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Binary Component Decomposition
Part I: The Positive-Semidefinite Case∗

Richard Kueng† and Joel A. Tropp†

Abstract. This paper studies the problem of decomposing a low-rank positive-semidefinite matrix into symmet-
ric factors with binary entries, either {±1} or {0, 1}. This research answers fundamental questions
about the existence and uniqueness of these decompositions. It also leads to tractable factorization
algorithms that succeed under a mild deterministic condition. A companion paper addresses the
related problem of decomposing a low-rank rectangular matrix into a binary factor and an uncon-
strained factor.
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1. Motivation and background. Matrix factorization stands among the most fundamen-
tal methods for unsupervised data analysis. One of the main purposes of factorization is to
identify latent structure in a matrix. Other applications include data compression, summa-
rization, and visualization. In many situations, we need to place constraints on the factors
appearing in the matrix decomposition. This step allows us to enforce prior knowledge about
the process that generates the data, thereby enhancing our ability to detect structure.

Prominent examples of constrained matrix factorizations include independent component
analysis [Com94], nonnegative matrix factorization [PT94], dictionary learning or sparse cod-
ing [OF96], and sparse principal component analysis [ZHT06]. These techniques arose in
signal processing, environmental engineering, neuroscience, and statistics. This catalog hints
at the wide compass of these ideas. It is a natural challenge to develop a rigorous theory that
justifies and improves existing factorization models. Another valuable direction is to create
new types of constrained factorizations. These problems not only have a deep intellectual
appeal, but progress may eventually lead to new modes of data analysis.

The purpose of this paper and its companion [KT19] is to develop the theoretical founda-
tions for binary component decompositions. That is, we are interested in matrix decomposi-
tions where one of the factors is required to take values in the set {±1} or in the set {0, 1}.
These models are appropriate for applications where the latent factor reflects an exclusive
choice. For instance, “on” and “off” in electrical engineering; “connected” or “disconnected”
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BINARY COMPONENT DECOMPOSITION I 545

in graph theory; “yes” and “no” in survey data; “like” and “dislike” in collaborative filtering;
or “active” and “inactive” in genomics.

In this first paper, we study factorization of a low-rank correlation matrix into symmetric
binary factors. We focus on core questions about the existence and uniqueness, and we develop
efficient algorithms for computing these factorizations in the noiseless setting. We also describe
a stylized application in massive MIMO communications. In the companion paper [KT19], we
build on these ideas to develop an asymmetric factorization of a low-rank data matrix into a
binary factor and an unconstrained factor, and we present some robustness results.

1.1. Notation. We use standard notation. Scalars are indicated by lowercase Roman or
Greek letters (x, ξ); lowercase bold letters (x, ξ) are (column) vectors; and uppercase bold
letters (X,Ξ) are matrices. Calligraphic letters (X ) are reserved for sets.

Throughout, n is a fixed natural number. We work in the real linear space Rn equipped
with the standard inner product and the associated norm topology. The symbol t denotes the
transpose of a vector or matrix. The standard basis in Rn is the set {e1, . . . , en}. We write
e for the vector of ones; its dimension is determined by context. The symbol � denotes the
Schur (i.e., componentwise) product of vectors. The closed and open probability simplices are

∆r =
{
τ ∈ Rr : τi ≥ 0,

∑r

i=1
τi = 1

}
and ∆+

r =
{
τ ∈ Rr : τi > 0,

∑r

i=1
τi = 1

}
.

These sets parameterize the coefficients in a convex combination.
The real linear space Hn consists of symmetric n×n matrices with real entries. We write I

for the identity matrix; its dimension is determined by context. A positive-semidefinite (psd)
matrix is a symmetric matrix with nonnegative eigenvalues. The statement X < 0 means
that X is psd. We often invoke the following fundamental property of psd matrices.

Fact 1.1 (conjugation rule). Conjugation respects the semidefinite order.
1. If X < 0, then KXKt < 0 for each matrix K with compatible dimensions.
2. If K has full column rank and KXKt < 0, then X < 0.

1.2. Background. Our point of departure is the famous eigenvalue decomposition. Let
A be a rank-r correlation matrix. That is, A is a rank-r psd matrix with all diagonal entries
equal to one. We can always write this matrix in the form

(1.1) A =
∑r

i=1
λiuiu

t
i, where diag(A) = e.

In this expression, {u1, . . . ,ur} ⊂ Rn is an orthonormal family of eigenvectors associated with
the positive eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λr > 0. Eigenvalue decompositions are a basic tool
in data analysis because of the connection with principal component analysis [Jol02].

In spite of the significance and elegance of the decomposition (1.1), it suffers from several
debilities. First, we cannot impose extra conditions on the eigenvectors to enforce prior
knowledge about the data. Second, the eigenvectors are a mathematical abstraction, so they
often lack a meaning or interpretation. Moreover, in applications it is often hard to argue
that the data was generated from orthogonal components.

These limitations are widely known and have spurred the development of matrix decom-
positions that evince other types of structure. For example, we may seek a decomposition of
the form (1.1) where the vectors ui are discrete, sparse, or nonnegative.
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546 RICHARD KUENG AND JOEL A. TROPP

The most popular computational approach for structured factorization alternates between
optimization and deflation steps. For example, see [OP83a, Kol98, FK99, Tem03, AN06,
Wit10, Jag11, Bac13, Ude15, Bru17]. The idea is to iteratively find the structured components
and extract them one by one. The optimization step (attempts) to identify an individual
component by solving a problem like

(1.2) maximize xtAx subject to x is “structured.”

Given an approximate solution x, one tries to remove its contribution to the target matrix.
For instance, one might make the update

(1.3) A 7→ A− λxxt, where λ = xtAx/ ‖x‖2 .

Other deflation techniques include matching pursuit algorithms [DT96] and conditional gra-
dient methods [Jag11].

For several reasons, deflation-based factorization algorithms often lack strong guarantees.
First, the optimization step (1.2) may not identify a structured component that actually
appears in the matrix. Furthermore, it is usually computationally hard to solve (1.2) to
optimality [AN06, GV18]. We refer to section 8 for a more detailed discussion, as well as an
overview of other algorithms for discrete matrix factorization.

2. Sign component decomposition and binary component decomposition. This section
introduces the two matrix factorizations that we will study in this paper, the sign component
decomposition (subsection 2.1) and the binary component decomposition (subsection 2.2). It
also presents our main results about situations when we can compute these factorizations with
polynomial-time algorithms. We conclude with an outline of this paper (subsection 2.3).

2.1. Sign component decomposition. In this work, we study low-rank matrix factoriza-
tion models where the underlying components are binary-valued and need not be orthogonal.
We begin with the case where the entries of the components are restricted to the set {±1}.
In subsection 2.2, we discuss an alternative model where the entries are restricted to {0, 1}.

For a natural number r, we consider the problem of decomposing a rank-r correlation
matrix A ∈ Hn as a proper1 convex combination of rank-one sign matrices:

(2.1) A =
∑r

i=1
τisis

t
i, where si ∈ {±1}r and (τ1, . . . , τr) ∈ ∆+

r .

Equivalently, we may write the decomposition (2.1) as a matrix factorization:

(2.2) A = S diag(τ )St, where S =
[
s1 . . . sr

]
∈ {±1}n×r, τ = (τ1, . . . , τr) ∈ ∆+

r .

Note that the right-hand side of (2.1) always yields a correlation matrix. See Figure 1 for a
schematic. We refer to the factorization (2.1)–(2.2) as a sign component decomposition of the
correlation matrix A. The ±1-valued vectors si are called sign components, and they may be
correlated with each other. Altogether, these properties give the factorization a combinatorial
flavor, rather than a geometric one.

1A proper convex combination has strictly positive coefficients.
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A1

1

=

S

±

τ1

τr

St
±

=
∑
i
τi

si

±

si
t ±

Figure 1. Sign component decomposition. The sign component decomposition (2.1)–(2.2) expresses a
correlation matrix A as a proper convex combination of rank-one sign matrices.

2.1.1. Schur independence and geometry. Although the sign component decomposition
may appear to be combinatorially intricate, we can compute it efficiently for a surprisingly
large class of instances. This positive outcome stems from remarkable geometric properties of
the set of correlation matrices. The following definition from [LP96] is central to our program.

Definition 2.1 (Schur independence of sign vectors). A set {s1, . . . , sr} ⊆ {±1}n of sign
vectors is Schur independent if the linear hull of all pairwise Schur products has the maximal
dimension:

dim span
{
si � sj : 1 ≤ i, j ≤ r

}
=
(
r
2

)
+ 1.

Equivalently, the multiset {e} ∪ {si � sj : 1 ≤ i < j ≤ r} ⊂ Rn must be linearly independent.

Here are some simple observations. If a set is Schur independent, so is every subset. Schur
independence of a set is unaffected if we flip the sign of any subset of the vectors. Last, it is
computationally easy to check if a set of sign vectors is Schur independent.

We can interpret Definition 2.1 as a “general position” property for sign vectors. A Schur
independent multiset is always linearly independent (Lemma 4.7), but the converse is not true
in general. Indeed, the cardinality r of a Schur-independent collection of sign vectors in Rn
must satisfy the bound

(2.3) r ≤ 1
2

(
1 +
√

8n− 7
)
;

see [LP96, eq. (3.6)]. When r meets the threshold (2.3), most collections of r sign vectors are
Schur independent. Indeed, a randomly chosen family of sign vectors is Schur independent
with overwhelming probability. Here is a basic result in this direction [Tro18, Thm. 2.9].

Fact 2.2 (Tropp). Suppose that the vectors s1, . . . , sr are drawn independently and uni-
formly at random from {±1}n. Then {s1, . . . , sr} is Schur independent with probability at
least 1− r2 exp(−n/r2).

See [Tro18, Thms. 2.10, 2.11] for other probability models and significant improvements.
Although Schur independence may seem alien at first sight, it appears naturally when we

adopt a geometric perspective on the sign component decomposition. The correlation matrix
A is contained in the convex hull F of its sign components. This convex hull is, in turn, a
proper convex subset of the (convex) set of all correlation matrices En:

A =
∑r

i=1
τisis

t
i ⊂ conv

{
s1s

t
1, . . . , srs

t
r

}︸ ︷︷ ︸
F

⊂ {X ∈ Hn : diag(X) = e and X < 0}︸ ︷︷ ︸
En

.
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ggt

s1s1
t

s3s3
t

s2s2
t

A

F

s1s1
t

s3s3
t

s2s2
t

A

A′

F

Figure 2. Illustration of Algorithm 2.1. The matrix A belongs to the relative interior of the simplex
F = conv

{
s1s

t
1, s2s

t
2, s3s

t
3

}
. Left: Random optimization over the simplex F identifies an extreme point with

probability one. In this diagram, maximizing the linear functional X 7→ trace(ggtX) over F locates the rank-
one matrix s2s

t
2. Right: To remove the contribution of the rank-one matrix s2s

t
2 from the matrix A, we traverse

the ray from the rank-one matrix through the matrix A until we arrive at a facet of F . The terminus A′ of the
ray is a proper convex combination of the remaining rank-one matrices.

Schur independence of the sign components {s1, . . . , sr} implies that the set F is a simplicial
face of En. We refer to subsection 3.5 for a detailed statement and context.

2.1.2. Computing a sign component decomposition. The main outcome of this paper
is an efficient algorithm for computing the sign component decomposition of a rich class of
correlation matrices. Schur independence of the sign components is necessary and sufficient for
this method to operate. Geometrically, this property ensures that the matrix A =

∑r
i=1 τisis

t
i

is contained in a simplicial face F = {s1s
t
1, . . . , srs

t
r} of the set En of correlation matrices.

Since F lies on the boundary of En, it is possible to isolate this simplicial face with a linear
separator. Indeed, if P ∈ Hn is the orthogonal projector onto the range of A, then

F = {X ∈ Hn : diag(X) = e, tr (PX) = n and, X < 0} .

This claim is established in Proposition 3.6 and allows us to efficiently optimize linear func-
tionals over F via semidefinite programming.

Optimizing a random functional gtXg almost surely locates an extreme point X? = sks
t
k

of the face F . In this case, by factorizing X?, we can identify a sign component of the matrix
A. We may view this approach as a provably correct variant of the optimization step (1.2)
in a deflation procedure. Subsequently, we can remove the contribution of sks

t
k to A in

a fashion that respects the geometric structure and iterate. This procedure is summarized
in Algorithm 2.1 and we refer to Figure 2 for a visual illustration.

Theorem I (sign component decomposition). Let A ∈ Hn be a rank-r correlation matrix
that admits a sign component decomposition (2.1)–(2.2) where the set {s1, . . . , sr} of sign com-
ponents is Schur independent. Then the sign component decomposition is uniquely determined
up to trivial symmetries, and Algorithm 2.1 computes the decomposition in time polynomial
in n.
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Algorithm 2.1. Sign component decomposition (2.1) of a matrix with Schur independent compo-

nents.

Implements the procedure from subsection 3.7.

Input: Rank-r correlation matrixA ∈ Hn that satisfies (2.1) with Schur independent sign components
Output: Sign components {s̃1, . . . , s̃r} ⊆ {±1}n and convex coefficients τ̃ ∈ ∆+

r , where A =∑r
i=1 τ̃is̃is̃

t
i

1 function SignComponentDecomposition(A)
2 [n,∼]← size(A) and r ← rank(A)
3 for i = 1 to (r − 1) do
4 U ← orth(A) . Find a basis for the range of A
5 g ← randn(n, 1) . Draw a random direction
6 Find the solution X? to the semidefinite program . Step 1

maximize
X∈Hn

gtXg subject to trace
(
U tXU

)
= n, diag(X) = e, and X < 0

7 Factorize the rank-one matrix X? = s̃is̃
t
i . Extract a sign component

8 Find the solution ζ? to the semidefinite program . Step 2

maximize
ζ∈R

ζ subject to ζA+ (1− ζ)X? < 0

9 A← ζ?A+ (1− ζ?)X? . Step 3

10 Factorize the rank-one matrix A = s̃rs̃
t
r . rank(A) = 1 in final iteration

11 Find the solution τ̃ ∈ ∆+
r to the linear system . Step 4

A =
∑r

i=1
τ̃is̃is̃

t
i

The uniqueness claim in Theorem I is established in Theorem 3.4. The computational
claim is the content of Theorem 3.7.

Theorem I only asserts that we can factorize a low-rank matrix. We report some ideas for
overcoming this difficulty in the companion paper [KT19], but the fundamental problem of ap-
proximate sign component decomposition of a noisy matrix remains open. Indeed, Theorem I
relies on geometric properties that are not stable under perturbation of the input matrix. We
hope to address this serious practical issue in future work.

2.1.3. Remarks on implementation. As stated, Algorithm 2.1 involves 2(r− 1) semidefi-
nite programs over the n×n matrices. Using randomized dimension reduction, we can develop
an equivalent procedure that optimizes over r×r matrices instead. Algorithm SM1.1, detailed
in the supplement, reduces the arithmetic cost to O(n3polylog(r)), which is comparable to a
single dense eigenvalue decomposition.

We can implement Algorithm 2.1 or Algorithm SM1.1 with a general-purpose SDP solver
(based on an interior-point method, say). At present, this approach can factorize a matrix
with dimension n in the low 1000s. Scalable semidefinite programming algorithms, such as the
Burer–Monteiro method [BM03, BBV16] or SketchyCGAL [YTF+19], can handle somewhat
larger problems, but storage of the dense correlation matrix A remains an issue.
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Remark 2.3 (certificates for correctness and uniqueness). Algorithm 2.1 can detect its own
failure in an online fashion. It reveals sign components one by one. This allows for repeatedly
checking Schur independence and failing loudly if Schur independence is violated. Schur
independence of all sign components also implies that the obtained factorization is unique up
to trivial ambiguities.

2.2. Binary component decomposition. Sign component decomposition provides a foun-
dation for computing other types of binary factorizations. In particular, we can also study
models where the components take values in the set {0, 1}. Let H ∈ Hn be a psd matrix.
Our goal is to find a representation

(2.4) H =
∑r

i=1
τiziz

t
i where, zi ∈ {0, 1}n and (τ1, . . . , τr) ∈ ∆+

r .

Equivalently, we may write the decomposition (2.4) as a matrix factorization:

(2.5) A = Z diag(τ )Zt, where Z =
[
z1 . . . zr

]
∈ {0, 1}n×r, τ = (τ1, . . . , τr) ∈ ∆+

r .

We refer to (2.4)–(2.5) as a binary component decomposition of the matrix H. The vectors zi
are called binary components.

We can connect the binary component decomposition with the sign component decompo-
sition by a simple device. Just observe that there is an affine map that places binary vectors
and sign vectors in one-to-one correspondence:

(2.6) F : {0, 1}n → {±1}n, where F : z 7→ 2z − e and F−1 : s 7→ 1
2(s+ e).

Owing to the correspondence (2.6), Schur independence of sign vectors begets a concept of
Schur independence for binary vectors.

Definition 2.4 (Schur independence of binary vectors). Let z0 = e. A set {z1, . . . ,zr} ⊆
{0, 1}n of binary vectors is Schur independent if

dim span
{
zi � zj : 0 ≤ i, j ≤ r

}
=
(
r
2

)
+ 1.

Proposition 6.3 describes the precise relationship between the two notions of Schur inde-
pendence. The correspondence (2.6) also allows us to reduce binary component decomposition
to sign component decomposition. The following result is a (nontrivial) corollary of Theorem I.

Theorem II (binary component decomposition). Let H ∈ Hn be a rank-r psd matrix that
admits a binary component decomposition (2.4)–(2.5) where the set {z1, . . . ,zr} of binary
components is Schur independent. Then the binary component decomposition is uniquely de-
termined up to trivial symmetries, and Algorithm 2.2 computes the decomposition in time
polynomial in n.

See subsection 6.4 for the proof.
The binary component decomposition (2.4) is closely related to the (symmetric) cut de-

composition [FK99, AN06]. In general, cut decompositions appear to involve challenging
combinatorial optimization problems. Viewed from this angle, it seems surprising that bi-
nary component decompositions are unique and efficiently computable. See section 8 for a
discussion.
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Algorithm 2.2. Binary component decomposition (2.4) of a matrix with Schur independent compo-

nents.

Implements the procedure from subsection 6.4.

Input: Rank-r symmetric matrix H ∈ Hn that satisfies (2.4) with Schur independent binary compo-
nents.

Output: Binary components {z̃1, . . . , z̃r} ⊆ {0, 1}n and convex coefficients τ̃ ∈ ∆r, where H =∑r
i=1 τ̃i z̃iz̃

t
i

1 function BinaryComponentDecomposition(H)
2 Find the solution A ∈ Hn to the linear system

diag(X) = e and R(4H −X)R = 0, where R = I− n−1eet

3 Apply Algorithm Algorithm 2.1 to A to obtain sign components s̃1, . . . , s̃r and convex coeffi-
cients τ̃ ∈ ∆+

r

4 Find the solution ξ ∈ Rr to the linear system . Resolve sign ambiguities

n
∑r

i=1
τ̃iξis̃i = (4H −A)e− 2n trace(H)e

5 Set z̃i = 1
2 (ξis̃i + e) for each index i

It is worth mentioning that the regularity condition for binary components differs slightly
from its counterpart for sign components: The vector e features in Definition 2.4 but not
in Definition 2.1. This modification imposes slightly more stringent conditions on binary
components. It arises from the fact that the two decompositions enjoy different symmetries:
sign vectors are invariant under flipping the global sign, while binary vectors are not.

2.3. Roadmap. Section 3 discusses the problems of existence, uniqueness, and com-
putability of sign component decompositions at a high level. Section 4 elaborates on the
geometry of the set of correlation matrices and its implications for sign component decom-
position. Section 5 proves that Algorithm 2.1 computes a sign component decomposition.
Section 6 treats the binary component decomposition. Afterward, in section 7, we present a
stylized application to massive MIMO communication. Section 8 details related work.

3. Existence, uniqueness, and computation. This section expands on the geometric for-
mulation of the sign component decomposition. This perspective leads to our main results on
existence, uniqueness, and computability.

3.1. Questions. We focus on three fundamental problems raised by the definition (2.1)–
(2.2) of the sign component decomposition.

1. Existence. Which correlation matrices admit a sign component decomposition?
2. Uniqueness. When is the sign component decomposition unique up to symmetries?
3. Computation. How can we find a sign component decomposition in polynomial

time?
The rest of this section summarizes our answers to these questions. To make the narrative
more kinetic, we postpone some standard definitions and the details of the analysis to sub-
sequent sections. While the first two problems reduce to basic geometric considerations, our
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investigation of the third question pilots us into more interesting territory.
There is also a fourth fundamental problem.
4. Robustness. Can we find a sign component decomposition from a noisy observation?

We do not treat this question here, but we present some limited results for a closely related
decomposition in the companion work [KT19]. Understanding robustness is a critical topic
for future research.

3.2. Existence of the sign component decomposition. The first order of business is to
delineate circumstances in which a correlation matrix admits a sign component decomposition.

To that end, we introduce the elliptope, the set of all correlation matrices with fixed
dimension:

En = {X ∈ Hn : diag(X) = e and X < 0} .

The geometry of the elliptope plays a central role in our development, so we take note of some
basic properties. The elliptope En is a compact convex subset of Hn, and we can optimize a
linear functional over the elliptope using a simple semidefinite program. Among other things,
the elliptope En contains each rank-one sign matrix sst generated by a sign vector s ∈ {±1}n.
In fact, each rank-one sign matrix is an extreme point of the elliptope.

Next, let us construct the set of correlation matrices that admit a sign component decom-
position. The (signed) cut polytope is the convex hull of the rank-one sign matrices:

(3.1) Cn = conv
{
sst : s ∈ {±1}n

}
⊂ Hn.

It is easy to verify that the extreme points of the cut polytope are precisely the rank-one sign
matrices. Since each rank-one sign matrix belongs to the elliptope, convexity ensures that the
cut polytope is strictly contained in the elliptope: Cn ⊂ En. In view of these relationships, we
can think about the elliptope as a semidefinite relaxation of the cut polytope.

The next statement is an immediate consequence of (2.1) and (3.1).

Proposition 3.1 (sign component decomposition: existence). A correlation matrix A ∈ En
admits a sign component decomposition (2.1) if and only if A ∈ Cn.

This simple result masks the true difficulty of the problem because the cut polytope is a
very complicated object. In fact, it is computationally hard just to decide whether a given
correlation matrix belongs to the cut polytope [DL97].

3.3. Symmetries of the sign component decomposition. Proposition 3.1 tells us that
each matrix in the cut polytope admits a sign component decomposition. The next challenge
is to understand when this decomposition is determined uniquely.

First, observe that each sign component decomposition A =
∑r

i=1 τisis
t
i has a parametric

representation of the form {(τi, si) : i = 1, . . . , r}. In this representation, r is a natural
number, (τ1, . . . , τr) ∈ ∆+

r , and the sign components si ∈ {±1}n. But there is no way to
distinguish an ordering of the pairs (i 7→ π(i) for a permutation π) or to distinguish the global
sign of a sign component (si 7→ ξisi for ξi ∈ {±1}). Therefore, we regard two parametric
representations as equivalent if they have the same number of terms and the terms coincide
up to permutations and sign flips.
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In summary, a correlation matrix has a unique sign component decomposition if the para-
metric representation of every possible sign component decomposition belongs to the same
equivalence class.

3.4. Uniqueness of the sign component decomposition. Geometrically, the sign com-
ponent decomposition (2.1) is a representation of a matrix A ∈ Cn as a proper convex com-
bination of the extreme points of the cut polytope, namely the rank-one sign matrices. The
representation is unique if and only if the participating extreme points generate a face of the
cut polytope that is also a simplex (i.e., the convex hull of an affinely independent point set).

Proposition 3.2 (sign component decomposition: uniqueness). A matrix A ∈ Cn admits a
unique sign component decomposition (2.1) if and only if A belongs to the relative interior of
a simplicial face of the cut polytope Cn.

See subsection 4.2 for the definition of a simplicial face; Proposition 3.2 follows from the
discussion there.

Unfortunately, there is no simple or computationally tractable description of the simplicial
faces of the cut polytope [DL97]. As a consequence, we cannot expect to produce a sign com-
ponent decomposition of a general element of the cut polytope, even when the decomposition
is uniquely determined.

Instead, let us focus on simplicial faces of the elliptope that are generated by rank-one sign
matrices. These distinguished faces are always simplicial faces of the cut polytope because
Cn ⊂ En and the rank-one sign matrices are extreme points of both sets. Thus, Proposition 3.2
has the following consequence.

Corollary 3.3 (sign component decomposition: sufficient condition for uniqueness). For a set
S = {s1, . . . , sr} ⊆ {±1}n of sign vectors, suppose that F = conv{sst : s ∈ S} is a simplicial
face of the elliptope En. If A belongs to the relative interior of F , then A admits a unique
sign component decomposition (2.1).

See subsection 4.4 for further details.

3.5. Simplicial faces of the elliptope. This is where things get interesting. Corollary 3.3
suggests that we shift our attention to those correlation matrices that belong to a simplicial
face of the elliptope that is generated by rank-one sign matrices. This class of matrices admits
a beautiful characterization.

Theorem 3.4 (simplicial faces of the elliptope: characterization). Let S = {s1, . . . , sr} ⊆
{±1}n be a set of sign vectors. The following are equivalent:

(1) The set S of sign vectors is Schur independent.
(2) The set F = conv{sst : s ∈ S} is a simplicial face of the elliptope En.

Either condition implies that each correlation matrix in the relative interior of F has a unique
sign component decomposition (2.1).

The implication (1) ⇒ (2) was established by Laurent and Poljak [LP96]. The reverse
direction (2)⇒ (1) is new; see subsection 4.4 for the proof. The last statement is the content
of Corollary 3.3.

It is instructive to combine this insight with Fact 2.2. As soon as r satisfies r2 log(r2) < n,
almost all families of r sign vectors in Rn are Schur independent. The convex hull of the

D
ow

nl
oa

de
d 

08
/2

4/
22

 to
 1

32
.1

74
.2

53
.2

18
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

554 RICHARD KUENG AND JOEL A. TROPP

Figure 3. Exposing a simplicial face of the elliptope. The hyperplane (gray) separates a one-dimensional
simplicial face (blue) from the elliptope E3 (orange).

associated rank-one sign matrices forms a simplicial face of the elliptope. Every correlation
matrix in the relative interior of this face admits a unique sign component decomposition.
The problem is how to find the decomposition.

Remark 3.5 (other kinds of simplicial faces). The elliptope has simplicial faces that are
not described by Theorem 3.4. Indeed, for n ≥ 5, the elliptope En has edges that are not
generated as the convex hull of two rank-one sign matrices; see [LP96, Example 3.3].

3.6. Separating faces from the elliptope. As we have seen, the elliptope has an enormous
number of simplicial faces that are generated by rank-one sign matrices. Remarkably, we can
produce an explicit linear functional that exposes any type of face. This construction allows
us to optimize over (simplicial) faces, which is the core ingredient in our algorithm for sign
component decomposition.

Proposition 3.6 (simplicial faces of the elliptope: finding a separator). Let F be a face of
the elliptope En. Fix a point A in the relative interior of F , and let P ∈ Hn be the orthogonal
projector onto the range of A. Construct the linear functional

ψ(X) = n−1 trace(PX) for X ∈ Hn.

Then ψ exposes the face F of the elliptope En. That is,

ψ(X) ≤ 1 for all X ∈ En and F = {X ∈ En : ψ(X) = 1}.

See subsection 4.5 for the proof. See Figure 3 for an illustration.

3.7. Computing the sign component decomposition. With this preparation, we can
fully understand Algorithm 2.1, which computes the sign component decomposition (2.1) of a
correlation matrix whose sign components are Schur independent. The procedure is iterative,
and can be regarded as an algorithmic implementation of Carathéodory’s theorem [Sch14,
Thm. 1.1.4] or a variant of the Grötschel–Lovász–Schrijver method [GLS93, Thm. 6.5.11].

Assume that we are given a correlation matrix A ∈ En that admits a sign component
decomposition with Schur independent sign components:

(3.2) A =
∑r

i=1
τisis

t
i, where S = {s1, . . . , sr} ⊆ {±1}n is Schur independent.
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As usual, the coefficients (τ1, . . . , τr) ∈ ∆+
r . The matrix A belongs to the relative interior

of the set F = conv{sst : s ∈ S}. Theorem 3.4 implies that F is a simplicial face of the
elliptope En and the sign component decomposition of A is unique. Proposition 3.6 allows us
to formulate optimization problems over the set F .

The following procedure exploits these insights to identify the sign component decompo-
sition of A. Figure 2 illustrates the geometry, while Algorithm 2.1 provides pseudocode.

• Step 0: Initialization. LetA ∈ En be a rank-r correlation matrix of form (3.2). Find
the orthogonal projector P ∈ Hn onto range(A), and set ψ(X) = n−1 trace(PX).

• Step 1: Random optimization. Draw a (standard normal) random vector g ∈ Rn.
Solve the semidefinite program

(3.3) maximize
X∈Hn

gtXg subject to ψ(X) = 1 and X ∈ En.

According to Proposition 3.6, the constraint set is precisely the simplex F . With
probability one, the unique solution X? is an extreme point of F . That is, X? = sks

t
k

for some index 1 ≤ k ≤ r. By factorizing X?, we can extract one sign component of
the matrix A.

• Step 2: Deflation. Draw a ray from the matrix X? through the matrix A. Traverse
the ray until we reach a facet F ′ of the simplex F by finding the solution ζ? of

(3.4) maximize
ζ∈R

ζ subject to ζA+ (1− ζ)X? ∈ F .

In our context, this optimization problem can be simplified, as stated in Algorithm 2.1.

• Step 3: Iteration. Let A′ = ζ?A+ (1− ζ?)X? be the terminus of the ray described
in the last step. This construction ensures that A′ belongs to the relative interior of
the convex hull of all the rank-one sign matrices other than X?. That is,

A′ ∈ relint conv
{
sis

t
i : 1 ≤ i ≤ r and i 6= k

}
= F ′.

Therefore, A′ admits a sign component decomposition with Schur independent sign
components. We may return to Step 0 and repeat the process with the rank-(r − 1)
correlation matrix A′. The total number of iterations is r.

• Step 4: Coefficients. Given the r computed sign components s̃1, . . . , s̃r, we identify
the convex coefficients τ̃ ∈ ∆+

r by finding the unique solution to the linear system

A =
∑r

i=1
τ̃is̃is̃

t
i.

The following theorem states that this procedure yields a parametric representation of the
unique sign component decomposition of the matrix A.

Theorem 3.7 (analysis of Algorithm 2.1). Let A ∈ En be a correlation matrix that admits
a sign component decomposition

(3.5) A =
∑r

i=1
τisis

t
i, where si ∈ {±1}n and (τ1, . . . , τr) ∈ ∆+

r .
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556 RICHARD KUENG AND JOEL A. TROPP

Assume that the set S = {s1, . . . , sr} of sign components is Schur independent. Then, with
probability one, Algorithm 2.1 identifies the sign component decomposition of A up to trivial
symmetries. That is, the output is an unordered set of pairs {(τi, ξisi) : 1 ≤ i ≤ r}, where
ξi ∈ {±1} are signs.

Section 5 contains a full proof of this result.

4. Geometric aspects of the sign component decomposition. This section justifies the
geometric claims propounded in the last section. The books [Roc70, HUL01, Bar02, Gru07,
Sch14] serve as good references for convex geometry.

4.1. Faces of convex sets. In this section, we work in a finite-dimensional real vector
space V, equipped with a norm topology. Let us begin with some basic facts about the
boundary structure of a convex set.

Definition 4.1 (face). Let K be a closed convex set in V. A face F of K is a convex subset
of K for which

x,y ∈ K and τx+ (1− τ)y ∈ F for some τ ∈ (0, 1) imply x,y ∈ F .

That is, an average of points from K lies in F if and only if the points themselves lie in F .

The faces of a closed convex set K are again closed convex sets. The 0-dimensional faces
are commonly called extreme points, and 1-dimensional faces are edges. The set K is a face of
itself with maximal dimension, while faces of K with one dimension fewer are called facets.

Faces have a number of important properties. From the definition, it is clear that the
“face of” relation is transitive: if F ′ is a face of F and F is a face of K, then F ′ is a face
of K. The next fact states that the faces of a closed convex set partition the set; see [Sch14,
Thm. 2.12] for the proof.

Fact 4.2 (facial decomposition). Let K ⊆ V be a closed convex set. Every point in K is
contained in the relative interior of a unique face of K.

4.2. Simplices. A simplex is the convex hull of an affinely independent point set. We
frequently refer to simplicial faces of a convex set, by which we mean faces of the set that
are also simplices. The following result gives a complete description of the faces of a simplex;
see [Bar02, Chap. VI.1].

Fact 4.3 (faces of a simplex). Let P = conv{x1, . . . ,xN} be a simplex in V. For each
subset I ⊆ {1, . . . , N}, the set conv{xi : i ∈ I} is a simplicial face of P. Moreover, every face
of P takes this form.

A related result holds for the simplicial faces of more general convex sets.

Lemma 4.4. Suppose that F ⊆ K is a simplicial face of a closed convex set K. Then every
face of F must also be a simplicial face of K.

Proof. By transitivity, a face F ′ of F is also a face of K. By Fact 4.3, F ′ is a simplex.

4.3. Uniqueness of convex decompositions. Simplices are closely related to the unique-
ness of convex decompositions. Together, the theorems of Minkowski [Sch14, Cor. 1.4.5] and
Carathéodory [Sch14, Thm. 1.1.4] ensure that every point in a compact convex set can be
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written as a proper convex combination of an affinely independent family of extreme points.
Each of these representations is uniquely determined (up to the ordering of the extreme points)
if and only if the set is a simplex.

Lemma 4.5 (unique decomposition of all points). Let K ⊂ V be a compact convex set. Each
one of the points in the relative interior of K enjoys a unique decomposition as a proper convex
combination of extreme points of K if and only if K is a simplex.

Proof. Lacking a good reference, we offer a proof. Assume that K is a simplex. Then
K = convX , where X = {x1, . . . ,xN} ⊂ V is an affinely independent family. Using the
definition of an extreme point, it is easy to verify that the extreme points of K are precisely
the elements of X . Now, for any point y in the affine hull of X , we can find a representation
of y as an affine combination of the points in X by solving the linear system∑N

i=1
αixi = y and

∑N

i=1
αi = 1.

Since the family X is affinely independent, this linear system is nonsingular, and its solution
is uniquely determined. By [Sch14, Lem. 1.1.12], the representing coefficients α1, . . . , αN are
positive precisely when y belongs to the relative interior of the simplex K = convX .

Conversely, assume that K is not a simplex. By Minkowski’s theorem [Sch14, Thm. 1.4.5],
we can write K = convX , where X is the set of extreme points of K. Since K is not a simplex,
X is not affinely independent. Radon’s theorem [Sch14, Thm. 1.1.5] ensures that there are
two finite, disjoint subsets of X whose convex hulls intersect. Each point in the intersection
lacks a unique representation as a proper convex combination of extreme points of K.

We can now give a precise description of when a specific point in a polytope admits a unique
decomposition. This following result is a direct consequence of Fact 4.2 and Lemma 4.5.

Proposition 4.6 (unique decomposition of one point). Let K ⊂ V be a compact convex set,
and fix a point x ∈ K. Then the point x admits a unique decomposition as a proper convex
combination of extreme points of K if and only if the point x is contained in the relative
interior of a simplicial face of K.

Proof. Let x ∈ K. According to Fact 4.2, the point x belongs to the relative interior of
a unique face F of K. By Definition 4.1 of a face, the point x can be written as a proper
convex combination of extreme points in K if and only if the participating extreme points
all belong to F . Lemma 4.5 promises that x has a unique representation as a proper convex
combination of the extreme points of F if and only if F is a simplex.

Proposition 3.2 is just the specialization of Proposition 4.6 to the cut polytope Cn. Mean-
while, Corollary 3.3 is the specialization to the elliptope En.

4.4. Simplicial faces of the elliptope. As we have seen, the simplicial faces of convex
bodies play a central role in determining when convex representations are unique. In this
section, we begin our investigation into simplicial faces of the elliptope.

4.4.1. Schur independence. First, recall that a set {s1, . . . , sr} ⊆ {±1}n of sign vectors
is Schur independent when the multiset {e} ∪ {si � sj : 1 ≤ i < j ≤ r} ⊂ Rn is linearly
independent (and, in particular, contains no duplicated vector). It is easy to check that Schur
independence implies ordinary linear independence.
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Lemma 4.7 (Schur independence implies linear independence). A Schur-independent set of
sign vectors is also linearly independent.

Proof. Let {s1, . . . , sr} ⊆ {±1}n be Schur independent. Suppose that λ1, . . . , λr are real
coefficients for which

∑r
i=1 λisi = 0. Since s1 � s1 = e,

0 = s1 � 0 =
∑r

i=1
λis1 � si = λ1e +

∑r

i=2
λis1 � si.

Schur independence forces the multiset {e} ∪ {s1� si : 2 ≤ i ≤ r} to be linearly independent.
We conclude that λ1 = · · · = λr = 0.

4.4.2. Schur independence and simplicial faces. Laurent and Poljak [LP96] identified
the concept of Schur independence in their work on the structure of the elliptope. In particular,
they proved that Schur independence provides a sufficient condition for rank-one sign matrices
to generate a simplicial face of the elliptope. This is the implication (1)⇒ (2) in Theorem 3.4.
The following result establishes the converse direction (2) ⇒ (1), which is new.

Lemma 4.8. Let S = {s1, . . . , sr} ⊆ {±1}n be a set of sign vectors. If conv{sst : s ∈ S}
is a simplicial face of the elliptope En, then S must be Schur independent.

Proof. Suppose that F = conv{sst : s ∈ S} is a simplicial face of En. We argue by
contradiction.

First, assume that the family S is linearly independent but not Schur independent. Then
the matrix S =

[
s1 . . . sr

]
∈ {±1}n×r has full column rank. Moreover, the absence of

Schur independence implies that there are scalars θ0 and θij = θji, not all vanishing, for which

θ0e +
∑

i 6=j
θijsi � sj = 0.

Define a matrix Θ ∈ Hr whose entries are [Θ]ii = 0 for each i and [Θ]ij = θij for i 6= j. For a
parameter ε > 0, we can introduce a pair of matrices

A± = S

(
1± εθ0

r
I± εΘ

)
St ∈ Hn.

Whenever ε is sufficiently small, both matrices A± are psd. Furthermore, by construction,

diag(A±) =
1± εθ0

r

∑r

i=1
diag(sis

t
i)± ε

∑
i 6=j

θijdiag(sis
t
j)

= e± ε
(
θ0e +

∑
i 6=j

θijsi � sj
)

= e± ε0 = e.

In other words, both matrices A± belong to the elliptope En. Next, we verify that the average
of the two matrices coincides with the barycenter of the set F . That is,

1

2
(A+ +A−) =

1

r
SISt =

1

r

∑r

i=1
sis

t
i ∈ F .

On the other hand, neither A+ nor A− is contained in F . To see why, just observe that the
family {sistj : 1 ≤ i, j ≤ r} is linearly independent because S has full column rank. Thus, the
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nonzero off-diagonal entries in Θ contribute to A± a nonzero matrix that does not belong to
F . But this contradicts the defining property of a face, Definition 4.1. Indeed, A± ∈ En and
1
2(A+ +A−) ∈ F , but A± /∈ F .

Last, assume that the family S of sign vectors is neither linearly independent nor Schur
independent. Let S ′ be a maximal linearly independent subset of S. Define the set F ′ =
conv{sst : s ∈ S ′}. Fact 4.3 implies that F ′ is a simplicial face of the simplex F . By
transitivity, F ′ is also a simplicial face of En. We can now repeat the argument from the last
paragraph with the simplicial face F ′ and the set S ′. Again, we reach a contradiction.

4.5. Explicit separators for faces of the elliptope. In the last section, we completed a
characterization of the simplicial faces of the elliptope that are generated by rank-one sign
matrices. A correlation matrix A is contained in a simplicial face F of the elliptope if and
only if its sign components are Schur independent. In this section, we show how to isolate
the face F by intersecting the elliptope En with the level set of a simple linear functional.
This linear functional only depends on the range of A, and it leads to a simple semidefinite
representation of the face; see Proposition 3.6.

The argument is based on another remarkable property of the elliptope. Every face F of
En is exposed. That is, for each face F ⊆ En, there exists a supporting hyperplane H of En
such that F = En ∩H. This is a consequence of the following result [LP95, Prop. 2.7].

Fact 4.9 (elliptope: facial membership). Let A,X ∈ En. Let F(A) be the smallest face of
En containing A. The matrix X ∈ F(A) if and only if ker(A) ⊆ ker(X).

Using Fact 4.9, we can obtain an explicit construction of a hyperplane that isolates a face
of the elliptope. Proposition 3.6 is an immediate consequence of this construction.

Corollary 4.10 (elliptope: separating faces). Let F be a face of the elliptope En. Select a
point A in the relative interior of F , and let P ∈ Hn be the orthogonal projector onto the
range of A. Then the level set

H =
{
X ∈ Hn : n−1tr(PX) = 1

}
⊂ Hn

is a hyperplane that separates F from En. That is, F = En ∩H.

Proof. The matrix A is contained in the relative interior of F , so F is the smallest face of
the elliptope that containsA. A correlation matrixX ∈ En obeys trace(PX) = trace(X) = n
if and only if range(X) ⊆ range(P ) = range(A). By duality, range(X) ⊆ range(A) if and
only if ker(A) ⊆ ker(X). The claim now follows from Fact 4.9: A matrix X ∈ En obeys
n−1 trace(PX) = 1 if and only if X ∈ F .

5. Computing a sign component decomposition. In the last section, we developed a
geometric analysis of the sign component decomposition (2.1) by making a connection with
simplicial faces of the elliptope. Having completed this groundwork, we can prove Theo-
rem 3.7, which states that Algorithm 2.1 is a correct method for computing sign component
decompositions.

5.1. Step 1: Random optimization. Our first goal is to justify the claim that random
optimization allows us to exhibit one of the rank-one sign matrix factors in the sign component
decomposition (3.5) of the matrix A. We derive this conclusion from a more general result.
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560 RICHARD KUENG AND JOEL A. TROPP

Lemma 5.1 (random optimization). Consider a family U = {u1, . . . ,ur} ⊂ Rn, in which
no pair of vectors satisfies ui = ±uj when i 6= j. Introduce a convex set of symmetric matrices

P = conv{uut : u ∈ U} ⊂ Hn.

Draw a standard normal vector g ∈ Rn, and construct the linear functional f(X) = gtXg for
X ∈ Hn. Then, with probability one, there exists an index 1 ≤ k ≤ r for which

f(uku
t
k) > f(X) for all X ∈ P.

Proof. Since U is finite, the maximum value of f over the convex hull P satisfies

max
X∈P

f(X) = max
α∈∆r

∑r

i=1
αif(uiu

t
i) = max

1≤i≤r
f(uiu

t
i).

Moreover, if f(uku
t
k) > f(uiu

t
i) for all i 6= k, then the maximum on the left-hand side is

attained uniquely at the matrix X = uku
t
k.

It suffices to prove that, with probability one, the linear functional f takes distinct values
at the rank-one matrices uut given by u ∈ U . First, observe that f(uut) = 〈g, u〉2. A short
calculation reveals that

f(uut) = f(vvt) if and only if 〈g, u+ v〉 = 0 or 〈g, u− v〉 = 0.

By rotational invariance, each of the inner products follows a normal distribution:

〈g, u+ v〉 ∼ normal
(
0, ‖u+ v‖2`2

)
and 〈g, u− v〉 ∼ normal

(
0, ‖u− v‖2`2

)
.

Unless v = ±u, neither variance can vanish. As a consequence, we may evaluate the proba-
bility

P
{
〈g, ui〉2 = 〈g, uj〉2 for some i 6= j

}
≤
∑

i<j
(P {〈g, ui + uj〉 = 0}+ P {〈g, ui − uj〉 = 0}) = 0.

The last relation holds because ui never coincides with ±uj for i < j. Take the complement
of this event to reach the conclusion.

5.2. Step 2: Deflation. Random optimization allows us to identify a single sign compo-
nent in the decomposition (3.5). In order to iterate, we must remove the contribution of this
sign component from the matrix that we are factoring. The following general result shows
how to extract a rank-one factor from a psd matrix, leaving a convex combination of the other
rank-one factors.

Lemma 5.2 (deflation). Consider a linearly independent family U = {u1, . . . ,ur} ⊂ Rn,
and suppose that

M =
∑r

i=1
αiuiu

t
i, where ui ∈ U and (α1, . . . , αr) ∈ ∆+

r .
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BINARY COMPONENT DECOMPOSITION I 561

Fix an index 1 ≤ k ≤ r, and consider the semidefinite program

maximize
ζ∈R

ζ subject to ζM + (1− ζ)uku
t
k < 0.

For the unique solution ζ? = (1− αk)−1, it holds that

M ′ = ζ?M + (1− ζ?)ukut
k =

∑
i 6=k

αi
1− αk

uiu
t
i ∈ relint conv

{
uiu

t
i : 1 ≤ i ≤ r and i 6= k

}
.

Proof. Without loss of generality, assume that k = 1. Since U is linearly independent,
the matrix U =

[
u1 . . . ur

]
has full column rank. In turn, the conjugation rule (Fact 1.1)

implies that

ζM + (1− ζ)u1u
t
1 = U diag

(
α1ζ + (1− ζ), α2ζ, . . . , αrζ

)
U t < 0

if and only if the diagonal matrix is psd. Equivalently, ζ is feasible if and only if 0 ≤ ζ ≤
(1 − α1)−1. The optimal point ζ? for the semidefinite program saturates the upper bound.
The second claim follows readily from a direct computation.

5.3. Proof of Theorem 3.7. We are now prepared to prove Theorem 3.7, which states
that Algorithm 2.1 is correct. The argument uses induction on the rank of the input matrix.

First, suppose that A = sst is a rank-one correlation matrix generated by a sign vector
s ∈ {±1}n. In this case, the sign component decomposition of A is already manifest. By
factorizing A, we obtain the computed sign component ±s.

Now, for r ≥ 2, suppose that A is a rank-r correlation matrix with sign component
decomposition

(5.1) A =
∑r

i=1
τisis

t
i for si ∈ {±1}n and (τ1, . . . , τr) ∈ ∆+

r .

We assume that S = {s1, . . . , sr} is Schur independent. Lemma 4.7 states that S is linearly
independent. In particular, si 6= ±sj when i 6= j. Theorem 3.4 implies that F = {sst : s ∈ S}
is a simplicial face of the elliptope that contains the matrix A in its relative interior.

Compute the orthogonal projector P ∈ Hn onto range(A), and define the linear functional
ψ(X) = n−1 trace(PX) that exposes the face F . Draw a standard normal vector g ∈ Rn.
Find the solution X? to the semidefinite program

(5.2) maximize
X∈Hn

gtXg subject to ψ(X) = 1 and X ∈ En.

According to Proposition 3.6, the feasible set of this optimization problem is precisely the
simplicial face F that contains A. An application of Lemma 5.1 shows that the optimal point
is unique with probability one, and X? = sks

t
k for some index 1 ≤ k ≤ r. By factorizing X?,

we compute one sign component ±sk. This justifies step 1 of Algorithm 2.1.
Next, we find the unique solution ζ? to the semidefinite program

(5.3) maximize
ζ∈R

ζ subject to ζA+ (1− ζ)X? < 0.

D
ow

nl
oa

de
d 

08
/2

4/
22

 to
 1

32
.1

74
.2

53
.2

18
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

562 RICHARD KUENG AND JOEL A. TROPP

Lemma 5.2 shows that ζ? = (1− τk)−1, where τk is the coefficient associated with sks
t
k in the

representation (5.1) of the matrix A. Moreover, we can form the matrix

(5.4) A′ = ζ?A+ (1− ζ?)X? =
∑

i 6=k

τi
1− τk

sis
t
i =:

∑
i 6=k

τ ′isis
t
i, where τ ′ ∈ ∆+

r−1.

Recall that every subset of a Schur independent set remains Schur independent. Therefore,
step 2 of Algorithm 2.1 produces a correlation matrix A′ with rank r − 1 that admits a sign
component decomposition (5.4) whose sign components form a Schur-independent family.

By induction, we can apply the same procedure to compute the sign components of the
matrix A′ defined in (5.4). This justifies the iteration procedure, step 3 in Algorithm 2.1.

Last, suppose that {s̃1, . . . , s̃r} ⊆ {±1}n is the set of sign components computed by this
iteration. There is a permutation π such that sπ(i) = ξis̃i and ξi ∈ {±1} for each index
i = 1, . . . , r. To determine the convex coefficients in the sign component decomposition of A,
we find the solution τ̃ ∈ Rr to the linear system

A =
∑r

i=1
τ̃is̃is̃

t
i.

The computed sign components must be linearly independent (since the original sign compo-
nents are linearly independent), so the linear system has a unique solution. In view of (5.1),
it must be the case that τπ(i) = τ̃i for each index i. In other words, {(τ̃i, s̃i) : i = 1, . . . , r} is
a parametric representation of the sign component decomposition of A. This justifies step 4
of Algorithm 2.1, and the proof is complete.

Remark 5.3 (accuracy). Since the sign components are discrete, we can identify each one
by solving the random optimization problem (5.2) with rather limited accuracy. In contrast,
to remove the sign component completely, we should solve the deflation problem (5.3) to high
accuracy. The deflation step (5.3) can be rewritten as a generalized eigenvalue problem, which
makes this task routine.

6. Binary component decomposition. In this section, we develop a procedure (Algo-
rithm 2.2) for binary component decomposition, and we prove that it succeeds under a Schur
independence condition (Theorem II). Our approach reduces the problem of computing a bi-
nary component decomposition to the problem of computing a sign component decomposition.

6.1. Correspondence between binary vectors and sign vectors. Recall that we can place
sign vectors and binary vectors in one-to-one correspondence via the affine map

F : {0, 1}n → {±1}n, where F : z 7→ 2z − e and F−1 : s 7→ 1
2(s+ e).

The correspondence between sign component decompositions and binary component decompo-
sitions, however, is more subtle because they are invariant under different symmetries. Indeed,
sst is invariant under flipping the sign of s ∈ {±1}n, while zzt is uniquely determined for
each z ∈ {0, 1}n.

6.2. Reducing binary component decomposition to sign component decomposition.
Given a matrix that has a binary component decomposition, we can solve a linear system to
obtain a matrix that has a closely related sign component decomposition.
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BINARY COMPONENT DECOMPOSITION I 563

Proposition 6.1 (binary component decomposition: reduction). Consider a matrix H ∈ Hn

that has a binary component decomposition

(6.1) H =
∑r

i=1
τiziz

t
i for zi ∈ {0, 1}n and (τ1, . . . , τr) ∈ ∆+

r .

Define the correlation matrix A ∈ En with sign component decomposition

A =
∑r

i=1
τisis

t
i, where si = F (zi) for each i.

Then A is the unique solution to the linear system

(6.2) diag(X) = e and R(4H −X)R = 0, where X ∈ Hn.

Here, R = I− n−1eet denotes the orthogonal projector onto {e}⊥ ⊂ Rn.

Proof. For a binary vector z ∈ {0, 1}n, the sign vector s = F (z) satisfies the identity
sst = (2z − e)(2z − e)t. The projector R annihilates the vector e, so we can conjugate by R
to obtain RsstR = 4RzztR. Instantiate this relation for each of the vectors zi that appears
in the binary component decomposition (6.1), and average using the weights (τ1, . . . , τr) ∈ ∆+

r

to arrive at

RAR =
∑n

i=1
τiRsis

t
iR = 4

∑n

i=1
τiRziz

t
iR = 4RHR.

The correlation matrix A has a unit diagonal, so it solves the linear system (6.2).
We need to confirm that A is the only solution to (6.2). The kernel of the linear map

X 7→ RXR on Hn consists of matrices with the form ext + xet for x ∈ Rn. Therefore, we
can parameterize each solution X of the second equation in (6.2) as X = A+ ext +xet. But
the first equation in (6.2) requires that

e = diag(X) = diag(A) + diag(ext) + diag(xet) = e + 2x.

Therefore, x = 0, and so A is the only matrix that solves both equations.

6.3. Resolving the sign ambiguity. Proposition 6.1 shows that we can replace the matrix
H by a correlation matrix A whose sign components are related to the binary components in
H. Let us explain how to resolve the sign ambiguity in the sign components of A to identify
the correct binary components for H.

Proposition 6.2 (sign ambiguity). Instate the notation of Proposition 6.1. Assume that the
correlation matrix A has a unique sign component decomposition with parametric representa-
tion {(τi, s̃i) : i = 1, . . . , r}, and assume that the sign components form a linearly independent
family. Find the unique solution ξ ∈ Rr to the linear system

n
∑r

i=1
τiξis̃i = (4H −A)e− 2n trace(H)e.

Then the binary components of H are given by zi = 1
2(ξis̃i + e) for each 1 ≤ i ≤ r.
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564 RICHARD KUENG AND JOEL A. TROPP

Proof. For a binary vector z ∈ {0, 1}n, define s = F (z) = 2z−e. By direct computation,

set = 4zzt − 2ezt − sst.

Right-multiply the last display by the vector e to arrive at

ns = 4zzte− 2n(zte)e− sste = 4zzte− 2n trace(zzt)e− sste.

The last relation holds because an 0–1 vector z satisfies zte = trace(zzt). Instantiate the last
display for the vectors si = F (zi), and form the average using the weights (τ1, . . . , τr) ∈ ∆+

r

to obtain
n
∑r

i=1
τisi = 4He− 2n trace(H)e−Ae.

We have used the definitions of H and A from the statement of Proposition 6.1.
By uniqueness, the sign components s̃i in the parametric representation coincide with

the vectors si up to global sign flips; that is, si = ξis̃i, where ξi ∈ {±1} for each index i.
Substitute this relation into the last display to obtain

n
∑r

i=1
τiξis̃i = 4He− 2n trace(H)e−Ae.

This is a consistent linear system in the variables ξ1, . . . , ξr. The solution is unique because
{s̃1, . . . , s̃r} is a linearly independent family. Therefore, we can obtain the sign pattern by
solving the linear system, and

zi = F−1(si) = F−1(ξis̃i) = 1
2(ξis̃i + e).

This observation completes the argument.

6.4. Computation of the binary component decomposition. Propositions 6.1 and 6.2
give us a mechanism for computing a binary component decomposition, provided that an
associated matrix has a unique sign component decomposition with linearly independent sign
components. We can exploit our theory on the tractable computation of sign component de-
compositions to identify situations where we can compute binary component decompositions.

Proposition 6.3 (Schur independence: equivalence). A family {z1, . . . ,zr} ⊆ {0, 1}n of bi-
nary vectors is Schur independent if and only if the associated family {e,F (z1), . . . ,F (zr)} ⊆
{±1}n of sign vectors is Schur independent.

Proof. Set z0 = e and s0 = e. For 1 ≤ i ≤ r, define si = F (zi) = 2zi − e. Then

span{zi � zj : 0 ≤ i, j ≤ r} = span{si � sj : 0 ≤ i, j ≤ r}.

This point follows easily from the definition of the linear hull.

With this result at hand, we can prove Theorem II.

Proof of Theorem II. Suppose that H ∈ Hn has a binary component decomposition
H =

∑r
i=1 τiziz

t
i involving a Schur independent family {z1, . . . ,zr} of binary components.

Introduce the associated sign vectors si = F (zi). By Proposition 6.3, the family {s1, . . . , sr}
of sign vectors is Schur independent, hence linearly independent by Lemma 4.7.
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BINARY COMPONENT DECOMPOSITION I 565

Proposition 6.1 shows that we can form the correlation matrix A =
∑r

i=1 τisis
t
i by solving

a linear system. By Theorem 3.7, Algorithm 2.1 allows us to compute pairs (τ̃i, s̃i) with the
property that τπ(i) = τ̃i and sπ(i) = ξis̃i, where π is a permutation and ξi ∈ {±1} for each i.
Proposition 6.2 shows that we can use the computed sign components to find the associated
binary components zπ(i) that participate in H.

7. Application: Activity detection in massive MIMO systems. In this section, we outline
a stylized application of binary component decomposition in modern communications.

7.1. Motivation. Massive connectivity is predicted to be a key feature in future wire-
less cellular networks (IoT) and Device-to-Device communication (D2D). Base stations will
face the challenge of connecting a large number of devices and distributing communication
resources accordingly. While this seems daunting in general, a key feature of these systems is
parsimony. Individual device activity is typically sporadic. This feature can be exploited by
a two-phase approach.

1. Activity detection: identify the (small) set of active users at a given time.
2. Scheduling: distribute communication resources among these active users.

Recent works have pointed out that multiple antennas at the base station may help to tackle
the first phase [LY18, CSY18, HJC18]. The mathematical motivation behind this approach
is covariance estimation. Massive MIMO systems allow for estimating the covariance matrix
of an incoming signal, rather than the signal itself. As detailed below, this reduces the task
of identifying active devices to a matrix factorization problem. The covariance matrix is
proportional to a convex combination of structured rank-one factors. Each of these factors is
in one-to-one correspondence with a single active device. Identifying this factorization in turn
allows for solving the activity detection problem.

7.2. Signal model. Suppose that a network contains N different devices and a single base
station. The base station contains M different antennas. Each of these antennas is capable
of resolving n-dimensional signals. To perform activity detection, unique pilot sequences are
distributed among the devices. Denote them by a1, . . . ,aN ∈ Cn. If device k wants to indicate
activity, it transmits its pilot ak over the shared network. At a given time, the base station
receives noisy superpositions of several pilot sequences that passed through wireless channels.
The channel connecting device k (1 ≤ k ≤ N) with the ith antenna (1 ≤ i ≤ M) is modeled
by a large-scale fading coefficient τk > 0 that is constant over all antennas and a channel
vector h̄k ∈ CM that subsumes fluctuations between antennas:

yi =
∑

k∈A

√
τk
[
h̄k
]
i
ak + εi ∈ Cn for 1 ≤ i ≤M.

The set A ⊂ {1, . . . , N} denotes the subset of active devices and εi ∈ Cm represents additive
noise corruption affecting the ith antenna. Simplifying assumptions, such as white noise
corruption (each εi is a complex standard Gaussian vector with variance ε) and spatially
white channel vectors (each hk contains i.i.d. standard normal entries), imply the following
simple formula for the covariance:

Cov(yi) = E [yy∗] =
∑

k∈A
τkaka

∗
k + εI for all 1 ≤ i ≤M.
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566 RICHARD KUENG AND JOEL A. TROPP

The MIMO setup allows for empirically approximating this covariance:

(7.1) Y = M−1
∑M

i=1
yiy
∗
i
M→∞−→

∑
k∈A

τkaka
∗
k + εI.

The (quick) rate of convergence can be controlled using matrix-valued concentration inequal-
ities [Tro12]. We refer to [HJC18] for a more detailed analysis and justification of the simpli-
fying assumptions.

7.3. Compressed activity detection via sign component decomposition. Let N be the
total number of devices in the network. Set the internal dimension to n = dlog2(N)e + 1.
Equip each device with a unique pilot sequence ai = si ∈ {±1}n such that si 6= ±sj for all
i 6= j. Next, assume that the base station contains sufficiently many antennas to accurately
estimate the signal covariance matrix (7.1) at any given time:

Y =
∑

k∈A
τksks

T
k + εI.

Standard techniques let us remove the isotropic noise distortion εI. The remainder is propor-
tional to a correlation matrix: Ȳ =

∑
k∈A τksks

T
k . The activity pattern A is encoded in the

sign components (pilots) of this correlation matrix. Apply Algorithm 2.1 to identify them.
Theorem I asserts that this identification succeeds, provided that the participating sign

components are Schur independent. This assumption imposes stringent constraints on the
maximum number of active devices that can be resolved correctly; see (2.3). But beneath this
threshold, Schur independence is generic. Fact 2.2 asserts that almost all activity patterns
produce Schur independent pilot sequences.

The method proposed here is conceptually different from existing approaches. These as-
sign random pilot sequences and exploit sparsity in the activity pattern (viewed as a binary
vector in RN ) either via approximate message passing [CSY18] or ideas from compressed sens-
ing [HJC18, FJ19]. In contrast, activity detection via sign component decomposition assigns
deterministic pilot sequences that are guaranteed to work for most parsimonious activity pat-
terns. The algorithmic reconstruction cost scales polynomially in n ' log(N), an exponential
improvement over existing rigorous reconstruction techniques [FJ19].

The arguments presented here are based on several idealizations and should be viewed as a
proof of concept. We intend to address concrete implementations of MIMO activity detection
via sign component decomposition in future work.

8. Related work. The goal of matrix factorization is to produce a representation of a
matrix B ∈ Rn×m as a product of structured matrices. The simplest formulation expresses

(8.1) B = VW t +E, where V ∈ Rn×r and W ∈ Rm×r.

The matrix E ∈ Rn×m collects the approximation error; the factorization is exact if E = 0.
It is also common to normalize the factors and expose the scaling by means of a separate
diagonal factor:

(8.2) B = V diag(λ)W t +E, where λ ∈ Rr+.D
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We can try to extract different types of structure in the matrix by placing appropriate con-
straints on the factors V and W . The shape of the factors may vary, depending on the
application.

The basic questions about matrix factorization are existence, uniqueness, robustness, and
computational tractability. Surprisingly, there remain many open theoretical questions about
matrix factorizations beyond the most classical examples. Furthermore, a majority of the
algorithmic work consists of heuristic nonconvex optimization procedures or methods that
require generative modeling assumptions. The aim of this section is to summarize the liter-
ature on discrete factorizations, as well as some general computational approaches to matrix
factorization.

8.1. Integer factorizations and factorization over finite fields. In 1851, Hermite devel-
oped an integer analog of the reduced row echelon form [Her51]. For an integer matrix B, the
Hermite normal form is an exact factorization (8.1) where V is a square unimodular2 integer
matrix and W is a triangular integer matrix. This decomposition is a discrete analog of the
QR factorization.

Similarly, the Smith normal form [Smi61] of an integer matrix B is an exact factoriza-
tion (8.2) where V and W are square unimodular integer matrices, and λ ∈ Nr is an integer
vector with the divisibility property λi+1 |λi for each i. It is a discrete analog of the SVD.

The Hermite and Smith normal forms of an integer matrix can be computed in strongly
polynomial time [KB79]. Contemporary applications include multidimensional signal process-
ing, lattice computations, and solving Diophantine equations [Yap00].

Both decompositions can be extended to a matrix whose entries are drawn from a principal
ideal domain. For example, with respect to the finite field Z2 = {0, 1}, these normal forms
lead to binary factorizations of a binary matrix in binary arithmetic. Matrix factorization in
binary and Boolean [Kim82] arithmetic are an active research area with applications ranging
from role engineering [LVA08] to data clustering [ZLD+10].

8.2. Semidiscrete factorizations. Kolda [Kol98] coined the term semidiscrete factoriza-
tion to describe the factorizations of the form (8.2) where the outer factors V ,W are discrete
while the diagonal vector λ takes real values. The literature contains several instances.

8.2.1. Integer factorizations. Tropp [Tro15] proved that every positive-definite matrix B
admits an exact semidiscrete factorization (8.2) where V = W and the factor V has integer
entries that are bounded in terms of the condition number and the dimension. This result has
applications in probability theory [BLX18], but the proof is nonconstructive.

8.2.2. Ternary factorizations. Motivated by applications in image processing, O’Leary
and Peleg [OP83a] proposed a heuristic deflation method for computing a ternary factorization
(8.2) with V ∈ {0,±1}n×r and W ∈ {0,±1}m×r. At each step, they aim to solve the integer
optimization problem

(8.3) maximize xtBy subject to x ∈ {0,±1}n and y ∈ {0,±1}m.

2A unimodular matrix has determinant one.
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Given an approximate solution (x,y) to (8.3), they update the target matrix as

(8.4) B 7→ B − λxyt, where λ = xtBy/(‖x‖ ‖y‖).

This process leads directly to a factorization of the form (8.2). Since it is computationally
hard to solve the optimization problem (8.3) exactly, O’Leary and Peleg resort to alternating
minimization: they fix x and minimize with respect to y, they fix y and minimize with
respect to x, and they repeat. Kolda [Kol98, Prop. 6.2] showed that these heuristics produce
a sequence of improving approximations, but there is no control on the convergence rate.

8.2.3. Binary factorizations, or cut decompositions. The cut norm of a matrix B is the
value of the modified problem (8.3) with constraints x ∈ {0, 1}n and y ∈ {0, 1}m. It has
applications in graph theory and theoretical algorithms. In the late 1990s, Frieze and Kan-
nan [FK99] proposed the cut decomposition, an approximate semidiscrete factorization (8.2)
of a general matrix B, where the outer factors V ∈ {0, 1}n×r and W ∈ {0, 1}m×r take binary
values. They developed an algorithm that gives a rigorous tradeoff between the number r of
terms in the cut decomposition and the cut-norm approximation error.

Subsequently, Alon and Naor [AN06] developed another algorithm for the cut decomposi-
tion that proceeds by a rigorous process of iterative deflation. More precisely, Alon and Naor
explain how to use semidefinite relaxation and rounding to obtain a pair (x,y) where the cut
norm is approximately achieved. They update the matrix B via the deflation rule (8.4). They
obtain bounds that improve substantially over [FK99], but their method may not produce an
exact low-rank factorization even when one exists.

8.2.4. Sign and binary component decompositions. Our work introduces exact semidis-
crete factorizations, where the left factor V consists of signs {±1} or binary values {0, 1}. In
this paper, we consider the positive-semidefinite case, where the left and right factors match:
W = V . In the companion work [KT19], we consider the asymmetric case where the right
factorW is arbitrary (but might be discrete). In particular, we see that the binary component
decomposition (2.4) is an exact symmetric cut decomposition.

Our work gives conditions for existence, uniqueness, and computational tractability of
these factorizations. Moreover, our results do not require a generative stochastic model. A
serious limitation, however, is the restriction to matrices that have exact low rank. We are
seeking extensions to general matrices in ongoing research.

8.3. Other approaches to structured factorization. Because of its importance in data
analysis, there is an extensive literature on structured matrix factorization. Some of the most
popular examples of constrained factorization are independent component analysis [Com94],
nonnegative matrix approximation [PT94], sparse coding [OF96], and sparse principal compo-
nent analysis [ZHT06]. Some frameworks for thinking about structured matrix factorization
appear in [TB99, CDS02, Tro04, Sre04, Wit10, Jag11, Bac13, Ude15, BE16, Bru17, HV19],
among other sources. In this section, we summarize some general methods that have been
proposed for matrix factorization. See [Ude15, Bru17] for more complete literature reviews.

8.3.1. Deflation. A large number of authors have proposed matrix factorization tech-
niques based on deflation [Wit10, Jag11, Bac13, Ude15, Bru17]. The basic step in these

D
ow

nl
oa

de
d 

08
/2

4/
22

 to
 1

32
.1

74
.2

53
.2

18
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

BINARY COMPONENT DECOMPOSITION I 569

methods (attempts) to solve a problem like

(8.5) maximize xtBy subject to P1(x) ≤ c1 and P2(y) ≤ c2.

The functions P1 and P2 are (convex) regularizers that promote structure in the rank-one
factor xyt. For example, when P1 is the `1 norm, this formulation tends to promote sparsity
in the factors. Given an approximate solution (x,y), we update the matrix via (8.4) or using
the conditional gradient method [Jag11]. Other deflation techniques have been developed for
the particular task of sparse principal component analysis [Mac09]. Witten [Wit10] refers to
this approach as penalized matrix decomposition.

In practice, the most common heuristic for solving (8.5) is alternating maximization.
Other nonconvex optimization algorithms, such as projected gradient, may yield better re-
sults [Ude15]. In some special cases, we can attack the problem via semidefinite relax-
ation [dEGJL07]. To the best of our knowledge, these methods do not offer any guarantees.

In rare cases where we can provably compute an approximate solution to (8.5), this ap-
proach leads to a rigorous tradeoff between the number of terms in the matrix approximation
and the Frobenius-norm approximation error [Tem03, Jag11]. Nevertheless, even when the
matrix has an exact factorization, there is no guarantee that we will find it. Furthermore, the
core optimization (8.5) is usually computationally hard, so all bets are off.

8.3.2. Direct methods. Many other authors [Gor03, Tro04, Sre04, Bac13, Ude15, Bru17,
HV19] have considered problem formulations that seek to compute the matrix factors directly.
These approaches frame an optimization problem like

(8.6) minimize
V ∈Rn×r,W∈Rm×r

`(B,VW t) + P1(V ) + P2(W ).

The loss function `(·, ·) is typically the Frobenius norm, and the functions P1 and P2 are
(convex) penalties that promote structure on the matrix factors.

In practice, the most common heuristic for solving (8.6) is alternating minimization. Other
nonconvex algorithms, such as projected gradient, can also be applied. When the inner dimen-
sion r of the factors is large enough, the optimization problem (8.6) is sometimes tractable, in
spite of the apparent nonconvexity; see [Gor03, Bac13, Bru17, HV19]. Nevertheless, we must
regard (8.6) as a heuristic, except in a limited set of circumstances.

8.4. Conclusions. The results presented here take the reverse point of view from most
of the existing literature. We first identify a class of matrices that admits a unique discrete
factorization, and we use this insight to develop a tractable algorithm that provably computes
this factorization. The next step is to understand how to find an approximate discrete factor-
ization of a noisy matrix. We believe that this kind of factorization has several applications,
including activity detection in large asynchronous networks.

Acknowledgments. The authors thank Benjamin Recht for helpful conversations at an
early stage of this project. Peter Jung suggested activity detection in massive MIMO system
as a potential application. We also want to thank the anonymous referees for insightful
comments and suggestions that helped us to further improve this presentation.
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