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From Poincaré inequalities to nonlinear
matrix concentration
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This paper deduces exponential matrix concentration from a Poincaré inequality via a short, conceptual argument.
Among other examples, this theory applies to matrix-valued functions of a uniformly log-concave random vector.
The proof relies on the subadditivity of Poincaré inequalities and a chain rule inequality for the trace of the matrix
Dirichlet form. It also uses a symmetrization technique to avoid difficulties associated with a direct extension of
the classic scalar argument.
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1. Introduction

Matrix concentration inequalities describe the probability that a random matrix is close to its expected
value, with deviations measured by the ¢, operator norm. These results have had a profound impact
on a wide range of areas in computational mathematics and statistics. See the monograph [46] for an
introduction to the subject and its applications.

As did the field of scalar concentration, matrix concentration theory began with simple models, such
as sums of independent random matrices [1,29,42,45] and matrix-valued martingale sequences [33,40,
44]. In recent years, researchers have sought to develop results that hold for a wider class of random
matrix models. Some initial successful efforts were based on exchangeable pairs techniques [30,36],
but these methods do not address all cases of interest.

Researchers have also tried to extend scalar concentration techniques based on functional inequal-
ities. An early attempt, by Chen and Tropp [11], demonstrates that (traces of) matrix variance and
entropy quantities are subadditive, which leads to some Poincaré and modified log-Sobolev inequali-
ties. A number of papers, including [12—14], have pursued this line of work. Unfortunately, these ap-
proaches have not been sufficient to reproduce all the results that have been established in the simpler
models.

Very recently, Aoun et al. [3] have shown that a matrix form of the Poincaré inequality implies
subexponential concentration of a random matrix with respect to the £, operator norm. We believe
that this is the first instance where a matrix functional inequality leads unconditionally to a matrix
concentration result (with respect to the operator norm). Nevertheless, it remains an open question to
deduce a full spectrum of matrix concentration results from matrix functional inequalities.

In this paper, we improve on [3] by demonstrating that the ordinary scalar Poincaré inequality also
leads to subexponential concentration with respect to the operator norm. Our argument has some el-
ements in common with the work in [3], but we have found a route to avoid most of the technical
difficulty of their approach.

The basic idea is to bound the trace of an odd function (for example, the hyperbolic sine) of the
random matrix using a symmetrization argument. The variance appears, and the Poincaré inequality
yields a bound on the variance in terms of the Dirichlet form. Last, we apply a new matrix chain rule
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inequality for the Dirichlet form to obtain a moment comparison. After this paper was written, we
learned that Bobkov and Ledoux proposed a similar argument in the scalar case [5], Section 4.

As in the scalar setting, Poincaré inequalities may not capture the strongest concentration properties
that are possible. In a companion paper [22], we demonstrate that local Poincaré inequalities lead to the
optimal subgaussian concentration results. The analysis in [22] captures most of the previous results
on matrix concentration, but it involves more technical machinery. We also refer the reader to work of
Junge and Zeng [23] that contains similar results in the fully noncommutative setting.

An expert reader may still wonder about the role of (modified) log-Sobolev inequalities in estab-
lishing matrix concentration. At the time of writing, it is not clear how to obtain a matrix analog of
the log-Sobolev inequality that would imply subgaussian matrix concentration inequalities in the same
spirit as the ones in the related works [22,23].

2. Main result

This section summarizes our notation and the setting for our problem. It highlights our primary result
on matrix concentration, and it gives a number of examples. In the next section, we comment further
on the relationship with previous work.

2.1. Notation

Let Hy be the real linear space of d x d self-adjoint complex matrices, equipped with the £, operator
norm ||-||. We work with both the ordinary trace, tr, and the normalized trace, r := d~! tr on the space
H,. Matrices, and occasionally vectors, are written in boldface italic. In particular, f and g refer to
functions taking values in H;. The cone H;}' contains the positive semidefinite matrices, and the symbol
< refers to the semidefinite order.

Given a function ¢ : R — R taking real values, we extend it to a function ¢ : Hy — Hy on self-
adjoint matrices by means of the spectral resolution:

A= Y AP,eHy implies ¢(A)= > ¢M)P;eHq.
respec(A) respec(A)

Whenever we apply a scalar function, such as a power or a hyperbolic function, to a matrix, we are
referring to the standard matrix function. Nonlinear functions bind before the trace.

We use familiar notation from probability. The operator E returns the expectation, and P{-} is the
probability of an event. The symbol ~ means “has the distribution.” Nonlinear functions bind before
the expectation.

2.2. Random matrices

Let Q be a Polish space, equipped with a probability measure ., and write E,, for the integral with
respect to the measure . Consider a p-integrable matrix-valued function f : Q2 — Hy on the state
space 2. By drawing a random variable Z ~ p, we can construct a random matrix f(Z). Our goal is
to understand the concentration of f(Z) around its mean E, f.

Example 2.1 (Gaussians). Consider the Gaussian space (R”,y,) of n-dimensional real vectors
equipped with the standard normal measure y,. Suppose we are interested in a matrix-valued func-
tion f(X) of a standard normal random vector X ~ y,. A familiar example [46], Chapter 5, is the
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matrix Gaussian series

n
fX)= ZXiAi where X ~ y, and Ay, ..., A, € Hy are fixed. (2.1)

i=1

We will use the Gaussian case as a running example to illustrate the concepts that we introduce.

2.3. Markov processes

Suppose that we can identify an ergodic, reversible, time-homogeneous Markov process (Z; : t >
0) C 2 with initial value Zp and stationary measure (. This induces a matrix-valued Markov process
(f(Z):t=0) CHyg.

By ergodicity, for any point z € 2, we have the limit E[ f(Z;) | Zo =z] = E,, f as t — oo. The
results in this paper build on the intuition that a random matrix f(Z) with Z ~ p concentrates sharply
about its mean when the matrix-valued Markov process tends quickly to equilibrium.

Example 2.2 (Gaussians). We can construct a reversible Markov process (X; : t > 0) C R”, called
the Ornstein—-Uhlenbeck (OU) process, by means of the stochastic differential equation

dX, = —X,dr +~/2dB, with initial value X, € R”,

where (B, :t > 0) C R" is random vector whose coordinates are independent Brownian motions. The
stationary measure of the OU process is the standard normal distribution y;,.

2.4. Derivatives and energy

To understand how quickly a matrix Markov process f(Z;) converges to stationarity, we introduce
notions of the “squared derivative” and the “energy” of the function f.
Inspired by [3], we define the matrix carré du champ operator by the formula

1
L@ =lim > B[(f(Z) = f(Z0)" | Zo=z] € H] forzeQ 22)

In many instances, the carré du champ I' (f) has a natural interpretation as a squared derivative of f.
The expectation of the carré du champ is called the matrix Dirichlet form:

1
E(f) = 111&)1 % Ezu[(£(Z1) = f(Zo))2 | Zo=Z] e Hy. (2.3)

The Dirichlet form £( f) reflects the total energy of the function f.

In a general setting, it requires some care to make sense of the definitions (2.2) and (2.3). Without
further comment, we restrict our attention to a “nice” class of functions where the limit in (2.2) exists
pointwise and in L (u) and where calculus operations are justified. By approximation, our main results
on concentration hold for a wider class of functions.

Example 2.3 (Gaussians). According to [3], Proposition 5.5, the matrix carré du champ operator and
matrix Dirichlet form of the OU process are determined by

n

r(f)(x)ZZ(a,-f(x))2 forxeR" and E(f)=) K, & f)>

i=1 i=1
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The interpretations as a squared derivative and an energy are evident, and it is easy to check when the
carré du champ is defined.
The matrix Gaussian series (2.1) provides an illustration:

L(f)=Ef)=) A}
i=1

This quantity is familiar from work on matrix concentration for Gaussian series [46], Chapter 4.

2.5. Trace Poincaré inequalities

The matrix variance of a function f : 2 — Hy with respect to the distribution u is defined as
Var, [ f1:=Eu[(f =By ))?] =Eu[f*] - B f)* € Hy. 2.4)

As in the scalar case, the variance reflects fluctuations of the random matrix f(Z) about its mean,
where the random variable Z ~ pu.
We say that the Markov process satisfies a trace Poincaré inequality with constant o > 0 if

trVar,[fl <o -trE(f) forall f:Q2— Hy. (2.5)

In other words, the trace variance of f(Z) is controlled by the energy in the function f. The inequality
(2.5) provides a way to quantify the ergodicity of the Markov process.

As it happens, the trace Poincaré inequality is equivalent to an ordinary Poincaré inequality. We
are grateful to Ramon Van Handel for this observation. The same result has recently appeared in the
independent work of Garg et al. [16].

Proposition 2.4 (Equivalence of Poincaré inequalities). Consider a Markov process (Z; :t > 0) C Q
with stationary measure . The following are equivalent:

1. Scalar Poincaré. For all f : Q@ — R, we have Var,[f] <o - E(f).
2. Trace Poincaré. Foralld e Nand all f : Q — Hy, we have tr Var, [ f] <o -trE(f).
3. Matrix Poincaré. For all d e N and all f : Q@ — Hy, we have Var, [ f] <o - E(f).

The Poincaré constant o > 0 is the same in all three cases.
Proof. It is evident that (3) = (2) = (1). Our task is to prove that (1) = (3).
Consider a real matrix-valued function f : Q2 — Hy(R) with zero mean. For vectors u, v € R,

define the scalar function g(z) = (u, f(z)v) € R. Apply the scalar Poincaré inequality to g and invoke
the definition (2.3) of the Dirichlet form. Thus,

2 .1 2
Eu{u, f@v) <a- lim > Ez~y [(w, (f(Z0) = £ (Zo))v)" | Zo = Z].
Instate this inequality with v =e; foreachi =1, ..., d and sum over i to arrive at

(w, Var, [ flu) < (u, E(fHu).

Since u € R? is arbitrary, this is the matrix Poincaré inequality (3).
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To extend this argument to complex matrices, apply the same approach to the real and imaginary
parts of the inner product. |

The main result of this paper is that concentration properties of the random matrix f(Z) follow from
the trace Poincaré inequality (2.5) or, equivalently, the scalar Poincaré inequality.

Example 2.5 (Gaussians). It is well known that the OU process satisfies the Poincaré inequality with
constant o = 1. Thus, it satisfies the trace Poincaré inequality (2.5) with & = 1. For an alternative proof,
see [3], Theorem 1.2.

2.6. Subexponential concentration and expectation bounds

We are now prepared to present our main result. It demands several hypotheses, which will be enforced
throughout the paper.

Assumption 2.6 (Conditions). We assume that

1. The Markov process (Z; : t > 0) C Q2 is reversible and homogeneous, with initial value Zy and
stationary measure /L.

2. The process admits a trace Poincaré inequality (2.5) with constant . Equivalently, the process
admits a scalar Poincaré inequality with the same constant «.

3. The class of valid functions is suitably restricted so that manipulations of expectations, limits,
and derivatives are justified.

Under Assumption 2.6, we will deduce subexponential concentration of the random matrix f(Z)
around its mean E,, f, where we measure the size of deviations with the £, operator norm |-||.

Theorem 2.7 (Subexponential Concentration). Enforce Assumption 2.6. Let f : Q2 — Hy be a
matrix-valued function, and define the variance proxy

vr = PO 0

Forall A > 0,
PAIlf —Eu fll = Javy -1} <6d-e " 2.6)

In particular,
Eullf —Eyu fll <log(6ed) - Javy. (2.7)

The proof of Theorem 2.7 appears in Section 6 after we present some more background on matrix-
valued Markov processes. Note that we have made no effort to refine constants.

The main point of the tail bound (2.6) is that the random matrix f (Z) exhibits exponential concentra-
tion on the scale , /avy. The variance proxy vy is analogous to a global bound on the Lipschitz constant
of f. Be aware that we cannot achieve tail decay faster than exponential under the sole assumption of
a Poincaré inequality, so this approach may not capture the strongest possible concentration. The lead-
ing constant in (2.6) reflects the ambient dimension d of the matrix; this feature is typical of matrix
concentration bounds.

The expectation bound (2.7) shows that the average value of || f —E, f| is proportional to the
square root /vy of the variance proxy and to the logarithm of the ambient dimension. For many
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examples, the optimal bound contains the square-root of the logarithm, but the result (2.7) is nontrivial
and informative.

Example 2.8 (Gaussian Series). Theorem 2.7 applies to a matrix-valued function of a standard normal
vector. For instance, according to (2.7), a matrix Gaussian series satisfies the expectation bound

n n
> XiA > A7

i=1 i=1

1/2

E <log(6ed) -

Modulo the constant and the power on the logarithm, this bound is qualitatively correct for worst-
case examples. On the other hand, the subexponential tail bound (2.6) does not reproduce the actual
sub-Gaussian behavior. See [46], Chapter 5, for discussion. Example 7.3 describes an application to
Gaussian chaos that requires tools more delicate than Theorem 2.7.

Remark 2.9 (Extensions). The bounds in Theorem 2.7 can be refined in several ways. We can replace
the variance proxy vy with less stringent measures of the size of the carré du champ I'(f), such as the
expected Schatten g-norm with g & logd. It is also possible to replace the ambient dimension d with
a measure of the intrinsic dimension of the random matrix f(Z). See Section 7.

Remark 2.10 (Rectangular case). By a standard formal argument, we can extend all the results here
to a function h : Q — My, x4, that takes values in the d; x d» complex matrices. To do so, we simply
apply our results to the self-adjoint function

f@)= I:h((;)* hE)Z)i| e Hy 44, forzeQ.

See [46], Section 2.1.17, for details.

2.7. Examples

To indicate the scope of Theorem 2.7, let us present some more examples. Most of these examples
are actually known to exhibit sub-Gaussian matrix concentration, but there is at least one case (Sec-
tion 2.7.4) where the results here are currently the best available.

2.7.1. Log-concave measures

The Gaussian case is a particular example of a more general result for log-concave measures. Suppose
that J : R" — R is a strongly convex function that satisfies Hess J = nI uniformly for n > 0. Construct
the probability measure i on R” whose density is proportional to e ™. In this example, we briefly dis-
cuss concentration of matrix-valued functions f(X) where X ~ w. This model is interesting because
it captures a type of negative dependence.

The appropriate Markov process (X, : t > 0) evolves with the stochastic differential equation

dX, =—VJ(X,)dt ++/2dB, with initial value Xo € R",
where (B; :t > 0) C R" is Brownian motion. The stationary distribution is u, and the matrix carré du

champ is

n

(@)=Y (3 fx) forx eR".

i=1
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It is well known that these diffusions satisfy a Poincaré inequality with constant o = 1/1n; see [4],
Corollary 4.8.2. Therefore, Theorem 2.7 applies.

A fortiori, these log-concave measures also satisfy a local Poincaré inequality, which leads to sub-
Gaussian matrix concentration [22], Section 2.12.2.

2.7.2. Riemannian manifolds with positive curvature

More generally, let (M, g) be a compact Riemannian manifold with co-metric g. The manifold carries
a canonical Riemannian probability measure uy. The diffusion whose infinitesimal generator is the
Laplace—Beltrami operator A is called the Brownian motion on the manifold. This is a reversible,
ergodic Markov process. Its matrix carré du champ takes the form

L)@ =) "@0 f(2)(3;f(2) for f:Q— Hg. (2.8)

i,j

The co-metric g and the partial derivatives 9; f are computed with respect to local coordinates. See [4]
for an introduction to diffusions on manifolds; the companion paper [22] treats matrix-valued functions
on manifolds.

Suppose that the manifold has uniformly positive Ricci curvature, where the Ricci tensor has eigen-
values bounded below by p. By now, it is a classic fact that the Brownian motion on this manifold
satisfies the scalar Poincaré inequality with constant & = p~!. See [4], Section 4.8.

Example 2.11 (Sphere). For n > 2, the unit sphere S" C R"*+! is a Riemannian submanifold of R"*!.
Its canonical measure is the uniform probability distribution, and the carré du champ of the Brownian
motion on the sphere is computed using (2.8). The sphere has positive Ricci curvature with p =n — 1,
so it admits a Poincaré inequality with @ = (n — 1)~!. Thus, matrix-valued functions on the sphere
satisfy exponential matrix concentration.

A similar story can be told about every positively curved manifold. In fact, in this setting, we even
have sub-Gaussian matrix concentration because of the stronger arguments in [22].

2.7.3. Products

Consider a probability space (€2, u). It is common to work with multivariate functions defined on the
product space (2", w®™m). There is a standard construction [48], Section 2.3.2, of a Markov process on
the product space. Aoun et al. [3] verify that the (matrix) carré du champ of this process is

1 n
F(N@ =5 D Ezeu[(fGreeizn) = G ziot Zozign o) ]
i=1

This is the sum of squared discrete derivatives, each averaging over perturbations in a single coordinate.
The variance proxy vy takes the form

1
Vf = €esssup,on 3

ZEZNM[(f(Zl,-..,Zn) —f(Z1,...,zi—1,Z,zl'+1,...,zn))z]
i=1

The variance proxy coincides with the matrix bounded difference that arises in Paulin et al. [36]. Aoun
et al. prove that the Markov process satisfies a trace Poincaré inequality (2.5) with constant o = 1.
Therefore, Theorem 2.7 yields a suboptimal version of the exponential matrix Efron—Stein inequality
[36], Theorem 4.3. See [3,22] for more details.
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Remark 2.12 (Bernstein concentration?). In the scalar case, Bobkov and Ledoux [5], Corollary 3.2,
have shown that a function f : " — R on a product space (", u®") exhibits Bernstein-type concen-
tration when p admits a Poincaré inequality with constant «. In detail,

> @i )?

i=1

—ct?
P —E ty < ith v =
{If —Efl> }_exp<v+Bt> with v

and B =max [|9; f||1,-
1
Lo

The constant ¢ depends on the constant « in the Poincaré inequality. Our approach does not seem
powerful enough to transfer this insight to the matrix setting. Nevertheless, our paper [22] demonstrates
that a local Poincaré inequality is sufficient to achieve Bernstein concentration.

2.7.4. Stochastic covering property

Aoun et al. [3] have considered a model for negatively dependent functions on the hypercube {0, 1}",
namely the class of measures with the stochastic covering property (SCP). For a k-homogeneous mea-
sure u with the SCP, it is possible to construct a Markov process that satisfies the trace Poincaré
inequality (2.5) with constant 2k. Thus, Theorem 2.7 applies. See [3,21,37] for a more complete dis-
cussion of this example.

Remark 2.13 (Subgaussian concentration?). Although the Markov process associated with an SCP
measure satisfies a log-Sobolev inequality, we do not know if it satisfies the local Poincaré inequality
that we would need to activate the sub-Gaussian concentration inequalities in [22].

2.7.5. Expander graphs

Let G = (2, E) be a k-regular, connected, undirected graph. We can construct a Markov process
(Z; : t = 0) C Q2 by taking a continuous-time random walk on the vertex set 2. The stationary measure
w of the random walk is the uniform measure on 2. The carré du champ operator takes the form

rHo=5 ¥ (&) -re)

(z/,2)€E

In other words, the “squared gradient” is just the half the average squared difference between the matrix
at the current vertex and its k neighbors. Thus,

1 , 2
7 Z (f(Z)-f@)

(z/,z)eE

Vf = max
I e

The variance proxy is just the maximum “squared gradient” at any vertex.

Assume that the Markov process satisfies the (scalar) Poincaré inequality, Proposition 2.4(1), with
constant «. In this case, we say that G is an a-expander graph. According to Theorem 2.7, a matrix-
valued function f : 2 — Hy, on an a-expander graph satisfies a subexponential matrix concentration
inequality:

P{llf — By fll = Javy-r} <6d-e".

Therefore, local control over the fluctuations yields global concentration around the mean. The number
of vertices where the function departs from its mean is controlled by the quality « of the expander.
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This example is potentially interesting because the Markov process does not satisfy a (modified) log-
Sobolev inequality with a constant independent of the number of vertices in the graph [6], Section 5.
Indeed, to achieve the functional inequality

Ent,(f)<B-E(f,log f) forall f:Q— R,

itis necessary that 8 > const-log(#£2). See [32], Section 4.3, for related results on curvature-dimension
conditions of Bakry—Emery type.

Remark 2.14 (Matrix Expander Chernoff). Although the modified log-Sobolev inequality fails, it
is still possible to establish sub-Gaussian concentration for the ergodic averages of a matrix-valued
random walk on an expander graph [17].

3. Related work

3.1. Markov processes

Much of the classical research on Markov processes concerns the relationship between the geometry
of the state space and the behavior of canonical diffusion processes (e.g., Brownian motion on a Rie-
mannian manifold). For an introduction, we recommend the lecture notes [48]. A more comprehensive
source is the treatise [4].

Matrix-valued Markov processes first arose in the mathematical physics literature as a model for
the evolution of a quantum system. Some of the foundational works include Davies [15] and Lindblad
[28]. Quantum information theory has provided a new impetus for studying matrix-valued Markov
processes; see [24] for a discussion and some background references.

Here, we are interested in a mixed classical-quantum setting, where a classical Markov process drives
a matrix-valued function. Surprisingly, this model does not seem to have received much attention until
the last few years. See Cheng et al. [14] for a more expansive framework that includes this case. Other
foundational results appear in [3,22].

3.2. Functional inequalities

In the scalar setting, the connection between functional inequalities, convergence of Markov processes,
and concentration is a long-standing topic of research. References include [4,7,26,48].

Functional inequalities for matrices were originally formulated in the mathematical physics litera-
ture; for example, see the work of Gross [19]. The application of functional inequalities to the ergod-
icity of matrix-valued Markov processes dates back at least as far as the papers [31,35].

Functional inequalities in the mixed classical-quantum setting seem to have a more recent vintage.
Chen and Tropp [11] formulated subadditivity properties for tracial entropy-like quantities, including
the trace variance (2.4). They showed that these properties imply some Sobolev and modified log-
Sobolev-type inequalities for random matrices, and they obtained some restricted matrix concentration
inequalities. Some of the partial results from [11] were completed in [12,20,41].

Cheng et al. [14] developed a framework for studying Markov processes in the mixed classical-
quantum setting (and beyond), and they showed an equivalence between tracial log-Sobolev inequali-
ties and exponential ergodicity of the trace entropy. Further results and implications for concentration
appear in [13]. At present, we do not have a full picture of the relationships between matrix functional
inequalities and matrix concentration.
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Van Handel (personal communication) has pointed out that we can derive nonlinear matrix concen-
tration for functions of a log-concave measure with a strongly convex potential by combining Pisier’s
method [39], the (sharp) noncommutative Khintchine inequality [8,47], and Caffarelli’s contraction
theorem [9]. This approach gives subgaussian concentration, which is better than we can obtain via
the trace Poincaré inequality for log-concave measures, but it apparently does not extend beyond this
setting.

3.3. From Poincaré to concentration

It has been recognized for about 40 years that Poincaré inequalities imply exponential concentration.
Gromov and Milman [18], Theorem 4.1, prove such a theorem in the context of Riemannian manifolds.
The standard argument, a recursive estimate of the moment generating function, is attributed to Aida
and Stroock [2]. For a textbook presentation, see [7], Section 3.6.

Consider a matrix Poincaré inequality of the form

Var,[f1<a-E(f). 3.1)

Proposition 2.4 shows that this matrix Poincaré inequality (3.1) is also equivalent to a scalar Poincaré
inequality with the same constant «. The papers [12—14] demonstrate that (3.1) leads to some inequali-
ties for the matrix variance (2.4) and its trace, but these approaches do not lead to matrix concentration
inequalities like Theorem 2.7.

Aoun, Banna, and Youssef [3] have recently shown that the matrix Poincaré inequality (3.1) does im-
ply exponential concentration of a random matrix about its mean with respect to the £, operator norm.
Modulo constants, their result is equivalent with the tail bound (2.6), but it is weaker than the bounds
in Theorem 7.1. The proof in [3] is a direct analog of the argument of Aida and Stroock [2]. But, in
the matrix setting, the recursive estimate requires some heavy lifting. Another contribution of the pa-
per [3] is to establish that some particular matrix-valued Markov processes satisfy (3.1). Nevertheless,
Proposition 2.4 indicates that no additional effort is required on that end.

Our approach is similar in spirit to the work of Aoun et al. [3], but we use a symmetrization ar-
gument to avoid the difficult recursion. For related work in the scalar setting, see [5], Section 4. In a
companion paper [22], we show that local Poincaré inequalities lead to much stronger ergodicity and
concentration properties. The theory in the companion paper is significantly more involved than the
development here, so we have chosen to separate them. For results on (local) Poincaré inequalities in
noncommutative probability spaces, see Junge and Zeng [23].

4. Subadditivity

To control the variance of a function of several independent variables, it is helpful to understand the
influence of each individual variable. As in the scalar setting, the matrix variance can be bounded by a
sum of conditional variances. We can control each conditional variance by a conditional application of
a trace Poincaré inequality. For simplicity, we focus on the case that is relevant to our proof, but these
results hold in greater generality (products of more than two spaces that may carry different measures).
Some of the material in this section is drawn from [11,12]. See [25] for classic work on subadditivity
and concentration.
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4.1. Influence of a coordinate

Consider the product space (22, i ® ). We want to study how individual coordinates affect the be-
havior of a matrix-valued function g : 2 — Hj.
First, introduce notation for the expectation of the function with respect to each coordinate:

Ei[gl(z2) :=Ez~,[8(Z,22)] € Hy forallz; € Q;
Ex[gl(z1) := Ezwu[g(zl, Z)] eH,; forall z; € 2.
The coordinate-wise variance is the positive-semidefinite random matrix
Var;[g]:=E;[(g —E; g)*] eH} fori=1,2.

This matrix reflects the fluctuation in the ith coordinate, with the other coordinate held fixed.
Similarly, we can introduce the coordinate-wise carré du champ operator and Dirichlet form:

1
T1(g)(1,22) = l,lﬁ)lz_,E[(g(Z“ ) —8(Zo,2)) | Zo=21] € HI;
4.1
. 1 2 +
£1(8)(z2) := ltlﬁ)l % Ezu[(8(Zi.22) — 8(Z0,22)) | Zo=Z] € HJ.

As usual, (Z; : t > 0) is a realization of the Markov process with initial value Z,. We make analogous
definitions for the second coordinate i = 2.
Last, we extend the carré du champ operator and the Dirichlet form to bivariate functions:

T(g):=Ti(g) + Ta(g) € Hy; (4.2)
£(8) :=Eugu[€1(8) +E2(8)] € Hy. 4.3)
These formulas have a heuristic interpretation: the squared derivative of a bivariate function is the sum

of the squared partial derivatives.

4.2. Trace variance is subadditive
Observe that the trace variance is controlled by the sum of the coordinate-wise variances.

Fact 4.1 (Trace variance: Subadditivity). Let g : Q> — Hy be a matrix-valued function on the prod-
uct space (Qz, @ ). Then

trVar, g, [g] < E;trVar[g] + E tr Vary[g].

This result is due to Chen and Tropp [11], who showed that other matrix functions are also subad-
ditive. Later, Cheng and Hsieh [12] noticed that an analogous result holds without the trace. Similar
decompositions are also valid for functions on the n-fold product (2] ® 20 ® -+ ® 2, U1 @ U2 ®
-+~ ® up). See [48], Section 2.1, for the standard result in the scalar setting.
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Proof. The proof is the same as in the scalar setting. Writing E = E, g, for the total expectation,

EVar,g,lgl :=E[(g —Eg)?|=E[(g —Ei1 )’ + (Ei1 g — E| E2¢)*]
<E[(g —E g)*] +E[(g —E28)*]
= [, Var[g] + E; Var;[g].

The first line relies on orthogonality of the conditionally centered random matrices. The second line
requires the operator convexity of the square, applied conditionally. Last, take the trace. ]

4.3. Trace Poincaré inequalities are subadditive

If the Markov process satisfies a trace Poincaré inequality, then the variance of a bivariate function also
satisfies a trace Poincaré inequality.

Proposition 4.2 (Trace Poincaré: Subadditivity). Suppose that the Markov process satisfies a trace
Poincaré inequality (2.5) with constant «. Let g : Q* — Hy be a suitable bivariate matrix-valued
function. Then

trVar,g,lg]l <o -tr€(g).
Proof. Start with Fact 4.1. Apply the trace Poincaré inequality (2.5) coordinate-wise to control each

of the two coordinate-wise variances. Last, introduce the definition (4.3) of the Dirichlet form for a
bivariate function. O

5. Chain rule inequality for the Dirichlet form

The key new tool in our approach is a simple trace inequality for the matrix Dirichlet form that shows
how it interacts with composition.

Proposition 5.1 (Chain rule inequality). Enforce Assumption2.6. Let ¢ : R — R be a scalar function
whose squared derivative W = (¢')? is convex. Then

rE(e(f)) =E T (p(f)) <E a[L()W(f)] forall suitable f: Q@ — Hy.

In particular,
tr8(<p(g)) =E.ou trF(go(g)) <E.ou tr[l“(g)lp(g)] for all suitable g : Q% - Hy.

The proof of Proposition 5.1 consumes the rest of this section.
For context, recall that the carré du champ operator I of a (scalar-valued, reversible) diffusion pro-
cess satisfies a chain rule [4], Section 1.11:

T(p(f)) =T (¢ (f)* forsmooth f and ¢.

Proposition 5.1 provides a substitute for this relation for an arbitrary reversible Markov process that
takes matrix values. In exchange for the wider applicability, we need some additional averaging (pro-
vided by the Dirichlet form); we must restrict our attention to functions ¢ with a convexity property;
and the equality is relaxed to an inequality. In the scalar case, Proposition 5.1 is related to the Stroock—
Varopoulos inequality [43,49].



1736 D. Huang and J.A. Tropp
5.1. Mean-value inequality for trace functions

The argument hinges on an elementary trace inequality for deterministic matrices. This result is
obtained by lifting a numerical inequality to self-adjoint matrices. A very similar statement [30],
Lemma 3.4, animates the exchangeable pairs approach to matrix concentration, which is motivated

by work in the scalar setting [10].

Lemma 5.2 (Mean-value trace inequality). Ler A, B € Hy. Let ¢ : R — R be a scalar function
whose squared derivative = (¢)? is convex. Then

u[(A = B (¥ (4) + v (B))].

N =

tw[(p(A) — o(B))’] <

Proof. Leta, b € R. The fundamental theorem of calculus and Jensen’s inequality together deliver the
relations

1 2
(9p(a) — (b))’ = (a — b)2|:/0 drg'(ra+ (1 — z)b)]
1
<(a— b)2/ dry(ra+ (1 —1)b)
0

1 1
<(a- b)2/0 dr[ty (@) + (1 -y (d)] = E(a - b)z(w(a) + ¥ (b)).

The generalized Klein inequality [38], Proposition 3, allows us to lift this numerical fact to a trace
inequality for matrices A, B € Hj. ]

5.2. Proof of Proposition 5.1

The result follows from a short calculation. First, we use the definition (2.3) of the Dirichlet form as a
limit:

rE(p(f)) = lim % Ez~u[t](0(£(Z0) = o(£(Z0)))*] | Zo = Z]
<tim % Bz t[(£(Z0) — £Z0)* (4 (f(Z0) + ¥ (f(20))) | Zo = Z]

1
=tlim > Bz 0] (f (20 = £ (Z0) ¥ (f (Z0)) | Zo = 7]

=Ezu tr[lj;g % E[(f(Z) - f(Z0))* | Zo = Z]w(f(Z))}
=E, u[T(Hv ()]

The inequality is Lemma 5.2. To reach the third line, we use the fact that (Z, Z;) is an exchangeable
pair for each ¢t > 0, a consequence of the reversibility of the Markov process (Z; : t > 0) and the
fact that Zy ~ w. Last, we condition on the value of Z, invoke dominated convergence to pass the
expectation through the limit, and we apply the definition (2.2) of the carré du champ operator.
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6. Exponential moments

Our main technical result is a bound for the exponential moments of a general matrix-valued function
on the state space. In contrast to the usual approach of bounding the moment generating function, we
will compute the expectation of a hyperbolic function.

Theorem 6.1 (Exponential moments). Enforce Assumption 2.6. Let f : Q2 — Hy be a function with
E,f=0.For6 >0,

6.1)

5 -
E, trcosh(6 f) <d - |:1 + a6 trE(f) ]

(1 —avs02/2)

The variance proxy vy is defined in (2.7), and tr is the normalized trace.

The proof of Theorem 6.1 occupies the rest of the section. But first, we use this moment bound to
derive our main result, Theorem 2.7.

Proof of Theorem 2.7 from Theorem 6.1. Without loss, assume that E,, f = 0. We use the matrix
moment method [1,34]:

. 1 . 2
Pu{lfll =4} < inf s By cosh(@U 1) = inf 55— - By |cosh@ )|

L2 NPy
< 911>1£CT)L -E, treosh(d f) < 2d~911>1ge . |:1 +

0% irE(f)
(11— oevf92/2)+:|

<2d - e MVEF . |:1 + M} <6d-e MV
vf

The first inequality is Markov’s. The second relation is the spectral mapping theorem. The ¢, operator
norm of a positive-definite matrix is obviously bounded by its trace. Then invoke Theorem 6.1 to
control the moment. We have chosen 6 = (owf)_l/z. Last, we have noted that tr E(f) < |E(f)]| < vf.
To finish the proof of the tail bound (2.6), make the change of variables A > A /avy.

The expectation bound (2.7) follows when we integrate the tail bound (2.6), taking into account that
the probability is also bounded by one; we omit the details. U

6.1. Proof of Theorem 6.1

Our goal is to develop an exponential moment bound for a function f : 2 — Iy that satisfies E,, f = 0.
We will need to work with both the hyperbolic sine and cosine, passing between them using simple
identities. After writing this paper, we learned that this proof is a matrix analog of an argument pro-
posed by Bobkov and Ledoux [5], Section 4.

6.1.1. Symmetrization

The first step is to symmetrize the function. Let Z, Z’ € 2 be independent random variables, each with
distribution w. Since f(Z’) has mean zero, a conditional application of Jensen’s inequality yields

Etrsinh?(0 f(2)) < Etrsinh?(0(f(Z) — £(2'))) =: Etrsinh?(0g(Z, Z')). (6.2)

Indeed, since sinh? is convex, the function tr sinh? is also convex [38], Proposition 2. We have defined
the antisymmetric function g(z,z") := f(z) — f()) for z, 7' € Q.



1738 D. Huang and J.A. Tropp

6.1.2. From moments to variance

Next, we will write the expectation as a variance. Consider the odd function ¢(s) = sinh(8s). First, we
claim that

Esinh(0g(Z, Z")) =0.
Indeed, using the antisymmetry of g and the oddness of ¢,
Esinh(0g(Z, Z')) =Esinh(—60g(Z', Z)) = —Esinh(0g(Z', Z)) = — Esinh(0g(Z, Z')).

The last identity holds because (Z, Z’) is exchangeable.
As an immediate consequence,

E, @y trsinh?(0g) = E, g, trsinh*(0g) — tr[ (Epop sinh(@g))z] = tr Var, g, [sinh(0g)].
The appearance of the variance gives us access to Poincaré inequalities.
6.1.3. Poincaré inequality
To continue, we apply Proposition 4.2, the trace Poincaré inequality for bivariate functions:
Eueu trsinh’(0g) < o - tr€(sinh(0g)) < ab? - E g, tr T (g) cosh*(0g)]. (6.3)
The second inequality is the chain rule, Proposition 5.1, for the Dirichlet form. To activate it, we note
that the squared derivative of ¢(s) = sinh(fs) is the convex function ¥ (s) = 62 cosh? 0s).
6.1.4. Moment comparison

A moment comparison argument allows us to isolate the exponential moment. Define the variance
proxy of the bivariate function:

Vg = ” ||I‘(g) H ||Loo(p,®ll,)' (6.4)
Continuing from (6.3), the identity cosh? = 1 + sinh? implies that
Eugutrsinh*(0g) < @f? - E g, trT(g) + ab? - E, g, tf[T(g) sinh*(0g)]
<ab?-tr Eg+ a92vg ‘Euoutr sinhz(Gg).

The second inequality is just the usual operator-norm bound for the trace. Rearrange this identity to
arrive at

af?trE(g)
E,gu trsinh’(0g) < ————2° 6.5
u@u s ( g) = (1 — avg92)+ ( )

It remains to revert to the original function f.

6.1.5. Comparison of carré du champs

Let us compute the Dirichlet form £(g) and the variance proxy vy in terms of the original function f.
To that end, observe that the coordinate-wise carré du champ (4.1) satisfies

/ . 1 / /
Ti(g)(z.7) =Elim 5 [(&(21.7) —g(Z0.2 )’ 1 Zo=2]

o1
=Elim > [(f(Z0 - F(Z0)* 1 Zo=2] =T ().
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A similar calculation reveals that T'»(g)(z,z") = T'(f)(z"). Thus, the bivariate carré du champ (4.2)

takes the form

I(g)(z.7') =T1(8)(z.2) + T2(g)(z. Z) =T (N @) + T (N)(Z).

As a consequence, the Dirichlet form can be calculated as

£(g) =Eueu (@) =Eueu[T (/)@ +T ()] =2E0).

The variance proxy (6.4) of the bivariate function satisfies

vg = [IT@ @ ) Lo = NITDN g + TN =20

The last relation is the definition (2.7) of the variance proxy v .

6.1.6. Endgame

Combining (6.2) and (6.5), we see that

02trE 2a6%trE
E, trsinh?(0 f) < 22 UE®) b u )
(1—avgh?)y = (1 =2avp6%)4

We have also used the relations (6.7) and (6.8) from the last section.

To compete the proof of (6.1), invoke the identity sinh?(s) = (cosh(2s) — 1) /2 to see that

4a02tr E(f)

E,t h20f) <d + ——.
utrecosh(20 f) < +(1—20wf02)+

Finally, introduce the normalized trace, tr, and make the change of variables 6 — 6/2 to arrive at

ab2ir E(f)
E, trcosh(d f) <d - |:1 + m]

This is the stated result.

7. Polynomial moments

(6.6)

6.7)

By a simple variation on the proof of Theorem 6.1, we can also obtain bounds for the polynomial

moments of a random matrix.

Theorem 7.1 (Polynomial moments). Enforce Assumption 2.6. Let f : Q — Hy be a function with

E,f=0.Forq=1andq>1.5,

(B, tr] f120) /4 < J2ag? - (B, trT(f)9)"9.

(7.1)
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By combining Theorem 7.1 with the moment method, we can obtain probability bounds for || f||. Let
us summarize how these results compare with the main result, Theorem 2.7. Observe that Theorem 7.1
gives a bound on the Schatten 2g-norm of the random matrix f(Z) in terms of the Schatten 2¢g-norm
of T'(f)!/2. We have the relation

(Eu T ()" <aC0 - |Irn@| |2, =d" - 7. (7.2)

Therefore, Theorem 7.1 potentially yields stronger bounds than Theorem 6.1.

In particular, Theorem 7.1 applies even when I' (f) is not uniformly bounded. Example 7.3 illustrates
why this flexibility is valuable. In Section 7.2, we show that slightly better polynomial moment bounds
are possible when I'(f) is uniformly bounded.

Remark 7.2 (Missing Parameters). Theorem 7.1 also holds for ¢ € (1, 1.5), with an extra factor of
V/2 on the right-hand side. The proof uses a variant of Proposition 5.1 that only requires the function
¥ to be monotone.

Example 7.3 (Gaussian Chaos). Consider the matrix Gaussian chaos

n
f(X)Z Z X,‘XjA,'j whereXNV,, and A,'j =Aj,‘ GHd.
i,j=1

To bound the trace moments of f(X), observe that the carré du champ takes the form

n

n n 2
r(H@ =Y (3ifw)’ =4Z<ijAu> :
i=1 \j=1

i=1

Evidently, I'(f) is unbounded, so Theorem 2.7 does not apply. But Theorem 7.1 yields

n /o 244\ 1/Cq)
2
(E,, tr] f12)"/?7 < 8q2~(IEyn tr|:Z<ZXjA,~j> ] ) . (7.3)
1 \j=I

We have used the fact that the Poincaré constant of the OU process is « = 1. Further bounds can be
obtained by applying Theorem 7.1 repeatedly. In the matrix setting, there are obstacles that prevent us
from simplifying (7.3) completely (related to the fact that the partial transpose operator is not com-
pletely bounded).

In the scalar case d = 1, we can obtain more transparent conclusions. Consider the scalar-valued
Gaussian chaos

f(X)= Z XiXjaij.

i, j=1
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The most satisfying outcome takes place when A = [a;;] is positive semidefinite. In this case, the result
(7.3) implies that

2449\ 1/Q2q)
(Ey, 1£1P9) /27 < /842 (E " (ZX ) } )
Li=1

1/g)
8q2.<En ZxxkA2 )

Lj,k=1

< /8¢%1All - (By, 1£19)"* < \/8g211All- (E,, | £12)"/.

Solving, we obtain the bound
1/2
(Ey, 1/12)0 < 84| Al

This result gives a suboptimal estimate for large moments of the Gaussian chaos; as g — oo, the
moments should grow in proportion to g || A|| rather than q2 ||A|l. For example, see [27], Corollary 3.9.

7.1. Proof of Theorem 7.1

For a parameter ¢ = 1 or ¢ > 1.5, we wish to estimate the Schatten 2¢g-norm of a function f : Q — Hy
that satisfies [E,, f = 0. The argument has the same structure as Theorem 6.1.

First, we symmetrize. Let Z, Z' € Q be independent random variables, each with distribution L.
Jensen’s inequality implies that

Bt |f1% <Eu|f(2) - f(2))[** = Eu|g(z, Z')|™. (7.4)

Since | - [* is convex, the function tr| - |27 is also convex [38], Proposition 2.
Define the signed moment function ¢(s) := sgn (s) - |s|?, which is odd. Note that its squared deriva-
tive ¥/ (s) 1= (¢'(5))? = ¢?|s|>@~V is convex. Since g(z, z') = f(z) — f(z’) is antisymmetric,

Euoutr|gl*! =Eueutro(g)’
2
=Eueu tr(/’(g)z - tr[(Ewa ‘P(g)) ] =trVar,g, [W(g)]

Apply the bivariate trace Poincaré inequality, Proposition 4.2:

trVar,gu[p(g)] <o - trE(p(g)) < aq®  Eugu tr[T (@) ()]

The second bound is the chain rule inequality, Proposition 5.1. In summary,
Eusutr|g* <aq’ Eugu T (e)lg*7"]. (7.5)

This formula allow us to perform a moment comparison.
To isolate the carré du champ I'(g), invoke Holder’s inequality for the Schatten norms:

1 —1
Epon tr1g1 < g®(Buey rT(g)?) " (B g, tr|g|?) ™"/,
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Rearrange the last display, and use the initial bound (7.4) to arrive at

1/(2 1/02 1o
(Epgu tr| f177) 1eo - (Eueutrigl®) 10— Jag?. (Eugu trT()7) 129

To finish the proof of (7.1), recall the expression (6.6) for the carré du champ I'(g). Thus,

(B trT(2)7) ! = (B, | T(f)(2) + T(F)()])"? <2(E, T (f)7)"7.

This point follows from the triangle inequality. The argument is complete.

7.2. A variant of the argument

The intrinsic dimension of a positive-semidefinite matrix is

o tr(A) .
intdim(A) := —— for A € Hj;.
Al
We also set intdim(0) = 0. For a nonzero matrix A, the intrinsic dimension satisfies 1 < intdim(A4) <
rank(A). It can be interpreted as a continuous measure of the rank.
Suppose that g is a natural number. If we use the uniform bound (6.4) for the carré du champ instead
of Holder’s inequality, we can apply the bound (7.5) iteratively to obtain

E.oun tr|g|’? < intdim(g(g)) ~alq!- vg.

The latter estimate improves over the uniform inequality that follows from Theorem 7.1 and (7.2).
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