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Consider the uplink of an S-CDMA system witN users and a
processing gain ofl. Assume thatV > d, since the analysis of
the other case is straightforward. Assuming perfect synchronization,

the equivalent baseband representation after matched filtering and
Abstract— A description of optimal sequences for direct-spread code sampling at the receiver is given by

division multiple access is a byproduct of recent characterizations of the
sum capacity. This correspondence restates the sequence design problem
as an inverse singular value problem and shows that the problem can be
solved with finite-step algorithms from matrix theory. It proposes a new
one-sided algorithm that is numerically stable and faster than previous
methods.

yit] = Y bullsn + ol

wherey(t] € C* is the observation during symbol intervals,, € C*

is the signature of user, b, [t] € C is the symbol transmitted by user

n andw[t] € C% is the realization of an independent and identically

distributed complex Gaussian vector with zero mean and covariance

matrix X. We assume that the energy of each signature is normalized
We consider the problem of designing signature sequences to M@Xunity, i.e.||sn|l2 = 1 for n = 1,2,..., N. Define ad x N matrix

imize the sum capacity of a symbol-synchronous direct-spread C‘Wﬁose columns are the signaturé‘s?‘éf SN} Let

L . - s1 82
division multiple access (henceforth S-CDMA) system operating I8+ {5 denote the (conjugate) transposéoﬂ\lote that(5* S ) = 1

the presence of white noise. This question has received atremen%yseachn -1 N. Assume that usen has an average power
amount of attention in the information theory community over th@onstraint T

last decade, e.g. [1]-[8]. These papers, however, could benefit from T

a matrix-theoretic perspective. First of all, they do not fully exploit the wy, & 1 Z |bn [t]|2

fact that sequence design is fundamentallyirarerse singular value T —

problem [9]. Second, finite-step algorithms to solve the sequence ) ) )

design problem have been available in the matrix computatiofé!€’€ 1" is the number of symbol periods. Note that each is

literature for over two decades [10], [11]. Finally, researchers rare&'{icuy positive, and collect them in the diagonal matik =

mention computational complexity or numerical stability, which aréiag (w1, wz, ..., wy). It is often more convenient to absorb the

both significant issues for any software. power constraints c|‘nfto the signatures, so we also define the weighted
This correspondence addresses sequence design using tools figfature matrixX = SW'/. Denote then-th column of X as..

matrix theory. Our approach clarifies and simplifies the treatmeh®r eachn, one has the relationship

in comparison with existing information theory literature, and it

also allows us to develop a new algorithm whose computational

complexity is superior to earlier methods. In particular, this paper )
deals with the following issues. Viswanath and Anantharam have proven in [6] that, for real

1) We take advantage of the fact that the S-CDMA Sequenéggnature.s, the sum capacity of _the S-CDMA channel per degree of
design problem is equivalent with the classical Schur—Horn iif€dom is given by the expression

verse eigenvalue problem. This perspective provides an efficient
route to understanding the S-CDMA signature design literature.
The power of this approach becomes clear when investigating
more difficult design problems [12]. (In the complex case, the sum capacity differs by a constant factor.)
This connection leads us to several finite-step algorithms frohfe basic sequence design problem is to produce a signature matrix
matrix theory. We present numerically stable versions of thegethat solves the optimization problem (2). Three cases have been
methods and study their computational complexity. Earligionsidered in the literature.

Index Terms— Algorithms, code division multiple access, inverse eigen-
value problems, optimal sequences, sum capacity

|. INTRODUCTION

(X" X)n = a2 = wa. (1)
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)

2)

3)

authors were evidently unfamiliar with this work. For example, 1)
one of the algorithms in [2] seems to be identical with an
algorithm published in 1983 [11].

Finally, we leverage our insights to develop a new finite-step
algorithm for designing real S-CDMA signature sequences. 2)

The white noise, equal power case was considered by Rupf
and Massey in [1]. Here, the noise covariance matrix and the
power constraint matrix are both multiples of the identity. That
is, X =02lg, andW = wly.

Later, Viswanath and Anantharam addressed the situation of

This algorithm is numerically stable, and its time and storage
complexity improve over all previous algorithms.

The S-CDMA signature design problem is usually studied in the 3)
real setting. In some related sequence design problems, however,
the complex case is richer. Therefore, we have chosen to address
the complex case instead; the real case follows from a transparent
adaptation.

white noise and unequal user powers [2]. Here, the power
constraints form a positive diagonal matti¥, and X~ = a2 ly.

Most recently, Viswanath and Anantharam have succeeded in
characterizing the optimal sequences under colored noise and
unequal user powers [6]. HerZ, is an arbitrary positive semi-
definite matrix, andV is a positive diagonal matrix.

We discuss each scenario in a subsequent section. The algorithms
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B. A Sum Capacity Bound conditions:

In [1], Rupf and Massey produced an upper bound on the sum Ay < wey
capacity under white noise with varianeé: A1) + A < wey + we
TI‘ .
Clum <} log (1 - %) ) : ™
g
Ay + -+ A w1y Lway + - +Fwv-r) and
where Tr (+) |nd|cat_e§ the trace operator. T_hey also establlsh_ed a Ay + Ay = way + o wey-
necessary and sufficient condition on the signatures for equality to
be attained in the bound (3): The majorization relation (7) is commonly written as= A because
Te W it induces a partial ordering oR” . Note that the direction of the
XX* = SWS* = rd ly. (4) partial ordering is reversed in some treatments. An intuition which

may help to clarify this definition is that the majorizing vectar)(is

A matrix X that satisfies (4) is known as tight frame[13] or a an averaged version of the majorized vedtay; its components are
general Welch-Bound-Equality sequen@BE) [2]. As we shall clustered more closely together. It turns out that majorization defines
see, a tight frameX does not exist for every choice df¥. (A the precise relationship between the diagonal entries of a Hermitian
majorization condition must hold, as discussed in Section II-E.) Matrix and its spectrum.

condition equivalent to (4) is that Theorem 1 (Schur—Horn [14])The diagonal entries of a Hermi-
W tian matrix majorize its eigenvalues. Converselyuif = X, there
X*X = Trd P (5) exists a Hermitian matrix with diagonal elements listed byand

eigenvalues listed bg.

where the matrixP represents an orthogonal projector fréif onto Schur demonstrated the necessity of the majorization condition in
a subspace of dimensiot Recall that an orthogonal projector is1923, while Horn proved its sufficiency some thirty years later [14].
an idempotent, Hermitian matrix. That i€> = P and P = P*. A comprehensive reference on majorization is [15].

An orthogonal projector is also characterized as a Hermitian matrix

whose nonzero eigenvalues are identically equal to one. In light of

equation (1), the problem of constructing optimal signature sequen&sWhite Noise, Unequal Powers

in the present setting is closely related to the problem of constructingro gchur—

. X o . Horn Theorem forbids the construction of an orthogonal
an orthogonal projector with a specified diagonal.

projector with arbitrary diagonal entries. For this reason, (5) cannot

always hold, and the upper bound (3) cannot always be attained.
The key result of [2] is a complete characterization of the sum

capacity of the S-CDMA channel under white noise. Viswanath and
Consider the case where the power constraints are equalliz. Anantharam demonstrate thaversizedusers—those whose power

w |y for some positive numbap. Then condition (4) for equality to constraints are too large relative to the others for the majorization

C. White Noise, Equal Powers

hold in (3) becomes condition to hold—must receive their own orthogonal channels to
maximize the sum capacity of the system, and they provide a simple
—1 * * N P . .
w P XX* = SS* = 7 4. (6) method of determining which users are oversized. The other users

share the remaining dimensions equitably.

A matrix S which satisfies (6) is known asunit-norm tight frame For reference, we include the Viswanath-Anantharam method for
(UNTF) [13] or a Welch-Bound-Equality sequen€¢®/BE) [1]. In determining the set?” of oversized users.

fact, there always exist signature matrices that satisfy condition (6),; Initialize % — 0.

and so the upper bound on the sum capacity can always be attaineég

when the users’ power constraints are equal [1]. The equation (6)3)
can also be interpreted as a restriction on the singular values of thg)

signhature matrix. Under the assumptions of white noise and equal ] )
power constraints, a matri§ yields optimal signatures if and only SUPPose that there are < d oversized users, whose signatures
if form the columns ofSy. Let the columns of5; list the signatures of

the (N — m) remaining users, and let the diagonal matvl4 list

1) each column of has unitnormand their power constraints. The conditions for achieving sum capacity
2) the d nonzero singular values of are identically equal t0 ;0w

N/d.
/ ) ) ) 1) Them oversized users receive orthogonal signatusgss, =
Therefore, this sequence design problem falls into the category of * |

structured inverse singular value problems [9]. Note that condition 1)2) 'I?F{e remaining N' — m)
must hold irrespective of the type of noise.

Terminate i}, wn > (d — [£]) max,g ¢ Wn.
Perform the update?” «— J# U arg max, ¢ » {wn }.
Return to Step 2.

signatures are also orthogonal to the
oversized users’ signatureS; S = 0.

3) The remaining users signatures satisfy

Tr Wi

51 W151* — m Id—m-

D. Majorization

The bound (3) cannot be met for an arbitrary set of power
constraints. The explanation requires a short detour. FFtte order Repeat the foregoing arguments to see that the sequence design
statistic of a vectorv is its k-th smallest entry, and it is denoted agproblem still amounts to constructing a matrix with given column
v(k). Suppose thatv and are N-dimensional, real vectors. Then norms and singular spectrum. It is therefore an inverse singular value
is said tomajorize A when their order statistics satisfy the followingproblem.



F. Total Squared Correlation A. A Numerically Stable, Finite Algorithm

It is worth mentioning an equivalent formulation of the white- N 1978, Bendel and Mickey presented an algorithm that uses a
noise sequence design problem that provides a foundation for sevéifile sequence of rotations to convert an arbitrafy N Hermitian
iterative design algorithms [3]-[5], [7]. matrix with trace N into a unit-diagonal matrix that has the same

The total weighted squared correlatioof a signature sequence isSPectrum [10]. We follow the superb exposition of Davies and
the quantity Higham [16]. Brief discussions also appear on page 76 of Horn and

Johnson [14] and in Problems 8.4.1 and 8.4.2 of Golub and van
W1/25*5Wl/2H2 — XX Loan [17].
F Suppose thatd € My is a Hermitian matrix withTr A = N.
al 2 (Let My denote the set of compleX x N matrices, and leMy v
= 2 wnwal(sm,sn)l”, denote the set of complex x N matrices.) IfA does not have a
o=t unit diagonal, one can locate two diagonal elements sodhat<
In a rough sense, this quantity measures how “spread out” the< axk; Otherwise, the trace condition would be violated. It is
signature vectors are. Minimizing the TWSC of a signature sequertben possible to construct a real plane rotat{@rin the jk-plane so
is the same as solving the optimization problem (2), as shown in [That (Q*AQ),; = 1. The transformatiorA — Q*AQ preserves the
A short algebraic manipulation shows that minimizing the TWSC igonjugate symmetry and the spectrumAbut reduces the number
also equivalent to minimizing the quantity of non-unit diagonal entries by at least one. Thus, at nidst- 1)
rotations are required before the resulting matrix has a unit diagonal.

The appropriate form of the rotation is easy to discover, but the
- following derivation is essential to ensure numerical stability. Recall
tre1at a two-dimensional plane rotation is an orthogonal matrix of the

TWSCw(S) <

Tr W 2

I
g

HXX* -

In words, the singular values of an optimal weighted signatu

p Gt orm
sequenceX should be "as constant as possible.” It should be c s
emphasized that this equivalence only holds in the case of white Q= { }
noise.

—S C

wherec? + s> = 1 [17]. The corresponding plane rotation in thie-
plane is theN-dimensional identity matrix with itgj, jk, kj and
G. Colored Noise, Unequal Powers kk entries replaced by the entries of the two-dimensional rotation.

When the noise is colored, the situation is somewhat more cor%wqt] < k be indices so that

plicated. Nevertheless, optimal sequence design still boils down to aj; <1< agk or apk < 1< ajj.
constructing a matrix with given column norms and singular spec- desired pl tati ields th tri i
trum. Viswanath and Anantharam show that the following procedu]l-é1e esired plane rotation yields the matrix equation
will solve the problem [6] |: C S:| * |:ajj ajk] [ c S:| o |: 1 Ejk}
1) Compute an eigenvalue decomposition of the noise covariance —s ¢ |aj aw] |5 ¢ Ao Qkk
matrix, ¥ = QDQ", whereD = diag o for some non-negative \yhere ¢ + s2 = 1. The equality of the upper-left entries can be

vectoro. _ _ stated as
2) Use Algorithm A of [6] to _deter_mlneu, the Schur-minimal Paj; — 2scReaji + s2ape = 1.
element of the set of possible eigenvaluesSe¥Vs* + .
3) Form the vectoi def p—o. This equation is quadratic ih= s/c:
4) Compute an auxiliary signature matriX with unit-norm (arr — 1) 2 — 2t Re ajk + (a;; —1) =0
columns so thafT WT™* = diag A.
5) The optimal signature matrix i§ < QT. whence
The computation in step (4) is equivalent to producing & N ‘= Rea;r £ /(Reaji)? — (a5 — 1) (arr — 1). ®)
matrix X < TW?'/2. The columns ofX must have squared norms agy — 1

listed by the diagonal of//. The vectorA must list thed nonzero Notice that the choice of andk guarantees a positive discriminant.
squared singular values of. This is another inverse singular valueAs is standard in numerical analysis, tiesign in (8) must be taken

problem. to avoid cancelations. If necessary, one can extract the other root
using the fact that the product of the roots eqyals —1)/(arr —1).
Finally,
IIl. CONSTRUCTINGUNIT-NORM SIGNATURE SEQUENCES Y 1
c= —F— and s = ct. 9)
Now that we have set out the conditions that an optimal signature v+t

sequence must satisfy, we may ask how to construct these sequencddoating-point arithmetic is inexact, so the rotation may not yield

It turns out that some useful algorithms have been available for a lomg = 1. A better implementation sets;; = 1 explicitly. Davies

time. But the connection with S-CDMA signature design has nevand Higham prove that the algorithm is backward stable, so long as

been observed. it is implemented the way we have described [16]. We restate the
A positive semi-definite Hermitian matrix with a unit diagonallgorithm.

is also known as aorrelation matrix [16]. We have seen that Algorithm 1 (Bendel-Mickey)Given Hermitian A € My with

the Gram matrixA %< $*S of an optimal signature matri is TrA = N, this algorithm yields a correlation matrix whose eigen-

always a correlation matrix. Moreover, every correlation matrix witMalues are identical with those ef.

the appropriate spectrum can be factored to produce an optimal) While some diagonal entry;; # 1, repeat Steps 2—4.

signature matrix [16]. Therefore, we begin with a basic technique2) Find an indexkt (without loss of generalityy < k) for which

for constructing correlation matrices with a preassigned spectrum. ajj <1< agk OFapr <1< ajj.



3) Determine a plane rotatio@ in the jk-plane using equations vectors from it, multiply them by/N/d and use them as the rows
(8) and (9). of S [13].

4) ReplaceA by Q*AQ. Seta;; = 1. Following [16], we can suggest a more general approach. Stew-

Since the loop executes no more tha@i— 1) times, the total cost art has demonstrated how to construct a real, orthogonal matrix
of the algorithm is no moré2N? real floating-point operations, to uniformly at random [18]. Use his technique to choose a random
highest order, if conjugate symmetry is exploited. The plane rotatioRghogonal matrix; strip off the first rows; rescale them by/N/d;
never need to be generated explicitly, and all the intermediate matri@l stack these row vectors to forh Then apply Algorithm 2
are Hermitian. Therefore, the algorithm must store aNlyV +1)/2 to obtain a unit-norm tight frame. We may view the results as a
complex floating-point numbers. MLAB 6 contains a version of random unit-norm tight frame (UNTF) [16]. It should be noted that
Algorithm 1 that starts with a random matrix of specified spectrunf€ statistical distribution of the output is unknown [19], although it
The command igallery(randcorr’, ...) . includes every real UNTF. A version of Algorithm 2 is implemented

It should be clear that a similar algorithm can be applied to a) MATLAB 6 as gallery(randcolu’, ...) . An identical
Hermitian matrixA to produce another Hermitian matrix with theProcedure using random unitary matrices can be used to construct
same spectrum but whose diagonal entries are identically equalC@mnplex signatures.
TrA/N.

The columns ofS* must form an orthogonal basis for the column |V, CONSTRUCTINGWEIGHTED SIGNATURE SEQUENCES
space ofA L 5*s according to (6). Therefore, one can use a rank-
revealing QR factorization to extract a signature sequéntem the
output A of Algorithm 1 [17].

Every optimal weighted signature sequence has a Gram matrix
A € X*X with fixed diagonal and spectrum (and conversely).
Unfortunately, neither Algorithm 1 not Algorithm 2 can be used to
build these matrices. Instead, we must develop a technique for con-
B. Direct Construction of the Signature Matrix structing a Hermitian matrix with prescribed diagonal and spectrum.

In fact, the methods of the last section can be modified to compkBiS algorithm, due to Chan and Li, begins with a diagonal matrix
the signature sequence directly without recourse to an additional @Reigenvalues and applies a sequence of plane rotations to impose
factorization. Any correlation matri¥d € My can be expressed asthe power constralnt_s. Our m_atrlx theoretic approach_allows us to
the productS*S whereS € M,y has columns of unit norm and develop a new one-sided version of the Chan—Li algorithm.
dimensionr > rank A. With this factorization, the two-sided trans-
formation A — Q"AQ is equivalent to a one-sided transformationy A Numerically Stable, Finite Algorithm

S — SQ. In consequence, the machinery of Algorithm 1 requires

little adjustment to produce these factors. We have observed that iF hafn ﬁndSLlhpresHent a%:zauuful, CflnStht've proz;of t:;iconverse
can also be used to find the factors of Ardimensional correlation P&t of the Schur—Horn Theorem [11]. Suppose thatn are

matrix with rankr < NV, in which cases may take dimensiongx N 1" -dimensional, real vectors for whict = A. Using induction on
for any d > r. the dimension, we show how to construct a Hermltle}n matrix with

Algorith_m 2 (Davies-Higham)Given S € My y for which dlagona_lw and spectrL_Jm\. In the sequel, assume W|_thout Ioss_ of
TrS*S — N, this procedure yields d x N matrixywith the same generality that the entries @b and A have been sorted in ascending
singular values a$ but with unit-norm columns. order. Thereforewx) = wi andAw) = A for eachk.

Suppose thatN = 2. The majorization relation implies; <
1) Calculate and store the column normsSof def

. 2 wr < wa < Ao, Let A = diag A. We can explicitly construct a
2) Wh"e. some polumn has.nonﬁ‘sj Il # 1, repeat Steps 3-7. plane rotation® so that the diagonal o®*AQ equalsw:
3) Find indicesj < k& for which

def 1 Vi —w1  Vwi— M\
llsll5 <1< lskll3 or lsklls <1< ls53- Q= o= Ve —a Ve —wn (10)
4) Form the quantities SinceQ is orthogonal, Q* AQ retains spectrum\ but gains diagonal

entriesw.
Suppose that, wheneves = X for vectors of lengthV — 1, we
5) Determine a rotatior@ in the jk-plane using equations (8) can construct an orthogonal transformati@nso thatQ™ (diag A) Q@

aj; = |Isill3,  ajx = (sk,s;) and apx = ||sill-

and (9). has diagonal entriea.
6) ReplaceS by SQ. Consider N-dimensional vectors for whichw > X. Let A &
7) Update the two column norms that have changed. diag A. The majorization condition implies that; < w; < wy <

Step (1) requirestdN real floating-point operations, and theAw, SO it is always possible to select a least integer 1 so that
remaining steps requif2d N real floating-point operations to highest);j—1 < w1 < A;. Let Pi be a permutation matrix for which
order. The algorithm requires the storagedd¥ complex floating- « .
point numbers andV real numbers for the current column norms. PLAPy = diag (M, Aj, Az, Ajmts Aj, -5 AN
Davies and Higham show that the algorithm is numerically st@bserve that\; < wi < A; and A1 < A1 + A; — w1 < A;. Thus
ble [16]. we may use equation (10), replaciig with );, to construct a plane

rotation Q- that sets the first entry of; (diag (A1, \;)) Q2 t0 ws.

C. Random Unit-Norm Tight Frames If we define the rotation

To generate a random signature sequence using the Davies—Higham p, &f [Q2 0 ]
algorithm, one begins with a matri§ whosed non-zero singular 0 In-2
values all equal,/N/d. There is only one way to build such a matrix:hen
Select for its rowsd orthogonal vectors of normy/N/d from CV.

* ¥ _ w1 ’U*
One might choose a favorite orthonormal system fréM, pick d P PLAP Py = {v A ]

N—-1



where v is an appropriate vector andAnx_: = and computation than the Chan-Li algorithm. At the same time, it

diag (A1 + Aj — w1, A2, ooy Ajo1, A1y -0, AN). constructs the factors explicitly.
To apply the induction hypothesis, it remains to check that the Algorithm 4: Suppose thatv and A are non-negative vectors of
vector (wz, ws, ..., wn) Majorizes the diagonal ofix_i. We ac- length N with ascending entries. Assume, moreover, that the first
complish this in three steps. First, recall that < w; for k = (N — d) components ofA are zero and thai = A. The following
2,...,7 — 1. Therefore, algorithm produces d x N matrix X whose column norms are listed
m m by w and whose squared singular values are listechby
D we > (m—1Dwi =D A 1) Initialize n = 1, and set
k=2 k=2

for eachm = 2,...,j—1. The sum on the right-hand side obviously VAN-d+1

exceeds the sum of the smallést — 1) entries ofdiag Ax—_1, SO X = 0 .

the first (j — 2) majorization inequalities are in force. Second, use VAN

the fact thatw = A\ to calculate that ) ) )
. m . 2) Find the leasy > n so that||z;_1|)5; < wn < ||;]|5.
Zw"' _ Zwk —w > Z Ap — w1 3) Move_ thej-th column of X to th_e (n + 1)-st column, shifting
o P 1 the displaced columns to the right.

4) Define a rotationQ in the (n,n + 1)-plane with

j—1 m
:(A1+)\j—w1)+z)\k+ Z Ak
k=2

2 2
k71 _ ] #agally —wn _ wn — ||zl
- ~ SV @l = llzalls” 7V @aslls = l2al
for m = j,...,N. Once again, observe that the sum on the ntlill2 nll2 ntlili2 nll2
right-hand side exceeds the sum of the smallest— 1) entries 5) ReplaceX by XQ.
of diag Anx—_1, so the remaining majorization inequalities are in 6) Sort columnsn + 1),..., N in order of increasing norm.
force. Finally, rearranging the reIatioE,iV:1 wy = Zszl A yields 7) Incrementn, and repeat Steps 2—7 white< N.
N
2o wk =TrAy_1. Note that the algorithm can be implemented without permutations.

In consequence, the induction furnishes a rotati@v—1 The computation require8dN real floating-point operations and
which sets the diagonal entries ofy_. equal to the numbers siorage ofV(d+2) real floating-point numbers including the desired

(w2,...,wn). Define column norms and the current column norms. This is far superior to
aer [1 0* the other algorithms outlined here, and it also bests the algorithms
Ps = {0 QN*J from the information theory literature. Moreover, the algorithm is

. ) . numerically stable because the rotations are properly calculated.
ConjugatingA by the orthogonal matrixX* = P; P>Ps transforms

the diagonal entries ot to w while retaining the spectrum. The
proof yields the following algorithm.

Algorithm 3 (Chan-Li):Let w and A be vectors with ascending e have discussed a group of four algorithms that can be used to
entries and such thab = A. The following procedure computes aProduce sum-capacity-optimal S-CDMA sequences in a wide variety
real, symmetric matrix with diagonal entries and eigenvalues.. ~ Of circumstances. Algorithm 1 constructs a Hermitian matrix with

1) Initialize A = diag A, and putn — 1. a constant d_lagonal an_d a p_rescrlbed spectrum. This matrix can be

2) Find the leas > n S0 thata;_1_1 < wn < ajj. factored to yield an optimal signature sequence for the case of equal

3) Use a symmetric permutation to sef1.+: equal toay, user powers, i.e. a unit-norm tight fra_me. Alternately, Algorlthm 2
' can be used to produce the factors directly. In constrast, Algorithm

V. CONCLUSIONS ANDFURTHER WORK

while shifting diagonal entries+1, ..., j — 1 one place down " S : .
the diagonal. 3 c.onstructs a Hermltllan matrix wnh an qrbltrary q!agonal and pre-
4) Define a rotationQ in the (n, n + 1)-plane with scrlb_ed spectrum, subject to thg majorlze_ltlon cpndltlon. The resulting
matrix can be factored to obtain an optimal signature sequence for
c— [ Gntlntl — Wn s = Wn — Ann___ the case of unequal received powers, i.e. a tight frame. We have also
An+1,n+1 — Ann An+1,n+1 — Ann introduced an efficient new variant, Algorithm 4, that can calculate
5) Replaced by Q*AQ. the factprs directly. _ _
6) Use a symmetric permutation to re-sort the diagonal entries ofAlgorithms 1 and 2 can potentially calculate every correlation
A in ascending order. matrix and its factors. If they are initialized with random matrices,
7) Incrementn, and repeat Steps 2—7 white< N. one may interpret the output as a random correlation matrix. The

factors can be interpreted as random unit-norm signature sequences.
On the other hand, the output of Algorithms 3 and 4 is not

including the vectorw. It is conceptually simpler to perform the encyclopedic. They can construct only a few matrices for each

permutations described in the algorithm, but it can be implementga'r. (w’A)J T_hese mgtnces are also Ilk_ely_to have many  zero
without them. entries, which is undesirable for some applications. In addition, these

We have observed that the algorithm given by Viswanath arﬁ;\é?onthms only build real matrices, whereas complex matrices are

. LT . . .., _often of more interest.
Anantharam [2] for constructing gWBEs is identical with Algorithm .
3 [21 99 g One may observe that Algorithms 1 and 3 always change the

diagonal in thex=-increasing direction. Using this insight, we have
developed generalizations of both algorithms. For more details, refer
B. A New One-Sided Algorithm to [20].
Algorithm 3 only produces a Gram matrix, which must be factored Matrix analysis can provide powerful tools for solving related
to obtain the weighted signature matrix. We propose a new orsequence design problems. For example, we have developed an iter-
sided version. The benefits are several. It requires far less storagjee technique that can compute optimal signature sequence which

This algorithm requires abo6tV? real floating-point operations. It
requires the storage of abalit(V+1) /2 real floating-point numbers,
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