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CoSaMP: Iterative Signal  
Recovery from Incomplete  
and Inaccurate Samples
By Deanna Needell and Joel A. Tropp

Abstract
Compressive sampling (CoSa) is a new paradigm for devel-
oping data sampling technologies. It is based on the prin-
ciple that many types of vector-space data are compressible, 
which is a term of art in mathematical signal processing. 
The key ideas are that randomized dimension reduction pre-
serves the information in a compressible signal and that it 
is possible to develop hardware devices that implement this 
dimension reduction efficiently. The main computational 
challenge in CoSa is to reconstruct a compressible signal 
from the reduced representation acquired by the sampling 
device. This extended abstract describes a recent algorithm, 
called CoSaMP, that accomplishes the data recovery task. It 
was the first known method to offer near-optimal guarantees 
on resource usage.

1. WHAT IS COMPRESSIVE SAMPLING?
In many applications, the ambient dimension of a data vec-
tor does not reflect the actual number of degrees of free-
dom in that vector. In mathematical signal processing, this 
property is captured by the notion of a compressible signal. 
Natural images provide a concrete example of compress-
ible signals because we can approximate them accurately 
just by summarizing the solid areas (local averages) and the 
edges (local differences). This representation allows us to 
compress images dramatically without a substantial loss of 
visual quality—an idea implemented in the JPEG image cod-
ers that we use every day.

Sampling is a generic term for the process of acquiring 
data about an object, either in the physical or the virtual 
world. There are many different technologies that we use to 
collect samples. A ubiquitous piece of sampling hardware is 
the CCD array inside a digital camera, which measures the 
average light intensity at each small square in the focal plane 
of the camera. Other sampling equipment includes X-ray 
machines, magnetic resonance imaging (MRI), and analog-
to-digital converters.

In most cases, we use sampling to acquire as much infor-
mation as possible about an object of interest. Indeed, when 
purchasing a digital camera, we often think that more pixels 
are better. But as soon as the image is captured, the camera 
invokes compression algorithms to reduce the amount of 
information it needs to store. This fact suggests an awkward 
question: if there is a limited amount of information in the 
object, why are we taking so many samples? Is there some 
way to obtain measurements that automatically sieve out 

the information in the object?
One way to exploit the gap between nominal dimen-

sion and degrees of freedom is to perform dimension 
reduction. This idea has a long tradition in computer 
science. Indeed, to  solve geometric problems involving 
high-dimensional data, we often map the data to a lower 
dimension while approximately preserving the geometric 
properties that are relevant to the computation. One stan-
dard method for achieving this goal is to use a random 
projection to the data.

The main idea in compressive sampling (CoSa) is to 
develop sampling technologies based on dimension reduc-
tion. The mathematical foundation for this approach is the 
fact that an appropriate random projection of a compress-
ible signal retains most of the information in that signal. 
The coordinates of this randomly projected signal are inter-
preted as samples, and the number of samples we need 
is comparable with the information content of the object 
we are sampling. Because we have a lot of flexibility when 
designing projections, we have flexibility in engineering the 
sampling hardware.

An intriguing example of a CoSa sensing device is the 
Rice University single-pixel camera. This camera uses a digi-
tal micromirror device (DMD) to selectively black out a ran-
dom subset of pixels from an image and to measure the total 
intensity of the remaining pixels. By applying many random 
masks in sequence, we obtain a collection of samples that 
captures the information in the image.

Another key fact about CoSa is that we cannot use 
simple linear techniques to reconstruct the data vector 
from the random samples. Instead, we must develop 
more sophisticated algorithms. One approach that has 
received a lot of attention is convex programming based 
on l1 minimization. This abstract describes an algo-
rithm, called CoSaMP, that is based on the greedy pursuit 
schema.18,  19 CoSaMP was the first computational tech-
nique that provably achieved near-optimal guarantees 
on resource usage. Using the techniques from our paper, 
researchers later demonstrated that other algorithms 
offer comparable performance guarantees. Another algo-
rithm similar to CoSaMP, called Subspace Pursuit,9 was 
published at the same time, but the accompanying analy-
sis was less complete.

The original version of this paper appeared in Applied and 
Computational Harmonic Analysis 26, 3 (2008), 301–321.
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ideas  apply equally well to signals that are sparse or com-
pressible with respect to other orthonormal bases. The gen-
eralization is important in applications. For instance, natural 
images are usually not compressible in the standard basis 
but they are compressible in an appropriate wavelet basis.

2.3. Modeling the sampling operation
We can model each of the sampling technologies men-
tioned in the introduction as a linear map from a signal of 
interest to a collection of samples. We use an m × N matrix F 
to describe the sampling operation. Thus, we write u = Fx to 
summarize the process of collecting a vector u of m samples 
from an N-dimensional signal x.
Restricted Isometry Constants: In this section, to build intui
tion, we focus on the class of s-sparse signals. It is important to 
understand what properties of the sampling matrix F ensure 
that s-sparse signals can be distinguished based on their sam-
ples. In other words, we need to make sure that F is a linear 
embedding (i.e., a bijective structure-preserving map) of the set 
of s-sparse signals into Cm. A necessary and sufficient condition 
is that each 2s-column submatrix of the sampling matrix F 
forms a linearly independent set. Certain Vandermonde matri-
ces with m = 2s rows, arising from Reed–Solomon codes, have 
this property. Unfortunately, these matrices contain nearly 
singular 2s-column submatrices, so the sampling matrix is 
not stably invertible on the image of the set of s-sparse signals. 
Noise and signal perturbations become a serious problem.

To avoid this difficulty, Candès and Tao4 insist that each 
2s-column submatrix of the measurement matrix should 
be well conditioned. More formally, they define the rth 
restricted isometry constant of the matrix F to be the least 
number dr such that

The condition d2s  1 implies that the measurement matrix 
F preserves the geometry (with respect to the Euclidean 
metric) of the set of all s-sparse signals. This condition is 
sufficient to ensure that sampling is stably invertible. It has 
become standard practice in CoSa to assume that the mea-
surement matrix satisfies a condition of this type.
How Many Samples?: The next question is how many samples 
m do we need to ensure that the sampling map embeds the 
set of s-sparse signals into Cm. Because an s-sparse signal con-
tains only about s log(N/s) bits of information, we hope that m = 
O(s log(N/s) ) samples suffice for the embedding. In fact, many 
random sampling schemes allow us to achieve this sampling 
rate, or one that is just slightly worse. (It is necessary in some 
sense to take at least this many samples, so these sampling 
schemes are optimal.) Furthermore, there are technologies that 
implement these sampling schemes. Here are two examples.

A random sign matrix has independent, identically distrib-
uted entries that take the values ±1 with equal probability. Its 
restricted isometry constant5 satisfies

In words, we can embed the set of s-sparse signals into m 
dimensions, where m is proportional to the sparsity and 

The remainder of the article is organized as follows. Section 
2 describes the mathematical framework for CoSa as well as 
the theoretical results for the CoSaMP algorithm. Section 3 
presents a description of the algorithm and its implementa-
tion. Section 4 discusses related work and a comparison to 
our method. We conclude in Section 5 with the analysis of the 
algorithm and sketch the proof of the main result.

2. THE MATHEMATICS OF CoSa
We continue with a description of the mathematical model 
for signals, sampling technologies, and signal reconstruc-
tion algorithms. The main theoretical results for the CoSaMP 
algorithm appear at the end of the section.

2.1. Notation
Let us instate some notation that is used throughout the 
paper. A signal is a vector x ∈ N. For p ∈ [1, ∞], we write ||⋅||p

for the usual lp vector norm: ||x||p = (x p
i )

1/p. We reserve ||⋅|| for 
the spectral norm. For x ∈ CN, we write xr for the signal in 
CN that is formed by restricting x to its r largest-magnitude 
components (with ties broken lexicographically).

For T  {1, 2, . . . , N}, we denote the restriction of the signal 
to the set T as x|T, which is the vector equal to x on T and 0 
elsewhere. We occasionally abuse the notation and treat x|T as 
an element of CT. We also define the restriction FT of the sam-
pling matrix F to be the column submatrix whose columns 
are listed in the index set T. Finally, we define the pseudoin-
verse of a tall, full-rank matrix A by the formula A† = (A*A)−1 A*.

2.2. Sparse and compressible signals
We say that a signal is s-sparse when it has s  N nonzero 
entries:

This definition encapsulates the idea that the signal con-
tains far less information than its ambient dimension sug-
gests. Observe that it takes roughly log2(

N
s ) = O(s log(N/s))  

bits to write down the locations of the nonzero entries in an 
s-sparse signal in CN.

While sparse signals are important for theory, they rarely 
arise in practice, so we consider the larger class of compress-
ible signals. For p ∈ (0, 1), we say that x is p-compressible with 
magnitude R if its components taken in sorted order obey

	 | x |(i)  ≤  R  i −1/p    for  i  =  1, 2, 3,. . .� (1)

Compressible signals are well approximated by sparse 
signals. The smaller the number p, the better the 
approximation:

	 x − xs1  ≤  Cp R  s1 − 1/p

	 x − xs2  ≤  Dp R  s1/2 − 1/p.� (2)

Let us emphasize that we do not know in advance which 
coordinates of a compressible signal are significant—only 
that few coordinates matter.

We limit our attention to signals that are sparse or com-
pressible in the standard coordinate basis, although the 
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logarithmic in the ambient dimension. A random sign matrix 
can be used to construct the random masks required by the 
Rice single-pixel camera.

The subsampled Fourier matrix consists of a collection 
of m rows chosen uniformly at random from the discrete 
Fourier transform matrix. The best theoretical bound for the 
restricted isometry constant23 is

It is conjectured that the actual scaling is m  s log(N). The 
subsampled Fourier matrix describes measurements that 
can be acquired by an MRI machine. Note that a subsam-
pled Fourier matrix can be applied to a vector using O(N 
log N) arithmetic operations, and it requires only O(m log 
N) bits of storage. These computational properties are very 
important in practice, as we will see.

Certain types of deterministic matrices also satisfy 
bounds on their restricted isometry constants. At present, 
all known examples require that the number m of samples 
satisfy m  s2. Randomness seems to provide a significant 
advantage when designing schemes for CoSa.

2.4. Signal reconstruction via CoSaMP
When the sampling matrix F stably embeds the set of s-sparse 
signals, it is possible in principle to recover an arbitrary 
s-sparse signal from its samples. The major computational 
question in CoSa is to determine how to reconstruct the sparse 
signal using a tractable algorithm. For practical applications, 
we also need to understand how the reconstruction is affected 
when the signal is merely compressible and the samples are 
contaminated by noise. The following issues are crucial:

1.	 Can the algorithm recover the signal under a variety of 
sampling schemes? In other words, is the class of mea-
surement maps for which the algorithm can succeed 
large?

2.	 Can the algorithm reconstruct the signal from a mini-
mal number m of samples?

3.	 Is signal recovery robust when samples are contami-
nated with noise or the signal is not exactly sparse? Is 
the error bound optimal for each target signal?

4.	 Does the algorithm offer provably efficient computa-
tional cost and storage?

This abstract discusses a reconstruction algorithm called 
Compressive Sampling Matching Pursuit (CoSaMP) that 
satisfies all of the foregoing criteria. Our original publica-
tions18, 19 were the first to prove that a CoSa signal reconstruc-
tion algorithm could achieve essentially optimal resource 
usage.
Properties of the CoSaMP Algorithm: Let us state and explain 
our main result. We postpone the details of the algorithm 
and the analysis until later.

Theorem A (CoSaMP). Suppose that F is an m × N sampling 
matrix with restricted isometry constant d2s ≤ c. Let u = Fx + e 
be a vector of samples of an arbitrary signal, contaminated with 
arbitrary noise.

The CoSaMP algorithm takes as input a routine to multiply F 
and F* by a vector, the vector u of samples, the sparsity param-
eter s, and a precision parameter h. The output is an s-sparse sig-
nal approximation a that satisfies

The running time is O( • log(||x||2/h) ), where  bounds the 
cost of a matrix–vector multiply with F or F*. Working storage 
is O(N). The constants c < 1 and C > 1 are absolute.

How does this result deliver the desired performance?

1.	 The algorithm requires only that the matrix satisfy a 
bound on the restricted isometry constant. Many types 
of random matrices (and certain deterministic matri-
ces) have this property. As a consequence, the algo-
rithm can be used with many measurement 
technologies.

2.	 The number m of samples required to obtain the 
bound d2s ≤ c depends on the type of sampling matrix. 
For many types of random matrices, m = O(s logaN) for 
a small integer a. Since this value is optimal up to the 
constants, the algorithm can recover signals from a 
minimal number of samples.

3.	 The error bound demonstrates that the algorithm suc-
ceeds for all signals, even when there is noise in the 
samples. As we expect, the algorithm performs best for 
sparse and compressible signals. Indeed, Equation 2 
shows that CoSaMP produces an approximation a of a 
p-compressible signal x that satisfies

x − a2  ≤  C  max {h, R  s 1/2 – 1/p +  e 2},

	 which is the best possible approximation error we 
could hope for in general.6

4.	 The computational cost of the algorithm depends on 
the type of signals we are approximating. For a compress-
ible signal, we may take the precision parameter 
h  =  R  ·  s 1/2 − 1/p to see that the number of iterations required 
to produce a minimal approximation error is at most 
O(log s). See Section 1.2 of Needell and Tropp19 for details.

		  The running time also depends on the type of sam-
pling matrix we use. In particular, we can apply a sub-
sampled Fourier matrix to a vector using 
  =  O(N log N) operations.

		  It follows that if we acquire a compressible signal 
with a structured sampling matrix, we can perform sig-
nal recovery in time O(N log2 N). This runtime bound is 
essentially optimal when the sparsity level is roughly 
the same order as the dimension (which is the setting 
in most practical problems).

3. THE CoSaMP ALGORITHM
The CoSaMP algorithm is, at heart, a greedy iterative method 
for reconstructing a signal from compressive samples. This 
section provides an overview of the algorithm and its imple-
mentation. We also explain the basic idea behind the analy-
sis of the algorithm, which demonstrates that each iteration 
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reduces the error in the current signal approximation.

3.1. Description of algorithm
The input to the algorithm consists of (access to) the sam-
pling operator F, the samples u, the target sparsity level s, 
and a halting criterion. We impose the following hypotheses:

•	 The sparsity level s is fixed, and the m × N sampling 
operator F has restricted isometry constant d4s ≤ 0.1.

•	 The signal x ∈ CN is arbitrary, except where noted. The 
noise vector e ∈ Cm is also arbitrary.

•	 The vector of samples u = Fx + e.

The algorithm is initialized with a trivial signal estimate, 
meaning that the initial residual is the entire unknown tar-
get signal. Each iteration then consists of five major steps.

1.	 Identification. Using the current samples, the algo-
rithm computes a vector that is highly correlated with 
the signal, called the signal proxy. From the proxy, 
components of the signal that carrry a lot of energy are 
located.

2.	 Support Merger. The set of newly identified compo-
nents is united with the set of components that appear 
in the current approximation.

3.	 Estimation. The algorithm solves a least-squares prob-
lem to approximate the target signal on the merged set 
of components.

4.	 Pruning. The algorithm produces a new approxima-
tion by retaining only the largest entries in this least-
squares signal approximation.

5.	 Sample Update. Finally, the samples are updated so 
that they reflect the residual, the part of the signal that 
has not been approximated.

These five steps are repeated until the halting criterion is 
satisfied. In our analysis, we assume that the method uses a 
fixed number of iterations, but Needell and Tropp18, 19 discuss 
other alternatives. The CoSaMP algorithm can  be  summa-
rized by the pseudocode presented as Algorithm 1.

Remark 1. We emphasize that the method we present is a spe-
cific example from a more general framework. The articles18, 19 
discuss a number of variations. In particular, note that the term 
2s in the identification step can be replaced by as for other val-
ues of a. This type of tuning is valuable in practice, but it makes 
the proof more complicated.

Remark 2. Some knowledge about the sparsity level is required 
as input to the algorithm. There are several strategies for esti-
mating this parameter if it is not known a priori. One such 
method would be to use the number m of measurements to 
deduce the sparsity level. Since m ≈ 2s log N is often sufficient, 
the estimate s ≈ m/2 log N is reasonable. A second approach 
would be to run the CoSaMP algorithm using a variety of spar-
sity levels and select the best approximation a obtained using 
the empirical error ||Fa − u||2. If one varies s according to a 
geometric progression (e.g., s = 1, 2, 4, 8, . . . , m), this variation 
increases the runtime by at most O(log m). See Appendix A of 

Needell and Tropp19 for more details.

3.2. Implementation
CoSaMP was designed to be a practical algorithm for signal 
recovery, so it is worth spending some time on implemen-
tation issues. The least-squares step in the algorithm pres-
ents the largest contribution to the runtime. Fortunately, 
we have constructed FT to ensure it is well conditioned, so 
we can apply its pseudoinverse quickly using an iterative 
method. Section 5 of Needell and Tropp19 contains a thor-
ough analysis of iterative least-squares methods as modules 
in CoSaMP. This analysis shows that the cost of solving the 
least-squares problem is O(), where  bounds the cost of a 
matrix–vector multiply with FT or F*T.

The remaining steps of the algorithm involve standard tech-
niques, and we can estimate the operation counts as follows.
Proxy. Forming the proxy is dominated by the cost of the 
matrix–vector multiply F*v.
Identification. We can locate the largest 2s entries of a vec-
tor in time O(N) using the approach in Cormen et al.7, Ch.  9. 
In practice, it may be faster to use an O(N log N) sorting 
algorithm (e.g., quicksort, mergesort, heapsort7, Sec. II) on the 
entries of the signal and then select the first 2s of them.
Support Merger. We can merge two support sets of size O(s) 
in expected time O(s) via randomized hashing methods,7, Ch. 

11 or by sorting both sets first and using the elementary 
merge procedure7, p. 29 for a total cost O(s log s).
LS estimation. We can use the conjugate gradient method 
or the LSQR algorit (see e.g. Paige and Saunders22) to 
compute F†

T u. Initializing the least-squares algorithm 
requires a matrix–vector multiply with F*T, and each itera-
tion requires one matrix–vector multiply each with FT and 
F*T. Since FT is a submatrix of F, the matrix–vector multi-
plies can also be obtained from multiplication with the full 
matrix. We show in Section 5 of Needell and Tropp19 that 
a constant number of least-squares iterations suffices for 
our results to hold.
Pruning. As in the identification step, pruning can be 

Algorithm 1: CoSaMP Recovery Algorithm

Input: Sampling matrix F, noisy sample vector u, sparsity 
level s
Output: An s-sparse approximation a of the target signal

a0 ← 0, v ← u, k ← 0� { Initialization }

repeat
k ← k + 1

y ← F*v� { Form signal proxy }

W ← supp(y2s)� { Identify large components }

T ← W  supp(ak−1)� { Merge supports }

b|T ← F†
Tu� { Signal estimation }

b|T
c ← 0

ak ← bs� { Prune approximation }

v ← u − Fak� { Update current samples }

until halting criterion true
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The main consequence of Theorem 2 is the fact that, after 
log2(||x||2/h) iterations, the approximation error is no greater 
than h  +  20n. See Needell and Tropp18, 19 for more discussion.

The statement of Theorem A depends on a simple upper 
bound for the l2 term in the unrecoverable energy:

This estimate is a consequence of Lemma 7 of Gilbert.15

Finally, we can replace the assumption that d4s ≤ 0.1 by 
a stronger bound on d2s because of Corollary 3.4 in Needell 
and Tropp,19 which states that dcr ≤ c · d2r for any positive inte-
gers c and r.

4. RELATED WORK
CoSaMP is inspired by algorithmic ideas and analytic tech-
niques that have appeared previously. We briefly summarize 
the major algorithmic approaches and compare them with 
CoSaMP. This work can be classified in three rough catego-
ries: convex relaxation,4, 11 greedy pursuits,12, 20, 24 and combi-
natorial algorithms.8, 14–16

The convex optimization methods1, 10 attempt to recon-
struct signals by solving the mathematical program

where we assume that ||e||2 ≤ e. The intuition behind mini-
mizing the l1 norm is that this norm promotes sparsity, and 
so the solution to this program should approximate a com-
pressible signal well. Candès et al.3 establish that each mini-
mizer a of Equation 6 satisfies

whenever F has restricted isometry constant d4s ≤ 0.2. These 
restricted isometry constant requirements continue to be 
improved.2, 13 The error bound for CoSaMP is equivalent with 
Equation 7, up to the precise value of the constants.

Many algorithms have been proposed to optimize 
Equation 6. In particular, interior-point methods1, 17 are 
guaranteed to solve the problem to a fixed precision in 
O(m2N1.5) time.21 The runtime for CoSaMP is much better 
than these interior-point methods.

Greedy algorithms such as OMP,24 StOMP,12 and ROMP20 
are iterative methods for approximating a signal from com-
pressive samples. In each iteration, they use a greedy rule 
to identify new elements in the support of the signal. These 
methods provide fast runtimes. On the other hand, to the 
extent that their behavior is understood, greedy algorithms 
require more measurements or produce worse errors than 
the convex optimization Equation 6.

Tropp and Gilbert proposed the greedy algorithm ortho
gonal matching pursuit (OMP) for signal recovery.24 OMP 
is similar to CoSaMP in that it uses a signal proxy to select 
large components of the target signal, but it selects one such 
component at each iteration. However, it does not provide 
the same uniform guarantees as convex relaxation, and it is 
unknown whether it succeeds in the noisy setting.

implemented in time O(s), but it may be preferable to sort 
the components of the vector and then select the first s at a 
cost of O(s log s).
Sample Update. This step is dominated by the cost of the 
multiplication of F with the s-sparse vector ak.

Table 1 summarizes the cost of each step for the cases in 
which the standard and fast multiply is used.

Finally, we may analyze the storage requirements of the 
algorithm. Aside from the sampling matrix storage require-
ment, the algorithm constructs only one vector of length N, 
the signal proxy. The sample vectors u and v have length m, 
and thus require O(m) storage. Since the signal approxima-
tions are sparse, they can be stored using sparse data struc-
tures which require at most O(s log N) storage. Similarly, the 
index sets that appear require only O(s log N) storage. The 
total working storage is therefore O(N).

The following result summarizes these observations.

Theorem 1 (Resource Requirements). Each iteration 
of CoSaMP requires O() time, where  bounds the cost of a 
multiplication with the matrix F or F*. The algorithm uses 
working storage O(N).

3.3. Error reduction bound
The theoretical analysis of the CoSaMP algorithm is based on 
an estimate for how much the algorithm reduces the approx-
imation error in each iteration. This result demonstrates that 
the algorithm makes significant progress whenever the error 
is substantially larger than a certain baseline value. We call 
this baseline the unrecoverable energy n in the signal:

The unrecoverable energy is due to the noise in the sam-
ples and the fact that the signal is not exactly sparse. For a 
detailed discussion, see Section 2.5 of Needell and Tropp.19

The main technical result is the following iteration invari-
ant, which we establish in Section 5.

Theorem 2 (Error Reduction). For each iteration k ≥ 0, 
the signal approximation ak is s-sparse and

In particular,

Table 1. Operation count for CoSaMP

Step Standard Multiply Fast Multiply

Form proxy mN 

Identification N N
Support merger s s

LS estimation sm 

Pruning s s

Sample update sm 

Total per iteration O(mN) O()
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Other algorithms based on OMP have been formulated, 
such as regularized OMP, or ROMP,20 developed by Needell 
and Vershynin. ROMP is noteworthy because the authors 
establish that under the restricted isometry property, the algo-
rithm can approximately recover compressible signals from 
noisy samples. The error bound and measurement require-
ments provided by these results are analogous with those of 
the convex optimization method, modulo parasitic logarith-
mic terms. Our results for CoSaMP remove all the extraneous 
factors, so the performance of CoSaMP is essentially optimal.

Finally, we mention that there is a class of algorithms for 
signal recovery that have sublinear (in the signal dimension) 
runtime. Some examples are the Fourier sampling algorithm 
(FS) of Gilbert et al.,16 chaining pursuit,14 and HHS pursuit.15 
These methods are very fast, but they require highly struc-
tured measurements.

Table 2 summarizes the behavior of the above algorithms 
in terms of the following five criteria.
General samples. Does the algorithm succeed for a variety 
of sampling schemes, or does it require structured samples? 
The designation “RIP” implies that a bound on a restricted 
isometry constant suffices. “Gauss” means that the algo-
rithm succeeds when the sampling matrix F has iid sub-
gaussian entries.
Optimal number of samples. Can the algorithm reconstruct 
s-sparse signals from a near-optimal number of measure-
ments, m = O(s log N)? Or are its sampling requirements 
higher (by logarithmic factors)?
Uniformity. Given a fixed sampling matrix, does the algo-
rithm recover all signals? Or do the results hold with high 
probability only for each fixed signal?
Stability. Does the algorithm succeed when the signal is 
compressible (but not sparse) and the samples are noisy?
Running time. In the worst case (without fast multiplies), how 
long does it take the algorithm to recover a real-valued s-sparse 
signal within a fixed relative precision, given a sampling 
matrix with no special structure? The designation LP(N,  m) 
represents the cost of solving a linear program with N variables 
and m constraints (O(m2N1.5) using an interior-point method).

Under all of these metrics, CoSaMP achieves the best 
performance out of the linear and superlinear methods. Of 

course, CoSaMP is slower than the sublinear algorithms, 
but it allows more general sampling matrices and demands 
fewer samples, which makes it more adaptable to practical 
applications. CoSaMP delivers the same guarantees as the 
best convex optimization approaches as well as rigorous 
bounds on computational cost and storage that are compa-
rable with faster greedy methods. Thus, CoSaMP is essen-
tially optimal in every important respect.

5. PROOF OF RESULTS
The CoSaMP algorithm uses an approach inspired by the 
restricted isometry property to identify the largest s com-
ponents of the target signal. Owing to the restricted iso
metry property, each set of s components of the proxy vector 
y  =  F*Fx approximates the energy in the corresponding s 
components of x. Since the samples are of the form u = Fx, 
we can obtain the proxy by applying the matrix F* to the 
samples u. Once the set T of significant locations is identi-
fied, the signal coefficients can be recovered using F†

T.
The algorithm repeats this idea at each iteration, updat-

ing the samples to reflect the residual (the part of the signal 
yet to be approximated). We use least squares to estimate 
the signal on this support set and repeat this process until 
the recoverable energy in the signal has been found.

We now outline the proof of Theorem 2.

5.1. Consequences of the RIP
We begin with some important consequences of the 
restricted isometry property. Omitted proofs appear in 
Needell and Tropp.19

Proposition 1 (Consequences). Suppose F has restricted 
isometry constant dr. Let T be a set of r indices or fewer. Then

where the last two statements contain an upper and lower 
bound, depending on the sign chosen.

A corollary of these bounds is the fact that disjoint sets of 
columns from the sampling matrix span nearly orthogonal 
subspaces.

Proposition 2 (Orthogonality). Suppose F has restricted 
isometry constant dr. Let S and T be disjoint sets of indices whose 
combined cardinality does not exceed r. Then

We apply this result through a corollary.

Corollary 1. Suppose F has restricted isometry constant dr. 
Let T be a set of indices, and let x be a vector. Provided that 

Table 2. Comparison of several signal recovery algorithms

CoSaMP ROMP Convex Optimization

General samples RIP RIP RIP

Opt. # samples Yes No Yes

Uniformity Yes Yes Yes

Stability Yes Yes Yes

Running time O(mN) O(smN) LP(N, m)

OMP Fourier Sampling HHS Pursuit

General samples Gauss No No

Opt. # samples Yes No No

Uniformity No No Yes

Stability ? Yes Yes

Running time O(smN) s polylog(N) poly(s log N)
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r ≥ |T  supp(x)|,

The last consequence of the restricted isometry property 
that we will need measures how much the sampling matrix 
inflates nonsparse vectors. Its proof uses arguments from 
functional analysis.

Proposition 3 (Energy Bound). Suppose F verifies the 
upper inequality of (3), viz.

Then, for every signal x,

5.2. Iteration invariant: sparse case
In proving Theorem 2, we first operate under the assumption 
that the signal x is exactly s-sparse. We remove this assump-
tion later.
Theorem 3 (Sparse Error Reduction). Assume x is s-sparse. 
For each k ≥ 0, the signal approximation ak is s-sparse, and

In particular,

Remark 3. This bound assumes the least-squares step in the 
algorithm is performed without error. In Section 5 of Needell 
and Tropp,19 we study how many iterations of a least-squares 
solver are needed to make the resulting error negligible. We 
show that, if we use conjugate gradient for the estimation step 
of CoSaMP, then initializing the least-squares algorithm with 
the current approximation ak−1, then Theorem 3 still holds.

The proof of the iteration invariant, Theorem 3 involves a 
sequence of short lemmas, one for each step in the algorithm. 
We fix an iteration k, and let a = ak−1 be the signal approxima-
tion at the beginning of the iteration. We define the residual 
as r = x − a, which must be 2s-sparse since both a and x are 
s-sparse. We also observe that the vector v of updated sam-
ples can be interpreted as noisy samples of the residual:

The first step in the algorithm is the identification step, 
in which a set of components is found corresponding to 
locations where the residual signal has a lot of energy. This 
is summarized by the following lemma which is proven in 
Needell and Tropp.19

Lemma 1 (Identification). The set W = supp(y2s), where 
y = F*v is the signal proxy, contains at most 2s indices, and

Next, the algorithm merges the support of the current 
estimate a with the new selection of components. The fol-
lowing simple lemma shows that components of the signal 
x outside this set have small energy.

Lemma 2 (Support Merger). Let W be a set of at most 2s indi-
ces. The set T = W  supp(a) contains at most 3s indices, and

The estimation step in the algorithm obtains values 
for  coefficients in the set T by solving a least-squares 
problem. The next result bounds the error of this 
approximation.

Lemma 3 (Estimation19). Let T be a set of at most 3s indices, 
and define the least-squares signal estimate b by the formulae

where u = Fx + e. Then

Proof. Note first that

Using the expression u = Fx + e and the fact , we 
calculate that

The cardinality of T is at most 3s, and x is s-sparse, so 
Proposition 1 and Corollary 1 imply that

Combine the bounds to reach

Finally, invoke the hypothesis that d3s ≤ d4s ≤ 0.1.� 

Lastly, the algorithm prunes the intermediate estima-
tion to its largest s terms. The triangle inequality bounds the 
error in this pruned approximation.

Lemma 4 (Pruning19). The pruned approximation bs satisfies

At the end of the iteration, the new approximation is formed 
by setting ak = bs. The sequence of lemmas above allows us to 
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prove the iteration invariant for the sparse case, Theorem 3. 
Indeed, we have:

To obtain the second bound in Theorem 3, we solve the error 
recursion and observe that

This point completes the argument.

5.3. Extension to general signals
We now turn to the proof of the main result for CoSaMP, 
Theorem A. We must remove the assumption that the sig-
nal x is sparse. Although this job seems difficult at first, it 
turns out to have an elegant solution. We can view the noisy 
samples of a generic signal as samples of a sparse signal cor-
rupted by additional noise that reflects the tail of the signal. 
We have the following reduction to the sparse case, of which 
Theorem 2 is a consequence.

Lemma 5 (Reduction to Sparse Case19). Let x be an arbi-
trary vector in cN. The sample vector u = Fx + e can also be 
expressed as u = Fxs +  where

This reduction will now allow us to prove the iteration 
invariant for general signals, Theorem 2. Let x be a general 
signal. By Lemma 5, we can write the noisy vector of sam-
ples as u = Fxs + . Applying the sparse iteration invariant, 
Theorem 3, we obtain

We then invoke the lower and upper triangle inequalities to 
obtain

Finally, recalling the estimate for  from Lemma 5 and 
simplifying, we reach

where n is the unrecoverable energy (Equation 4).�
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