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MADELEINE UDELL:

SM1. Time and Storage Complexity.

SM1.1. Comparison Between Algorithm 4.4 and T.-TS [8]. Here we com-
pare the time and storage complexity of the two extant methods for streaming Tucker
approximation: our one-pass method, and T.-TS [8].

To compare the storage and time costs of both T.-TS and the one-pass algorithm, we
separate the cost into two parts: one for forming the sketch, the other for each iteration
of ALS. Assume the tensor to approximate has equal side lengths I1 “ ¨ ¨ ¨ “ IN “ I
and that the target rank for each mode is R.

The suggested default parameters for the sketch in [8] are J1 “ 10RN´1 and
J2 “ 10RN . Our suggested default parameters are k “ 2r, s “ 2k ` 1. Under the
choice of the default parameter, we compare the the cost of storage and time in
Table SM1 and Table SM2. In most problems with data that is not exactly low rank,
i.e. R ą 4, the suggested default setting of T.-TS typically leads to a higher storage
cost. Moreover, our algorithm uses less storage and is faster to compute, particularly
for tensors with many modes N .

However, the evaluation of the two algorithms should not be solely based on their
default setups. If the memory constraint is set to be the same, our one-pass algorithm
performs much better in the low-memory case, but slightly worse in the high-memory
case (see Figure 3). The memory required by our default parameters is typically much
smaller than that required with the default parameters of [8].

SM1.2. Computational Complexity of Algorithm 4.4. Here, we will calcu-
late the computational complexity for our one-pass fixed-rank approximation algorithm.

In the sketching stage of the streaming algorithm, we first need to compute the
factor sketches, Gn “ XΩn, n P rN s with kNÎ flops in total. Then we need to
compute the core tensor sketch Z by recursively multiplying X by Φn, n P rN s. We can
upper bound the number of flops by sp1´δN1 q

1´δ1
Ī. Then in the approximation stage, we

first perform “economy size” QR factorizations of G1, . . . ,GN with Opk2p
řN
n“1 Inqq

to find the orthonormal bases Q1, . . . ,QN . To find the linkage tensor W, we need to
recursively solve linear square problems with k2sN p1´pk{sqN q

1´k{s flops. Overall, the sketch
computation dominates the total time complexity.

The HOSVD directly acts on X by first computing the SVD for each unfolding
(OpkNĪq) and then multiplying X by UJ

1 , . . . ,U
J
N (Opkp1´δ

N
1 qĪ

1´δ1
q). The total time cost

is less than the streaming algorithm with a constant factor. Note: we can use the
randomized SVD in the first step of the HOSVD to improve the computational cost to
ĪN log k `

řN
n“1pIn ` Ip´nqqk

2 [7].
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Algorithm Storage Cost (I “ opr2N q)

T.-TS Sketching Opr2N q

Recovery Opr2N q

Algorithm 4.3 (One Pass) Sketching Op4NrN q
Recovery Op4NrN q

Table SM1: Storage complexity of Algorithm 4.3 and T.-TS on tensor X P RIˆ¨¨¨ˆI .
Algorithm 4.3 uses parameters pk, sq “ p2r, 4r ` 1q and uses a TRP composed of
Gaussian DRMs inside the Tucker sketch. T.-TS uses default values for hyper-
parameters: J1 “ 10rN´1, J2 “ 10rN .

Algorithm Time Cost (I “ opr2N q)

T.-TS Sketching OpNnnzpXqq
Recovery OpNIrN `Nr2N´1 ` r2N q

Algorithm 4.3 (One Pass) Sketching OpNr nnzpXqqq
Recovery OpNrN`1q

Table SM2: Time complexity of Algorithm 4.3 and T.-TS on tensor X P RIˆ¨¨¨ˆI .
Algorithm 4.3 uses parameters pk, sq “ p2r, 4r ` 1q and uses a TRP composed of
Gaussian DRMs inside the Tucker sketch. T.-TS uses default values for hyper-
parameters: J1 “ 10rN´1, J2 “ 10rN .

SM2. More Numerics. This section provides more numerical results on simu-
lated datasets in Figure SM1, Figure SM2, Figure SM3, and Figure SM4.

We also provide more numerical results on real datasets in Figure SM5.

SM3. More Algorithms. This section provides detailed implementations.

Algorithm SM3.1 Higher order orthogonal iteration (HOOI) [5]
Given: tensor X, target rank r “ pr1, . . . , rN q
Initialize: compute X « JG; U1, . . . ,UN K using HOSVD
Repeat:

1. Factors. For each n P rN s,

(SM3.1) Un Ð arg min
Un

}JG; U1, . . . ,UN K´X}
2
F ,

2. Core.

(SM3.2)
GÐ arg min

G

}JG; U1, . . . ,UN K´X}
2
F .

i.e. G “ Xˆ1 UJ
1 ˆ2 ¨ ¨ ¨ ˆN UJ

N

Return: Tucker approximation XHOOI “ JG; U1, . . . ,UN K

Notice the core update (SM3.2) admits the closed form solution G Ð X ˆ1

UJ
1 ¨ ¨ ¨ ˆN UJ

N , which motivates the second step of HOSVD for a linear sketch ap-
propriate to a streaming setting (Algorithm SM3.2) or a distributed setting (Algo-
rithm SM3.3).
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Fig. SM1: We approximate 3D synthetic tensors (see subsection 6.3) with I “ 400,
using our one-pass algorithm with r “ 5 and varying k (s “ 2k` 1), using a variety of
DRMs in the Tucker sketch: Gaussian, SSRFT, Gaussian TRP, or Sparse TRP.
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Fig. SM2: We approximate 3D synthetic tensors (see subsection 6.3) with I “ 200,
using our one-pass algorithm with r “ 5 and varying k (s “ 2k` 1), using a variety of
DRMs in the Tucker sketch: Gaussian, SSRFT, Gaussian TRP, or Sparse TRP.

SM4. Scrambled Subsampled Randomized Fourier Transform. In order
to reduce the cost of storing the test matrices, in particular, Ω1, . . . ,ΩN , we can use
the Scrambled Subsampled Randomized Fourier Transform (SSRFT). To reduce the
dimension of a matrix, X P Rmˆn, along either the row or the column to size k, we
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Fig. SM3: We approximate 3D synthetic tensors (see subsection 6.3) with I “ 400,
using our one-pass and two-pass algorithms with r “ 5 and varying k (s “ 2k ` 1),
using the Gaussian TRP in the Tucker sketch.

0.2 0.4
k/I

10−4

10−3

10−2

10−1

100

R
eg

re
t

Low Rank (γ = 0.01)

0.04 0.06 0.08
k/I

10−3

10−2

10−1

100

R
eg

re
t

Sparse Low Rank (γ = 0.01)

0.05 0.10 0.15
k/I

10−3

10−2

10−1

100

101

R
eg

re
t

Polynomial Decay

0.2 0.4
k/I

10−3

10−2

10−1

100

R
eg

re
t

Low Rank (γ = 0.1)

0.2 0.4
k/I

10−2

10−1

100

R
eg

re
t

Low Rank (γ = 1)

Gaussian TRP 1-Pass

Gaussian TRP 2-Pass

Fig. SM4: We approximate 3D synthetic tensors (see subsection 6.3) with I “ 200,
using our one-pass and two-pass algorithms with r “ 5 and varying k (s “ 2k ` 1),
using the Gaussian TRP in the Tucker sketch.

define the SSRFT map Ξ as:

Ξ “

#

RFJΠFΠJ P Fkˆm (Row linear transform)
psRsFJ sΠsF sΠJqJ P Fnˆk (Column linear transform),
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Fig. SM5: We approximate the net radiative flux and dust aerosol burden data
using our one-pass and two-pass algorithms using Gaussian TRP. We compare the
performance under different ranks (r{I “ 0.125, 0.2, 0.067). The dataset comes from
the CESM CAM. The dust aerosol burden measures the amount of aerosol contributed
by the dust. The net radiative flux determines the energy received by the earth surface
through radiation.

Algorithm SM3.2 Linear Update to Sketches

1: function SketchLinearUpdate(F,V1, . . . ,VN ,H; θ1, θ2)
2: for n “ 1, . . . , N do
3: Vn Ð θ1Vn ` θ2F

pnqΩn

4: end for
5: HÐ θ1H` θ2Fˆ1 Φ1 ˆ ¨ ¨ ¨ ˆN ΦN

6: return pV1, . . . ,VN ,Hq
7: end function

where Π,Π1 P Rmˆm, sΠ, sΠ1 P Rnˆn are signed permutation matrices. That is, the
matrix has exactly one non-zero entry, 1 or -1 with equal probability, in each row and
column. F P Fmˆm,F P Fnˆn denote the discrete cosine transform (F “ R) or the
discrete fourier transform (F “ C). The matrix R, sR is the restriction to k coordinates
chosen uniformly at random.

In practice, we implement the SSRFT as in Algorithm SM4.1. It takes only Opmq
or Opnq bits to store Ξ, compared to Opkmq or Opknq for Gaussian or uniform random
map. The cost of applying Ξ to a vector is Opn log nq or Opm logmq arithmetic
operations for fast Fourier transform and Opn log kq or Opm log kq for fast cosine
transform. Though in practice, SSRFT behaves similarly to the Gaussian random
map, its analysis is less comprehensive [2, 9, 1] than the Gaussian case.

SM5. TensorSketch. Many authors have developed methods to perform dimen-
sion reduction efficiently. In particular, [6] proposed a method called TensorSketch
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Algorithm SM3.3 Sketching in Distributed Setting

Require: Xi is the part of the tensor X at local machine i and X “
řm
i“1 Xi.

1: function ComputeSketchDistributed(X1, . . . ,Xm)
2: Send the same random generating environment to every local machine.
3: Generate the same DRM at each local machine.
4: for i “ 1 . . .m do
5: pV

piq
1 , ¨ ¨ ¨ ,V

piq
n ,Hpiq

q Ð ComputeSketch(Xi)
6: end for
7: for j “ 1 . . . n do
8: Vj Ð

řm
i“1 V

piq
j

9: end for
10: HÐ

řm
i“1 H

piq

11: return pV1, . . . ,Vn,Hq
12: end function

Algorithm SM4.1 Scrambled Subsampled Randomized Fourier Transform (Row
Linear Transform)

Require: X P Rmˆn,F “ R, randperm creates a random permutaion vector, and
randsign creates a random sign vector. dct denotes the discrete cosine transform.

1: function SSRFT(X)
2: coords Ð randperm(m,k)
3: permj Ð randpermpmq for j “ 1, 2
4: sgnj Ð randsignpmq for j “ 1, 2
5: X Ð dctpsgn1 ¨Xrperm1, :sq Ź elementwise product
6: X Ð dctpsgn2 ¨Xrperm2, :sq
7: return Xrcoords, :s
8: end function

that aims to solve least squares problems for which the design matrix has a Kronecker
product structure. [8] use this technique to compute a one-pass Tucker decomposition.
Here we review the TensorSketch and how it is used in [8].

CountSketch. [4] proposed the CountSketch method. A comprehensive theoretical
analysis in the context of low-rank approximation problems appears in [3]. To compute
the sketch XΩ P Rdˆk for X P Rmˆd, CountSketch defines Ω “ DΦ, where

1. D P Rdˆd is a diagonal matrix with each diagonal entry equal to p´1, 1q with
probability p1{2, 1{2q.

2. Φ P Rdˆk is the matrix form of a hash function.
These two matrices have 2d non-zero entries in total and thus require much less

storage than the standard kd entries. Furthermore, these two matrices can operate on
each column of X at a cost of only Opkdq arithmetic operations.

TensorSketch. [8] proposes to use the CountSketch inside the HOOI method for
Tucker decomposition They apply the sketch to solve least squares problems appearing
in (SM3.1) and (SM3.2) in Algorithm SM3.1. They use J1, J2 to denote the reduced
dimension. Using a standard random map, it would require a J1-by-Ip´nq random
matrix to solve the problem in (SM3.1) and a J2-by-

śN
n“1 In random matrix to solve

the problem in (SM3.2). However, these problems have Kronecker problem structure:
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as shown in [8], these two stages can be expressed as
(SM5.1)

For n “ 1, . . . , N,update Upnq “ arg min
UPRInˆRn

›

›

›

›

›

›

¨

˝

1
â

i“N
i‰n

Upiq

˛

‚GJ
pnqU

J ´YJ
pnq

›

›

›

›

›

›

2

F

.

(SM5.2) Update G “ arg min
ZPRR1ˆ¨¨¨ˆRN

›

›

›

›

›

˜

1
â

i“N

Upiq

¸

vecZ´ vecY

›

›

›

›

›

2

2

,

where Y is the original data. Here @i P rns,Ui is the factor matrix, and G is the core
tensor. The target multilinear rank is pR1, . . . , RN q.

Following [6], [8] proposes to apply TensorSketch to the Kronecker product struc-
ture of the input matrix in the sketch construction, i.e. bNi“1

i‰n
Ui in (SM5.1) and

bNi“1Ui in (SM5.2). The TensorSketch method combines the CountSketch of each
factor matrix via the Khatri-Rao product and Fast Fourier Transform. Consider
sketching bNi“1Ui in (SM5.2). TensorSketch is defined as

(SM5.3) ΩX “ FFT´1

ˆ

dNn“1

´

FFT
`

CountSketchpnqpUpnqq
˘J

¯J
˙

By only storing CountSketchp1q, . . . ,CountSketchpNq, TensorSketch only requires stor-
age 2

řN
i“1 In. Therefore, the storage cost of the sketch is dominated by the sketch

size, NRn´1J1 ` J2R
n « NKR2n´2 `KR2n, when J1 “ KRn´1, J2 “ KRn.
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