Fast Fourier Sampling: A Tutorial

A. C. Gilbert, M. J. Strauss, and J. A. Tropp

I. WHEN FAST ISNOT ENOUGH

Suppose that is a discrete-time signal of lengthi that can be expressed with only digital

frequencies wheren < N:

1 — :
alt] = =Y @™ N 1 =0,1,2,...,N 1.
VN

We study the problem of identifying the unknown frequencigs. . ., w,, that participate and
their coefficientsay, ..., a,,. Conceptually, the easiest way is to perform idrpoint Discrete
Fourier Transform (DFT):

1 =
VN 4

Having obtained allV Fourier coefficients, it is straightforward to locate ttvenonzero frequen-

[y

X[w] = g[tle”2Wt/N -, =0,1,2,...,N — 1.

cies and their coefficients. Although you can compute the [BfiCiently by means of the Fast
Fourier Transform (FFT), the fact remains that you must cate@ very large number of zero
coefficients when the signal involves few frequencies. Hpproach seems rather inefficient.

The Discrete Uncertainty Principle [DS89] suggests thanight be possible to use fewer
samples from the signal. Indeed, if the spectrum of a ledgttiscrete-time signal contains only
m nonzero frequencies, then the time domain has at I¥dst nonzero positions. As a result,
even if we sample the signal at relatively few points in tirties samples should carry significant
information about the spectrum of the signal.

This article describes a computational method, calledFRnarier Sampling algorithmthat
exploits this insight [GMSO05]. The algorithm takes a smalber of (correlated) random samples
from a signal and processes them efficiently to produce aroajppation of the discrete Fourier

transform of the signal. The algorithm offers provable guees on the number of samples, the
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running time, and the amount of storage. As we will see, tlregairements are exponentially
better than the FFT for some cases of interest.

This article describes in detail how to implement a versibrirourier Sampling; it presents
some evidence of its empirical performance; and it expléiestheoretical ideas that underlie
the analysis. Our hope is that this tutorial will allow erggns to apply Fourier Sampling to their
own problems. We also hope that it will stimulate furthere@h on practical implementations

and extensions of the algorithm.

A. The Fourier Sampling Algorithm, a summary

We begin with a discussion of performance guarantees, dedt evhat the Fourier Sampling
algorithm can accomplish and what it cannot. The algoritequires random access to the time
domain of a signal of length V. The input parametet: is the number of frequencies sought.

As output, the algorithm produces a signathat approximates: with only m frequencies:

1 m 2miwgt/N
ylt] = I Zk:l ape . (1.1)
This approximation is represented by the ey, ax) : K = 1,2,...,m} of frequency/coefficient

pairs. In a moment, we will see that the approximation ersocomparable with the minimal
error possible using an signal of the form (1.1).

The algorithm also involves several design parameters. filiebers > 0 determines the
quality of the computed approximation in comparison with thest approximation. The number
o > 0 is the probability that the algorithm fails with respect teetrandom choices it makes
during its execution. Both these quantities can be comeilolly taking additional samples from
the signal. The following theorem shows how all the factottgriact.

Theorem 1 (Gilbert et al. [GMSO05])Let = be an arbitrary signal of lengtiv. The Fourier
Sampling algorithm takes: poly(s~1, log(6~1), log(N)) random samplésof the signal. With
probability at least — §, the algorithm returns an approximatignof the form (1.1) that satisfies
the error bound

[z —yll, < (1 +e)llz —aopll, + ¢

The termpoly(-) indicates an unspecified polynomial in its arguments.
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wherex,, is the best approximation te of the form (I.1). It produces this approximation using
time and storagen poly (e, log(671), log(N)).

Let us elaborate on the statement of this theorem. Wherc N, the algorithm takes far
fewer samples than the total length of the signal. We emphbdbiat the sample set depends on
random choices, but it does not depend on the signal or thgrgss of the algorithm. Therefore,
the sample locations can be established before executionedver, the runtime and storage
requirements of the algorithm are roughly proportionallte humber of frequencies it outputs,
rather than the signal length. All the resource requiresmamée logarithmic inN, the signal
length, so Fourier Sampling has the potential to be expdaigntaster than the FFT.

Second, let us discuss how to interpret the approximati@raguee. When the signal is well
approximated by a set ofi frequencies, the right-hand side of the error bound is sreallthe
algorithm produces an approximation that is competitivih\lie optimalmn-frequency approxi-
mation. In contrast, when it takes many frequencies to aimate the signal, the algorithm will
return a poor result. In this setting, Fourier Sampling i$ &o appropriate tool.

Even if the true signal consists of frequencies contaminated with heavy noise, the algorithm
may not return then ideal frequencies. Indeed, the theorem only promises thatetror in
the output approximation is comparable to the amount ofendievertheless, a careful analysis
shows that the energy of the noise must be substantial cempeith the signal energy before
the algorithm delivers frequencies different from the grduruth.

A more familiar way to analyze the quality of the approxiratiy is to compute its recon-
struction SNR. Suppose that our sigmalconsists ofm frequencies plus an orthogonal noise
vectorv. Then

]l > ]|,
SNR = 101log <7 > 10log — = .
10 ”5'3_'y|’2 10 (1+¢€) ”V”z

Consequently, the SNR of the reconstructed signal is smiddén optimal by an additive term.
We can reduce this loss by decreasing the design paramedéthough this revision results in

additional samples of the signal and increased computétiog
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B. Rising to the Challenge

The fundamental challenge for the Fourier Sampling algorits to divine information about
the frequency spectrum of a signal under severe constmntse number of samples and arith-
metic operations. To do so, the algorithm makes random ekdiz avoid worst-case scenarios.
This means that the procedure has access to random bitaefstam and in addition to its input.
In its execution, the algorithm uses those random bits taeyits behaviorFor each input it
succeeds with high probability with respect to the sourcenfiomness. This idea is substantially
different from the use of statistical signal models, so fitiacers of signal processing may be

less familiar with it. Here are the key observations:

1) Random time samples of a signal allows us to estimateioertaracteristics, such as its
zero-frequency coefficient and its energy.
2) Random permutation of the spectrum allows us to sepaigidisant tones into different
frequency bands. The tones can then be isolated with basdiftass.
The algorithm also exploits many standard methods from t8& Bpolbox:
1) Sampling in time corresponds to summing modulated Fogoefficients.
2) Dilation in time corresponds to dilation of the spectrum.
3) Modulation in time corresponds to translation of the $psua.
4) The FFT can be used to apply a filterbank, which multiplies gpectrum of the signal by
a collection of transfer functions.
5) (Nonuniform) FFTs allow fast evaluation of exponentialymomials at multiple points.
The algorithm combines these ideas in a way that is complicahd—perhaps—unusual. In Sec-
tion 1V, we provide more detailed information about how th@sethods allow us to approximate

the spectrum of an unknown signal.

C. Background and Related Work

The Fourier sampling algorithm differs from traditionaleggpral estimation techniques in a
variety of ways. First, unlike Prony’s method [dP95] and rit®re stable variations [SHOO],
the algorithm is not predicated upon evenly spaced sampgles—the opposite. Second, the
reconstruction algorithm uses the samples in a nonlinshida, unlike the procedures of [HB98].

It does not form a linear combination of the sample valuesdTlhe algorithm and its analysis
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are inherently discrete. The samples are drawn from a déstime signal (rather than an
underlying continous-time signal) and the output of theodthm is an approximation to the
discrete spectrum.

The Fourier sampling algorithm is related to the CompresSiampling paradigm, but the two
approaches focus on different resource constraints. Letounsider the case where signals of
interest have few significant frequencies in comparisoh wieir length. The primary concern of
Compressive Sampling is to reconstruct the spectrum ofigimakfrom as few samples as possible
with extremely strong guarantees on the probability of ssscResearchers have established that
several different randomized sampling schemes are cobiatith this goal [Don06], [CTO6].
Most of the literature concentrates on reconstruction ritflyos such as convex programming,
but other methods are available [CM06], [GSTVO07]. The Feusampling algorithm is closest
in spirt to the algorithms in [KM91], [Man95].

Il. EMPIRICAL PERFORMANCE

The Fourier sampling algorithm has been implemented anddédr a variety of settings to
assess its empirical performance. We discuss one partiogpdementation [IGS07], the AAFFT,
and we provide evidence that it is both powerful and rescefftieient.

First, we consider a problem inspired by communication devithat use frequency-hopping
modulation schemes. Suppose we wish to recover a synthgtial consisting of two tones that
change at regular intervals. These signals are contardingith white Gaussian noise so the
SNR is—17 dB. We apply the AAFFT implementation to identify the locatiof the two tones.
Figure 1 exhibits the output using sparsogramwhich is a time—frequency plot that displays
only the dominant frequencies in the signal. As a benchmaekalso computed the sparsogram
with FFTW, a highly optimized implementation of the FFT. BAAAFFT and FFTW obtain the
correct result in the same amount of time, but AAFFT samptdg 8% of the signal—a factor
33x undersampling

This first experiment provides evidence that AAFFT uses éavefr samples than FFTW. The
AAFFT implementation is also substantially faster than ®FTor long signals. To prove this
point, we constructed (noiseless) signals of differengtbs by selecting 60 frequencies at random

and assigning them unit coefficients. We compared the rgntivime for AAFFT to identify these
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Fig. 1. The sparsogram for a synthetic frequency-hoppiggadiconsisting of two tones in noise, as computed by
the AAFFT.
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Fig. 2. The execution time of FFTW and AAFFT for recoveringfééquencies without noise. The error bars indicate
the minimum and maximum run times. The AAFFT runs faster tRETW when the signal length exceetls’.

60 frequencies with the running time for FFTW using a log—kmale. The result appears in
Figure 2. Notice that the execution time of FFTW grows dracadly while the speed of the

AAFFT remains virtually constant as the signal length \&#eross several orders of magnitude.
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Fig. 3. Phase transition diagram for recovering one frequem noise. The plot uses shades of gray to indicate the
probability of successful recovery as a function of the SN the percentage of the signal that is sampled. The
undersampling rate is the reciprocal of the sampling péacen

At the beginning of the tutorial, we mentioned that the aithon may fail completely to
approximate the signal. The failure probability can be malgd by increasing the number of
samples of the signal that we take. We constructed signaésigth N = 222 (about four million)
containing one tone in additive white Gaussian noise, anctteanpted to locate the frequency
with AAFFT. For each sampling rate, we performed 1000 treatsl computed the fraction of
those trials in which the tone was successfully identifigdgufe 3 is a phase transition chart that
indicates the probability of recovering a single frequeimdyeavy noise. We see, for example, that
AAFFT can recover the tone 90% of the time at an SNR-af dB with 100x undersampling.
This rate is fully two orders of magnitude below Nyquist.

We also studied the number of samples necessary to recoeeger Inumber of frequencies.
We fixed the signal length @ = 222 and measured the number of samples necessary to recover
m tones at least 99% of the time. Figure 4 displays the reduitsexample, if we sampl&0%
of the signal, the AAFFT implementation can recover 100Cetonver 99% of the time. If an
application can tolerate a higher failure probability, th®AFFT can recover more tones with

the same level of undersampling.
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Fig. 4. The proportion of the signal that AAFFT samples tooker a fixed number of tones in a signal of length
N = 2%2 at least 99% of the time.

[1l. | MPLEMENTATION

This section gives an overview of a simplified version of theF&T implementation, including
explicit pseudocode (Algorithm IIl.1). This version asssrthatN is a power of two, and it
removes some failure-control mechanisms. The complete FAA&Igorithm is somewhat more
complicated than the code here, but this basic implememtatill works quite well.

Let us note that the upcoming description of the algorithterieaves the sampling of the
signal with the other actions of the algorithm. We have el@édhis description to make it clear
precisely where samples are required. Nevertheless, waasize that the samples used by the
algorithm are totally nonadaptive. In particular, it is pitie to select the sample points and draw
the samples from the signal prior to runtime.

The algorithm iteratively constructs an approximatigrto the input signal. As it runs, the
algorithm represents the approximation as a Nsof at most K frequency/coefficient pairs:
A = {(wg,ax) : kK = 1,2,...,K}. The approximationy is implicitly determined via (I.1).
The approximation also inducesrasidual signalr = = — y. The most critical parameter in
the algorithm is the sizé< of frequency list. In the pseudocode, we have choBer= 8m.

Increasing the factor eight improves accuracy at the cosiddftional samples and arithmetic.
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The algorithm often needs to determine the value of the wasisignal at designated sampling
locations. Since the approximation has the form (1.1), ta@®_E-RESIDUAL subroutine is able
to perform this computation efficiently with a nonuniform FEFThe literature describes several
approaches to computing nonuniform FFTs, including [BéyPsD96]. Explicit pseudocode is
also available [DR93, Alg. 1]. Alternatively, the exponi@htsums can be evaluated directly at
somewhat higher cost.

At the highest level, the algorithm proceeds as followsst-ithe approximation is set to zero,
so the residual signal equals the input signal. The alguriteratively refines the approximation,
as described in the next paragraph. After the iteration mptete, the algorithm reduces the list
A by picking m frequencies with the largest coefficients.

The main loop consists of the three steps. First, the ideatifin stage constructs a list
containing K frequencies that are likely to carry a significant amounthef &nergy from the
residual. Second, the estimation stage finds estimatesafdéfficients of the frequencies {h
Third, the algorithm adds the new approximation to the masiapproximation to get a total of
2K terms (or fewer). Frequencies with small coefficients akelji to be spurious, so the list
is reduced toK terms (or fewer) by retaining only the frequencies with thmyést coefficients.
Our experience suggests that the main loop should be repebtit five times.

The IDENTIFICATION subroutine employs a randomized filtering process to findoufy tsig-
nificant frequencies from the residual signal. Beginninthulie least-significant bit, it determines
each bit from allK frequencies in parallel. In the inner loop, the subroutieefgrms several
repetitions to drive down the failure probability. Our exipace suggests that 3-5 repetitions are
adequate.

The ESTIMATION subroutine uses a related randomized filtering processtimas simulta-
neously the coefficients ok given frequencies in the residual signal. This calculatiolves
the adjoint of the nonuniform FFT. Explicit pseudocode agpdn [DR93, Alg. 2]. The sums
can also be evaluated directly at higher cost. The submuékes the median of several copies

of the estimator to improve robustness. In practice, 3—5esoguffice.

IV. THE CONCEPTSBEHIND THE CODE

The Fourier sampling algorithm must perform computationstiee frequency spectrum of a

signal under severe constraints on the number of samplearéhthetic operations. It is possible
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to achieve an economy of scale by attempting to find all theifsagnt frequencies at once. The
central design principle in the algorithm is to exploit teisonomy whenever possible by means of
filterbanks, nonuniform FFTs, and random sampling. Thisiseadescribes the intuitions behind
the key steps in the algorithm. In the sequel, we assume tigasignal lengthV is a power

of two, that the signal takes complex values, and that athetic on the indices is performed

modulo N.

A. The Role of Randomness

In contrast with the field of statistical signal processing,do not make any assumptions about
the input signal. Instead, the algorithm makes random @soduring its execution to enable it
to succeed with high probability for any given input sigral.this section, we attempt to share
the flavor of these techniques.

1) Random SamplingRandom sampling is a very efficient method for estimating esdey
characteristics of a signal. Lat be a signal of lengthiV, and letT" be the random variable that
takes each value frorf0, 1,2,..., N — 1} with equal probability.

First, the squared magnitude of a random time sample givesod gstimate for the signal
energy becausgz||* = N E |z[T]|%>. Owing to Markov’s inequality, it is unlikely that a random
sample, suitably normalized, has magnitude much greager ttine norm of the signal.

Second, consider a signal containing one large frequency mbisexz[t] = a e?>™“t/N /\/N +

v[t]. A short argument involving the triangle inequality and skamis inequality yields
ja = [[vlly < VNE |2[T]].

That is, we can approximate the magnitude of the tone by manskmpling. Therefore, we can
find the location of a tone that dominates a signal.

Finally, the scaled expectation of a random sample equelzého-frequency component of a
signal. This point follows from the simple facf[0] = v/ N E z[T]. The algorithm uses this fact
to estimate the coefficient of a specified frequency.

2) Random Spectral Permutatiok major difficulty is that significant tones in the spectrum of
a signal can be clustered together or spread out. One of titeat@énovations in the algorithm

is a randomized technique for isolating significant ton@snfreach other so we can perform
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Fig. 5. The impact of dilations on the spectrum of a frequespgrse signal. The top-right panel is generated by
the time dilationt — 11¢ mod N (equivalently, by a frequency dilatian — 3w mod N); the bottom-right panel by
t — 9t mod N (or w — 9w mod N). Note that the zero frequency always remains fixed.

spectral analysis using bandpass filters.

To explain, we need some basic humber theory. Two numbenziatéevely primeif they have
no common integer factor exceptl. Since N is a power of two, the numbers relatively prime
to N are precisely the odd integers. Given an odd numhethe Euclidean division algorithm
furnishes a number—1, called itsmultiplicative inversgthat satisfiesr - 0=! =1 (mod N).

Let o be odd, and consider the dilatial} : ¢ — ot mod N. It is not hard to see that this map
is a permutation on the s¢0,1,2,..., N — 1} and that its inverse is the maf-.. In discrete

Fourier analysis, these observations lead directly to dieatity
y[t] = zfot] foralt <= Y[w]=X[c"'w] forall w.

Succinctly, time dilations generate frequency permutaticGee Figure 5 for an illustration.
The key idea is to choose at random from the s€fl, 3,5,..., N — 1} of invertible numbers.

Applying the dilationd,, to the signal, we produce a random permutation of its spectitiis

unlikely that a given pair of frequencies is mapped to theesgart of the spectrum. Roughly

speaking, random permutation of the spectrum isolatesfisignt frequencies from each other.

B. Identification

The first stage in the Fourier sampling algorithm is to idgné collection of frequencies
whose coefficients are large relative to the signal energg iflentification process consists of

two conceptual stepshatteringandbit testing Shattering generates a collection of signals, many
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of which have a single dominant frequency. Then bit testsappdied to each signal to find the
location of the dominant frequency, one bit at a time.

1) Shattering:A shatteringof a signalzx is a collectior{x, x1,...,xzx_1} of signals that are
formed by a three-step filtering process. First, we randgpelymute the spectrum of the signal
to isolate significant frequencies from each other. Secammdapply a sub-band decomposition
filterbank to creatds signals that each carry a chunk of the permuted spectrunt &gnificant
tone in the orginal signal is likely to dominate one signalte shattering. Finally, we invert
the dilation to restore the frequencies to their originacgls in the spectrum. Figure 6 exhibits
a block diagram, and Figure 7 illustrates the effects oftehagy on a signal.

The design of the sub-band decomposition filterbank is @mptth be a low-pass filter with
K taps whose cutoff frequency is aboudt K radians. The filterbank consists &f frequency
translates of this filter, spaced /K radians apart. In the time domain, this amounts to conauti
with hy[t] = e~ 27#/ K p[t] for eachk = 0,1,..., K — 1. The analysis in [GMS05] suggests that
the ideal filter has minimal energy among all normalized riltevith K taps. This observation
recommends the boxcar filtérj] = v N/K for j = 0,1,..., K — 1. It is possible that more
sophisticated low-pass filters or windows will sometimesldibetter results [OSB99, Ch. 7].

Let us emphasize that the algorithm never forms a shattespgcitly. Instead, the filterbank
is constructed so we can take one time sample from each elehtre shattering by processing
K samples from the input signal. #f is the parameter of the random dilation, thih signal in

the shattering satisfies

K-1 A —27ij
2] :ZFO hlj] xlt — oj] e 2R/ K

Given a pointt, we can simultaneously calculatg[t], z1[t], ..., zx_1[t] by extracting an arith-
metic progression from the input signal, multiplying it vithe filter, and applying an FFT. The
subroutine 8MPLE-SHATTERING performs these actions.

2) Bit Testing: Shattering generates a collection of signals, some of wbdaitain a single
dominant frequency. The bit-test process is designed tatdéothe dominant frequency in such a
signal. (The bit tests are likely to return spurious frequies for other elements of the shattering.)

Suppose that is a length/ signal in which a single frequency carries most of the energy
We find the bits of the frequency sequentially, beginninghwvitie least significant bit = 0.

Assuming we already know the least-significébt- 1) bits, we can demodulate the signal so
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Fig. 6. A conceptual block diagram for the shattering preceA shattering ofx contains K elements
Lo, L1y..., LK—1-
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Fig. 7. A signal consisting of two tones in noise, along wiihee elements from a shattering. In the second panel,
both the tones are attenuated so neither is recoverablethirdeand fourth panels show elements where one tone is
preserved and the other is attenuated. In each plot, theférafunction is traced in black.
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Fig. 8. A conceptual block diagram for tti¢h bit test. The test yields a 0/1 bit valseand a demodulated copy of
the input signal for the next bit test.

that the binary expansion of the dominant frequency end$in. 0 or in 00...0. We apply the

frequency mask filters

ggven — (50 + 6N/2b+1) and ggdd _ (50 — 5N/2b+1) .

N —
N —

The filter g;v*" passes the even frequencies and zeros the odd frequencid@{)min a similar
fashion, the filterggdld passes the odd frequencies and zeros the even ones2(ndtl £, is a
random sample from the output of the even filter didis a random sample from the odd filter,
then the inequalityE;| > |Ey| is evidence that the least-significant bit is one.

Therefore, the bit test compares the magnitude of a randanplsafrom each of the two
filtered signals. It repeats the comparison several timed,iatakes a majority vote to reduce
the failure probability. See Figure 8 for a block diagram fud bth bit test. Note that bit testing
is computationally efficient since each filter has only twpsta

3) Implementation:We separate theonceptsf shattering and bit testing, but the code must
intertwine them for efficiency. Recall that we can simultangly compute one sample from each
of the K elements in the shattering. To exploit this fact, we sirnétausly test théth bit of the
dominant frequency in each element of the shattering uswgcobrrelated samples, demodulated

by the first(b — 1) bits of that frequency. Details appear in thHEENTIFICATION subroutine.
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C. Estimation of Fourier Coefficients

The identification phase of the algorithm returns a liskobr fewer frequencies, but it does not
provide sufficient information about their coefficients.eThext stage of the algorithm estimates
the coefficients using a randomized filtering technique.

Suppose we want to estimate the coefficient of a significaequiencyw in a signalx.
First, we demodulate the signal hy so we can estimate the zero frequency instead. Next,
we randomly dilate the signal. This operation fixes the zeeguency and shuffles the other
significant frequencies around (probably away from zerdiird we apply a filter to pass the
zero frequency and attenuate the rest of the spectrum. Teemvert the dilation. At this point,
the zero frequency is likely to dominate the signal. We estnits coefficient by taking a random
sample and scaling appropriately. See Figure 9 for a bloagrdim.

As in shattering, we cannot afford to use a filter with morentlia taps. It turns out that the
boxcar filterh[k] = VN /K for k =0,1,2,..., K — 1 remains a good choice in this setting.

We can write down the cumulative effect of this random fitigrprocess. Let be the parameter

of the random dilation, and lgtbe the sample location. Then the coefficient estimatés
. K_l . .
Co = \/Ne—Qmwt/N Z h[j] S[t _ O’]] e—27r1(waK/N)]/K.
j=0

One should view this expression as the discrete Fouriesfibam of a sequence of length
K, evaluated at the nonintegral frequerzywoK/N radians, then demodulated and scaled.
Therefore, we can simultaneously estimate the coefficiefta collection of K frequencies
(or fewer) using the adjoint nonuniform FFT. Afterward, wancdemodulate each coefficient
individually. Finally, we make each coefficient estimatoonm robust by taking the median of

several copies. (The medians of the real and imaginary pagtperformed separately.)

D. lteration

The recoverable energyn a signal is the energy carried by the largestfrequencies. It is
impossible to collect more since our approximation corgtainly m frequencies. By performing
identification and estimation once, the algorithm finds astamt proportion of the recoverable
energy in the residual. Therefore, after a constant numbgemtions, the algorithm can find a

fixed proportion of the recoverable energy in the originghsi.
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Randomly

Demodulate permute spectrum Low-pass filter Undo permutation
z[t]—> e~ 2miwt/N —> t—otmod N | hlt] — t— o 'tmod N Sample at T —> Cu
1 L o ~ UNIFORM{1,3,5,...,N — 1} J T ~ UnNrrorM{0,1,2,...,N — 1}
Draw random number for dilation Draw random sampling point

Fig. 9. A conceptual block diagram for the coefficient estonaThe system returns an estimate for the coefficient
c., of the frequencyw in the signalz. Note that the estimate must also be scaled/fy.

V. EXTENSIONS AND IMPROVEMENTS

Although the Fourier sampling algorithm is designed forcdite-time signals, we can use
it in certain analog settings with some modifications. We aaquire a few random structured
samples of a wide-band continuous-time signal that has asigwificant tones and recover
quickly those tones present. To build a practical systemmust analyze carefully the required
minimum sample spacing as it is costly to acquire signal $asnplose in time. We must also
increase the flexibility of the output representation so @éntprove the reconstruction SNR;
instead of returning exactly:, we return a (tunable) multiple of.. All of these modifications
are possible while still preserving the structure and qualiiarantees of the algorithm. We must
be realistic, however, in assessing the quality of our dutplie algorithm returns a compressed
or approximate representation of the discrete spectrunnahlerently analog signal. It only
approximates the significant portions of the discrete spattwhich, itself, is an approximation

to the true spectrum.
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ALGORITHM IlI.1: Simplified Fourier sampling Algorithm.

FOURIERSAMPLING (&, m)
Input: Input signalx of length N = 2% and numbern of frequencies to find
Output: SetA = {(w,a,)} containingO(m) frequency/coefficient pairs

K «— 8m andA «— ()

forj=1to5
Q) <« IDENTIFICATION(z, A, K) { Identify K frequencies in the residudl
¢ — ESTIMATION(z, A, Q) { Estimate Fourier coefficients

foreach frequencyw € Q and corresponding coefficient,
if (w,a,) € A for somea,, then replace the pair withw, a,, + ¢,,)
else add the new paifw, ¢,,) to A
Retain K pairs fromA whose coefficients have greatest magnitude
Retainm pairs fromA whose coefficients have greatest magnitude

SAMPLE-RESIDUAL(x, A, t, 0, K)

for k=1to K
ug < z[t + o(k — 1) mod N]| { Arithmetic progression from signg!
Uk = D (.0 yen (AT N) @2miler /) (k1) { In parallel, via nonuniform FFT}
return (u — v) { Residual is signal minus approximatign

IDENTIFICATION(x, A, K)
reps « b andw, «— 0 for k=1,2,..., K

for b =0 to log,(N/2) { Loop from LSB to MSB}
votep, «— 0 for k=1,2,..., K
for j =1 to reps

Draw ¢t ~ UNIFORM{0,1,2,..., N — 1} { Random sample poinjt
u < SAMPLE-SHATTERING(?) { Samples correlated
v + SAMPLE-SHATTERING(t + N/20+1) for testingbth bit }
for k=1to K
Ey — ug + e~ mwr/2" g { Apply bit-test filters to
By — up — e~ mwr/2" ) demodulated signal
if |[E1| > |Eo| then votey, «— votey, + 1 { Vote when bit is one
for k=1to K
if voter > reps/2 then wy, « wy, +2° { Majority vote for bit value}
return Unique(wy, wa, ..., wk) { Remove duplicate$
SAMPLE-SHATTERING(p)
z «— SAMPLE-RESIDUAL(x, A, p, 0, K) { Get arithmetic progression of samplg
z — FFT(2) { Apply sub-band decomposition filterbark
return z

ESTIMATION(z, A, )

reps «— o

for j =1 toreps
Draw o ~ UNIFORM{1, 3,5,..., N — 1} andt ~ UNIFORM{0,1,2,..., N — 1}
u «— SAMPLE-RESIDUAL(x, A, t, 0, K)

for £ =1101Q]
co(§) — SO, uy e2miweo/N)(h=1) { In parallel, via nonuniform FFT
co(j) — (N/K) e 2meet N ey () { Demodulate and scale estimate

¢ — Median{c,(j) : 7 =1,2,...,reps} for £=1,2,...,|Q] { Do real, imaginary separately
return cy,co,. .. s ClQ|

Draw o ~ UNIFORM{1,3,5,..., N — 1} { Random shattering parameter
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