Downloaded 08/01/23 to 131.215.143.176 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

SIAM J. APPLIED DYNAMICAL SYSTEMS (© 2022 Society for Industrial and Applied Mathematics
Vol. 22, No. 2, pp. 527-558

Learning to Forecast Dynamical Systems from Streaming Data*

Dimitrios Giannakis’, Amelia Henriksen®, Joel A. Tropp®, and Rachel Ward¥

Abstract. Kernel analog forecasting (KAF) is a methodology for data-driven, nonparametric forecasting of
dynamically generated time series data. This approach has a rigorous foundation in Koopman oper-
ator theory and it produces good forecasts in practice, but it suffers from the heavy computational
costs common to kernel methods. This paper proposes a streaming algorithm for KAF that only re-
quires a single pass over the training data. This algorithm dramatically reduces the costs of training
and prediction without sacrificing forecasting skill. Computational experiments demonstrate that
the streaming KAF method can successfully forecast several classes of dynamical systems (periodic,
quasi-periodic, and chaotic) in both data-scarce and data-rich regimes. The overall methodology
may have wider interest as a new template for streaming kernel regression.

Key words. dynamical system, forecasting, kernel method, Koopman operator, Nystrém method, prediction,
randomized algorithm, random features, randomized SVD, regression, regularization

MSC codes. 37Nxx, 65Pxx, 65Fxx, 62Jxx

DOI. 10.1137/21M144983X

1. Introduction. Forecasting problems are ubiquitous in physical science and engineering
applications, including climate prediction [67], navigation [71], and medicine [46]. In these
settings, we do not possess complete information about the state of the system, and we may
not have full knowledge of the equations of motion. Owing to our lack of omniscience, it is
not possible to make predictions by integrating the current state forward in time. Instead,
we may acquire training data by observing some aspect of the system’s evolution. The goal
is to build a compact model of the dynamics of this observable. Given a new observation, the
model should allow us to forecast the future trajectory from the initial condition.

Kernel analog forecasting (KAF) [1] offers a promising approach to this problem. KAF
is a data-driven, nonparametric forecasting technique that is best understood as a type of

" Received by the editors September 30, 2021; accepted for publication (in revised form) by G. Gottwald August
8, 2022; published electronically May 5, 2023.
https://doi.org/10.1137/21M144983X
Funding: The first author acknowledges support from NSF DMS 1854383 and ONR MURI N00014-19-1-242.
The second author was funded by AFOSR MURI FA9550-19-1-0005 and by NSF DMS 1952735. The third author
was supported by ONR N00014-18-1-2363 and NSF DMS 1952777. The fourth author acknowledges support from
AFOSR MURI FA9550-19-1-0005, NSF DMS 1952735, and NSF IFML 2019844.
TDepartment of Mathematics, Dartmouth College, Hanover, NH 03766 USA (dimitrios.
giannakis@dartmouth.edu).

iSandia National Laboratories, Albuquerque, NM 87185 USA, and Oden Institute, University of Texas at Austin,
Austin, TX 78712-1229 USA (aahenri@sandia.gov).

§Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA 91125 USA
(jtropp@cms.caltech.edu).

1TDepartment of Mathematics, University of Texas at Austin, Austin, TX 78712 USA (rward@math.utexas.edu).
527

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

https://doi.org/10.1137/21M144983X
mailto:dimitrios.giannakis@dartmouth.edu
mailto:dimitrios.giannakis@dartmouth.edu
mailto:aahenri@sandia.gov
mailto:jtropp@cms.caltech.edu
mailto:rward@math.utexas.edu

Downloaded 08/01/23 to 131.215.143.176 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

528 D. GIANNAKIS, A. HENRIKSEN, J. TROPP, AND R. WARD

regularized kernel regression (section 2). KAF emerged from recent efforts [11] to trans-
late Koopman operator theory into effective computational methodologies for forecasting
(subsection 2.7). The approach belongs to a rapidly expanding literature [62, 26, 15, 56,
49] on operator-theoretic techniques for low-order modeling of dynamical systems, including
methods [10, 87, 48, 41] based on kernels.

KAF is mathematically rigorous, and it provides good-quality predictions for benchmark
examples [1]. Nevertheless, the straightforward implementation (“naive KAF”) has several
weaknesses. First, naive KAF requires multiple views of the training data, so it cannot operate
in the “streaming” setting where we only see the training data once (subsection 3.1). Second,
the process of constructing the model is computationally expensive: to form the kernel matrix,
the costs of arithmetic and storage are both quadratic in the length of the training data. Third,
the basic method must store all of the training data to make predictions, so the forecasting
model is quite large. Fourth, the arithmetic cost of a single forecast is linear in the amount
of training data. These issues have limited the applicability of the KAF methodology.

In response to this challenge, we propose a novel streaming KAF algorithm (section 3).
Our approach depends on two prominent techniques from the field of randomized matrix
computation [60]: random Fourier features (RFF) [72] for kernel approximation and the ran-
domized Nystrom method [39, 33, 55, 81, 60] for streaming PCA. Overall, the streaming KAF
method builds a model using time and storage linear in the amount of training data, and it
can make forecasts with time and storage that are independent of the amount of training data.

Computational experiments (section 4) demonstrate that streaming KAF is a practical
method for making predictions of two benchmark dynamical systems: Lorenz ’63 (L63) [57]
and two-level Lorenz 96 (1.96) [25]. In particular, streaming KAF exhibits forecasting skill
similar to naive KAF in a range of situations, including systems that are periodic, quasi-
periodic, and chaotic. At the same time, streaming KAF can operate in settings where naive
KAF is prohibitively expensive, including cases where the observables are high-dimensional or
the amount of training data is enormous. In the data-rich setting, after just a few minutes of
training time, streaming KAF can drive the forecasting error toward zero. As a consequence,
we believe that the streaming KAF algorithm has the potential to unlock the full potential of
KAF as a forecasting methodology.

Remark 1.1 (prior work). Although developed independently, our methodology is related
to recent papers that apply random features to perform streaming kernel principal component
analysis (KPCA) [29, 84] and kernel ridge regression (KRR) [5, 74]. In a dynamical systems
context, random feature methods have been employed to perform forecasting with sequential
learning using ideas from data assimilation [35] and to learn model error in hybrid (mechanistic
and machine learned) modeling schemes [54]. The details of our algorithm are somewhat
different from these works, and we believe that our work yields a novel approach for streaming
kernel regression. We have also studied a streaming KAF algorithm based on AdaOja [44],
an adaptive variant of Oja’s algorithm, which is a competitive alternative to the Nystrom
method [43]. See section 5 for more discussion of related work.

1.1. Qutline. Section 2 motivates the existing KAF procedure as a form of regular-
ized kernel regression that is specifically designed for dynamical systems. Section 3 de-
scribes how to develop a streaming implementation of KAF. In particular, we discuss ker-
nel approximation via RFF and the randomized Nystrém method. Section 4 presents

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/01/23 to 131.215.143.176 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

STREAMING KERNEL ANALOG FORECASTING 529

computational experiments which demonstrate that our methodology is effective for two
classical dynamical systems. Section 5 discusses the connections between streaming KAF
and related data-driven forecasting techniques. Finally, section6 contains brief concluding
remarks. A MATLAB implementation of streaming KAF can be found at the repository
https://github.com/rward314/StreamingKAF.

1.2. Notation. Throughout, we work in a real Euclidean space R? equipped with the ¢5
norm |[|-|| and inner product (-, -). The methodology and results should extend to the complex
field C. Matrices (such as M € R%*™) are written as bold capitals, vectors (v € R?) are
written as bold lowercase, and scalars (z € R) are written in plain lowercase.

Every matrix M € R¥™ admits a compact singular value decomposition (SVD), a matrix
factorization M = UXV " with the following properties. For r := rank(M) < min{d,n},
the left and right singular vector matrices U € R™" and V € R"™*" have orthonormal
columns. The matrix ¥ = diag(o1,09,...,0,) € R™" is positive and diagonal, with its
diagonal elements (the singular values) arranged in decreasing order: o > o9 > -+ > 0, >
or+1 = 0. Singular values are uniquely determined, but singular vectors are not.

Given an SVD of the rank-r matrix M, we can define the Moore—Penrose pseudoinverse
Mt .= VvETIUT, where =71 = diag(o’fl, ...,o7Y) € R™". The pseudoinverse coincides
with the matrix inverse for a full-rank, square matrix.

The operator norm || M| := o1 equals the largest singular value ¢;. The Frobenius norm
| M||p = (31—, 0)Y/2 is the £5 norm of the singular values.

For any rank parameter ¢ < 7, we can construct an (-truncated SVD [M], := U,V T,
where ¥, := diag(o1,092,...,04,0,...,0) € R™" retains only the leading ¢ singular values.
The matrix [M], is a best rank-r approximation of M with respect to both the operator
norm and the Frobenius norm. In the case oy = 0y41, the truncated SVD [M], depends on
the underlying choice of SVD, so this notation should be interpreted with care.

2. Introduction to KAF. Suppose we have access to snapshots of a discrete-time dynam-
ical system as it evolves in time, and we would like to forecast its future values. Let us begin
with the most basic setting; we will discuss more general observation models in subsection
2.6.

To formalize the problem, let M C R? be a closed subset of a Euclidean space. We call
M the state space. Let F': M — M be a mapping, called the flow map. Suppose that we
observe an initial condition &y € M as well as the (partial) trajectory @i, xa,...,&n—1 € M
obtained by iterating the flow map:

(2.1) x;=F(xj_1)=F(xg) forj=1,2,....,n—1.

In most settings, we do not actually know the flow map F. Rather, the goal is to use infor-
mation latent in the measured trajectory (xo, ..., Z,—1) to infer the dynamics. Afterward, we
are given a new initial condition y € M, and we are asked to forecast the future state F4(y)
of the system after ¢ time steps.

2.1. Linear forecasting. To motivate the KAF method, we first describe an earlier ap-
proach to the forecasting problem, based on linear inverse models [69] and the closely related
dynamic mode decomposition (DMD) [73, 76, 82, 49]. Fix a forecasting horizon ¢ € N. We
can arrange the observed trajectory o, ®1,...,Tn—1,Tn, ..., Tniq—1 € R? into a training data

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

https://github.com/rward314/StreamingKAF

Downloaded 08/01/23 to 131.215.143.176 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

530 D. GIANNAKIS, A. HENRIKSEN, J. TROPP, AND R. WARD
set that consists of input-response pairs: {(x;, acj+q)};”;01. Equivalently, consider the pair of
matrices

(2.2) X = [2120 Ty ... (Bn_l] S Rdxn;

(2.3) X(tq = [®g @Tgr1 ... Tppg-1] € RI*™,

We can attempt to find the best linear model A : R¢ — R? for the dynamics by means of a
least-squares fit:

n—1
. 2 . 2
(2.4) A € argmin Z |Mx; — xj1q||” = argmin HMX - X[+q}HF'
M eRdxd =0 MeERdxd
An optimal solution to this problem is the matrix
(2.5) A=Xp g X e R

Suppose we are given a state y € R% that serves as a new initial condition. We can forecast
the state y ., = Fi(y) after ¢ time steps via the estimate Ygq & Ay. In other words, A
serves as a linear approximation to the iterated flow map F9.

Let us manipulate the linear model for the dynamics so that it takes a more suggestive
form. Recall that the pseudoinverse satisfies X = (X T X)T X . Therefore,

A=X,(X"X)IxT.
Given a new initial condition y € R?, we obtain the linear forecast
(2.6) Ui = Ay = X1(X " X)I(X Ty) e R?.
Observe that this computation can be formulated in terms of inner products between states.

2.2. The kernel trick. Of course, dynamical systems of practical interest are highly non-
linear, so linear approximations are only valid over a short time horizon. When one needs
to process data with nonlinear structure, a general principle is to “lift and linearize.” That
is, we apply a nonlinear map to transport the data to a high-dimensional space where it
may have linear structure; we implement a linear fitting algorithm on the high-dimensional
space; and then we project back down to the original domain to obtain a (nonlinear) low-
dimensional model for the data. This approach gives rise to KAF, discussed below, as well as
other data-driven analysis and forecasting techniques [87, 48, 50, 41].

Remarkably, this lifting technique can often be implemented without applying the non-
linear map explicitly. Consider a method, such as (2.6), that processes Euclidean data using
the inner product as a measure of the similarity between data points. The kernel trick allows
us to develop a nonlinear extension simply by replacing each inner product &'y in the data
space with a more general function k(x,y), called a kernel.

The kernel trick is justified by the Moore—Aronszajn theorem [4, section 2(4)]. Let x :
R? x RY — R be a symmetric, positive-definite function. That is,

[ﬁ(vi,vj)]zjzl is positive definite for every n € N and vy, ..., v, € R%

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/01/23 to 131.215.143.176 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

STREAMING KERNEL ANALOG FORECASTING 531

Then, the kernel function k coincides with the inner product on a Hilbert space H. More
precisely, there is a nonlinear feature map ¢ : R* — H with the property that k(x,y) =
(o(x), p(y))p for all z,y € RY Implicitly, the feature map summarizes each data point x
by a long list p(x) € H of features, and the kernel computes the inner product between the
feature vectors.

One of the most popular kernel functions is the Gaussian radial basis function (RBF)
kernel. For an inverse bandwidth parameter ~ > 0, this kernel takes the form

(2.7) K(x,y) = e M=l for ¢ gy € RY.

Under this kernel, two points are “similar” precisely when they are close enough together in
Euclidean distance, where the scale depends on the choice of . For clarity of presentation,
we will work exclusively with the Gaussian RBF kernel in this paper.

2.3. Nonlinear kernel forecasting. We can apply the kernel trick to the linear forecasting
model (2.6). Indeed, we may replace the inner products in the forms X TX and X "y by their
kernel equivalents:

Ko = [z, z5)]; ; € RV and Ky = [k(z,y)]; € R™
This step leads to the kernel analog forecast
(2.8) fo@) = X[(Kz2) Ky € RY

The forecast (2.8) provides a natural nonlinear generalization of the linear forecast (2.6).

2.4. Regularization. It is dangerous to implement the formula (2.8) as written because
kernel matrices, such as K, ., are notoriously ill-conditioned; for example, see [9]. As a
consequence, the method (2.8) can be sensitive to small changes in the observed data.

The paper [1] proposes a mechanism for stabilizing the nonlinear forecast (2.8) by replacing
the kernel matrix K, ; with its best rank-¢ approximation [K ,],, where ¢ € N is a parameter.
In practice, we must also shift the kernel matrix by uI by a small parameter p to avoid
numerical problems. These modifications leads to the stabilized kernel analog forecast

(2.9) fao(Y) = X[+q]([[K:Jc,x + MI]]E)TKI,y-

The dimension ¢ of the regression model is usually modest (say, 100s or 1000s); it increases
slowly with the required accuracy of the forecasts. The shift parameter u is taken to be a
small fixed value, such as 1076 || K . ||.

We can view the forecasting method (2.9) as a form of regularized least-squares [42, 85,
12] on the feature space induced by the kernel. It is closely related to KRR [77]. The paper [1]
rigorously justifies (2.9) under the assumption that the dynamics is measure-preserving and
ergodic; see subsection 2.7 for additional discussion.

2.5. Resource usage of naive KAF. The KAF method (2.9) involves two phases. In the
training step, we use the trajectory data X to compute a matrix of prediction weights. In the
forecasting step, we use the trajectory data and the test state y to make the forecast. Let us

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/01/23 to 131.215.143.176 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

532 D. GIANNAKIS, A. HENRIKSEN, J. TROPP, AND R. WARD

Table 1
Resource usage for training and for a single forecast: Covariate dimension d’, response dimension r,
with n training samples, s random features, truncation rank €. Assumes £ < s < n. Constants are suppressed.
The fast streaming method uses a more efficient random feature construction. (IC refers to “initial condition.”)
See subsections 2.5 and 3.8.

Naive KAF Streaming Fast Streaming
Training Streaming X v v
Arithmetic d'n? (6+d")sn + rés (¢ +logd')sn + rés
Local storage n? +r+d)s (L+7r)s
Forecast Storage for model (r+d)n (d +1)s rs
Arithmetic (per IC) n (r+d)s (r+logd)s

summarize the resource usage of an uninspired implementation of the KAF procedure (“naive
KAF”). See Table 1 for a summary of this discussion.

In the training phase, we first construct the n x n kernel matrix K ;. This step involves
O(dn?) arithmetic and O(n?) storage. The quadratic dependency on the number n of training
samples is a severe bottleneck that prevents us from performing KAF at scale.

Next, we must compute the f-truncated eigenvalue decomposition of the kernel matrix
K, ;. Classical algorithms can succeed with O(¢?n) arithmetic operations and O(¢n) storage.
Nevertheless, dense methods require random access to the kernel matrix, while Krylov methods
require a long sequence of matrix-vector multiplies with the kernel matrix [34]. Moreover, these
algorithms are not fully reliable [55].

Third, we form the matrix W := X ([K 2.0+ pd]e)T € R¥™ of prediction weights. Using
the factorized form of the eigenvalue decomposition, this product costs O(d¢n) operations. The
weight matrix requires storage O(dn), which is comparable to the cost of storing the original
trajectory data.

To make a forecast from a single initial condition y € R%, we need to perform the kernel
computation K, € R". The cost is O(dn) operations and O(n) storage. To complete the
forecast, we form the matrix-vector product WK, ,, at a cost of O(dn) operations. The linear
dependency on the number n of training points means that forecasting is very expensive.

2.6. Other observables. The KAF methodology extends to a wider setting. Section 3
provides full details for a streaming KAF algorithm at this level of generality. For now, we
just sketch the idea.

Suppose that we observe the value of a function u : M — N of the state, which is called
a covariate. For simplicity, we will always take ' = R?. Given an observed covariate u(x),
we would like to predict a function g : M — R" of the state x, which is called a response
variable. Functions of the state, such as ¢ and u, are called observables.'

We can build a kernel analog forecast for future values of the response by introducing a
kernel % : RY x RY — R on the covariate space. Roughly speaking, we replace the matrix
X of training state data by observed covariate values [u(xg),...,u(z,_1)] € R¥*". Replace
the matrix X g of lagged state data by the lagged matrix [g(x,), ..., g(®nrq-1)] € R™" of

It is important that the response variable g takes values in a linear space. In principle, the covariates u
could take values in a nonlinear manifold A/, but we will not consider this extension.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/01/23 to 131.215.143.176 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

STREAMING KERNEL ANALOG FORECASTING 533

Table 2
L63: Timing costs and error in forecasting. This table reports the time cost (in seconds) required
to construct and evaluate a forecasting model using streaming and naive KAF algorithms, along with the
average normalized RMSE of the resulting models. The covariate is the 3-dimensional state of the L63 system,
and the response is the first state variable after 0.5 time units. The number n of training samples varies, and
the number of random featuress = \/nlog(n). Reported test time is for making all m = 10,000 forecasts. See
subsection 4.7 for more details.

(n6y)= (ntby)= (ntl)= (n,0,7) = (n,4,7) = (n, 4,y) =
Methods (1le4,4e2,.09) (5e4,8e2,.18) (leb, 12e2,.27) (5e5,16e2,.36) (1eb,24e2,.54) (5eb, 32€2,.72)

Train Streaming .565 6.739 29.025 387.265 1588.570 26390.902
Naive 58.684 — — — — —
Test Streaming .047 .163 .267 723 .936 2.703
Naive 15.311 — — — — —
RMSE Streaming .262 177 .170 107 .065 .047
Naive .228 — — — — —

observed response variables. Repeat the derivation above to obtain a KAF function g, , for
predicting the observable g from the covariate u.

The computational costs are similar to the costs of the basic KAF method, but the state
dimension d is replaced by either the covariate dimension d’ or the response variable dimension
r, depending on the role of the state in the computation. See Table 2 for an accounting.

2.7. Connection with Koopman operator theory. The linear approach (2.6) to forecast-
ing was originally proposed in the paper [69], and the nonlinear kernel forecast (2.8) was
presented in [88]. The paper [82] clarifies the connection between the nonlinear forecast and
Koopman operator theory [24]. The paper [1] shows that KAF approximates the expecta-
tion of the response variable under the action of the Koopman operator, conditioned on the
covariate data observed at forecast initialization. Here is an informal summary of these ideas.

In plain language, the classical work of Koopman and von Neumann [51, 52] characterizes
a dynamical system through its induced action on a linear space of observables. As a basic
example, a real-valued function g : M — R on the state space is an observable of the dynamical
system. The Koopman operator K is a linear operator on the space of observables that acts by
composition with the flow map of the dynamics: (Kg)(x) := (9o F)(x) = g(F(x)). Regardless
of the complexity of the dynamical system, we can understand its behavior by spectral analysis
of the linear operator K on an appropriately chosen Banach space of observables [8, 24]. In
particular, since our state space M is a subset of R?, we can represent every state & € M by
the “identity” observable, ¢ : M — R? with ((x) = x. Thus, the dynamical system becomes
linear when lifted to a sufficiently high-dimensional space of observables: F(x) = (Ki)(x).
Using similar ideas, we can also represent dynamical systems with infinite-dimensional state
spaces by means of linear Koopman operators.

Building on previous work [89, 2, 20], the recent paper [1] established that the stabilized
forecast (2.9) is a rigorous approximation of the Koopman dynamics of observables in the limit
of large data. Consider an ergodic dynamical system F' that preserves a probability measure
v, and let [xo,...,x,—1] be a state trajectory as in (2.1). Suppose we acquire training data

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/01/23 to 131.215.143.176 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

534 D. GIANNAKIS, A. HENRIKSEN, J. TROPP, AND R. WARD

in the form of covariate-response pairs (uo,g,), -, (Wn—1,941n_1), Where u; = u(z;) € N
and g; = g(x;) € R". We may construct the KAF function g, as summarized in subsection
2.6. Let y € M be an initial condition with an observed covariate u(y). Then the kernel
analog forecast converges” to the conditional expectation of the response under the Koopman
operator, given the covariate data at forecast initialization:

(2.10) gge(v) = E[(K%)(y) |u(y) =v] in Ly as {,n — oco.

The conditional expectation is the optimal Lo approximation to the Koopman evolution
(K%g)(y), given only the measured covariate v. In the specific case where the observables
g = u = ¢ reproduce the full state vector, we deduce that the forecast f,¢(y) presented in
(2.9) converges to the true g-step dynamical evolution, F(y).

It should be noted that to arrive at the convergence result in (2.10), the KAF formu-
lation makes use of properties of measure-preserving ergodic dynamical systems which are
not commonly encountered in general supervised learning problems. For instance, the fact
that v is an invariant measure under F' implies that the Koopman operator X is unitary on
Ly(M,v), which implies in turn that the conditional expectation E[K%g|u] is well-defined in
Lo(M, p) and it is bounded with respect to the forecast horizon ¢ > 0. Furthermore, (2.10)
does not assume that the training trajectory [@o, ..., x,_1] lies in the support of v. The latter
would be an unrealistic assumption in many relevant applications where v is supported on a
set of zero Lebesgue measure in state space (e.g., an attractor of a dissipative system such
as the L63 system in subsection 4.4), as it would require sampling initial conditions @ that
have Lebesgue-zero probability of occurring. The KAF formulation treats such cases using
properties of natural measures of dynamical systems [13] to establish spectral convergence of
integral operators induced from the kernel in the large data limit, n — oo, for samples x,
taken near the support of v in a suitable sense. Under appropriate assumptions on &, this
implies that E[l%g | u] is consistently approximated in the sense of (2.10).

3. Streaming KAF. While KAF is rigorously justified in the limit of large data, it also
becomes prohibitively expensive to implement because of its storage and arithmetic costs
(subsection 2.5). Indeed, the time required to construct the kernel matrix is quadratic in
the length n of training data. The time required to make a single forecast is linear in n.
Furthermore, we need multiple views of the training data to build the model and another
view to make a forecast, so the algorithm cannot operate in the streaming setting.

In this section, we will develop a streaming KAF method that resolves each of these issues.
Our algorithm processes the trajectory data in a single pass. It reduces the arithmetic cost
of training to be linear in the number n of training points, and the cost of each forecast
becomes independent of the amount of training data. It also limits the storage needed for the
computations and for the forecasting model. Experiments (section 4) show that the streaming
KAF method is competitive with the original KAF method in forecasting skill on problem sizes
where the original KAF method is tractable. But streaming KAF can achieve significantly
better forecasts than naive KAF because the streaming method can ingest large amounts of
training data and resolve the dynamics more accurately.

2Convergence takes place in the L2 norm of the invariant measure in the iterated limit of £/ — oo after
n — 00, and almost surely with respect to the initial condition @ in the training data.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/01/23 to 131.215.143.176 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

STREAMING KERNEL ANALOG FORECASTING 535

3.1. Streaming data. Streaming data models have become popular for working with time
series that have many elements, especially in high dimensions or in cases where the data arrives
at high velocity [63]. The key features of a streaming data model® are that (1) the elements of
the time series are presented in sequential order; (2) we must process each datum at the time
it arrives; and (3) we do not have sufficient storage to maintain the entire time series. The goal
is to extract enough information to answer a particular set of questions about the observed
data. These constraints necessitate algorithms that can handle each element individually and
that build a compact representation of the time series to support subsequent queries.

Streaming models are well suited to dynamical systems data that has an explicit temporal
order. It would be appealing to scan linearly through the trajectory data (xg,x1,...,Tn—1) a
single time, discarding each state after we have processed it. Our aim is to build a forecasting
model that can take a query state and predict the subsequent trajectory of the system. Ideally,
the forecasting model should be much smaller than the original training data. Yet the basic
KAF method fails this desideratum. We will show how to accomplish this task.

3.2. Overview. Our streaming KAF method is based on two techniques from the field of
randomized matrix computations [60]. First, we use RFF to build a structured approximation
of the original kernel function. This approximation allows us to rewrite the KAF target
function (2.8), replacing the n x n kernel matrix K, , by a much smaller matrix that is easier
to compute and captures the same information. This reformulation also allows us to avoid
the kernel computation K ,, which couples the training and test data. As a consequence, we
can build a more compact forecasting model.

When we restructure the KAF target function, the low-rank approximation of the kernel
matrix converts into a low-rank approximation of the covariance matrix of the features of the
training data. The latter approximation may be interpreted as a streaming PCA problem.
Here, we employ the randomized Nystrom method devised by Halko and others [39, 33, 55]
and extended to the streaming setting in [81, 60]. This algorithm requires minimal storage
and arithmetic, and it reliably produces a more accurate solution than competing methods.

The rest of this section introduces the random features construction. It shows how to
integrate random features into KAF to obtain a streaming algorithm, and it highlights the
role of the Nystrom method. Last, we compare the resource usage of streaming KAF with
the direct implementation of KAF. See section 5 for related work.

3.3. Kernel approximation by random features. RFF [72] offer a simple and effective
way to approximate certain types of kernels, including the Gaussian RBF kernel. This section
summarizes the RFF construction, and the next section explains how we can use RFF to
forecast a dynamical system.

Bochner’s theorem [14] provides the mathematical foundation for RFF. Let us consider a
bounded, continuous, positive-definite kernel & : R¢ x R¢ — R on a Euclidean space. Assume
that the kernel is also translation invariant: x(x,y) := h(x —y). The theorem asserts that
the kernel is the Fourier transform of a bounded positive measure. More precisely, there exists
a unique probability measure v on R? and a positive constant ¢ := h(0) for which

W)= /R cdu(z)el* @Y = /R cdu(z) (677 7) (= TY)",

3More general streaming models describe a sequence of update operations to a data domain.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/01/23 to 131.215.143.176 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

536 D. GIANNAKIS, A. HENRIKSEN, J. TROPP, AND R. WARD

where * denotes the complex conjugate. Since we are working in the real setting, we can
rewrite the last expression to avoid complex-valued functions:

27
k(x,y) = / 20dv(z)/ ;1—9 cos(f + z"x) cos(f + z'y).
R4 0 s

This statement follows by direct calculation using trigonometric identities. The key property
of these formulas is that the integrand is a separable function of the variables and y.

The simple idea behind RFF is to approximate the kernel using a Monte Carlo estimate of
the integral. Let the parameter s € N designate the number of random features. Once and for
all, draw and fix independent random vectors z1, ..., z, € R? that are distributed according
to the probability measure v. Draw and fix independent random scalars 61,...,0; € R with
the UNTFORM [0, 27) distribution.® Then we can construct a separable, rank-s approximation
% :R% x R — R of the original kernel:

~ 2 <
R(x,y) = . Z cos(b; + z,) cos(b; + 2, y).
i=1

It is not hard to see that #(x,y) ~ k(x,y) with high probability for a fixed pair (x,y).
Equivalently, we may define a feature map ¢ : R — R* by the formula

o(x) = \/? [cos(0; + 2] x)]7_,.

Then we can compute the approximate kernel & as the inner product between two feature
vectors:
)T

iz, y) = p(x) p(y).

In other words, the approximate kernel is a bilinear function of nonlinear features.
In computational settings, we are usually interested in approximating the kernel matrix
K, , associated with a family {xo,...,x,—1} C R? of data points. That is,

A~

Koo =i z))];; ~ [Ai,z))];; = Koo
To this end, we collect the data points as the columns of a matrix X € R4, Extend
the feature map ¢ to matrices by applying the vector feature map to each column. Thus,
@ : R&>™ — R8*™ With this notation, we find that

K, . =o(X) p(X).

The kernel matrix approximation is the Gram matrix of the nonlinear features.
Finally, we must discuss the number s of random features that we need to ensure that the
kernel matrix approximation K, ; serves in place of the true kernel matrix K, , for machine

4To reduce the variance error, it is sensible to instead use a grid for 0 instead of random samples. For more
details on variance reduction in random feature approximations, we refer the reader to [6] and [7].

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/01/23 to 131.215.143.176 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

STREAMING KERNEL ANALOG FORECASTING 537

learning tasks. When we have n training points, it has been shown [79, 74, 84, 80] that it
suffices to use
(3.1) s = O(y/n log(n)) random features

for KPCA or for KRR. The justification involves statistical assumptions on the training and
test data. Our empirical study indicates that, in our application, we may extract even fewer
features without much loss in forecasting performance.

As a particular example of the RFF construction, consider the Gaussian RBF kernel (2.7)
on R? with inverse bandwidth v > 0. The normalization constant ¢ = 1, and the associated
spectral measure v satisfies

dv(z) = (477) —d/2—2]*/(47) 4.

That is, the random feature descriptor z is a centered normal vector with covariance (2v)I.

Algorithm 3.1 contains basic pseudocode for implementing Gaussian RBF random fea-
tures. In this version, the feature descriptors require O(ds) storage, and it costs O(ds) opera-
tions to compute the features for a single input vector. The pseudocode also includes several
methods for streaming computation of matrix-matrix products with featurized data ¢(X).

Remark 3.1 (more efficient Gaussian feature maps). We can accurately approximate
the RFF map for the Gaussian RBF kernel using randomized trigonometric transforms [53,
17]. This construction reduces the storage cost for the random feature descriptors to O(s),
and it costs O(slogd) operations to compute the features of a single input vector. For high-
dimensional state spaces (or covariates), we can obtain significant gains, but the basic con-
struction is superior in low-dimensional settings.

Remark 3.2 (kernels that admit random feature maps). It is also possible to construct
random features for other kinds of kernel functions, including kernels that are not translation
invariant. See [60, Sec. 19] for some discussion and references.

3.4. KAF with random features. We can use RFF to approximate the kernel matrices
that appear in the regularized KAF target function (2.9). Recall that the matrix X € R%*"
contains the training data, while y € R? is a piece of test data. Draw and fix a random feature
map ¢ : R — R® with s random features. Then we can approximate the KAF as

fq,f(y) ~ fq,f(y) = X[Jrq} ([[Kx,z + /LI]]E)TIA{:v,y
(3.2) = X11.q([p(X) T @(X) + ud])To(X) To(y)
= Wq,f : go(y).

The forecasting model consists of the matrix W, € R¥*s of prediction weights, along with
the description of the feature map ¢ : RY — R*. A key benefit of the reformulation (3.2) is
the complete decoupling of the test data y from the forecasting model.

Direct substitution of random features does not lead immediately to a streaming algorithm.
Indeed, the formula (3.2) involves the rank truncation of the n x n approximate kernel matrix

©(X)T¢(X). We cannot form this matrix without multiple views of the columns of X, and
the matrix imposes unacceptable storage and arithmetic costs.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/01/23 to 131.215.143.176 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

538 D. GIANNAKIS, A. HENRIKSEN, J. TROPP, AND R. WARD

Algorithm 3.1. Random Fourier features for Gaussian RBF kernel. See subsection
3.3.

The constructor (RFF) generates a random feature map ¢ for the Gaussian RBF kernel on
R? with inverse bandwidth v > 0 with s random features. The FEATURIZE method of ¢
applies the random feature map to the columns of the input matrix X € R?*™ to obtain
©(X) € R**™. The other methods featurize an input matrix X € R¥" and compute various
matrix products between ¢(X) and another input M by streaming columns of X.

1 local variables vy € R, and d,s € N > RFF parameters
2 local variables zq,...,z, € R* and 6;,...,0, € R > Feature descriptors
3 function RFF(y e Ry;,d € N;s € N) > Initialization
4 Store RFF parameters v, d; s

5 fort=1,...,sdo
6
7
8
9

z; < /27 - randn(d, 1) > Draw Gaussian vector
0; < 27 - rand(1,1) > Draw uniform scalar
return self > Return feature map
function FEATURIZE (X € Rdxn) > Compute features of X
10 for j=1,...,ndo
11 fort:=1,...,s do
12 [p(X)]ij < \/2/5 - cos(0; + 2] X (:,5))
13 return p(X) € R¥*"
14 function MuLTCoV (X € R>" M € R**¥) > Form product ¢(X)p(X)" M
15 T < zeros(s,/)
16 for j=1,...,ndo > Block for efficiency
17 v < FEATURIZE(X (3, 7)) > Compute features
18 T+ T+v(v' M)
19 return T € R**¢
20 function RMULTADJ(X € R¥"™ M € R™") > Form product M (X))
21 T < zeros(r,s)
22 forj=1,...,ndo > Block for efficiency
23 T + T + M(:,j) FEATURIZE(X (5, 7)) "
24 return T € R"™**
25 function RMULT (X € R™" M € R™**) > Form product M ¢(X)
26 T <« zeros(r,n)
27 for j=1,...,ndo > Block for efficiency

28 T(:,j) < M-FEATURIZE(X (:, §))
29 return T € R™*"

3.5. Streaming KAF. To develop a streaming algorithm, we first recast the expression
(3.2) in terms of a much smaller s x s matrix. This change of perspective is analogous to the
familiar dual formulation of kernel methods [77]. Recall the linear-algebraic identity

(IM™M + 1)) M = M (MM + p1],)T.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/01/23 to 131.215.143.176 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

STREAMING KERNEL ANALOG FORECASTING 539

Using this formula, we can write the prediction weights as

(3-3) W= (X14g o(X)) ([p(X)e(X) T + pl]o)".

The matrices in parentheses have the dimensions d x s and s X s, respectively. Moreover, this
representation now supports a streaming algorithm.

In sequence, we pass over the columns x; of the training states, generating random feature
vectors (x;) on the fly. Simultaneously, we update the covariance of the features and the
covariance between the features and the lagged data. Beginning with Cy,; = 0sxs and Cg, =
04«3, iterate

(3.4) C.,p —Cup+ @(wi)cp(xi)T and Cg, < Cyp + a:i+qcp(xi)T

(Because of the lag, to form the matrix C,, the algorithm must buffer the input states at a
cost of O(gd).) Once we have streamed all of the training data, we may construct the matrix
of prediction weights as

(35) Wq,f = Cga: ’ ([[Cx:c + NI]]E)T’

Since the expressions for the weights in (3.2), (3.3), and (3.5) are algebraically equivalent, we
have arrived at a streaming implementation of KAF with random features.

The general recommendation (3.1) for the number s of random features may not be ap-
propriate for the streaming setting because s depends on the number n of training samples.
Our empirical work supports a more aggressive choice:

(3.6) s = Const - /.

In other words, the number s of features can be proportional to the dimension ¢ of the
regression model, which is chosen in advance.

3.6. Streaming PCA. To complete the description of our streaming KAF algorithm, we
must provide an efficient method for computing a low-rank approximation of the feature
covariance matrix C, appearing in (3.4).

Evidently, C,. is the covariance of vectors that are presented to us sequentially. Therefore,
the low-rank approximation [Cg; + plI]y amounts to a streaming PCA problem. We will
perform this computation using the randomized Nystrom method [39, 33, 55, 81, 60]; see
section 5 for a short discussion of alternatives.

The Nystrom approximation of a positive-semidefinite (psd) matrix C € R*** with re-
spect to a test matrix Q € R%*F is the best psd approximation with the same range as CQ.
The construction dates back to the early literature on integral equations [64]; it is intimately
connected to Schur complements and Cholesky factorization. The randomized Nystrom ap-
proximation involves a test matrix €2 chosen at random.

We can implement randomized Nystrom approximation in the streaming setting [81]. Draw
and fix a random matrix Q € R**?¢ from the standard normal distribution.” Instead of forming
C.. as in (3.4), we compute the product B = C,, € R**! via the iteration

B =04, and B+ B+ o(z;)(p(z;) Q).

5Tt is important that the random matrix € has 2¢ columns, not merely £.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/01/23 to 131.215.143.176 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

540 D. GIANNAKIS, A. HENRIKSEN, J. TROPP, AND R. WARD

Algorithm 3.2. Randomized Nystrém for featurized data [[60], section 19.4.3].
See subsection 3.6.

Given a random feature map feat and a data matrix X € R%®™ this procedure computes
an /-truncated eigenvalue decomposition QAQ " of the covariance Cp, = ¢(X)@(X)" of
the featurized data using the randomized Nystrom method with 2x oversampling. eps(x) is
the positive distance from abs(x) to the next larger in magnitude floating point number of
the same precision as x.

1 function FEATNYSTROM(RFF feat, X € R¥*" (¢ N))

2 Q< orth(randn(s, 2/)) > Random subspace, oversampling ¢ — 2/¢
3 Z +MurrCov(X,Q) > Stream the product ¢(X)p(X)'Q
4 p<eps(||Z|y) > Compute shift
5 Z+ Z+u2 > Shift for stability
6 T+ chol(Q'Z) > Upper-triangular Cholesky factorization
7T S+ ZT > Solve triangular systems
8 (Q,X%,~) « svd(S) > Compact SVD
9 A+ max{0,%% - uI} > Remove shift to get eigenvalues
10 Q+Q(,1:0)and A+ A(1:¢,1:7) > Truncate to rank ¢

11 return (Q € R¥*f A € R*Y)

After we have streamed all of the data, we carefully® form a Nystrém approximation of the
covariance and extract its eigenvalue decomposition:

(3.7) C.. = B(Q*B)'B*=QAQ".

The randomized Nystrém approximation C., provides a good low-rank approximation of
the covariance C,; see [81, Theorems 4.1-4.2]. Our ultimate formula for the weight matrix
becomes

(3.8) W oo = Cy - ([Cus+).

We can easily complete this computation because we have the eigenvalue decomposition of
the approximation C,, at hand. The final target function becomes fq’g(y) = Wq’g ~o(y).
Algorithm 3.2 provides numerically stable pseudocode for the randomized Nystrom method
applied to a sequence of random features. This method is based on [55, 81]. Using ordinary
Gaussian random features, the arithmetic cost of forming the matrix B is O((¢ + d)sn). The
algorithm uses auxiliary arithmetic O(£?s), and the storage requirement is just O(/s).

Remark 3.3 (powering). The randomized Nystrém method always underestimates the
eigenvalues of the covariance matrix. If necessary, we can reduce this effect by incorporating
powering or Krylov subspace techniques [55, 60]. In the streaming setting, these modifications
require us to construct and store the full covariance matrix C',,. In our numerical work, these
refinements did not improve the quality of forecasting, but they may merit further study.

5Do not use the formula (3.7) as written! See Algorithm 3.2.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/01/23 to 131.215.143.176 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

STREAMING KERNEL ANALOG FORECASTING 541

3.7. Other observables. We can easily extend streaming KAF to the more general setting
outlined in subsection 2.6. Suppose we wish to use a general covariate u : M — R% to predict
a general response variable ¢ : M — R’ after ¢ time steps. Let & : R¥*¥ — R, be a
positive-definite kernel on the covariate space, with associated feature map @ : RY — R.

To train, we acquire data in the form of measured values of the covariate paired with
measured values of the lagged response: (u;,g,4;), where u; = u(z;) and g; = g(z;) for
i =0,...,n— 1. In this setting, the underlying state trajectory (xo,...,Z,—1) is unknown.
By streaming the observable data, we compute the matrices

Cuu < Cuu + o(ui)p(u;) " and Cyu— Cgyy + giJrqu('u,Z-)—r

Finally, we determine the weights:

W= Cyu- ([Cuu + pI]0)".

As before, the randomized Nystrom method serves for the streaming PCA computation.
Now, suppose that we observe a covariate v € R? | where v = u(y) for an unknown state
y € M. We forecast the lagged response g(F4(y)) as

(3.9) 9g,0(v) == W &(v).

Our approach gives a principled approximation of the optimal forecast of the response given
the observed covariate, as described in subsection 2.7.

3.8. Resource usage. Algorithm 3.3 lists pseudocode for the general streaming KAF
method outlined in subsection 3.7. Table 1 compares the costs against a naive implementation
of KAF. We also list the costs of streaming KAF with fast random features (fast streaming
KAF; see Remark 3.1), omitting an exposition.

First, we discuss the costs of the training step of streaming KAF with covariate data
X € R¥*" and (lagged) observable data G' € R"™™. Assume that the truncation rank ¢ < s,
where s is the number of random features.

To construct random feature descriptors, we draw and store O(d’s) normal random vari-
ables. The Nystrom approximation of the featurized covariance matrix involves O((d' + ¢)sn)
arithmetic and local storage O(fs). The covariate-response matrix requires O((d’ + r)sn)
arithmetic and storage O(rs). To form the prediction weights, we expend O(¢rs) arithmetic
and O(rs) storage. In practice, the Nystrom approximation is the most expensive step.

The total storage required for the forecasting model consists of the O(d's) storage for the
random feature descriptors and the O(rs) storage for the prediction weights.

In the forecasting step, we simply featurize the test data and form a matrix-matrix product.
This step uses O((d' + r)s) arithmetic per initial condition, but no additional storage.

Let us summarize. In comparison with naive KAF, the streaming KAF method is sig-
nificantly faster because it is a streaming method. The precise improvements to storage and
arithmetic costs depend on several parameters. Loosely, the streaming method reduces train-

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/01/23 to 131.215.143.176 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

542 D. GIANNAKIS, A. HENRIKSEN, J. TROPP, AND R. WARD

Algorithm 3.3. Scalable kernel analog forecasting. Implements subsection 3.7.

The method TRAIN takes covariate data X € R%*" and (lagged) response data G € R"*" as
input. It constructs a random feature map with parameters (v, d; s) and builds a forecasting
model for the response data G using truncation rank ¢ € N. The method FORECAST uses

the model to make estimates of the response from the covariates listed as columns of
Y € Réxm,

1 local variables RFF feat > Random feature map ¢ : R? — R®
2 local variables W € R"** > Prediction weights
3 function TRAIN(X € RY*" G € R™™)

4 feat <+~ RFF(y,d;s) > Initialize random feature map
5 (Q,A) < FEATNYSTROM(feat, X; () > Factor [ip(X)p(X)]¢; see subsection 3.6
6 A+ A+pmax(A)-I > Filter eigenvalues; p = 1076
7 C +RMuLtApJ(X, G) > Form product Go(X)" € R™**
8§ W« ((CQ)/ANQT > Compute prediction weights
9 function FORECAST(Y € R¥*™)

10 F «RMuLr(Y,W) > Form W ¢(Y)
11 return F e R¥xm > Forecasts for columns of Y

ing arithmetic by a factor of about n/s and reduces training storage by a factor of about n?/s.
For forecasting, the arithmetic and storage both decrease by a factor of n/s.

Remark 3.4 (implementation). For reasons of modularity, the pseudocode and our proto-
type implementation take two passes over the data, but they are mathematically equivalent
to the streaming KAF algorithm.

Remark 3.5 (updating KAF prediction weights in response to new data). It is straight-
forward to adjust the KAF prediction weights in response to new incoming data points while
maintaining arithmetic and storage costs which are linear in the amount of training data.
One must simply take care to store in memory the low-memory compressions formed using
the previous batch of data points. We outline the essential modifications below.

1. Suppose (X,G) € R¥*™ x R™ ™ represents an initial batch of covariate-response
data, from which we have formed compressed products Z = ¢(X)p(X)TQ and
A = Go(X)TQ of sizes s x 2¢ and r x 2/, respectively.

2. Keep Z and A in storage, along with the s x 2¢ dimensional random subspace Q used
along the way.

3. Now, suppose (X ,G) € R¥7™ x R™ ™ represents a new batch of covariate-response
data. Adjust the product Z to incorporate the new data by Z + Z + o(X)e(X)TQ
and reimplement lines 4—11 of the randomized Nystrom algorithm 3.2 using Zin place
of Z. Adjust the lagged response data similarly according to A+ A+ é’ga(X Q.
Recompute the prediction weights using the adjusted compressions.

Note that despite the cost incurred by rerunning Algorithm 3.2, the overall storage and
arithmetic cost of computing the prediction weights W, ; is linear in the total amount of data
processed.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/01/23 to 131.215.143.176 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

STREAMING KERNEL ANALOG FORECASTING 543

4. Experiments. This section showcases experiments that demonstrate the practical per-
formance of streaming KAF. We study forecasting skill for several benchmark dynamical
systems, we investigate sensitivity to algorithm parameters, and we make comparisons with
the naive implementation of KAF. The code for reproducing the experiments is available as
a supplement to this paper.

4.1. The Lorenz models. Our experiments focus on the L63 model, a classical three-
dimensional dynamical system known to exhibit chaotic behavior. We also test the method
on the two-phase .96 model, a higher-dimensional system that has periodic, quasi-periodic,
and chaotic regimes. This subsection summarizes the models and the parameters that give
rise to different types of dynamics.

4.1.1. Lorenz '63. The L63 model was introduced by Edward Lorenz in 1963 as a crude
model of atmospheric convection [57]. Although this example is simple, its properties have
been studied extensively, and it is known to exhibit many of the features that make fore-
casting challenging in more complex systems, including fractal attractors [83] and mixing
dynamics [59].

The L63 model is defined via the following system of differential equations. For a state
x = (21,72, 23) € R3,

(t) = V(x(t)) with initial condition (0) = @init;

(4.1)
Vi(x) =o(xe —x1); Va(x) = x1(p —x3); Vi(x) = 21200 — Ss.

The classical parameters for the L63 system that generate chaotic dynamics are (o, pu,) =

(10,28,8/3). This choice leads to the famous “butterfly attractor,” a compact set in R? with

fractal dimension ~ 2.06 that supports an ergodic invariant measure with Lyapunov exponent

A = 0.91; see [78]. Figure 1 presents an illustration.

4.1.2. Lorenz '96. We also consider the two-phase L96 system, as introduced in [58, 25].
This model has dynamics that occur on two distinct timescales, a set of “slow variables”
x = {x(k)}re(x] and a set of “fast variables” z = {2(j, k)} e[ke[x]- These variables evolve
according to the following system of equations [25]. The boundary conditions are z(k + K) =
zp and z(j, k+ K) = 2(j, k) for k € [K] and 2(j + J, k) = z(j, k + 1) for j € [J]; the dynamics
are

ny | TRm D2 el))+ 4 S A b
SR = 2 (=2 + 18 (2,8 = 2 = 1,8) = 20,8) + hy - 2(K)

As in [25], we set the parameters (hy, hy, K, J,) = (—0.8,1,9,8,1/128). Depending on the
value of the forcing constant F', three distinct regimes of behavior emerge:

e [=15 yields a periodic system;

e I'=06.9 yields a quasi-periodic system; and

e F' =10 yields a fully chaotic system.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/01/23 to 131.215.143.176 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

544 D. GIANNAKIS, A. HENRIKSEN, J. TROPP, AND R. WARD

Lorenz 63, n=10000

Two Phase Lorenz 96, F=5.0, n=1000

Two Phase Lorenz 96, F=6.9, n=1000 Two Phase Lorenz 96, F=10.0, n=1000

X4
X4

Figure 1. Lorenz models. (Top left) The L63 system in the chaotic regime. (Other panels) Five slow
dimensions of the L96 system. The fourth dimension is plotted in color, and the fifth dimension is plotted as
linewidth. (Top right) Periodic regime (F = 5). (Bottom left) Quasi-periodic regime (F = 6.9). (Bottom
right) Chaotic regime (F = 10). See subsection 4.1 for details.

See Figure 1 for typical trajectories.

In our experiments, we seek to forecast the future values of the slow variables x(1), ..., z(9)
of the coupled system using only the slow variables as input data. This setup is motivated by
the experiments of [16], which studied KAF for multiscale systems but did not investigate the
scalability as a function of the amount of training data.

4.2. Experimental setup. All of our experiments are performed using data obtained by
integrating the governing equations of the L63 and L96 systems. Here are the details about
how we apply streaming KAF to make forecasts and evaluate the results:

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/01/23 to 131.215.143.176 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

STREAMING KERNEL ANALOG FORECASTING 545

e For L63, the training data consists of states @1, s, ..., z, € R? generated by iterating
the dynamics:

ij:F(ZEj_l), j:1,2,...,n—1,

where F' is the flow map obtained by discretizing (4.1) with time step d¢ = .01.
e For .96, we first generate the full 81-dimensional system of slow and fast variables:

[:L']',Zj] = F([:z:j_l,zj_l]), j:1,2,...,n—1,
where F' is the flow map obtained by discretizing (4.2) with time step dt = .01. We
then form the training matrix X = [x1,...,x,] € R?*" using only the slow variables.

e To evaluate the performance, we use the normalized root mean square error (RMSE)
metric for the forecast error. For a single response variable i*, consider the test set
Y ;- and the true trajectory Y g ;-:

Yio = [yo(i"), 1 (i%), - Yy ()] € RV,
Yq,i* = [yq(i*)a yq+1(i*)v s 7yq+m71(i*)] € RP™,

For the forecast f, ¢+ of the response variable, applied columnwise, we define the error

_ W feqis = Ygarll2

- Vm- std(Y g,i-)
where std(z) denotes the standard deviation of the vector z.

e For each system and each set of parameter specifications, we consider 5 sets of tests
Yi,..., Y5, each with m = 10,000 data points (columns) of the same form as the
training data. The first test data set Y1 is obtained by evolving the system from the
final point @, in the training data. For the remaining test sets, the initial condition is
the final point in the previous set. In all figures, the line series represents the average
of the errors resulting from each of the 5 tests, and the shaded region around the error
lines represents one standard deviation of uncertainty around the average.

e In each of the plots presented in sections 4.4 and 4.5, the kernel inverse bandwidth
~ and dimension of regression model ¢ are fixed as the size of the training data n
increases. For any particular plot in these sections, the values of v and ¢ were chosen
based on a minimal amount of manual tuning at fixed training sample size n = 10, 000.
As such, the corresponding error curves level off as n is increased from 10,000 to
50,000. Principled approaches to setting the inverse bandwidth parameter v and
dimension of regression model ¢ are discussed in sections 4.6.1 and 4.6.2, respectively.

e Table 2 illustrates that gently increasing the inverse bandwidth v and regression model
dimension £ together as the size of the training data n increases serves as a good rule of
thumb for improving the streaming KAF accuracy with increasing n. Table 3 indicates
that the number of random features s can be taken to be proportional to ¢, resulting
in faster forecasting and incurring only a small loss in accuracy.

e As presented in Algorithm 3.3, streaming KAF is implemented with two passes over
the training data, but it is algebraically equivalent to a true streaming method. We use

(4.3) RMSE(fge:+(Y))

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/01/23 to 131.215.143.176 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

546 D. GIANNAKIS, A. HENRIKSEN, J. TROPP, AND R. WARD

Table 3
L63: Timing costs and error in forecasting using fewer random features. This table reports the
time cost (in seconds) required to construct and evaluate a forecasting model using streaming KAF. The
setup is the same as in Table 2, but with model parameters (s,¢,~v) = (3200, 3200, .72) fized for all experiments.
See subsection 4.7 for more details.

n = led 5ed leb 5e5 le6 5e6
Train 35.101 43.051 55.079 138.083 253.435 1061.187
Test .230 .220 .245 .229 221 .219
RMSE .408 125 119 .086 .075 .089

ordinary Gaussian random features (rather than the “fast” variant). All the loops in
Algorithm 3.1 are vectorized with blocks of 1,000 vectors. We employ the randomized
Nystrom method described in Algorithm 3.2.

e The algorithms were implemented using the MATLAB programming language. All
data was collected on a MacBook Pro with 16 GB of RAM and with an 8-Core Intel
Core 19 Processor, clocked at 2.3 GHz.

4.3. Interpreting the results. The normalized RMSE (4.3) provides a measure of the
quality of the forecast. When the normalized RMSE reaches 1, the expected square error
is equal to the standard deviation of the response observable with respect to the invariant
measure, and the forecast is no longer providing useful information.

In dynamical systems, the maximal Lyapunov exponent of a system is commonly used to
summarize the level of “unpredictability.” The paper [86] describes the intuitive meaning of
this exponent: “For a chaotic trajectory, an infinitesimal perturbation in the evolution gives
rise to exponential divergence—the Lyapunov exponent expresses the rate of divergence.”
Hence, Lyapunov time is frequently used as a horizon for forecasting. Typically, a forecast
is classified as “good” if the normalized RMSE only approaches 1 after several Lyapunov
timescales.

For the L63 system, the Lyapunov exponent A ~ 0.91 [78]. Thus, we can aim to make
nontrivial forecasts of the state vector for several time units. On all L63 plots, we mark
the Lyapunov time scale as a yardstick. Note that there are other observables that remain
predictable for much longer than the coordinates of the state vector [31].

4.4. Case study: L63. Our first experiment compares the forecasting skill of naive KAF
and scalable KAF for the L63 system. Figure 2 explores how forecasts of the first state
coordinate ¢* = 1 improve as the number n of training samples increases. With n = 10, 000,
both methods provide good predictions, with streaming KAF slightly better than naive KAF.
In particular, both algorithms can make informative forecasts over several Lyapunov time
intervals. As we will discuss in subsection 4.7, the streaming method is far more efficient, and
the naive method was unable to construct a forecasting model when n = 50, 000.

The KAF methodology has similar success at forecasting all three state variables. For
each of the three variables and with n = 10,000 training samples, Figure 3 compares the
forecasting error attained by the naive and streaming methods.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/01/23 to 131.215.143.176 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

STREAMING KERNEL ANALOG FORECASTING 547

Lorenz '63, Naive KAF Lorenz '63, Streaming KAF
i*=0,2=400, test size=10000 i*=0,2=400, test size=10000

Training Samples Training Samples
—— n=7000 J —— n=7000 e

—— n=10000 —— n=10000 —
/—/ —— n=50000 /
f ! /J
{
!

00 05 10 15 20 25 30 00 05 10 15 20 25 30
Forecast Time (s) Forecast Time (s)

e
]

=
]

g
=}
=
=}

)
©
)
©

o
S

Normalized RMSE
o
o
1
'S

Normalized RMSE
o
o

=}
N
=}
N

=]
=}
=]
=}

Figure 2. Lorenz '63: Forecast error versus amount of training data. Average normalized RMSE for
forecasting the first state variable of L63 via naive KAF (left) and streaming KAF (right) as a function of the
number n of training points. The regression model has dimension £ = 400, the kernel inverse bandwidth v = .05,
and the number of features s = \/nlog(n). For n = 50,000, naive KAF fails because of its computational cost.
See subsection 4.4.

Lorenz '63, Naive KAF Lorenz '63, Streaming KAF
£ =400, train size = test size = 10000 12 £ =400, train size = test size = 10000
1.2 1 state coordinate “ | State coordinate -
- e 1.0 — X i
1.0 — X = : — X2 —1
;_/—-‘»/.~

— X3

—
= —_—x3
i i

L

o

©
o
©

\\
\
\

o
i

Normalized RMSE
o
o
o
'S

Normalized RMSE
o
o

o

N
°
)

o

=)
e
=)

0 1 2 3 4 5 0 1 2 3 4
Forecast Time (s) Forecast Time (s)

Figure 3. Lorenz 63: Forecasting all three state variables. Average normalized RMSE for forecasting
all three state coordinates (z1,x2,x3) = (blue, orange, green) via naive KAF (left) and streaming KAF (right)
with n = 10,000 training points. The regression model has dimension ¢ = 400, the kernel inverse bandwidth
~v = .05, and the number of features s = \/nlog(n). See subsection 4.4.

4.5. Case study: L96. In our second set of experiments, we explore the performance of
scalable KAF for the L96 system in the periodic, quasi-periodic, and chaotic regimes docu-
mented in [16]. An increase in the forcing constant F' generates more chaotic behavior and,
unsurprisingly, reduces the time horizon for which KAF can make informative forecasts.

For the periodic regime (F' = 5), forecasting is quite easy. Figure 4 illustrates the per-
formance of streaming KAF as a function of the number n of training samples. The success
of the method hardly varies as we increase n from 5,000 to 20,000, and the RMSE remains
quite small over long time scales.

For the quasi-periodic regime (F' = 6.9), the forecasting problem becomes more challeng-
ing. For n = 10,000 training samples, Figure 5 shows that the naive and streaming methods
have similar forecasting performance for the first three slow variables. As we anticipate, the

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/01/23 to 131.215.143.176 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

548 D. GIANNAKIS, A. HENRIKSEN, J. TROPP, AND R. WARD

Periodic Two-phase Lorenz '96, Streaming KAF
test size=10000, y = 0.0001, rank=400

0.022 4

0

0.020

o
o
=
®©

0.016

Normalized RMSE

©
o
=
>

0.012 4

0.010 1

0 1 2 3 4 5
Forecast Time (s)

Training Samples

—— n=5000 n=10000 —— n=20000
Quasi-Periodic Two-phase Lorenz '96, Streaming KAF Chaotic Two-phase Lorenz '96, Streaming KAF
Test size=10000, y = 0.01, rank=400 test size=10000, y = 0.0001, rank=400

0.35 4 Training Samples
—— n=10000
n=50000

I

w

S
-
1=}

o
3

o

=

o]
o
>

Normalized RMSE
Normalized RMSE
o
o

o
o
o

Training Samples

—— n=5000
n=10000

—— n=50000

=4

=}

@
o
N

o
o
<1
=}
o

0 1 2 3 4 5 6 0 1 2 3 4 5 6
Forecast Time (s) Forecast Time (s)

Figure 4. Lorenz 96: Forecasting error versus amount of training data. Via streaming KAF, the
average normalized RMSE for forecasting the first slow variable of periodic L96 (top), quasi-periodic L96 (bottom
left), and chaotic L6 (bottom right) as a function of the number n of training points. The regression model
has dimension £ = 400, and the number of features s = \/nlog(n). The kernel inverse bandwidth v = 0.0001
in the periodic and chaotic cases, while v = 0.01 in the quasi-periodic case. See subsection 4.5.

RMSE increases gradually with time. Figure 4 displays the performance of streaming KAF
as a function of the number n of training samples. In this case, an increase in the number of
samples from n = 10,000 to n = 50, 000 improves the performance moderately. Note that the
naive approach cannot benefit from the larger training set because it does not scale to input
of this size.

Last, we consider the chaotic regime (F' = 10), where the forecasting problem is hard.
Figure 6 indicates that the naive and streaming methods produce comparable forecasting
results. In both cases, the RMSE increases quite quickly. Figure 4 shows that streaming
KAF can build models from an increasing number n of training samples, and it can attain an
advantage from the larger training set.

We conclude that streaming KAF and naive KAF have similar forecasting skill in all three
regimes, even though the streaming method makes several approximations. At the same time,
streaming KAF is far more economical, so it can exploit larger sets of training data and
thereby construct more accurate models.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/01/23 to 131.215.143.176 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

STREAMING KERNEL ANALOG FORECASTING 549

Quasi-periodic Two-phase Lorenz '96, Naive KAF Quasi-periodic Two-phase Lorenz '96, Streaming KAF

train size = test size = 10000, y=0.01, rank=400 train size = test size = 10000, y =0.01, rank=400

161 State coordinate 1.6 1 State coordinate
1.4 =g 144 —
— X : — X2

124 - X3 1.24 - X3

=
1=}
=
=]

Normalized RMSE
o o
o o

Normalized RMSE
o
o

I
>

o
N

o
o

Forecast Time (s) Forecast Time (s)

Figure 5. Quasi-periodic Lorenz 96: Forecasting three slow variables. Average normalized RMSE
for forecasting three slow coordinates (x1,x2,x3) = (blue, orange, green) of quasi-periodic L96 via naive KAF
(left) and streaming KAF (right) with n = 10,000 ¢raining points. The regression model has dimension ¢ = 400,
the kernel inverse bandwidth v = .0001, and the number of features s = \/nlog(n). See subsection 4.5.

Chaotic Two-phase Lorenz '96, Naive KAF Chaotic Two-phase Lorenz '96, Streaming KAF
train size = test size = 10000, y =0.0001, rank=400 train size = test size = 10000, y =0.0001, rank=400

=

=}
=
=]

o

©
o
©

o
>

Normalized RMSE
o
o
Normalized RMSE
o
o

I
ES

State coordinate State coordinate
— x

o
N
o
N

N—
— X2 — X2

- X3 - X3

o
o
| nd
o

0 1 2 3 4 5 0 1 2 3 4 5
Forecast Time (s) Forecast Time (s)

Figure 6. Chaotic Lorenz 96: Forecasting three slow variables. Average normalized RMSE for
forecasting three slow variables (x1,22,23) = (blue, orange, green) of chaotic L6 via naive KAF (left) and
streaming KAF (right) with n = 10,000 training points. The regression model has dimension ¢ = 400, the
kernel inverse bandwidth v = 0.0001, and the number of features s = y/nlog(n). See subsection 4.5.

4.6. Hyperparameter specifications and sensitivity. The streaming KAF method in-
volves several hyperparameters: the kernel inverse bandwidth v, the dimension ¢ of the
regression model, and the number s of random features. We performed a collection of ex-
periments with the L63 and 196 data to gauge how much the hyperparameters affect the
quality of forecasts.

4.6.1. Kernel bandwidth. The inverse bandwidth parameter v of the Gaussian RBF ker-
nel is a notorious hyperparameter that can have a significant impact on the performance of
kernel methods. One basic methodology for selecting the bandwidth is the median rule [27],
which sets 4~1/2 to be the median pairwise distance among elements of a subsample from the
dataset. Other quantiles of the pairwise distance, such as the 0.1 and 0.9 quantiles, are some-
times employed. A different approach for bandwidth tuning [19] leverages scaling relationships
between the element sum of the n x n kernel matrix K, and .

In our experience, the KAF methodology is robust to the choice of inverse bandwidth
parameter in all problem regimes. Indeed, the forecasting performance is similar over several

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/01/23 to 131.215.143.176 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

550 D. GIANNAKIS, A. HENRIKSEN, J. TROPP, AND R. WARD

Periodic Two-phase Lorenz '96, Streaming KAF Quasi-periodic Two-phase Lorenz '96, Streaming KAF
train size = test size = 10000, rank=400 train size = test size = 10000, rank=400
Bandwidth
0.121 /\/_/\/\/\/ 1.0{ — y=0.0001
—— y=0.001
0.10 | — y=001
081 7o)

—— y=0.00001
y=0.0001

—— y=0.001

— y=0.01

o
=3
®

o
=3
-3

Normalized RMSE

=]
=3
s

Normalized RMSE
o
o

o
o
o

Forecast Time (s) Forecast Time (s)

Figure 7. Robustness to inverse bandwidth parameter.For the L96 system in the periodic regime (left)
and the quasi-periodic regime (right), the quality of the forecast is robust to the choice of ~y. In each case, we
use n = 10,000 training samples, and the regression model has dimension ¢ = 400. See subsection 4.6.1.

orders of magnitude, but tuning can have a modest effect. See Figure 7 for an illustration.
To obtain better models from large training data, we invoke scaling laws for the bandwidth.

4.6.2. Dimension of regression model. To implement streaming KAF, we must choose
the dimension, or rank, ¢ of the regression model. When ¢ is too small, the model does not
capture all of the dynamics. Meanwhile, when £ is too large, we can introduce noise dimensions
or encounter numerical problems. In this section, we outline some strategies for this task, and
we will show that the forecasting methodology is robust to the choice of this parameter.

One principled approach is to form the full covariance matrix Cj, € R*** or C,,, € R***
of the covariate data. In this case, we can explicitly compute the eigenvalues (A1, Aa, ..., As)
of the matrix. Then, we choose the truncation level £ so that we capture, say, 99.9% of the
spectral content:

i k s
(4.4) ¢ = min {k eN: Zizl Ai > 0.999 - Zizl /\Z} :

This method is effective for a range of problems. At the same time, it imposes additional
computational costs, and it is not compatible with the streaming algorithm.

Instead, we typically prescribe the dimension ¢ of the regression model in advance using
prior knowledge about the problem or to work within our computational budget. For example,
in our medium-scale experiments, we make the choice ¢ = 400, which captures over 99.9% of
the spectral content of the computed covariance matrices. Since we have included the ridge
regularization pI in the forecasting function, we can insulate the algorithm from the negative
impact of outsize £.

Given a conservative (i.e., large) initial value of ¢, randomized Nystrém produces an
estimate for the first ¢ eigenvalues of the covariance matrix. Using this estimate, we can apply
the rule (4.4) a posteriori to further reduce the dimension of the regression model. This is
often a good compromise, but further research on principled methods would be valuable.

Regardless, our numerical experiments indicate that streaming KAF forecast is somewhat
insensitive to the dimension ¢ of the regression model. See Figure 8 for some evidence. For
large training data sets, we scale up the dimension ¢ to obtain more accurate forecasts.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/01/23 to 131.215.143.176 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

STREAMING KERNEL ANALOG FORECASTING 551

Chaotic Two-phase Lorenz '96, Streaming KAF Chaotic Two-phase Lorenz '96, Streaming KAF
train size = test size = 10000, y=0.0001) train size = test size = 10000, y=0.0001, rank=100

=
=3

o
©
Fod
©

Normalized RMSE
o
o

o
S
Normalized RMSE
o
o

o
a

Training Samples
—— # Features=50
—— # Features=100
—— # Features=400

o
N
o
N

o
=)
b
o

0 1 2 3 4 5 6 0 1 2 3 4 5 6
Forecast Time (s) Forecast Time (s)

Figure 8. Robustness to dimension of regression model and number of random features. For the
L96 system in the chaotic regime, the quality of the forecast is robust to the dimension £ of the regression model
(left) and to the number s of random features (right). In the left panel, s = 100. In the right panel, £ = 100. In
each case, we use n = 10,000 training samples, and the kernel inverse bandwidth v = 0.0001. See subsections
4.6.2 and 4.6.3.

4.6.3. Number of random features. The last parameter in the streaming KAF algo-
rithm is the number s of random features that we use to approximate the kernel function.
As discussed in subsection 3.3, the choice s = /nlog(n) is theoretically justified for kernel
regression in a statistical setting. In the majority of our experiments, we adopt the value
s = y/nlog(n), and we have found that the streaming KAF method always performs well.
Furthermore, taking a larger number of random features does not seem to offer any further
benefit, and taking fewer random features is not detrimental. See Figure 8 for evidence.

In the streaming setting, we may not know the number n of training points in advance
and we do not want the model size to depend on the amount of input data, so the prescription
s = y/nlog(n) might be unappealing. Our computational work supports the recommendation
that the number s of random features may be a small integer multiple of the dimension £ of the
regression model. It would be interesting to understand this phenomenon better from both
an empirical and a theoretical point of view.

4.7. Timing comparisons. We have demonstrated that streaming KAF constructs accu-
rate forecasting models in a range of scenarios. Therefore, we may turn our attention to the
computational costs of training and forecasting. Table 2 compares the runtimes of naive KAF
and streaming KAF, and it charts the average normalized RMSE of the resulting models.

These experiments are based on the L63 data. We forecast the first state variable from the
full set of three state variables. The forecast horizon is fixed at ¢ = 0.5 time units. The number
n of training samples varies, while the number of test samples remains fixed at m = 10, 000.
The kernel inverse bandwidth v = 0.09, and the dimension of the regression model grows from
£ =400 to £ = 3200 in rough proportion to logn. For the streaming method, the number of
random features s = y/nlog(n) also increases with the size of the training data. We report
the average RMSE over five test runs.

To be clear, the training time includes the full cost of computing the weight matrix Wq’g
for a single real-valued response at a single forecast horizon ¢. This cost includes the evaluation
of random features, formation of the covariance matrices, the streaming PCA computation,

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/01/23 to 131.215.143.176 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

552 D. GIANNAKIS, A. HENRIKSEN, J. TROPP, AND R. WARD

and the matrix product. For making a forecast, the timing reflects the full cost of computing
m = 10,000 real-valued responses for the fixed time horizon ¢, including the evaluation of
random features and the matrix product.

For small problems, we see that the training time for streaming KAF is 100-200x faster
than naive KAF. The test time for streaming KAF is 300—400x faster, and the models achieve
similar RMSE. For large problems, naive KAF is unable to produce a forecasting model.
Meanwhile, streaming KAF can build a forecasting model from n = 5-10° training samples in
less than two hours on a laptop, and this model can produce a single real-valued forecast in
about 0.0003s. As the amount of training data increases, the RMSE of the forecasting models
continues to improve, which underscores how important it is to develop a scalable algorithm.

Out of a sense of fair play, we used the theoretically supported number s = y/nlog(n) of
random features. If we adopt our empirical recommendation s = Const - ¢, the timings im-
prove markedly without sacrificing much accuracy. Table 3 displays the runtimes and average
normalized RMSE for streaming KAF under the same experimental set-up as in Table 2, but
with the regression dimension and number of random features fixed at (¢, s) = (3200, 3200).
The user may judge whether the speedup warrants the modest loss in RMSE.

5. Comparison with related work. Several other techniques for data-driven prediction
have been proposed and studied recently. Here, we comment on the mathematical and com-
putational characteristics of these approaches in relation to streaming KAF, focusing on meth-
ods that employ aspects of linear operator theory or randomized linear algebra. Within this
context, forecasting techniques can be broadly classified as reduced modeling approaches (i.e.,
methods that construct a surrogate dynamical system from observed data) and regression ap-
proaches (i.e., supervised learning techniques for estimating covariate-response relationships).

5.1. Forecasting methodologies. Examples of reduced modeling techniques are linear in-
verse models [69], (extended) DMD [73, 76, 87], and methods for approximating the Koopman
generator [30, 22, 50]. These methods formally assume that the training data have a (deter-
ministic) Markovian evolution. That assumption is clearly satisfied under the autonomous
dynamics in (2.1) if the training data are snapshots g, 1, ... of the full system state in RY.
On the other hand, if we have access to samples u(xg), u(xy), ... of a covariate u : R? — R¥
with d' < d, then training data are generally non-Markovian (unless u happens to lie in a
Koopman-invariant subspace). Approaches for overcoming non-Markovianity include dimen-
sion augmentation through delay-coordinate maps [75, 15, 32] and incorporation of memory
terms using the Mori-Zwanzig formalism [36, 38].

Other approaches model the observed data as realizations of a stochastic process. For
example, techniques based on Ulam’s method [23, 47| estimate the transfer operator of a
dynamical system (which is a dual operator to the Koopman operator, acting on probability
measures) in a basis of indicator functions associated with a partition of state space. The
diffusion forecasting technique [10] estimates the evolution semigroup associated with a sto-
chastic differential equation (SDE) on a manifold in a smooth data-driven basis of kernel
eigenfunctions learned through the diffusion maps algorithm [18]. Extensions of DMD to
random dynamical systems [21] and SDEs [3] have also been proposed recently.

A common aspect of reduced modeling techniques is that they learn a surrogate model of
the dynamics from time series data. Often, in order to make a forecast to a horizon of ¢ time

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/01/23 to 131.215.143.176 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

STREAMING KERNEL ANALOG FORECASTING 553

units, these models are trained on a shorter time step ¢’ < ¢ and iteratively applied ¢/q’ times
to reach the desired horizon. This approach is attractive because it allows simulation of the
long-term statistical behavior of the system (assuming that the training phase was successful).

In contrast, regression-based methodologies usually operate by constructing a forecast
function at a fized lead time (or a family of independent forecast functions up to a desired
lead time), and they evaluate the forecast once on the initial data to yield a prediction. This
approach offers greater generality than reduced modeling approaches, since Markovianity of
the covariate-response observables is not required, nor is it required that the covariate and
response lie in a Koopman-invariant subspace [32]. Indeed, as discussed in subsection 2.7, KAF
yields asymptotically optimal predictions (in the Lo or RMSE sense) in the large-data limit in
the form of the conditional expectation of the Koopman-evolved response conditioned on the
covariate. Yet, at the same time, the conditional expectation may not be a good approximation
for actual dynamical trajectories, which makes direct regression approaches unsuitable for
simulating the statistical behavior of the system (despite yielding RMSE-optimal forecasts).
For further details, see the paper [16], which studies applications of KAF to multiscale systems
with averaging and homogenization limits. A recent paper [41] has explored applications of
kernel learning [66] to forecasting with kernel regression. The paper [35] develops a technique
called random feature maps and data assimilation (RAFDA), which learns the expansion
coefficients of the target function (in our notation, f;¢) in a random features basis using
the sequential forecast-analysis process from ensemble Kalman filtering. We believe that an
interesting avenue for future work would be to employ the Nystrom-based target functions
developed in this paper in RAFDA schemes.

All of the above approaches are purely data-driven, in the sense that they only use time-
ordered data snapshots as inputs, without requiring knowledge of the equations of motion.
Yet, in many applications, full or partial knowledge of the equations of motion is available,
and it is natural to design methods that take advantage of that knowledge [40]. An example
is the “lift and learn” framework [70], which employs a mapping to transport the data to
a higher-dimensional space where the system is quadratic. Unlike the Koopman operator,
the existence of a finite-dimensional quadratic representation of the system dynamics is not
universally guaranteed, but can be constructed for many systems encountered in physical and
engineering applications [37] if the equations of motion are known. The approach of [70]
leverages the quadratic structure of the system in the lifted space by employing a projection
that is compatible with quadratic nonlinearities (see also [68]). In this manner, the reduced
model is compatible with the “physics” of the lifted model. In [70], the projection is obtained
from the proper orthogonal decomposition [45], which computes a low-rank approximation to
the autocorrelation matriz XX T € R?*9 rather than the covariance matrix X ' X € R™*",
The randomized singular value decomposition is also used within this forecasting framework
to build a scalable implementation [61].

Note that the eigenvectors of X X T are spatial vectors in R%. In DMD, the analogous
objects are the eigenvectors of the matrix A in (2.5), called Koopman modes [73], which can
also be employed for model reduction. The KAF approach can be thought of as being “dual”
to these methods in that it employs n xn kernel matrices which are discretizations of operators
acting on spaces of observables of the system (rather than spatial patterns in R%).

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/01/23 to 131.215.143.176 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

554 D. GIANNAKIS, A. HENRIKSEN, J. TROPP, AND R. WARD

5.2. Streaming algorithms for kernel computation. The machine learning literature con-
tains a substantial body of work on kernel methods, techniques for combining kernels with
random features, and methods for implementing these algorithms in a streaming setting. This
space is not adequate for a comprehensive summary of this vast field. We recommend the
book [77] as a foundational reference on kernel methods in machine learning.

The RFF technique [72] was developed to accelerate kernel computations. There are a
substantial number of papers that use RFF for KRR, such as [5, 74], but we are not aware of
a paper that uses random features for streaming kernel regression.

There are also several papers that combine RFF with streaming PCA algorithms to obtain
streaming KPCA algorithms. In particular, Ghashami, Perry, and Phillips [29] apply the
frequent directions method [28], while Ullah et al. [84] use Oja’s algorithm [65]. Henriksen and
Ward [44] have developed an adaptive extension of Oja’s algorithm that is significantly more
robust. Tropp et al. have proposed to use the randomized Nystrom method for streaming PCA
[81], perhaps in combination with random features [60, section 19.3.5]. Our numerical work
suggests that the Nystrom method is more accurate and more reliable than the alternatives
in the context of streaming KAF.

We have also investigated the performance of streaming KAF using AdaOja [44] for the
streaming PCA computation. In our experience, this approach can be competitive, especially
in cases where the spectrum of the covariance matrix decays slowly. See [43] for a detailed
report.

6. Conclusions. KAF is a regression-based approach to forecasting dynamical systems
that offers a theoretical guarantee of asymptotically optimal predictions (in the Lz or RMSE
sense) in the large-data limit. By incorporating two randomized approximation techniques
from numerical linear algebra—RFF and the randomized Nystrém method—we developed a
streaming implementation of KAF. This approach makes it possible to build forecasting models
from large data sets where the KAF methodology is theoretically justified. Our experiments
indicate that streaming KAF has the potential to unlock the promise of KAF as a general
data-driven, nonparametric tool for making predictions of dynamical systems.

Acknowledgments. We are thankful for helpful feedback from Eliza O’Reilly, Ethan Ep-
perly, and the anonymous referees. DG thanks the department of Computing and Mathemat-
ical Sciences at the California Institute of Technology for hospitality during a sabbatical in
2017/18, where part of this work was initiated.

REFERENCES

[1] R. ALEXANDER AND D. GIANNAKIS, Operator-theoretic framework for forecasting nonlinear time
series with kernel analog techniques, Phys. D, 409 (2020), 132520, https://doi.org/10.1016/
j.physd.2020.132520.

[2] R. ALEXANDER, Z. ZHAO, E. SZEKELY, AND D. GIANNAKIS, Kernel analog forecasting of tropical in-
traseasonal oscillations, J. Atmos. Sci, 74 (2017), pp. 1321-1342, https://doi.org/10.1175/JAS-D-16-
0147.1.

[3] H. ARBABI AND T. SAPSIS, Generative stochastic modeling of strongly monlinear flows with non-
Gaussian statistics, SIAM/ASA J. Uncertain. Quantif., 10 (2022), pp. 555-583, https://doi.org/
10.1137/20M1359833.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

https://doi.org/10.1016/j.physd.2020.132520
https://doi.org/10.1016/j.physd.2020.132520
https://doi.org/10.1175/JAS-D-16-0147.1
https://doi.org/10.1175/JAS-D-16-0147.1
https://doi.org/10.1137/20M1359833
https://doi.org/10.1137/20M1359833

Downloaded 08/01/23 to 131.215.143.176 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

STREAMING KERNEL ANALOG FORECASTING 555

18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

[26]

D.

N.

M.

G.

. ARONSZAJN, Theory of reproducing kernels, Trans. Amer. Math. Soc., 68 (1950), pp. 337-404,

https://doi.org/10.2307/1990404.

. AvroN, M. KaprraLov, C. Musco, C. Musco, A. VELINGKER, AND A. ZANDIEH, Random Fourier

features for kernel ridge regression: Approzimation bounds and statistical guarantees, in Proceedings
of the 34th International Conference on Machine Learning, Proc. Mach. Learn. Res. 70, 2017, pp.
253-262.

. AVRON, V. SINDHWANI, J. YANG, AND M. W. MAHONEY, Quasi-Monte Carlo feature maps for shift-

invariant kernels, J. Mach. Learn. Res., 17 (2016), pp. 4096-4133.

. BAcH, On the equivalence between kernel quadrature rules and random feature expansions, J. Mach.

Learn. Res., 18 (2017), pp. 714-751.

. BALADI, Positive Transfer Operators and Decay of Correlations, Adv. Ser. Nonlinear Dynam. 16,

World Scientific, Toh Tuck Link, Singapore, 2000.

. BELKIN, Approzimation beats concentration? An approximation view on inference with smooth radial

kernels, in Proceedings of the Conference on Learning Theory, PMLR, 2018, pp. 1348-1361.

. BERRY, D. GIANNAKIS, AND J. HARLIM, Nonparametric forecasting of low-dimensional dynamical

systems, Phys. Rev. E.; 91 (2015), 032915, https://doi.org/10.1103/PhysRevE.91.032915.

. BERRY, D. GIANNAKIS, AND J. HARLIM, Bridging data science and dynamical systems theory, Notices

Amer. Math. Soc., 67 (2020), pp. 1336-1349, https://doi.org/10.1090/noti2151.

. BJIORCK, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, 1996.
. BLANK, Egodic averaging with and without invariant measures, Nonlinearity, 30 (2017), pp. 4649-4664,

https://doi.org/10.1088/1361-6544 /aa8fe8.
S. BOCHNER, Vorlesungen tiber Fouriersche Integrale von S. Bochner, Math. Anwend. Monogr.
Lehrbiichern 12, Akademische Verlagsgesellschaft, Leipzig, 1932.

. L. BRUNTON, B. W. BRUNTON, J. L. PROCTOR, E. KAISER, AND J. N. KuTz, Chaos as an intermit-

tently forced linear system, Nat. Commun., 8 (2017), 19, https://doi.org/10.1038/s41467-017-00030-8.

. Burov, D. GIANNAKIS, K. MANOHAR, AND A. STUART, Kernel analog forecasting: Multiscale test

problems, Multiscale Model. Simul., 19 (2021), pp. 1011-1040, https://doi.org/10.1137/20M1338289.

. CHERAPANAMJERI AND J. NELSON, Uniform approximations for randomized hadamard transforms

with applications, in Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2022, New York, Association for Computing Machinery, 2022, pp. 659-671,
https://doi.org/10.1145/3519935.3519961.

. R. COoIFMAN AND S. LAFON, Diffusion maps, Appl Comput. Harmon. Anal., 21 (2006), pp. 5-30,

https://doi.org/10.1016 /j.acha.2006.04.006.

. R. CorFMAN, Y. SHKOLNISKY, F. J. SIGWORTH, AND A. SINGER, Graph Laplacian tomogra-

phy from unknown random projections, IEEE Trans. Image Process., 17 (2008), pp. 1891-1899,
https://doi.org/10.1109 /tip.2008.2002305.

COMEAU, Z. ZHAO, D. GIANNAKIS, AND A. J. MAJDA, Data-driven prediction strategies for low-
frequency patterns of North Pacific climate variability, Climate Dyn., 48 (2017), pp. 1855-1872,
https://doi.org/10.1007/s00382-016-3177-5.

CRNJARIC-Z1C, S. MAGESIC, AND I. MEZIC, Koopman operator spectrum. for random dynamical sys-
tems, J. Nonlinear Sci., 30 (2020), pp. 2007—2056, https://doi.org/10.1007/s00332-019-09582-z.

Das, D. GIANNAKIS, AND J. SLAWINSKA, Reproducing kernel Hilbert space quantifica-
tion of wunitary evolution groups, Appl. Comput. Harmon. Anal.,, 54 (2021), pp. 75-136,
https://doi.org/10.1016/j.acha.2021.02.004.

DELLNITZ AND O. JUNGE, On the approzimation of complicated dynamical behavior, STAM J. Numer.
Anal., 36 (1999), pp. 491-515, https://doi.org/10.1137/S0036142996313002.

. EISNER, B. FARKAS, M. HAASE, AND R. NAGEL, Operator Theoretic Aspects of Ergodic Theory, Grad.

Texts in Math. 272, Springer, New York, 2015.

FATKULLIN AND E. VANDEN-ELINDEN, A computational strategy for multiscale systems
with applications to Lorenz 96 model, J. Comput. Phys., 200 (2004), pp. 605-638,
https://doi.org/10.1016/j.jcp.2004.04.013.

FrovyLAND, G. A. GOTTWALD, AND A. HAMMERLINDL, A computational method to extract macro-
scopic variables and their dynamics in multiscale systems, STAM J. Appl. Dyn. Syst., 13 (2014), pp.
1816-1846, https://doi.org/10.1137/130943637.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

https://doi.org/10.2307/1990404
https://doi-org.clsproxy.library.caltech.edu/10.2307/1990404
https://doi.org/10.1103/PhysRevE.91.032915
https://doi.org/10.1090/noti2151
https://doi.org/10.1088/1361-6544/aa8fe8
https://doi.org/10.1038/s41467-017-00030-8
https://doi.org/10.1137/20M1338289
https://doi.org/10.1145/3519935.3519961
https://doi.org/10.1016/j.acha.2006.04.006
https://doi.org/10.1109/tip.2008.2002305
https://doi.org/10.1007/s00382-016-3177-5
https://doi.org/10.1007/s00332-019-09582-z
https://doi.org/10.1016/j.acha.2021.02.004
https://doi.org/10.1137/S0036142996313002
https://doi.org/10.1016/j.jcp.2004.04.013
https://doi.org/10.1137/130943637

Downloaded 08/01/23 to 131.215.143.176 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

556

[27]
[28]

[29]

[30]
31]
32]
[33]
[34]

[35]

[36]

[37]

[38]

[39]

[40]
ja1]
[42)
[43)
[44]
5]
[46]

[47]

(48]

D.

D. GIANNAKIS, A. HENRIKSEN, J. TROPP, AND R. WARD

GARREAU, W. JITKRITTUM, AND M. KANAGAWA, Large Sample Analysis of the Median Heuristic,
preprint, arXiv:1707.07269, 2017.

. GHAsHAMI, E. LIBERTY, J. M. PHILLIPS, AND D. P. WOODRUFF, Frequent directions: Simple and

deterministic matriz sketching, SIAM J. Comput., 45 (2016), pp. 1762-1792.

. GHASHAMI, D. J. PERRY, AND J. PHILLIPS, Streaming kernel principal component analysis, in Pro-

ceedings of the 19th International Conference on Artificial Intelligence and Statistics, PMLR, 2016,
pp. 1365-1374.

. GIANNAKIS, Data-driven spectral decomposition and forecasting of ergodic dynamical systems, Appl.

Comput. Harmon. Anal., 62 (2019), pp. 338-396, https://doi.org/10.1016/j.acha.2017.09.001.

. GIANNAKIS, Delay-coordinate maps, coherence, and approximate spectra of evolution operators, Res.

Math. Sci., 8 (2021), 8, https://doi.org/10.1007 /s40687-020-00239-y.

. GILANI, D. GIANNAKIS, AND J. HARLIM, Kernel-based prediction of non-Markovian time series, Phys.

D, 418 (2020), 132829, https://doi.org/10.1016/j.physd.2020.132829.

. GITTENS, Topics in Randomized Numerical Linear Algebra, Ph.D. thesis, California Institute of Tech-

nology, 2013.

H. GoruB anND C. F. VAN LOAN, Matriz Computations, 4th ed., Johns Hopkins Stud. Math. Sci.,
Johns Hopkins University Press, Baltimore, MD, 2013.

A. GoTTwALD AND S. REICH, Supervised learning from mnoisy observations: Combin-
ing machine-learning techniques with data assimilation, Phys. D, 423 (2021), 132911,
https://doi.org/10.1016/j.physd.2021.132911.

GouasMmi, E. J. PArisH, AND K. DURAISAMY, A priori estimation of memory effects in reduced-
order models of nonlinear systems using the Mori-Zwanzig formalism, Proc. R. Soc. A, 473 (2017),
20170385, https://doi.org/10.1098 /rspa.2017.0385.

. Gu, QLMOR: A projection-based nonlinear model order reduction approach using quadratic-linear

representation of nonlinear systems, IEEE Trans. Comput. Aid. Des. Integr. Circuits Syst., 30 (2011),
pp- 1307-1320.

. S. GUTIERREZ, V. LUCARINI, AND M. D. CHEKROUN, Reduced-order models for coupled dy-

namical systems: Data-driven methods and the Koopman operator, Chaos, 31 (2021), 053116,
https://doi.org/10.1063/5.0039496.
HALKO, P. G. MARTINSSON, AND J. A. TROPP, Finding structure with randomness: Probabilistic
algorithms for constructing approzimate matrixz decompositions, SIAM Rev., 53 (2011), pp. 217-288,
https://doi.org/10.1137/090771806.

. HamiLToN, T. BERRY, AND T. SAUER, Predicting chaotic time series with a partial model, Phys. Rev.

E, 92 (2015), 010902(R), https://doi.org/10.1103/PhysRevE.92.010902.

. Hamz1 AND H. OWHADI, Learning dynamical systems from data: A simple cross-validation perspective,

part 1: Parametric kernel flows, Phys. D, 421 (2021), 132817.

. J. HANSON, A numerical method for solving Fredholm integral equations of the first kind using singular

values, STAM J. Numer. Anal., 8 (1971), pp. 616-622.

. HENRIKSEN, Principles and Components of Streaming Principal Component Analysis, Ph.D. thesis,

University of Texas at Austin, 2021.
HENRIKSEN AND R. WARD, Adaoja: Adaptive Learning Rates for Streaming PCA,
https://arxiv.org/abs/1905.12115, 2019.

. HoLmES, J. L. LUMLEY, AND G. BERKOOZ, Turbulence, Coherent Structures, Dynamical Systems and

Symmetry, Cambridge University Press, Cambridge, 1996.

. JACKSON AND A. RADUNSKAYA, Applications of Dynamical Systems in Biology and Medicine, IMA

Vol. Math. Appl. 158, Springer, New York, 2015.

JUNGE AND P. KovLrAl, Discretization of the Frobenius-Perron operator using a sparse Haar
tensor basis: The sparse Ulam method, SIAM J. Numer. Anal., 47 (2009), pp. 3464-2485,
https://doi.org/10.1137/080716864.

. KAWAHARA, Dynamic mode decomposition with reproducing kernels for Koopman spectral analy-

sis, in Proceedings of Advances in Neural Information Processing Systems, D. D. Leg, M.
SuciyAMA, U. vON LUXBURG, I. GUYON, AND R. GARNETT, eds., Curran Associates, 2016, pp.
911-919, http://papers.nips.cc/paper/6583-dynamic-mode-decomposition-with-reproducing-kernels-
for-koopman-spectral-analysis.pdf.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

https://doi.org/10.1016/j.acha.2017.09.001
https://doi.org/10.1007/s40687-020-00239-y
https://doi.org/10.1016/j.physd.2020.132829
https://doi.org/10.1016/j.physd.2021.132911
https://doi.org/10.1098/rspa.2017.0385
https://doi.org/10.1063/5.0039496
https://doi.org/10.1137/090771806
https://doi.org/10.1103/PhysRevE.92.010902
https://arxiv.org/abs/1905.12115
https://doi.org/10.1137/080716864
http://papers.nips.cc/paper/6583-dynamic-mode-decomposition-with-reproducing-kernels-for-koopman-spectral-analysis.pdf
http://papers.nips.cc/paper/6583-dynamic-mode-decomposition-with-reproducing-kernels-for-koopman-spectral-analysis.pdf

Downloaded 08/01/23 to 131.215.143.176 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

STREAMING KERNEL ANALOG FORECASTING 557

[49]

[50]

51)
/52]
/53]
(54]

[55]

[56]

[57]
[58]
[59]
[60]

[61]

[62]
[63]
[64]
[65]
[66]
[67]

[68]

[69]

[70]

[71]

[72]

S. Krus, F. NUSKE, AND B. Hawmzi, Kernel-based approzimation of the Koopman generator and
Schradinger operator, Entropy, 22 (2020), pp. 1-22, https://doi.org/10.3390/e22070722.

S. Krus, F. NUske, P. Korral, H. Wu, I. KEVREKIDIS, C. SCHUTTE, AND F. NOE, Data-driven
model reduction and transfer operator approzimation, J. Nonlinear Sci., 28 (2018), pp. 985-1010,
https://doi.org/10.1007/s00332-017-9437-7.

B. O. KoopPMAN, Hamiltonian systems and transformation in Hilbert space, Proc. Natl. Acad. Sci. USA,
17 (1931), pp. 315-318.

B. O. KooPMAN AND J. VON NEUMANN, Dynamical systems of continuous spectra, Proc. Natl. Acad.
Sci. USA, 18 (1932), pp. 255-263, https://doi.org/10.1073/pnas.18.3.255.

Q. LE, T. SARLOS, AND A. SMOLA, Fastfood-approzimating kernel expansions in loglinear time, in Pro-
ceedings of the International Conference on Machine Learning, JMLR, Vol. 85, 2013.

M. E. LEVINE AND A. M. STUART, A Framework for Machine Learning of Model Error in Dynamical
Systems, https://arxiv.org/abs/2107.06658, 2022.

H. L1, G. C. LINDERMAN, A. SzrLAaM, K. P. STANTON, Y. KLUGER, AND M. TYGERT, Algorithm 971:
An implementation of a randomized algorithm for principal component analysis, ACM Trans. Math.
Software, 43 (2017), 28, https://doi.org/10.1145/3004053.

Q. L1, F. DieTrICH, E. M. BoLt, AND I. G. KEVREKIDIS, Ezxtended dynamic mode decomposition with
dictionary learning: A data-driven adaptive spectral decomposition of the Koopman operator, Chaos,
27 (2017), 10311, https://doi.org/10.1063/1.4993854.

E. N. LORENZ, Deterministic nonperiodic flow, J. Atmos. Sci., 20 (1963), pp. 130-141,
https://doi.org/10.1175/1520-0469(1963)020(0130:DNF)2.0.CO;2.

E. N. LORENzZ, Predictability of weather and climate, in Predictability of Weather and Climate, T.
PALMER AND R. HAGEDORN, eds., Cambridge University Press, Cambridge, 1996, pp. 40-58.

S. LuzzaTTo, I. MELBOURNE, AND F. Paccautr, The Lorenz attractor is miring, Comm. Math. Phys.,
260 (2005), pp. 393-401.

P.-G. MARTINSSON AND J. TROPP, Randomized numerical linear algebra: Foundations and algorithms,
Acta Numer., 29 (2020), pp. 403-572, https://doi.org/10.1017/S0962492920000021.

S. A. McQUARRIE, C. HuaNG, AND K. E. WiLLcOX, Data-driven reduced-order models via regularised
operator inference for a single-injector combustion process, J. Roy. Soc. New. Zealand, 51 (2021), pp.
194-211, https://doi.org/10.1080/03036758.2020.1863237.

1. MEz1¢, Spectral properties of dynamical systems, model reduction and decompositions, Nonlinear Dy-
nam., 41 (2005), pp. 309-325, https://doi.org/10.1007/s11071-005-2824-x.

S. MUTHUKRISHNAN, Data Streams: Algorithms and Applications, Now Publishers, Delft, The Nether-
lands, 2005.

E. J. NYSTROM, Uber Die Praktische Auflosung von Integralgleichungen mit Anwendungen auf Randwer-
taufgaben, Acta Math., 54 (1930), pp. 185-204, https://doi.org/10.1007/BF02547521.

E. OJa, A simplified neuron model as a principal component analyzer, J. Math. Biol., 15 (1982), pp.
267273, https://doi.org/10.1007/BF00275687.

O. OwHADI AND G. R. Y00, Kernel flows: From learning kernels from data into the abyss, J. Comput.
Phys., 389 (2019), pp. 22-47, https://doi.org/10.1016/j.jcp.2019.03.040.

T. N. PALMER AND R. HAGEDORN, eds., Predictability of Weather and Climate, Cambridge University
Press, Cambridge, 2006.

B. PEHERSTORFER AND K. WILLCOX, Data-driven operator inference for monintrusive projection-
based model reduction, Comput. Methods Appl. Mech. Engrg., 306 (2016), pp. 196-215,
https://doi.org/10.1016/j.cma.2016.03.025.

C. PENLAND, Random forcing and forecasting using principal oscillation pattern analysis, Mon. Weather
Rev., 117 (1989), pp. 2165-2185.

E. QraN, B. KRAMER, B. PEHERSTORFER, AND K. WiLLcoX, Lift & learn: Physics-informed
machine learning for large-scale nonlinear dynamical systems, Phys. D, 406 (2020), 132401,
https://doi.org/10.1016/j.physd.2020.132401.

Z. Qu, Cooperative Control of Dynamical Systems: Applications to Autonomous Vehicles, Springer,
New York, 2009.

A. RAaHIMI AND B. RECHT, Random features for large-scale kernel machines, in Proceedings of Advances
in Neural Information Processing Systems Vol. 20, Curran Associates,2008, pp. 1177-1184.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

https://doi.org/10.3390/e22070722
https://doi.org/10.1007/s00332-017-9437-7
https://doi.org/10.1073/pnas.18.3.255
https://arxiv.org/abs/2107.06658
https://doi.org/10.1145/3004053
https://doi.org/10.1063/1.4993854
https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
https://doi.org/10.1017/S0962492920000021
https://doi.org/10.1080/03036758.2020.1863237
https://doi.org/10.1007/s11071-005-2824-x
https://doi.org/10.1007/BF02547521
https://doi.org/10.1007/BF00275687
https://doi.org/10.1016/j.jcp.2019.03.040
https://doi.org/10.1016/j.cma.2016.03.025
https://doi.org/10.1016/j.physd.2020.132401

Downloaded 08/01/23 to 131.215.143.176 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

558

73]
[74]

[75]

[76]
[77]

(78]
[79]

[80]

[81]

[82]

[83]
[84]
[85]
[86]

[87]

[88]

[89]

D. GIANNAKIS, A. HENRIKSEN, J. TROPP, AND R. WARD

C. W. ROWLEY, 1. MEzI¢, S. BAGHERI, P. SCHLATTER, AND D. S. HENNINGSON, Spectral analysis of non-
linear flows, J. Fluid Mech., 641 (2009), pp. 115-127, https://doi.org/10.1017/s0022112009992059.

A. Rup1 AND L. Rosasco, Generalization properties of learning with random features, in Proceedings of
Advances in Neural Information Processing Systems, Vol. 30, 2017, pp. 3218-3228.

T. SAUER, Time series prediction by using delay coordinate embedding, in Time Series Prediction: Fore-
casting the Future and Understanding the Past, St. Fe Inst. Stud. Sci. Complex. 15, A. S. Weigend
and N. A. Gerhsenfeld, eds., Addison-Wesley, 1993, pp. 1993, pp. 175-193.

P. J. ScuMID, Dynamic mode decomposition of numerical and experimental data, J. Fluid Mech., 656
(2010), pp. 528, https://doi.org/10.1017/50022112010001217.

B. ScHOLKOPF AND A. J. SMOLA, Learning with Kernels: Support Vector Machines, Regularization,
Optimization, and Beyond, MIT Press, Cambridge, MA, 2002.

J. C. SPrOTT, Chaos and Time-Series Analysis, Oxford University Press, Oxford, 2003.

B. K. SRIPERUMBUDUR AND Z. SZABO, Optimal rates for random Fourier features, in Proceedings of
Advances in Neural Information Processing Systems, 2015, pp. 1144-1152.

7. SzABO AND B. SRIPERUMBUDUR, On kernel derivative approzimation with random Fourier features,
in Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics, PMLR,
2019, pp. 827-836.

J. A. TropP, A. YURTSEVER, M. UDELL, AND V. CEVHER, Fized-rank approrimation of a positive-
semidefinite matriz from streaming data, in Proceedings of Advances in Neural Information Processing
Systems, Vol. 30, Curran Associates, 2017.

J. H. Tu, C. W. RowLEYy, C. M. LUCTHENBURG, S. L. BRUNTON, AND J. N. Kutrz, On dy-
namic mode decomposition: Theory and applications, J. Comput. Dyn., 1 (2014), pp. 391-421,
https://doi.org/10.3934 /jcd.2014.1.391.

W. TUCKER, The Lorenz attractor exists, C. R. Acad. Sci. Paris Ser. I, 328 (1999), pp. 1197-1202.

E. UrrLan, P. M1aNJY, T. V. MARINOV, AND R. ARORA, Streaming kernel PCA with o(y/n) random
features, in Proceedings of Advances in Neural Information Processing Systems, Vol. 31, 2018.

M. VARAH AND JAMES, On the numerical solution of ill-conditioned linear systems with applications to
ill-posed problems, SIAM J. Numer. Anal., 10 (1973), pp. 257-267.

R. WaANG, E. KALNAY, AND B. BALACHANDRAN, Neural machine-based forecasting of chaotic dynamics,
Nonlinear Dynam., 98 (2019), pp. 2903-2917.

M. O. WiLLiams, I. G. KEVREKIDIS, AND C. W. ROWLEY, A data-driven approzimation of the Koop-
man operator: Extending dynamic mode decomposition, J. Nonlinear Sci., 25 (2015), pp. 1307-1346,
https://doi.org/10.1007/s00332-015-9258-5.

M. O. WiLLiams, C. W. RowLEY, AND I. G. KEVREKIDIS, A kernel-based method for data-driven
Koopman spectral analysis, J. Comput. Dyn., 2 (2015), pp. 247-265.

Z. ZHAO AND D. GIANNAKIS, Analog forecasting with dynamics-adapted kernels, Nonlinearity, 29 (2016),
pp- 2888-2939, https://doi.org/10.1088/0951-7715/29/9/2888.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.

https://doi.org/10.1017/s0022112009992059
https://doi.org/10.1017/S0022112010001217
https://doi.org/10.3934/jcd.2014.1.391
https://doi.org/10.1007/s00332-015-9258-5
https://doi.org/10.1088/0951-7715/29/9/2888

	Introduction
	Outline
	Notation

	Introduction to KAF
	Linear forecasting
	The kernel trick
	Nonlinear kernel forecasting
	Regularization
	Resource usage of na"00EF`ve KAF
	Other observables
	Connection with Koopman operator theory

	Streaming KAF
	Streaming data
	Overview
	Kernel approximation by random features
	KAF with random features
	Streaming KAF
	Streaming PCA
	Other observables
	Resource usage

	Experiments
	The Lorenz models
	Lorenz "2019`63
	Lorenz "2019`96

	Experimental setup
	Interpreting the results
	Case study: L63
	Case study: L96
	Hyperparameter specifications and sensitivity
	Kernel bandwidth
	Dimension of regression model
	Number of random features

	Timing comparisons

	Comparison with related work
	Forecasting methodologies
	Streaming algorithms for kernel computation

	Conclusions
	References

