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Abstract. This paper describes a numerical method for finding good packings in Grassmannian
manifolds equipped with various metrics. This investigation also encompasses packing in projective
spaces. In each case, producing a good packing is equivalent to constructing a matrix that has
certain structural and spectral properties. By alternately enforcing the structural condition and
then the spectral condition, it is often possible to reach a matrix that satisfies both. One may then
extract a packing from this matrix.

This approach is both powerful and versatile. In cases where experiments have been performed,
the alternating projection method yields packings that compete with the best packings recorded.
It also extends to problems that have not been studied numerically. For example, it can be used to
produce packings of subspaces in real and complex Grassmannian spaces equipped with the Fubini–
Study distance; these packings are valuable in wireless communications. One can prove that some
of the novel configurations constructed by the algorithm have packing diameters that are nearly
optimal.

1. Introduction

Let us begin with the standard facetious example. Imagine that several mutually inimical nations
build their capital cities on the surface of a featureless globe. Being concerned about missile strikes,
they wish to locate the closest pair of cities as far apart as possible. In other words, what is the
best way to pack points on the surface of a two-dimensional sphere?

This question, first discussed by the Dutch biologist Tammes [Tam30], is the prototypical example
of packing in a compact metric space. It has been studied in detail for the last 75 years. More
recently, researchers have started to ask about packings in other compact spaces. In particular,
several communities have investigated how to arrange subspaces in a Euclidean space so that they
are as distinct as possible. An equivalent formulation is to find the best packings of points in
a Grassmannian manifold. This problem has applications in quantum computing and wireless
communications. There has been theoretical interest in subspace packing since the 1960s [Tót65],
but the first detailed numerical study appears in a 1996 paper of Conway, Hardin, and Sloane
[CHS96].

The aim of this paper is to describe a flexible numerical method that can be used to construct
packings in Grassmannian manifolds equipped with several different metrics. The rest of this
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introduction provides a formal statement of abstract packing problems, and it offers an overview
of our approach to solving them.

1.1. Abstract Packing Problems. Although we will be working with Grassmannian manifolds,
it is more instructive to introduce packing problems in an abstract setting. Let M be a compact
metric space endowed with the distance function distM. The packing diameter of a finite subset X

is the minimum distance between some pair of distinct points drawn from X . That is,

packM(X )
def
= min

m6=n
distM(xm, xn).

In other words, the packing diameter of a set is the diameter of the largest open ball that can be
centered at each point of the set without encompassing any other point. (It is also common to
study the packing radius, which is half the diameter of this ball.) An optimal packing of N points
is an ensemble X that solves the mathematical program

max
|X |=N

packM(X )

where |·| returns the cardinality of a finite set. The optimal packing problem is guaranteed to have
a solution because the metric space is compact and the objective is a continuous function of the
ensemble X .

This article focuses on a feasibility problem closely connected with optimal packing. Given a
number ρ, the goal is to produce a set of N points for which

packM(X ) ≥ ρ. (1.1)

This problem is notoriously difficult to solve because it is highly nonconvex, and it is even more
difficult to determine the maximum value of ρ for which the feasibility problem is soluble. This
maximum value of ρ corresponds with the diameter of an optimal packing.

1.2. Alternating Projection. We will attempt to solve the feasibility problem (1.1) in Grass-
mannian manifolds equipped with a number of different metrics, but the same basic algorithm
applies in each case. Here is a high-level description of our approach.

First, we show that each configuration of subspaces is associated with a block Gram matrix whose
blocks control the distances between pairs of subspaces. Then we prove that a configuration solves
the feasibility problem (1.1) if and only if its Gram matrix possesses both a structural property
and a spectral property. The overall algorithm consists of the following steps.

(1) Choose an initial configuration and construct its matrix.
(2) Alternately enforce the structural condition and the spectral condition in hope of reaching

a matrix that satisfies both.
(3) Extract a configuration of subspaces from the output matrix.

In our work, we choose the initial configuration randomly and then remove similar subspaces
from it with a simple algorithm. One can imagine more sophisticated approaches to constructing
the initial configuration.

Flexibility and ease of implementation are the major advantages of alternating projection. This
article demonstrates that appropriate modifications of this basic technique allow us to construct
solutions to the feasibility problem in Grassmannian manifolds equipped with various metrics.
Some of these problems have never been studied numerically, and the experiments point toward
intriguing phenomena that deserve theoretical attention. Moreover, we believe that the possibilities
of this method have not been exhausted and that it will see other applications in the future.

Alternating projection does have several drawbacks. It may converge very slowly, and it does
not always yield a high level of numerical precision. In addition, it may not deliver good packings
when the ambient dimension or the number of subspaces in the configuration is large.
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1.3. Motivation and Related Work. This work was motivated by applications in electrical
engineering. In particular, subspace packings solve certain extremal problems that arise in multiple-
antenna communication systems [ZT02, HMR+00, LJSH04]. This application requires complex
Grassmannian packings that consist of a small number of subspaces in an ambient space of low
dimension. Our algorithm is quite effective in this parameter regime. The resulting packings fill
a significant gap in the literature, since existing tables consider only the real case [Slo04a]. See
Section 6.1 for additional discussion of the wireless application.

The approach to packing via alternating projection was discussed in a previous publication
[TDJS05], but the experiments were limited to a single case. We are aware of several other numer-
ical methods that can be used to construct packings in Grassmannian manifolds [CHS96, Tro01,
ARU01]. These techniques rely on ideas from nonlinear programming.

1.4. Historical Interlude. The problem of constructing optimal packings in various metric spaces
has a long and lovely history. The most famous example may be Kepler’s Conjecture that an
optimal packing of spheres in three-dimensional Euclidean space1 locates them at the points of a
face-centered cubic lattice. For millennia, greengrocers have applied this theorem when stacking
oranges, but it has only been established rigorously within the last few years [Hal04]. Packing
problems play a major role in modern communications because error-correcting codes may be
interpreted as packings in the Hamming space of binary strings [CT91]. The standard reference on
packing is the magnum opus of Conway and Sloane [CS98]. Classical monographs on the subject
were written by L. Fejes Tóth [Tót64] and C. A. Rogers [Rog64].

The idea of applying alternating projection to feasibility problems first appeared in the work of
von Neumann [vN50]. He proved that an alternating projection between two closed subspaces of a
Hilbert space converges to the orthogonal projection of the initial iterate onto the intersection of the
two subspaces. Cheney and Goldstein subsequently showed that an alternating projection between
two closed, convex subsets of a Hilbert space always converges to a point in their intersection
(provided that the intersection is nonempty) [CG59]. This result does not apply in our setting
because one of the constraint sets we define is not convex.

1.5. Outline of Article. Here is a brief overview of this article. In Section 2, we develop a
basic description of Grassmannian manifolds and present some natural metrics. Section 3 explains
why alternating projection is a natural algorithm for producing Grassmannian packings, and it
outlines how to apply this algorithm for one specific metric. Section 4 gives some theoretical upper
bounds on the optimal diameter of packings in Grassmannian manifolds. Section 5 describes the
outcomes of an extensive set of numerical experiments and explains how to apply the algorithm
to other metrics. Section 6 offers some discussion and conclusions. Appendix A explores how our
methodology applies to Tammes’ Problem of packing on the surface of a sphere. Finally, Appendix
B contains tables and figures that detail the experimental results.

2. Packing in Grassmannian Manifolds

This section introduces our notation and a simple description of the Grassmannian manifold. It
presents several natural metrics on the manifold, and it shows how to represent a configuration of
subspaces in matrix form.

2.1. Preliminaries. We work in the vector space C
d. The symbol ∗ denotes the complex-conjugate

transpose of a vector (or matrix). We equip the vector space with its usual inner product 〈x, y〉 =
y∗x. This inner product generates the ℓ2 norm via the formula ‖x‖22 = 〈x, x〉.

The d-dimensional identity matrix is Id; we sometimes omit the subscript if it is unnecessary. A
square matrix is positive semidefinite when its eigenvalues are all nonnegative. We write X < 0 to
indicate that X is positive semidefinite.

1The infinite extent of a Euclidean space necessitates a more subtle definition of an optimal packing.
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A square, complex matrix U is unitary if it satisfies U∗U = I. If in addition the entries of U

are real, the matrix is orthogonal. The unitary group U(d) can be presented as the collection of all
d×d unitary matrices with ordinary matrix multiplication. The real orthogonal group O(d) can be
presented as the collection of all d×d real orthogonal matrices with the usual matrix multiplication.

Suppose that X is a general matrix. The Frobenius norm is calculated as ‖X‖2F = trace X∗X,
where the trace operator sums the diagonal entries of the matrix. The spectral norm is denoted by
‖X‖2,2; it returns the largest singular value of X. Both these norms are unitarily invariant, which

means that ‖UXV ∗‖ = ‖X‖ whenever U and V are unitary.

2.2. Grassmannian Manifolds. The (complex) Grassmannian manifold G(K, Cd) is the collec-
tion of all K-dimensional subspaces of C

d. This space is isomorphic to a quotient of unitary groups:

G(K, Cd) ∼= U(d)

U(K)× U(d−K)
.

To understand the equivalence, note that each orthonormal basis from C
d can be split into K

vectors, which span a K-dimensional subspace, and d − K vectors, which span the orthogonal
complement of that subspace. To obtain a unique representation for the subspace, it is necessary
to divide by isometries that fix the subspace and by isometries that fix its complement. It is evident
that G(K, Cd) is always isomorphic to G(d−K, Cd).

Similarly, the real Grassmannian manifold G(K, Rd) is the collection of all K-dimensional sub-
spaces of R

d. This space is isomorphic to a quotient of orthogonal groups:

G(K, Rd) ∼= O(d)

O(K)×O(d−K)
.

If we need to refer to the real and complex Grassmannians simultaneously, we write G(K, Fd).
In the theoretical development, we concentrate on complex Grassmannians since the development

for the real case is identical, except that all the matrices are real-valued instead of complex-valued.
A second reason for focusing on the complex case is that complex packings arise naturally in wireless
communications [LJS03].

When each subspace has dimension K = 1, the Grassmannian manifold reduces to a simpler
object called a projective space. The elements of a projective space can be viewed as lines through

the origin of a Euclidean space. The standard notation is P
d−1(F)

def
= G(1, Fd). We will spend a

significant amount of attention on packings of this manifold.

2.3. Principal Angles. Suppose that S and T are two subspaces in G(K, Cd). These subspaces
are inclined against each other by K different principal angles. The smallest principal angle θ1 is
the minimum angle formed by a pair of unit vectors (s1, t1) drawn from S × T . That is,

θ1 = min
(s1,t1)∈S×T

arccos 〈s1, t1〉 subject to ‖s1‖2 = 1 and ‖t1‖2 = 1.

The second principal angle θ2 is defined as the smallest angle attained by a pair of unit vectors
(s2, t2) that is orthogonal to the first pair, i.e.,

θ2 = min
(s2,t2)∈S×T

arccos 〈s2, t2〉 subject to ‖s2‖2 = 1 and ‖t2‖2 = 1,

〈s1, s2〉 = 0 and 〈t1, t2〉 = 0.

The remaining principal angles are defined analogously. The sequence of principal angles is nonde-
creasing, and it is contained in the range [0, π/2]. We only consider metrics that are functions of
the principal angles between two subspaces.

Let us present a more computational definition of the principal angles [BG73]. Suppose that the
columns of S and T form orthonormal bases for the subspaces S and T . More rigorously, S is a
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d×K matrix that satisfies S∗S = IK and range S = S. The matrix T has an analogous definition.
Next we compute a singular value decomposition of the product S∗T :

S∗T = UCV ∗

where U and V are K × K unitary matrices and C is a nonnegative, diagonal matrix with non-
increasing entries. The matrix C of singular values is uniquely determined, and its entries are the
cosines of the principal angles between S and T :

ckk = cos θk k = 1, 2, . . . ,K.

This definition of the principal angles is most convenient numerically because singular value de-
compositions can be computed efficiently with standard software. We also note that this definition
of the principal angles does not depend on the choice of matrices S and T that represent the two
subspaces.

2.4. Metrics on Grassmannian Manifolds. Grassmannian manifolds admit many interesting
metrics, which lead to different packing problems. This section describes some of these metrics.

(1) The chordal distance between two K-dimensional subspaces S and T is given by

distchord(S,T )
def
=

√

sin2 θ1 + · · ·+ sin2 θK

=
[

K − ‖S∗T ‖2F
]1/2

. (2.1)

The values of this metric range between zero and
√

K. The chordal distance is the easiest
to work with, and it also yields the most symmetric packings [CHS96].

(2) The spectral distance is

distspec(S,T )
def
= mink sin θk

=
[

1− ‖S∗T ‖22,2

]1/2
. (2.2)

The values of this metric range between zero and one. As we will see, this metric promotes
a special type of packing called an equi-isoclinic configuration of subspaces.

(3) The Fubini–Study distance is

distFS(S,T )
def
= arccos

(

∏

k
cos θk

)

= arccos |detS∗T | . (2.3)

This metric takes values between zero and π/2. It plays an important role in wireless
communications [LHJ05, LJ05].

(4) The geodesic distance is

distgeo(S,T )
def
=

√

θ2
1 + · · ·+ θ2

K .

This metric takes values between zero and π
√

K/2. From the point of view of differen-
tial geometry, the geodesic distance is very natural, but it does not seem to lead to very
interesting packings [CHS96], so we will not discuss it any further.

Grassmannian manifolds support several other interesting metrics, some of which are listed in
[BN02]. In case we are working in a projective space, i.e., K = 1, all of these metrics reduce to
the acute angle between two lines or the sine thereof. Therefore, the metrics are equivalent up to
a monotonically increasing transformation, and they promote identical packings.
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2.5. Representing Configurations of Subspaces. Suppose that X = {S1, . . . ,SN} is a col-
lection of N subspaces in G(K, Cd). Let us develop a method for representing this configuration
numerically. To each subspace Sn, we associate a (nonunique) d × K matrix Xn whose columns
form an orthonormal basis for that subspace, i.e., X∗

nXn = IK and range Xn = Sn. Now collate
these N matrices into a d×KN configuration matrix

X
def
=

[

X1 X2 . . . XN

]

.

In the sequel, we do not distinguish between the configuration X and the matrix X.
The Gram matrix of X is defined as the KN × KN matrix G = X∗X. By construction, the

Gram matrix is positive semidefinite, and its rank does not exceed d. It is best to regard the Gram
matrix as an N × N block matrix comprised of K ×K blocks, and we index it as such. Observe
that each block satisfies

Gmn = X∗
mXn.

In particular, each diagonal block Gnn is an identity matrix. Meanwhile, the singular values of
the off-diagonal block Gmn equal the cosines of the principal angles between the two subspaces
range Xm and range Xn.

Conversely, let G be an N ×N block matrix with each block of size K ×K. Suppose that the
matrix is positive semidefinite, that its rank does not exceed d, and that its diagonal blocks are
identity matrices. Then we can factor G = X∗X where X is a d×KN configuration matrix. That
is, the columns of X form orthogonal bases for N different K-dimensional subspaces of C

d.
As we will see, each metric on the Grassmannian manifold leads to a measure of “magnitude” for

the off-diagonal blocks on the Gram matrix G. A configuration solves the feasibility problem (1.1)
if and only if each off-diagonal block of its Gram matrix has sufficiently small magnitude. So solving
the feasibility problem is equivalent to producing a Gram matrix with appropriate properties.

3. Alternating Projection for Chordal Distance

In this section, we elaborate on the idea that solving the feasibility problem is equivalent with
constructing a Gram matrix that meets certain conditions. These conditions fall into two different
categories: structural properties and spectral properties. This observation leads naturally to an
alternating projection algorithm for solving the feasibility problem. The algorithm alternately
enforces the structural properties and then the spectral properties in hope of producing a Gram
matrix that satisfies them all. This section illustrates how this approach unfolds when distances
are measured with respect to the chordal metric. In Section 5, we describe adaptations for other
metrics.

3.1. Packings with Chordal Distance. Suppose that we seek a packing of N subspaces in
G(K, Cd) equipped with the chordal distance. If X is a configuration of N subspaces, its packing
diameter is

packchord(X)
def
= min

m6=n
distchord(Xm,Xn)

= min
m6=n

[

K − ‖X∗
mXn‖2F

]1/2
.

Given a parameter ρ, the feasibility problem elicits a configuration X that satisfies

min
m6=n

[

K − ‖X∗
mXn‖2F

]1/2
≥ ρ.

We may rearrange this inequality to obtain a simpler condition:

max
m6=n
‖X∗

mXn‖F ≤ µ (3.1)
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where

µ =
√

K − ρ2. (3.2)

In fact, we may formulate the feasibility problem purely in terms of the Gram matrix. Suppose
that the configuration X satisfies (3.1) with parameter µ. Then its Gram matrix G must have the
following six properties:

(1) G is Hermitian.
(2) Each diagonal block of G is an identity matrix.
(3) ‖Gmn‖F ≤ µ for each m 6= n.
(4) G is positive semidefinite.
(5) G has rank d or less.
(6) G has trace KN .

Some of these properties are redundant, but we have listed them separately for reasons soon to
become apparent. Conversely, suppose that a matrix G satisfies Properties 1–6. Then it is always
possible to factor it to extract a configuration of N subspaces that solves (3.1). The factorization
of G = X∗X can be obtained most easily from an eigenvalue decomposition of G.

3.2. The Algorithm. Observe that Properties 1–3 are structural properties. By this, we mean
that they constrain the entries of the Gram matrix directly. Properties 4–6, on the other hand, are
spectral properties. That is, they control the eigenvalues of the matrix. It is not easy to enforce
structural and spectral properties simultaneously, so we must resort to half measures. Starting
from an initial matrix, our algorithm will alternately enforce Properties 1–3 and then Properties
4–6 in hope of reaching a matrix that satisfies all six properties at once.

To be more rigorous, let us define the structural constraint set

H (µ)
def
= {H ∈ C

KN×KN : H = H∗,Hnn = IK for n = 1, 2, . . . , N,

and ‖Hmn‖F ≤ µ for all m 6= n}. (3.3)

Although the structural constraint set evidently depends on the parameter µ, we will usually
eliminate µ from the notation for simplicity. We also define the spectral constraint set

G
def
=

{

G ∈ C
KN×KN : G < 0, rankG ≤ d, and trace G = KN

}

. (3.4)

Both constraint sets are closed and bounded, hence compact. The structural constraint set H is
convex, but the spectral constraint set is not.

To solve the feasibility problem (3.1), we must find a matrix that lies in the intersection of G and
H . This section states the algorithm, and the succeeding two sections provide some implementation
details.

Algorithm 1 (Alternating Projection).
Input:

• A KN ×KN Hermitian matrix G(0)

• The maximum number of iterations T

Output:

• A KN×KN matrix Gout that belongs to G and whose diagonal blocks are identity matrices

Procedure:

(1) Initialize t← 0.

(2) Determine a matrix H(t) that solves

min
H∈H

∥

∥H −G(t)
∥

∥

F
.
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(3) Determine a matrix G(t+1) that solves

min
G∈G

∥

∥G−H(t)
∥

∥

F
.

(4) Increment t.
(5) If t < T , return to Step 2.

(6) Define the block-diagonal matrix D = diag G(T ).
(7) Return the matrix

Gout = D−1/2G(T )D−1/2.

The iterates generated by this algorithm are not guaranteed to converge in norm. Therefore, we
have chosen to halt the algorithm after a fixed number of steps instead of checking the behavior of
the sequence of iterates. We discuss the convergence properties of the algorithm in the sequel.

The scaling in the last step normalizes the diagonal blocks of the matrix but preserves its inertia
(i.e., numbers of negative, zero, and positive eigenvalues). Since G(T ) is a positive-semidefinite
matrix with rank d or less, the output matrix Gout shares these traits. It follows that the output
matrix always admits a factorization Gout = X∗X where X is a d × KN configuration matrix.
Property 3 is the only one of the six properties that may be violated.

3.3. The Matrix Nearness Problems. To implement Algorithm 1, we must solve the matrix
nearness problems in Steps 2 and 3. The first one is straightforward.

Proposition 2. Let G be an Hermitian matrix. With respect to the Frobenius norm, the unique
matrix in H (µ) nearest to G has diagonal blocks equal to the identity and off-diagonal blocks that
satisfy

Hmn =

{

Gmn if ‖Gmn‖F ≤ µ, and
µ Gmn/ ‖Gmn‖F otherwise.

It is rather more difficult to find a nearest matrix in the spectral constraint set. To state the
result, we define the plus operator by the rule (x)+ = max{0, x}.

Proposition 3. Let H be an Hermitian matrix whose eigenvalue decomposition is
∑KN

j=1 λjuju
∗
j

with the eigenvalues arranged in nonincreasing order: λ1 ≥ λ2 ≥ · · · ≥ λKN . With respect to the
Frobenius norm, a matrix in G closest to H is given by

∑d

j=1
(λj − γ)+uju

∗
j

where the scalar γ is chosen so that

∑d

j=1
(λj − γ)+ = KN.

This best approximation is unique provided that λd > λd+1.

The nearest matrix described by this theorem can be computed efficiently from an eigenvalue
decomposition of H. (See [GVL96] for computational details.) The value of γ is uniquely deter-
mined, but one must solve a small rootfinding problem to solve it. The bisection method is an
appropriate technique since the plus operator is nondifferentiable. We omit the details, which are
routine.

Proof. Given an Hermitian matrix A, denote by λ(A) the vector of eigenvalues arranged in nonin-
creasing order. Then we may decompose A = U{diag λ(A)}U∗ for some unitary matrix U .
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Finding the matrix in G closest to H is equivalent to solving the optimization problem

min
G
‖G−H‖2F subject to λj(G) ≥ 0 for j = 1, . . . , d,

λj(G) = 0 for j = d + 1, . . . ,KN , and
∑KN

j=1
λj(G) = KN.

First, we fix the eigenvalues of G and minimize with respect to the unitary part of its eigenvalue
decomposition. In consequence of the Hoffman–Wielandt Theorem [HJ85], the objective function
is bounded below:

‖G−H‖2F ≥ ‖λ(G)− λ(H)‖22 .

Equality holds if and only if G and H are simultaneously diagonalizable by a unitary matrix.
Therefore, if we decompose H = U{diag λ(H)}U∗, the objective function attains its minimal
value whenever G = U{diag λ(G)}U∗. Note that the matrix U may not be uniquely determined.

We find the optimal vector of eigenvalues ξ for the matrix G by solving the (strictly) convex
program

min
ξ
‖ξ − λ(H)‖22 subject to ξj ≥ 0 for j = 1, . . . , d,

ξj = 0 for j = d + 1, . . . ,KN , and
∑KN

j=1
ξj = KN.

This minimization is accomplished by an application of Karush–Kuhn–Tucker theory [Roc70]. In
short, the top d eigenvalues of H are translated an equal amount, and those that become negative
are set to zero. The size of the translation is chosen to fulfill the third condition (which controls
the trace of G). The entries of the optimal ξ are nonincreasing on account of the ordering of λ(H).

Finally, the uniqueness claim follows from the fact that the eigenspace associated with the top d
eigenvectors of H is uniquely determined if and only if λd(H) > λd+1(H). �

3.4. Choosing an Initial Configuration. The success of the algorithm depends on adequate
selection of the input matrix G(0). We have found that the following strategy is reasonably effective.
It chooses random subspaces and adds them to the initial configuration only if they are sufficiently
distant from the subspaces that have already been chosen.

Algorithm 4 (Initial Configuration).
Input:

• The ambient dimension d, the subspace dimension K, and the number N of subspaces
• An upper bound τ on the similarity between subspaces
• The maximum number T of random selections

Output:

• A KN ×KN matrix G from G whose off-diagonal blocks also satisfy ‖Gmn‖F ≤ τ

Procedure:

(1) Initialize t← 0 and n← 1.
(2) Increment t. If t > T , print a failure notice and stop.
(3) Pick a d×K matrix Xn whose range is a uniformly random subspace in G(K, Cd).
(4) If ‖X∗

mXn‖F ≤ τ for each m = 1, . . . , n− 1, then increment n.
(5) If n ≤ N , return to Step 2.
(6) Form the matrix X =

[

X1 X2 . . . XN

]

.
(7) Return the Gram matrix G = X∗X.
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To implement Step 3, we use the method developed in [Ste80]. Draw a d × K matrix whose
entries are iid complex, standard normal random variables, and perform a QR decomposition. The
first K columns of the unitary part of the QR decomposition form an orthonormal basis for a
random K-dimensional subspace.

The purpose of the parameter τ is to prevent the starting configuration X from containing blocks
that are nearly identical. The extreme case τ =

√
K places no restriction on the similarity between

blocks. If τ is chosen too small (or if we are unlucky in our random choices), then this selection
procedure may fail. For this reason, we add an iteration counter to prevent the algorithm from
entering an infinite loop. We typically choose values of τ very close to the maximum value.

3.5. Theoretical Behavior of Algorithm. It is important to be aware that packing problems
are typically difficult to solve. Therefore, we cannot expect that our algorithm will necessarily
produce a point in the intersection of the constraint sets. One may ask whether we can make
any guarantees about the behavior of Algorithm 1. This turns out to be difficult. Indeed, there
is potential that an alternating projection algorithm will fail to generate a convergent sequence
of iterates [Mey76]. Nevertheless, it can be shown that the sequence of iterates has accumulation
points and that these accumulation points satisfy a weak structural property.

In practice, the alternating projection algorithm seems to converge, but a theoretical justification
for this observation is lacking. A more serious problem is that the algorithm frequently requires as
many as 5000 iterations before the iterates settle down. This is one of the major weaknesses of our
approach.

For reference, we offer the best theoretical convergence result that we know. The distance
between a matrix and a compact collection of matrices is defined as

dist(M ,C )
def
= min

C∈C

‖M −C‖F .

It can be shown that the distance function is Lipschitz, hence continuous.

Theorem 5 (Global Convergence). Suppose that Algorithm 1 generates an infinite sequence of

iterates {(G(t),H(t))}. This sequence has at least one accumulation point.

• Every accumulation point lies in G ×H .
• Every accumulation point (G,H) satisfies

∥

∥G−H
∥

∥

F
= lim

t→∞

∥

∥G(t) −H(t)
∥

∥

F
.

• Every accumulation point (G,H) satisfies
∥

∥G−H
∥

∥

F
= dist(G,H ) = dist(H ,G ).

Proof sketch. The existence of an accumulation point follows from the compactness of the constraint
sets. The algorithm does not increase the distance between successive iterates, which is bounded
below by zero. Therefore, this distance must converge. The distance functions are continuous, so
we can take limits to obtain the remaining assertions. �

A more detailed treatment requires the machinery of point-to-set maps, and it would not enhance
our main discussion. Please see the appendices of [TDJS05] for additional information.

4. Bounds on the Packing diameter

To assay the quality of the packings that we produce, it helps to have some upper bounds on
the packing diameter. If a configuration of subspaces has a packing diameter close to the upper
bound, that configuration must be a nearly optimal packing. This approach allows us to establish
that many of the packings we construct numerically have packing diameters that are essentially
optimal.
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Theorem 6 (Conway–Hardin–Sloane [CHS96]). The packing diameter of N subspaces in the Grass-
mannian manifold G(K, Fd) equipped with chordal distance is bounded above as

packchord(X )2 ≤ K(d−K)

d

N

N − 1
. (4.1)

If the bound is met, all pairs of subspaces are equidistant. When F = R, the bound is attainable
only if N ≤ 1

2d(d + 1). When F = C, the bound is attainable only if N ≤ d2.

The complex case is not stated in [CHS96], but it follows from an identical argument. We refer to
(4.1) as the Rankin bound for subspace packings with respect to the chordal distance. The reason for
the nomenclature is that the result is established by embedding the chordal Grassmannian manifold
into a Euclidean sphere and applying the classical Rankin bound for sphere packing [Ran47].

It is also possible to draw a corollary on packing with respect to the spectral distance; this result
is novel. A subspace packing is said to be equi-isoclinic if all the principal angles between all pairs
of subspaces are identical [LS73].

Corollary 7. We have the following bound on the packing diameter of N subspaces in the Grass-
mannian manifold G(K, Fd) equipped with the spectral distance.

packspec(X )2 ≤ d−K

d

N

N − 1
. (4.2)

If the bound is met, the packing is equi-isoclinic.

We refer to (4.2) as the Rankin bound for subspace packings with respect to spectral distance.

Proof. The power mean inequality (equivalently, Hölder’s inequality) yields

mink sin θk ≤
[

K−1
∑K

k=1
sin2 θk

]1/2

.

For angles between zero and π/2, equality holds if and only if θ1 = · · · = θK . It follows that

packspec(X )2 ≤ K−1 packchord(X )2 ≤ d−K

d

N

N − 1
.

If the second inequality is met, then all pairs of subspaces are equidistant with respect to the
chordal metric. Moreover, if the first inequality is met, then the principal angles between each
pair of subspaces are constant. Together, these two conditions imply that the packing is equi-
isoclinic. �

An upper bound on the maximum number of equi-isoclinic subspaces is available. Its authors do
not believe that it is sharp.

Theorem 8 (Lemmens–Seidel [LS73]). The maximum number of equi-isoclinic K-dimensional
subspaces of R

d is no greater than

1
2d(d + 1)− 1

2K(K + 1) + 1.

Similarly, the maximum number of equi-isoclinic K-dimensional subspaces of C
d does not exceed

d2 −K2 + 1.
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5. Experiments

Our approach to packing is experimental rather than theoretical, so the real question is how
Algorithm 1 performs in practice. In principle, this question is difficult to resolve because the
optimal packing diameter is unknown for almost all combinations of d and N . Whenever possible,
we compared our results with the Rankin bound and with the “world record” packings tabulated
by N. J. A. Sloane and his colleagues [Slo04a]. In many cases, the algorithm was able to identify a
nearly optimal packing. Moreover, it yields interesting results for packing problems that have not
received numerical attention.

In the next subsection, we describe detailed experiments on packing in real and complex pro-
jective spaces. Then, we move on to packings of subspaces with respect to the chordal distance.
Afterward, we study the spectral distance and the Fubini–Study distance.

5.1. Projective Packings. Line packings are the simplest type of Grassmannian packing, so they
offer a natural starting point. Our goal is to produce the best packing of N lines in P

d−1(F). In
the real case, Sloane’s tables allow us to determine how much our packings fall short of the world
record. In the complex setting, there is no comparable resource, so we must rely on the Rankin
bound to gauge how well the algorithm performs.

Let us begin with packing in real projective spaces. We attempted to construct configurations of
real lines whose maximum absolute inner product µ fell within 10−5 of the best value tabulated in
[Slo04a]. For pairs (d,N) with d = 3, 4, 5 and N = 4, 5, . . . , 25, we computed the putatively optimal
value of the feasibility parameter µ from Sloane’s data and equation (3.2). In each of 10 trials,
we constructed a starting matrix using Algorithm 4 with parameters τ = 0.9 and T = 10, 000.
(Recall that the value of T determines the maximum number of random subspaces that are drawn
when trying to construct the initial configuration.) We applied alternating projection, Algorithm
1, with the computed value of µ and the maximum number of iterations T = 5000. (Our numerical
experience indicates that increasing the maximum number of iterations beyond 5000 does not confer
a significant benefit.) We halted the iteration in Step 4 if the iterate G(t) exhibited no off-diagonal
entry with absolute value greater than µ + 10−5. After 10 trials, we recorded the largest packing
diameter attained, as well as the average value of the packing diameter. We also recorded the
average number of iterations the alternating projection required per trial.

Table 1 delivers the results of this experiment. Following Sloane, we have reported the degrees
of arc subtended by the closest pair of lines. We believe that it is easiest to interpret the results
geometrically when they are stated in this fashion. All the tables and figures related to packing are
collated at the back of this paper for easy comparison.

According to the table, the best configurations produced by alternating projection consistently
attain packing diameters tenths or hundredths of a degree away from the best configurations known.
The average configurations returned by alternating projection are slightly worse, but they usually
fall within a degree of the putative optimal. Moreover, the algorithm finds certain configurations
with ease. For the pair (5, 16), fewer than 1000 iterations are required on average to achieve a
packing within 0.001 degrees of optimal.

A second observation is that the alternating projection algorithm typically performs better when
the number N of points is small. The largest errors are all clustered at larger values of N . A
corollary observation is that the average number of iterations per trial tends to increase with the
number of points.

There are several anomalies that we would like to point out. The most interesting pathology
occurs at the pair (d,N) = (5, 19). The best packing diameter calculated by alternating projection
is about 1.76◦ worse than the optimal configuration, and it is also 1.76◦ worse than the best packing
diameter computed for the pair (5, 20). From Sloane’s tables, we can see that the (putative) optimal
packing of 19 lines in P

4(R) is actually a subset of the best packing of 20 lines. Perhaps the fact that
this packing is degenerate makes it difficult to construct. A similar event occurs (less dramatically)
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at the pair (5, 13). The table also shows that the algorithm performs less effectively when the
number of lines exceeds 20.

In complex projective spaces, this methodology does not apply because there are no tables
available. In fact, we only know of one paper that contains numerical work on packing in complex
projective spaces [ARU01], but it gives very few examples of good packings. The only method we
know for gauging the quality of a complex line packing is to compare it against an upper bound. The
Rankin bound for projective packings, which is derived in Section 4, states that every configuration
X of N lines in either P

d−1(R) or P
d−1(C) satisfies the inequality

packP(X )2 ≤ (d− 1)N

d (N − 1)
.

This bound is attainable only for rare combinations of d and N . In particular, the bound can be
met in P

d−1(R) only if N ≤ 1
2 d (d + 1). In the space P

d−1(C), attainment requires that N ≤ d2.
Any arrangement of lines that meets the Rankin bound must be equiangular. These optimal
configurations are called equiangular tight frames. See [SJ03, HP04, TDJS05, STDJ07] for more
details.

We performed some ad hoc experiments to produce configurations of complex lines with large
packing diameters. For each pair (d,N), we used the Rankin bound to determine a lower limit on
the feasibility parameter µ. Starting matrices were constructed with Algorithm 4 using values of
τ ranging between 0.9 and 1.0. (Algorithm 4 typically fails for smaller values of τ .) For values of
the feasibility parameter between the minimal value and twice the minimal value, we performed
5000 iterations of Algorithm 1, and we recorded the largest packing diameter attained during these
trials.

Table 2 compares our results against the Rankin bound. We see that many of the complex line
configurations have packing diameters much smaller than the Rankin bound, which is not surprising
because the bound is usually not attainable. Some of our configurations fall within a thousandth
of a degree of the bound, which is essentially optimal.

Table 2 contains a few oddities. In P
4(C), the best packing diameter computed for N =

18, 19, . . . , 24 is worse than the packing diameter for N = 25. This configuration of 25 lines is
an equiangular tight frame, which means that it is an optimal packing [TDJS05, Table 1]. It seems
likely that the optimal configurations for the preceding values of N are just subsets of the optimal
arrangement of 25 lines. As before, it may be difficult to calculate this type of degenerate packing.
A similar event occurs less dramatically at the pair (d,N) = (4, 13) and at the pairs (4, 17) and
(4, 18).

Figure 1 compares the quality of the best real projective packings from [Slo04a] with the best
complex projective packings that we obtained. It is natural that the complex packings are better
than the real packings because the real projective space can be embedded isometrically into the
complex projective space. But it is remarkable how badly the real packings compare with the
complex packings. The only cases where the real and complex ensembles have the same packing
diameter occur when the real configuration meets the Rankin bound.

5.2. The Chordal Distance. Emboldened by this success with projective packings, we move on
to packings of subspaces with respect to the chordal distance. Once again, we are able to use
Sloane’s tables for guidance in the real case. In the complex case, we fall back on the Rankin
bound.

For each triple (d,K,N), we determined a value for the feasibility parameter µ from the best
packing diameter Sloane recorded for N subspaces in G(K, Rd), along with equation (3.2). We con-

structed starting points using the modified version of Algorithm 4 with τ =
√

K, which represents
no constraint. (We found that the alternating projection performed no better with initial config-
urations generated from smaller values of τ .) Then we executed Algorithm 1 with the calculated
value of µ for 5000 iterations.



CONSTRUCTING GRASSMANNIAN PACKINGS 14

Table 3 demonstrates how the best packings we obtained compare with Sloane’s best packings.
Many of our real configurations attained a squared packing diameter within 10−3 of the best value
Sloane recorded. Our algorithm was especially successful for smaller numbers of subspaces, but its
performance began to flag as the number of subspaces approached 20.

Table 3 contains several anomalies. For example, our configurations of N = 11, 12, . . . , 16 sub-
spaces in R

4 yield worse packing diameters than the configuration of 17 subspaces. It turns out that
this configuration of 17 subspaces is optimal, and Sloane’s data show that the (putative) optimal
arrangements of 11 to 16 subspaces are all subsets of this configuration. This is the same problem
that occurred in some of our earlier experiments, and it suggests again that our algorithm has
difficulty locating these degenerate configurations precisely.

The literature contains very few experimental results on packing in complex Grassmannian man-
ifolds equipped with chordal distance. To our knowledge, the only numerical work appears in two
short tables from [ARU01]. Therefore, we found it valuable to compare our results against the
Rankin bound for subspace packings, which is derived in Section 4. For reference, this bound
requires that every configuration X of N subspaces in G(K, Fd) satisfy the inequality

packchord(X )2 ≤ K (d−K)

d

N

N − 1
.

This bound cannot always be met. In particular, the bound is attainable in the complex setting
only if N ≤ d2. In the real setting, the bound requires that N ≤ 1

2 d (d + 1). When the bound is
attained, each pair of subspaces in X is equidistant.

We performed some ad hoc experiments to construct a table of packings in G(K, Cd) equipped
with the chordal distance. For each triple (d,K,N), we constructed random starting points using

Algorithm 4 with τ =
√

K (which represents no constraint). Then we used the Rankin bound
to calculate a lower limit on the feasibility parameter µ. For this value of µ, we executed the
alternating projection, Algorithm 1, for 5000 iterations.

The best packing diameters we obtained are listed in Table 4. We see that there is a remarkable
correspondence between the squared packing diameters of our configurations and the Rankin bound.
Indeed, many of our packings are within 10−4 of the bound, which means that these configurations
are essentially optimal. The algorithm was less successful as N approached d2, which is an upper
bound on the number N of subspaces for which the Rankin bound is attainable.

Figure 2 compares the packing diameters of the best configurations in real and complex Grass-
mannian spaces equipped with chordal distance. It is remarkable that both real and complex
packings almost meet the Rankin bound for all N where it is attainable. Notice how the real pack-
ing diameters fall off as soon as N exceeds 1

2 d (d + 1). In theory, a complex configuration should
always attain a better packing diameter than the corresponding real configuration because the real
Grassmannian space can be embedded isometrically into the complex Grassmannian space. The
figure shows that our best arrangements of 17 and 18 subspaces in G(2, C4) are actually slightly
worse than the real arrangements calculated by Sloane. This indicates a failure of the alternating
projection algorithm.

5.3. The Spectral Distance. Next, we consider how to compute Grassmannian packings with
respect to the spectral distance. This investigation requires some small modifications to the al-
gorithm, which are described in the next subsection. Afterward, we provide the results of some
numerical experiments.

5.3.1. Modifications to Algorithm. To construct packings with respect to the spectral distance, we
tread a familiar path. Suppose that we wish to produce a configuration of N subspaces in G(K, Cd)
with a packing diameter ρ. The feasibility problem requires that

max
m6=n

‖X∗
m Xn‖2,2 ≤ µ (5.1)
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where µ =
√

1− ρ2. This leads to the convex structural constraint set

H (µ)
def
= {H ∈ C

KN×KN : H = H∗, Hnn = I for n = 1, 2, . . . , N, and

‖Hmn‖2,2 ≤ µ for all m 6= n}.
The spectral constraint set is the same as before. The next proposition shows how to find the matrix
in H closest to an initial matrix. In preparation, define the truncation operator [x]µ = min{x, µ}
for numbers, and extend it to matrices by applying it to each component.

Proposition 9. Let G be an Hermitian matrix. With respect to the Frobenius norm, the unique
matrix in H (µ) nearest to G has a block identity diagonal. If the off-diagonal block Gmn has a
singular value decomposition UmnCmnV ∗

mn, then

Hmn =

{

Gmn if ‖Gmn‖2,2 ≤ µ, and

Umn [Cmn]µ V ∗
mn otherwise.

Proof. To determine the (m,n) off-diagonal block of the solution matrix H, we must solve the
optimization problem

minA
1
2 ‖A−Gmn‖2F subject to ‖A‖2,2 ≤ µ.

The Frobenius norm is strictly convex and the spectral norm is convex, so this problem has a unique
solution.

Let σ(·) return the vector of decreasingly ordered singular values of a matrix. Suppose that Gmn

has the singular value decomposition Gmn = U{diag σ(Gmn)}V ∗. The constraint in the optimiza-
tion problem depends only on the singular values of A, and so the Hoffman–Wielandt Theorem for
singular values [HJ85] allows us to check that the solution has the form A = U{diag σ(A)}V ∗.

To determine the singular values ξ = σ(A) of the solution, we must solve the (strictly) convex
program

minξ
1
2 ‖ξ − σ(Gmn)‖22 subject to ξk ≤ µ.

An easy application of Karush–Kuhn–Tucker theory [Roc70] proves that the solution is obtained
by truncating the singular values of Gmn that exceed µ. �

5.3.2. Numerical Results. To our knowledge, there are no numerical studies of packing in Grass-
mannian spaces equipped with spectral distance. To gauge the quality of our results, we compare
them against the upper bound of Corollary 7. In the real or complex setting, a configuration X of
N subspaces in G(K, Fd) with respect to the spectral distance must satisfy the bound

packspec(X )2 ≤ d−K

d

N

N − 1
.

In the real case, the bound is attainable only if N ≤ 1
2 d (d+1)− 1

2 K (K +1)+1, while attainment

in the complex case requires that N ≤ d2−K2 +1 [LS73]. When a configuration meets the bound,
the subspaces are not only equidistant but also equi-isoclinic. That is, all principal angles between
all pairs of subspaces are identical.

We performed some limited ad hoc experiments in an effort to produce good configurations of
subspaces with respect to the spectral distance. We constructed random starting points using the
modified version of Algorithm 4 with τ = 1, which represents no constraint. (Again, we did not
find that smaller values of τ improved the performance of the alternating projection.) From the
Rankin bound, we calculated the smallest possible value of the feasibility parameter µ. For values
of µ ranging from the minimal value to twice the minimal value, we ran the alternating projection,
Algorithm 1, for 5000 iterations, and we recorded the best packing diameters that we obtained.

Table 5 displays the results of our calculations. We see that some of our configurations essentially
meet the Rankin Bound, which means that they are equi-isoclinic. It is clear that alternating
projection also succeeds reasonably well for this packing problem.
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The most notable pathology in the table occurs for configurations of 8 and 9 subspaces in
G(3, R6). In these cases, the algorithm always yielded arrangements of subspaces with a zero
packing diameter, which implies that two of the subspaces intersect nontrivially. Nevertheless, we
were able to construct random starting points with a nonzero packing diameter, which means that
the algorithm is making the initial configuration worse. We do not understand the reason for this
failure.

Figure 3 makes a graphical comparison between the real and complex subspace packings. On
the whole, the complex packings are much better than the real packings. For example, every
configuration of subspaces in G(2, C6) nearly meets the Rankin bound, while just two of the real
configurations achieve the same distinction. In comparison, it is curious how few arrangements in
G(2, C5) come anywhere near the Rankin bound.

5.4. The Fubini–Study Distance. When we approach the problem of packing in Grassmannian
manifolds equipped with the Fubini–Study distance, we are truly out in the wilderness. To our
knowledge, the literature contains neither experimental nor theoretical treatments of this ques-
tion. Moreover, we are not presently aware of general upper bounds on the Fubini–Study packing
diameter that we might use to assay the quality of a configuration of subspaces. Nevertheless,
we attempted a few basic experiments. The investigation entails some more modifications to the
algorithm, which are described below. Afterward, we go over our experimental results. We view
this work as very preliminary.

5.4.1. Modifications to Algorithm. Suppose that we wish to construct a configuration of N sub-
spaces whose Fubini–Study packing diameter exceeds ρ. The feasibility condition is

max
m6=n

|det X∗
m Xn| ≤ µ (5.2)

where µ = cos ρ. This leads to the structural constraint set

H (µ)
def
= {H ∈ C

KN×KN : H = H∗, Hnn = I for n = 1, 2, . . . , N, and

|detHmn| ≤ µ for all m 6= n}.
Unhappily, this set is no longer convex. To produce a nearest matrix in H , we must solve a
nonlinear programming problem. The following proposition describes a numerically favorable for-
mulation.

Proposition 10. Let G be an Hermitian matrix. Suppose that the off-diagonal block Gmn has
singular value decomposition UmnCmnV ∗

mn. Let cmn = diag Cmn, and find a (real) vector xmn that
solves the optimization problem

min
x

1
2 ‖exp(x)− cmn‖22 subject to e∗ x ≤ log µ.

In Frobenius norm, a matrix H from H (µ) that is closest to G has a block-identity diagonal and
off-diagonal blocks

Hmn =

{

Gmn if |detGmn| ≤ µ, and
Umn{diag(exp xmn)}V ∗

mn otherwise.

We use exp(·) to denote the componentwise exponential of a vector. One may establish that the
optimization problem is not convex by calculating the Hessian of the objective function.

Proof. To determine the (m,n) off-diagonal block of the solution matrix H, we must solve the
optimization problem

minA
1
2 ‖A−Gmn‖2F subject to |det A| ≤ µ.



CONSTRUCTING GRASSMANNIAN PACKINGS 17

We may reformulate this problem as

minA
1
2 ‖A−Gmn‖2F subject to

∑K

k=1
log σk(A) ≤ log µ.

A familiar argument proves that the solution matrix has the same left and right singular vectors
as Gmn. To obtain the singular values ξ = σ(A) of the solution, we consider the mathematical
program

minξ
1
2 ‖ξ − σ(Gmn)‖22 subject to

∑K

k=1
log ξk ≤ log µ.

Change variables to complete the proof. �

5.4.2. Numerical Experiments. We implemented the modified version of Algorithm 1 in Matlab,
using the built-in nonlinear programming software to solve the optimization problem required by
the proposition. For a few triples (d,K,N), we ran 100 to 500 iterations of the algorithm for various
values of the feasibility parameter µ. (Given the exploratory nature of these experiments, we found
that the implementation was too slow to increase the number of iterations.)

The results appear in Table 6. For small values of N , we find that the packings exhibit the
maximum possible packing diameter π/2, which shows that the algorithm is succeeding in these
cases. For larger values of N , we are unable to judge how close the packings might decline from
optimal.

Figure 4 compares the quality of our real packings against our complex packings. In each case,
the complex packing is at least as good as the real packing, as we would expect. The smooth
decline in the quality of the complex packings suggests that there is some underlying order to the
packing diameters, but it remains to be discovered.

To perform large-scale experiments, it will probably be necessary to tailor an algorithm that can
solve the nonlinear programming problems more quickly. It may also be essential to implement
the alternating projection in a programming environment more efficient than Matlab. Therefore, a
detailed study of packing with respect to the Fubini–Study distance must remain a topic for future
research.

6. Discussion

6.1. Subspace Packing in Wireless Communications. Configurations of subspaces arise in
several aspects of wireless communication, especially in systems with multiple transmit and receive
antennas. The intuition behind this connection is that the transmitted and received signals in a
multiple antenna system are connected by a matrix transformation, or matrix channel.

Subspace packings occur in two wireless applications: noncoherent communication and in sub-
space quantization. The noncoherent application is primarily of theoretical interest, while subspace
quantization has a strong impact on practical wireless systems. Grassmannian packings appear in
these situations due to an assumption that the matrix channel should be modeled as a complex
Gaussian random matrix.

In the noncoherent communication problem, it has been shown that, from an information-
theoretic perspective, under certain assumptions about the channel matrix, the optimum transmit
signal corresponds to a packing in G(K, Cd) where K corresponds to the minimum of the number of
transmit and receive antennas and d corresponds to the number of consecutive samples over which
the channel is constant [ZT02, HM00]. In other words, the number of subspaces K is determined by
the system configuration, while d is determined by the carrier frequency and the degree of mobility
in the propagation channel.

On account of this application, several papers have investigated the problem of finding packings
in Grassmannian manifolds. One approach for the case of K = 1 is presented in [HM00]. This paper
proposes a numerical algorithm for finding line packings, but it does not discuss its properties or
connect it with the general subspace packing problem. Another approach, based on discrete Fourier
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transform matrices, appears in [HMR+00]. This construction is both structured and flexible, but
it does not lead to optimal packings. The paper [ARU01] studies Grassmannian packings in detail,
and it contains an algorithm for finding packings in the complex Grassmannian manifold equipped
with chordal distance. This algorithm is quite complex: it uses surrogate functionals to solve a
sequence of relaxed nonlinear programs. The authors tabulate several excellent chordal packings,
but it is not clear whether their method generalizes to other metrics.

The subspace quantization problem also leads to Grassmannian packings. In multiple-antenna
wireless systems, one must quantize the dominant subspace in the matrix communication channel.
Optimal quantizers can be viewed as packings in G(K, Cd), where K is the dimension of the subspace
and d is the number of transmit antennas. The chordal distance, the spectral distance, and the
Fubini–Study distance are all useful in this connection [LHJ05, LJ05]. This literature does not
describe any new algorithms for constructing packings; it leverages results from the noncoherent
communication literature. Communication strategies based on quantization via subspace packings
have been incorporated into at least one recent standard [Wir05].

6.2. Conclusions. We have shown that the alternating projection algorithm can be used to solve
many different packing problems. The method is easy to understand and to implement, even while
it is versatile and powerful. In cases where experiments have been performed, we have often been
able to match the best packings known. Moreover, we have extended the method to solve problems
that have not been studied numerically. Using the Rankin bounds, we have been able to show
that many of our packings are essentially optimal. It seems clear that alternating projection is an
effective numerical algorithm for packing.

Appendix A. Tammes’ Problem

The alternating projection method can also be used to study Tammes’ Problem of packing points
on a sphere [Tam30]. This question has received an enormous amount of attention over the last
75 years, and extensive tables of putatively optimal packings are available [Slo04b]. This appendix
offers a brief treatment of our work on this problem.

A.1. Modifications to Algorithm. Suppose that we wish to produce a configuration of N points
on the unit sphere S

d−1 with a packing diameter ρ. The feasibility problem requires that

max
m6=n

〈xm, xn〉 ≤ µ (A.1)

where µ =
√

1− ρ2. This leads to the convex structural constraint set

H (µ)
def
= {H ∈ R

N×N : H = H∗, hnn = 1 for n = 1, 2, . . . , N, and

− 1 ≤ hmn ≤ µ for all m 6= n}.

The spectral constraint set is the same as before. The associated matrix nearness problem is trivial
to solve.

Proposition 11. Let G be a real, symmetric matrix. With respect to Frobenius norm, the unique
matrix in H (µ) closest to G has a unit diagonal and off-diagonal entries that satisfy

hmn =







−1, gmn < −1,
gmn, −1 ≤ gmn ≤ µ, and
µ, µ < gmn.
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A.2. Numerical Results. Tammes’ Problem has been studied for 75 years, and many putatively
optimal configurations are available. Therefore, we attempted to produce packings whose maximum
inner product µ fell within 10−5 of the best value tabulated by N. J. A. Sloane and his colleagues
[Slo04b]. This resource draws from all the experimental and theoretical work on Tammes’ Problem,
and it should be considered the gold standard.

Our experimental setup echoes the setup for real projective packings. We implemented the
algorithms in Matlab, and we performed the following experiment for pairs (d,N) with d = 3, 4, 5
and N = 4, 5, . . . , 25. First, we computed the putatively optimal maximum inner product µ using
the data from [Slo04b]. In each of 10 trials, we constructed a starting matrix using Algorithm 4 with
parameters τ = 0.9 and T = 10, 000. Then, we executed the alternating projection, Algorithm 1,
with the calculated value of µ and the maximum number of iterations set to T = 5000. We stopped
the alternating projection in Step 4 if the iterate G(t) contained no off-diagonal entry greater than
µ + 10−5 and proceeded with Step 6. After 10 trials, we recorded the largest packing diameter
attained, as well as the average value of the packing diameter. We also recorded the average
number of iterations the alternating projection required during each trial.

Table 7 provides the results of this experiment. The most striking feature of Table 7 is that
the best configurations returned by alternating projection consistently attain packing diameters
that fall hundredths or thousandths of a degree away from the best packing diameters recorded by
Sloane. If we examine the maximum inner product in the configuration instead, the difference is
usually on the order of 10−4 or 10−5, which we expect based on our stopping criterion. The average-
case results are somewhat worse. Nevertheless, the average configuration returned by alternating
projection typically attains a packing diameter only several tenths of a degree away from optimal.

A second observation is that the alternating projection algorithm typically performs better when
the number of points N is small. The largest errors are all clustered at larger values of N . A
corollary observation is that the average number of iterations per trial tends to increase with the
number of points. We believe that the explanation for these phenomena is that Tammes’ Problem
has a combinatorial regime, where solutions have a lot of symmetry and structure, and a random
regime, where the solutions have very little order. The algorithm typically seems to perform better
in the combinatorial regime, although it fails for certain unusually structured ensembles.

This claim is supported somewhat by theoretical results for d = 3. Optimal configurations have
only been established for N = 1, 2, . . . , 12 and N = 24. Of these, the cases N = 1, 2, 3 are trivial.
The cases N = 4, 6, 8, 12, 24 fall from the vertices of various well-known polyhedra. The cases
N = 5, 11 are degenerate, obtained by leaving a point out of the solutions for N = 6, 12. The
remaining cases involve complicated constructions based on graphs [EZ01]. The algorithm was
able to calculate the known optimal configurations to a high order of accuracy, but it generally
performed slightly better for the nondegenerate cases.

On the other hand, there is at least one case where the algorithm failed to match the optimal
packing diameter, even though the optimal configuration is highly symmetric. The best arrange-
ment of 24 points on S

3 locates them at vertices of a very special polytope called the 24-cell [Slo04b].
The best configuration produced by the algorithm has a packing diameter 1.79◦ worse. It seems
that this optimal configuration is very difficult for the algorithm to find. Less dramatic failures
occurred at pairs (d,N) = (3, 25), (4, 14), (4, 25), (5, 22), and (5, 23). But in each of these cases,
our best packing declined more than a tenth of a degree from the best recorded.
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Appendix B. Tables and Figures

Our experiments resulted in tables of packing diameters. We did not store the configurations
produced by the algorithm. The Matlab code that produced these data is available on request from
jtropp@acm.caltech.edu.

These tables and figures are intended only to describe the results of our experiments; it is likely
that many of the packing diameters could be improved with additional effort. In all cases, we
present the results of calculations for the stated problem, even if we obtained a better packing
by solving a different problem. For example, a complex packing should always improve on the
corresponding real packing. If the numbers indicate otherwise, it just means that the complex
experiment yielded an inferior result. As a second example, the optimal packing diameter must not
decrease as the number of points increases. When the numbers indicate otherwise, it means that
running the algorithm with more points yielded a better result than running it with fewer. These
failures may reflect the difficulty of various packing problems.

List of Tables

1 Packing in real projective spaces 21
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3 Packing in real Grassmannians with chordal distance 27

4 Packing in complex Grassmannians with chordal distance 28
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Table 1. Packing in real projective spaces: For collections of N points in the
real projective space P

d−1(R), this table lists the best packing diameter (in degrees)
and the average packing diameter (in degrees) obtained during ten random trials of
the alternating projection algorithm. The error columns record how far our results
decline from the putative optimal packings (NJAS) reported in [Slo04a]. The last
column gives the average number of iterations of alternating projection per trial
before the termination condition is met.

Packing diameters (Degrees) Iterations
d N NJAS Best of 10 Error Avg. of 10 Error Avg. of 10

3 4 70.529 70.528 0.001 70.528 0.001 54
3 5 63.435 63.434 0.001 63.434 0.001 171
3 6 63.435 63.435 0.000 59.834 3.601 545
3 7 54.736 54.735 0.001 54.735 0.001 341
3 8 49.640 49.639 0.001 49.094 0.546 4333
3 9 47.982 47.981 0.001 47.981 0.001 2265
3 10 46.675 46.674 0.001 46.674 0.001 2657
3 11 44.403 44.402 0.001 44.402 0.001 2173
3 12 41.882 41.881 0.001 41.425 0.457 2941
3 13 39.813 39.812 0.001 39.522 0.291 4870
3 14 38.682 38.462 0.221 38.378 0.305 5000
3 15 38.135 37.934 0.201 37.881 0.254 5000
3 16 37.377 37.211 0.166 37.073 0.304 5000
3 17 35.235 35.078 0.157 34.821 0.414 5000
3 18 34.409 34.403 0.005 34.200 0.209 5000
3 19 33.211 33.107 0.104 32.909 0.303 5000
3 20 32.707 32.580 0.127 32.273 0.434 5000
3 21 32.216 32.036 0.180 31.865 0.351 5000
3 22 31.896 31.853 0.044 31.777 0.119 5000
3 23 30.506 30.390 0.116 30.188 0.319 5000
3 24 30.163 30.089 0.074 29.694 0.469 5000
3 25 29.249 29.024 0.224 28.541 0.707 5000

4 5 75.522 75.522 0.001 73.410 2.113 4071
4 6 70.529 70.528 0.001 70.528 0.001 91
4 7 67.021 67.021 0.001 67.021 0.001 325
4 8 65.530 65.530 0.001 64.688 0.842 3134
4 9 64.262 64.261 0.001 64.261 0.001 1843
4 10 64.262 64.261 0.001 64.261 0.001 803
4 11 60.000 59.999 0.001 59.999 0.001 577
4 12 60.000 59.999 0.001 59.999 0.001 146
4 13 55.465 55.464 0.001 54.390 1.074 4629
4 14 53.838 53.833 0.005 53.405 0.433 5000
4 15 52.502 52.493 0.009 51.916 0.585 5000
4 16 51.827 51.714 0.113 50.931 0.896 5000
4 17 50.887 50.834 0.053 50.286 0.601 5000
4 18 50.458 50.364 0.094 49.915 0.542 5000
4 19 49.711 49.669 0.041 49.304 0.406 5000
4 20 49.233 49.191 0.042 48.903 0.330 5000

continued. . .
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. . . continued

Packing diameters (Degrees) Iterations
d N NJAS Best of 10 Error Avg. of 10 Error Avg. of 10

4 21 48.548 48.464 0.084 48.374 0.174 5000
4 22 47.760 47.708 0.052 47.508 0.251 5000
4 23 46.510 46.202 0.308 45.789 0.722 5000
4 24 46.048 45.938 0.110 45.725 0.322 5000
4 25 44.947 44.739 0.208 44.409 0.538 5000

5 6 78.463 78.463 0.001 77.359 1.104 3246
5 7 73.369 73.368 0.001 73.368 0.001 1013
5 8 70.804 70.803 0.001 70.604 0.200 5000
5 9 70.529 70.528 0.001 69.576 0.953 2116
5 10 70.529 70.528 0.001 67.033 3.496 3029
5 11 67.254 67.254 0.001 66.015 1.239 4615
5 12 67.021 66.486 0.535 65.661 1.361 5000
5 13 65.732 65.720 0.012 65.435 0.297 5000
5 14 65.724 65.723 0.001 65.637 0.087 3559
5 15 65.530 65.492 0.038 65.443 0.088 5000
5 16 63.435 63.434 0.001 63.434 0.001 940
5 17 61.255 61.238 0.017 60.969 0.287 5000
5 18 61.053 61.048 0.005 60.946 0.107 5000
5 19 60.000 58.238 1.762 57.526 2.474 5000
5 20 60.000 59.999 0.001 56.183 3.817 3290
5 21 57.202 57.134 0.068 56.159 1.043 5000
5 22 56.356 55.819 0.536 55.173 1.183 5000
5 23 55.588 55.113 0.475 54.535 1.053 5000
5 24 55.228 54.488 0.740 53.926 1.302 5000
5 25 54.889 54.165 0.724 52.990 1.899 5000
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Table 2. Packing in complex projective spaces: We compare our best con-
figurations (DHST) of N points in the complex projective space P

d−1(C) against
the Rankin bound (4.1). The packing diameter of an ensemble is measured as the
acute angle (in degrees) between the closest pair of lines. The final column shows
how far our configurations fall short of the bound.

Packing diameters (Degrees)
d N DHST Rankin Difference

2 3 60.00 60.00 0.00
2 4 54.74 54.74 0.00
2 5 45.00 52.24 7.24
2 6 45.00 50.77 5.77
2 7 38.93 49.80 10.86
2 8 37.41 49.11 11.69

3 4 70.53 70.53 0.00
3 5 64.00 65.91 1.90
3 6 63.44 63.43 0.00
3 7 61.87 61.87 0.00
3 8 60.00 60.79 0.79
3 9 60.00 60.00 0.00
3 10 54.73 59.39 4.66
3 11 54.73 58.91 4.18
3 12 54.73 58.52 3.79
3 13 51.32 58.19 6.88
3 14 50.13 57.92 7.79
3 15 49.53 57.69 8.15
3 16 49.53 57.49 7.95
3 17 49.10 57.31 8.21
3 18 48.07 57.16 9.09
3 19 47.02 57.02 10.00
3 20 46.58 56.90 10.32

4 5 75.52 75.52 0.00
4 6 70.88 71.57 0.68
4 7 69.29 69.30 0.01
4 8 67.78 67.79 0.01
4 9 66.21 66.72 0.51
4 10 65.71 65.91 0.19
4 11 64.64 65.27 0.63
4 12 64.24 64.76 0.52
4 13 64.34 64.34 0.00
4 14 63.43 63.99 0.56
4 15 63.43 63.69 0.26
4 16 63.43 63.43 0.00
4 17 59.84 63.21 3.37
4 18 59.89 63.02 3.12
4 19 60.00 62.84 2.84
4 20 57.76 62.69 4.93

5 6 78.46 78.46 0.00

continued. . .
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. . . continued

Packing diameters (Degrees)
d N DHST Rankin Difference

5 7 74.52 75.04 0.51
5 8 72.81 72.98 0.16
5 9 71.24 71.57 0.33
5 10 70.51 70.53 0.02
5 11 69.71 69.73 0.02
5 12 68.89 69.10 0.21
5 13 68.19 68.58 0.39
5 14 67.66 68.15 0.50
5 15 67.37 67.79 0.43
5 16 66.68 67.48 0.80
5 17 66.53 67.21 0.68
5 18 65.87 66.98 1.11
5 19 65.75 66.77 1.02
5 20 65.77 66.59 0.82
5 21 65.83 66.42 0.60
5 22 65.87 66.27 0.40
5 23 65.90 66.14 0.23
5 24 65.91 66.02 0.11
5 25 65.91 65.91 0.00
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Figure 1. Real and Complex Projective Packings: These three graphs com-
pare the packing diameters attained by configurations in real and complex projective
spaces with d = 3, 4, 5. The circles indicate the best real packings obtained by Sloane
and his colleagues [Slo04a]. The crosses indicate the best complex packings produced
by the authors. Rankin’s upper bound (4.1) is depicted in gray. The dashed vertical
line marks the largest number of real lines for which the Rankin bound is attainable,
while the solid vertical line marks the maximum number of complex lines for which
the Rankin bound is attainable.
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. . . continued

Packing in P^3(F)
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Table 3. Packing in real Grassmannians with chordal distance: We com-
pare our best configurations (DHST) of N points in G(K, Rd) against the best
packings (NJAS) reported in [Slo04a]. The squared packing diameter is the squared
chordal distance (2.1) between the closest pair of subspaces. The last column lists
the difference between the columns (NJAS) and (DHST).

Squared Packing diameters
K d N DHST NJAS Difference

2 4 3 1.5000 1.5000 0.0000
2 4 4 1.3333 1.3333 0.0000
2 4 5 1.2500 1.2500 0.0000
2 4 6 1.2000 1.2000 0.0000
2 4 7 1.1656 1.1667 0.0011
2 4 8 1.1423 1.1429 0.0005
2 4 9 1.1226 1.1231 0.0004
2 4 10 1.1111 1.1111 0.0000
2 4 11 0.9981 1.0000 0.0019
2 4 12 0.9990 1.0000 0.0010
2 4 13 0.9996 1.0000 0.0004
2 4 14 1.0000 1.0000 0.0000
2 4 15 1.0000 1.0000 0.0000
2 4 16 0.9999 1.0000 0.0001
2 4 17 1.0000 1.0000 0.0000
2 4 18 0.9992 1.0000 0.0008
2 4 19 0.8873 0.9091 0.0218
2 4 20 0.8225 0.9091 0.0866

2 5 3 1.7500 1.7500 0.0000
2 5 4 1.6000 1.6000 0.0000
2 5 5 1.5000 1.5000 0.0000
2 5 6 1.4400 1.4400 0.0000
2 5 7 1.4000 1.4000 0.0000
2 5 8 1.3712 1.3714 0.0002
2 5 9 1.3464 1.3500 0.0036
2 5 10 1.3307 1.3333 0.0026
2 5 11 1.3069 1.3200 0.0131
2 5 12 1.2973 1.3064 0.0091
2 5 13 1.2850 1.2942 0.0092
2 5 14 1.2734 1.2790 0.0056
2 5 15 1.2632 1.2707 0.0075
2 5 16 1.1838 1.2000 0.0162
2 5 17 1.1620 1.2000 0.0380
2 5 18 1.1589 1.1909 0.0319
2 5 19 1.1290 1.1761 0.0472
2 5 20 1.0845 1.1619 0.0775
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Table 4. Packing in complex Grassmannians with chordal distance: We
compare our best configurations (DHST) of N points in G(K, Cd) against the Rankin
bound, equation (4.1). The squared packing diameter is calculated as the squared
chordal distance (2.1) between the closest pair of subspaces. The final column shows
how much the computed ensemble declines from the Rankin bound. When the bound
is met, all pairs of subspaces are equidistant.

Squared Packing diameters
K d N DHST Rankin Difference

2 4 3 1.5000 1.5000 0.0000
2 4 4 1.3333 1.3333 0.0000
2 4 5 1.2500 1.2500 0.0000
2 4 6 1.2000 1.2000 0.0000
2 4 7 1.1667 1.1667 0.0000
2 4 8 1.1429 1.1429 0.0000
2 4 9 1.1250 1.1250 0.0000
2 4 10 1.1111 1.1111 0.0000
2 4 11 1.0999 1.1000 0.0001
2 4 12 1.0906 1.0909 0.0003
2 4 13 1.0758 1.0833 0.0076
2 4 14 1.0741 1.0769 0.0029
2 4 15 1.0698 1.0714 0.0016
2 4 16 1.0658 1.0667 0.0009
2 4 17 0.9975 1.0625 0.0650
2 4 18 0.9934 1.0588 0.0654
2 4 19 0.9868 1.0556 0.0688
2 4 20 0.9956 1.0526 0.0571

2 5 3 1.7500 1.8000 0.0500
2 5 4 1.6000 1.6000 0.0000
2 5 5 1.5000 1.5000 0.0000
2 5 6 1.4400 1.4400 0.0000
2 5 7 1.4000 1.4000 0.0000
2 5 8 1.3714 1.3714 0.0000
2 5 9 1.3500 1.3500 0.0000
2 5 10 1.3333 1.3333 0.0000
2 5 11 1.3200 1.3200 0.0000
2 5 12 1.3090 1.3091 0.0001
2 5 13 1.3000 1.3000 0.0000
2 5 14 1.2923 1.2923 0.0000
2 5 15 1.2857 1.2857 0.0000
2 5 16 1.2799 1.2800 0.0001
2 5 17 1.2744 1.2750 0.0006
2 5 18 1.2686 1.2706 0.0020
2 5 19 1.2630 1.2667 0.0037
2 5 20 1.2576 1.2632 0.0056

2 6 4 1.7778 1.7778 0.0000
2 6 5 1.6667 1.6667 0.0000
2 6 6 1.6000 1.6000 0.0000

continued. . .
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. . . continued

Squared Packing diameters
K d N DHST Rankin Difference

2 6 7 1.5556 1.5556 0.0000
2 6 8 1.5238 1.5238 0.0000
2 6 9 1.5000 1.5000 0.0000
2 6 10 1.4815 1.4815 0.0000
2 6 11 1.4667 1.4667 0.0000
2 6 12 1.4545 1.4545 0.0000
2 6 13 1.4444 1.4444 0.0000
2 6 14 1.4359 1.4359 0.0000
2 6 15 1.4286 1.4286 0.0000
2 6 16 1.4221 1.4222 0.0001
2 6 17 1.4166 1.4167 0.0000
2 6 18 1.4118 1.4118 0.0000
2 6 19 1.4074 1.4074 0.0000
2 6 20 1.4034 1.4035 0.0001
2 6 21 1.3999 1.4000 0.0001
2 6 22 1.3968 1.3968 0.0001
2 6 23 1.3923 1.3939 0.0017
2 6 24 1.3886 1.3913 0.0028
2 6 25 1.3862 1.3889 0.0027

3 6 3 2.2500 2.2500 0.0000
3 6 4 2.0000 2.0000 0.0000
3 6 5 1.8750 1.8750 0.0000
3 6 6 1.8000 1.8000 0.0000
3 6 7 1.7500 1.7500 0.0000
3 6 8 1.7143 1.7143 0.0000
3 6 9 1.6875 1.6875 0.0000
3 6 10 1.6667 1.6667 0.0000
3 6 11 1.6500 1.6500 0.0000
3 6 12 1.6363 1.6364 0.0001
3 6 13 1.6249 1.6250 0.0001
3 6 14 1.6153 1.6154 0.0000
3 6 15 1.6071 1.6071 0.0000
3 6 16 1.5999 1.6000 0.0001
3 6 17 1.5936 1.5938 0.0001
3 6 18 1.5879 1.5882 0.0003
3 6 19 1.5829 1.5833 0.0004
3 6 20 1.5786 1.5789 0.0004
3 6 21 1.5738 1.5750 0.0012
3 6 22 1.5687 1.5714 0.0028
3 6 23 1.5611 1.5682 0.0070
3 6 24 1.5599 1.5652 0.0053
3 6 25 1.5558 1.5625 0.0067
3 6 26 1.5542 1.5600 0.0058
3 6 27 1.5507 1.5577 0.0070
3 6 28 1.5502 1.5556 0.0054
3 6 29 1.5443 1.5536 0.0092
3 6 30 1.5316 1.5517 0.0201

continued. . .
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. . . continued

Squared Packing diameters
K d N DHST Rankin Difference

3 6 31 1.5283 1.5500 0.0217
3 6 32 1.5247 1.5484 0.0237
3 6 33 1.5162 1.5469 0.0307
3 6 34 1.5180 1.5455 0.0274
3 6 35 1.5141 1.5441 0.0300
3 6 36 1.5091 1.5429 0.0338
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Figure 2. Packing in Grassmannians with chordal distance: This figure
shows the packing diameters of N points in the Grassmannian G(K, Fd) equipped
with the chordal distance. The circles indicate the best real packings (F = R)
obtained by Sloane and his colleagues [Slo04a]. The crosses indicate the best complex
packings (F = C) produced by the authors. Rankin’s upper bound (4.1) appears in
gray. The dashed vertical line marks the largest number of real subspaces for which
the Rankin bound is attainable, while the solid vertical line marks the maximum
number of complex subspaces for which the Rankin bound is attainable.
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. . . continued

Packing in G(2, F^5) with Chordal Distance

1.10

1.20

1.30

1.40

1.50

1.60

1.70

1.80

3 5 7 9 11 13 15 17 19

Number of Planes

S
q

u
a
r
e
d

 P
a
c
k
in

g
 D
ia
m
e
t
e
r

Rankin Bound

Complex (DHST)

Real (NJAS)

Packing in G(3, F^6) with Chordal Distance

1.40

1.50

1.60

1.70

1.80

1.90

2.00

2.10

2.20

2.30

3 6 9 12 15 18 21 24 27 30 33 36

Number of 3-spaces

S
q

u
a
r
e
d

 P
a
c
k
in

g
 D
ia
m
e
t
e
r

Rankin Bound

Complex (DHST)

Real (NJAS)



CONSTRUCTING GRASSMANNIAN PACKINGS 33

Table 5. Packing in Grassmannians with spectral distance: We compare
our best real (F = R) and complex (F = C) packings in G(K, Fd) against the
Rankin bound, equation (4.2). The squared packing diameter of a configuration is
the squared spectral distance (2.2) between the closest pair of subspaces. When the
Rankin bound is met, all pairs of subspaces are equi-isoclinic. The algorithm failed
to produce any configurations of 8 or 9 subspaces in G(3, R6) with nontrivial packing
diameters.

Squared Packing diameters
d K N Rankin R Difference C Difference

4 2 3 0.7500 0.7500 0.0000 0.7500 0.0000
4 2 4 0.6667 0.6667 0.0000 0.6667 0.0000
4 2 5 0.6250 0.5000 0.1250 0.6250 0.0000
4 2 6 0.6000 0.4286 0.1714 0.6000 0.0000
4 2 7 0.5833 0.3122 0.2712 0.5000 0.0833
4 2 8 0.5714 0.2851 0.2863 0.4374 0.1340
4 2 9 0.5625 0.2544 0.3081 0.4363 0.1262
4 2 10 0.5556 0.2606 0.2950 0.4375 0.1181

5 2 3 0.9000 0.7500 0.1500 0.7500 0.1500
5 2 4 0.8000 0.7500 0.0500 0.7500 0.0500
5 2 5 0.7500 0.6700 0.0800 0.7497 0.0003
5 2 6 0.7200 0.6014 0.1186 0.6637 0.0563
5 2 7 0.7000 0.5596 0.1404 0.6667 0.0333
5 2 8 0.6857 0.4991 0.1867 0.6060 0.0798
5 2 9 0.6750 0.4590 0.2160 0.5821 0.0929
5 2 10 0.6667 0.4615 0.2052 0.5196 0.1470

6 2 4 0.8889 0.8889 0.0000 0.8889 0.0000
6 2 5 0.8333 0.7999 0.0335 0.8333 0.0000
6 2 6 0.8000 0.8000 0.0000 0.8000 0.0000
6 2 7 0.7778 0.7500 0.0278 0.7778 0.0000
6 2 8 0.7619 0.7191 0.0428 0.7597 0.0022
6 2 9 0.7500 0.6399 0.1101 0.7500 0.0000
6 2 10 0.7407 0.6344 0.1064 0.7407 0.0000
6 2 11 0.7333 0.6376 0.0958 0.7333 0.0000
6 2 12 0.7273 0.6214 0.1059 0.7273 0.0000
6 3 3 0.7500 0.7500 0.0000 0.7500 0.0000
6 3 4 0.6667 0.5000 0.1667 0.6667 0.0000
6 3 5 0.6250 0.4618 0.1632 0.4999 0.1251
6 3 6 0.6000 0.4238 0.1762 0.5000 0.1000
6 3 7 0.5833 0.3590 0.2244 0.4408 0.1426
6 3 8 0.5714 — — 0.4413 0.1301
6 3 9 0.5625 — — 0.3258 0.2367
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Figure 3. Packing in Grassmannians with spectral distance: This figure
shows the packing diameters of N points in the Grassmannian G(K, Fd) equipped
with the spectral distance. The circles indicate the best real packings (F = R)
obtained by the authors, while the crosses indicate the best complex packings (F =
C) obtained. The Rankin bound (4.2) is depicted in gray. The dashed vertical line
marks an upper bound on largest number of real subspaces for which the Rankin
bound is attainable according to Theorem 8.
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. . . continued

Packing in G(2, F^5) with Spectral Distance
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Table 6. Packing in Grassmannians with Fubini–Study distance: Our best
real packings (F = R) compared with our best complex packings (F = C) in the space
G(K, Fd). The packing diameter of a configuration is the Fubini–Study distance (2.3)
between the closest pair of subspaces. Note that we have scaled the distance by 2/π
so that it ranges between zero and one.

Squared Packing diameters
d K N R C

2 4 3 1.0000 1.0000
2 4 4 1.0000 1.0000
2 4 5 1.0000 1.0000
2 4 6 1.0000 1.0000
2 4 7 0.8933 0.8933
2 4 8 0.8447 0.8559
2 4 9 0.8196 0.8325
2 4 10 0.8176 0.8216
2 4 11 0.7818 0.8105
2 4 12 0.7770 0.8033

2 5 3 1.0000 1.0000
2 5 4 1.0000 1.0000
2 5 5 1.0000 1.0000
2 5 6 0.9999 1.0000
2 5 7 1.0000 0.9999
2 5 8 1.0000 0.9999
2 5 9 1.0000 1.0000
2 5 10 0.9998 1.0000
2 5 11 0.9359 0.9349
2 5 12 0.9027 0.9022
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Figure 4. Packing in Grassmannians with Fubini–Study distance: This
figure shows the packing diameters of N points in the Grassmannian G(K, Fd)
equipped with the Fubini–Study distance. The circles indicate the best real pack-
ings (F = R) obtained by the authors, while the crosses indicate the best complex
packings (F = C) obtained.
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Table 7. Packing on spheres: For collections of N points on the (d − 1)-
dimensional sphere, this table lists the best packing diameter and the average
packing diameter obtained during ten random trials of the alternating projection
algorithm. The error columns record how far our results decline from the putative
optimal packings (NJAS) reported in [Slo04b]. The last column gives the average
number of iterations of alternating projection per trial.

Packing diameters (Degrees) Iterations
d N NJAS Best of 10 Error Avg. of 10 Error Avg. of 10

3 4 109.471 109.471 0.001 109.471 0.001 45
3 5 90.000 90.000 0.000 89.999 0.001 130
3 6 90.000 90.000 0.000 90.000 0.000 41
3 7 77.870 77.869 0.001 77.869 0.001 613
3 8 74.858 74.858 0.001 74.858 0.001 328
3 9 70.529 70.528 0.001 70.528 0.001 814
3 10 66.147 66.140 0.007 66.010 0.137 5000
3 11 63.435 63.434 0.001 63.434 0.001 537
3 12 63.435 63.434 0.001 63.434 0.001 209
3 13 57.137 57.136 0.001 56.571 0.565 4876
3 14 55.671 55.670 0.001 55.439 0.232 3443
3 15 53.658 53.620 0.038 53.479 0.178 5000
3 16 52.244 52.243 0.001 51.665 0.579 4597
3 17 51.090 51.084 0.007 51.071 0.019 5000
3 18 49.557 49.548 0.008 49.506 0.050 5000
3 19 47.692 47.643 0.049 47.434 0.258 5000
3 20 47.431 47.429 0.002 47.254 0.177 5000
3 21 45.613 45.576 0.037 45.397 0.217 5000
3 22 44.740 44.677 0.063 44.123 0.617 5000
3 23 43.710 43.700 0.009 43.579 0.131 5000
3 24 43.691 43.690 0.001 43.689 0.002 3634
3 25 41.634 41.458 0.177 41.163 0.471 5000

4 5 104.478 104.478 0.000 104.267 0.211 2765
4 6 90.000 90.000 0.000 89.999 0.001 110
4 7 90.000 89.999 0.001 89.999 0.001 483
4 8 90.000 90.000 0.000 89.999 0.001 43
4 9 80.676 80.596 0.081 80.565 0.111 5000
4 10 80.406 80.405 0.001 77.974 2.432 2107
4 11 76.679 76.678 0.001 75.881 0.798 2386
4 12 75.522 75.522 0.001 74.775 0.748 3286
4 13 72.104 72.103 0.001 71.965 0.139 4832
4 14 71.366 71.240 0.126 71.184 0.182 5000
4 15 69.452 69.450 0.002 69.374 0.078 5000
4 16 67.193 67.095 0.098 66.265 0.928 5000
4 17 65.653 65.652 0.001 64.821 0.832 4769
4 18 64.987 64.987 0.001 64.400 0.587 4713
4 19 64.262 64.261 0.001 64.226 0.036 4444
4 20 64.262 64.261 0.001 64.254 0.008 3738
4 21 61.876 61.864 0.012 61.570 0.306 5000

continued. . .
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. . . continued

Packing diameters (Degrees) Iterations
d N NJAS Best of 10 Error Avg. of 10 Error Avg. of 10

4 22 60.140 60.084 0.055 59.655 0.485 5000
4 23 60.000 59.999 0.001 58.582 1.418 4679
4 24 60.000 58.209 1.791 57.253 2.747 5000
4 25 57.499 57.075 0.424 56.871 0.628 5000

5 6 101.537 101.536 0.001 95.585 5.952 4056
5 7 90.000 89.999 0.001 89.999 0.001 1540
5 8 90.000 89.999 0.001 89.999 0.001 846
5 9 90.000 89.999 0.001 89.999 0.001 388
5 10 90.000 90.000 0.000 89.999 0.001 44
5 11 82.365 82.300 0.065 81.937 0.429 5000
5 12 81.145 81.145 0.001 80.993 0.152 4695
5 13 79.207 79.129 0.078 78.858 0.349 5000
5 14 78.463 78.462 0.001 78.280 0.183 1541
5 15 78.463 78.462 0.001 77.477 0.986 1763
5 16 78.463 78.462 0.001 78.462 0.001 182
5 17 74.307 74.307 0.001 73.862 0.446 4147
5 18 74.008 74.007 0.001 73.363 0.645 3200
5 19 73.033 73.016 0.017 72.444 0.589 5000
5 20 72.579 72.579 0.001 72.476 0.104 4689
5 21 71.644 71.639 0.005 71.606 0.039 5000
5 22 69.207 68.683 0.524 68.026 1.181 5000
5 23 68.298 68.148 0.150 67.568 0.731 5000
5 24 68.023 68.018 0.006 67.127 0.896 5000
5 25 67.690 67.607 0.083 66.434 1.256 5000
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[BG73] Å. Björck and G. Golub. Numerical methods for computing angles between linear subspaces. Mathematics
of Computation, 27(123):579–594, July 1973.

[BN02] A. Barg and D. Yu. Nogin. Bounds on packings of spheres in the Grassmannian manifold. IEEE Trans.
Inform. Theory, 48(9):2450–2454, Sept. 2002.

[CG59] E. W. Cheney and A. A. Goldstein. Proximity maps for convex sets. Proc. Amer. Math. Soc., 10(3):448–
450, June 1959.

[CHS96] J. H. Conway, R. H. Hardin, and N. J. A. Sloane. Packing lines, planes, etc.: Packings in Grassmannian
spaces. Experimental Math., 5(2):139–159, 1996.

[CS98] J. H. Conway and N. J. A. Sloane. Sphere Packing, Lattices and Groups. Number 290 in Grundlehren der
mathematischen Wissenschaften. Springer Verlag, 3rd edition, 1998.

[CT91] T. M. Cover and J. A. Thomas. Elements of Information Theory. John Wiley and Sons, 1991.
[EZ01] T. Ericson and V. Zinoviev. Codes on Euclidean Spheres. Elsevier, 2001.
[GVL96] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins University Press, 3rd edition,

1996.
[Hal04] T. C. Hales. A proof of the Kepler Conjecture (DCG version). Available at http://www.math.pitt.edu/

~thales/kepler04/fullkepler.pdf, March 2004.
[HJ85] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, 1985.
[HM00] B.M. Hochwald and T.L. Marzetta. Unitary space-time modulation for multiple-antenna communications

in Rayleigh flat fading. IEEE Trans. Info. Theory, 46(2):543–564, 2000.
[HMR+00] B.M. Hochwald, T.L. Marzetta, T.J. Richardson, W. Sweldens, and R. Urbanke. Systematic design of

unitary space-time constellations. IEEE Trans. Info. Theory, 46(6):1962–1973, 2000.
[HP04] R. B. Holmes and V. I. Paulsen. Optimal frames for erasures. Linear Algebra Appl., 377:31–51, Jan. 2004.
[LHJ05] D.J. Love and R. W. Heath Jr. Limited feedback unitary precoding for orthogonal space-time block codes.

IEEE Trans. Signal Processing, 53(1):64–73, 2005.
[LJ05] D. J. Love and R. W. Heath Jr. Limited feedback unitary precoding for spatial multiplexing systems.

IEEE Trans. Info. Theory, 51(8):2967–2976, 2005.
[LJS03] D. J. Love, R. W. Heath Jr., and T. Strohmer. Grassmannian beamforming for multiple-input multiple-

output wireless systems. IEEE Trans. Info. Theory, 49(10):2735–2747, Oct 2003.
[LJSH04] D. J. Love, R. W. Heath Jr., W. Santipach, and M. L. Honig. What is the value of limited feedback for

MIMO channels? IEEE Comm. Mag., 42(10):54–59, 2004.
[LS73] P. W. H. Lemmens and J. J. Seidel. Equi-isoclinic subspaces of Euclidean spaces. Proc. Nederl. Akad.

Wetensch. Series A, 76:98–107, 1973.
[Mey76] R. R. Meyer. Sufficient conditions for the convergence of monotonic mathematical programming algo-

rithms. J. Comp. Sys. Sci., 12:108–121, 1976.
[Ran47] R. A. Rankin. On the closest packing of spheres in n dimensions. Ann. Math., 48:1062–1081, 1947.
[Roc70] R. T. Rockafellar. Convex Analysis. Princeton University Press, 1970.
[Rog64] C. A. Rogers. Packing and Covering. Cambridge University Press, 1964.
[SJ03] T. Strohmer and R. W. Heath Jr. Grassmannian frames with applications to coding and communication.

Appl. Comp. Harmonic Anal., 14(3):257–275, May 2003.
[Slo04a] N. J. A. Sloane. Table of best Grassmannian packings. In collaboration with A. R. Calderbank, J. H.

Conway, R. H. Hardin, E. M. Rains, P. W. Shor and others. Published electronically at http://www.

research.att.com/~njas/grass/grassTab.html, 2004.
[Slo04b] N. J. A. Sloane. Tables of spherical codes. In collaboration with R. H. Hardin, W. D. Smith and others.

Published electronically at http://www.research.att.com/~njas/packings/, 2004.
[STDJ07] M. A. Sustik, J. A. Tropp, I. S. Dhillon, and R. W. Heath Jr. On the existence of equiangular tight

frames. Linear Algebra Appl., 426:619–635, 2007.
[Ste80] G. W. Stewart. The efficient generation of random orthogonal matrices with an application to condition

estimation. SIAM J. Numer. Anal., 17(30):403–409, 1980.
[Tam30] P. M. L. Tammes. On the origin of number and arrangement of the places of exit on the surface of pollen

grains. Rec. Trav. bot. neerl., 27:1–84, 1930.
[TDJS05] J. A. Tropp, I. S. Dhillon, R. W. Heath Jr., and T. Strohmer. Designing structured tight frames via

alternating projection. IEEE Trans. Info. Theory, 51(1), Jan. 2005.
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