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SM1. Dimension reduction for Algorithm 2.1. As it is stated, Algorithm 2.1 requires
solving semidefinite programs in an n × n matrix variable. In this section, we develop an
equivalent procedure that optimizes over a much lower-dimensional space of matrices. This
approach, which we document in Algorithm SM1.1, has significantly lower resource usage.

Theorem SM1.1 (Efficient sign component decomposition). Let A ∈ Hn be a rank-r corre-
lation matrix that admits a sign component decomposition

A =
r∑
i=1

τisis
t
i where si ∈ {±1}n and (τ1, . . . , τr) ∈ ∆+

r .

Assume that the family S = {s1, . . . , sr} of sign components is Schur independent. Then
Algorithm SM1.1 computes the sign component decomposition up to trivial symmetries. That
is, the output is the unordered set of pairs {(τi, ξisi) : 1 ≤ i ≤ r}, where ξi ∈ {±1} are signs.
This algorithm can be implemented with arithmetic cost O(n3polylog(r)).

Up to logarithmic factors in r, the running time for Algorithm SM1.1 matches the cost of
computing a full eigenvalue decomposition of a dense n× n symmetric matrix.

Proof. Let F = conv{sst : s ∈ S} ⊂ En be the simplicial face of the elliptope that contains
the matrix A. Let Q = orth(A) ∈ Rn×r be a matrix with orthonormal columns that span the
range of A. In particular, P = QQt is the orthogonal projector onto the range of A. We can
use these matrices to compress all of the optimization problems that arise in Algorithm 2.1.

We begin with the random optimization problem (5.2). It is not hard to check that the
feasible set of (5.2) can be rewritten as follows. Let qtj ∈ Rr be the ith row of the matrix Q.
Then

F = {X : trace(PX) = n and X ∈ En} = {QY Qt : qtjY qj = 1 for each j and Y < 0}.

Indeed, recall that Ps = s for s ∈ S. Each feasible point X for (5.2) belongs to the face
F , so it must satisfy X = PXP . Expanding the orthogonal projectors, we obtain the
parameterization X = QY Qt where Y = QtXQ ∈ Hr. Moreover, X is psd. According to
the conjugation rule (Fact 1.1), this is equivalent to demanding Y < 0 Finally, the diagonal
contraints etjXej = 1 translate directly into the conditions qtjY qj = 1 for each index j.

We can conjugate the last display by the orthonormal matrix Q to see that

F̃ = conv{QtsstQ : s ∈ S} = {Y ∈ Hr : qtjY qj = 1 for each j and Y < 0}.
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Moreover, the set F̃ on the left-hand side is a simplex. As a consequence, we can draw a
standard normal vector g ∈ Rr and solve the optimization problem

(SM1.1) maximize
Y ∈Hr

gtY g subject to qtjY qj = 1 for each j and Y < 0.

According to Lemma 5.1, the unique solution will be a matrix Y? = QtsstQ for some s ∈ S.
The deflation step of Algorithm 2.1 can also be mapped down to the simplex F̃ . We just

need to solve
maximize

ζ∈R
ζ subject to ζ(QtAQ) + (1− ζ)Y? < 0.

As before, Lemma 5.2 ensures that this procedure extracts the rank-one component Y? from
QtAQ, decreasing the rank by one.

Next, let us propose a further simplification to the random optimization problem (SM1.1)
by noticing that the equality constraints are always redundant. First, rewrite the constraints
as

trace(qjq
t
jY ) = 1 for j = 1, . . . , n.

Of course, each constraint matrix qjq
t
j ∈ Hr. In fact, the constraint matrices also satisfy

additional affine constraints. For each s ∈ S, we calculate that

trace(qjq
t
jQ

tsstQ) = trace(Qteje
t
jQQ

tsstQ) = trace(eje
t
jPss

tP ) = trace(eje
t
jss

t) = 〈ej , s〉2 = 1.

Therefore, the constraint matrices lie in an affine subspace of Hr with dimension
(
r+1
2

)
− r =(

r
2

)
+ 1. We can select a maximal linearly independent subset of {qjqtj : j = 1, . . . , n} and

enforce this smaller family of constraints.
To conclude, observe that Algorithm SM1.1 involves 2(r − 1) semidefinite programs with

variable X ∈ Hr. The number of affine constraints in each SDP is bounded by
(
r
2

)
+ 2.

Standard interior point solvers [SMAHO98] can solve such problems to fixed accuracy in time
O(r6.5). This bound can ostensibly be improved to O(r5polylog(r)) using a method proposed
in the theoretical algorithms literature [SMLSW15, Table 2].

Finally, we must account for the cost of computing a basis for the range of the input
matrix A and lifting the solution from the lower-dimensional space back to the original sign
components. For Algorithm SM1.1, this leads to a total runtime of O(n3polylog(r)) using
the theoretical method. This bound relies on the restriction (2.3) that r = O(

√
n) for Schur

independence.
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Algorithm SM1.1 Efficient sign component decomposition (2.1) of a matrix with Schur independent

components. Implements the procedure in Theorem SM1.1.

Input: Rank-r correlation matrix A ∈ Hn that satisfies (3.2)
Output: Sign components {s̃1, . . . , s̃r} ⊂ {±1}n and convex coefficients τ̃ ∈ ∆+

r where A =∑r
i=1 τ̃is̃is̃

t
i

1 function EfficientSignComponentDecomposition(A)
2 [n,∼]← size(A) and r ← rank(A)
3 Q← orth(A) . Orthonormal basis for the range of A
4 M ← QtAQ . Compress the input matrix
5 Use RRQR to find a maximal independent set of constraints:

maximize
J⊆{1,...,n}

|J | subject to {qjqtj : j ∈ J} is linearly independent

6 for i = 1 to (r − 1) do
7 g ← randn(r, 1) . Draw a random direction
8 Find the solution Y? to the semidefinite program . Step 1

maximize
Y ∈Hr

gtY g subject to qtjY qj = 1 for j ∈ J and Y < 0

9 Factorize the rank-one matrix Y? = Qts̃is̃
t
iQ . Extract a sign component

10 Find the solution ζ? to the semidefinite program . Step 2

maximize
ζ∈R

ζ subject to ζM + (1− ζ)Y? < 0

11 M ← ζ?M + (1− ζ?)Y? . Step 3

12 Factorize the rank-one matrix M = Qts̃rs̃
t
rQ . rank(M) = 1 in final iteration

13 Find the unique solution τ̃ ∈ Rr to the linear system . Step 4

M =

r∑
i=1

τ̃iQ
ts̃is̃

t
iQ
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