
PRX QUANTUM 2, 040305 (2021)

Concentration for Random Product Formulas

Chi-Fang Chen,1,*,† Hsin-Yuan Huang,2,3,† Richard Kueng,2,3,4 and Joel A. Tropp3

1
Department of Physics, Caltech, Pasadena, California, USA

2
Institute for Quantum Information and Matter, Caltech, Pasadena, California, USA

3
Department of Computing and Mathematical Sciences, Caltech, Pasadena, California, USA

4
Institute for Integrated Circuits, Johannes Kepler University Linz, Austria

 (Received 25 February 2021; accepted 30 August 2021; published 7 October 2021)

Quantum simulation has wide applications in quantum chemistry and physics. Recently, scientists have
begun exploring the use of randomized methods for accelerating quantum simulation. Among them, a
simple and powerful technique, called QDRIFT, is known to generate random product formulas for which
the average quantum channel approximates the ideal evolution. QDRIFT achieves a gate count that does
not explicitly depend on the number of terms in the Hamiltonian, which contrasts with Suzuki formulas.
This work aims to understand the origin of this speedup by comprehensively analyzing a single realization
of the random product formula produced by QDRIFT. The main results prove that a typical realization
of the randomized product formula approximates the ideal unitary evolution up to a small diamond-norm
error. The gate complexity is already independent of the number of terms in the Hamiltonian, but it depends
on the system size and the sum of the interaction strengths in the Hamiltonian. Remarkably, the same
random evolution starting from an arbitrary, but fixed, input state yields a much shorter circuit suitable
for that input state. In contrast, in deterministic settings, such an improvement usually requires initial
state knowledge. The proofs depend on concentration inequalities for vector and matrix martingales, and
the framework is applicable to other randomized product formulas. Our bounds are saturated by certain
commuting Hamiltonians.
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I. INTRODUCTION

Simulating complex quantum systems is one of the most
promising applications for quantum computers. This task
has many applications, such as developing new pharma-
ceuticals, catalysts, and materials [1–3], as well as solving
linear algebra problems [4–6]. The task of digital quan-
tum (dynamics) simulation can be phrased as a compiling
problem: approximate a given unitary, say a Hamiltonian
evolution U = e−iHt, by a product of “simple” unitaries gk:

U = e−iHt ≈ V = g1 · · · gN . (1)

Such a decomposition into elementary gates should obey
two conditions. (i) It should accurately approximate the
target unitary. In this work, we require that the error in
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operator norm [7] satisfies ‖U − V‖ ≤ ε for some specified
accuracy parameter ε. Moreover, (ii) the decomposition
should cost as little as possible. Several cost functions
make sense in this context, but we focus on the gate com-
plexity, i.e., the number N of simple gates [8] on the
right-hand side of Eq. (1).

The earliest compilation procedures for quantum simu-
lation were based on product formulas [9,10], also known
as Trotterization, or splitting methods. They depend on the
idea of approximating the matrix exponential of a sum by
a product of matrix exponentials.

We review one such construction below in Eq. (2).
Subsequently, alternative principles have led to the devel-
opment of other quantum simulation algorithms. These
include linear combination of unitaries [11], quantum
signal processing [12], and qubitization [13]. By and
large, these algorithms rely on more powerful quantum-
computing primitives to yield improved performance in
accuracy and cost. We refer to Ref. [14] for a systematic
review.

Despite these advanced simulation techniques, prod-
uct formulas have recently undergone a renaissance
[12,15–19]. They are not only simple and (compara-
tively) easy to implement on near-term devices, but they
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also remain very competitive [19] provided that they
incorporate information about the structure of the prob-
lem, such as initial state knowledge [20], locality [21], or
the commutator structure of the Hamiltonian [19]. The pur-
pose of this paper is to explore the randomized aspects of
constructing product formulas.

We begin by reviewing the first-order Lie-Trotter for-
mula, which is later contrasted with a randomized variant
(QDRIFT). To that end, consider a quantum many-body
Hamiltonian H = ∑L

j =1 hj composed of L simple terms
hj . The first-order formula cycles through each term in the
Hamiltonian

U ≈ {exp [−i(tL/N )hL] · · · exp [−i(tL/N )h1]}N/L. (2)

To approximate the target unitary U up to accuracy ε in
operator norm, a total gate count N = O(Lλ2t2/ε) suffices
[22] [19, Sec. 3]. In this expression, t is the simulation
time, L is the number of terms, and λ = ∑

j

∥
∥hj

∥
∥ summa-

rizes the interaction strengths within H . The main idea is
to cancel out the leading-order term in the Taylor expan-
sion by including each of the L terms. Owing to this
construction, the factor L remains in higher-order Suzuki
formulas where the gate count N = O[L(λt)1+o(1)/εo(1)],

TABLE I. Error-bound comparison QDRIFT versus pth order
Suzuki formulas [19]. We consider systems with spatially local
interaction in d dimension, power-law interaction in d dimen-
sion, and all-to-all k-local interaction. Mutiplicative overhead
depending only on p , k,α, d, log(n) are dropped, and practically
we may think of p = 4 or 6. The t2-dependence sets a time scale
before which QDRIFT yields an advantage. For geometrically
local Hamiltonians, the Suzuki formulas are effectively tight [21]
[Exploiting locality, Ref. [21] further removes the o(1) depen-
dence], while QDRIFT already performs poorly after very short
times [t ∼ O(1/n)]. However, once L gets very large, such as
in k-local models, there are physically relevant time scales t =
O[n(k−3)/2] where QDRIFT becomes advantageous. Note that
normalization conventions do affect the gate count substantially.
For systems with random coefficients (e.g., SYK-like), one typ-
ically fixes

∑
j

∥
∥hj

∥
∥2 = n [27,29]. But other conventions, like

fixing λ = ∑
j

∥
∥hj

∥
∥ = n, are also widespread [30]. We refer to

Appendix A for detailed calculations.

qDRIFT pth order Suzuki [19] Systems

λ2t2/ε L|||H |||1λ1/p t1+1/p/ε1/p General
n2t2/ε n1+(1/p)t1+1/pε1/p Nearest neighbor

Power law (1/rα)
n2t2/ε (nt)1+1/p+d/α−d/ 2d ≤ α

εd/α−d+1/p

n2t2/ε n2+(1/p)t1+1/p/ε1/p d ≤ α ≤ 2d
n4−2(α/d)t2/ε n3−α/d+(2−α/d)/p t1+1/p/ 0 ≤ α ≤ d

ε1/p k local
nk+1t2/ε n3k−1/2+(k+1/2p) ‖hj ‖ = O

(√
1/nk−1

)

t1+1/p/ε1/p

n2t2/ε nk+(1/p)t1+1/p/ε1/p ‖hj ‖ = O (
1/nk−1

)

even though the time dependence becomes nearly optimal.
We refer to Table I for a sharper gate count incorporating
commutators. Recently, researchers started using random-
ization to improve the performance of product formu-
las [17,18,23,24]. Campbell [17] introduced the QDRIFT
algorithm, which approximates the target evolution U =
e−iHt by a quantum channel that results from averaging
products VN · · · V1 of random unitaries. Each Vk corre-
sponds to a short-time evolution based on a single term
hK from the Hamiltonian. The index K is selected ran-
domly, according to an importance sampling distribution
(p1, . . . , pL), constructed to match the leading order of time
step

E [Vk] ≈ exp{−i(t/N )E [hK/pK ]} = U1/N .

This approximation is achieved by averaging over a sin-
gle (random) unitary. [In contrast, the first-order Suzuki
formula (2) must cycle through all terms, which incurs an
extra L-factor.] Independence among the Vk’s then ensures

E [VN · · · V1] = E [VN ] · · · E [V1] ≈ (
U1/N )N = U.

Campbell proved that the averaged Hamiltonian approxi-
mates the true Hamiltonian when the gate count satisfies

N = O(λ2t2/ε). (3)

Observe that the gate count is independent of the number of
terms L in the Hamiltonian. A summary of this procedure
is as follows.

Algorithm 0.1: (QDRIFT)

Inputs: Hamiltonian H = ∑L
j =1 hj with interac-

tion strength λ = ∑
j ‖hj ‖, evolution time t, and

number of steps N .
At each t/N interval: evolve a random term in

Hamiltonian

Vk = exp[−i(t/N )Xk] (4)

according to its importance

Xk
IID∼ X =

⎧
⎪⎪⎨

⎪⎪⎩

λ
‖h1‖h1 with prob. p1 = ‖h1‖

λ

...
λ

‖hL‖hL with prob. pL = ‖hL‖
λ

.

Output: the unstructured (randomly generated)
product formula

V(N ) = VN · · · V1.
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Operationally, Campbell considers a black box that
applies a new random product VN · · · V1 of unitaries every
time it is invoked. The average of all possible product
formulas is V (N )(X ) = E[VN · · · V1XV†

1 · · · V†
N ] and forms

a completely positive trace-preserving (CPTP) map. The
ideal unitary also forms a CPTP map given by U(X ) =
UXU†. Campbell proves that Eq. (3) ensures that the two
CPTP maps are ε close in diamond distance.

It is interesting to compare the gate count, Eq. (3),
achieved by QDRIFT with very recent and powerful
results for (deterministic) product formulas [19,21], see
Table I. Broadly speaking, deterministic product formulas
can achieve gate counts that are linear in time t and the
number L of terms. The QDRIFT gate count, on the other
hand, is independent of L, but quadratic in t. This implies
that QDRIFT should be favored for short-time simulations
rather than long-time simulations. For systems with many
terms in the Hamiltonian (L � 1), such as in quantum
chemistry and the Sachdev-Ye-Kitaev (SYK) model [25–
28], there are indeed physically relevant time scales for
which QDRIFT outperforms Suzuki formulas; see Table I.

To summarize, there are interesting quantum-simulation
problems where the QDRIFT gate count, Eq. (3), compares
favorably with very recent and powerful results about high-
order Suzuki formulas. This advantage is a consequence
of randomization. But we may ask whether the benefit
arises from the random choice of an individual product for-
mula or whether it is due to the averaging of many product
formulas together. Which aspect produces the speedup?

In this work, we analyze why random product formu-
las are efficient. To do so, we study the performance of a

random instance of the product formula VN · · · V1. By con-
trasting this instance with the average channel V (N )(X ), we
deduce that random sampling alone allows us to avoid the
dependency on the number L of terms in the Hamiltonian;
it is not necessary to average many different product for-
mulas. Our results establish strong concentration bounds
for two cases, depicted in Fig. 1.

First, let n denote the number of system constituents,
e.g., qubits. If the gate count N obeys

N ≥ �(nt2λ2/ε2),

then, with high probability, a single realization of the ran-
dom product formula approximates the ideal target unitary
up to accuracy ε in operator norm.

By the probabilistic method, this result also establishes,
for the first time, the existence of product formulas whose
gate count N is independent of the number L of terms in
the Hamiltonian but depends on the system size n instead.
On the other hand, we cannot easily verify the quality of
any given instance.

In practice, we often wish to evolve a fixed input quan-
tum state ρ, which may be arbitrary and unknown. This
change in the problem statement has profound implications
for randomized quantum simulation. With high probability,
a random product formula with

N ≥ �(t2λ2/ε2) (5)

terms suffices to achieve an ε approximation VN · · · V1ρV†
1

· · · V†
N of the ideal time-evolved state UρU† with respect to

All input states ρ1, ρ2, …

All observables O1,O2, . .

N ≳ nλ2t2
ϵ2 N ≳ λ2t2

ϵ2 N ≳ λ2t2
ϵ

Any state ρ

Any observable O

E

A xed, unknown state ρ

All observables O1,O2, . . system sizen =

λ =
L

∑
j=1

∥hj∥

gate countN =

FIG. 1. Pictorial summary of the main results. (Left) To sample a product formula that works for all n-qubit input states and observ-
ables with high probability, the number of gates is larger than sampling a product formula that works for a fixed, yet arbitrary, input
state (center). Resampling fresh product formulas every time (right) produces an average channel that requires even fewer gates; this
is the original QDRIFT guarantee [17].
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trace distance. Roughly speaking, this result implies that
each input state has a set of product formulas that are n
times shorter than a “general-purpose” product formula
that works for all input states simultaneously. Although
the set of effective product formulas depends on the choice
of state and observable, the formulas are all produced by
the same randomized procedure. Remarkably, this proce-
dure does not exploit any knowledge of the particular input
state.

Note that the gate count required for the original
QDRIFT protocol, Eq. (3), and Eq. (5) differ only in the
scaling with accuracy: order 1/ε for the full QDRIFT
channel versus order 1/ε2 for a single random product
formula with fixed input [31]. This discrepancy is reminis-
cent of the mixing lemma by Hastings [32] and Campbell
[33]: mixing unitaries yields a “quadratic” improvement in
accuracy. See Lemma 3.1 below for a statement.

In this work, we analyze several classes of randomized
product formulas, including QDRIFT as a particular exam-
ple. The underlying theory is far more general because it
relies on powerful concentration results for matrix and vec-
tor martingales. The approach yields strong concentration
results for any product of random unitary matrices, such
as the ones that arise from randomized compiling [32,33].
We are confident that these ideas are applicable to other
problems that involve functions of random matrices, such
as Refs. [34,35].

Roadmap . The rest of this paper is organized as fol-
lows. Section II presents the main theoretical contributions
to this work in detail. These are further supported and
illustrated by numerical experiments presented in Sec. D.
Section III contains two instructive examples, as well as
a nontechnical illustration of the underlying proof idea.
We introduce the related background for martingales in
Appendix B. Details and rigorous arguments are provided
in Appendix C. The final appendix section (Appendix D)
establishes asymptotic tightness for time evolving two
simple (commuting) Hamiltonians.

II. MAIN RESULTS

This section gives rigorous results for the error incurred
by a randomly sampled product formula VN · · · V1, as
compared with the ideal unitary evolution operator U =
exp(−iHt). The results depend on the distance measure
and the particular setup, which we discuss separately in
the following subsections.

A. Error bound in diamond distance: worst-case error
over all input states and observables

The diamond distance is a standard distance measure for
quantum channels. To compare two unitaries U1 and U2,
the diamond distance is equivalent to

dist�(U1, U2) = max
|ψ〉: state

∥
∥
∥U1 |ψ〉〈ψ | U†

1 − U2 |ψ〉〈ψ | U†
2

∥
∥
∥

1

= max
|ψ〉: state

max
O:‖O‖≤1

∣
∣〈O〉U1|ψ〉 − 〈O〉U2|ψ〉

∣
∣ ,

where ‖·‖1 is the trace norm and 〈O〉|φ〉 = 〈φ| O |φ〉 is
the expectation value of an observable O for the quantum
state |φ〉.

Operationally, this means that the expectation value of
O evaluated on the output state would differ at most by the
diamond distance between U1, U2 for any input quantum
state |ψ〉 and any observable O with eigenvalues in [−1, 1].

Our first main result bounds the gate complexity that
suffices to guarantee that the randomly sampled product
formula VN · · · V1 is close to the ideal evolution exp(−itH)
in this worst-case error metric.

Theorem 1 (qDRIFT: gate complexity for small diamond
distance): Consider an n-qubit Hamiltonian H = ∑

j hj

with λ = ∑
j

∥
∥hj

∥
∥. Draw a randomized product formula

VN · · · V1 from Eq. (4) with gate count

N ≥ �{[n + log(1/δ)]t2λ2/ε2}. (6)

With probability at least 1 − δ, the diamond distance error
satisfies

max
|ψ〉: state

max
O:‖O‖≤1

∣
∣〈O〉VN ···V1|ψ〉 − 〈O〉exp(−itH)|ψ〉

∣
∣ < ε.

To keep notation as simple as possible, we formulate
this result for pure input states |ψ〉. Convexity readily
allows for extending the bound to mixed input states ρ =∑

i pi|ψi〉〈ψi| as well. A complementary result bounds the
expected approximation error in terms of gate count N .

Corollary 1.1 (qDRIFT: error bound in diamond distance):
Consider an n-qubit Hamiltonian H = ∑

j hj with λ =
∑

j

∥
∥hj

∥
∥. A randomized product formula VN · · · V1, drawn

from Eq. (4), has expected diamond-distance error

E

[

max
|ψ〉: state

max
O:‖O‖≤1

∣
∣〈O〉VN ···V1|ψ〉 − 〈O〉exp(−itH)|ψ〉

∣
∣
]

�
√

nt2λ2

N
.

The symbol � applies in the large-N regime and sup-
presses constants. The proof sketch is presented in Sec. C,
and the detailed proof is given in Sec. 1.
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eiHAeiHB

U

U1/5

V5V4V3V2V1

E[V5V4V3V2V1]

FIG. 2. Illustration of concentration effects for random walks
(and their averages) on the unitary group. The expectation
E[VN · · · V1] of a random product formula is not unitary, but
it may be very close to the ideal evolution. A sampled ran-
dom product formula VN · · · V1 is unitary, but its distance from
the ideal evolution is about O(√nt2λ2/N ). The average of the
random product formulas results in an error of O (

t2λ2/N
)
.

For comparison, the error bounds for the average quan-
tum channel, established in Ref. [17], imply that

max
|ψ〉: state

max
O:‖O‖≤1

∣
∣EV1,...,VN [〈O〉VN ···V1|ψ〉] − 〈O〉exp(−itH)|ψ〉

∣
∣

� t2λ2

N
.

As we can see, the error bound of the average over all
product formulas is smaller than the error for an individual
random product formula. To understand the discrepancy,
it is valuable to think about a randomly sampled product
formula as a random walk on the group of 2n × 2n uni-
tary matrices. Figure 2 indicates why a single realization
of the random walk VN · · · V1 has much greater error than
the average of the random walks.

In the error bound O(√nt2λ2/N ), the square root
reflects the statistical nature of the fluctuations in the
random walk around its expectation. The diamond norm
requires us to control the behavior of the random prod-
uct formula when applied to every 2n-dimensional input
state. Remarkably, we pay only for the logarithm of the
dimension, which coincides with the number n of qubits.
We discuss an intuitive example, where log(2n) naturally
arises from a union bound in Sec. III B. Formally, this
prefactor is a general feature of concentration inequality
for matrix martingales (Sec. B). Similar proof techniques
could potentially be useful for controlling stochastic errors
in other quantum-computing applications.

B. Faster simulation for a fixed input state

In practice, it is common to perform the quantum simu-
lation starting from a particular input state. The distinction
with the previous setting is that the product formula needs

only to work for one (arbitrary and possibly unknown)
input state, not for all states simultaneously. The next
theorem asserts that much shorter product formulas suffice
in the easier setting.

Theorem 2 (qDRIFT: gate complexity for fixed input):
Consider an n-qubit Hamiltonian H = ∑

j hj with λ =
∑

j

∥
∥hj

∥
∥ and any input quantum state |ψ〉. Draw a ran-

domized product formula VN · · · V1 from Eq. (4) with the
number of gates

N ≥ �[t2λ2 log(1/δ)/ε2]. (7)

With probability at least 1 − δ, the output state
VN · · · V1 |ψ〉 satisfies

max
O:O†=O,‖O‖≤1

∣
∣〈O〉VN ···V1|ψ〉 − 〈O〉exp(−itH)|ψ〉

∣
∣ < ε,

where 〈O〉|ψ〉 = 〈ψ | O |ψ〉. This is equivalent to the output
state VN · · · V1 |ψ〉 being ε close to the ideal output state
exp(−itH) |ψ〉 in trace distance.

Again, convexity allows us to extend this bound to a
(fixed) mixed state ρ = ∑

i pi|ψi〉〈ψi| as well. And, a com-
plementary result bounds the expected approximation error
in terms of gate count N .

Corollary 2.1 (qDRIFT: error bound in trace distance):
Consider an n-qubit Hamiltonian H = ∑

j hj with λ =
∑

j

∥
∥hj

∥
∥. A randomized product formula VN · · · V1, drawn

from Eq. (4), has expected trace-distance error for any
fixed input

max
|ψ〉: state

E

[

max
O:‖O‖≤1

∣
∣〈O〉VN ···V1|ψ〉 − 〈O〉exp(−itH)|ψ〉

∣
∣
]

�
√

t2λ2

N
.

Theorem 2 yields an n-fold improvement over the gate
count from Theorem 1.

So, for a 100-qubit system, focusing on a single input
state leads to a 100× reduction in gate complexity over
a simulation that works for all input states. The product
formulas that work for a fixed input state may vary with the
choice of state, but they are all generated using the same
QDRIFT procedure.

The probabilistic origin of this improvement is in stark
contrast with deterministic constructions, where additional
structure, such as low energy input states [20], is required
to further reduce the gate count. Here, we make only one
assumption that is much weaker: the state must be fixed
and cannot depend on the concrete gate sequence being
sampled.
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We can even construct short product formulas that
work for a moderate number of (arbitrary) input states
by increasing the gate complexity slightly and invoking a
union bound argument.

The proof of Theorem 2 is similar in spirit to the proof of
Theorem 1. We construct a random walk from the (fixed)
starting state |ψ〉. We show that, with high probability, the
output state is close to the ideal output state U |ψ〉. How-
ever, what marks the difference from the unitary results
(Theorem 1) is that vector concentration inequalities suf-
fice. More precisely, we analyze the vector random walk
using a geometric tool, called uniform smoothness [36].
The details appear in Sec. 2. The resulting n-fold improve-
ment can also be understood as a result of switching the
order of quantifiers, see Sec. III B for an explicit example.

C. Extension to general products of random unitaries

So far, we have presented our results exclusively for
QDRIFT. But the underlying concentration analysis read-
ily extends to more general random walks on the uni-
tary group. Let VN · · · V1 ∈ U(2n) be a random product
designed to approximate a target unitary U = UN · · · U1.
We need two properties.

(i) Causality: for 1 ≤ k ≤ N the random selection of Vk
can depend only on previous choices for V1, . . . , Vk−1:

Pr [Vk|VN . . .Vk+1Vk−1, . . .V1] = Pr [Vk|Vk−1, . . . , V1] .
(8)

(ii) Accurate approximation: each realization of Vk (and
their conditional expectation) must be close to the ideal
unitary Uk. More precisely, let ak, bk > 0 be constants such
that

‖Vk − Ek−1Vk‖ ≤ ak and ‖Ek−1Vk − Uk‖ ≤ bk,

where Ek−1Vk := E [Vk|Vk−1, . . . , V1] (9)

almost surely for all 1 ≤ k ≤ N . All concentration results
from this work, as well as the main result from Ref. [17],
do readily extend to random products that do obey these
two properties.

Theorem 3 (general concentration bounds for products of
random unitaries): Let V = VN · V1 ∈ U(2n) be a random
product that approximates a target product U = UN · · · U1
in a causal [Eq. (8)] and small-step [Eq. (9)] fashion.
Then, the associated unitary channels V(X ) = VXV† and
U(X ) = UXU† obey

‖U − V‖� ≤ 2
N∑

k=1

ak (worst case),

E‖U − V‖� �

√
√
√
√n

N∑

k=1

a2
k + 2

N∑

k=1

bk (typical case),

E‖U(ρ)− V(ρ)‖1 �

√
√
√
√

N∑

k=1

a2
k + 2

N∑

k=1

bk (fixed input),

‖U − EV‖� ≤ 2
N∑

k=1

bk (average case),

where � suppressed absolute constants.

1. Concentration of randomly permuted Suzuki formulas

So far, we have only introduced the first-order Lie-
Trotter formulas (2). The second-order formula is typically
called the Suzuki formula. For some short time τ > 0,
define

S2(τ ) :=
L∏

j =1

exp[−i(τ/2)hj ]
1∏

j =L

exp[−i(τ/2)hj ].

Higher-order formulas, also named after Suzuki, are con-
structed recursively from S2(τ ):

S2p(τ ) := S2p−2(qpτ)
2S2p−2[(1 − 4qp)τ ]S2p−2(qpτ)

2,

where qp := 1/(4 − 41/(2p−1)) [10]. We can combine r
rounds of 2pth-order Suzuki formulas with time τ =
t/r each to approximate a desired quantum evolution.
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This yields

U = e−itH = e−i(t/r)H · · · e−i(t/r)H

≈ S2p(t/r) · · · S2p(t/r) = S2p(t/r)r.

For ε fixed, we choose an appropriate number of rounds r
and obtain a gate count N ≈ rL that scales as

Ndet � t�L2
(

t�L
ε

)1/2p

with � = max
j

‖hj ‖, (10)

simple gates e−i(t/r)hj to ensure worst-case approxima-
tion error ‖U − V‖� ≤ ε [18]. Note that the 2pth-order
Suzuki formula S2p(τ ) does not specify a preferred order in
which the terms in Hamiltonian hj should appear. Childs,
Ostrander, and Su observed that randomly permuting the
order of Hamiltonian terms within each block S2p(t/r)
can suppress the approximation error for low-order Suzuki
formulas [18] considerably. More precisely, we reshuf-
fle the ordering in each Suzuki block by applying uni-
formly random permutations π1, . . . ,πr to the term indices
(hj �→ hπ1(j ) for the first Suzuki block, etc.). Denote
the resulting randomized Suzuki formula by Vπr···π1

2p =
Sπr

2p(t/r) · · · Sπ1
2p (t/r). Childs, Ostrander, and Su proved that

a total gate count

Navg � t�L2
(

t�
ε

)1/2p

(11)

ensures that the average channel (averaged over all possi-
ble permutations) obeys ‖U − Eπr,...,π1Vπr···π1

2p ‖� ≤ ε.
We note in passing that Eq. (11) is tighter than the origi-

nal bound presented in Ref. [18]. This slight improvement
follows from replacing the original mixing lemma [32,33]
in the proof of Childs et al. by a stronger statement derived
in this work (Lemma 3.1 below).

Applying Theorem 3 to the problem at hand supplies
strong concentration around this expected behavior.

Corollary 3.1 (concentration of randomly permuted
Suzuki formulas): Consider a n-qubit Hamiltonian H =∑

j hj with � = maxj ‖hj ‖, an associated time-t evolu-
tion U = e−itH and a Suzuki order 2p. Then, a total gate
count of

Ntyp � t�L2
(

n�Lt
ε2

)1/(4p+1)

+ t�L2
(

t�
ε

)1/2p

,

ensures that a randomly permuted Suzuki formula with r
terms obeys Eπ1,...,πr‖U − Vπr···π1

2p · · · Sπ1
2p (t/r)‖ ≤ ε (typi-

cal case). For a fixed (but arbitrary) input state, the gate

count can be further reduced to

Nfix � t�L2
(
�Lt
ε2

)1/(4p+1)

+ t�L2
(

t�
ε

)1/2p

.

For simplicity, we omit the logarithmic dependence on
failure probability δ.

In contrast to qDRFIT, the parameters n, ε, L parameters
now all raised to the 1/(4p + 1)st power, and the different
randomized settings yield very much the same gate count
t�2L for large p . This is in accordance with observations
provided in Ref. [18].

For illustration, we choose to directly import older
results, Eq. (10), to compare with the averaged channel
bounds, Eq. (11). However, Eq. (10) can possibly be sharp-
ened to scale with commutator [19]. Future work remains
to carry out commutator analysis for the averaged channel,
Eq. (11), and then swiftly upgrade Corollary 3.1.

We refer to Appendix C (Sec. 3) for detailed statements
and proofs.

2. Compiling

Beyond Hamiltonian simulation, random product also
help suppressing error in compiling. The task of compiling
turns a perfect circuit diagram into a sequence of exe-
cutable gates. However, since the gate set is discrete (or
imperfect), the compiler can return only an approximate
circuit

‖UN · · · U1 − VN · · · V1‖ ≤ ε, (12)

where each Vk will be further decomposed into univer-
sal gates (such as using the Solovay-Kiteav theorem, see
e.g., Ref. [37]) up to some individual accuracy ‖Uk −
Vk‖ ≤ η. In the worst case, the local error ‖Uk − Vk‖ ≤ η

accumulates linearly and we must conclude

‖U − V‖ ≤ Nη, (13)

by means of the triangle inequality. This means that
individual accuracy η = ε/N is required to ensure an
overall approximation error of (at most) ε. This in turn,
requires more gates for each approximation, because η-
approximating Vk requires a gate count [38] proportional
to logc(η).

Randomized compiling [32,33] addresses precisely this
issue. It uses random gate synthesis to avoid that individual
approximation errors add up “coherently” over the entire
compilation. The resulting “incoherent” error accumula-
tion can be much more favorable and the mixing lemma
[32,33] makes this intuition precise. In the following, we
present a sharpened version of this statement that seems to
be novel.
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Lemma 3.1 ([Mixing lemma (sharpened)]): Let Uk be
a fixed unitary and Vk a random approximation thereof
that obeys ‖Uk − EVk‖ ≤ b, for some b > 0. Then, the
associated channels obey

‖Uk − EVk‖� ≤ 2b.

We refer to Appendix C (Sec. C1a) for a self-contained
proof.

Back to compiling, ‖EVk − Uk‖ can as small as O(η2)

[33] by mixing appropriate synthesis protocols for Vk. This
yields an improved bound for the average channel,

‖U − EV‖� ≤ O(Nη2). (14)

In words, the individual accuracy needed is suppressed
quadratically to η = �(

√
ε/N ). In Ref. [33], Campbell

pointed out that this square-root improvement may turn
into a multiplicative overhead reduction, depending on the
gate synthesis efficiency logc(

√
η) = logc(η)/2c. Using

Theorem 3, we can immediately bound the performance
of randomized compiling without mixing.

Corollary 3.2 (randomized compiling without mixing)):
Suppose that we wish to approximate U = UN · · · U1 by a
gate collection V = VN · · · V1 such that each Vk is random
and obeys ‖Uk − Vk‖ ≤ η almost surely. Then,

E‖U − V‖ �
√

nNη.

What is more, the
√

n factor on the rhs disappears if we
restrict attention to a fixed input state.

This translates to individual accuracy η = O(ε/√nN ),
and η = O(ε/√N ), respectively. Both results interpolate
between the worst case, Eq. (13) (“coherent” error accu-
mulation), and best case, Eq. (14) (“incoherent” error
accumulation).

D. Numerical experiments

In this section, we perform numerical experiments
for simulating a simple Heisenberg model on a one-
dimensional chain with a randomly sampled product for-
mula. For n qubits, H = 1/n − 1

∑n−1
i=1 XiXi+1 + YiYi+1 +

ZiZi+1 and we view this as a sum of 3(n − 1) simple terms.
The normalization keeps the interaction strength λ = 3 as
a constant and we consider a constant time evolution t = 2.
The numerical experiments for the error under various
setups using different gate count N and different system
sizes n are shown in Fig. 3. We can see that the error ε
when we consider all input states scales as

√
n. In contrast,

the error ε stays roughly the same when we consider only a
single input state. This is in accordance with the theoretical
predictions presented in Theorems 1 and 2.

III. INSTRUCTIVE EXAMPLES AND PROOF IDEA

A. Comparison between stochastic averages of product
formulas and concrete instances

This section considers an extremely simple Hamilto-
nian to pinpoint important differences between averaging
random product formulas (that is, Campbell’s black box)
and concrete instances of product formulas. The example
Hamiltonian is a 1-local noninteracting Hamiltonian with

All input states

N (no. gates) n (system size) N (no. gates) n (system size)

Fixed input state

FIG. 3. Numerical experiments for simulating 1D Heisenberg model under different gate count N . In All input states (left), we
consider ε = ‖U − VN . . .V1‖∞, which considers the error over all input states and observables. In Fixed input state (right), we
consider ε = ‖U |ψ〉 − VN . . .V1 |ψ〉‖�2

, which considers the error over all observables. The input state |ψ〉 is chosen to be the tensor
product of single-qubit Haar-random states. For both All input state and Fixed input state, we give an additional plot showing how the
error ε increases as the system size n increases for a fixed number of gates N = 160. The y-axis is normalized using the average error
for system size n = 4 over 50 independent runs. Bounds in Theorems 1 and 2 show that the relative error εn/εn=4 scales as

√
n/4 for

All input state and stays as constant 1 for Fixed input state, which are shown as the dotted lines. The shaded regions are the standard
deviation over 50 independent runs.
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a Pauli-Z operator acting on each qubit:

H = 1
n

n∑

k=1

Zk, where

Zk = I ⊗ · · · ⊗ I︸ ︷︷ ︸
(k−1) times

⊗ Z ⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸
(n−k) times

(15)

for 1 ≤ k ≤ n. The relevant parameters are L = n (number
of terms), λ = 1/n

∑n
k=1 ‖Zk‖ = 1 (interaction strength)

and we fix the evolution time to t = π .
Stochastic averages of random product formulas can

accurately approximate the associated unitary evolution
U = exp(−iπH) after only a few iterations. The following
observation is an immediate consequence of Campbell’s
main result [17], see also Proposition 3.2 below.

Corollary 3.3: Fix a target accuracy ε and set N =
t2λ2/ε ≈ 10/ε. Then, N successive applications of the
QDRIFT single-step average V(ρ) = 1/n

∑
k exp[−i(π/N )

Zk] ⊗ I
(else)ρ exp[i(π/N )Zk] ⊗ I

(else) (Campbell’s black
box) approximate the target unitary channel U(ρ) =
UρU† up to accuracy ε in diamond distance. In particular,
1
2‖V (N )(|ψ〉〈ψ |)− U|ψ〉〈ψ |U†‖1 ≤ ε for all input states
|ψ〉〈ψ |.

This assertion seems remarkably strong. In particular,
the sequence length N does not depend on the number of
qubits n. Once n is sufficiently large it becomes impossi-
ble for concrete product formulas to achieve comparable
results. The problem is that the sequence length N is too
small to address all n qubits. This necessarily leads to
substantial discrepancies between the simulated time evo-
lution VN · · · V1 and the actual target U, see Fig. 4 for an
illustration.

A product formula
True

evolution

UUUUUU

GHZ(+)

VW

GHZ(+)

GHZ(+)

Circuit
flow

U = exp
(
−i

π

n
Z

)
GHZ(±) =

1√
2
(|0 . . . 0〉 ± |1 . . . 1〉)

|0〉⊗n/2

|0〉⊗n/2

|0〉⊗n/2

|0〉⊗n/2

FIG. 4. Illustration of the worst-case input for a product for-
mula simulating evolution of a simple Hamiltonian. The Hamil-
tonian H = 1/n

∑n
k=1 Zk produces a time evolution that factor-

izes into single qubit unitaries U (left). A product formula with
fewer than n/2 single-site terms (right) is too small to address all
qubits; at least n/2 of them must remain untouched. These errors
accumulate for a GHZ state comprised of these untouched qubits.
If n is large, even small evolution times {U = exp[−i(π/n)Z]}
can accumulate and lead to a maximal approximation error
[〈 GHZ(+), GHZ(−)〉 = 0].

Lemma 3.2: Assume that n is an even number. It is
impossible to accurately approximate the time evolution U
defined in Eq. (15) with N < n/2 elementary gates of the
form Vi = exp[−i(π/N )Zk(i)] ⊗ I

(else). More precisely, for
each product formula V = VN · · · V1, there exists an input
state |ψ〉〈ψ | such that 1

2‖V|ψ〉〈ψ |V† − U|ψ〉〈ψ |U†‖1 = 1.

Proof. All terms in Hamiltonian (15) commute. Hence,
the associated target evolution factorizes nicely into
tensor products: U = exp(−iπH) = exp[−i(π/n)Z1] ⊗
· · · ⊗ exp[−i(π/n)Zn]. Up to a global phase, each
single-qubit unitary affects the computational basis
in the following fashion: exp[−i(π/n)Z]|0〉 = |0〉 and
exp[−i(π/n)Z]|1〉 = exp(i 2π

n )|1〉. These small phase shifts
can add up for states that are in superposition. Con-
sider the tensor product of a Greenberger-Horne-Zeilinger
(GHZ) state on n/2 qubits with the all-zeroes state on the
remaining half: |ψ̃〉 = 1/

√
2(|0〉⊗n/2 + |1〉⊗n/2)⊗ |0〉⊗n/2.

Then,

U|ψ̃〉 = exp(−i 2π
n Z)⊗n|ψ̃〉

= 1√
2
(|0〉 + [exp(i 2π

n )]
n/2|1〉)⊗ |0〉⊗n/2

= 1√
2
(|0〉⊗n/2 − |1〉⊗n/2)⊗ |0〉⊗n/2

and we can easily check that input and output are orthog-
onal to each other: 1

2‖U|ψ̃〉〈ψ̃ |U† − |ψ̃〉〈ψ̃ |‖1 = 1. These
features do not change if we permute the qubits in the
input state |ψ̃〉. Any combination of a GHZ state on one
half of the qubits with computational |0〉 states on the
remaining ones obeys the same orthogonality relation. We
can use this freedom to construct a worst-case input |ψ〉
for a fixed product formula V = VN · · · V1 comprised of
fewer than n/2 single-qubit gates. Simply initialize the (at
most) n/2 qubits on which the product formula acts non-
trivially in the computational 0 state and hide the GHZ
component among the remaining qubits. By construction,
the product formula V does not affect this input state at
all. This is a worst case, because the target unitary U does
rotate the hidden GHZ component into an orthogonal con-
figuration: ‖U|ψ〉〈ψ |U† − V|ψ〉〈ψ |V†‖1 = ‖U|ψ〉〈ψ |U† −
|ψ〉〈ψ |‖1 = 1. �

This negative statement highlights that the gate count
of (worst case) accurate product formulas must in general
depend on the number of qubits and justifies the appear-
ance of n in Theorem 1. Note, however, that Lemma 3.2
is contingent on identifying a worst-case input state for a
fixed (and known) product formula. If the input state is
fixed, the situation can change dramatically. For instance,
we could use explicit knowledge of the input to construct a
product formula that accurately approximates its time evo-
lution. Identifying an optimal product formula seems like a
daunting task, but randomness can help. Theorem 2 asserts
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that a collection of N � π2/ε2 randomly selected single-
qubit gates approximate the time evolution, Eq. (15), of
any fixed input state |ψ〉 up to accuracy ε in trace dis-
tance. While this gate count is considerably larger than the
one put forth in Corollary 3.3, it is still independent of the
number of qubits. What is more, this assertion applies with
high probability to any fixed input state. This capitalizes on
another advantage of generating unstructured product for-
mulas according to a randomized procedure: it is extremely
difficult to fool a randomized compiling procedure with an
already fixed input.

B. Instructive concentration argument for a simple
Hamiltonian

This section provides intuition for the concentration
effects that ultimately imply Theorem 1 by means of
another example Hamiltonian that is composed of (com-
muting) Pauli-Z terms only:

H = 1
2n

∑

p∈{0,1}n

αpZp where

Zp = Z(p1,...,pn) = Zp1 ⊗ · · · ⊗ Zpn (16)

(with the convention that Z0 = I) and αp ∈ {−1, 1}. That
is, the Hamiltonian is a sum of 2n signed Pauli strings that
are comprised of Z and I, as well as a global sign. A high-
order Suzuki formula would require a gate complexity of
O(L) = O(2n) by putting down every term. In contrast,
by random sampling, Theorem 1 yields a gate complex-
ity of O(n/ε2) [Theorem 2 yields O(1/ε2)]. This is an
exponential improvement in system size.

The physical intuition is that all the terms in the
Hamiltonian act on the same system with n qubits (a 2n-
dimensional Hilbert space), so their actions must “overlap”
with one another, and can be efficiently estimated by ran-
dom sampling. To see this effect more clearly, let us write
down the unitary evolution exp(−iH) in the computational
basis |b〉 with multi-index b = (b1, . . . , bn) ∈ {0, 1}n. Note
that all terms in Hamiltonian (16) are diagonal in the
computational basis. This implies

exp(−iH) |b〉 = exp

⎛

⎝−i
1
2n

∑

p∈{0,1}n

αpZp

⎞

⎠ |b〉

= exp

⎛

⎝−i
1
2n

∑

p∈{0,1}n

cp(b)

⎞

⎠ |b〉

:= e−iS(b) |b〉 , (17)

where cp(b) = αp 〈b| Zp |b〉 ∈ {−1, 1}. When we instead
subsample an effective Hamiltonian Ĥ comprised of N

For one starting state:

Random walk for
different starting states

>   –errorε

Ideal output state

Failure 
probability

2 exp(−2ε2G)

For all 2n starting states:

2n× 2 exp(−2ε2G)
Failure 

probability

Failure event

FIG. 5. Illustration of the probabilistic proof for the com-
muting Hamiltonian given in Eq. (16). We consider all the 2n

computational basis states as the starting state. The probability
for one of the starting state to incur at least an error ε is expo-
nentially smaller than the probability for the maximum of the 2n

starting states to incur error > ε. However the failure probability
is exponential suppressed by increasing the gate count N . Hence
one need only to set N = n/ε2.

randomly selected terms, the constructed product formula
would be

exp(−iĤ) = exp
(

−i
1
N
αpN ZpN

)

· · · exp
(

−i
1
N
αp1Zp1

)

|b〉

= exp

(

−i
1
N

∑

k

cpk (b)

)

|b〉 := e−iŜ(b) |b〉 .

By Hoeffding’s inequality, Ŝ(b) = 1/N
∑

k cpk (b) should
concentrate around S(b) = 2−n∑

p∈{0,1}n cp(b) with stan-
dard deviation 1/

√
N and an exponentially decaying tail

(think Monte Carlo). An illustration and some helpful facts
can be found in Fig. 5.

Let us now fix an (arbitrary) n-qubit basis state. Then,
the probability of an ε-deviation (or larger), i.e., |Ŝ(b)−
S(b)| > ε, can be bounded by 1/e if we choose N = 1/ε2.
However, if we wish the effective Hamiltonian to work for
all basis states simultaneously, we would choose a larger
N = n/ε2 to ensure that the deviation probability is fur-
ther suppressed exponentially to 1/en. By a union bound,
|Ŝ(b)− S(b)| ≤ ε for all 2n computational basis states |b〉
with probability at least 1 − 2n/en. Albeit in the simplest
example (commuting Hamiltonian), this demonstrates that
a random product formula exp(−iĤ) can accurately sim-
ulate exp(−iH) up to error ε with only N = n/ε2 gates,
which further reduces to O(1/ε2) for an arbitrary basis
state. The powerful tool of concentration for matrix (vec-
tor) martingales allows us to prove the same statement for
any (noncommuting) many-body Hamiltonian.

We return to this example Hamiltonian in Appendix D to
show that this more general analysis yields an essentially
optimal parameter dependence: dimension dependence
that is tight: the scaling N ≥ �(nt2λ2/ε2) in Theorem 1
is unavoidable in general.
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C. Proof idea for Theorems 1 and 2

This section sketches the main ideas and tools required
to establish Theorems 1 and 2. The other results follow
from more elementary arguments. Detailed arguments and
rigorous statements are provided in Appendix C below.

Consider an n-qubit Hamiltonian H = ∑L
j =1 hj and an

evolution time t. The associated unitary evolution defines
a (unitary) channel on n-qubit states:

U(|ψ〉〈ψ |) = U|ψ〉〈ψ |U† where

U = exp (−itH) = exp
(

− it
∑L

j =1
hj

)
.

Fix a number of steps N and set λ = ∑L
j =1 ‖hj ‖. The task

is to accurately approximate the target unitary U by a
product formula, i.e., the composition of N simple unitary
evolutions:

V (N )(|ψ〉〈ψ |) = VN ◦ · · · ◦ V1(|ψ〉〈ψ |)
= VN · · · V1|ψ〉〈ψ |V†

1 · · · V†
N .

We quantify the difference between V (N ) and U in diamond
distance. That is, the worst-case approximation error over
all possible input states ρ in the presence of an unaffected
quantum memory.

Let E ,F be two quantum channels, and let I(|ψ〉〈ψ |) =
|ψ〉〈ψ | denote the identity channel on an equally large
ancilla system. The diamond distance between E and F
is defined as

1
2‖E − F‖�= 1

2 max
|ψ〉〈ψ |

‖E ⊗ I(|ψ〉〈ψ |)− F ⊗ I(|ψ〉〈ψ |)‖1,

(18)

where the maximization ranges over all pure [39] input
states |ψ〉〈ψ | and ‖ · ‖1 denotes the trace norm. First, we
relate the diamond distance, Eq. (18), between the channels
V (N ) and U , which are both unitary, to an operator-norm
distance of the associated matrices:

1
2‖V (N ) − U‖� = 1

2 max
|ψ〉〈ψ |

‖U(|ψ〉〈ψ |)− V (N )(|ψ〉〈ψ |)‖1

≤ ‖VN · · · V1 − U‖, (19)

see Lemma 3.4 below. This relation exploits the fact that
stabilization (i.e., tensoring with the identity channel) is
not necessary for computing the diamond distance of two
unitary channels [40, Theorem 3.55].

Now, we can deal with the independent and iden-
tically distributed (IID) random matrices VN , . . . , V1 in
the more familiar operator norm. Add and subtract
the expected product E [VN · · · V1] = E [VN ] · · · E [V1] =

(EV)N to decompose the operator-norm difference into two
qualitatively different contributions:

‖VN · · · V1 − U‖
≤ ‖(EV)N − U‖
︸ ︷︷ ︸
deterministic bias

+ ‖VN · · · V1 − E [VN · · · V1] ‖
︸ ︷︷ ︸

random fluctuation

.

(20)

These two contributions can be analyzed separately.

i. Deterministic bias: most product formulas arise from
first decomposing the target unitary into a sequence
of many small steps: U = (U1/N )N , where U1/N =
exp [−i(t/N )H ] is close to the identity matrix. This allows
for approximating U1/N by another process that is easier
to implement. The random importance sampling model,
Eq. (4), over individual Hamiltonian terms is designed to
achieve this goal. The average approximation error scales
inverse quadratically in the number of steps: ‖(EV)−
U1/N ‖ ≤ t2λ2/N 2; see Lemma 3.5 below. While small, this
expected error does constitute a bias that is present in each
of the N approximation steps. It can, and in general will,
accumulate across different time steps:

‖E [VN · · · V1] − U‖ = ‖(EV)N − (U1/N )N ‖
≤ N‖(EV)− U1/N ‖

≤ t2λ2

N
, (21)

see Lemma 3.6 below. The first inequality is obtained from
a telescoping sum. This upper bound diminishes as the
number of steps N increases. For ε > 0,

N ≥ 2t2λ2

ε
ensures ‖(EV)N − U‖ ≤ ε

2
. (22)

ii. Random fluctuation: we also need to control the devi-
ation of a product of IID unitaries VN · · · V1 from its expec-
tation E[VN · · · V1] = (EV)N in operator norm. We achieve
this by applying modern matrix martingale tools, which
may be of independent interest. In short (see Appendix B
for a more thorough introduction), a martingale is a ran-
dom process {Bk : k = 0, . . . , N } such that the distribu-
tion of Bk depends only on past elements Bk−1, . . . , B1
(“causality”) and also E[Bk|Bk−1 · · · B1] = Bk−1 (“on aver-
age, tomorrow is the same as today”). To control fluctua-
tions, we introduce a martingale that interpolates between
the extreme cases we need to compare:

Bk = (EV)N−kVk · · · V1 such that

B0 = (EV)N and BN = VN · · · V1.

Note that adjacent elements of this process differ only
in a single term: Bk arises from Bk−1 by replacing EV
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at position k (counted from the right) by a random real-
ization Vk of V, and thus Ek−1Bk = Bk−1. Moreover, the
current iterate Bk depends only on realizations in the past
and the interpolation process {Bk : k = 0, . . . , N } forms a
martingale comprised of d × d matrices, where d = 2n is
the Hilbert-space dimension. The discrepancies are small:
‖Vk − (EV)‖ ≤ 2tλ/N , because each realization of V is
also very close to the identity matrix.Powerful tail bounds
for matrix-valued martingales (which are relatively mod-
ern compared to their scalar counterparts) are available in
the literature [41,42]. Adapting these results to the task at
hand yields the bound

Pr
[‖VN · · · V1 − (EV)N ‖ ≥ ε/2

]
(23)

≤ 2d exp
(

− Nε2

44t2λ2

)

, (24)

see Proposition 3.3 below. In words, the product VN · · · V1
will concentrate around its expectation once N is suffi-
ciently large. Similar to more conventional random walks
on integer lattices, the error is sub-Gaussian with variance
proportional to N × (λ2t2/N 2). There is an extra dimen-
sional factor d = 2n that arises because the martingale is
matrix valued. It converts to the number of qubits n =
log(d) in the gate count N . For error parameters ε, δ ∈
(0, 1), a gate count obeying

N ≥ 44
t2λ2

ε2 log(2d/δ) implies

‖VN · · · V1 − (EV)N ‖ ≤ ε

2
with probability > 1 − δ.

(25)

Theorem 1 can be derived by combining the bound,
Eq. (22), for the deterministic bias with the bound,
Eq. (25), for random fluctuations. This provides a high
probability error bound in the diamond distance when N ≥
�(nt2λ2/ε2).

Corollary 1.1 is derived by integrating the tail bounds of
Theorem 1. This produces

E‖VN · · · V1 − (EV)N ‖ �
√

t2λ2

N
log2(d),

where the symbol � suppresses a modest multiplicative
constant. We refer to Appendix C (Sec. d) for details.

With fixed input (Theorem 2), we use convexity to
restrict our attention to a fixed, pure input state |ψ〉. We
then need to compare U|ψ〉 with VN · · · V1|ψ〉, which can
be achieved by constructing an interpolating random pro-
cess that describes a vector-valued martingale. We then

call another concentration inequality (Lemma 3.7)

Pr
[‖(VN · · · V1 − E[V]N )|ψ〉‖�2 > ε

] ≤ exp
(−ε2N

8et2λ2

)

,

which, in contrast, does not contain a dimensional factor.
This is the reason why Theorem 2 and Corollary 2.1 do not
depend on system size at all.

IV. DISCUSSION AND OUTLOOK

This work shows interesting characteristics of random-
ization that might help to further improve quantum simula-
tion. (a) By studying typical unitary instances of QDRFIT,
we have shown that L independence (the number of terms
in Hamiltonian) of QDRIFT attributes to randomly sam-
pling terms; mixing different realizations is not essen-
tial. (b) Gate complexities can be reduced substantially
by restricting attention to a particular input state or/and
target observable. Simple randomized compilation proce-
dures, like QDRIFT, do not utilize extra information. We
believe that more specialized algorithms might be able to
exploit additional structure. (c) We have shown that chan-
nel averages can be much closer to the ideal evolution than
any individual product formula, however, in the case of
QDRIFT it is only a quadratic improvement 1/ε2 → 1/ε.
This can be seen as a manifestation of Jensen’s inequal-
ity for convex functions (distance to ideal evolution) and
we may also see such behavior in other quantum simula-
tion algorithms. To our knowledge, we also provide the
first matrix concentration analysis for a randomly sam-
pled product formulas and—more generally—Hamiltonian
simulation. Similar proof techniques readily apply to any
random product formula, e.g., randomly permuted Suzuki
formulas [18], and in fact any (causal) random unitary
product, e.g., randomized compiling [32,33].

Beyond random products, we expect the developed
matrix concentration tools to be useful for control-
ling stochastic errors in other quantum-computing appli-
cations, as well as analyzing properties of random
Hamiltonians [34].
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APPENDIX A: CALCULATIONS FOR TABLE I

Here, we provide detailed calculations for the numbers
presented in Table I. Recall from Eq. (3) that QDRIFT
achieves a gate count proportional to λ2t2/ε, where λ =∑

j ‖hj ‖ is the 1-norm. For pth-order product formulas,
we quote the state-of-the-art Trotter error analysis from
Ref. [19] with gate count

N = O
(

|||H |||1λ1/p t1+1/p

ε1/p

)

. (A1)

And for a k-local Hamiltonian, the induced 1-norm (using
notation from Ref. [19]) |||H |||1 is defined as

|||H |||1 := max
�

max
j�

∑

j1,...j�−1,j�+1,...,jk

∥
∥hj1,...,j�,...,jk

∥
∥ , (A2)

which is smaller than the 1-norm λ. Here, we also use the
convention that O(·) absorbs constants that may depend
on k, p ,α, d, Poly log(n) as long as they are independent of
system size n, time t, and the Hamiltonian H . For Suzuki
formulas, values like p = 4 or p = 6 are fairly standard.
For larger p , the constant overheads get prohibitively
expensive.

Nearest-neighbor interaction. On an integer lattice
[0, R]d, the nearest-neighbor interacting Hamiltonian reads

H =
∑

r∈[0,R]d

∑

|r′−r|=1

hr,r′ with
∥
∥hr,r′

∥
∥ = O(1). (A3)

This, in turn, implies

λ = O(Rd) = O(n) and (A4)

|||H |||1 = O(1). (A5)

Power-law interaction. On an integer lattice [0, R]d, the
power-law interacting Hamiltonian is 2-local and reads

H =
∑

r,r′∈[0,R]d

hr,r′ with
∥
∥hr,r′

∥
∥ = O

(
1

|r′ − r|α
)

.

(A6)

This, in turn, implies

|||H |||1 =

⎧
⎪⎨

⎪⎩

O(1) if α > d
O[log(R)] = O[log(n)] if α = d
O(Rd−α) = O(n1−α/d) if α < d

and

(A7)

λ = O(n|||H |||1). (A8)

Note that the |||H |||1 is essentially the single-site energy
integral. The total number of terms is L = O(n2). For α >

2d, as in Ref. [19] one can sacrifice time dependence and
truncate terms with |r′ − r| > �, where � = O(nt/ε)1/(α−d)

is tuned to match the Trotter error with the truncation error.
In this case,

L = O(n�d) = O
[

n
(

nt
ε

)d/(α−d)
]

, (A9)

|||H |||1 = O(1) (α > 2d), (A10)

λ = O(n|||H |||1) = O(n). (A11)

k-local Hamiltonians (SYK-like normalization). Con-
sider an all-to-all interacting k-local Hamiltonian [27]

H :=
∑

j1<...<jk≤n

hj1···jk =
∑

j1<...<jk≤n

gj1···jk Zj1···jk

with normalization ‖Z‖ =
√

J 2(k − 1)!
knk−1 , (A12)

and gj1···jk are random couplings sampled independently
from the standard Gaussian distribution, Zj1···jk are deter-
ministic k-local operators, and J is some energy scale.

The number of terms is L =
(

n
k

)

= O(nk) and the

normalization is chosen such that
∑

j1<...<jk≤n

‖Zj1···jk‖2 = O(n). (A13)

However, let us drop gj1···jk and not bother with the ran-
domness. For the cautious reader, we should call a union
bound that Pr(maxj1···jk

∣
∣gj1···jk

∣
∣ ≥ ε) ≤ Le−ε2

, i.e., we at
most lose an extra factor of O[

√
log(L)] = O[

√
log(n)].

Therefore, up to a
√

log(n) overhead,

|||H |||1 =
∑

j2,...,jk

∥
∥hj1,...,jk

∥
∥ = O(nk−1 × n−(k−1)/2)

= O(n(k−1)/2), (A14)

λ = O(nk × n−(k−1)/2) = O(n(k+1)/2) (A15)

in the calculation we fix j1 due to symmetry.
k-local Hamiltonians (1-norm normalization). In

some other settings, one may choose [30]

H :=
∑

j1<...<jk≤n

hj1···jk =
∑

j1<...<jk≤n

Zj1···jk

with normalization ‖Z‖ = O(1/nk−1), (A16)

and without randomly sampled coefficients. The normal-
ization is such that the 1-norm is extensive

∑

j1<...<jk≤n

‖Zj1···jk‖ = O(n). (A17)
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This in turn implies

|||H |||1 =
∑

j2,...,jk

∥
∥hj1,...,jk

∥
∥ = O(nk−1 × n−(k−1)) = O(1),

(A18)

λ = O(n). (A19)

APPENDIX B: MATRIX AND VECTOR-VALUED
MARTINGALES.

Let X1, . . . , XN be IID random variables. Then, the
strong law of large numbers (LLN) implies that the sample
mean μ̂ = (1/N )

∑N
k=1 Xk converges to the actual mean

μ = EXk (μ̂ ≈ μ as N → ∞). In fact, even for finite N ,
the sample average is likely to be close to the expecta-
tion. This behavior is called concentration. It turns out that
concentration is a surprisingly generic phenomenon, and
it kicks in earlier than one might expect. Asymptotically
large sample sizes (N → ∞), which are essential for the
law of large numbers and the central limit theorem, are
not required establish concentration. An example is Bern-
stein’s inequality for sums of bounded random numbers.

Fact 3.1 (Bernstein’s inequality): Let X1, . . . , XN be inde-
pendent random variables that obey EXi = 0 and |Xi| ≤ R
almost surely. Then, for ε > 0,

Pr

[∣
∣
∣
∣
∣

N∑

k=1

Xk

∣
∣
∣
∣
∣
≥ ε

]

≤ 2 exp
(

ε2/2
v2 + Rε/3

)

where

v =
N∑

k=1

EX 2
k . (B1)

Bernstein’s inequality equips random sums with a LLN-
type concentration behavior already for nonasymptotic
sample sizes N � max

{
v2/ε2, R/ε

}
. However, it requires

strong assumptions on the random variables involved.
They need to be independent, bounded scalars. In fact,
random processes may concentrate under much weaker
conditions.

Martingales form a richer family of processes that cap-
ture more realistic random processes and that still enjoy
powerful concentration inequalities. Let us offer a minimal
technical introduction following Tropp [42]. Consider a fil-
tration of the master sigma algebra F0 ⊂ F1 ⊂ F2 · · · ⊂
Fk ⊂ · · ·F , where we denote the conditional expectation
with respect to Fk by the symbol Ek. A martingale is a
sequence {B0, B1, B2, . . . } of random variables that satisfies

σ(Bk) ⊂ Fk (causality),
(B2)

Ek−1Bk := E [Bk|Bk−1, . . . , B0] = Bk−1 (status quo).
(B3)

Heuristically, we can think of k as a “time” index, and
Fk contains all possible events that are determined by the
history up to time k. The present, also known as Bk may
depend on the past (i.e., B0, . . . , Bk−1), but it cannot depend
on the future (“causality”). The second condition formal-
izes the requirement that, on average, tomorrow (Bk) is the
same as today (Bk−1).

A martingale sequence may be composed of scalars,
e.g., a one-dimensional random walk, but we can also
consider vector- or matrix-valued martingales. Analyz-
ing concentration for vector- and matrix-valued martin-
gales is an ongoing field of research; for example, see
Refs. [36,42,43], but many powerful concentration
inequalities already exist. In this work, we use the matrix
generalization of Freedman’s inequality (due to one of the
authors). Let Md×d denote the space of complex-valued
d × d matrices.

Fact 3.2 (Matrix Freedman [42, Corollary 1.3]): Let
{Bk : k = 0, . . . , �, . . .} ⊂ Md×d be a matrix martingale.
Assume that the associated difference sequence Ck = Bk −
Bk−1 obeys ‖Ck‖ ≤ R almost surely. Define the random
variable

w� := max

(∥
∥
∥
∥
∥

�∑

k=1

Ek−1C†
kCk

∥
∥
∥
∥
∥

,

∥
∥
∥
∥
∥

�∑

k=1

Ek−1CkC†
k

∥
∥
∥
∥
∥

)

. (B4)

Then, for any τ > 0

Pr [∃� : ‖B� − B0‖ ≥ τ , w� ≤ v] ≤ 2d exp
( −τ 2/2
v + Rτ/3

)

.

This bound exponentially suppresses the probability of
the following undesirable event: the conditional variance
w is small while the actual deviation is large. The intricacy
of this bound is that the conditional variance w� is itself a
random variable. However, for this work we use a weaker
but more transparent version.

Corollary 3.4: Let {Bk : k = 0, . . . , N } ⊂ Md×d be a
matrix martingale. Assume that the associated difference
sequence Ck = Bk − Bk−1 obeys ‖Ck‖ ≤ R and its con-
ditional variance obeys ‖∑N

k=1 Ek−1CkC†
k‖ ≤ v almost

surely. Then

Pr [‖BN − B0‖ ≥ τ ]

≤ 2d exp
( −τ 2/2
v + Rτ/3

)

for any τ > 0.

To arrive at this, ignore the events for � < N and use that
w� ≤ v holds almost surely. This simplified matrix Freed-
man inequality closely resembles Bernstein’s inequality.
Actually, Fact 3.1 can be viewed as a special case of
Corollary 3.4 where d = 1 and Bk = ∑k

k′=0 Xk. But for
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matrix-valued martingales, the tail bound must depend on
the dimension d.

Recapitulating the proof of the general matrix Freed-
man inequality would go beyond the scope of this work.
It makes full use of Lieb’s concavity theorem, stopping
times, and Burkholder functions. There is a slightly weaker
result that follows from the Golden-Thompson inequal-
ity [44, Theorem 1.2]; see also [45, Theorem 11]. Similar
concentration inequalities are valid for martingales on the
complex vector space C

d. Remarkably, these results are
independent of the ambient dimension d.

Fact 3.3: Let {Bk : k = 0, . . . , N } ⊂ C
d be a vector mar-

tingale taking values in the inner product space ‖·‖�2 .
Assume that the associated difference sequence Ck = Bk −
Bk−1 obeys

∑N
k=1 Ek−1‖Ck‖2

�2
≤ v and ‖Ck‖�2 ≤ R almost

surely. Then, for any τ > 0

Pr
[‖BN − B0‖�2 ≥ τ

] ≤ 2 exp
( −τ 2/2
v + Rτ/3

)

.

This is simplified version of Ref. [43, Theorem 3.3].
To prove the above version, start with Ref. [43, Theorem
3.1] for general martingales on Banach spaces. In our case,
vectors are equipped with the standard �2 norm, set the
smoothness constant D = 1 (in the notation of Ref. [43,
Theorem 3.1]), and optimize for a λ like in Bernstein’s
inequality.

Our concentration analysis of random product formulas
with fixed inputs relies on another tool: uniform smooth-
ness of the underlying space [36]. Given a vector martin-
gale, uniform smoothness supplies a recursive and local
bound on moment growth. Decomposing Bk = Ck + Bk−1,
all we need is E[Ck|Bk−1] = 0, to apply the following
result.

Proposition 3.1 (Uniform smoothness): Let x, y ∈ C
d be

two random vectors that obey E [y|x] = 0. When q ≥ 2
(
E‖x + y‖q

�2

)2/q
≤
(
E‖x‖q

�2

)2/q
+ (q − 1)

(
E‖y‖q

�2

)2/q
.

A slightly weaker version of this classic fact follows
from a short argument.

Proof. Start with Bonami’s inequality [46, Cor. 13.1.1] for
normed vector spaces (denoting ‖·‖�2 as ‖·‖2):

(‖x + y‖q
2 + ‖x − y‖q

2

2

)2/q

≤ 1
2

(
‖x +

√
q − 1y‖2

2 + ‖x −
√

q − 1y‖2
2

)

= ‖x‖2
2 + (q − 1)‖y‖2

2. (B5)

This formula can be converted to the desired statement
(Proposition 3.1) via elementary manipulations. We follow

Ref. [36, Corollary 4.2]: take expectation and use triangle
inequality for Lq/2 norm

E‖x + y‖q
2 + E‖x − y‖q

2

2
≤ E(‖x‖2

2 + (q − 1)‖y‖2
2)

q/2

≤ (
(E‖x‖q

2)
2/q + (q − 1)(E‖y‖q

2)
2/q)q/2

. (B6)

Next, following Ref. [36, Proposition 4.3], by Jensen’s in
the first and Lyapunov’s in the second inequality,

(E‖x + y‖q
2)

2/q + (E‖x‖q
2)

2/q

2

≤ (E‖x + y‖q
2)

2/q + (E‖x − y‖q
2)

2/q

2
(B7)

≤
(

E‖x + y‖q
2 + E‖x − y‖q

2

2

)2/q

≤ (E‖x‖q
2)

2/q + (q − 1)(E‖y‖q
2)

2/q. (B8)

By rearranging terms, we obtain the result with the con-
stant 2(q − 1), which is off by a factor of 2. The adver-
tised constant (Proposition 3.1) can be obtained via a
more involved trick [36, Lemma A.1]. Geometrically,
this result expresses the uniform smoothness of the space
(E‖·‖q

�2
)1/q. �

We refer to Ref. [36] for further exposition on uniform
smoothness for general Schatten p norm. Recently, this
method has been applied to dynamic properties of ran-
dom Hamiltonians [34]. For the task at hand, we can use
Markov’s inequality to convert such bounds on moment
growth into a strong tail bound, similar to Fact 3.3. This is
the content of Lemma 3.7 below.

APPENDIX C: TECHNICAL DETAILS AND
PROOFS

1. Proof of Theorem 1 and Corollary 1.1:
approximation error under the worst-possible input

The proofs of Theorem 1 and Corollary 1.1 were
sketched in Sec. III. This section contains the details. In
Sec. C1a, we first relate the diamond distance to the oper-
ator norm. This allows us to work with the operator norm,
which is mathematically simpler. Then we bound the two
error contributions arising from the deterministic bias (in
Sec. C1b), as well as random fluctuations (in Sec. c).
Finally, we combine the two bounds to obtain a conver-
gence guarantee for randomly sampled product formulas.
This is the content of Sec. C1d.
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a. Conversion from diamond distance into operator
norm

The diamond distance is a rather intricate object.
Although it can be phrased implicitly as a semidefinite pro-
gram, analytical formulas are rare and far between. It is,
however, sometimes possible to relate diamond distances
to other figures of merit that are easier to access. The mix-
ing lemma by Campbell [33] and Hastings [32] is one very
useful example.

Lemma 3.3 (Mixing lemma [32,33]): Let U be a fixed uni-
tary and V be a random approximation thereof that obeys
‖V − U‖ ≤ a almost surely. Then, the associated channels
U(X ) = UXU† and V(X ) = VXV† obey

1
2‖EV − U‖� ≤ ‖EV − U‖ + 1

2 a2.

More recent insights, in particular, Ref. [40, Theorem
3.56], allow for sharpening this bound. In particular, we
can completely remove the a2/2 term on the rhs.

Lemma 3.4: Let U(ρ) = UρU† and V(ρ) = VρV† be
unitary channels. Then, 1

2‖U(|ψ〉〈ψ |)− V(|ψ〉〈ψ |)‖1 ≤
‖(U − V)|ψ〉‖�2 for any pure state |ψ〉. In turn, 1

2‖U −
V‖� ≤ ‖U − V‖. The latter relation generalizes to aver-
ages of random unitary channels:

1
2‖U − E[V]‖�≤‖U − E[V]‖.

The first claim follows from the fact that stabilization is
not required to compute the diamond distance between two
unitary channels [47, Sec. 5.3]. The second claim improves
the mixing lemma.

Proof. Fix an input |ψ〉 and denote the output state vectors
by |u〉 = U|ψ〉 and |v〉 = V|ψ〉, respectively. Normaliza-
tion ensures that these state vectors obey |〈u, v〉| ≤ 1.
Apply the Fuchs-van de Graaf relations [40, Theorem 3.33]
to convert the output trace distance into a (pure) output
fidelity and conclude

1
2‖|u〉〈u| − |v〉〈v|‖1 =

√
1 − |〈u, v〉|2

=
√
(1 + |〈u, v〉|)(1 − |〈u, v〉|)

≤
√

2[1 − Re(〈u, v〉)] = ‖|u〉 − |v〉‖�2 .

The first diamond distance bound then is a direct conse-
quence of this relation. Use the fact that stabilization is
not necessary for computing the diamond distance of two

unitary channels [47, Sec. 5.3] to conclude

1
2‖U − V‖� = max

|ψ〉〈ψ |
1
2‖U(|ψ〉〈ψ |)− V(|ψ〉〈ψ |)‖1

≤ max
|ψ〉

‖(U − V)|ψ〉‖�2 = ‖U − V‖.

Here, we also use the definition of the operator norm.
In order to handle expectation values, we need an addi-
tional argument. Let (pk, Vk) be an ensemble of unitaries
with weights pk ≥ 0 that obey

∑
k pk = 1. Then, Cauchy-

Schwarz asserts

|〈ψ |U†
E[V]|ψ〉|2 = |

∑

k

√
pk

√
pk〈ψ |U†Vk|ψ〉|2

≤
(
∑

k

pk

)
∑

k

pk|〈ψ |U†Vk|ψ〉|2

=
∑

k

pk|〈ψ |U†Vk|ψ〉|2

for any unitary U and state |ψ〉. Combined with Fuchs-van
de Graaf, this observation delivers

1
2‖U(|ψ〉〈ψ |)− E[V(|ψ〉〈ψ |)]‖1

≤
(

1 −
∑

k

pk|〈ψ |U†Vk|ψ〉|2
)1/2

≤ (
1 − |〈ψ |U†

E[V]|ψ〉|2)1/2

for any pure input state |ψ〉. This is enough to conclude
1
2‖U|ψ〉〈ψ |U† − E[V|ψ〉〈ψ |V†]‖1 ≤ ‖(U − E[V])|ψ〉‖�2 ,
much as before. We emphasize that this relation is true
for any fixed unitary U and any unitary ensemble (pk, Vk).
This flexibility is essential to deduce the diamond distance
bound, because E[V] is not unitary and stabilization must
be taken into account:

1
2‖U − E[V]‖� = max

|ψ〉〈ψ |
1
2‖U ⊗ I(|ψ〉〈ψ |)

− E [V ⊗ I(|ψ〉〈ψ |)] ‖1

= max
|ψ〉〈ψ |

1
2‖(U ⊗ I)|ψ〉〈ψ |(U ⊗ I)†

− E
[
(V ⊗ I)|ψ〉〈ψ |(V ⊗ I)†

] ‖1

≤ max
|ψ〉

‖(U ⊗ I − E[V ⊗ I])|ψ〉‖�2

= ‖(U − E[V])⊗ I‖ = ‖U − E[V]‖.

This is what we need to show. �

b. Controlling the deterministic bias

Next, we establish a bound on the deterministic bias
between the averaged channel and the ideal unitary
evolution.

040305-16



CONCENTRATION FOR RANDOM PRODUCT FORMULAS PRX QUANTUM 2, 040305 (2021)

Proposition 3.2: Consider the IID unitary product con-
structed by the QDRIFT protocol, Eq. (4), for simulat-
ing U = exp(−itH) for evolution time t. Define the total
strength λ = ∑

j

∥
∥hj

∥
∥. Then

‖U − E[VN · · · V1]‖ ≤ t2λ2

N
.

Note that the improved mixing lemma, Lemma 3.4
above, allows for converting this statement into a diamond
distance bound for the associated channels:

1
2‖U − E[VN ◦ · · · ◦ V1]‖�≤‖U − E [VN · · · V1] ‖ ≤ t2λ2

N
.

(C1)

This is a slight improvement over the main existing techni-
cal result regarding QDRIFT [17]. Indeed, Campbell labels
the total average QDRIFT channel E = E[VN ◦ · · · ◦ V1],
and he establishes that 1

2‖U − E‖� ≤ (t2λ2/N )e2tλ/N in
Ref. [17, Eq. (B12)]. Both assertions become very sim-
ilar in the large N limit, but Eq. (C1) is always tighter
and the discrepancy can be quite pronounced for small and
intermediate values of N .

The proof of Proposition 3.2 is based on an extension of
the numerical bounds |eix − 1| ≤ |x| and |eix − ix − 1| ≤
x2/2 for all x ∈ R to Hermitian matrices.

Fact 3.4: Let X be Hermitian. Then we have the zero-
order bound ‖ exp(iX )− I‖ ≤ ‖X ‖ and the first-order
bound ‖ exp(iX )− iX − I‖ ≤ 1

2‖X ‖2.

These observations can be converted into accurate
operator-norm bounds for the expected error of individual
QDRIFT steps.

Lemma 3.5: Fix a Hamiltonian H = ∑L
j =1 hj and

parameters N , t. Set U1/N = exp [−i(t/N )H ] and λ =∑L
j =1 ‖hj ‖. Then, the random matrix V defined in Eq. (4)

obeys

(almost surely) and ‖(EV)− U1/N ‖ ≤ t2λ2

N 2 .

Proof. Streamline the notation from QDRIFT(Algorithm
0.1) by absorbing the scaling factor (t/N ) into the random
Hermitian matrix X . In particular, V = exp(−iX ), EV =
E[exp(−iX )], U1/N = exp(−iE[X ]) and ‖X ‖ = (tλ)/N
almost surely. Observe that

‖V − (EV)‖ ≤ ‖ exp(−iX )− I‖ + ‖I − E[exp(−iX )]‖
≤ ‖ exp(−iX )− I‖ + E‖I − exp(−iX )‖,

where the last inequality is Jensen’s. Fact 3.4 and uniform
normalization then imply ‖ exp(−iX )− I‖ ≤ ‖X ‖ = (tλ)/

N for any instance of the random matrix X . This uniform
bound also covers the expected norm difference and
we conclude ‖V − (EV)‖ ≤ 2tλ/N . The (tighter) second
claim can be derived in a similar fashion. A combination
of Jensen’s inequality, Fact 3.4, and uniform normalization
delivers

‖(EV)− U1/N ‖ = ‖E [exp(−iX )− I + iX ]

+ [I − iE[X ] − exp(−iE[X ])] ‖
≤ E‖ exp(−iX )− I + iX ‖

+ ‖ exp(−iE[X ])− I + iE[X ]‖
≤ 1

2E‖X ‖2 + 1
2‖E[X ]‖2

≤ E‖X ‖2 = (tλ/N )2 .

This is the advertised result. �
We also need a statement regarding error accumulation

over several applications of similar, but not identical, linear
operators. It is a rather intuitive consequence of operator-
norm submultiplicativity and the triangle inequality. See
Ref. [48] for related results.

Lemma 3.6: Let EV and U1/N be matrices with bounded
operator norm, i.e., ‖EV‖ ≤ 1 and ‖U1/N ‖ ≤ 1. Then

‖(EV)N − (U1/N )N ‖ ≤ N‖(EV)− U1/N ‖.

Proof. The triangle inequality and submultiplicativity
imply

‖A1A2 − B1B2‖ = ‖(A1 − B1)A2 + B1(A2 − B2)‖
≤ ‖A2‖‖A1 − B1‖ + ‖B1‖‖A2 − B2‖

for any matrix quadruple A1, A2, B1, B2 with compatible
dimensions. Use the assumed operator norm bounds to
iteratively apply this relation and deduce the statement:

‖(EV)N − (U1/N )N ‖
= ‖(EV)(EV)N−1 − U1/N (U1/N )N−1‖
≤ ‖(EV)− U1/N ‖ + ‖(EV)N−1 − (U1/N )N−1‖
≤ · · · ≤ N‖(EV)− U1/N ‖.

This is the stated result. �

Proof of Proposition 3.2. The main result of this section
immediately follows from combining Lemmas 3.6
and 3.5. Decompose U = exp(−itH) into N steps
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U1/N = exp[−i(t/N )H ] and conclude

‖U − (EV)N ‖ = ‖(U1/N )N − (EV)N ‖

≤ N‖U1/N − (EV)‖ ≤ t2λ2

N
.

This is what we had to show. �

c. Controlling random fluctuations

In the previous subsection we have essentially recapitu-
lated the state of the art regarding QDRIFT: the algorithm
provides an accurate approximation in expectation over
all possible random choices (deterministic bias). In this
section, things start to get interesting. We want to show
that a single realization of QDRIFT is likely to provide a
good approximation, provided that the number of steps N
is sufficiently large. In order to achieve this goal, we need
to show that concrete fluctuations around the (accurate)
expected behavior remain small:

VN · · · V1 ≈ E[VN · · · V1]

= (EV)N with high probability. (C2)

In words, we need to show that a product of IID ran-
dom matrices concentrates sharply around its expectation
value. This is an interesting and nontrivial problem, even
in the (asymptotic) large N limit. While sharp concentra-
tion bounds for sums of IID random matrices have been
available for more than a decade now [49,50], our under-
standing of concentration for random matrix products is
more limited; see Ref. [36] and references therein. There
is a lot of math literature on random walks on Lie groups,
but the focus is usually on asymptotic convergence and the
machinery is different; see Ref. [51] and references therein.
The small-step regime has seen less development, although
there are some asymptotic bounds [52].

Fortunately, the QDRIFT construction has several
appealing features: the random unitaries VN , . . . , V1 are
IID unit-norm matrices that are close to the identity matrix
(‖V − I‖ ≤ tλ/N almost surely) and close to their expec-
tation (‖V − (EV)‖ ≤ 2tλ/N almost surely). These prop-
erties allow us to use the matrix martingale formalism to
derive a strong, nonasymptotic result on the quality of the
approximation.

Proposition 3.3 (QDRIFT: operator-norm concentration):
Consider a Hamiltonian H = ∑L

j =1 hj with interaction
strength λ = ∑L

j =1 ‖hj ‖, and fix parameters N , t. Suppose
that VN , . . . , V1 are IID instances of the random uni-
tary d × d matrix V constructed by the QDRIFT protocol,

Eq. (4). Then

Pr [‖VN · · · V1 − E(VN · · · V1)‖ ≥ ε/2]

≤ 2d exp
(

− Nε2

44t2λ2

)

for any ε ∈ [0, 4tλ].

In particular, N ≥ (44t2λ2/ε2) log(2d/δ) implies that
‖VN · · · V1 − E[VN · · · V1]‖ ≤ ε/2 with probability at
least 1 − δ.

This statement provides a strong tail bound for
random fluctuations in the small-error regime ε ≤
4tλ. As N increases, the probability of incurring (at
least) error ε/2 diminishes exponentially. For ε >

4tλ, we have instead a subexponential tail bound:
Pr [‖Vn · · · V1 − E(VN · · · V1)‖ ≥ τ ] ≤ 2d exp(−Nε/6tλ).
We refer to Eq. (C4) for a unified statement that covers
both regimes.

The proof technique deserves some exposition, as it
is rather general and may be of independent interest. It
heavily utilizes the martingale concentration tools intro-
duced in Appendix B. For fixed N , we interpolate between
both sides of Eq. (C2) by means of a random process
{Bk : k = 0, . . . , N }:

Bk = (EV)N−kVk · · · V1 such that

B0 = (EV)N and BN = VN · · · V1.

The increments of this random process are certainly not
independent. For instance, Bk depends on the (random)
choice of Vk and all previous choices Vk−1, . . . , V1. Fortu-
nately, we can recognize it as a (matrix-valued) martingale
satisfying the defining properties:

1. Causality: each Bk is completely determined by the
information we have collected up to step k. That is, the
(random) choices of Vk, . . . , V1.

2. Status quo: conditioned on previous choices, the
expectation of Bk+1 equals Bk: for 1 ≤ k ≤ N

E [Bk+1|Vk · · · V1]

= (EV)N−(k+1)
EVk+1 [Vk+1] Vk · · · V1

= (EV)N−kVk · · · V1 = Bk. (C3)

This feature underscores similarities to an unbiased ran-
dom walk. On average, “tomorrow” (Bk+1) is the same as
“today” (Bk).

With this matrix martingale reformulation at hand, we can
prove Proposition 3.3 using a concentration inequality for
matrix martingales, namely Corollary 3.4.

Proof of Proposition 3.3. We have already established that
the random process Bk = (EV)N−kVk · · · V1 forms a matrix

040305-18



CONCENTRATION FOR RANDOM PRODUCT FORMULAS PRX QUANTUM 2, 040305 (2021)

martingale that interpolates between B0 = E[VN · · · V1] =
(EV)N and VN = VN · · · V1. The elements of the associated
difference sequence are

Ck = Bk − Bk−1 = (EV)N−k [Vk − (EVk)] Vk−1 · · · V1

with k = 1, . . . , N .

Recall that Vk = exp(−iXj ) for some Hermitian matrices
Xj = t/N (λ/‖hj ‖)hj with index 1 ≤ j ≤ L. Boundedness
(‖EV‖, ‖Vk‖ ≤ 1), Fact 3.4 [‖ exp(−iX )− I‖ ≤ ‖X ‖ for
X Hermitian], and Lemma 3.5 ensure

‖Ck‖ ≤ ‖EV‖N−k‖Vk − (EVk)‖‖Vk−1 · · · V1‖

≤ ‖Vk − (EVk)‖ = 2tλ
N

almost surely. Set R = 2tλ/N , and invoke Corollary 3.4 to
conclude that

Pr [‖BN − B0‖ ≥ τ ] ≤ 2d exp
(

− Nτ 2

8(tλ)2 + 4(tλ)τ/3

)

.

(C4)

The statement follows from bounding the somewhat com-
plicated exponential by either exp

[−3τ 2/(8NR2)
]

for τ ≤
2λt or by exp

[−3τ 2/(8R)
]

for τ ≥ 2λt. Last, we substitute
τ = ε/2. �

In fact, the same proof works for any adapted small-step
random walks on the unitary group. Such a generalization
results in Theorem 3 and we refer to Appendix 3 for details.

d. A bound for expected errors

In the previous subsection, we established that a suf-
ficiently long QDRIFT random-product formula concen-
trates sharply around its expectation. We can translate this
statement into a bound on the expected fluctuation around
the true evolution.

Proposition 3.4 (QDRIFT: expected diamond-norm error):
Consider an n-qubit Hamiltonian H = ∑L

j =1 hj with total
strength λ = ∑L

j =1 ‖hj ‖. Fix parameters N , t, and assume
that N ≥ n. Set U = UXU† with U = exp (−itH), and
suppose that VN , . . . ,V1 ∼ V are IID realizations of the
QDRIFT protocol. That is, V(X ) = VXV†, where V is
defined by Eq. (4). Then

E
[ 1

2‖U − VN ◦ · · · ◦ V1‖�
]

≤ t2λ2

N
+ C

ntλ
N

+ C

√
nt2λ2

N
≈ C

√
nt2λ2

N
, (C5)

where C > 0 is a (modest) numerical constant. The sym-
bol ≈ denotes an accurate approximation in the large-N
regime.

It is instructive to compare this assertion to the original
QDRIFT result [17] and the improvement in Eq. (C1):

1
2‖U − E [VN ◦ · · · ◦ V1] ‖�≤ t2λ2

N
.

Note that the expectation over all possible realizations of
all N unitary channels appears inside the diamond dis-
tance. This implies that QDRIFT performs well on average
over many random realizations, provided that the number
N of steps exceeds t2λ2/ε. In contrast, Eq. (C5) has the
expectation outside the diamond distance.

Our result gives a much stronger conclusion: an individ-
ual realization of the randomized QDRIFT protocol does
not deviate much from the target evolution, for any input
states and observables, with very high probability. The
price for such an improvement is a larger number of steps
that depends on the system size. For n qubits, the gate com-
plexity N ≥ Cnt2λ2/ε2 is sufficient to ensure ε closeness
on average. The quadratic scaling in the accuracy parame-
ter ε is necessary (for large N ) because of the central limit
theorem for martingales.

The appearance of the number n of qubits is a conse-
quence of measuring closeness in diamond distance. To
obtain

ε ≥ E
[ 1

2‖U − VN ◦ · · · ◦ V1‖�
]

= E
[ 1

2 max
ρ state

‖Uρ − VN ◦ · · · ◦ V1(ρ)‖1
]
,

we need the random product formula to behave for all pos-
sible n-qubit input states ρ simultaneously. If we restrict
our attention to any fixed input state, we can obtain a gate
complexity that does not depend on n. This is the topic of
the next section.

Proof of Proposition 3.4. First, we relate the expected dia-
mond distance to an expected operator-norm distance and
split it up into deterministic bias and (expected) fluctua-
tions:

E
[ 1

2‖U − VN ◦ · · · ◦ V1‖�
]

≤ ∥
∥U − (EV)N

∥
∥+ E

∥
∥VN · · · V1 − (EV)N

∥
∥ .

The first term is deterministic and controlled by
Proposition 3.2: ‖U − (EV)N ‖ ≤ t2λ2/N . The second term
can be bounded by integrating the tail bound in Proposi-
tion 3.3, or rather the tighter bound presented, Eq. (C4);
see Ref. [50, Remark 6.5]. For n qubits, we have d = 2n
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and conclude

E‖VN · · · V1 − (EV)N ‖

=
∫ ∞

0
Pr
[‖VN · · · V1 − (EV)N ‖ ≥ τ

]
dτ

≤
∫ ∞

0
min

[

1, 2 × 2n exp
(

− Nτ 2/2
4λ2t2 + 2λtτ/3

)]

dτ

≤ C max

{√
nt2λ2

N
,

ntλ
N

}

≤ 2C

(
ntλ
N

+
√

nt2λ2

N

)

.

Here, we have evaluated the integral by two segments: the
integrand is at most 1 until τ ∼ max(

√
nt2λ2/N , ntλ/N );

for larger τ , the expression decays exponentially
and integrating it produces only a contribution of
order O[max(

√
t2λ2/N , tλ/N )]. Also, 2C absorbs all

constants. �

2. Proof of Theorem 2: approximation error under a
single input

Proposition 3.4 asserts that a single, random realization
of the QDRIFT protocol, Eq. (4), accurately approximates a
unitary target evolution with respect to the diamond norm:

E
[ 1

2‖U − VN ◦ · · · ◦ V1‖�
]

= E
[ 1

2 max
ρ state

‖U(ρ)− VN ◦ · · · ◦ VN (ρ)‖1
]

� C

√
nt2λ2

N
.

Here, � denotes an accurate approximation of the true
bound in the large N regime. This bound scales linearly
in the (qubit) system size n. The dependence on n should
not come as a surprise, since the diamond norm produces
a very stringent worst-case distance measure. As empha-
sized by the above reformulation, the approximation must
be accurate even when we optimize to find the worst
possible input state ρ.

In Hamiltonian simulation, demanding such a stringent
worst-case promise may be excessive. In most practical
applications, the input state ρ is fixed and simple, e.g., a
product state. In this more practical setting, we can obtain
a gate complexity N that does not depend on the system
size n. The main result of this section asserts

max
ρ state

E
[ 1

2‖U(ρ)− VN ◦ · · · ◦ V1(ρ)‖1
] ≤ C

√
t2λ2

N
.

In other words, fixing an arbitrary input state ρ helps a
lot. A total number of N = 4 (tλ/ε)2 steps ensures that
QDRIFT produces an ε-accurate output state, with respect
to trace distance.

The proof is similar in spirit to the argument behind
Proposition 3.4. We construct a vector martingale that
describes the evolution of the state. We control the behav-
ior of this martingale using the uniform smoothness of the
Lq(�2) norm. This argument is inspired by the work [36]
on concentration of random matrix products.

a. Approximation error for a fixed state

In this section, we state and prove our main technical
result on the action of the QDRIFT protocol on a fixed input
state.

Proposition 3.5 (QDRIFT: action on a fixed state): Con-
sider a Hamiltonian H = ∑L

j =1 hj with total strength λ =
∑L

j =1 ‖hj ‖. Fix evolution time t and a gate count N
that obeys N ≥ (tλ)2. Let V1, . . . ,VN be the IID random
unitary evolution operators constructed by the QDRIFT
protocol, Eq. (4). Then,

max
ρ state

E
[ 1

2

∥
∥U(ρ)− VN ◦ · · ·V1(ρ)

∥
∥

1

] ≤ 4

√
t2λ2

N
.

Moreover, for ε > 0,

max
ρ state

Pr
[ 1

2

∥
∥U(ρ)− VN ◦ · · ·V1(ρ)

∥
∥

1 > ε
]

≤ exp
( −ε2N

32et2λ2

)

.

Proof. First, we reduce the problem to a question about
pure states. For any q ≥ 2, Markov’s inequality implies
that

Pr
[ 1

2

∥
∥U(ρ)− VN ◦ · · ·V1(ρ)

∥
∥

1 > ε
]

≤ ε−q
E
[
2−q

∥
∥U(ρ)− VN ◦ · · ·V1(ρ)

∥
∥q

1

]
. (C6)

The right-hand side of this equation is a convex function of
the state ρ. Thus, the maximum over all states is attained
at a pure state. As a consequence, we can establish both
claims in the proposition by limiting our attention to an
(unknown) pure state ρ = |ψ〉〈ψ | that does not depend on
the random unitary channels Vk(X ) = VXV†.

Next, we convert the trace distance of the output states
into a Euclidean distance on the state vectors themselves.
The power q ≥ 2 will remain fixed until the last step of the
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argument. Lemma 3.4 implies

{E[2−q‖U(|ψ〉〈ψ |)− VN ◦ · · · ◦ V1(|ψ〉〈ψ |)‖q
1

]}1/q

≤ [
E‖(VN · · · V1 − U)|ψ〉‖q

�2

]1/q

≤ 2 max

⎧
⎪⎨

⎪⎩

∥
∥(E [VN · · · V1] − U) |ψ〉
︸ ︷︷ ︸

deterministic bias|ψbias〉

∥
∥
�2

,

{E∥∥(VN · · · V1 − E [VN · · · V1]) |ψ〉
︸ ︷︷ ︸

random fluctuation |ψrand〉

∥
∥q
�2

}1/q

⎫
⎪⎬

⎪⎭
. (C7)

The last bound follows from the triangle inequality and
(a + b)q ≤ 2q max{aq, bq} for a, b ≥ 0.

We have split up the difference into two components, a
deterministic bias and a random fluctuation. To control the
deterministic bias, we simply apply Proposition 3.2:

‖(E [VN · · · V1] − U)|ψ〉‖�2

= ‖[(EV)N − U]|ψ〉‖�2 ≤ ‖(EV)N − U‖ ≤ (tλ)2

N
.

(C8)

We see that the bias is always negligible in comparison
with the fluctuation. To control the second term, we need
the following lemma.
Lemma 3.7: Let VN , . . . , V1 be IID unitaries that imple-
ment the QDRIFT protocol, Eq. (4), with parameters t and
λ. Then, for any q ≥ 2,

{E‖(VN · · · V1 − E[VN · · · V1])|ψ〉‖q
�2

}1/q

≤ 2

√
(q − 1)(tλ)2

N
.

We establish this lemma below. The basic idea behind
the proof is to express the random vector using a mar-
tingale sequence, similar to the matrix case. We could
have already call vector martingale tail bounds (Fact 3.3)
to arrive at the desired results. However, we demonstrate
the same results via Markov’s inequality and moment
bounds (uniform smoothness, Proposition 3.1), which we
introduce in Appendix B.

Introduce the inequalities from Eq. (C8) and Lemma 3.7
into the bound, Eq. (C7). We obtain

{E[2−q‖U(|ψ〉〈ψ |)− VN ◦ · · · ◦ V1(|ψ〉〈ψ |)‖q
1

]}1/q

≤ 4

√
(q − 1)(tλ)2

N
. (C9)

We use the assumption that N ≥ (tλ)2 to see that the
second branch of the maximum always dominates the first.

We may now complete the proof. To obtain the expecta-
tion bound, we set q = 2 in Eq. (C9) and apply Lyapunov’s
inequality. To obtain the probability bound, we combine
Eqs. (C6) and (C9) to arrive at

Pr
[ 1

2

∥
∥U(ρ)− VN ◦ · · ·V1(ρ)

∥
∥

1 > ε
] ≤

(
16q(tλ)2

ε2N

)q/2

.

Select q = (ε2N )/(16et2λ2) to obtain the stated result. The
resulting probability bound is vacuous unless q ≥ 2. �

b. Proof of Lemma 3.7

In this section, we establish the bound on the size of the
fluctuations.

Proof of Lemma 3.7. Fix a vector |ψ〉, and introduce
a sequence of random vectors: |ψk〉 = ∏k

i=1 Vi|ψ〉 for
1 ≤ k ≤ N . As a consequence, (VN · · · V1 − E[VN · · · V1])
|ψ〉 = |ψN 〉 − E[|ψN 〉]. We can recast this difference as a
sum of two random vectors that are conditionally orthogo-
nal in expectation:

E‖|ψN 〉 − E[|ψN 〉]‖q
�2

= E‖(VN − E[VN ])|ψN−1〉 + E[VN ](|ψN−1〉
− E [|ψN−1〉])‖q

�2
=: E‖y + x‖q

�2
.

Indeed, E[y|x] = E[VN − (EVN )]|ψN−1〉 = 0. We can
apply uniform smoothness (Proposition 3.1) to split up the
contributions:

(E‖|ψN 〉 − E[|ψN 〉]‖q
�2
)2/q

≤ (q − 1){E‖[VN − (EVN )]|ψN−1〉‖q
�2

}2/q

+ {E‖(EV)(|ψN−1〉 − E [|ψN−1〉]}‖q
�2
)2/q

≤ (q − 1)(E‖VN − E[VN ]‖q)2/q + (E‖|ψN−1〉
− E [|ψN−1〉] ‖q

�2
)2/q.

We can now iterate this argument to conclude that

(E‖|ψN 〉 − E[|ψN 〉]‖q
�2
)2/q

≤ (q − 1)
N∑

k=1

(E‖Vk − E[Vk]‖q)2/q

= (q − 1)N (E‖V − E[V]‖q)2/q.

Invoke Lemma 3.5, using the properties of the random
unitaries constructed by QDRIFT:

(E‖V − E[V]‖q)2/q ≤
(

2
tλ
N

)2

.

Combine the last two displays to reach the stated result.
�
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3. Proof of Theorem 3 and Corollary 3.1

The proof techniques for establishing Theorems 1
and 2 are remarkably general and we condense them
into Theorem 3. Let us reiterate the premise. Consider
approximating a target unitary product U = UN · · · U1 by
a random unitary V = VN · · · V1 such that {Vk} satisfy:
(i) Causality: for 1 ≤ k ≤ N the random selection of Vk
can depend only on previous choices for V1, . . . , Vk−1:

Pr [Vk|VN , . . . , Vk+1, Vk−1, . . . , V1] = Pr [Vk|Vk−1, . . . , V1] .

(ii) Accurate approximation: each realization of Vk (and
their conditional expectation) must be close to the ideal
unitary Uk. More precisely, let R, bk > 0 be constants such
that

‖Vk − Ek−1Vk‖ ≤ R and ‖Ek−1Vk − Uk‖ ≤ bk, where

Ek−1Vk := E [Vk|Vk−1, . . . , V1] ,

almost surely for all 1 ≤ k ≤ N . Note this is more gen-
eral then we need to prove Theorem 3; this is to take into
account the cases when the conditional variance may be
much smaller than NR2.

Proof of Theorem 3. Recall the decomposition of approx-
imation error into a deterministic bias and a random
fluctuation:

‖VN · · · V1 − UN · · · U1‖
≤ ‖(EV)N − UN · · · U1‖︸ ︷︷ ︸

deterministic bias

+ ‖VN · · · V1 − E [VN · · · V1] ‖
︸ ︷︷ ︸

random fluctuation

.

The deterministic bias can once again be controlled by a
telescoping sum,

‖(EV)N − U‖ ≤
N∑

k=1

bk. (C10)

Note that this also controls the performance of channel
‖EV − U‖� by Lemma 3.4. For the random fluctuations,
tweaking the proofs of Theorems 1 and 2 implies the
following general result. �

Proposition 3.6 (adapted random walk on the uni-
tary group; with and without fixed input state): Let
{V1, V2, . . . , VN } ⊂ U(d) an adapted (causal) random

unitary matrices that obey

N∑

k=1

Ek−1‖(Vk − EVk)(V
†
k − EV†

k)‖ ≤ σ 2 and

‖Vk − EVk‖ ≤ R (almost surely) (C11)

for some constants v, R ≥ 0. Then, the product of N ran-
dom unitaries satisfies a concentration inequality:

Pr(‖VN · · · V1 − E[VN · · · V1]‖ ≥ ε)

≤ 2d exp
( −ε2/2
v + Rε/3

)

for ε > 0. (C12)

For a fixed, but arbitrary, input state ρ, concentration is
independent of the ambient dimension d:

max
ρ state

Pr{ 1
2

∥
∥E[VN ◦ · · ·V1(ρ)] − VN ◦ · · ·V1(ρ)

∥
∥

1 > ε}

≤ 2 exp
( −ε2/2
v + Rε/3

)

for ε > 0.

For a fixed input state, we would call the vector Freed-
man inequality (Fact 3.3) instead of uniform smoothness
(Proposition 3.1) in Theorem 2. There are several recent
independent papers that also use matrix martingale tools
to study products of random matrices that are close to the
identity. The work [36] addresses the problem using uni-
form smoothness tools. The paper [53] uses the matrix
Freedman inequality; their proof is quite similar to ours.
In contrast, we are interested in unitary products, which
allows for additional simplifications. For more background
on matrix martingales, see Refs. [36,41,42,54].

It is instructive to illustrate these improvements by
example. In QDRIFT, all steps have a uniform bound R,
but in the fully general statement the variance v can differ
from the crude uniform bound NR2. In such a regime, the
subexponential tail of size e−3ε/2R can start playing a role.

Lastly, for illustration in Theorem 3 we give loose esti-
mates on the variance to avoid complication with the heavy
tail effects. Plugging in the parameters v = ra2, R = 2a as
‖V − EV‖ ≤ E‖V − V′‖ ≤ 2‖U − V‖ = 2a translates to a
typical fluctuation ε2 ∼ nra2(and ε2 ∼ ra2 for fixed input).
We conclude the proof by combining the bound for the
deterministic bias and random fluctuation.

Proof of Corollary 3.1. Consider randomly permuting the
2kth-order Suzuki formulas as Vk = Sσ2k(t/r) with uniform
probability 1/L! Then by direct calculation [18,48]:

‖V − U‖ ≤ O
(
(t�L)2k+1

r2k+1

)

= a, (C13)

‖EV − U‖ ≤ O (t�/r)2k+1 L2k = b (C14)

by Theorem 3,
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εdet ≤ ra = O
(
(t�L)2k+1

r2k

)

εtyp = O(
√

nra)

+ 2rb = O

[
√

n
(t�L)2k+1

r2k+1/2 + (t�)2k+1
(

L
r

)2k
]

εfix = O(
√

ra)

+ 2rb = O

[
(t�L)2k+1

r2k+1/2 + (t�)2k+1
(

L
r

)2k
]

εavg ≤ 2rb = O

[

(t�)2k+1
(

L
r

)2k
]

,

which translates to the sufficient gate counts N = rL

Ndet � t�L2
(

t�L
ε

)1/2k

,

Ntyp � t�L2
(

n�Lt
ε2

)1/(4k+1)

+ t�L2
(

t�
ε

)1/2k

,

Nfix � t�L2
(
�Lt
ε2

)1/(4k+1)

+ t�L2
(

t�
ε

)1/2k

,

Navg � t�L2
(

t�
ε

)1/2k

. �

APPENDIX D: ASYMPTOTIC TIGHTNESS

It is natural to wonder whether the bound (C5) is
tight for some Hamiltonian H = ∑

j hj , i.e., whether N =
�(nλ2t2/ε2) is also necessary to achieve concentration.
More precisely, we want to understand whether the depen-
dences on system size n = log2(d), evolution time t, and
interaction strength λ = ∑

j

∥
∥hj

∥
∥ are also necessary to

control the typical deviation of the unitary random walk
we considered.

In the context of matrix concentration inequalities,
this question has been thoroughly addressed [55, Section
4.1.2]. The answer is affirmative for sums of bounded
matrices: concentration inequalities are tight and saturated
for collections of commuting matrices. Although in this
work we consider products of random matrices, we are still
using a telescoping sum in the small step regime and expect
an analogy.

This observation motivates us to look at artificial Hamil-
tonians whose associated unitary evolution saturates the
upper bounds put forth in this work. The cases we can han-
dle lie at the two extremes: either the sum of single-site
Pauli Zs or the sum of all 2n many-body Pauli Zs. We see
the presence of the system size factor n = log2(d) at both

extremes, so one may believe the same to hold for the inter-
mediate q-local cases. However, this factor arises for very
different reasons. It arises in the single-site case, because
the operator norm completely factorizes into n constituents
(one for each term). For Hamiltonians that encompass all
2n many-body Zs, it comes from the fact that diagonal
entries are nearly independent, so the union bound we used
in Sec. III B is tight. Independence of entries requires the
presence of all many-body terms, and does not extend to
the few-body case.

The multivariate central limit theorem will be crucial for
analyzing both cases, as it greatly simplifies the analysis in
large N limit.

Fact 3.5 (CLT for the multinomial distribution): The
multinomial distribution m = (m1, . . . , mK) ∼ Mult[N ,
(1/K , . . . , 1/K)] (roll a fair K-sided dice N times) obeys a
central limit theorem (CLT):

1√
N
(m − Em) ∼ N (0,�) in distribution as N → ∞.

The covariance matrix is � = 1/K [I − (1/K)J ], where J
denotes the K × K matrix of ones.

1. Sum of single-site Pauli-Z operators

This example demonstrates the saturation of our mar-
tingale bounds for single-site Hamiltonians that factorize
completely. To this end, we revisit a variant of the n-qubit
example Hamiltonian discussed in Sec. III A:

H =
n∑

k=1

Zk where Zk = I ⊗ · · · ⊗ I︸ ︷︷ ︸
(k−1) times

⊗ Z

⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸
(n−k) times

for 1 ≤ k ≤ n. (D1)

Proposition 3.7: Suppose that we wish to obtain an N-
term approximation of the time evolution U = exp(−itH)
associated with the n-qubit Hamiltonian (D1) for evo-
lution time t. In the large N limit (CLT), the QDRIFT
approximation, Eq. (4), incurs an operator-norm error
that matches the (upper) bound from Corollary 1.1 (and
indirectly Theorem 1) up to a constant factor:

E ‖U − VN · · · V1‖ ≥
√

2
π

√

(n − 1)
(tλ)2

N
− 1

2
(n − 1)

(tλ)2

N
.

We choose to state this result directly in terms of
operator-norm deviation. A conversion into diamond dis-
tance is also possible: 1

2‖U − V‖� ≥ 1
2‖U − V‖ for any

pair of unitary channels. This conversion rule readily fol-
lows from the geometric characterization of 1

2‖U − V‖�
provided in Ref. [47].
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Proof of Proposition 3.7. Each of the n terms in the Hamil-
tonian (D1) has unit operator norm (‖Zk‖ = 1) and the
total strength is λ = ∑n

k=1 ‖Zk‖ = n. For fixed N and t,
each short-time approximation, Eq. (4), has the form Vk =
exp

[−i(tn/N )Zk(i)
]
, where each k(i) is an index chosen

uniformly from the set {1, . . . , n} (multinomial distribu-
tion). Since all Zks commute, we can rewrite the entire
product formula as

VN · · · V1= exp

(

−i
tλ
N

N∑

i=1

Zk(i)

)

= exp

(

−i
tλ
N

n∑

k=1

mkZk

)

.

Here, we introduce the count statistics mk for each site
label k, that is the number of times location k has been
selected throughout N independent selection rounds, to
rearrange the sum. This count statistics obeys m̄k = Emk =
N/n = N/λ for each 1 ≤ k ≤ n. We can use this obser-
vation to re-express the target unitary U in a compatible
fashion:

U = exp

(

−it
n∑

k=1

Zk

)

= exp

(

−i
tλ
N

n∑

k=1

m̄kZk

)

.

Unitary invariance then implies that the operator-norm
difference between both unitaries becomes

‖VN · · · V1 − U‖ =
∥
∥
∥
∥
∥

exp

(

−i tλ√
N

N∑

k=1

mk − m̄k√
N

Zk

)

− I

∥
∥
∥
∥
∥

.

(D2)

This is a promising starting point. The multinomial
CLT (Fact 3.5) ensures that the n centered and nor-
malized random variables sk = (mk − m̄k)/

√
N approach

the coefficients of a Gaussian vector s ∈ R
n with covari-

ance matrix � = 1/n
(
I − 1

n J
)
. This, in particular, implies

Esk = 0 and Es2
k = 1/n(1 − 1/n) = σ 2 for all 1 ≤ k ≤

n. We can capitalize on this observation by simplifying
Eq, (D2) via a second-order Taylor expansion. Set X =
−tλ/

√
N
∑

k skZk for brevity and apply Fact 3.4 to obtain

‖VN · · · V1 − U‖ = ‖exp(iX )− I‖
≥ ‖iX ‖ − ‖exp(iX )− iX − I‖ ≥ ‖X ‖ − 1

2 ‖X ‖2 .

This relation is preserved under expectations and we obtain

E ‖VN · · · V1 − U‖

≥ tλ√
N

E

∥
∥
∥
∥
∥

∑

k

skZk

∥
∥
∥
∥
∥

− 1
2

(
tλ√
N

)2

E

∥
∥
∥
∥
∥

∑

k

skZk

∥
∥
∥
∥
∥

2

.

Let us focus on the leading-order term first. The partic-
ular structure of the Hamiltonian (D1)—each Zk is the

tensor product of a single Pauli-Z matrix at location k
with (n − 1) identity matrices—ensures that the opera-
tor norm factorizes nicely. Use ‖X ⊗ I + I ⊗ Y‖ = ‖X ‖ +
‖Y‖ iteratively to conclude

E

∥
∥
∥
∥
∥

∑

k

skZk

∥
∥
∥
∥
∥

= E

n∑

k=1

‖skZk‖

=
n∑

k=1

|sk| N→∞= n

√
2
π

1
n

(

1 − 1
n

)

=
√

2
π
(n − 1),

because the CLT asserts that each |sk| approaches a half-
normal random variable with σ 2 = 1/n(1 − 1

n ).
To bound the quadratic term, we combine the factoriza-

tion trick from above with a well-known relation among �p
norms in R

n:

E

∥
∥
∥
∥
∥

n∑

k=1

skZk

∥
∥
∥
∥
∥

2

= E

(
n∑

k=1

|sk|
)2

= E ‖s‖2
�1

≤ nE ‖s‖2
�2

= n
n∑

k=1

Es2
k = n2σ 2 = (n − 1).

No CLT is required for this argument. Inserting both
bounds into Eq. (D2) completes the argument. �

2. Sum of many-body Pauli-Z operators

Let us revisit the example Hamiltonian from Sec. III
B, albeit without additional sign factors. Recall the multi-
indices p = (p1, . . . , pn) ∈ {0, 1}n and set

H =
∑

p∈{0,1}n

Zp =
∑

p∈{0,1}n

Zp1 ⊗ · · · ⊗ Zpn , (D3)

where we use the conventions Z1 = Z and Z0 = I. This
Hamiltonian is not local. All constituents commute and
have the same operator norm: ‖Zp‖ = 1 for all p ∈ {0, 1}n.
This in turn implies that the total strength λ = ∑

p ‖Zp‖ =
2n equals the Hilbert-space dimension. It is also worth-
while to point out that each term is diagonal in the com-
putational basis |b〉 = |b1, . . . , bn〉 with b = (b1, . . . , bn) ∈
{0, 1}n. Overlaps of the Hamiltonian terms with computa-
tional basis states are given by

〈b|Zp|b〉 = (−1)〈b,p〉 = (−1)
∑

i bipi ∈ {±1} . (D4)

The following claim highlights that our findings are tight
for asymptotically large step sizes N . This complements
the example upper bound derived in Sec. III B, as well as
Theorem 1.
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Proposition 3.8: Suppose that we wish to obtain an N-
term approximation of the time evolution U = exp(−itH)
associated with the n-qubit Hamiltonian (D3) for evo-
lution time t. In the large N limit (CLT) the QDRIFT
approximation, Eq. (4), incurs an operator-norm error
that matches the (upper) bound from Corollary 1.1 (and
indirectly Theorem 1) up to a constant factor:

E‖U − VN · · · V1‖ ≥ 1
2

√

n
(tλ)2

N
− 2

(
n + 1

2

) (tλ)2

N
.

The conversion rule ‖U − V‖� ≥ ‖U − V‖ (for uni-
tary channels) [47] once more allows for addressing the
expected diamond distance as well.

Proof of Proposition 3.8. Each of the 2n terms in the
Hamiltonian (D3) has unit operator norm (‖Zp‖ = 1 for
all p ∈ {0, 1}n) and the strength is λ = ∑

p ‖Zp‖ = 2n. For
fixed N and t, each short-time approximation, Eq. (4),
has the form Vk = exp[−i(tλ/N )Zp(i)], where p(i) is a
string chosen uniformly at random from all 2n possibilities
(multinomial distribution). Since all Zps commute, we can
rephrase and simplify the expected operator-norm differ-
ence in a fashion analogous to the proof of Proposition 3.7:

E ‖VN · · · V1 − U‖

≥ tλ√
N

E

∥
∥
∥
∥
∥

∑

p

spZp

∥
∥
∥
∥
∥

− 1
2

(
tλ√
N

)2

E

∥
∥
∥
∥
∥

∑

p

spZp

∥
∥
∥
∥
∥

2

.

(D5)

Here, sp = (mp − m̄p)/
√

N is the centered and normal-
ized variant of the count statistics mp associated with bit
string p ∈ {0, 1}n, that is the number of times the Hamilto-
nian term Zp has been selected throughout N independent
selection rounds. The multinomial CLT (Fact 3.5) asserts
that the 2n centered and normalized random variables sp
approach distinct coefficients of a 2n-dimensional Gaus-
sian vector with covariance matrix � = 1/2n

(
I − 1

2n J
) =

1
2n (I − |1〉〈1|), where |1〉 = 1/2n∑

b∈{0,1}n |b〉 (the normal-
ized all-ones vector in R

2n
). In contrast to before, the

individual contributions to this operator norm do not fac-
tor nicely anymore. Establishing tight bounds requires
additional analysis.

Let us focus on the (leading) first-order term for now. All
matrix summands in the expression commute and are diag-
onal in the computational basis |b〉 with b = (b1, . . . , bn) ∈
{0, 1}n. This ensures that the operator norm is attained at a

computational basis state:

∥
∥
∥
∥
∥

∑

p

Zpsp

∥
∥
∥
∥
∥

= max
b∈{0,1}n

∣
∣
∣
∣
∣

∑

p

sp〈b|Zp|b〉
∣
∣
∣
∣
∣

= max
b∈{0,1}n

∣
∣
∣
∣
∣

∑

p

(−1)〈b,p〉sp

∣
∣
∣
∣
∣
,

where the last equation is due to Eq. (D4). This expres-
sion is proportional to the largest entry (in modulus) of the
Walsh-Hadamard transform of the 2n-dimensional vector s
with entries sp for p ∈ {0, 1}n. More precisely,

max
b∈{0,1}n

∣
∣
∣
∣
∣

∑

p

(−1)〈b,p〉sp

∣
∣
∣
∣
∣
= 2n/2

∥
∥Had⊗ns

∥
∥
�∞

=: 2n/2
∥
∥ŝ
∥
∥
�∞ where Had = 1√

2

(
1 1
1 −1

)

.

We emphasize that the Walsh-Hadamard transform is an
orthogonal transformation, which also applies to the limit-
ing covariance matrix of ŝ = Had⊗ns (CLT):

�̂ = 1
2n Had⊗n (I − |1〉〈1|)Had⊗n

= 1
2n (I − |0, . . . , 0〉〈0, . . . , 0|) .

Hence, the CLT asserts that the transformed vector ŝ
approaches a standard Gaussian vector with 2n − 1 degrees
of freedom: ŝ = (0, g2, . . . , g2n)T with gi

IID∼ N (0, 2−n)

(one degree of freedom is erased by the normalization con-
straint

∑
p mp = N of the count statistics). The bound on

the expected leading-order contribution now follows from
invoking the well-known fact that the expected maximum
of K standard Gaussian random variables with equal vari-
ance σ 2 is lower bounded by 0.265

√
log(K)σ 2, see, e.g.,

Ref. [56, Proposition 8.1]:

tλ√
N

E

∥
∥
∥
∥
∥

∑

p

spZp

∥
∥
∥
∥
∥

= tλ√
N

2n/2
E‖ŝ‖�∞ N→∞= tλ√

N
2n/2

E max
2≤i≤2n

|gi|

≥ 0.625
tλ√
N

2n/2
√

log(2n − 1)2−n ≥ 1
2

√

n
(tλ)2

N
.

Here, we use the numerical bound 0.625
√

log(2n − 1)/n ≥
0.5, which is valid for any n ≥ 3 (for n = 2 the ratio
is slightly smaller). This completes the argument for the
leading term in Eq. (D5).
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Moving on to the quadratic term in Eq. (D5), we employ
a similar strategy. Observe

E

∥
∥
∥
∥
∥

∑

p

Zp

∥
∥
∥
∥
∥

2

= E

∥
∥
∥
∥
∥
∥

∑

p,p′
spsp′ZpZp′

∥
∥
∥
∥
∥
∥

= E max
b∈{0,1}n

∣
∣
∣
∣
∣
∣

∑

p,p′
spsp′ 〈b|ZpZp′ |b〉

∣
∣
∣
∣
∣
∣

= E max
b∈{0,1}n

∣
∣
∣
∣
∣
∣

∑

p

(−1)〈b,p〉sp

∑

p′
(−1)〈b,p′〉sp′

∣
∣
∣
∣
∣
∣
,

where the last equation follows from combining Eq. (D4)
with the appealing group structure of the Zp’s: ZpZp′ =
Zp⊕p′ , where ⊕ denotes entry-wise addition modulo 2 (the
set of all Zp’s form a maximal stabilizer group). We can
now recognize two independent Walsh-Hadamard trans-
forms of the 2n-dimensional vector s in this expression:

E max
b∈{0,1}n

∣
∣
∣
∣
∣
∣

∑

p

(−1)〈b,p〉sp

∑

p′
(−1)〈b,p′〉sp′

∣
∣
∣
∣
∣
∣

= 2n
E max

b∈{0,1}n

∣
∣ŝb
∣
∣2 .

We already know from the CLT that the 2n-dimensional
Walsh-Hadamard transform of s approaches a stan-
dard Gaussian vector: ŝ = (0, g2, . . . , g2n)T with gi

IID∼
N (0, 2−n). In the large N limit (CLT), the rhs of the above
display becomes an expected maximum of K = 2n − 1
squares of IID Gaussian variables with mean zero and vari-
ance σ 2 = 2−n. Such expected maxima can be bounded
using standard arguments, see, e.g., Ref. [57, Lemma 5.1]:
E max1≤i≤K |gi|2 ≤ 4σ 2 log(

√
2K) (the constants are cho-

sen based on simplicity, not tightness). This allows us to
conclude

E

∥
∥
∥
∥
∥

∑

p

Zp

∥
∥
∥
∥
∥

2

= 2n
E max

b∈{0,1}n

∣
∣ŝb
∣
∣2 N→∞= 2n

E max
2≤i≤N

|gi|2

≤ 2n4σ 2 log[
√

2(2n − 1)] ≤ 4(n + 1/2).

Inserting linear and quadratic bound into Eq. (D5) com-
pletes the argument. �
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