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Abstract. Randomized matrix algorithms have become workhorse tools in scientific comput-
ing and machine learning. To use these algorithms safely in applications, they should be coupled
with posterior error estimates to assess the quality of the output. To meet this need, this paper
proposes two diagnostics: a leave-one-out error estimator for randomized low-rank approximations
and a jackknife resampling method to estimate the variance of the output of a randomized matrix
computation. Both of these diagnostics are rapid to compute for randomized low-rank approxima-
tion algorithms such as the randomized SVD and randomized Nystr\"om approximation, and they
provide useful information that can be used to assess the quality of the computed output and guide
algorithmic parameter choices.
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1. Introduction. In recent years, randomness has become an essential tool in
the design of matrix algorithms [2, 7, 12, 13, 29], with randomized algorithms proving
especially effective for matrix low-rank approximation. To use these algorithms safely
in practice, they should be supported by posterior error estimates and other quality
metrics that inform the user about the accuracy of the computational output.

This paper presents two diagnostic tools for randomized matrix computations:
\bullet First, we provide a leave-one-out posterior estimate for the error \| \bfitA  - \bfitX \| F

for a low-rank approximation \bfitX to a matrix \bfitA produced by randomized al-
gorithms such as the randomized SVD or randomized Nystr\"om aproximation.

\bullet Second, we present a jackknife method for estimating the variance Var(\bfitX ) :=
\BbbE \| \bfitX  - \BbbE \bfitX \| 2F of the matrix output \bfitX of a randomized algorithm. The vari-
ance is a useful diagnostic: If the computation is sensitive to the randomness
used by the algorithm, the computed output should be treated with suspicion.

By using novel downdating formulas (see (4.1) and (4.3) below), we can rapidly com-
pute both of these estimators for widely used low-rank approximation methods such
as the randomized SVD and randomized Nystr\"om approximation. Our diagnostics are
also sample-efficient in the sense that they require no additional matrix-vector prod-
ucts or other information beyond that used in the original algorithm. The speed and
efficiency of these diagnostics make them compelling additions to workflows involving
randomized matrix computation.
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ERROR AND VARIANCE ESTIMATION A509

1.1. Leave-one-out error estimation. We begin by motivating our first di-
agnostic, a leave-one-out estimator for the error of a low-rank matrix approximation.
For concreteness, we introduce this estimate in the context of Nystr\"om approximation
of positive-semidefinite (psd) matrices; see section 2 for a more general setting.

Suppose we want to approximate a psd matrix \bfitA \in \BbbR d\times d, which we can only
access by the matrix-vector product operation \bfitomega \mapsto \rightarrow \bfitA \bfitomega . Using the matrix-vector
product operation, we can compute the matrix-matrix product \bfitA \Phi with a (random)
matrix \Phi \in \BbbR d\times s with s columns and form the Nystr\"om approximation [6, 24, 28]

\bfitA \langle \Phi \rangle :=\bfitA \Phi (\Phi \ast \bfitA \Phi )
\dagger 
(\bfitA \Phi )\ast .(1.1)

Here, \ast denotes the transpose and \dagger denotes the Moore--Penrose pseudoinverse. The
result is a psd, rank-s approximation \bfitA \langle \Phi \rangle to the matrix \bfitA . We will generate \Phi by
applying q\geq 0 steps of subspace iteration to a random test matrix \Omega 

\Phi =\bfitA q\Omega ,(1.2)

where \Omega is populated with statistically independent standard Gaussian entries. The
quality of the Nystr\"om approximation improves with a higher approximation rank s
or number of subspace iteration steps q. Using the forthcoming Algorithm 4.1, we
can compute \bfitA \langle \Phi \rangle in the form of a compact eigenvalue decomposition:

\bfitA \langle \Phi \rangle =\bfitV \Lambda \bfitV \ast ,(1.3)

where \bfitV \in \BbbR d\times s has orthonormal columns and \Lambda \in \BbbR s\times s
+ is diagonal. The cost of this

procedure is \scrO (qs) matrix-vector products with \bfitA and \scrO (ds2) additional operations.
To use the Nystr\"om approximation with confidence in applications and to guide

the choice of parameters s and q, we need to understand the accuracy of the approx-
imation \bfitA \approx \bfitA \langle \Phi \rangle . This motivates our question:

What is the most efficient way to estimate the error \| \bfitA  - \bfitA \langle \Phi \rangle \| F?

Inspired by this question, this article proposes the leave-one-out error estimator, which
provides an estimate of \| \bfitA  - \bfitA \langle \Phi \rangle \| F using only the information already collected
from \bfitA to form the Nystr\"om approximation.

The leave-one-out estimator is built by recomputing the Nystr\"om approximation
using subsamples of the columns of the matrix \Omega . We can regard the Nystr\"om ap-
proximation as a function of the test matrix \Omega :

\Omega \mapsto \rightarrow \bfitX =\bfitX (\Omega ) :=\bfitA \langle \bfitA q\Omega \rangle .

Let \Omega (j) denote \Omega without its jth column. Introduce replicates \bfitX (1), . . . ,\bfitX (s) by
recomputing \bfitX with each column of \Omega left out in turn:

\bfitX (j) =\bfitX 
\bigl( 
\Omega (j)

\bigr) 
for j = 1,2, . . . , s.

Letting \bfitomega j denote the jth column of \Omega and \| \cdot \| denote the Euclidean norm, we define
the leave-one-out error estimator

\widehat Err2(\bfitX ,\bfitA ) :=
1

s

s\sum 
i=1

\bigm\| \bigm\| \bigl( \bfitA  - \bfitX (j)
\bigr) 
\bfitomega j

\bigm\| \bigm\| 2.
As we show in Theorem 2.1, this error estimator is an unbiased estimator for the
mean-square error of the rank-(s - 1) Nystr\"om approximation:
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A510 E. N. EPPERLY AND J. A. TROPP

\BbbE \widehat Err2(\bfitX ,\bfitA ) =\BbbE 
\bigm\| \bigm\| \bfitA  - \bfitX (\Omega (s))

\bigm\| \bigm\| 2
F
.

Once the Nystr\"om approximation has been computed, \widehat Err(\bfitX ,\bfitA ) is cheap to form,
requiring at most \scrO (ds2) additional operations (and only \scrO (s3) operations if q = 0).

See subsection 4.1 for details. The error estimate \widehat Err(\bfitX ,\bfitA ) requires no information
about \bfitA beyond what is required to form the approximation \bfitX .

A good point of comparison for the leave-one-out error estimator is provided by
the Girard--Hutchinson norm estimate [12, section 4.8]

\widehat Err2GH(\bfitX ,\bfitA ) =
1

t

t\sum 
i=1

\| (\bfitA  - \bfitX )\bfitnu i\| 2 \approx \| \bfitA  - \bfitX \| 2F .(1.4)

Here, \bfitnu 1, . . . ,\bfitnu t are independent standard Gaussian test vectors. This estimator re-
quires t matrix-vector products with \bfitA (beyond those used to form the approxima-
tion \bfitX ), and the norm estimate becomes more accurate with larger t. The Girard--
Hutchinson norm estimator is equivalent to the Girard--Hutchinson trace estimator
[12, section 4.2] applied to (\bfitA  - \bfitX )\ast (\bfitA  - \bfitX ) and served as our inspiration for the
leave-one-out error estimator. The leave-one-out estimator improves on the Girard--
Hutchinson estimator as it requires no additional matrix-vector products with \bfitA 
to compute. In addition, the quality of the leave-one-out estimator automatically
improves when the approximation rank s increases, whereas the Girard--Hutchinson
estimate only improves by using more matrix-vector products.

Figure 1 demonstrates the leave-one-out error estimator. In this figure, we apply
single-pass Nystr\"om approximation (q = 0) to approximate psd kernel matrix \bfitA \in 
\BbbR 104\times 104 formed from a random subsample of 104 points from the QM9 dataset [18, 19]
using approximation ranks 5\leq s\leq 150. In the left panel, we plot the mean error

Err(\bfitX ,\bfitA ) :=\BbbE \| \bfitA  - \bfitX \| F(1.5)

and the leave-one-out error estimate \widehat Err(\bfitX ,\bfitA ), estimated using 1000 trials. We see

that the estimate\widehat Err(\bfitX ,\bfitA ) closely tracks the true error. Moreover, the error estimate\widehat Err(\bfitX ,\bfitA ) is fast to compute, with the error estimate taking less than 1\% of the total
runtime to form. The right panel compares the mean relative error

mean relative error =\BbbE 
\biggl[ 
| \| \bfitA  - \bfitX \| F  - Est| 
\| \bfitA  - \bfitX \| F

\biggr] 
, Est\in 

\Bigl\{ \widehat Err(\bfitX ,\bfitA ),\widehat ErrGH(\bfitX ,\bfitA )
\Bigr\} 

Fig. 1. Leave-one-out error estimator. Approximation error Err(\bfitX ,\bfitA )/\| \bfitA \| \mathrm{F} and normal-

ized error estimate \widehat Err(\bfitX ,\bfitA )/\| \bfitA \| \mathrm{F} (left) and relative error for the leave-one-out and Girard--
Hutchinson error estimators (right) for Nystr\"om approximation \bfitX to a psd kernel matrix \bfitA \in 
\BbbR 104\times 104 . Error and error estimate were computed by an average of 1000 trials. Error bars show
one standard deviation.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

02
/2

9/
24

 to
 5

.1
98

.1
39

.1
06

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



ERROR AND VARIANCE ESTIMATION A511

for both the leave-one-out and Girard--Hutchinson error estimators. Following [25,
section 7.9], we use t = 10 matrix-vector products for the Girard--Hutchinson es-
timator. For s \geq 25, the leave-one-out estimator is more accurate than Girard--
Hutchinson and, for all values of s, the leave-one-out estimator is cheaper to form than
Girard--Hutchinson, requiring just \scrO (s3) operations and no additional matrix-vector
products.

1.2. Matrix jackknife motivating example: Spectral clustering. Ran-
domized low-rank approximations can also be used for spectral computations (i.e.,
to approximate eigenvalues, eigenvectors, singular values, etc.). In this case, the low-
rank approximation error \| \bfitA  - \bfitX \| F may only provide indirect information about the
accuracy of the computation. For situations such as this, we propose a matrix jack-
knife variance estimate as a diagnostic tool. In this section, we illustrate the value of
this matrix jackknife approach in a spectral clustering application, before introducing
the method in generality in section 3.

1.2.1. Nystr\"om-accelerated spectral clustering. Spectral clustering [27] is
an algorithm that uses eigenvectors to assign data points, say, \bfitc 1, . . . ,\bfitc d \in \BbbR m, into
groups. To measure similarity between points, we employ a nonnegative, positive
definite kernel function \kappa : \BbbR m \times \BbbR m \rightarrow \BbbR +. One popular choice is the square-
exponential kernel

\kappa 
\bigl( 
\bfitc ,\bfitc \prime 

\bigr) 
= exp

\Biggl( 
 - \| \bfitc  - \bfitc \prime \| 2

2\sigma 2

\Biggr) 
.(1.6)

To cluster the data points into groups, we perform the following steps:
1. Form the kernel matrix \bfitK with entries kij = \kappa (\bfitc i,\bfitc j).

2. Assemble the diagonal matrix \bfitD =diag
\bigl( \sum d

j=1 kij : i= 1, . . . , d
\bigr) 
.

3. Compute the ndim dominant eigenvectors \bfitU of \bfitA :=\bfitD  - 1/2\bfitK \bfitD  - 1/2.
4. Set \bfitW :=\bfitD  - 1/2\bfitU .
5. Apply a general-purpose clustering algorithm, such as k-means [1] with ncen

centers, to the rows of \bfitW .
Parameters ndim and ncen set the clustering space dimension and number of clusters.

If one uses direct methods for the eigenvalue problem, the cost of spectral clus-
tering is dominated by the \scrO (d3) cost for the eigenvector calculation in step 3. We
can accelerate spectral clustering by using Nystr\"om approximation (1.1). The modifi-
cation is simple: Use the ndim dominant eigenvectors of the Nystr\"om approximation,
accessible from the eigendecomposition (1.3), in place of the eigenvectors of \bfitA .

1.2.2. Variance estimation for spectral clustering. As we refine the ap-
proximation by increasing s, the approximate eigenvectors \widehat \bfitU will converge to the
true eigenvectors \bfitU (provided \bfitU is unique). But how do we know when we have
taken s large enough? Our guiding principle is:

In order to trust the answer provided by a randomized algorithm, the output
should be insensitive to the randomness used by the algorithm.

The variance of the matrix output \bfitX of a randomized algorithm, defined as

Var(\bfitX ) :=\BbbE \| \bfitX  - \BbbE \bfitX \| 2F ,(1.7)
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A512 E. N. EPPERLY AND J. A. TROPP

provides a quantitative measurement of the sensitivity of the algorithmic output to
randomness used by the algorithm. In the context of spectral clustering, we can use
a variance estimate to guide our choice of the rank s.

To understand the sensitivity of Nystr\"om-accelerated spectral clustering to ran-
domness in the algorithm, we need to specify a target matrix \bfitX for variance estima-
tion. The input to k-means clustering are the coordinates\widehat \bfitW :=\bfitD  - 1/2 \widehat \bfitU .

To respect the invariance of k-means to scaling and rotation of the coordinates, our
target for variance estimation will be

\bfitX = \widehat \bfitW \widehat \bfitW \ast 
/
\bigm\| \bigm\| \widehat \bfitW \widehat \bfitW \ast \bigm\| \bigm\| 

F
.

1.2.3. Jackknife variance estimation. Jackknife variance estimation is simi-
lar to the leave-one-out error estimator in that we use replicates \bfitX (1), . . . ,\bfitX (s) recom-
puted by successively leaving out columns of the random test matrix \Omega . As before,
we view the target \bfitX as a function

\bfitX =\bfitX (\Omega )

of the test matrix \Omega defining the Nystr\"om approximation by (1.1) and (1.2). Form
jackknife replicates \bfitX (j) and their average \bfitX (\cdot ) via

\bfitX (j) =\bfitX 
\Bigl( 
\Omega (j)

\Bigr) 
for j = 1, . . . , s and \bfitX (\cdot ) :=

1

s

s\sum 
j=1

\bfitX (j),

where \Omega (j) again denotes \Omega without its jth column. The jackknife estimate for
Var(\bfitX ) is

Jack2(\bfitX ) :=

s\sum 
j=1

\bigm\| \bigm\| \bigm\| \bfitX (j)  - \bfitX (\cdot )
\bigm\| \bigm\| \bigm\| 2
F
.

Guarantees for this estimator are provided in Theorem 3.2. Algorithm SM1.1 and
Program SM4 provide pseudocode and a MATLAB implementation of Nystr\"om-
accelerated spectral clustering with the jackknife estimate Jack(\bfitX ). The cost of
forming the jackknife estimate Jack(\bfitX ) is \scrO (s2d), much faster than the \scrO (qsd2)
total cost of Nystr\"om-accelerated spectral clustering.

1.2.4. Numerical example. To demonstrate the effectiveness of jackknife vari-
ance estimation for spectral clustering, we use the following experimental setup. Con-
sider the task of separating the four letters JACK from a point cloud \bfitc 1, . . . ,\bfitc 9426 \in 
\BbbR 2. For spectral clustering, use the square-exponential kernel (1.6) and parameters
ndim = ncen = 4. For Nystr\"om, use q = 3 steps of subspace iteration and test a range
of approximation ranks 50 \leq s \leq 150. For each value of s, we run 1000 trials and
report the natural Monte Carlo estimate of the standard deviation

Std(\bfitX ) =
\Bigl( 
\BbbE \| \bfitX  - \BbbE \bfitX \| 2F

\Bigr) 1/2
,(1.8)

the mean and standard deviation for the standard deviation estimate Jack(\bfitX ), the
relative error Err( \widehat \bfitA ,\bfitA )/\| \bfitA \| F for the Nystr\"om approximation \widehat \bfitA , and the empirical
success probability for spectral clustering.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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ERROR AND VARIANCE ESTIMATION A513

Correct clustering Incorrect clustering

Fig. 2. Matrix jackknife for spectral clustering. Top: Example of correct (left) and incorrect
(right) clusterings. Bottom: Standard deviation Std(\bfitX ) and its jackknife estimate Jack(\bfitX ) (left
axis) and success probability of spectral clustering (right axis) versus Nystr\"om approximation rank
50\leq s\leq 150.

Figure 2 shows the results. The estimate Jack(\bfitX ) overestimates the standard
deviation by a modest amount (a factor of five at most). The jackknife is not quan-
titatively sharp, but it is a reliable indicator of whether the variance is high or low.

The jackknife estimate Jack(\bfitX ) can be used to determine whether the Nystr\"om-
based approximations to the eigenvectors are accurate enough for the clustering task.
At rank s = 50, clustering is never performed correctly, and the jackknife estimate
Jack(\bfitX ) \approx 2 is high. As the approximation rank s is increased, clustering begins
to succeed with higher and higher probability and the jackknife estimate Jack(\bfitX )
decreases, indicating reduced variability.

The success of the jackknife estimate Jack(\bfitX ) should be contrasted with the
failure of the Nystr\"om error Err( \widehat \bfitA ,\bfitA ) as a useful diagnostic for spectral cluster-
ing correctness. The Nystr\"om error Err( \widehat \bfitA ,\bfitA ) decreases at a steady rate as s is
increased---unlike the jackknife estimate, the plot of Err( \widehat \bfitA ,\bfitA ) does not show an
inflection point indicating the transition between clustering failure and success.

On the basis of these experiments, we propose two possible uses for the jackknife
estimate in a spectral clustering workflow:

\bullet User warning. If the jackknife variance estimate is high, provide a warn-
ing to the user. This allows the user to determine and fix the problem for
themselves by changing the Nystr\"om parameters s, q or the spectral clustering
parameters ncen, ndim.
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A514 E. N. EPPERLY AND J. A. TROPP

\bullet Adaptive stopping. Choose parameters s or q for the Nystr\"om approxi-
mation adaptively at runtime by increasing these parameters until Jack(\bfitX )
falls below a tolerance (e.g., 0.1).

These uses demonstrate the potential for jackknife variance estimation to be helpful
in incorporating randomized low-rank approximation into general-purpose software.

1.2.5. Benefits of matrix jackknife variance estimation. The spectral clus-
tering example demonstrates a number of virtues for matrix jackknife variance esti-
mation:

\bullet Flexibility. Matrix jackknife variance estimation can be applied to a very
general target function \bfitX (\Omega ) depending on a random test matrix \Omega . This
allows the jackknife to be applied to a wide array of randomized low-rank ap-
proximation algorithms and allows the user to design the variance estimation
target for their application.

\bullet Efficiency. By using optimized algorithms (section 4 and subsection SM1.2),
computation of the jackknife variance estimate can be very fast. For instance,
for the clustering problem, the\scrO (s2d) cost of the jackknife estimate is dwarfed
by the \scrO (sd2) cost of the clustering procedure. For s = 150, computing the
jackknife variance estimate amounts to less than 3\% of the total runtime.

1.3. Outline. Having introduced our two diagnostics, we present each in more
generality; section 2 discusses leave-one-out error estimation and section 3 discusses
the matrix jackknife. Section 4 discusses efficient computations for both of these
diagnostics applied to the randomized SVD and Nystr\"om approximation. Section 5
contains numerical experiments, and section 6 extends the matrix jackknife to higher
Schatten norms (p > 2).

1.4. Notation. We work over the field \BbbK = \BbbR or \BbbK = \BbbC . Notations \ast , \dagger , and
\| \cdot \| F denote the conjugate transpose, Moore--Penrose pseudoinverse, and Frobenius
norm. The expectation of a random variable X is denoted \BbbE X, and its variance is
defined as Var(X) :=\BbbE | X - \BbbE X| 2. We adopt the convention that nonlinear operators
bind before the expectation; for example, \BbbE X2 := \BbbE (X2). The variance of a random
matrix is given by (1.7).

2. Leave-one-out error estimation for low-rank approximation. In this
section, we present the leave-one-out error estimation technique introduced in subsec-
tion 1.1 for more general randomized matrix approximations.

2.1. The estimator. Let \bfitA \in \BbbK d1\times d2 be a matrix we seek to approximate by
a randomized approximation \bfitX . We are interested in a general class of algorithms
which collect information about the matrix \bfitA by matrix-vector products

\bfitA \bfitomega 1, . . . ,\bfitA \bfitomega s

with random test vectors \bfitomega 1, . . . ,\bfitomega s. Many algorithms are defined for an arbitrary
number of test vectors s, allowing us to construct error estimates by leaving out a
test vector, resulting in an approximation \bfitX s - 1 defined using only s - 1 vectors. This
motivates the following abstract setup:

\bullet Let \bfitomega 1, . . . ,\bfitomega s be independent and identically distributed (iid) random vec-
tors in \BbbK d2 that are isotropic: \BbbE 

\bigl[ 
\bfitomega j\bfitomega 

\ast 
j

\bigr] 
= I.

\bullet Let \bfitX denote one of two matrix estimators defined for s or s - 1 inputs:

\bfitX : (\BbbK d2)s\rightarrow \BbbK d1\times d2 or \bfitX : (\BbbK d2)s - 1\rightarrow \BbbK d1\times d2 .
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ERROR AND VARIANCE ESTIMATION A515

\bullet Define estimates \bfitX s :=\bfitX (\bfitomega 1, . . . ,\bfitomega s) and \bfitX s - 1 :=\bfitX (\bfitomega 1, . . . ,\bfitomega s - 1).
Examples of estimators which fit this description include randomized Nystr\"om approx-
imation, the randomized SVD [7], and randomized block Krylov iteration [14, 23].

We seek to approximate the mean-square error

MSE(\bfitX s - 1,\bfitA ) =\BbbE \| \bfitA  - \bfitX s - 1\| 2F

of the (s  - 1)-sample approximation \bfitX s - 1 as a proxy for the mean-square error
MSE(\bfitX s) of the s-sample approximation \bfitX s. Define the leave-one-out mean-square
error estimate

\widehat Err2(\bfitX s - 1,\bfitA ) :=
1

s

s\sum 
j=1

\bigm\| \bigm\| \bigm\| \bigl( \bfitA  - \bfitX (j)
\bigr) 
\bfitomega j

\bigm\| \bigm\| \bigm\| 2 ,(2.1)

where the replicates \bfitX (j) are

\bfitX (j) =\bfitX (\bfitomega 1, . . . ,\bfitomega j - 1,\bfitomega j+1, . . . ,\bfitomega s) for j = 1, . . . , s.

This estimator is an unbiased estimator for MSE(\bfitX s - 1,\bfitA ).

Theorem 2.1 (leave-one-out error estimator). With the prevailing notation,

MSE(\bfitX s - 1,\bfitA ) =\BbbE \widehat Err2(\bfitX s - 1,\bfitA ).

Proof. For each j, \bfitX (j) and \bfitomega j are independent. Consequently, letting \BbbE j denote
an expectation over the randomness in \bfitomega j alone, we compute

\BbbE j

\bigm\| \bigm\| (\bfitA  - \bfitX (j))\bfitomega j

\bigm\| \bigm\| 2 =\BbbE j

\bigl[ 
\bfitomega \ast 

j (\bfitA  - \bfitX (j))\ast (\bfitA  - \bfitX (j))\bfitomega j

\bigr] 
=\BbbE j tr

\bigl[ 
(\bfitA  - \bfitX (j))\ast (\bfitA  - \bfitX (j))\bfitomega j\bfitomega 

\ast 
j

\bigr] 
= tr

\bigl( 
(\bfitA  - \bfitX (j))\ast (\bfitA  - \bfitX (j))\BbbE 

\bigl[ 
\bfitomega j\bfitomega 

\ast 
j

\bigr] \bigr) 
= tr

\bigl( 
(\bfitA  - \bfitX (j))\ast (\bfitA  - \bfitX (j))

\bigr) 
=
\bigm\| \bigm\| \bfitA  - \bfitX (j)

\bigm\| \bigm\| 2
F
.

The first line is an identity for the Frobenius norm, the second line is the cyclic
property of the trace, the third line is the independence of \bfitX (j) and \bfitomega j , and the
fourth line is the isotropic property of \bfitomega j . Thus, by the tower property of conditional
expectation, we conclude

\BbbE \widehat Err2(\bfitX s - 1,\bfitA ) =
1

s

s\sum 
j=1

\BbbE 
\bigl[ 
\BbbE j

\bigm\| \bigm\| \bigl( \bfitA  - \bfitX (j)
\bigr) 
\bfitomega j

\bigm\| \bigm\| 2\bigr] 
=

1

s

s\sum 
j=1

\BbbE 
\bigm\| \bigm\| \bigl( \bfitA  - \bfitX (j)

\bigr) 
\bfitomega j

\bigm\| \bigm\| 2
F
=MSE(\bfitX s - 1,\bfitA ).

This confirms the theorem.

Numerical evidence for the quality of this error estimate is provided in Figures 1
and 3. With efficient algorithms (section 4), the leave-one-out error estimator is rapid
to compute for the randomized SVD and Nystr\"om approximation.

2.2. Alternatives. Two alternatives to the leave-one-out error estimator are
worth mentioning. First, in many situations, it may be possible and computationally
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A516 E. N. EPPERLY AND J. A. TROPP

cheap to simply compute the error \| \bfitA  - \bfitX \| F directly. For instance, if \bfitX is the
approximation produced by the randomized SVD [7], then

\| \bfitA  - \bfitX \| 2F = \| \bfitA \| 2F  - \| \bfitX \| 
2
F ,

which facilitates fast computation of the error if\bfitA is a dense or sparse matrix stored in
memory. The leave-one-out error estimator should only be used if direct computation
of the error is not possible or is too expensive. This is the case, for example, in the
black-box setting where one has access to \bfitA only through the matrix-vector product
\bfitomega \mapsto \rightarrow \bfitA \bfitomega and adjoint-vector product \bfitomega \mapsto \rightarrow \bfitA \ast \bfitomega operations.

A second alternative is the Girard--Hutchinson norm estimator (1.4), discussed
in subsection 1.1. The leave-one-out estimator improves on the Girard--Hutchinson
estimator as the leave-one-out estimate does not require any additional matrix-vector
products and automatically improves in quality as the number of vectors s is increased.

3. Matrix jackknife variance estimation. This section outlines our proposal
for matrix jackknife variance estimation for more general randomized matrix algo-
rithms. Subsection 3.1 reviews jackknife variance estimation for scalar quantities.
We introduce and analyze the matrix jackknife variance estimator in subsection 3.2.
Subsections 3.3 to 3.5 discuss potential applications of the matrix jackknife and com-
plementary topics.

3.1. Tukey's jackknife variance estimator and the Efron--Stein--Steele
inequality. To motivate our matrix jackknife proposal, we begin by presenting the
jackknife variance estimator [26] for scalar estimators due to Tukey in subsection 3.1.1.
In subsection 3.1.2, we discuss the Efron--Stein--Steele inequality used in its analysis.

3.1.1. Tukey's jackknife variance estimator. Consider the problem of esti-
mating the variance of a statistical estimator computed from s random samples. We
assume it makes sense to evaluate the estimator with fewer than s samples, as is the
case for many classical estimators like the sample mean and variance. This motivates
the following setup:

\bullet Let \omega 1, . . . , \omega s be iid random elements taking values in a measurable space \Omega .
\bullet Let f denote either one of two estimators, defined for s or s - 1 arguments:

f : \Omega s\rightarrow \BbbK or f : \Omega s - 1\rightarrow \BbbK .

\bullet Assume that f is invariant to a reordering of its inputs:

f(\omega 1, . . . , \omega s) = f(\omega \pi (1), . . . , \omega \pi (s)) for any permutation \pi .

\bullet Define estimates Es - 1 := f(\omega 1, . . . , \omega s - 1) and Es := f(\omega 1, . . . , \omega s).
We think of Es as a statistic computed from a collection of samples \omega 1, . . . , \omega s. We
can also evaluate the statistic with only s - 1 samples, resulting in Es - 1.

Tukey's jackknife variance estimator provides an estimate for Var(Es - 1), which
serves as a proxy for the variance of the s-sample estimator Es. Define jackknife
replicates and mean

E(j) := f(\omega 1, . . . , \omega j - 1, \omega j+1, . . . , \omega s) for each j = 1,2, . . . , s; E(\cdot ) :=
1

s

s\sum 
j=1

E(j).

The quantities E(1), . . . ,E(s) represent the statistic recomputed with each of the sam-
ples \omega 1, . . . , \omega s left out in turn.
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ERROR AND VARIANCE ESTIMATION A517

Tukey's estimator for Var(Es - 1) is given by

\widehat Var(Es - 1) :=

s\sum 
j=1

\bigm| \bigm| \bigm| E(j)  - E(\cdot )
\bigm| \bigm| \bigm| 2 .(3.1)

Observe that Tukey's estimator (3.1) is the sample variance of the jackknife replicates
E(j) up to a normalizing constant. The form of Tukey's estimator suggests that the
distribution of the jackknife replicates somehow approximates the distribution of the
estimator. This intuition can be formalized using the Efron--Stein--Steele inequality.

3.1.2. Efron--Stein--Steele inequality. To analyze Tukey's estimator, we rely
on an inequality of Efron and Stein [4], which was improved by Steele [21].

Fact 3.1 (Efron--Stein--Steele inequality). Let \omega 1, . . . , \omega s \in \Omega be independent
elements in a measurable space \Omega , and let f : \Omega s \rightarrow \BbbK be measurable. Let (\omega \prime 

j : j =
1, . . . , s) be an independent copy of (\omega j : j = 1, . . . , s). Then

Var
\bigl( 
f
\bigl( 
\omega 1, . . . , \omega s

\bigr) \bigr) 
\leq 1

2

s\sum 
i=1

\BbbE 
\bigm| \bigm| \bigm| f\bigl( \omega 1, . . . , \omega s

\bigr) 
 - f
\bigl( 
\omega 1, . . . , \omega j - 1, \omega 

\prime 
j , \omega j+1, . . . , \omega s

\bigr) \bigm| \bigm| \bigm| 2.
(3.2)

The complex-valued version of the inequality presented here follows from the more
standard version for real values by treating the real and imaginary parts separately.

In the setting of Tukey's estimator (3.1), the samples \omega 1, . . . , \omega s - 1 are identically
distributed and the function f depends symmetrically on its arguments. Therefore,
the last sample \omega s can be used to fill the role of each \omega \prime 

j in the right-hand side of
(3.2). As a consequence, the Efron--Stein--Steele inequality shows that

Var(Es - 1)\leq 
1

2

s - 1\sum 
i=1

\BbbE 
\Bigl( 
E(j)  - E(s)

\Bigr) 2
=

1

2s

s\sum 
i,j=1

\BbbE 
\Bigl( 
E(i)  - E(j)

\Bigr) 2
=

s\sum 
j=1

\BbbE 
\Bigl( 
E(j)  - E(\cdot )

\Bigr) 2
=\BbbE \widehat Var(Es - 1).

(3.3)

To move from the first line to the second, we expand the square, use the definition
of the mean E(\cdot ) = s - 1

\sum s
j=1E

(j), and regroup terms. This computation shows that
Tukey's variance estimator (3.1) overestimates the true variance on average.

3.2. The matrix jackknife estimator of variance. Suppose we are interested
in the variance of the output \bfitX \in \BbbK d1\times d2 to a randomized matrix algorithm. Similar
to the scalar setting, we assume that\bfitX is a function of independent samples \omega 1, . . . , \omega s

and that it makes sense to evaluate \bfitX with fewer than s samples. The formal setup
is as follows:

\bullet Let \omega 1, . . . , \omega s be iid random elements in a measurable space \Omega .
\bullet Let \bfitX denote one of two matrix estimators defined for s or s - 1 inputs:

\bfitX : \Omega s\rightarrow \BbbK d1\times d2 or \bfitX : \Omega s - 1\rightarrow \BbbK d1\times d2 .

\bullet Assume \bfitX is invariant to reordering of its inputs:

\bfitX (\omega 1, . . . , \omega s) =\bfitX (\omega \pi (1), . . . , \omega \pi (s)) for any permutation \pi .

\bullet Define estimates \bfitX s :=\bfitX (\omega 1, . . . , \omega s) and \bfitX s - 1 :=\bfitX (\omega 1, . . . , \omega s - 1).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

02
/2

9/
24

 to
 5

.1
98

.1
39

.1
06

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



A518 E. N. EPPERLY AND J. A. TROPP

For a randomized low-rank approximation algorithm, the samples \omega 1, . . . , \omega s might
represent the columns of a test matrix \Omega , as they did in subsection 1.2.

We are interested in estimating the variance of \bfitX s - 1 as a proxy for the variance
of \bfitX s. We expect that adding additional samples will refine the approximation and
thus reduce its variance. Define jackknife replicates \bfitX (j) and their average \bfitX (\cdot ),

\bfitX (j) =\bfitX (\omega 1, . . . , \omega j - 1, \omega j+1, . . . , \omega s) for each j = 1, . . . , s; \bfitX (\cdot ) :=
1

s

s\sum 
j=1

\bfitX (j).

We propose the matrix jackknife estimate

Jack2
\bigl( 
\bfitX s - 1

\bigr) 
:=

s\sum 
j=1

\bigm\| \bigm\| \bigm\| \bfitX (j)  - \bfitX (\cdot )
\bigm\| \bigm\| \bigm\| 2
F

(3.4)

for the variance Var(\bfitX s - 1). The estimator Jack(\bfitX s - 1) can be efficiently computed
for several randomized low-rank approximations, as we shall demonstrate in section 4.
Similar to the classic jackknife variance estimator, we can use the Efron--Stein--Steele
inequality to show that this variance estimate is an overestimate on average.

Theorem 3.2 (matrix jackknife). With the prevailing notation,

Var(\bfitX s - 1)\leq \BbbE Jack2
\bigl( 
\bfitX s - 1

\bigr) 
.(3.5)

Proof. Fix a pair of indices 1 \leq m \leq d1 and 1 \leq n \leq d2. Applying (3.3) to the
(m,n)-matrix entry (\bfitX s - 1)mn, we observe

\BbbE | (\bfitX s - 1)mn  - \BbbE (\bfitX s - 1)mn| 
2 \leq \BbbE 

s\sum 
j=1

\bigm| \bigm| \bigm| \bfitX (j)
mn  - \bfitX (\cdot )

mn

\bigm| \bigm| \bigm| 2 .
Summing this equation over all 1\leq m\leq d1 and 1\leq n\leq d2 yields the stated result.

When the jackknife variance estimate is small, Theorem 3.2 shows the variance
of the approximation is also small. Empirical evidence (section 5) suggests that
Var(\bfitX s - 1) and \BbbE Jack2(\bfitX s - 1) tend to be within an order of magnitude for the
algorithms we considered.

It is natural to ask whether we can develop and theoretically jackknife estimates
of the bias of randomized matrix algorithms to complement our variance estimate,
perhaps using the natural analogue of Quenouille's scalar jackknife bias estimate [17].
This is an interesting question for future work. As we have demonstrated in subsection
1.2 and will further demonstrate in section 5, our variance estimate already provides
useful and actionable information for randomized matrix algorithms.

3.3. Uses for matrix jackknife variance estimator. Variance is a useful
diagnostic for randomized matrix approximations. When the variance is large, it
suggests that one of two issues has arisen:

1. More samples are needed to refine the approximation.
2. The underlying approximation problem is badly conditioned.

In either case, the jackknife variance estimate can provide evidence that the computed
output should not be trusted.

We anticipate the primary use case for matrix jackknife variance estimation will
be for computations using eigenvectors or singular vectors computed by randomized
low-rank approximation algorithms such as the randomized SVD and Nystr\"om ap-
proximation. Spectral computations with randomized algorithms currently lack effec-
tive posterior estimates, making jackknife variance estimation one of the few available
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ERROR AND VARIANCE ESTIMATION A519

tools to assess the quality of the outputs of such computations at runtime. In the
context of spectral computations, matrix jackknife variance estimation can be used
to adaptively determine the approximation rank s needed to achieve outputs of suffi-
ciently high quality. This was demonstrated in subsection 1.2, where we used jackknife
variance estimation to determine how large to pick s in a spectral clustering context.
As we will later demonstrate in section 5, we can also use the jackknife variance esti-
mation to detect ill-disposed eigenvectors and to get coordinatewise variance estimates
for singular vector computations.

3.4. Matrix jackknife versus scalar jackknife. Sometimes, we are only in-
terested in scalar outputs of a randomized matrix computation, such as eigenvalues or
singular values, entries of eigenvectors or singular vectors, or the trace. In these cases,
it might be more efficient to directly apply Tukey's variance estimator (3.1) to assess
the variance of these scalars. The matrix jackknife may still be a useful tool because
it gives simultaneous variance estimates over many scalar quantities. As examples,
the matrix jackknife estimates the maximum variance over all linear functionals:

\BbbE max
\| \bfitC \| \mathrm{F}\leq 1

| tr(\bfitC \bfitX s - 1) - tr(\bfitC \BbbE \bfitX s - 1)| 2 =\BbbE \| \bfitX s - 1  - \BbbE \bfitX s - 1\| 2F \leq \BbbE Jack2(\bfitX s - 1).

The matrix jackknife gives the following variance estimate for the singular values:

\BbbE 
min(d1,d2)\sum 

j=1

| \sigma j(\bfitX s - 1) - \sigma j(\BbbE \bfitX s - 1)| 2 =\BbbE \| \bfitX s - 1  - \BbbE \bfitX s - 1\| 2F \leq \BbbE Jack2(\bfitX s - 1).

Thus, the matrix jackknife is appealing even when one is interested in multiple scalar-
valued functions of the matrix approximation \bfitX s - 1. In addition, efficient algorithms
for matrix jackknife variance estimation, as detailed in section 4, are useful for scalar
jackknife variance estimation of functionals of a randomized matrix approximation.

3.5. Related work: Bootstrap for randomized matrix algorithms. Boot-
strap resampling [3, section 5], a close relative of the jackknife, has seen several appli-
cations to matrix computations. An early use case was to provide confidence intervals
for eigenvalues and eigenvectors of sample covariance matrices [22, section 7.2].

A more recent line of work, led by Lopes and collaborators, applies bootstrap
resampling to randomized matrix algorithms [9, 10, 11, 30]. The work closest to ours
[9] uses the bootstrap to provide asymptotically sharp estimates of the error quan-
tiles with regards to general error metrics for each singular value and singular vector
computed by a Monte Carlo-type sketched SVD algorithm. In this special case, the
bootstrap provides more fine-grained information than the matrix jackknife. Unfor-
tunately, this sketched SVD is a poor computational method because its error decays
at the Monte Carlo rate.

The main benefit of our matrix jackknife approach is that it is effective for very
general matrix algorithms, such as the randomized SVD and Nystr\"om approxima-
tion. These algorithms are used widely in practice because they achieve spectral
accuracy, producing errors comparable with the best low-rank approximation [7]. As
we demonstrate in section SM2, a straightforward application of the bootstrap vari-
ance of Efron [3, section 5.1] to the randomized SVD can produce standard deviation
estimates which are incorrect by over four orders of magnitude.

4. Case studies in low-rank approximation. In this section, we develop
efficient computational procedures to compute the jackknife variance estimate and
leave-one-out error estimate for two randomized low-rank approximations, randomized
Nystr\"om approximation (subsection 4.1) and the randomized SVD (subsection 4.2).
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A520 E. N. EPPERLY AND J. A. TROPP

4.1. Nystr\"om approximation. Given a test matrix \Omega \in \BbbK d\times s, consider again
the Nystr\"om approximation (1.1) with q steps of subspace iteration (1.2) applied to
a psd matrix \bfitA \in \BbbK d\times d:

\bfitX =\bfitX (\Omega ) :=\bfitA \langle \Phi \rangle =\bfitA \Phi (\Phi \ast \bfitA \Phi )\dagger (\bfitA \Phi )\ast , where \Phi =\bfitA q\Phi .

The Nystr\"om approximation \bfitX is the best psd approximation to \bfitA spanned by \bfitA \Phi 
with a psd residual. We focus on the case where \Omega is populated with iid, isotropic
columns, such as when \Omega is a standard Gaussian matrix.

We work with the Nystr\"om approximation in eigenvalue decomposition form:

\bfitX =\bfitV \Lambda \bfitV \ast ,

where \bfitV \in \BbbK d\times s has orthonormal columns and \Lambda \in \BbbR s\times s
+ is diagonal. To facilitate

efficient computations of our diagnostics, we can compute the Nystr\"om approximation
in eigendecomposition form as follows:

1. Draw a test matrix \Omega \in \BbbK n\times s with iid isotropic columns.
2. Apply subspace iteration \Phi =\bfitA q\Omega .
3. Compute the product \bfitY =\bfitA \Omega .
4. Orthonormalize \bfitQ = orth(\bfitY ) using economy QR factorization \bfitY =\bfitQ \bfitR .
5. Compute \bfitH =\Omega \ast \bfitY and Cholesky factorize \bfitH =\bfitC \ast \bfitC .
6. Obtain a singular value decomposition \bfitR \bfitC  - 1 =\bfitU \Sigma \bfitZ \ast .
7. Set \Lambda :=\Sigma 2 and \bfitV :=\bfitQ \bfitU .

Algorithm 4.1 provides an implementation with q = 0 with tricks to improve its
numerical stability adapted from [8, 24]. For q > 0, it may be necessary to introduce
additional orthogonalization steps for reasons of numerical stability [20, Algorithm
5.2].

Treating the Nystr\"om approximation \bfitX as a symmetric function of the iid, iso-
tropic columns \bfitomega 1, . . . ,\bfitomega s of the test matrix \Omega ,

\bfitX =\bfitX (\bfitomega 1, . . . ,\bfitomega s),

we can apply both the leave-one-out error estimator and jackknife variance estimation
to \bfitX . Define replicates

\bfitX (j) =\bfitX (\bfitomega 1, . . . ,\bfitomega j - 1,\bfitomega j+1, . . . ,\bfitomega s).

To compute the replicates efficiently, we use the update formula [5, equation (2.4)]

\bfitX (j) =\bfitV 
\bigl( 
\Lambda  - \bfitt j\bfitt 

\ast 
j

\bigr) 
\bfitV \ast ,(4.1a)

where \bfitt 1, . . . , \bfitt s are the columns of the matrix

\bfitT =\bfitU \ast \bfitR \bfitH  - 1 \cdot diag
\Bigl( 
(\bfitH  - 1)

 - 1/2
ii : i= 1,2, . . . , s

\Bigr) 
.(4.1b)

A derivation of this formula is provided in subsection A.1.
The update formula facilitates efficient algorithms for the leave-one-out error es-

timator and jackknife variance estimates for the Nystr\"om approximation and derived
quantities like spectral projectors and truncation of \bfitX to rank r < s. To not belabor
the point by presenting all possible variations, Algorithm 4.1 presents an implemen-
tation of Nystr\"om approximation without subspace iteration (i.e., q = 0) with the

leave-one-out error estimate \widehat Err(\bfitX ,\bfitA ). The computation of the error estimate is a
simple addition to the algorithm, requiring just a single line and taking only \scrO (s3)
operations, independent of the size d of the input matrix. Further variants are dis-
cussed in subsection SM1.1 and a MATLAB implementation is provided in Program
SM1.
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ERROR AND VARIANCE ESTIMATION A521

Algorithm 4.1. Nystr\"om approximation (q= 0) with leave-one-out error estimate.

Input: \bfitA \in \BbbK d\times d to be approximated and approximation rank s
Output: Factors \bfitV \in \BbbK d\times s and \Lambda \in \BbbR s\times s defining a rank-s approximation \bfitX =\bfitV \Lambda \bfitV \ast 

and leave-one-out error estimate \widehat Err
1: \Omega \leftarrow randn(d, s)
2: \bfitY \leftarrow \bfitA \Omega 
3: \nu \leftarrow \epsilon mach \| \bfitY \| and \bfitY \leftarrow \bfitY + \nu \Omega  \triangleleft Shift for numerical stability
4: (\bfitQ ,\bfitR )\leftarrow qr(\bfitY ,'econ')  \triangleleft Economy QR factorization
5: \bfitH \leftarrow \Omega \ast \bfitY 
6: \bfitC \leftarrow chol((\bfitH +\bfitH \ast )/2)  \triangleleft Upper triangular Cholesky decomposition \bfitH =\bfitC \ast \bfitC 

7: (\bfitU ,\Sigma ,\sim )\leftarrow svd(\bfitR \bfitC  - 1)  \triangleleft Triangular solve

8: \Lambda \leftarrow max(\Sigma 2  - \nu I,0)  \triangleleft Entrywise maximum, shift back for numerical stability
9: \bfitV \leftarrow \bfitQ \bfitU 

10: \widehat Err\leftarrow \bigm\| \bigm\| (\bfitR \bfitC  - 1)\bfitC  - \ast \cdot diag\{ (\bfitH  - 1
ii ) - 1 : i= 1, . . . , s)\} 

\bigm\| \bigm\| 
F
/
\surd 
s

4.2. Randomized SVD. The randomized SVD computes a rank-s approxima-
tion to \bfitA \in \BbbK d1\times d2 formed as an economy SVD \bfitX =\bfitU \Sigma \bfitV \ast , where \bfitU \in \BbbK d1\times s and
\bfitV \in \BbbK d2\times s have orthonormal columns and \Sigma \in \BbbR s\times s

+ is diagonal. With q \geq 0 steps of
subspace iteration, the algorithm proceeds as follows:

1. Draw a test matrix \Omega \in \BbbC d2\times s with iid isotropic columns.
2. Compute the product \bfitY = (\bfitA \bfitA \ast )q\bfitA \Omega .
3. Orthonormalize \bfitQ = orth(\bfitY ) using economy QR factorization \bfitY =\bfitQ \bfitR .
4. Form the matrix \bfitC =\bfitQ \ast \bfitA .
5. Compute an economy SVD \bfitC =\bfitW \Sigma \bfitV \ast .
6. Set \bfitU =\bfitQ \bfitW .

The output \bfitX is a symmetric function of the iid, isotropic columns \bfitomega 1, . . . ,\bfitomega s of \Omega ,

\bfitX =\bfitX (\bfitomega 1, . . . ,\bfitomega s),

making it a candidate for leave-one-out error estimation and jackknife variance esti-
mation.

To compute the replicates efficiently, we will use the following update formula for
the \bfitQ matrix in the randomized SVD [5, equation (2.1)]:

\bfitQ (j)
\Bigl( 
\bfitQ (j)

\Bigr) \ast 
=\bfitQ 

\bigl( 
I - \bfitt j\bfitt 

\ast 
j

\bigr) 
\bfitQ \ast ,(4.2)

where \bfitQ (j) denotes the \bfitQ matrix produced by the randomized SVD algorithm ex-
ecuted without the jth column of \Omega and the vectors \bfitt 1, . . . , \bfitt s are the normalized
columns of (\bfitR \ast ) - 1. See Appendix A.2 for a derivation. With this formula, the repli-
cates are easily computed,

\bfitX (j) =\bfitQ (j)
\Bigl( 
\bfitQ (j)

\Bigr) \ast 
\bfitA =\bfitQ 

\bigl( 
I - \bfitt j\bfitt 

\ast 
j

\bigr) 
\bfitQ \ast \bfitA =\bfitU (I - \bfitW \ast \bfitt j\bfitt 

\ast 
j\bfitW )\Sigma \bfitV \ast .(4.3)

The update formula enables efficient algorithms for the leave-one-out error estima-
tor and jackknife variance estimator for the approximation \bfitX and derived quantities
like projectors onto singular subspaces and truncation of \bfitX to rank r < s. As one ex-
ample, Algorithm 4.2 gives an implementation the randomized SVD with no subspace
iteration (q= 0) with the leave-one-out error estimator\widehat Err(\bfitX ,\bfitA ). The leave-one-out
error estimator requires just two lines and runs in \scrO (s3) operations. Further variants

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

02
/2

9/
24

 to
 5

.1
98

.1
39

.1
06

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



A522 E. N. EPPERLY AND J. A. TROPP

Algorithm 4.2. Randomized SVD (q= 0) with jackknife variance estimate.

Input: \bfitA \in \BbbK d1\times d2 to be approximated and approximation rank s
Output: Factors \bfitU \in \BbbK d1\times s, \Sigma \in \BbbR s\times s, and \bfitV \in \BbbK d2\times s defining a rank-s
approximation \bfitX =\bfitU \Sigma \bfitV \ast , leave-one-out error estimate \widehat Err =\widehat Err(\bfitX ,\bfitA )
1: \Omega \leftarrow randn(d2, s)
2: \bfitY \leftarrow \bfitA \Omega 
3: (\bfitQ ,\bfitR )\leftarrow qr(\bfitY ,'econ')  \triangleleft Economy QR factorization
4: \bfitC \leftarrow \bfitQ \ast \bfitA 
5: (\bfitW ,\Sigma ,\bfitV )\leftarrow svd(\bfitC ,'econ')
6: \bfitU \leftarrow \bfitQ \bfitW 
7: \bfitG \leftarrow (\bfitR \ast ) - 1

8: \widehat Err\leftarrow \Bigl( s - 1
\sum s

j=1 \| \bfitG (:, j)\|  - 2
\Bigr) 1/2

are discussed in subsection SM1.3 and a MATLAB implementation is provided in
Program SM5.

5. Numerical experiments. In this section, we showcase numerical examples
that demonstrate the effectiveness of the matrix jackknife variance estimate and leave-
one-out error estimate for the Nystr\"om approximation and randomized SVD. All
numerical experiments work over the real numbers, \BbbK =\BbbR .

5.1. Experimental setup. To evaluate our diagnostics for matrices with dif-
ferent spectral characteristics, we consider synthetic test matrices from [24, section
5]:

\bfitA =diag(1, . . . ,1\underbrace{}  \underbrace{}  
R times

,0 . . . ,0) + \xi d - 1\bfitG \bfitG \ast \in \BbbR d\times d.(NoisyLR)

\bfitA =diag(1, . . . ,1\underbrace{}  \underbrace{}  
R times

,10 - q,10 - 2q, . . . ,10 - (d - R)q)\in \BbbR d\times d.(ExpDecay)

Here, \xi , q \in \BbbR are parameters, and \bfitG \in \BbbR d\times d is a standard Gaussian matrix. Using di-
agonal test matrices is justified by the observation that the randomized SVD, Nystr\"om
approximation, and our diagnostics are orthogonally invariant when \Omega is a standard
Gaussian matrix, which we use. We also consider matrices from applications:

\bullet Velocity. We consider a matrix \bfitA \in \BbbR 25096\times 1000 whose columns are snap-
shots of the velocity and pressure from simulations of a fluid flow past a
cylinder. We thank Beverley McKeon and Sean Symon for this data.

\bullet Spectral clustering. We consider the matrix \bfitA from the spectral clustering
example in subsection 1.2.4.

We apply the jackknife variance estimate and leave-one-out error estimate to the
randomized Nystr\"om approximation and randomized SVD with a standard Gaussian
test matrix \Omega for a range of values for the approximation rank s. For each value of
s, we estimate the mean error Err (1.5), standard deviation Std (1.8), mean jackknife

estimate Jack, or mean leave-one-out error estimator \widehat Err using 1000 independent
trials. Error bars on all figures show one standard deviation.

5.2. Leave-one-out error estimator for randomized SVD. First, we apply
leave-one-out error estimation to estimate the error for the randomized SVD,

\bfitX =\bfitU \Sigma \bfitV \ast .(5.1)
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ERROR AND VARIANCE ESTIMATION A523

ExpDecay(q=0.1, R=5) NoisyLR(ξ=10−4, R=5) Velocity

Fig. 3. Leave-one-out error estimator for randomized SVD. Error and error estimate for
randomized SVD (q= 0) approximation for three different matrices.

ExpDecay(q=0.1, R=5) NoisyLR(ξ=10−4, R=5) Velocity

Fig. 4. Matrix jackknife for projectors onto singular subspaces. Error, standard deviation,
and jackknife estimate for randomized SVD (q= 0) approximation \bfitX (5.2) to the projector \Pi onto
the span of the five dominant right singular vectors for three different matrices.

We set q= 0. Figure 3 shows the results for three examples in the previous section. In
all cases, error estimate\widehat Err(\bfitX ,\bfitA ) tracks the true error Err(\bfitX ,\bfitA ) closely. Additional
examples and analogous plots for randomized Nystr\"om approximation are provided
in section SM3.

5.3. Matrix jackknife for projectors onto singular subspaces. Consider
the task of computing the projector \Pi onto the dominant five-dimensional right sin-
gular subspace to a matrix \bfitA . The randomized SVD \bfitA \approx \bfitU \Sigma \bfitV \ast yields the approxi-
mation

\bfitX =\bfitV (:,1 : 5)\bfitV (:,1 : 5)\ast .(5.2)

Figure 4 shows the mean error Err(\bfitX ,\Pi ), standard deviation Std(\bfitX ), and jackknife
estimate Jack(\bfitX ) for the same three test matrices as previously. We again set q= 0.
Consistent with Theorem 3.2, the jackknife estimate Jack(\bfitX ) is an overestimate of
Std(\bfitX ) by a factor of 2\times to 8\times . While the jackknife is not quantitatively sharp, it
provides an order of magnitude estimate of the standard deviation and is a useful
diagnostic for the quality of the computed output. Additional examples and plots
for randomized Nystr\"om approximations of projectors onto invariant subspaces are
provided in section SM3.

5.4. Application: Diagnosing ill-conditioning for spectral clustering.
Jackknife variance estimates can be used to identify situations when a computational
task is ill-posed or ill-conditioned. In such cases, refining the approximation (i.e.,
increasing s or q) may be of little help to improve the quality of the computation.
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A524 E. N. EPPERLY AND J. A. TROPP

As an example, consider the spectral clustering application from subsection 1.2.
In Nystr\"om-accelerated spectral clustering, we use the dominant ndim eigenvectors of
a Nystr\"om approximation \bfitV \Lambda \bfitV \ast as coordinates for k-means clustering. For spectral
clustering to be reliable, we should pick the parameter ndim such that these coor-
dinates are well-conditioned; that is, they should not be highly sensitive to small
changes in the normalized kernel matrix \bfitA . For the example in subsection 1.2.4, the
five largest eigenvalues of \bfitA are

\lambda 1 = 0.999999999999999,

\lambda 2 = 0.999999998639842,

\lambda 3 = 0.999999940523446,

\lambda 4 = 0.999999931126177,

\lambda 5 = 0.997867975285136.

The first four eigenvalues agree up to eight digits of accuracy, with the fifth eigenvalue
separated by \lambda 4 - \lambda 5 \approx 2\times 10 - 3. Based on these values, the natural parameter setting
would be ndim = 4, as the first four eigenvalues are nearly indistinguishable but are
well-separated from the fifth.

When we use Nystr\"om-accelerated spectral clustering, we do not have access
to the true eigenvalues of the matrix \bfitA and thus can have difficulties selecting the
parameter ndim appropriately. Fortunately, the jackknife variance estimate can help
warn the user of a poor choice for ndim. Let

\bfitX =\bfitV (:,1 : ndim)\bfitV (:,1 : ndim)
\ast (5.3)

be the orthoprojector onto the dominant ndim-dimensional invariant subspace of the
Nystr\"om approximation \bfitV \Lambda \bfitV \ast . Figure 5 shows the standard deviation Std(\bfitX ) and
its jackknife estimate Jack(\bfitX ) for both ndim = 3 and ndim = 4. As in subsection 1.2.4,

Fig. 5. Detecting ill-conditioning. Standard deviation and jackknife estimate for the Nystr\"om
spectral projector (5.3) associated with the dominant n\mathrm{d}\mathrm{i}\mathrm{m}-dimensional invariant subspace for n\mathrm{d}\mathrm{i}\mathrm{m} \in 
\{ 3,4\} for the spectral clustering matrix.
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ERROR AND VARIANCE ESTIMATION A525

(a) Exact (b) Randomized SVD (s = 20, q = 0)

(c) Error (d) Jackknife standard deviation estimate

Fig. 6. Jackknife for singular vector. These panels assess the entrywise errors in the stream-
wise velocity from the fifth left singular vector of the velocity test matrix. Panel (a) shows the exact
answer, and panel (b) shows the estimate produced by the randomized SVD. Panels (c) and (d) dis-
play the error and the Tukey jacknife standard deviation estimate. The jackknife estimate presents
a descriptive portrait of where the error is localized.

use q = 3 and 50 \leq s \leq 150. For the good parameter setting ndim = 4, the variance
decreases sharply as s is increased. For the bad choice ndim = 3, the variance remains
persistently high, even as the approximation is refined. This provides evidence to the
user that \bfitX is poorly conditioned and allows the user to fix this by changing the
parameter ndim.

5.5. Application: POD modes. Jackknife variance estimation can be used
to give more fine-grained information about a randomized matrix computation. In
Figure 6, we compute a (scalar) jackknife variance estimate for the absolute value of
each entry of the fifth left singular vector of the velocity matrix computed using the
randomized SVD with s = 20 and q = 0. (The absolute value is introduced to avoid
sign ambiguities.)

Left singular vectors of a matrix of simulation data are known as POD modes
and are useful for data visualization and model reduction. Since variance is a lower
bound on the mean-square error, the coordinatewise jackknife variance estimates can
be used as a diagnostic to help identify regions of a POD mode that have high error.
This is demonstrated in Figure 6; the jackknife estimate is not quantitatively sharp
but paints a descriptive portrait of where the errors are localized.

6. Extension: Variance estimates for higher Schatten norms. The vari-
ance estimate Jack(\bfitX ) serves as an estimate for the Frobenius-norm variance

Jack2(\bfitX )\approx Var(\bfitX ) =\BbbE \| \bfitX  - \BbbE \bfitX \| 2F .

Often, it is more desirable to have error or variance estimates for Schatten norms | | | \cdot | | | p
with p > 2, defined as the \ell p norm of the singular values:

| | | \bfitB | | | pp :=
min(d1,d2)\sum 

j=1

\sigma p
j (\bfitB ).

One can also construct jackknife estimates for the variance in higher Schatten norms,
although the estimates take more intricate forms. For this section, fix an even number
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A526 E. N. EPPERLY AND J. A. TROPP

p \geq 2 and assume the same setup as subsection 3.2 with the additional stipulation
that the samples \omega 1, . . . , \omega s take values in a Polish space \Omega .

The jackknife variance estimate is defined as follows. Consider matrix-valued
jackknife variance proxies:

\widehat Var1(\bfitX s - 1) :=
1

2

s - 1\sum 
j=1

\bigm| \bigm| \bigm| \bfitX (s)  - \bfitX (j)
\bigm| \bigm| \bigm| 2 and \widehat Var2(\bfitX s - 1) :=

1

2

s - 1\sum 
j=1

\bigm| \bigm| \bigm| \Bigl( \bfitX (s)  - \bfitX (j)
\Bigr) \ast \bigm| \bigm| \bigm| 2 .

Here, | \bfitB | = (\bfitB \ast \bfitB )1/2 denotes the matrix modulus. Define the Schatten p-norm
variance estimate

Jackp(\bfitX s - 1) := 2
 - 1

p
\sqrt{} 
2(p - 1)

\biggl( \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \widehat Var1

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| p/2
p/2

+
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \widehat Var2

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| p/2
p/2

\biggr) 1/p

.

This quantity seeks to approximate

Jackpp(\bfitX s - 1)\approx \BbbE | | | \bfitX s - 1  - \BbbE \bfitX s - 1| | | pp.

A matrix generalization of the Efron--Stein--Steele inequality [15, Theorem 4.2] shows
this jackknife variance estimate overestimates the Schatten p-norm variance in the
sense

\BbbE | | | \bfitX s - 1  - \BbbE \bfitX s - 1| | | pp \leq \BbbE Jackpp(\bfitX s - 1).

The techniques we introduce in section 4 can be extended in a natural way to compute
Jackp(\bfitX s - 1) efficiently for the randomized SVD and Nystr\"om approximation.

Appendix A. Derivation of update formulas. In this section, we provide
proofs of the update formulas (4.1) and (4.2).

A.1. Proof of (4.1). Assume without loss of generality that j = s, instate the
notation of subsection 4.1, and assume \bfitH is invertible. The key ingredient is the
following consequence of the Banachiewicz inversion formula [16, equation (0.7.2)]:\biggl[ \bigl( 

\bfitH (s)
\bigr)  - 1

0
0\ast 0

\biggr] 
=\bfitH  - 1  - \bfitH  - 1ese

\ast 
s\bfitH 

 - 1

e\ast s\bfitH 
 - 1es

.

Using this formula and letting \bfitR  - s denote \bfitR without its sth column, we compute

\bfitX (s) =\bfitQ \bfitR  - s

\bigl( 
\bfitH (s)

\bigr)  - 1
\bfitR \ast 

 - s\bfitQ 
\ast =\bfitX  - \bfitQ \bfitR \bfitH  - 1ese

\ast 
s\bfitH 

 - 1\bfitR \ast \bfitQ \ast 

e\ast s\bfitH 
 - 1es

.

Since \bfitQ =\bfitV \bfitU \ast and \bfitX =\bfitV \Lambda \bfitV \ast , we thus have

\bfitX (s) =\bfitV 

\biggl( 
\Lambda  - \bfitU \ast \bfitR \bfitH  - 1ese

\ast 
s\bfitH 

 - 1\bfitR \ast \bfitQ \ast \bfitU 

e\ast s\bfitH 
 - 1es

\biggr) 
\bfitV \ast =\bfitV (\Lambda  - \bfitt s\bfitt 

\ast 
s)\bfitV 

\ast ,

where \bfitt s is defined in (4.1b). The formula is established.

A.2. Proof of (4.2). Fix j \in \{ 1, . . . , s\} , instate the notation of subsection 4.2,
and assume \bfitR is invertible. First observe that

\bfitY (j) =\bfitQ \bfitR  - j ,
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ERROR AND VARIANCE ESTIMATION A527

where \bfitR  - j is \bfitR without its jth column. To compute \bfitQ (j), we need an economy QR
factorization of \bfitY (j) = \bfitQ \bfitR  - j . To this end, compute a (full) QR decomposition of
\bfitR  - j :

\bfitR  - j =
\bigl[ 
\bfitQ \prime \bfitt j

\bigr] \biggl[ \bfitR (j)

0\ast 

\biggr] 
,(A.1)

where \bfitQ \prime \in \BbbK s\times (s - 1), \bfitR (j) \in \BbbK (s - 1)\times (s - 1), and \bfitt j \in \BbbK s. Then

\bfitY (j) =\bfitQ (j)\bfitR (j) for \bfitQ (j) =\bfitQ \bfitQ \prime 

is an economy QR decomposition of \bfitY (j). Since
\bigl[ 
\bfitQ \prime \bfitt j

\bigr] 
is orthogonal, we have

I=
\bigl[ 
\bfitQ \prime \bfitt j

\bigr] \bigl[ 
\bfitQ \prime \bfitt j

\bigr] \ast 
=\bfitQ \prime (\bfitQ \prime )\ast + \bfitt j\bfitt 

\ast 
j =\Rightarrow \bfitQ \prime (\bfitQ \prime )\ast = I - \bfitt j\bfitt 

\ast 
j .

Thus,

\bfitQ (j)
\bigl( 
\bfitQ (j)

\bigr) \ast 
=\bfitQ \bfitQ \prime (\bfitQ \prime )\ast \bfitQ \ast =\bfitQ 

\bigl( 
I - \bfitt j\bfitt 

\ast 
j

\bigr) 
\bfitQ \ast .

Finally, observe that (A.1) implies that \bfitt j is orthogonal to the columns of \bfitR  - j so

\bfitt \ast j\bfitR is a nonzero multiple of e\ast j .

Therefore, \bfitt j is proportional to the jth column of (\bfitR \ast ) - 1. Since \bfitt j is a column of an
orthogonal matrix, it is equal to a normalized version of the jth column of (\bfitR \ast ) - 1.
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