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Abstract— A description of optimal sequences for direct-spread code
division multiple access is a byproduct of recent characterizations of the
sum capacity. This correspondence restates the sequence design problem
as an inverse singular value problem and shows that the problem can be
solved with finite-step algorithms from matrix theory. It proposes a new
one-sided algorithm that is numerically stable and faster than previous
methods.
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I. I NTRODUCTION

We consider the problem of designing signature sequences to max-
imize the sum capacity of a symbol-synchronous direct-spread code
division multiple access (henceforth S-CDMA) system operating in
the presence of white noise. This question has received a tremendous
amount of attention in the information theory community over the
last decade, e.g. [1]–[8]. These papers, however, could benefit from
a matrix-theoretic perspective. First of all, they do not fully exploit the
fact that sequence design is fundamentally aninverse singular value
problem [9]. Second, finite-step algorithms to solve the sequence
design problem have been available in the matrix computations
literature for over two decades [10], [11]. Finally, researchers rarely
mention computational complexity or numerical stability, which are
both significant issues for any software.

This correspondence addresses sequence design using tools from
matrix theory. Our approach clarifies and simplifies the treatment
in comparison with existing information theory literature, and it
also allows us to develop a new algorithm whose computational
complexity is superior to earlier methods. In particular, this paper
deals with the following issues.

1) We take advantage of the fact that the S-CDMA sequence
design problem is equivalent with the classical Schur–Horn in-
verse eigenvalue problem. This perspective provides an efficient
route to understanding the S-CDMA signature design literature.
The power of this approach becomes clear when investigating
more difficult design problems [12].

2) This connection leads us to several finite-step algorithms from
matrix theory. We present numerically stable versions of these
methods and study their computational complexity. Earlier
authors were evidently unfamiliar with this work. For example,
one of the algorithms in [2] seems to be identical with an
algorithm published in 1983 [11].

3) Finally, we leverage our insights to develop a new finite-step
algorithm for designing real S-CDMA signature sequences.
This algorithm is numerically stable, and its time and storage
complexity improve over all previous algorithms.

The S-CDMA signature design problem is usually studied in the
real setting. In some related sequence design problems, however,
the complex case is richer. Therefore, we have chosen to address
the complex case instead; the real case follows from a transparent
adaptation.
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II. BACKGROUND

A. Synchronous DS-CDMA

Consider the uplink of an S-CDMA system withN users and a
processing gain ofd. Assume thatN > d, since the analysis of
the other case is straightforward. Assuming perfect synchronization,
the equivalent baseband representation after matched filtering and
sampling at the receiver is given by

y[t] =

NX
n=1

bn[t] sn + v[t]

wherey[t] ∈ Cd is the observation during symbol intervalt, sn ∈ Cd

is the signature of usern, bn[t] ∈ C is the symbol transmitted by user
n andv[t] ∈ Cd is the realization of an independent and identically
distributed complex Gaussian vector with zero mean and covariance
matrix Σ . We assume that the energy of each signature is normalized
to unity, i.e.‖sn‖2 = 1 for n = 1, 2, . . . , N . Define ad×N matrix
whose columns are the signatures:S

def
=

ˆ
s1 s2 . . . sN

˜
. Let

S∗ to denote the (conjugate) transpose ofS . Note that(S∗S)nn = 1
for eachn = 1, . . . , N . Assume that usern has an average power
constraint

wn
def
=

1

T

TX
t=1

|bn[t]|2

where T is the number of symbol periods. Note that eachwn is
strictly positive, and collect them in the diagonal matrixW

def
=

diag (w1, w2, . . . , wN ). It is often more convenient to absorb the
power constraints into the signatures, so we also define the weighted
signature matrixX

def
= SW 1/2. Denote then-th column ofX asxn.

For eachn, one has the relationship

(X ∗X )nn = ‖xn‖22 = wn. (1)

Viswanath and Anantharam have proven in [6] that, for real
signatures, the sum capacity of the S-CDMA channel per degree of
freedom is given by the expression

Csum =
1

2d
max

S
log det(Id + Σ−1SWS∗). (2)

(In the complex case, the sum capacity differs by a constant factor.)
The basic sequence design problem is to produce a signature matrix
S that solves the optimization problem (2). Three cases have been
considered in the literature.

1) The white noise, equal power case was considered by Rupf
and Massey in [1]. Here, the noise covariance matrix and the
power constraint matrix are both multiples of the identity. That
is, Σ = σ2 Id, andW = w IN .

2) Later, Viswanath and Anantharam addressed the situation of
white noise and unequal user powers [2]. Here, the power
constraints form a positive diagonal matrixW , andΣ = σ2 Id.

3) Most recently, Viswanath and Anantharam have succeeded in
characterizing the optimal sequences under colored noise and
unequal user powers [6]. Here,Σ is an arbitrary positive semi-
definite matrix, andW is a positive diagonal matrix.

We discuss each scenario in a subsequent section. The algorithms
we develop can be used to construct optimal signatures for each
case. Most previous work on sum capacity has not considered
complex signature sequences. This note addresses the complex case
exclusively because it subsumes the real case without any additional
difficulty of argument.
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B. A Sum Capacity Bound

In [1], Rupf and Massey produced an upper bound on the sum
capacity under white noise with varianceσ2:

Csum ≤ 1
2

log

„
1 +

TrW

σ2 d

«
(3)

where Tr (·) indicates the trace operator. They also established a
necessary and sufficient condition on the signatures for equality to
be attained in the bound (3):

XX ∗ = SWS∗ =
TrW

d
Id. (4)

A matrix X that satisfies (4) is known as atight frame [13] or a
general Welch-Bound-Equality sequence(gWBE) [2]. As we shall
see, a tight frameX does not exist for every choice ofW . (A
majorization condition must hold, as discussed in Section II-E.) A
condition equivalent to (4) is that

X ∗X =
TrW

d
P (5)

where the matrixP represents an orthogonal projector fromCN onto
a subspace of dimensiond. Recall that an orthogonal projector is
an idempotent, Hermitian matrix. That is,P2 = P and P = P∗.
An orthogonal projector is also characterized as a Hermitian matrix
whose nonzero eigenvalues are identically equal to one. In light of
equation (1), the problem of constructing optimal signature sequences
in the present setting is closely related to the problem of constructing
an orthogonal projector with a specified diagonal.

C. White Noise, Equal Powers

Consider the case where the power constraints are equal, viz.W =
w IN for some positive numberw. Then condition (4) for equality to
hold in (3) becomes

w−1 XX ∗ = SS∗ =
N

d
Id. (6)

A matrix S which satisfies (6) is known as aunit-norm tight frame
(UNTF) [13] or a Welch-Bound-Equality sequence(WBE) [1]. In
fact, there always exist signature matrices that satisfy condition (6),
and so the upper bound on the sum capacity can always be attained
when the users’ power constraints are equal [1]. The equation (6)
can also be interpreted as a restriction on the singular values of the
signature matrix. Under the assumptions of white noise and equal
power constraints, a matrixS yields optimal signatures if and only
if

1) each column ofS has unit-norm and
2) the d nonzero singular values ofS are identically equal top

N/d.

Therefore, this sequence design problem falls into the category of
structured inverse singular value problems [9]. Note that condition 1)
must hold irrespective of the type of noise.

D. Majorization

The bound (3) cannot be met for an arbitrary set of power
constraints. The explanation requires a short detour. Thek-th order
statisticof a vectorv is its k-th smallest entry, and it is denoted as
v(k). Suppose thatw andλ areN -dimensional, real vectors. Thenw
is said tomajorizeλ when their order statistics satisfy the following

conditions:

λ(1) ≤ w(1)

λ(1) + λ(2) ≤ w(1) + w(2)

...

λ(1) + · · ·+ λ(N−1) ≤ w(1) + · · ·+ w(N−1) and

λ(1) + · · ·+ λ(N) = w(1) + · · ·+ w(N).

(7)

The majorization relation (7) is commonly written asw < λ because
it induces a partial ordering onRN . Note that the direction of the
partial ordering is reversed in some treatments. An intuition which
may help to clarify this definition is that the majorizing vector (w) is
an averaged version of the majorized vector(λ); its components are
clustered more closely together. It turns out that majorization defines
the precise relationship between the diagonal entries of a Hermitian
matrix and its spectrum.

Theorem 1 (Schur–Horn [14]):The diagonal entries of a Hermi-
tian matrix majorize its eigenvalues. Conversely, ifw < λ, there
exists a Hermitian matrix with diagonal elements listed byw and
eigenvalues listed byλ.

Schur demonstrated the necessity of the majorization condition in
1923, while Horn proved its sufficiency some thirty years later [14].
A comprehensive reference on majorization is [15].

E. White Noise, Unequal Powers

The Schur–Horn Theorem forbids the construction of an orthogonal
projector with arbitrary diagonal entries. For this reason, (5) cannot
always hold, and the upper bound (3) cannot always be attained.

The key result of [2] is a complete characterization of the sum
capacity of the S-CDMA channel under white noise. Viswanath and
Anantharam demonstrate thatoversizedusers—those whose power
constraints are too large relative to the others for the majorization
condition to hold—must receive their own orthogonal channels to
maximize the sum capacity of the system, and they provide a simple
method of determining which users are oversized. The other users
share the remaining dimensions equitably.

For reference, we include the Viswanath-Anantharam method for
determining the setK of oversized users.

1) Initialize K = ∅.
2) Terminate if

P
n/∈K wn ≥ (d− |K |) maxn/∈K wn.

3) Perform the updateK ← K ∪ arg maxn/∈K {wn}.
4) Return to Step 2.

Suppose that there arem < d oversized users, whose signatures
form the columns ofS0. Let the columns ofS1 list the signatures of
the (N −m) remaining users, and let the diagonal matrixW1 list
their power constraints. The conditions for achieving sum capacity
follow.

1) Them oversized users receive orthogonal signatures:S∗0 S0 =
Im.

2) The remaining(N −m) signatures are also orthogonal to the
oversized users’ signatures:S∗0 S1 = 0.

3) The remaining users signatures satisfy

S1W1S
∗
1 =

TrW1

d−m
Id−m.

Repeat the foregoing arguments to see that the sequence design
problem still amounts to constructing a matrix with given column
norms and singular spectrum. It is therefore an inverse singular value
problem.
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F. Total Squared Correlation

It is worth mentioning an equivalent formulation of the white-
noise sequence design problem that provides a foundation for several
iterative design algorithms [3]–[5], [7].

The total weighted squared correlationof a signature sequence is
the quantity

TWSCW (S)
def
=

‚‚‚W 1/2S∗SW 1/2
‚‚‚2

F
= ‖X ∗X‖2F

=

NX
m,n=1

wm wn |〈sm, sn〉|2.

In a rough sense, this quantity measures how “spread out” the
signature vectors are. Minimizing the TWSC of a signature sequence
is the same as solving the optimization problem (2), as shown in [7].
A short algebraic manipulation shows that minimizing the TWSC is
also equivalent to minimizing the quantity‚‚‚‚XX ∗ − TrW

d
Id

‚‚‚‚2

F

.

In words, the singular values of an optimal weighted signature
sequenceX should be “as constant as possible.” It should be
emphasized that this equivalence only holds in the case of white
noise.

G. Colored Noise, Unequal Powers

When the noise is colored, the situation is somewhat more com-
plicated. Nevertheless, optimal sequence design still boils down to
constructing a matrix with given column norms and singular spec-
trum. Viswanath and Anantharam show that the following procedure
will solve the problem [6].

1) Compute an eigenvalue decomposition of the noise covariance
matrix,Σ = QDQ∗, whereD = diag σ for some non-negative
vectorσ.

2) Use AlgorithmA of [6] to determineµ, the Schur-minimal
element of the set of possible eigenvalues ofSWS∗ + Σ .

3) Form the vectorλ
def
= µ− σ.

4) Compute an auxiliary signature matrixT with unit-norm
columns so thatTWT ∗ = diag λ.

5) The optimal signature matrix isS
def
= QT .

The computation in step (4) is equivalent to producing ad × N

matrix X
def
= TW 1/2. The columns ofX must have squared norms

listed by the diagonal ofW . The vectorλ must list thed nonzero
squared singular values ofX . This is another inverse singular value
problem.

III. C ONSTRUCTINGUNIT-NORM SIGNATURE SEQUENCES

Now that we have set out the conditions that an optimal signature
sequence must satisfy, we may ask how to construct these sequences.
It turns out that some useful algorithms have been available for a long
time. But the connection with S-CDMA signature design has never
been observed.

A positive semi-definite Hermitian matrix with a unit diagonal
is also known as acorrelation matrix [16]. We have seen that
the Gram matrixA

def
= S∗S of an optimal signature matrixS is

always a correlation matrix. Moreover, every correlation matrix with
the appropriate spectrum can be factored to produce an optimal
signature matrix [16]. Therefore, we begin with a basic technique
for constructing correlation matrices with a preassigned spectrum.

A. A Numerically Stable, Finite Algorithm

In 1978, Bendel and Mickey presented an algorithm that uses a
finite sequence of rotations to convert an arbitraryN ×N Hermitian
matrix with traceN into a unit-diagonal matrix that has the same
spectrum [10]. We follow the superb exposition of Davies and
Higham [16]. Brief discussions also appear on page 76 of Horn and
Johnson [14] and in Problems 8.4.1 and 8.4.2 of Golub and van
Loan [17].

Suppose thatA ∈ MN is a Hermitian matrix withTrA = N .
(Let MN denote the set of complexN ×N matrices, and letMd,N

denote the set of complexd × N matrices.) IfA does not have a
unit diagonal, one can locate two diagonal elements so thatajj <
1 < akk; otherwise, the trace condition would be violated. It is
then possible to construct a real plane rotationQ in the jk-plane so
that (Q∗AQ)jj = 1. The transformationA 7→ Q∗AQ preserves the
conjugate symmetry and the spectrum ofA but reduces the number
of non-unit diagonal entries by at least one. Thus, at most(N − 1)
rotations are required before the resulting matrix has a unit diagonal.

The appropriate form of the rotation is easy to discover, but the
following derivation is essential to ensure numerical stability. Recall
that a two-dimensional plane rotation is an orthogonal matrix of the
form

Q =

»
c s
−s c

–
wherec2 + s2 = 1 [17]. The corresponding plane rotation in thejk-
plane is theN -dimensional identity matrix with itsjj, jk, kj and
kk entries replaced by the entries of the two-dimensional rotation.
Let j < k be indices so that

ajj < 1 < akk or akk < 1 < ajj .

The desired plane rotation yields the matrix equation»
c s
−s c

–∗ »
ajj ajk

a∗jk akk

– »
c s
−s c

–
=

»
1 eajkea∗jk eakk

–
where c2 + s2 = 1. The equality of the upper-left entries can be
stated as

c2ajj − 2sc Re ajk + s2akk = 1.

This equation is quadratic int = s/c:

(akk − 1) t2 − 2t Re ajk + (ajj − 1) = 0

whence

t =
Re ajk ±

p
(Re ajk)2 − (ajj − 1)(akk − 1)

akk − 1
. (8)

Notice that the choice ofj andk guarantees a positive discriminant.
As is standard in numerical analysis, the± sign in (8) must be taken
to avoid cancelations. If necessary, one can extract the other root
using the fact that the product of the roots equals(ajj−1)/(akk−1).
Finally,

c =
1√

1 + t2
and s = ct. (9)

Floating-point arithmetic is inexact, so the rotation may not yield
ajj = 1. A better implementation setsajj = 1 explicitly. Davies
and Higham prove that the algorithm is backward stable, so long as
it is implemented the way we have described [16]. We restate the
algorithm.

Algorithm 1 (Bendel–Mickey):Given HermitianA ∈ MN with
TrA = N , this algorithm yields a correlation matrix whose eigen-
values are identical with those ofA.

1) While some diagonal entryajj 6= 1, repeat Steps 2–4.
2) Find an indexk (without loss of generalityj < k) for which

ajj < 1 < akk or akk < 1 < ajj .
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3) Determine a plane rotationQ in the jk-plane using equations
(8) and (9).

4) ReplaceA by Q∗AQ. Setajj = 1.

Since the loop executes no more than(N−1) times, the total cost
of the algorithm is no more12N2 real floating-point operations, to
highest order, if conjugate symmetry is exploited. The plane rotations
never need to be generated explicitly, and all the intermediate matrices
are Hermitian. Therefore, the algorithm must store onlyN(N +1)/2
complex floating-point numbers. MATLAB 6 contains a version of
Algorithm 1 that starts with a random matrix of specified spectrum.
The command isgallery(’randcorr’, ...) .

It should be clear that a similar algorithm can be applied to any
Hermitian matrixA to produce another Hermitian matrix with the
same spectrum but whose diagonal entries are identically equal to
TrA/N .

The columns ofS∗ must form an orthogonal basis for the column
space ofA

def
= S∗S according to (6). Therefore, one can use a rank-

revealing QR factorization to extract a signature sequenceS from the
outputA of Algorithm 1 [17].

B. Direct Construction of the Signature Matrix

In fact, the methods of the last section can be modified to compute
the signature sequence directly without recourse to an additional QR
factorization. Any correlation matrixA ∈ MN can be expressed as
the productS∗S whereS ∈ Mr,N has columns of unit norm and
dimensionr ≥ rank A. With this factorization, the two-sided trans-
formation A 7→ Q∗AQ is equivalent to a one-sided transformation
S 7→ SQ. In consequence, the machinery of Algorithm 1 requires
little adjustment to produce these factors. We have observed that it
can also be used to find the factors of anN -dimensional correlation
matrix with rankr < N , in which caseS may take dimensionsd×N
for any d ≥ r.

Algorithm 2 (Davies–Higham):Given S ∈ Md,N for which
TrS∗S = N , this procedure yields ad × N matrix with the same
singular values asS but with unit-norm columns.

1) Calculate and store the column norms ofS .
2) While some column has norm‖sj‖22 6= 1, repeat Steps 3–7.
3) Find indicesj < k for which

‖sj‖22 < 1 < ‖sk‖22 or ‖sk‖22 < 1 < ‖sj‖22 .

4) Form the quantities

ajj = ‖sj‖22 , ajk = 〈sk, sj〉 and akk = ‖sk‖22 .

5) Determine a rotationQ in the jk-plane using equations (8)
and (9).

6) ReplaceS by SQ.
7) Update the two column norms that have changed.

Step (1) requires4dN real floating-point operations, and the
remaining steps require12dN real floating-point operations to highest
order. The algorithm requires the storage ofdN complex floating-
point numbers andN real numbers for the current column norms.
Davies and Higham show that the algorithm is numerically sta-
ble [16].

C. Random Unit-Norm Tight Frames

To generate a random signature sequence using the Davies–Higham
algorithm, one begins with a matrixS whosed non-zero singular
values all equal

p
N/d. There is only one way to build such a matrix:

Select for its rowsd orthogonal vectors of norm
p

N/d from CN .
One might choose a favorite orthonormal system fromCN , pick d

vectors from it, multiply them by
p

N/d and use them as the rows
of S [13].

Following [16], we can suggest a more general approach. Stew-
art has demonstrated how to construct a real, orthogonal matrix
uniformly at random [18]. Use his technique to choose a random
orthogonal matrix; strip off the firstd rows; rescale them by

p
N/d;

and stack these row vectors to formS . Then apply Algorithm 2
to obtain a unit-norm tight frame. We may view the results as a
random unit-norm tight frame (UNTF) [16]. It should be noted that
the statistical distribution of the output is unknown [19], although it
includes every real UNTF. A version of Algorithm 2 is implemented
in MATLAB 6 as gallery(’randcolu’, ...) . An identical
procedure using random unitary matrices can be used to construct
complex signatures.

IV. CONSTRUCTINGWEIGHTED SIGNATURE SEQUENCES

Every optimal weighted signature sequence has a Gram matrix
A

def
= X ∗X with fixed diagonal and spectrum (and conversely).

Unfortunately, neither Algorithm 1 not Algorithm 2 can be used to
build these matrices. Instead, we must develop a technique for con-
structing a Hermitian matrix with prescribed diagonal and spectrum.
This algorithm, due to Chan and Li, begins with a diagonal matrix
of eigenvalues and applies a sequence of plane rotations to impose
the power constraints. Our matrix theoretic approach allows us to
develop a new one-sided version of the Chan–Li algorithm.

A. A Numerically Stable, Finite Algorithm

Chan and Li present a beautiful, constructive proof of the converse
part of the Schur–Horn Theorem [11]. Suppose thatw and λ are
N -dimensional, real vectors for whichw < λ. Using induction on
the dimension, we show how to construct a Hermitian matrix with
diagonalw and spectrumλ. In the sequel, assume without loss of
generality that the entries ofw andλ have been sorted in ascending
order. Therefore,w(k) = wk andλ(k) = λk for eachk.

Suppose thatN = 2. The majorization relation impliesλ1 ≤
w1 ≤ w2 ≤ λ2. Let A

def
= diag λ. We can explicitly construct a

plane rotationQ so that the diagonal ofQ∗AQ equalsw:

Q
def
=

1√
λ2 − λ1

» √
λ2 − w1

√
w1 − λ1

−
√

w1 − λ1

√
λ2 − w1

–
. (10)

SinceQ is orthogonal,Q∗AQ retains spectrumλ but gains diagonal
entriesw.

Suppose that, wheneverw < λ for vectors of lengthN − 1, we
can construct an orthogonal transformationQ so thatQ∗(diag λ)Q
has diagonal entriesw.

ConsiderN -dimensional vectors for whichw < λ. Let A
def
=

diag λ. The majorization condition implies thatλ1 ≤ w1 ≤ wN ≤
λN , so it is always possible to select a least integerj > 1 so that
λj−1 ≤ w1 ≤ λj . Let P1 be a permutation matrix for which

P∗1 AP1 = diag (λ1, λj , λ2, . . . , λj−1, λj+1, . . . , λN ).

Observe thatλ1 ≤ w1 ≤ λj and λ1 ≤ λ1 + λj − w1 ≤ λj . Thus
we may use equation (10), replacingλ2 with λj , to construct a plane
rotation Q2 that sets the first entry ofQ∗

2 (diag (λ1, λj))Q2 to w1.
If we define the rotation

P2
def
=

»
Q2 0∗

0 IN−2

–
then

P∗2 P∗1 AP1P2 =

»
w1 v∗

v AN−1

–
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where v is an appropriate vector and AN−1 =
diag (λ1 + λj − w1, λ2, . . . , λj−1, λj+1, . . . , λN ).

To apply the induction hypothesis, it remains to check that the
vector (w2, w3, . . . , wN ) majorizes the diagonal ofAN−1. We ac-
complish this in three steps. First, recall thatλk ≤ w1 for k =
2, . . . , j − 1. Therefore,

mX
k=2

wk ≥ (m− 1) w1 ≥
mX

k=2

λk

for eachm = 2, . . . , j−1. The sum on the right-hand side obviously
exceeds the sum of the smallest(m − 1) entries ofdiag AN−1, so
the first (j − 2) majorization inequalities are in force. Second, use
the fact thatw < λ to calculate that

mX
k=2

wk =

mX
k=1

wk − w1 ≥
mX

k=1

λk − w1

= (λ1 + λj − w1) +

j−1X
k=2

λk +

mX
k=j+1

λk

for m = j, . . . , N . Once again, observe that the sum on the
right-hand side exceeds the sum of the smallest(m − 1) entries
of diag AN−1, so the remaining majorization inequalities are in
force. Finally, rearranging the relation

PN
k=1 wk =

PN
k=1 λk yieldsPN

k=2 wk = TrAN−1.
In consequence, the induction furnishes a rotationQN−1

which sets the diagonal entries ofAN−1 equal to the numbers
(w2, . . . , wN ). Define

P3
def
=

»
1 0∗

0 QN−1

–
.

ConjugatingA by the orthogonal matrixP = P1P2P3 transforms
the diagonal entries ofA to w while retaining the spectrumλ. The
proof yields the following algorithm.

Algorithm 3 (Chan–Li):Let w and λ be vectors with ascending
entries and such thatw < λ. The following procedure computes a
real, symmetric matrix with diagonal entriesw and eigenvaluesλ.

1) Initialize A = diag λ, and putn = 1.
2) Find the leastj > n so thataj−1,j−1 ≤ wn ≤ ajj .
3) Use a symmetric permutation to setan+1,n+1 equal toajj

while shifting diagonal entriesn+1, . . . , j−1 one place down
the diagonal.

4) Define a rotationQ in the (n, n + 1)-plane with

c =

r
an+1,n+1 − wn

an+1,n+1 − ann
, s =

r
wn − ann

an+1,n+1 − ann
.

5) ReplaceA by Q∗AQ.
6) Use a symmetric permutation to re-sort the diagonal entries of

A in ascending order.
7) Incrementn, and repeat Steps 2–7 whilen < N .

This algorithm requires about6N2 real floating-point operations. It
requires the storage of aboutN(N+1)/2 real floating-point numbers,
including the vectorw. It is conceptually simpler to perform the
permutations described in the algorithm, but it can be implemented
without them.

We have observed that the algorithm given by Viswanath and
Anantharam [2] for constructing gWBEs is identical with Algorithm
3.

B. A New One-Sided Algorithm

Algorithm 3 only produces a Gram matrix, which must be factored
to obtain the weighted signature matrix. We propose a new one-
sided version. The benefits are several. It requires far less storage

and computation than the Chan–Li algorithm. At the same time, it
constructs the factors explicitly.

Algorithm 4: Suppose thatw and λ are non-negative vectors of
length N with ascending entries. Assume, moreover, that the first
(N − d) components ofλ are zero and thatw < λ. The following
algorithm produces ad×N matrix X whose column norms are listed
by w and whose squared singular values are listed byλ.

1) Initialize n = 1, and set

X =

264 0

˛̨̨̨
˛̨̨

p
λN−d+1

. . . √
λN

375 .

2) Find the leastj > n so that‖xj−1‖22 ≤ wn ≤ ‖xj‖22.
3) Move thej-th column ofX to the(n + 1)-st column, shifting

the displaced columns to the right.
4) Define a rotationQ in the (n, n + 1)-plane with

c =

s
‖xn+1‖22 − wn

‖xn+1‖22 − ‖xn‖22
, s =

s
wn − ‖xn‖22

‖xn+1‖22 − ‖xn‖22
.

5) ReplaceX by XQ.
6) Sort columns(n + 1), . . . , N in order of increasing norm.
7) Incrementn, and repeat Steps 2–7 whilen < N .

Note that the algorithm can be implemented without permutations.
The computation requires3dN real floating-point operations and
storage ofN(d+2) real floating-point numbers including the desired
column norms and the current column norms. This is far superior to
the other algorithms outlined here, and it also bests the algorithms
from the information theory literature. Moreover, the algorithm is
numerically stable because the rotations are properly calculated.

V. CONCLUSIONS ANDFURTHER WORK

We have discussed a group of four algorithms that can be used to
produce sum-capacity-optimal S-CDMA sequences in a wide variety
of circumstances. Algorithm 1 constructs a Hermitian matrix with
a constant diagonal and a prescribed spectrum. This matrix can be
factored to yield an optimal signature sequence for the case of equal
user powers, i.e. a unit-norm tight frame. Alternately, Algorithm 2
can be used to produce the factors directly. In constrast, Algorithm
3 constructs a Hermitian matrix with an arbitrary diagonal and pre-
scribed spectrum, subject to the majorization condition. The resulting
matrix can be factored to obtain an optimal signature sequence for
the case of unequal received powers, i.e. a tight frame. We have also
introduced an efficient new variant, Algorithm 4, that can calculate
the factors directly.

Algorithms 1 and 2 can potentially calculate every correlation
matrix and its factors. If they are initialized with random matrices,
one may interpret the output as a random correlation matrix. The
factors can be interpreted as random unit-norm signature sequences.

On the other hand, the output of Algorithms 3 and 4 is not
encyclopedic. They can construct only a few matrices for each
pair (w, λ). These matrices are also likely to have many zero
entries, which is undesirable for some applications. In addition, these
algorithms only build real matrices, whereas complex matrices are
often of more interest.

One may observe that Algorithms 1 and 3 always change the
diagonal in the<-increasing direction. Using this insight, we have
developed generalizations of both algorithms. For more details, refer
to [20].

Matrix analysis can provide powerful tools for solving related
sequence design problems. For example, we have developed an iter-
ative technique that can compute optimal signature sequence which
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satisfy additional constraints, such as unimodularity of the compo-
nents [8]. Related methods can even construct Maximum Welch-
Bound-Equality sequences (MWBEs), which is a more challenging
problem [21].
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