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Abstract
Projected least squares is an intuitive and numerically cheap technique for
quantum state tomography: compute the least-squares estimator and project
it onto the space of states. The main result of this paper equips this point
estimator with rigorous, non-asymptotic convergence guarantees expressed in
terms of the trace distance. The estimator’s sample complexity is comparable
to the strongest convergence guarantees available in the literature and—in the
case of the uniform POVM—saturates fundamental lower bounds. Numerical
simulations support these competitive features.

Keywords: quantum tomography, projected least squares estimator, low rank
states, concentration bounds, optimal estimation

(Some figures may appear in colour only in the online journal)

1. Introduction

Quantum state tomography is the task of reconstructing a quantum state from experimental
measurement data. Among various estimation methods, maximum-likelihood (ML) [1, 2] is a
universal approach which produces point estimators with good average error properties and is
extensively used in practice [3]. However, ML is computationally expensive and the practice
of using ML in combination with bootstrap to produce error bars is not always theoretically
grounded. Indeed such methods can be used to produce asymptotic confidence regions in sce-
narios where the theory of local asymptotic normality applies (e.g. for fully mixed states),
but are inconsistent for rank-deficient states [4]. This has spurred the development of alterna-
tives, such as Bayesian [5–7] and region [8–10] estimators. However, these methods have other
drawbacks, such as comparatively high computational cost and weak (or implicit) convergence
guarantees. In parallel, the estimation of low-rank states from a small number of observables
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has been studied in compressed sensing [11–14], and in a series of papers by Koltchinskii and
coauthors [15–18].

In this work we present an in depth analysis of an alternative method, the projected least
squares (PLS) estimator, and show that it improves on the status quo in several significant direc-
tions. PLS is obtained by performing a standard linear inversion [19] followed by a projection
onto the space of density matrices. It is numerically ‘cheap’ in the sense that its computational
cost is dominated by forming the least-squares estimator. Indeed, numerical simulations show
that PLS is much faster than prominent alternatives like maximum-likelihood estimation [3]
and compressed sensing [11].

PLS is also statistically efficient. Our main theoretical results show that PLS achieves fun-
damental lower bounds [20] for tomography with separate measurements: to reconstruct an
arbitrary d dimensional state ρ of rank-r with accuracy ε in trace distance it suffices to measure
r2dε−2log d independent samples with a two-design measurement, or r2dε−2 samples with a
covariant measurement. This sampling rate improves upon existing results [21] and is compet-
itive with the most powerful techniques in the literature [13, 22]. The statistical performance
of the PLS estimator has also been studied in [18] in the context of a different statistical model
involving noisy observations of expectations of randomly chosen observables. In this con-
text the authors show that up to logarithmic factors, the PLS estimator achieves general lower
bounds for several loss functions.

Note that correlated measurements over several copies of the state can achieve even lower
sampling rates [20, 23, 24], but are much more challenging to implement. Here we focus on
the practically more relevant case of measuring each copy of ρ separately. The complementary
analysis in [25] shows the PLS has a tractable asymptotic behavior which may provide the
route to devising simple, tight, and theoretically justified error bars.

For a direct access to results and techniques, the paper is organised according to the onion
peeling principle. We first introduce concepts and results and gradually reveal the technical
details, with most proofs relegated to the appendices. In section 2 we introduce the PLS estima-
tor. In section 3 we present the main theoretical results which establish concentration bounds
for the PLS for several important classes of measurements: two-designs, Pauli bases, Pauli
observables and covariant measurements. Section 4 provides the algorithmic details neces-
sary for implementing the PLS estimator for the different measurement classes, including the
explicit expression of the LS estimator and the projection onto the space of states. The detailed
calculations and the proofs of the main theorems can be found in the appendices. Finally,
in section 5 we present simulation results showing that the statistical performance of PLS is
comparable to ML and compressed sensing for a range of states and measurements.

2. The projected least squares estimator

A measurement on a d-level system is described by d × d Hermitian matrices M1, . . . , Mm

∈ Hd that are positive semidefinite and obey
∑m

i=1 Mi = I. All measurements will be assumed
to be informationally complete, so that for every pair of distinct states ρ �= σ, there exists
i ∈ [m] = {1, . . . , m} such that tr(Miρ) �= tr(Miσ). Measuring a quantum state ρ results in one
of m outcomes, indexed by i ∈ [m]. The probability of observing outcome i depends on ρ and
is described by Born’s rule:

[p]i = Pr
[
i|ρ
]
= tr (Miρ) for i ∈ [m] . (1)

These probabilities can be estimated by the empirical frequencies: measure n identical copies
of the state separately, and set
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Table 1. Summary of the estimation technique.

Projected least squares (PLS) estimator ρ̂n

• Estimate probabilities by frequencies (2),
• Compute the least squares estimator (3),
• Project it onto the set of quantum states (4).

[ fn]i =
ni

n
for i ∈ [m] , (2)

where ni is the number of times outcome i was observed. Indeed by the law of large numbers,
[ fn]i → [p]i as n →∞. The least-squares (LS) estimator is the solution to the least-squares
problem that results from replacing the true probabilities in Born’s rule by frequencies (2):

L̂n = argmin
X∈Hd

m∑
i=1

(
[ fn]i − tr (MiX)

)2
. (3)

This optimization inverts the m linear equations specified by Born’s rule, and the solution has
the closed form expression (7) which will be discussed in more detail in section 4. In general, L̂n

can have negative eigenvalues, so it may fail to be a quantum state. Several ways to overcome
this drawback have been proposed [17, 21, 26–29].

In this paper we consider the projected least squares (PLS) estimator, which is obtained by
projecting L̂n onto the convex set of all quantum states with respect to the Frobenius distance

ρ̂n = argmin
σ is a quantum state

‖L̂n − σ‖2. (4)

The procedure for computing PLS is summarised in table 1.
The simplicity of PLS is a key advantage for both the analysis and the actual computation.

The least-squares estimator (3) admits a closed-form expression, while the projection onto the
set of quantum states (11) can be computed efficiently using a simple thresholding algorithm
which adjusts the eigenvalues of the LS estimator while leaving the eigenvectors unchanged
[27], as will be detailed in section 4. Hence, computing PLS requires considerably less stor-
age and arithmetic than existing techniques that are based on more complicated optimization
problems.

Below we discuss the statistical performance of PLS, and show that it exhibits a rank-
dependent risk reduction with respect to least squares which matches fundamental lower
bounds of [20].

3. Results

3.1. Error bounds and confidence regions for ρ̂n

We analyze several important and practically relevant measurement schemes: structured
POVMs (e.g. symmetrically informationally complete (SIC)–POVMs, mutually unbiased
bases (MUBs) and stabilizer states), (global) Pauli observables, Pauli basis measurements,
and the uniform/covariant POVM. For details on these measurement classes, and the com-
putation of the LS and PLS estimators we refer to section 4. Here we focus on explaining
the novel results and the key techniques used in establishing them. The following theorem
shows that the PLS estimator ρ̂n converges to the true state ρ in trace distance ‖ · ‖1 and
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provides rank-dependent concentration bounds for each measurement class and arbitrary
sample size n.

Theorem 1. (Error bound for ρ̂n) Let ρ ∈ Hd be a state and fix a number of samples n ∈ N.
Then, for each of the aforementioned measurements, the PLS estimator (table 1) obeys

Pr
[
‖ρ̂n − ρ‖1 � ε

]
� de

− nε2

43g(d)r2 for ε ∈ [0, 1] ,

where r = min {rank(ρ), rank(ρ̂n)} and g(d) specifies dependence on the ambient dimension:
g(d) = 2d for structured POVMs; see equation (8) for L̂n,
g(d) = d2 for Pauli observables; see equation (9) for L̂n,
g(d) � d1.6 for Pauli basis measurements; see equation (10) for L̂n.

The following immediate corollary endows ρ̂n with rigorous non-asymptotic error-bars in
trace distance.

Corollary 1. The trace-norm ball of size rank(ρ̂n)
√

43g(d)n−1 log
(
d/δ
)

around ρ̂n (inter-

sected with state space) is a δ-confidence region for the true state ρ.

We emphasize the following aspects of this result:

(a) (Almost) optimal sampling rate: theorem 1 highlights that

n � 43g(d)
rank(ρ)2

ε2
log

(
d
δ

)
(5)

samples suffice to ensure ‖ρ̂n − ρ‖1 � ε with probability at least 1 − δ. For structured
POVMs and Pauli observables, this sampling rate is comparable to the best theoretical
bounds for alternative tomography algorithms [11, 30]. Moreover, fundamental lower
bounds in [13, 20] indicate that this scaling is optimal up to a single log(d)-factor, so
it cannot be improved substantially.

(b) Implicit exploitation of (approximate) low rank: the number of samples required to achieve
a good estimator scales quadratically in the rank, rather than the ambient dimension d. This
behavior extends to the case where ρ, or ρ̂n, is well-approximated by a rank-r matrix; see
theorem 4 in appendix E. These results are comparable with guarantees for compressed
sensing methods [13] that are specifically designed to exploit low-rank. For numerical
confirmation we refer to figure 2, and other simulation results in section 5.

Proof sketch for theorem 1. The least-squares estimator L̂n can be viewed as a sum
of n independent random matrices. To illustrate this, consider a single measurement of the
structured POVM type. Then L̂1 defined in (8) is an instance of the random matrix X =
(d + 1)|vk〉〈vk| − I, where k ∈ [m] occurs with probability d

m〈vk|ρ|vk〉 (Born’s rule). This gen-
eralizes to L̂n = 1

n

∑n
i=1 Xi, where the matrices Xi are statistically independent. Such sums

of random matrices concentrate sharply around their expectation value EL̂n = ρ, and matrix
concentration inequalities [31] quantify this convergence:

Pr
[
‖ L̂n − ρ‖∞ � τ

]
� de−

3nτ2
8g(d) τ ∈ [0, 1] . (6)

This bound induces a similar operator norm bound for the PLS estimator: the projection is
a contraction in operator norm and the shift in eigenvalues is bounded by τ . The result-
ing bound ‖ρ̂n − ρ‖∞ � 2τ may be transformed into a trace-norm bound, as shown in
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appendix D. This comparison only depends on the (approximate) rank of the states involved.
We refer to appendix E for full details of the proof. �

3.2. Optimal performance guarantee for the uniform POVM

The upper bound in theorem 1 involves a dimension factor d that may be extraneous. This, in
turn, introduces an additional log(d)-gap between equation (5) and existing lower bounds [20].
The dimensional factors emerge because we employ matrix-valued concentration inequalities
in the proof. Our second main result shows that we can remove this factor for the uniform
POVM, which encompasses all rank-one projectors:

Theorem 2. (Convergence of ρ̂n for the uniform POVM) For uniform POVM measurements,
the PLS estimator obeys

Pr
[
‖ ρ̂n − ρ‖1 � ε

]
� e2.2d− ε2n

480r2 for ε > 0,

where r = min {rank(ρ), rank(ρ̂n)}.

This result exactly reproduces the best existing performance guarantees for tomography
from independent measurements [22]. The bound follows from standard techniques from high-
dimensional probability theory.

Proof sketch of theorem 2. Similarly to the proof of theorm 1, we first establish a (differ-
ent) concentration bound for the LS estimator L̂n with respect to the operator norm, and then
use the same arguments as in theorem 1 to convert this into a concentration bound for the PLS
with respect to the trace norm. The operator norm has a variational formulation:

‖L̂n − ρ‖∞ = max
z∈Sd

|〈z|L̂n − ρ|z〉|.

The optimization over the unit sphere may be replaced by a maximization over a finite point set,
called a covering net, whose cardinality scales exponentially in d. For any z ∈ Sd, 〈z|L̂n − ρ|z〉
is a sum of n i.i.d. random variables that exhibit subexponential tail decay. (Measuring the
uniform POVM allows us to draw this conclusion.) Standard concentration inequalities yield a
tail bound that decays exponentially in the number n of samples. Applying a union bound over
all points zi in the net then ensures Pr

[
‖L̂n − ρ‖∞ � τ

]
� 2ec1d−c2nτ2

. Subsequently, closeness
in operator norm for L̂n may be converted into closeness in trace-norm for ρ̂n at the cost of an
additional (effective) rank factor, cf appendix D. The details of the concentration bound for L̂n

can be found in appendix F.
�

4. Algorithmic considerations

4.1. Explicit solutions for the least squares estimator (3)

Tomographically complete measurements can be viewed as injective linear maps
M : Hd → Rm with components [M(X)]i = tr(MiX) specified by Born’s rule (1). It is
well known that the least-squares problem (3) admits the closed-form solution:

L̂n =
(
M†M

)−1 (M† ( fn)
)
. (7)

We evaluate this formula for different measurements and content ourselves with sketching key
steps and results. The details can be found in appendix B.
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4.1.1. Structured POVMs and the uniform POVM. Also known as two-designs, these systems
include highly structured, rank-one POVMs

{
d
m |vi〉〈vi|

}m

i=1
, such as symmetric information-

ally complete POVMs [32], maximal sets of mutually unbiased bases [33], the set of all stabi-
lizer states [34, 35], as well as the uniform POVM. By definition, for X ∈ Hd, all of the above
systems obey

M†M(X) =
d2

m

m∑
i=1

〈vi|X|vi〉|vi〉〈vi| =
md

d + 1
(X + tr(X)I) .

These equations can readily be inverted, and equation (7) simplifies to

L̂n = (d + 1)
m∑

i=1

[ fn]i|vi〉〈vi| − I. (8)

4.1.2. Pauli observables. Fix d = 2k (k qubits), and let W1, . . . , Wd2 ∈ Hd be the set of
Pauli observables, comprising all possible k-fold tensor products of the elementary 2 × 2
Pauli matrices. We can approximate the expectation value tr(Wiρ) of each Pauli observ-

able by the empirical mean μ̂i =
[

f +
n/d2

]
i
−
[

f −
n/d2

]
of the two-outcome POVM P±

i =

1
2 (I± Wi). Pauli matrices form a unitary operator basis, and the evaluation of equation (7) is
simple:

L̂n =
1
d

d2∑
i=1

μ̂iWi =
1
d

d2∑
i=1

([
f +
n/d2

]
i
−
[

f −
n/d2

]
i

)
Wi. (9)

4.1.3. Pauli basis measurements. Rather than approximating (global) expectation values, it
is possible to perform different combinations of local Pauli measurements. For d = 2k, there
are 3k potential combinations in total. Each of the settings�s ∈ {x, y, z}k corresponds to a basis
measurement |b(�s)

�o 〉〈b(�s)
�o |, where �o ∈ {±1}k labels the 2k potential outcomes. The union M of

all 3k bases obeys
(
M†M

)
(X) = 3kD

⊗
k

1/3 (X), where D1/3(X) = 1
3ρ+ (1 − 1

3 ) tr(X)
2 I denotes a

single-qubit depolarizing channel. Evaluating equation (7) yields

L̂n =
1
3k

∑
�s,�o

[
fn/3k

](�s)

�o

(
D

⊗
k

1/3

)−1 (
|b(�s)

�o 〉〈b(�s)
�o |
)
. (10)

Finally, we point out that all of these explicit solutions are guaranteed to have unit trace:
tr
(
L̂n

)
= 1. They are not positive semidefinite in general.

4.2. Explicit solutions for the projection step (4)

The PLS estimator is defined to be the state closest in Frobenius norm to the least-squares
estimator L̂n. The search (4) admits a simple, analytic solution [27]. Define the all-ones vec-
tor �1 ∈ Rd and the thresholding function [·]+ with components

[
�y
]+

i
= max

{[
�y
]

i
, 0
}

. Let

L̂n = U diag(�λ)U† be an eigenvalue decomposition. Then

ρ̂n = U diag

([
�λ− x0

�1
]+)

U†, (11)

6
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Figure 1. Comparison between PLS (blue) and maximumlikelihood (red) for 4-qubit
Pauli basis measurements: boxplots of trace distance error for ML vs PLS for 100
datasets generated with random states of rank 1, 5, 10 and 16, and 200 repetitions per
setting. Inset: trace distance error as a function of sample size for a pure target state.

where x0 ∈ R is chosen so that tr(ρ̂n) = 1. The fact that L̂n itself has unit trace ensures that this
solution to equation (4) is unique. The number x0 may be determined by applying a root-finding
algorithm to the non-increasing function f (x) = 2 + tr(L̂n) − dx +

∑d
i=1 |λi − x|.

4.3. Runtime analysis

The two steps discussed here are inherently scalable: just count frequencies to determine the LS
estimators (8)–(10) at a total cost of (at most) min {m, n}matrix additions. The subsequent pro-
jection onto state-space is a particular type of soft-thresholding. The associated computational
cost is dominated by the eigenvalue decomposition and has runtime (at most) O

(
d3
)
.

In summary, forming L̂n is the dominant cost of a naïve implementation. However, the high
degree of structure may allow us to employ techniques from randomized linear algebra [36] to
further reduce the cost.

5. Numerical experiments

We numerically compare the performance of PLS to maximum likelihood (ML) and com-
pressed sensing (CS), respectively. Additional numerical studies for MUBs can be found at
the end of this section.

5.1. PLS versus ML

Figure 1 compares ML and PLS for Pauli basis measurements in dimension d = 24. The trace-
norm error incurred by PLS is within a factor of two of ML for low-rank states. A more

7
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Figure 2. Comparison between PLS (blue) and Compressed Sensing (red): 5-qubit
Pauli observables and a (random) pure target state. CS was implemented with m = 256
randomly selected Pauli observables.

exhaustive simulation study comparing PLS with other ‘truncated’ estimators for a range of
states can be found in [25]. This confirms the statistical efficiency of PLS for the family of low
rank states which are the focus of this paper.

Computationally, the PLS is significantly faster than ML (implemented using Hradil’s
algorithm [1, 2]). While an exhaustive comparative analysis of the computational complex-
ity is beyond the scope of the paper, we can get a rough idea by noting that both PLS and ML
involve computing a sum of matrices over all outcomes (the LS estimator in the case of PLS
and the ‘R’ operator in the case of ML). For both estimators, this constitutes the most time-
consuming subroutine. However, this is done only once in the case of PLS (followed by the
projection which is relatively fast), while the ML needs to iterate the step a large number of
times to achieve convergence to the maximum. Another advantage of PLS is that the LS part
could in principle be computed online while the data is gathered, thus reducing the extra time
to that of computing the final projection step.

5.2. PLS versus CS

CS is a natural benchmark for low-rank tomography. The papers [11, 12] apply to Pauli observ-
ables, and they show that a random choice of m � Crd log6(d) Pauli observables is sufficient to
reconstruct any rank-r state. The actual reconstruction is performed by solving a convex opti-
mization problem, e.g. the least-squares fit over the set of quantum states [37, 38]. Numerical
studies from [13] suggest that m = 256 is appropriate for d = 25 and r = 1. Figure 2 shows
that PLS consistently outperforms the CS estimator in this regime. Importantly, PLS was also
much faster to evaluate than both, ML and CS.

8
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Figure 3. PLS convergence with MUB measurements: (d + 1) different MUB basis mea-
surements are used to estimate a pure target state. Error decay in the number of samples
per basis s seems to be almost independent of the ambient problem dimension d (different
colors). Inset: ordinary plot of the same data.

5.3. PLS for mutually unbiased bases

Maximal sets of mutually unbiased bases (MUBs) form a structured POVM (two-design) that
lends itself to numerical investigation. Efficient algebraic constructions of MUBs exist for
dimensions d = pk where p is a prime number and k is an arbitrary integer [39–41]. To further
underline the implicit advantage of low-rank we fix a prime dimension d and choose a pure
state uniformly from the Haar measure on the complex unit sphere in d dimensions. We com-
pute the outcome probabilities for each of the d + 1 different MUB measurements. We then
sample outcomes from each distribution a total of s = n

d+1 times and compute the estimator
ρ̂n associated with the total frequency statistics. Figure 3 shows the relation between recon-
struction error (in trace distance) and the number of samples per basis on a log–log -scale for
a range of different prime dimensions between d = 100 and d = 200. The significant overlap
between the graphs for different dimensions suggests that the rate of convergence scales as
d/n in terms of total sample size n = s(d + 1) and dimension d; if true, this would mean that
the additional log(d)-factor in the norm-one upper bound resulting from theorem 1 may not be
necessary, similarly to the upper bound in theorem 2 for uniform measurements. Whether this
is the case remains an open question.

6. Conclusion and outlook

Linear inversion is one of the oldest and simplest approaches to solve the practically important
task of quantum state tomography. In this work, we focused on related method called projected
least squares (PLS) that projects the least-squares estimator onto the set of all quantum states.
Not only is this estimator numerically cheap, but it comes with strong, non-asymptotic con-
vergence guarantees. These results are derived using concentration inequalities for sums of
random matrices, and they exploit the randomness inherent in quantum experiments.

9
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We showed that PLS is competitive, both in theory and in practice. For a variety of mea-
surements, the results match the best existing theoretical results for the sampling rate of
other tomography methods. In particular, for the uniform POVM, an order of r2d

ε2 samples
suffice to reconstruct any rank-r state up to accuracy ε in trace distance. This result also satu-
rates existing lower bounds [20] on the minimal sampling rate required for any tomographic
procedure with independent measurements. Numerical studies underline these competitive
features.

6.1. Outlook

Corollary 1 is not (yet) optimal. Bootstrapping could be used to obtain tighter confidence
regions, and the low computational cost of PLS may speed up this process considerably. It
also seems fruitful to combine the ideas presented here with recent insights from [42]. The
proof of theorem 1 indicates that PLS is stable with respect to time-dependent state genera-
tion (drift). Moreover, the general principle of PLS can be extended to the related problem of
process tomography. We intend to address these points in future work.
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Appendix A. Organisation of appendices

At the heart of this work is projected least squares (PLS)—a simple point estimator for quan-
tum state tomography from informationally complete measurements {M1, . . . , Mm} ⊂ Hd.
PLS is a three-step procedure:

(a) Estimate outcome probabilities by frequencies.
(b) Construct the least squares (linear inversion) estimator:

L̂n = argmin
X∈Hd

m∑
i=1

( fi − tr(MiX))2. (A.1)

(c) Project onto the set of all quantum states:

ρ̂n = argmin
σ is a quantum state

‖L̂n − σ‖2. (A.2)

We analyze the performance of PLS for a variety of concrete measurement scenarios: struc-
tured POVMs, Pauli observables, Pauli basis measurements and the uniform POVM. For each
of them, ρ̂n may be equipped with rigorous non-asymptotic confidence regions in trace dis-
tance. In this appendix, we complement the rather succinct presentation in the main text with
additional explanations, motivations and more detailed arguments.

10
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Outline: in appendix B we provide explicit least squares solutions (A.1) for the different mea-
surements. We also review essential features and properties of the individual scenarios to
provide context.

Appendix C contains the main conceptual insight of this work: least squares estimators
may be interpreted as sums of independent random matrices—the randomness is due to the
fundamental laws of quantum mechanics (Born’s rule). This allows us to apply strong matrix-
valued concentration inequalities to show that, with high probability, L̂n is close to the true
target state in operator norm.

Appendix D is devoted to showing that closeness of L̂n in operator norm implies closeness
of ρ̂n in trace norm.

We combine these two insights in appendix E to arrive at the main result of this work:
convergence guarantees for the PLS estimator in trace norm. The result derived there is a strict
generalization of the main result quoted in the main text. It extends to the notion of effective
rank which may be beneficial in concrete applications. We illustrate this potential benefit with
a caricature of a faulty state preparation apparatus.

In appendix F yet stronger convergence guarantees for the uniform POVM are derived. The
proof technique is completely different and we believe that it may be of independent interest
to the community.

Appendix B. Closed-form expressions for least squares estimators

As outlined in the main text, any POVM measurement can be viewed as a linear map
M : Hd → Rm, defined component-wise as [M(X)]i = tr(MiX) for i ∈ [m]. We will focus
our attention on injective, or tomographically complete, measurements. In this case, the least
squares estimator (A.1) admits a unique solution:

L̂n =
(
M†M

)−1M†( fn),

where fn ∈ Rm subsumes the individual frequency estimates. In this section, we evaluate this
formula explicitly for different types of prominent measurements.

B.1. The uniform POVM and two-designs

The uniform/covariant POVM in d-dimensions corresponds to the union of all (properly
re-normalized) rank-one projectors: {d|v〉〈v|dv}d

v∈S . Here, dv denotes the unique, unitarily
invariant, measure on the complex unit sphere induced by the Haar measure (over the uni-
tary group U(d)). Its high degree of symmetry allows for analyzing this POVM by means of
powerful tools from representation theory. This is widely known, see e.g. [43, 44], but we
include a short presentation here to be self-contained. Define the frame operator of order

k: F(k) =
∫
Sd

(
|v〉〈v|

)⊗ k
dv ∈ H

⊗
k

d . Unitary invariance of dv implies that this frame operator
commutes with every k-fold tensor product of a unitary matrix U ∈ U(d):

U
⊗

kF(k) =

∫
Sd

(
U|v〉〈v|

)⊗ k
dv =

∫
Sd

(
|ṽ〉〈ṽ|U

)⊗ k
dṽ = F(k)U

⊗
k.

Here, we have used a change of variables (ṽ= Uv) together with the fact that dv is unitarily
invariant (dṽ= dv). Schur’s lemma—one of the most fundamental tools in representation the-
ory—states that any matrix that commutes with every element of a given group representation
must be proportional to a sum of the projectors onto the associated irreducible representa-
tions (irreps). For the task at hand, the representation of interest is the diagonal representation

11
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of the unitary group: U �→ U
⊗

k for all U ∈ U(d). This representation affords, in general,
many irreps that may be characterized using Schur–Weyl duality. The symmetric subspace

Sym(k) ⊂
(
Cd
)⊗ k

is one of them and corresponds to the subspace of all vectors that are invari-
ant under permuting tensor factors. Crucially, F(k) is an average over rank-one projectors onto
vectors |v〉

⊗
k ∈ Sym(k) and, therefore, its range must be contained entirely within Sym(k).

Combining this with the assertion of Schur’s lemma then yields

F(k) =

∫
Sd

(
|v〉〈v|

)⊗ k
dv =

(
d + k − 1

k

)−1

PSym(k) k ∈ N, (B.1)

The pre-factor
( d+k−1

k

)−1
= dim

(
Sym(k)

)−1
follows from the fact that F(k) has unit trace.

This closed-form expression is very useful. In particular, it implies that the uniform POVM
{d|v〉〈v|}v∈Sd is almost an isometry. Fix X ∈ Hd and compute

(d + 1)
∫
Sd

d〈v|X|v〉|v〉〈v|dv =(d + 1)dtr1

(∫
Sd

(
|v〉〈v|

)⊗ 2
dv(X ⊗

I)

)

=2tr1
(
PSym(2) (X

⊗
I)
)

, (B.2)

where tr1(A⊗B) = tr(A)B denotes the partial trace over the first tensor factor. The projector
onto the totally symmetric subspace of two parties has an explicit representation: PSym(2) =
1
2 (I+ F), where F denotes the flip operator, i.e. F|x〉⊗ |y〉 = |y〉⊗ |x〉 for all |x〉, |y〉 ∈ C

d

and extend it linearly to the entire tensor product. Inserting this explicit characterization into
equation (B.2) yields

(d + 1)
∫
Sd

d〈v|X|v〉|v〉〈v|dv = tr1 ((I+ F) (X ⊗
I)) = X + tr (X) I. (B.3)

We emphasize that the full symmetry of the uniform POVM is not required to derive this
formula: equation (B.1) for k = 2 is sufficient. This motivates the following definition:

Definition 1 (Two-design). A (finite) set of m rank-one projectors {|vi〉〈vi|}m
i=1 is called

a (complex-projective) two-design if

1
m

m∑
i=1

(
|vi〉〈vi|

)⊗ 2
=

(
d + 1

2

)−1

PSym(2) .

Each two-design is proportional to a POVM M =
{

d
m |vi〉〈vi|

}m

i=1
. Clearly, each element

is positive semidefinite and d
m

∑m
i=1 |vi〉〈vi| = I follows from taking the partial trace of the

defining property. Viewed as maps M : Hd → Rm, these POVMs obey

M†M(X) =
d2

m2

m∑
i=1

〈vi|X|vi〉|vi〉〈vi| =
d (X + tr(X)I)

(d + 1)m
for X ∈ Hd.

This can be readily inverted

(
M†M

)−1
(X) =

m
d

((d + 1)X − tr(X)I) . (B.4)

12
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and the least-squares estimator becomes

L̂n =
(
M†M

)−1 (M†( f )
)
=
(
M†M

)−1

(
d
m

m∑
i=1

fi|vi〉〈vi|
)

=
m∑

i=1

fi

(
(d + 1)|vi〉〈vi| − tr

(
|vi〉〈vi|

)
I
)
= (d + 1)

m∑
i=1

fi|vi〉〈vi| − I (B.5)

for any frequency vector fn ∈ Rm. Mathematically, this is a consequence of the fact that two-
design POVMs ‘almost’ form a tight frame on Hd. The close connection to well-behaved,
tomographically complete, rank-one POVMs has spurred considerable interest in the identi-
fication of two-designs. Over the past decades, the following concrete examples have been
identified:

(a) Equiangular lines (SIC POVMs): a family of m unit vectors |v1〉, . . . , |vm〉 ∈ Sd is equian-
gular, if |〈vi, v j〉|2 is constant for all i �= j. The minimal cardinality of such a set is
m = d2 in which case the angle must be fixed: |〈vi, v j〉|2 = 1

d+1 . Such maximal sets of
equiangular lines are known to form two-designs [32] and have been termed symmetric,
informationally complete (SIC) POVMs. This nomenclature underlines the importance of
equation (B.3) for the original quantum motivation of the study of equiangular lines. While
several explicit constructions of SIC POVMs exist, the general question of their existence
remains an intriguing open problem.

(b) Mutually unbiased bases (MUBs): two orthonormal bases {|bi〉}d
i=1 and {|ci〉}d

i=1 of
Cd are mutually unbiased if |〈bi, c j〉|2 = 1

d for all 1 � i, j � d. The study of such mutu-
ally unbiased bases (MUBs) has a rich history in quantum mechanics that dates back to
Schwinger [45]. It is known that at most (d + 1) pairwise mutually unbiased bases can exist
in dimension d and explicit algebraic constructions are known for prime power dimen-
sions (d = pk). Klappenecker and Roettler [33] showed that maximal sets of MUBs are
guaranteed to form two-designs.

(c) Stabilizer states (STABs): the stabilizer formalism is one of the cornerstones of quantum
computation, fault tolerance and error correction, see e.g. [46]. Let Pk be the Pauli group
on k qubits (d = 2k), i.e. the group generated by k-fold tensor products of the elementary
Pauli matrices, I and iI. It is then possible to find maximal abelian subgroups S ⊂ Pk of
size d = 2k. Since all matrices W ∈ S commute, they can be simultaneously diagonalized
and determine a single unit vector which is the joint eigenvector with eigenvalue+1 of all
the matrices in S (provided that −I /∈ S). Such vectors are called stabilizer states (STAB)
and the groupS ⊂ Pk is its associated stabilizer group. A total of m = 2k

∏k
i=0

(
di + 1

)
=

2
1
2 k2+o(k) different stabilizer states can be generated this way. The union of all of them is

actually known to form a three-design [47–49] and, therefore, also a two-design. The latter
is also a consequence of earlier results [34, 35]

B.2. Pauli observables

For d = 2k, the Pauli matrices W1, . . . , Wd2 ∈ Hd arise from all possible k-fold tensor prod-
ucts of elementary Pauli matrices {I, σx, σy, σz} ⊂ H2. They are well-known to form a unitary
operator basis:

X =
1
d

d2∑
i=1

tr (WiX) Wi, (B.6)
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for all X ∈ Hd. While they do constitute observables, Pauli matrices by themselves are not
POVMs. However, every observable Wi may be associated with a two-outcome POVM Mi ={

P±
i

}
=
{

1
2 (I± Wi)

}
. The union

⋃d2

i=1 Mi of all these two-outcome POVMs constitutes a
linear map M : Hd → R2 m that obeys

M†M(X) =
d2∑

i=1

∑
o=±

tr
(
Po

i X
)

Po
i =

d2∑
i=1

1
2

(tr(X)I+ tr(WiX)Wi) =
1
2

(
d2tr(X)I+ X

)
,

where the equality follows from equation (B.6). Once more, this expression can be readily
inverted:

(
M†M

)−1
(X) =

2
d

X − 2tr(X)
d2 + 1

I.

Before we continue, we note that one Pauli matrix is equal to the identity, say W1 = I, and
the associated POVM is trivial. Hence, we suppose that n copies of ρ are distributed equally
among all d2 − 1 non-trivial two-Outcome POVMs Mi. We denote the resulting frequencies
by [ f ]±i and suppress the dependence on the number of samples. Then, the explicit solution to
the least squares problem becomes

L̂n =
(
M†M

)−1 (M†( fn)
)
=
(
M†M

)−1
(I) +

d2∑
i=2

∑
o=±

[ f ]o
i

(
M†M

)−1 (
Po

i

)

=
2

d(d2 + 1)
I+

d2∑
i=2

[ f ]+i

(
1
d

(I+ Wi) −
d

d2 + 1
I

)
+

d2∑
i=2

[ f ]−i

(
1
d

(I− Wi) −
d

d2 + 1

)

=
1
d

d2∑
i=2

(
[ f ]+i − [ f ]−i

)
Wi +

2 +
∑d2

i=2

(
[ f ]+i + [ f ]−i

)
d(d2 + 1)

I.

We can simplify this expression further by noticing that each two-outcome POVM is
dichotomic: either + or − is observed for every run. This implies [ f ]+i + [ f ]−i = 1 and, by

extension,
∑d2

i=2

(
[ fi]

+
i + [ fi]−i

)
= d2 − 1. Hence,

L̂n =
1
d

d2∑
i=2

(
[ f ]+i − [ f ]−i

)
Wi +

1
d
I =

1
d

d2∑
i=1

(
[ f ]+i − [ f ]−i

)
Wi, (B.7)

because [ f ]+1 = 1. This is the formula from the main text and has a compelling interpre-
tation: the difference μ̂i = [ fi]

+
i − [ fi]−i is an empirical estimate for the expectation value

μi = tr (WiX) of the ith Pauli observable. Finally, note that this estimator is again unbiased
with respect to random fluctuations in the sample statistics:

E
[
L̂n

]
=

1
d

d∑
i=1

tr (Wiρ) Wi = ρ. (B.8)

B.3. Pauli basis measurements

Before considering the general case, we find it instructive to consider the single qubit case
in more detail. For now, fix d = 2 and note that there are three non-trivial Pauli matrices σs
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with s ∈ {x, y, z}. We may associate each σs with a two-outcome POVM that is also a basis
measurement: 1

2 (I± σs) = |b(s)
± 〉〈b(s)

± |. For s �= s′

∣∣∣〈b(s)
± , b(±)

o′ 〉
∣∣∣2 =

1
4

tr ((I± σs) (I± σs′ )) =
1
2

,

because σs, σs′ and σsσs′ have vanishing trace. This implies that the six vectors |b(s)
o 〉〈b(s)

o | with
o ∈ {±1} form a maximal set of 3 = (d + 1) mutually unbiased bases. Such vector sets form
spherical two-designs and equation (B.3) ensures for any X ∈ Hd

∑
s,o

〈b(s)
o |X|b(s)

o 〉|b(s)
o 〉〈b(s)

o | = X + tr(X)I = 3

(
1
3

X +
2
3

tr(X)
2

I

)
= 3D1/3(X).

(B.9)

Here, D1/3(X) = 1
3 X + (1 − 1

3 ) tr(X)
2 I denotes a single-qubit depolarizing channel with loss

parameter p = 1
3 .

This behavior extends to multi-qubit systems, i.e. d = 2k. Suppose that we perform k local
(single-qubit) Pauli measurements on a k-qubit state ρ ∈ Hd. Then, there are a total of k poten-
tial combinations that we label by a string �s = (s1, . . . , sk) ∈ {x, y, z}k. Each of them corre-
sponds to a POVMM(�s) with 2k = d outcomes that we label by�o = (o1, . . . , ok) ∈ {±1}k. The
POVM element associated with index�s and outcome�o has an appealing tensor-product struc-
ture: |b(�s)

�o 〉〈b(�s)
�o | =

⊗k
i=1 |b(si)

oi
〉〈b(si)

oi
|. Let M =

⋃
�sM(�s) : Hd → R3k × R2k

denote the union of
all such basis measurements. Then, the following formula is true for tensor product matrices
X =

⊗k
i=1 Xi and Xi ∈ H2:

M†M(X) =
∑
�s,�o

〈b(�s)
�o |X|b(�s)

�o 〉|b(�s)
�o 〉〈b(�s)

�o | =
k⊗

i=1

(∑
si ,oi

〈b(si)
oi
|Xi|b(si)

oi
〉|b(si)

oi
〉〈b(si)

oi
|
)

= 3k
k⊗

i=1

D(Xi) = 3kD
⊗

k
1/3 (X), (B.10)

where we have used equation (B.9). Linear extension ensures that this formula remains valid
for arbitrary matrices X ∈ Hd. Since the single qubit depolarizing channel is invertible, the
same is true for its k-fold tensor product and we conclude

(
M†M

)−1
(X) =

1
3k

(
D

⊗
k

1/3

)−1
(X).

Inserting this explicit expression into the closed-form expression for the least squares estimator
yields

L̂n =
(
M†M

)−1
(
M†(�f )

)
=

1
3k

∑
�s,�o

[ f ](�s)
�o

(
D

⊗
k

1/3

)−1 (
|b(�s)

�o 〉〈b(�s)
�o |
)

,

as advertised in the main text. Here, [ f ](�s)
�o is assumed to be a frequency approximation to

p�(s)
o = 〈b(�s)

�o |ρ|b(�s)
�o 〉.

We conclude this section with a single-qubit observations that allows for character-
izing this expression in a more explicit fashion. Note that one may rewrite D1/3(X) as
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tr(X)
2 I+ 1

6

∑
str (σsX)σs. This facilitates the computation of the single-qubit inverse:

D−1
1/3 (X) =

tr(X)
2

I+
3
2

∑
s

tr (σsX)σs

and, in particular

D−1
1/3

(
|b(s)

± 〉〈b(s)
± |
)
=

1
2

(
D−1(I) ±D−1(σs)

)
=

1
2

(I± 3σs) = 3|b(s)
± 〉〈b(s)

± | − I.

This ensures

L̂n =
1
3k

∑
�s,�o

[ f ](�s)
�o

k⊗
i=1

(
3|b(si)

oi
〉〈b(si)

oi
| − I

)
. (B.11)

which, again, is an unbiased estimator with respect to random fluctuations in the sample
statistics.

Finally, we also point out another consequence that will be important later on:

(
D−1

1/3

(
|b(s)

o 〉〈b(s)
o |
))2

= 5D3/5

(
|b(s)

o 〉〈b(s)
o |
)

, (B.12)

where D3/5 is another single-qubit depolarizing channel.

Appendix C. The matrix Bernstein inequality and concentration in operator
norm

Scalar concentration inequalities provide sharp bounds on the probability of a sum of inde-
pendent random variables deviating from their mean. Classical examples include Hoeffding’s,
Chernoff’s and Bernstein’s inequality—all of which have found widespread use in a variety
of scientific disciplines. The main results of this work are based on a matrix generalizations of
these classical statements—in particular the matrix Bernstein inequality developed by one of
the authors, see [31, theorem 1.4].

Theorem 3 (Matrix Bernstein inequality). Consider a sequence of n independent,
Hermitian random matrices A1, . . . , An ∈ Hd. Assume that each Ai satisfies

E [Ai] = 0 and ‖Ai‖∞ � R almost surely.

Then, for any t > 0

Pr

[∥∥∥∥∥
n∑

i=1

(Ai − E [Ai])

∥∥∥∥∥
∞

� t

]
�

⎧⎪⎪⎨
⎪⎪⎩

d exp

(
− 3t2

8σ2

)
t � σ2

R
,

d exp

(
− 3t

8R

)
t � σ2

R
,

where σ2 =
∥∥∑n

i=1E
[
A2

i

]∥∥
∞.

First results of this kind originate in Banach space theory [50–53] and were later indepen-
dently developed in quantum information theory [54, 55]. Further advances by Oliveira [56]
and one of the authors [31] led to the result that we employ here. We refer to the monograph
[31] for a detailed exposition of related work and history.
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Similar to the scalar Bernstein inequality, the tail behavior in theorem 3 consists of two
regimes. Small deviations are suppressed in a subgaussian fashion, while larger deviations
follow a subexponential decay. The ratio σ2

R marks the transition from one regime into the
other. We also note in passing that this result recovers the scalar Bernstein inequality for d = 1
(H1 � R).

C.1. Concentration for structured POVM measurements

For structured measurements (two-designs) we may rewrite the (plain) least squares estimator
(B.5) as

L̂n = (d + 1)
m∑

i=1

[ fn]i|vi〉〈vi| − I =
1
n

n∑
i=1

Xi,

where each Xi is an i.i.d. copy of the random matrix X ∈ Hd that assumes (d + 1)|vk〉〈vk| − I

with probability d
m〈vk|ρ|vk〉 for all k ∈ [m]. Unbiasedness with respect to the sample statis-

tics ensures E
[
L̂n

]
= E [X] = ρ. Hence, L̂n − ρ is a sum of i.i.d., centered random matrices

1
n (Xi − E [Xi]). These obey

1
n
‖Xi − E [Xi]‖∞ =

1
n
‖(d + 1)|vk〉〈vk| − I− ρ‖∞ � d

n
= : R,

where k ∈ [m] is arbitrary. Next, note that the random matrix X obeys

E
[
(X − E [X])2

]
= E

[
X2
]
− E[X]2 = E

[
X2
]
− ρ2

and also

E
[
X2
]
=

m∑
k=1

d
m
〈vk|ρ|vk〉

(
(d + 1)|vk〉〈vk| − I

)2
=

d(d2 − 1)
m

m∑
k=1

〈vk|ρ|vk〉|vk〉〈vk|+ I

=(d − 1) (ρ+ I) + I,

according to equation (B.3). This allows us to bound the variance parameter:∥∥∥∥∥
n∑

i=1

E

[
1
n

(X − E [X])

]2
∥∥∥∥∥
∞

=
1
n

∥∥(d − 1)ρ+ dI− ρ2
∥∥
∞ � 2d

n
= :σ2.

The ratio σ2

R = 2 indicates that any choice of τ ∈ [0, 2] will fall into the subgaussian regime
of the matrix Bernstein inequality and theorem 3 yields

Pr
[∥∥L̂n − ρ

∥∥
∞ � τ

]
= Pr

[∥∥∥∥∥1
n

n∑
i=1

(Xi − E [Xi])

∥∥∥∥∥
∞

� τ

]
� de−

3τ2n
16d . (C.1)

C.2. Concentration for (global) Pauli observables

We assume that the total number of samples n is distributed equally among the d2 different
Pauli measurements. Similar to before, unbiasedness (B.8) and the explicit characterization of
the LI estimator (B.7) allow us to write
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L̂n − ρ =
d2∑

k=1

1
n

n/d2∑
i=1

(
X(k)

i − E

[
X(k)

i

])
.

Here, each X(k)
i is an independent instance of the random matrix X(k) = ±dWk with proba-

bility 1
2 (1 ± tr(Wkρ)) each. This is a sum of centered random matrices that are independent,

but in general not identically distributed. However, independence alone suffices for applying
theorem 3. We note in passing that this would not be the case for earlier (weaker) versions of
the matrix Bernstein inequality. Bound

1
n

∥∥∥X(k)
i − E

[
X(k)

i

]∥∥∥
∞

=
d
n
‖(1 ± tr (Wiρ)) I‖∞ � 2d

n
= : R

and useE
[
(X − E [X])2

]
� E

[
X2
]

(in the positive semidefinite order) to considerably simplify
the variance computation:

d2

n

∥∥∥∥∥∥
d2∑

k=1

E

[(
X(k)
)2
]∥∥∥∥∥∥

∞

=
1
n

∥∥∥∥∥∥
d2∑

k=1

I

∥∥∥∥∥∥
∞

=
d2

n
= :σ2,

because
(
X(k)
)2

= 1
d2 I. Applying theorem 3 yields

Pr
[∥∥L̂n − ρ

∥∥
∞ � τ

]
� de−

3τ2 ñ
8 τ ∈

[
0, d/2

]
.

C.3. Concentration for Pauli-basis measurements

Once more, we assume that the total budget of samples n is distributed equally among all 3k

Pauli basis choices. Unbiasedness of the LI estimator together with the explicit description
(B.11) allows us to once more interpret L̂n − ρ as a sum of independent, centered random
matrices:

L̂n − ρ =
∑
�s

1
n

n/3k∑
i=1

(
X(�s)

i − E

[
X(�s)

i

])
.

For each�s ∈ {x, y, z}k, X(�s)
i is an independent copy of the random matrix

X(�s) =

k⊗
i=1

(
3|b(si)

oi
〉〈b(si)

oi
| − I

)

with probability 〈b(�s)
�o |ρ|b(�s)

�o 〉 for each �o ∈ {±1}k. Jensen’s inequality implies

1
n

∥∥X(�s) − E
[
X(�s)
]∥∥

∞ � 2
n

∥∥X(�s)
∥∥
∞ =

2
n

k∏
i=1

∥∥3|b(si)
oi
〉〈b(si)

oi
| − I

∥∥
∞ =

2k+1

n
= : R.

For the variance, we once more use E
[
(X − E[X])2

]
� E

[
X2
]

and compute
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1
n

∑
�s

E
(
X(�s)
)2

=
∑
�s,�o

〈b(�s)
�o |ρ|b(�s)

�o 〉
k⊗

i=1

(
D−1

(
|b(�s)

�o 〉〈b(�s)
�o |
))2

=
∑
�s

∑
�o

〈b(�s)
�o |ρ|b(�s)

�o 〉
k⊗

i=1

5
3
D3/5

(
|b(�s)

�o 〉〈b(�s)
�o |
)

=5kD
⊗

k
3/5

(
1
3k

∑
�s,�o

〈b(�s)
�o |ρ|b(�s)

�o 〉|b(�s)
�o 〉〈b(�s)

�o |
)

=5kD
⊗

k
3/5

(
D

⊗
k

1/3 (ρ)
)
=

5k

n
D

⊗
k

1/5 (ρ),

where we have used equation (B.12) and the fact that the combination of two depolarizing
channels is again a depolarizing channel. This expression can be evaluated explicitly. For
α ⊂ [k], let trα(ρ) denote the partial trace over all indices contained in α. Then, for
X =

⊗k
j=1 X j ∈ Hd

5kD
⊗

k
1/5

⎛
⎝ k⊗

j=1

X j

⎞
⎠ =

k⊗
j=1

(
tr(X j)I+ X j

)
=
∑
α⊂[k]

2|α|trα(X)⊗
I

⊗
α

and this extends linearly to all of Hd � H

⊗
k

2 . Consequently,∥∥∥∥∥1
n

∑
�s

E

[(
X(�s)
)2
]∥∥∥∥∥

∞

=
1
n

∥∥∥∥∥
∑
α⊂[k]

2|α|trα(ρ)⊗
I

⊗
α

∥∥∥∥∥
∞

� 1
n

∑
α⊂[k]

2|α|‖trα(ρ)‖∞
∥∥∥I⊗α

∥∥∥
∞

�1
n

∑
α⊂[k]

2|α| =
1
n

k∑
j=0

(
k
j

)
2 j =

(2 + 1)k

n
=

3k

n
= :σ2.

This estimate is actually tight for pure product states of the form ρ = (|ψ〉〈ψ|)
⊗

k. We may
now apply theorem 3 to conclude

Pr
[∥∥L̂n − ρ

∥∥
∞ � τ

]
� d exp

(
− 3nτ 2

8 × 3k

)
τ ∈ [0, 1] .

Appendix D. Conversion of confidence regions from operator norm to trace
norm

The final ingredient for the framework presented in this manuscript is a reliable way to trans-
form operator-norm closeness of the (plain) least squares estimator L̂n into a statement about
closeness of the PLS estimator ρ̂n in trace distance. Recall that the optimization problem (A.2)
admits an analytic solution [27]. Let U diag(�λ)U† be an eigenvalue decomposition of L̂n. Then,

ρ̂n = U diag

([
�λ− x0

�1
]+)

U†, (D.1)

where x0 is chosen such that tr(ρ̂n) = 1 and
[
�y
]+

i
= max

{[
�y
]

i
, 0
}

denotes thresholding on

non-negative components. This solution is unique, provided that tr
(
L̂n

)
= 1, which is the case

for all the least squares estimators we consider.
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The conversion from closeness in operator norm to closeness in trace norm will introduce
a factor that is proportional to the effective rank of the density matrix ρ, rather than a full
dimensional factor. For r ∈ N, we define the best rank-r approximation ρr of a quantum state
ρ ∈ Hd as the optimal feasible point of

σr(ρ) = minimize
rank(Z)�r

‖ρ− Z‖1. (D.2)

This problem can be solved analytically. Let ρ =
∑d

i=1 λi|xi〉〈xi| be an eigenvalue decomposi-
tion with eigenvalues arranged in non-increasing order. Then,

Z� =

r∑
i=1

λi|xi〉〈xi|, and σr(ρ) =
d∑

i=r+1

λi = 1 − tr(ρr),

highlighting that the best rank-r approximation is simply a truncation onto the r largest contri-
butions in the eigenvalue decomposition. This truncated description is accurate if the residual
error σr(ρ) is small. If this is the case it is reasonable to say that ρ is well approximated by a
rank-r matrix Z� and has effective rank r.

Proposition 1. Suppose that L̂n ∈ Hd obeys tr
(
L̂n

)
= 1 and ‖L̂n − ρ‖∞ � τ for some

quantum state ρ ∈ Hd and τ � 0. Then, for any r ∈ N the PLS estimator ρ̂n obeys

‖ρ̂n − ρ‖1 � 4rτ + 2 min {σr(ρ), σr (ρ̂n)} ,

where σr(ρ) is defined in equation (D.2).

The statement readily follows from combining two auxiliary results. The first one states that
the threshold value x0 in the analytic solution of ρ̂n must be small if L̂n is operator-norm close
to a quantum state.

Lemma 1. Instantiate the assumptions from proposition 1. Then, the threshold value in
equation (D.1) obeys x0 ∈ [0, τ ].

Proof. By assumption L̂n has unit trace. If it is in addition psd, ρ̂n = L̂n, because L̂n is
already a quantum state and the projection is trivial (x0 = 0) Otherwise, L̂n is indefinite and
unit trace ensures that the positive part dominates. Hence, x0 must be strictly positive to enforce
tr(ρ̂n) = 1.

For the upper bound, let P ∈ Hd denote the orthogonal projection onto the range of ρ̂n.
Then, ρ̂n = P

(
L̂n − x0I

)
P = PL̂nP − x0P, according to equation (D.1). In semidefinite order,

this implies

ρ̂n = P(L̂n − ρ)P − x0P + PρP �
(
‖L̂n − ρ‖∞ − x0

)
P + PρP � (τ − x0) P + PρP,

where the last line follows from the assumption ‖L̂n − ρ‖∞ � τ . The trace preserves semidef-
inite order and we conclude

0 � tr (ρ̂n) − tr (PρP) � (τ − x0) tr (P)

which implies an upper bound of τ , because tr(P) > 0. �

The second technical lemma generalizes a result that is somewhat folklore in quantum infor-
mation theory: the ‘effective rank’ of a difference of two quantum states is proportional to the
minimal rank of the two density operators involved.
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Lemma 2. Fix r ∈ N and let ρ, σ ∈ Hd be quantum states. Then,

‖ρ− σ‖1 � 2r‖ρ− σ‖∞ + 2 min {σr(ρ), σr(σ)} ,

where the residual error σr(·) was defined in equation (D.2).

Proof. We can without loss of generality assume σr(ρ) � σr(σ). Decompose ρ into
ρr + ρc, where ρr is the best rank-r approximation (D.2) and ρc = ρ− ρr denotes the ‘tail’.
By construction, both ρr and ρc are positive semidefinite matrices that obey σr(ρ) = tr(ρc) =
1 − tr(ρr). The triangle inequality then implies

‖ρ− σ‖1 � ‖ρr − σ‖1 + σr(ρ),

because ‖ρc‖1 = σr(ρ). Next, let P+, P− ∈ Hd be the projections onto the positive and non-
positive ranges of ρr − σ. By construction, P+ has rank at most rank(ρr) = r and the trace
norm equals

‖ρr − σ‖1 = tr
(
P+(ρr − σ)

)
− tr (P−(ρr − σ)) .

On the other hand,

σr(ρ) = tr(σ − ρr) = −tr
(
P+(ρr − σ)

)
− tr (P−(ρr − σ)) ,

because P+ + P− = I. Combining both relations yields

‖ρr − σ‖1 = 2tr
(
P+(ρr − σ)

)
+ σr(ρ) � 2tr

(
P+(ρ− σ)

)
+ σr(ρ)

� 2‖P+‖∞‖ρ− σ‖1 + σr(ρ),

where we have used tr(P+ρc) � 0 and Hoelder’s inequality. Finally, note that ‖P+‖1 =
rank(P+) = r by construction and the claim follows. �

The main result of this section is a rather straightforward combination of these two technical
statements.

Proof of proposition 1. Fix r ∈ N and use, lemma 2 to conclude

‖ρ̂n − ρ‖1 � 2r‖ρ̂n − ρ‖∞ + 2 min {σr(ρ), σr (ρ̂n)} .

Next, note that according to (D.1), ρ̂n may be viewed as the positive definite part of the matrix
L̂n − x0I. Such a restriction to the positive part can never increase the operator norm distance
to another positive semidefinite matrix. Hence,

‖ρ̂n − ρ‖∞ � ‖L̂n − ρ‖∞ + |x0|‖I‖∞ � 2τ ,

where the last inequality follows from lemma 1. �

Appendix E. Proof of the main result

By now we have everything in place to provide a complete proof of the main result of this
work.

Theorem 4. Let ρ ∈ Hd be a state. Suppose that we either perform n structured POVM
measurements (set g(d) = 2d), n Pauli observable measurements (set g(d) = d2), or n Pauli
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basis measurements (set g(d) = d1.6). Then, for any r ∈ N and ε ∈ [0, 1],the PLS estimator ρ̂n

(A.2) obeys

Pr
[
‖ρ̂n − ρ‖1 � ε+ 2 min {σr(ρ), σr(ρ̂n)}

]
� de

− nε2

43g(d)r2 ,

where σr(ρ), σr(ρ̂n) denote the residual error of approximating ρ and ρ̂n by a rank-r matrix
(D.2).

Note that theorem 1 in the main text is an immediate consequence of this more general
result: simply set r = min {rank(ρ), rank(ρ̂n)} which in turn ensures min {σr(ρ), σr(ρ̂n)} = 0.

However, unlike this specification, theorem 4 does feature an additional degree of freedom.
The parameter r ∈ N allows for interpolating between small values (small sampling rate, but
a potentially large reconstruction error) and large values (high sampling rate, but low recon-
struction error). This tradeoff is particulary benign for quantum states that are approximately
low-rank. Due to experimental imperfections, such states arise naturally in many experiments
that aim at generating a pure quantum state. We illustrate this by means of the following cari-
cature of a faulty state preparation protocol. Suppose that an apparatus either produces a target
state |ψ〉〈ψ| perfectly, or fails completely, in the sense that it outputs a maximally mixed state.
Then, the resulting state is

ρ = (1 − p)|ψ〉〈ψ|+ p
d
I,

where p ∈ [0, 1] denotes the probability of failure. This state has clearly full rank.
Theorem 1 in the main text requires at least n � 43 g(d)d2

ε2 log(d/δ) samples to estimate it up
to trace-norm accuracy ε with high probability. In contrast, theorem 4 ensures that already
n � 43 g(d)

ε2 log(d/δ) samples suffice to ensure that, with high probability, the PLS estimator
obeys ‖ρ̂n − ρ‖1 � ε+ 2p. For sufficiently high success probabilities/low accuracy (ε � 2p/d)
this outperforms the original statement.

Proof of theorem 4. We illustrate the proof for structured POVMs—the other settings
are completely analogous. Fix ε ∈ [0, 1], r ∈ N and set τ = ε

4r . Then, the main result of
appendix C.1–equation (C.1)—ensures that the least squares estimator L̂n obeys

∥∥L̂n − ρ
∥∥
∞ � τ =

ε

4r
(E.1)

with probability of failure bounded by de−
ε2n

86dr2 . Assuming that this condition is true,
proposition 1 readily yields ‖ρ̂n − ρ‖1 � ε+ 2 min {σr(ρ), σr(ρ̂n)}. �

Appendix F. Improved convergence guarantees for the uniform POVM

All the convergence results derived so far feature an additional log(d)-factor. This is a conse-
quence of the matrix Bernstein inequality that proved instrumental in deriving these results.
One can show that such an additional factor necessarily features in all matrix concentration
inequalities that are based on exclusively first and second moments of the random matrices in
question [57].

However, the following question remains: is this log(d)-factor an artifact of the proof
technique, or is it an intrinsic feature?
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In this section we rule out the second possibility: a different proof technique allows for
avoiding this log(d)-factor, provided that the POVM is sufficiently symmetric and well-
behaved. More precisely, we re-visit the uniform POVM {d|v〉〈v|dv}v∈Sd and exploit the fact
that equation (B.1) completely characterizes all moments of the resulting outcome distribu-
tion. This opens the door for applying very strong proof techniques from large dimensional
probability theory that found wide-spread applications in a variety of subjects, including com-
pressed sensing [58] and, more recently, quantum information theory [59]. We believe that this
technique may be of independent interest and find it therefore worthwhile to present it in a
self-contained fashion. Roughly speaking, it is based on the following steps:

(a) Reformulation: the operator norm of a random Hermitian matrix A ∈ Hd admits a
variational definition:

‖A‖∞ = max
y∈Sd

|〈y|A|y〉| . (F.1)

(b) Discretization: replace the maximization over the entire complex unit sphere Sd by a max-
imization over a finite point set N that covers Sd to sufficiently high accuracy (covering
net).

(c) Concentration: fix y ∈ N and show that the scalar random variable sy = 〈y|A|y〉 concen-
trates sharply around its expectation value.

(d) Union bound: apply a union bound over all |N | random variables sy to obtain an upper
bound on the operator norm ‖A‖∞.

Ideally the tail bound from (d) is sharp enough to ‘counter-balance’ the |N |-pre-factor that
results from the union bound in step (iv). Should this be not the case, more sophisticated meth-
ods, like generic chaining [60], may still allow for drawing non-trivial conclusions. Fortunately,
for the task at hand, this turns out to not be necessary and the rather naive strategy sketched
above suffices to achieve a result that is (provably) optimal up to a constant factors:

Theorem 5. Suppose that we perform n independent uniform POVM measurements on a
quantum state ρ ∈ Hd. Then, the associated least squares estimator L̂n obeys

Pr
[∥∥L̂n − ρ

∥∥
∞ � τ

]
� 2 exp

(
c1d − c2nτ 2

)
,

In particular, n � C d
τ2 log(1/δ) suffices to ensure ‖L̂n − ρ‖∞ � τ with probability at least

1 − δ. Here c1, c2, C > 0 denote constants of sufficient size.

No effort has been made to optimize the constants. The proof presented here yields c1 = 2
log(3) and c2 =

1
480 which could be further improved by a more careful analysis. Importantly,

the second part of this statement can be combined with proposition 1 to readily deduce the last
technical result of the main text:

Corollary 2. (Re-statement of theorem 5). For any rank-r state ρ, a number of
n � C r2d

ε2 log(1/δ) uniform POVM measurements suffice to ensure ‖ρ̂�(n) − ρ‖1 � ε with prob-
ability at least 1 − δ.

Not only does this statement reproduce the best known sampling rates for tomography
with independent measurements [22], it also exactly matches lower bounds on the minimal
sample complexity associated with any tomographic procedure that may apply in this setting
[20, table 1].

The remainder of this section is dedicated to proving theorem 5. For the sake of accessibility,
we will divide this proof into three subsections that contain the steps summarized above.
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F.1. Step I: reformulation and discretization

Suppose that we perform n uniform POVM measurements on a fixed quantum state ρ ∈ Hd.
Then, the least squares estimator is equivalent to a sum of i.i.d. random matrices:

L̂n =
1
n

n∑
i=1

Xi.

Each Xi is an independent copy of the random matrix X that assumes the value (d + 1)|v〉〈v| − I

with probability d〈v|ρ|v〉dv and v may range over the entire complex unit sphere. Unbiasedness
of this estimator in turn implies

‖L̂n − ρ‖∞ =

∥∥∥∥∥1
n

n∑
i=1

(Xi − E [Xi])

∥∥∥∥∥
∞

= max
y∈Sd

∣∣∣∣∣〈y|1n
n∑

i=1

(Xi − E [Xi]) |y〉
∣∣∣∣∣ .

Next, we employ a result that is somewhat folklore in random matrix theory, see e.g. [61,
lemma 5.3]. It states that the maximum over the entire unit sphere may be replaced by a max-
imum over certain finite point sets, called covering nets: a covering-net of Sd with fineness
θ > 0 is a finite set of unit vectors {z j}N

j=1 ⊆ Sd that covers the entire (complex) unit sphere

in the sense that every y ∈ Sd is at least θ-close to a point in the net.

Lemma 3. Let Nθ = {z j}N
j=1 be a covering net of Sd with fineness θ. Then, for any matrix

A ∈ Hd:

max
j∈[N]

|〈z j|A|z j〉| � ‖A‖∞ � 1
1 − 2θ

max
j∈[N]

|〈z j|A|z j〉| .

This result highlights that already a rather coarse net suffices to get reasonable approx-
imations to the operator norm. Here, we choose θ = 1

4 which, while certainly not optimal,
simplifies exposition. In particular,

∥∥L̂n − ρ
∥∥
∞ � 2 max

j∈[N]

∣∣∣∣∣∣
1
n

n∑
j=1

〈z j|Xi − E [Xi] |z j〉

∣∣∣∣∣∣ , (F.2)

where the maximization is over a covering net of fineness θ = 1
4 .

F.2. Step II: concentration

Note that the right hand side of equation (F.2) corresponds to a maximum over N different
random variables—each of them labeled by a unit vector zj in the net. Let z ∈ Sd be such a
vector. Then, the associated random variable itself corresponds to an empirical average of n
i.i.d. variables:

sz = 〈z|X − E [X] |z〉.

Clearly, sz obeysE [sz] = 0 and, more importantly, has sub-exponential moment growth. While
this follows directly from the fact that sz is bounded, the following result highlights that this
tail-behavior is actually independent of the ambient dimension.

Lemma 4. Fix z ∈ Sd. Then for any integer p � 2, the random variable sz obeys

E
[
|sz|p
]

� 27 × 6p−2 p!
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We divert the proof of this statement to the end of this section and content ourselves
with emphasizing that the closed form expression of the frame operator (B.1) is essential
for bounding all moments simultaneously. More relevant to the task at hand is that such a
moment behavior ensures that the tails of the distribution of sz follow an exponential decay:
Pr
[
|sz| � t

]
� e−ct, where c is a constant independent of the dimension d. Strong classical

concentration inequalities apply for sums of i.i.d. random variables that exhibit such sub-
exponential behavior. We choose to apply a rather general version of the classical Bernstein
inequality, see e.g. [58, theorem 7.30].

Theorem 6. Let s1, . . . , sn ∈ R i.i.d. copies of a mean-zero random variable s that obeys
E
[
|s|p
]

� p!Rp−2σ2/2 for all integers p � 2, where R, σ2 > 0 are constants. Then, for all
t > 0,

Pr

[∣∣∣∣∣
n∑

i=1

si

∣∣∣∣∣ � t

]
� 2 exp

(
− t2/2

nσ2 + Rt

)
.

Lemma 4 ensures that the random variable sz meets this requirement with σ2 = 54 and
R = 6. Hence, the following corollary is an immediate consequence of theorem 6.

Corollary 3. Fix z ∈ S
d. Then, for any t ∈ [0, 1]

Pr

[∣∣∣∣∣1n
n∑

i=1

〈z|Xi − E [Xi] |z〉
∣∣∣∣∣ � t

]
� 2e−

nt2
120 .

F.3. Step III: union bound

Recall that equation (F.2) upper-bounds ‖L̂n − ρ‖∞ by a maximum over finitely many random
variables, each of which is controlled by the strong exponential tail inequality from corollary
3. To exploit this, we fix τ ∈ [0, 1] and apply a union bound (also known as Boole’s inequality)
over all these different random variables to obtain

Pr
[
‖ L̂n − ρ‖∞ � τ

]
� Pr

⎡
⎣max

j∈[N]

∣∣∣∣∣∣
1
n

n∑
j=1

〈z j|Xi − E [Xi] |z j〉

∣∣∣∣∣∣ �
τ

2

⎤
⎦

�Nmax
j∈[N]

Pr

⎡
⎣
∣∣∣∣∣∣
1
n

n∑
j=1

〈z j|Xi − E [Xi] |z j〉

∣∣∣∣∣∣ �
τ

2

⎤
⎦ � 2Ne−

nτ2
480 ,

where the last line is due to corollary 3 Here, N = |N 1
4
| denotes the cardinality of a covering

net for the complex unit sphere Sd with fineness θ = 1
4 . The complex unit sphere admits an iso-

metric embedding into the real-valued unit sphere in 2d-dimensions: map real- and imaginary
parts of each complex vector component onto two distinct real parameters. This map preserves
Euclidean lengths and, by extension, also the geometry of the unit sphere. Volumetric upper
bounds on the cardinality of covering nets for the 2d-dimensional real-valued unit sphere are
widely known, see e.g. [58, proposition C.3] and [61, lemma 5.2]: |Nθ| �

(
1 + 2

θ

)2d
. Since a

fineness of θ = 1
4 suffices for our purpose, we can conclude N � 32d and consequently,

Pr
[∥∥L̂n − ρ

∥∥
∞ � τ

]
� 2 × 32de−

nτ2
480 = 2e2 log(3)d− nτ2

480

This concludes the proof of theorem 5.
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F.4. Proof of lemma 4

Recall that, by assumption, the random matrix X assumes the value X = (d + 1)|v〉〈v| − I with
probability 〈v|ρ|v〉dv, where v may range over the entire complex unit sphere Sd . Moreover,
E [X] = ρ. For fixed z ∈ Sd , we may therefore write

sz = 〈z|X − E [X] |z〉 = (d + 1)〈v|B|v〉,

where B = |z〉〈z| − 1+〈z|ρ|z〉
d+1 I ∈ Hd has bounded trace norm

‖B‖1 � 1 +
(
1 + 〈z|ρ|z〉

)
� 3. (F.3)

Next, recall a basic identity from matrix analysis that states

|〈v|B|v〉| =
∣∣tr (|v〉〈v|B)∣∣ � tr

(
|v〉〈v||B|

)
,

where |B| =
√

B2 denotes the absolute value of the matrix B. Also, the Schatten-p norms of
matrices and their absolute values coincides, in particular ‖B‖1 = tr(|B|) = ‖|B|‖1. We can
use this trick to absorb the absolute value in the moment computation. More precisely, fix an
integer p � 2 and note that E

[
|sz|p
]

obeys

E
[
|(d + 1)〈v|B|v〉|p

]
� (d + 1)p

E
[
tr
(
|v〉〈v| |B|

)p]
.

We can now include the distribution of the random matrices X, and (by extension) |v〉〈v|, to
compute

E
[
|sz|p
]

�(d + 1)p
E
[
tr
(
|v〉〈v| |B|

)p]
= d(d + 1)p

∫
Sd
〈v|ρ|v〉tr

(
|v〉〈v| |B|

)p
dv

=d(d + 1)ptr

(∫
Sd

(
|v〉〈v|

))⊗(p+1)
ρ

⊗ |B|
⊗

p

)

=d(d + 1)p

(
d + p
p+ 1

)−1

tr
(

PSym(p+1)ρ
⊗ |B|

⊗
p
)

,

where the last equation is due to equation (B.1). Next, we note that Hoelder’s inequality implies

tr
(

PSym(p+1)ρ
⊗ |B|

⊗
p
)

� ‖PSymp+1‖∞‖ρ‖1‖ |B| ‖p
1 � 3p,

because PSym(p+1) is an orthogonal projector, ρ is a quantum state and B is bounded in trace
norm (F.3). For the remaining pre-factor we use the crude bound

d(d + 1)p

(
d + p
p+ 1

)−1

� (p+ 1)! � 3 × 2p−2p!

to establish the statement.
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