musco analyzed RLS sampling and proved it produces good low-rank

approximations at moderate cost. Here is a slightly simplified version of one of their results [45,
Theorem 18]:

TheoremC.5 (Ridge leverage score sampling: probability bound [45]). For any psdmatrix𝑨, there
exist parameters 𝜆, 𝑓 > 0 such that RLS sampling produces a columnNyströmapproximation𝑨 such
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1038 CHEN et al.

that

tr(𝑨 − 𝑨) ≤ (1 + 𝜀) tr(𝑨 − ⟦𝑨⟧𝑟) with probability at least 1 − 𝛿. (C.6)

The matrix 𝑨 has rank

𝑘 = (𝑟
𝜀
log

( 𝑟
𝛿𝜀

))
. (C.7)

This result is not directly comparable to our (𝑟, 𝜀)-approximation guarantees for RPCholesky
because the error bound (C.6) controls the trace-norm error up to a failure probability rather
than in expectation. In addition, the Musco–Musco result does not have explicit constants for
the approximation rank 𝑘.
To obtain results for RLS sampling that are directly comparable to our own, we reanalyzed

RLS sampling, resulting in Theorem C.6 below. Our proof, following [45, Theorem 3], uses the
matrix Bernstein inequality to show that ℙ{‖𝑨 − 𝑨‖ > 𝜆} decreases exponentially fast as we
increase the oversampling 𝑓. By appropriately choosing 𝜆 and 𝑓, we are able to guarantee an (𝑟, 𝜀)-
approximation. Our resulting error bounds for RLS sampling in Theorem C.6 depend primarily
on 𝑟 + 𝑟∕𝜀, similar to the bounds for DPP sampling. In order to pass from the probability bound
(C.6) to an expectation bound (2.8), the approximation rank 𝑘 acquires a logarithmic dependence
on the inverse relative error 1∕𝜂.

Theorem C.6 (Ridge leverage score sampling: expectation bound, explicit constants). Fix 𝑟 ≥ 1
and 𝜀 > 0. For any psd input matrix 𝑨 ∈ ℂ𝑁×𝑁 , the approximation 𝑨 produced by RLS sampling
with parameters

𝜆 =
𝜀

2𝑟
tr(𝑨 − ⟦𝑨⟧𝑟) and 𝑓 = 27 log

(4
𝜂

(
𝑟 +

𝑟

𝜀

))
has the following error properties:

(a) With probability at least 1 − 𝜀𝜂∕2, the Nyström approximation 𝑨 satisfies

tr
(
𝑨 − 𝑨

)
tr(𝑨 − ⟦𝑨⟧𝑟) ≤ 1 + 𝜀

2
. rank𝑨 ≤ 65(𝑟 + 𝑟

𝜀

)
log

(4
𝜂

(
𝑟 +

𝑟

𝜀

))
.

(b) Define the truncation rank

𝑘 = 65
(
𝑟 +

𝑟

𝜀

)
log

(4
𝜂

(
𝑟 +

𝑟

𝜀

))
,

and set 𝑨(𝑘) = 𝑨 if rank𝑨 ≤ 𝑘 and 𝑨(𝑘) = 𝟎 otherwise. Then, 𝑨(𝑘) is a Nyström approximation
with rank at most 𝑘, which satisfies 𝔼 tr

(
𝑨 − 𝑨(𝑘)

) ≤ (1 + 𝜀) ⋅ tr(𝑨 − ⟦𝑨⟧𝑟).
As usual, we have defined the relative error 𝜂 ∶= tr(𝑨 − ⟦𝑨⟧𝑟)∕ tr(𝑨).
Proof. To prove part (a), we start by bounding the rank of the Nyström approximation.We observe
rank𝑨 ≤ |𝖲|, where 𝖲 denotes the set of indices sampled using RLS sampling. From the descrip-
tion of RLS sampling, |𝖲| is the sum of independent Bernoulli random variables, with expected
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PRACTICAL APPROXIMATION OF A KERNEL MATRIX WITH FEW ENTRY EVALUATIONS 1039

value

𝔼|𝖲| = 𝑁∑
𝑖=1

𝒑(𝑖) ≤ 𝑓
𝑁∑
𝑖=1

𝓵𝜆(𝑖).

The sum of the leverage scores
∑𝑁

𝑖=1
𝓁𝜆
𝑖
is bounded by

𝑁∑
𝑖=1

𝓵𝜆(𝑖) = tr
(
𝑨
(
𝑨 + 𝜆𝐈

)−1)
=

𝑁∑
𝑖=1

𝜆𝑖(𝑨)

𝜆 + 𝜆𝑖(𝑨)
≤ 𝑟 + 1

𝜆

∑
𝑖>𝑟

𝜆𝑖(𝑨) ≤ 2
(
𝑟 +

𝑟

𝜀

)
, (C.8)

where we have substituted 𝜆 = 𝜀
∑
𝑖>𝑟
𝜆𝑖(𝑨)∕(2𝑟). It follows that 𝔼|𝖲| ≤ 𝑡, where

𝑡 = 54
(
𝑟 +

𝑟

𝜀

)
log

(4
𝜂

(
𝑟 +

𝑟

𝜀

))
.

We apply Chernoff’s inequality [65, Theorem 2.3.1] with 𝛿 ≈ 0.199 to yield

ℙ
{|𝖲| > (1 + 𝛿)𝑡} < e−𝔼|𝖲|

(
e 𝔼|𝖲|
(1 + 𝛿)𝑡

)(1+𝛿)𝑡

≤ e−𝑡
(

e 𝑡

(1 + 𝛿)𝑡

)(1+𝛿)𝑡

= e−𝑡∕54 ≤ 𝜀𝜂

4
.

With probability at least 1 − 𝜀𝜂∕4, we have shown

rank𝑨 ≤ (1 + 𝛿)𝑡 ≤ 65(𝑟 + 𝑟

𝜀

)
log

(4
𝜂

(
𝑟 +

𝑟

𝜀

))
.

Next, we bound the spectral norm approximation error ‖𝑨 − 𝑨‖. To that end, consider the
random rank-one matrices

𝑿𝑖 =

{( 1

𝒑(𝑖)
− 1

)
𝑩(∶, 𝑖)𝑩(𝑖, ∶) 𝑖 ∈ 𝖲,

−𝑩(∶, 𝑖)𝑩(𝑖, ∶), 𝑖 ∉ 𝖲,
where 𝑩 = 𝑨1∕2(𝑨 + 𝜆𝐈)−1∕2.

Each matrix 𝑿𝑖 is mean-zero for 1 ≤ 𝑖 ≤ 𝑁. The matrix 𝑿𝑖 is exactly zero if the 𝑖th leverage score
𝓁𝜆
𝑖
is as large or larger than 1∕𝑓. Otherwise, the matrix 𝑿𝑖 is bounded from above by

𝜆max(𝑿𝑖) ≤ 1

𝒑(𝑖)
‖𝑩(∶, 𝑖)𝑩(𝑖, ∶)‖ = 1

𝒑(𝑖)
𝓵𝜆(𝑖) =

1

𝑓
.

and bounded from below by

𝜆min(𝑿𝑖) ≥ −‖𝑩(∶, 𝑖)𝑩(𝑖, ∶)‖ = −𝓵𝜆(𝑖) ≥ − 1𝑓 .
Hence, ‖𝑿𝒊‖ ≤ 1∕𝑓. We upper bound the variance of∑𝑁

𝑖=1
𝑿𝑖 as

𝑁∑
𝑖=1

𝔼𝑿2
𝑖
=

∑
𝓵𝜆(𝑖)<1∕𝑓

(
1

𝒑(𝑖)
− 1

)
𝑩(∶, 𝑖)𝑩(𝑖, ∶)𝑩(∶, 𝑖)𝑩(𝑖, ∶)

⪯
∑

𝓵𝜆(𝑖)<1∕𝑓

1

𝒑(𝑖)
𝓵𝜆(𝑖)𝑩(∶, 𝑖)𝑩(𝑖, ∶) ⪯

1

𝑓
𝑨(𝑨 + 𝜆𝐈)−1
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1040 CHEN et al.

By increasing the largest eigenvalue of the right-hand side to 1∕𝑓, we obtain a right-hand
side matrix with spectral norm 1∕𝑓 and trace at most 1

𝑓

(∑𝑁

𝑖=1
𝓵𝜆(𝑖) + 1

)
. Therefore, the matrix

Bernstein inequality [62, Theorem 7.7.1] gives

ℙ

{
𝜆min

(
𝑁∑
𝑖=1

𝑿𝑖

)
< −

1

2

}
≤ 4

(
𝑁∑
𝑖=1

𝓵𝜆(𝑖) + 1

)
exp

(
−
3

28
𝑓

)
<
𝜀𝜂

4
.

Here, we have used the fact that

28

3
log

(
16

𝜀𝜂

(
𝑁∑
𝑖=1

𝓵𝜆(𝑖) + 1

))
≤ 𝑓 = 27 log

(
4

𝜂

(
𝑟 +

𝑟

𝜀

))
,

which can be shown by a direct calculation using (C.8).With probability at least 1 − 𝜀𝜂∕4, we have
shown that −1

2
𝐈 ⪯

∑𝑁

𝑖=1
𝑿𝑖 . By multiplying both sides with (𝑨 + 𝜆𝐈)1∕2, we obtain

−
1

2
(𝑨 + 𝜆𝐈) ⪯ (𝑨 + 𝜆𝐈)1∕2

(
𝑁∑
𝑖=1

𝑿𝑖

)
(𝑨 + 𝜆𝐈)1∕2.

Using the definition of 𝑿𝑖 , the right-hand side is exactly
∑
𝑖∈𝖲

1

𝒑(𝑖)
𝑨1∕2(∶, 𝑖)𝑨1∕2(𝑖, ∶) − 𝑨. Hence,

we can simplify the expression to yield

𝑨 ⪯ 2
∑
𝑖∈𝖲

1

𝒑(𝑖)
𝑨1∕2(∶, 𝑖)𝑨1∕2(𝑖, ∶) + 𝜆𝐈.

By multiplying both sides with the orthogonal projection 𝐈 − 𝚷𝑨1∕2(∶,𝖲), we obtain

(𝐈 − 𝚷𝑨1∕2(∶,𝖲))𝑨(𝐈 − 𝚷𝑨1∕2(∶,𝖲)) ⪯ 𝜆(𝐈 − 𝚷𝑨1∕2(∶,𝖲)).

The right-hand side is bounded from above by 𝜆𝑰, so we have shown ‖(𝐈 − 𝚷𝑨1∕2(∶,𝖲))𝑨(𝐈 −

𝚷𝑨1∕2(∶,𝖲))‖ ≤ 𝜆. By considering the singular value decomposition for (𝐈 − 𝚷𝑨1∕2(∶,𝖲))𝑨
1∕2, we

arrive at the spectral norm error bound

‖𝑨 − 𝑨‖ = ‖𝑨1∕2(𝐈 − 𝚷𝑨1∕2(∶,𝖲))𝑨
1∕2‖ = ‖(𝐈 − 𝚷𝑨1∕2(∶,𝖲))𝑨(𝐈 − 𝚷𝑨1∕2(∶,𝖲))‖ ≤ 𝜆.

We can convert the spectral-norm error bound into a trace-norm error bound by calculating

tr(𝑨 − 𝑨) =

𝑁∑
𝑖=1

𝜆𝑖(𝑨 − 𝑨) ≤ 𝑟𝜆 +
𝑁∑

𝑖=𝑟+1

𝜆𝑖(𝑨) =
(
1 +

𝜀

2

)
⋅ tr(𝑨 − ⟦𝑨⟧𝑟).

Here, we have used the Weyl monotonicity principle [71, Theorem 8.11], which guarantees that
𝜆𝑖(𝑨 − 𝑨) ≤ 𝜆𝑖(𝑨) for 1 ≤ 𝑖 ≤ 𝑁 since 𝑨 ⪰ 𝟎. This completes the proof of part (a).
To prove part (b), we consider the failure event which occurs when the rank or spectral norm

approximation error exceeds the bounds in part (b). Even on the failure event, the trace-norm
error is bounded by

tr(𝑨 − 𝑨(𝑘)) ≤ tr 𝑨.
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PRACTICAL APPROXIMATION OF A KERNEL MATRIX WITH FEW ENTRY EVALUATIONS 1041

Since the failure event can only occur with probability (𝜀𝜂)∕2, we arrive at the conclusion

𝔼 tr
(
𝑨 − 𝑨(𝑘)

)
= 𝔼

[
tr
(
𝑨 − 𝑨(𝑘)

)
𝟙{success}

]
+ 𝔼

[
tr
(
A − A(k)

)
𝟙{failure}

]
≤ (

1 +
𝜀

2

)
⋅ tr(𝑨 − ⟦𝑨⟧𝑟) + 𝜀

2
⋅ tr(𝑨 − ⟦𝑨⟧𝑟)

This completes the proof of part (b). □

 10970312, 2025, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22234, W

iley O
nline L

ibrary on [10/03/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense


	Randomly pivoted Cholesky: Practical approximation of a kernel matrix with few entry evaluations
	Abstract
	1 | MOTIVATION
	1.1 | Plan for paper
	1.2 | Notation

	2 | RANDOMLY PIVOTED CHOLESKY
	2.1 | Nyström approximation of a psd matrix
	2.2 | The pivoted partial Cholesky algorithm
	2.3 | Pivot selection rules
	2.3.1 | Greedy pivoting
	2.3.2 | Uniform random pivoting
	2.3.3 | Adaptive random pivoting
	2.3.4 | Pivoting with a Gibbs distribution

	2.4 | Numerical results: Illustrative examples
	2.5 | Numerical results: Real data
	2.6 | Theoretical results

	3 | HISTORY, RELATED WORK, AND EXTENSIONS
	3.1 | Nyström approximations and projection approximations
	3.2 | Partial Cholesky and partial QR
	3.3 | Pivot rules
	3.4 | Blocking
	3.5 | Randomly pivoted QR: Origins
	3.6 | Randomly pivoted QR: Theory
	3.7 | Randomly pivoted QR: Empirical work
	3.8 | Randomly pivoted Cholesky: Origins
	3.9 | Comparison with random Fourier features

	4 | APPLICATIONS TO KERNEL MACHINE LEARNING
	4.1 | Kernel methods: Basics
	4.2 | Kernel ridge regression
	4.2.1 | Functional regression
	4.2.2 | Restricted KRR via RPCholesky
	4.2.3 | QM9 data

	4.3 | Kernel spectral clustering
	4.3.1 | Kernel clustering
	4.3.2 | Accelerated kernel clustering via RPCholesky
	4.3.3 | Alanine dipeptide trajectories
	4.3.4 | Comparison with neural networks


	5 | THEORETICAL ANALYSIS OF RPCHOLESKY
	5.1 | Proof of Theorem 5.1
	5.2 | Proof of Lemma 5.3
	5.3 | Proof of Lemma 5.4
	5.3.1 | Step 1: Reduction to diagonal case
	5.3.2 | Step 2: Identification of worst-case matrix
	5.3.3 | Step 3: Dynamics of the error
	5.3.4 | Step 4: Comparison with continuous-time dynamics

	5.4 | Proof of Lemma 5.5

	6 | CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	APPENDIX A: DETAILS OF NUMERICAL EXPERIMENTS
	APPENDIX B: PSEUDOCODE FOR QR METHODS
	APPENDIX C: COMPARISON WITH OTHER METHODS
	C.1 | Lower bound
	C.2 | The greedy method
	C.3 | Uniform sampling
	C.4 | Determinantal point process sampling
	C.5 | Ridge leverage score sampling



