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Signal Recovery from Random Measurements
via Orthogonal Matching Pursuit

Joel A. Tropp,Member, IEEE and Anna C. Gilbert

Abstract—This article demonstrates theoretically and empiri- ~ soldiers for syphilis. But syphilis tests were expensived a
cally that a greedy algorithm called Orthogonal Matching Pusuit  the Army realized that it was wasteful to perform individual
(OMP) can reliably recover a signal with ;n nonzero entries in - gqqays to detect an occasional case. Their solution wasto po
dimension d given O(mInd) random linear measurements of blood f f soldi d test th led blood. If
that signal. This is a massive improvement over previous rests, ood from groups of Soidiers and test the pooled blood. 1T a
which require O(m?) measurements. The new results for OMP batch checked positive, further tests could be performad T
are comparable with recent results for another approach cded method, calledyroup testingwas subsequently studied in the
Basis Pursuit (BP). In some settings, the OMP algorithm is fster  computer science and statistics literatures. See [6] fareey.
and easier to implement, so it is an attractive alternative 6 BP Recently, a specific type of group testing has been proposed
for signal recovery pr?blems' o _ _ by the computational harmonic analysis community. The idea

Index Terms—Algorithms, approximation, Basis Pursuit, Com- s that, by randomly combining the entries of a sparse sjgnal
pressed Sensing, group testing, Orthogonal Matching Purslti ;5 hossible to generate a small set of summary statistics
signal recovery, sparse approximation . . . ;

that allow us to identify the nonzero entries of the signéle T
| INTRODUCTION following theorem, drawn from the papers of Candés—Tao [7]
.' . _ . and Rudelson—Vershynin [8], describes one example of this
ET s be ad-dimensional real signal with at most remarkable phenomenon.
nonzero components. This type of signal is called  Theorem 1:Let N > KmIn(d/m), and drawN vectors
sparse. Let{z,...,zn} be a sequence of measurement, ., ... xy independently from the standard Gaussian

vectors inR? that does not depend on the signal. We us@istribution on Re. The following statement is true with
these vectors to colledV linear measurements of the signalprobability exceeding — e~ *V. It is possible to reconstruct

(s, 1), (s, @2), ..., (s, zn) (1av2erym-]svp}arse signas in R? from the data{(s, =,) : n =
where(-, -) denotes the usual inner product. The problem of We follow the analysts’ convention that upright letters
signal recoveryasks two distinct questions: (c,C, K, etc.) indicate positive, universal constants that may

1) How many measurements are necessary to reconstrigiy at each appearance.
the signal? An important detail is that a particular choice of the Gaus-
2) Given these measurements, what algorithms can perfosfin measurement vectors succeedsef@rym-sparse signal
the reconstruction task? with high probability. This theorem extends earlier result

As we will see, signal recovery is dual to sparse approximaf Candés—Romberg—Tao [9], Donoho [10], and Candés—
tion, a problem of significant interest [1], [2], [3], [4],]5 Tao [11].

To the first question, we can immediately respond that noAll five of the papers [9], [10], [11], [8], [7] offer construc
fewer thanm measurements will do. Even if the measurementise demonstrations of the recovery phenomenon by proving
were adapted to the signal, it would still takepieces of infor- that the original signa is the unique solution to the mathe-
mation to determine the nonzero components ofrasparse matical program
signal. In the other directiony nonadaptive measurements
always suffice because we could simply list theomponents ~ ming [|f|[; subject to
of the signal. Although it is not obvious, sparse signals can (f, o) = (s, x,) forn=1,2,... N. (BP)
be reconstructed with far less information. ) o ) )

The method for doing so has its origins during World his optimization can be recast as an ordinary linear pragra

War Il. The US Army had a natural interest in screeningSing standard transformations, and it suggests an answer t
our second question about algorithms for reconstructirg th
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matrix is dense. Instead it is necessary to apply specihlizeroblem. Suppose thatis an arbitrarym-sparse signal ifR?,
techniques. and let{x;,...,xy} be a family of N measurement vectors.

The literature describes a bewildering variety of algenigh Form an N x d matrix ® whoserows are the measurement
that perform signal recovery by solving (BP) or a relatedectors, and observe that thé measurements of the signal
problem. These methods include [3], [12], [13], [14], [15]can be collected in aiv-dimensional data vectar = ®s. We
[16]. The algorithms range widely in effectiveness, (engpil) refer to® as themeasurement matriand denote its columns
computational cost, and implementation complexity. Utnfor by ¢, ..., 4.
nately, there is little guidance available on choosing adgoo As we mentioned, it is natural to think of signal recovery
technique for a given parameter regime. as a problem dual to sparse approximation. Siades only

As a result, it seems valuable to explore alternative ap: nonzero components, the data vectoe= ®s is a linear
proaches that are not based on optimization. Thus, we atlaptembination ofm columns from®. In the language of sparse
a sparse approximation algorithm called Orthogonal Matchpproximation, we say that has anm-term representation
ing Pursuit (OMP) [17], [18] to handle the signal recovergver the dictionary®.
problem. The major advantages of this algorithm are its Therefore, sparse approximation algorithms can be used for
speed and its ease of implementation. On the other hanelGovering sparse signals. To identify the ideal signalve
conventional wisdom on OMP has been pessimistic about iteed to determinavhich columns of @ participate in the
performance outside the simplest settings. A notable mesta measurement vectas. The idea behind the algorithm is to
of this complaint appears in a 1996 paper of DeVore arpmick columns in a greedy fashion. At each iteration, we cboos
Temlyakov [19]. Pursuing their reasoning leads to an examphe column of® that is most strongly correlated with the
of a nonrandom ensemble of measurement vectors and a spegs@aining part ofv. Then we subtract off its contribution to
signal that OMP cannot identify without measurements [3, v and iterate on the residual. One hopes that, aft@erations,
Sec. 2.3.2]. Other negative results, such as Theorem 3.10thd algorithm will have identified the correct set of columns
[20] and Theorem 5 of [21], echo this concern. Algorithm 3 (OMP for Signal Recovery):

But these negative results about OMP are deceptive. IndebdpuUT:
the empirical evidence suggests that OMP can recovenan , An N x d measurement matris
sparse signal when the number of measuremants nearly « An N-dimensional data vectar
proportional tom. The goal of this paper is to present a , The sparsity leveln of the ideal signal
rigorous proof that OMP can perform this feat. In particulagyrpyT-
the following theorem holds.

Theorem 2 (OMP with Gaussian Measurementak ¢ €
(0,0.36), and chooséV > KmIn(d/d). Suppose thas is an
arbitrarym-spa_rse signal ilR?. Draw N measurement ve_ctors_ « An N-dimensional residuat,, — v — a,,
Ty, X9, ..., xy independently from the standard Gaussian dl.?__)—
tribution onR?. Given the datd (s, x,):n=1,2,..., N}, ROCEDURE _ _

Orthogonal Matching Pursuit can reconstruct the signahwit 1) Initialize the residuaty = v, the index sef\o = ), and
probability exceeding — 26. The constant satisfigls < 20. the iteration countet = 1.

« An estimates in R? for the ideal signal
o A setA,, containingm elements from{1,...,d}
« An N-dimensional approximatioa,, of the datav

For large values ofn, it can be reduced t& ~ 4. 2) Find the index); that solves the easy optimization
In comparison, earlier positive results, such as Theorén 3. Problem

from [20], only demonst_rate that Orthogonal Matching Piirsu At = argmax;_; g [(ri-1, @;)]-

can recovern-sparse signals when the number of measure- . o

ments N is roughly m?2. Theorem 2 improves massively on If the maximum occurs for multiple indices, break the

this earlier work. tie deterministically.

Theorem 2 is Weaker than Theorem 1 for Severa| rea_3) Augment the indeX set and the matrix Of Chosen atoms:
sons. First, our result requires somewhat more measurement A+ = A—1 U {\} and ®; = [®:-1 ). We use the
than the result for (BP). Second, the quantifiers are ordered convention thatb, is an empty matrix.
differently. Whereas we prove that OMP can recover any4) Solve a least-squares problem to obtain a new signal
sparse signal given random measurements independent from €stimate:
the signal, the result for (BP) shows that a single set ofsand
measurement vectors can be used to recover all sparsessignal
We argue in Section VI that Orthogonal Matching Pursuit 5) Calculate the new approximation of the data and the new
remains nevertheless a valuable tool. Indeed, we belieate th residual:
the advantages of Orthogonal Matching Pursuit make Theorem
2 extremely compelling.

x, = argming |lv — @, x|, .

a; = Py
Tt =V — Q.
II. ORTHOGONAL MATCHING PURSUIT FORSIGNAL 6) Incrementt, and return to Step 2 if < m.

RECOVERY 7) The estimaté for the ideal signal has nonzero indices at
This section describes how to apply a fundamental al- the components listed in,,. The value of the estimate
gorithm from sparse approximation to the signal recovery s in component\; equals thejth component ofe,.
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Steps 4, 5, and 7 have been written to emphasize {M2) Joint correlation: Le{u;} be a sequence of. vectors
conceptual structure of the algorithm; they can be implestn whose/; norms do not exceed one. Letbe a column
more efficiently. It is important to recognize that the resid of & that is independent from this sequence. Then
r, is always orthogonal to the columns @f;. Provided that
the residual; _; is nonzero, the algorithm selects a new atom

at iterationt and the matribx®; has full column rank. In which (M3) Smallest singular value: For a givé¥ix m submatrixZ
case the solution; to the least-squares problem in Step 4 Is from ®, the mth largest singular value,,(Z) satisfies
unique. (It should be noted that the approximation and uedid

calculated in Step 5 are always uniquely determined.) P{om(Z)> 05} > 1—e V.

The running time of the OMP algorithm is dominated
g J Some remarks may help delineate the range of this defi-

by Step 2, whose total cost i©®(mNd). At iteration ¢, , hat th | P q h h
the least-squares problem can be solved with marginal cgion. First, note that the columns need not have the

O(tN). To do so, we maintain @R factorization of®,. same distribution. Condition (M0Q) only requires indepemzie

Our implementation uses the Modified Gram—Schmidt (MG%?;olumns; the entries within each column may be correlated

algorithm because the measurement matrix is unstructur funltb normatllza'il(;)nbm (g/m IS (;]hosehn to. S|m|pl|fy our
and dense. The book [22] provides extensive details and’0's, but it shou e obvious that the signal recovery
f blem does not depend on the scale of the measurement

survey of alternate approaches. When the measuremenkmaifP>" . )
is structured, more efficient implementations of OMP aratrix. The property (M2) depends on the tail behavior of the

possible: see the paper [23] for one example. random variableg|y;||,. Property (M3) controls how much

According to [24], there are algorithms that can solvg1e matrix is likely to shrink a sparse vector.

(BP) with a dense, unstructured measurement matrix in time!N the wo subsections below, we explain why the Gaussian
O(N2d3/2). We focus on the case whedds much larger than and Bernoulli ensembles both yield admissible measurement

m or N, so there is a substantial gap between the theoretiG4ftrices. We make no effort to determine the precise value

cost of OMP and the cost of BP. We compare their empiricﬁ]c the constants. See tr_'e technicgl repprt [26] fqr a detaile
costs in Section VI treatment of the Gaussian case, including explicit coristan

A prototype of the OMP algorithm first appeared in th@fterward,we compare admissible measurement matricds wit

statistics community at some point in the 1950s, where it wQ1e" types of measurement ensembles that have appeared in

called stagewise regression. The algorithm later devel@pe the literature.
life of its own in the signal processing [1], [17], [18] and
approximation theory [25], [5] literatures. B. Joint Correlation

P {max; |(p, w))| <e} > 1—2me <N,

The joint correlation property (M2) is essentially a large
deviation bound for sums of random variables. For the Gaus-

This article demonstrates that Orthogonal Matching Ptirsdian and Bernoulli measurement ensembles, we can leverage
can recover sparse signals given a set of random line#issical concentration inequalities to establish thipprty.
measurements. The two obvious distributions for fex< d Proposition 4: Let {ut} be a sequence of, vectors whose

measurement matri are (1) Gaussian and (2) Bernoulliz, norms do not exceed one. Independently, choose be a

IIl. RANDOM MEASUREMENTENSEMBLES

normalized for mathematical convenience: random vector with i.i.dANORMAL (0, N~!) entries. Then
1) Independently select each entry &b from the _e2Ny2
NORMAL (0, N~1) distribution. For reference, the den- P{max; [(z, u;)| <e} > 1—-me .

sity functionp of this distribution is Proof: Observe that the probability only decreases as the

p(z) = 1 e=®N/2 for e R length of each vectou; increases. Therefore, we may assume
V2rN ' that [|u||, = 1 for eacht. Suppose that is a random vector
. with i.i.d. NORMAL (0, N 1) entries. Then the random variable
2) ;ﬂiﬁ’?gsggﬁifjled each entrydto be1/ VN with (z, u;) also has theNoRMAL (0, N~1) distribution. A well-

k G ian tail bound 27, p. 118] f |
Indeed, either one of these distributions can be used teatoll pown aussian tail bound (see [ P ] for example)

ields
measurements. More generally, the measurement ensen¥b?e
can be chosen from any distribution that meets a few basi 2 [
: y - {{z, w)| >e} = /= e "2 dy < e N2
requirements. We abstract these properties even though ’ T Joun
are primarily interested in the foregoing examples. . L .
Owing to Boole’s inequality,

A. Admissible Measurement Matrices P {max, |(z, w)| >e} < me—<N/2.
An admissible measurement matfor m-sparse signals in
R? is an N x d random matrix® with four properties.
(MO) Independence: The columns @f are statistically inde-
pendent.
(M1) Normalization:E ||¢;||5 =1 for j = 1,...,d. P{|(z, u)| >¢e} < 2e = N/2 (n.1)

This bound is complementary to the one stated. [ |
For Bernoulli measurements, we simply replace the Gaus-
sian tail bound with
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This is a direct application of the Hoeffding inequalityeés datav = ®s, Orthogonal Matching Pursuit can reconstruct
[28] for example). For other types of measurement matricabe signal with probability exceeding— .
it may take some effort to obtain the quadratic dependence orf-or Gaussian measurements, we have obtained more precise
e. We omit a detailed discussion. estimates for the constant. In this case, a very similarltresu
(Theorem 2) holds with < 20. Moreover, when the number
m of nonzero components approaches infinity, it is possible to
take K < 4 4 n for any positive number. See the technical
It requires more sophistication to develop the lower siagulreport [26] for a detailed proof of these estimates.
value property. Using a clever combination of classicabiarg Even though OMP may fail, the user can detect a success
ments, Baraniuk et al. establish the following result [29]. o failure in the present setting. We state a simple result fo
Proposition 5 (Baraniuk et al.)Suppose thaZ is anN X  Gaussian measurements.
m matrix whose entries are all i.i.d].ORMAL(O, Nﬁl) or else Proposition 7: Choose an arbitrarm_sparse Signa* from
i.i.d. uniform on{+1/V/N}. Then R?, and letN > 2m. Suppose thaf® is an N x d Gaussian
m measurement ensemble, and execute OMP with thewata
05l < 2zl < 1.5 ], for all z € R ®s. If the residualr,, afterm iterations is zero, then OMP
with probability at least has correctly identified with probability one. Conversely, if
the residual aftem iterations is nonzero, then OMP has failed.
Proof: The converse is obvious, so we concentrate on the
We conclude that Property (M3) holds for Gaussian arg'ward direction. Ifr,, = 0 buts # s, then it is possible to
Bernoulli measurement ensembles, provided fiat Crm. write the.data veqtov as a linear combination ofi cqumng
from @ in two different ways. In consequence, there is a
linear dependence amofg: columns from®. Since® is an
D. Other Types of Measurement Ensembles N x d Gaussian matrix aném < N, this event occurs with
It may be interesting to compare admissible measuremé¥iebability zero. Geometrically, this observation is eglent
matrices with the measurement ensembles introduced im otiéth the fact that independent Gaussian vectors lie in g#ner
works on signal recovery. Here is a short summary of the type@sition with probability one. This claim follows from the
of measurement matrices that have appeared in the literat#ero—one law for Gaussian processes [30, Sec. 1.2]. Thelkern

« In one of their papers [11], Candés and Tao define rand®hOUr argument originates in [21, Lemma 2.1]. =
matrices that satisfy the Uniform Uncertainty Principle 7 Bernoulli measurements, a similar proposition holds
and the Exact Reconstruction Principle. Gaussian a%th probability exponentially C'Pse to one. Th|s_ resulldars
Bernoulli matrices both meet these requirements. In aﬁgm the fact that an exponentially small fraction of (segar
other paper [7], they study a class of matrices who§ign matrices are singular [31].

“restricted isometry constants” are under control. They
show that both Gaussian and Bernoulli matrices satisfy Comparison with Prior Work

this property with high probability. Most results on OMP rely on theoherence statistig, of

« Donoho introduces the deterministic class of compressgfe matrix®. This number measures the correlation between
sensing (CS) matrices [10]. He shows that Gaussigistinct columns of the matrix:
random matrices fall in this class with high probability. et

« The approach in Rudelson and Vershynin’s paper [8] po= max (s er)l-
is more direct. They prove that, if the rows of theg
measurement matrix span a random subspace, then ( i I
succeeds with high probability. Their method relies on the LeI;nymS:]g Iéix 5 € (0,1). For anN x d Bermoulli mea-
geometry of random slices of a high-dimensional CUb(saUrement métrix the co’he}ence statigtie: \/m
As such, their measurement ensembles are describe ' =

. R
intrinsically, in contrast with the extrinsic definitiong o w probgbll|ty exceedmg 0% .

Proof: Suppose tha® is an N x d Bernoulli measurement
the other ensembles.

matrix. For eachj < k, the Bernoulli tail bound (l1.1)
establishes that

C. Smallest Singular Value

1—-2-24™. 7N,

;e next lemma shows that the coherence of a Bernoulli matrix
al

IV. SIGNAL RECOVERY WITH ORTHOGONAL MATCHING 2N /2
—€
PURSUIT P{[(pj, @r)|>c} < 2e :

If we take random measurements of a sparse signal usfdgoosing:? = 4N ~!In(d/d) and applying Boole’s inequality,
an admissible measurement matrix, then OMP can be used to

recover the original signal with high probability. P {maxj<k (@i, @) > VAN ln(d/é)}

Theorem 6 (OMP with Admissible Measurementsix o PRe-2W/D) _ 2
d € (0,0.36), and chooseN > Kmlog(d/d) where K '
is an absolute constant. Suppose thatis an arbitrary This estimate completes the proof. |

m-sparse signal ilR?, and draw a randomV x d admissible A typical coherence result for OMP, such as Theorem 3.6 of
measurement matri@ independent from the signal. Given thg20], shows that the algorithm can recover anysparse signal
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provided thatmy < % This theorem applies immediately tobecause the eveni implies that®,,, has full column rank.

the Bernoulli case. In other words, there is just one explanation for the sighal
Proposition 9: Fix ¢ € (0,1). Let N > 16m?In(d/d), and using the columns imP;.

draw anN x d Bernoulli measurement matri&. The following Now we may concentrate on showing that the algorithm

statement holds with probability at least— 62. OMP can locates the columns @b,,:. For a vector in RY, define the

reconstruct everyn-sparse signas in R¢ from the datav = greedy selection ratio
Ps.
Very similar coherence results hold for Gaussian matrices, def H‘I’TTHOO _ maxy [(¢, 7)|

p(r) =

but they are messier because the columns of a Gaussian matrix

do not have identical norms. We prefer to omit a detailed

discussion. where the maximization takes place over the column@of
There are several important differences between Propositif r is the residual vector that arises in Step 2 of OMP, the

9 and Theorem 6. The proposition shows that a particulalgorithm picks a column fron®,,, wheneverp(r) < 1. In

choice of the measurement matrix succeedsf@rym-sparse casep(r) = 1, an optimal and a nonoptimal column both

signal. In comparison with our new results, however, it isgg1  achieve the maximum inner product. The algorithm has no

an enormous number of measurements. cause to prefer one over the other, so we cannot be sure it
Remark 10:1t is impossible to develop stronger results bghooses correctly. The greedy selection ratio was firsaied|

way of the coherence statistic on account of the followingnd studied in [20].

observations. First, the coherence of a Bernoulli matrtissa  Imagine that we could execute iterations of OMP with

fies u > veN~—1Ind with high probability. One may check the input signak and the restricted measurement magbix,:

this statement by using standard estimates for the sizetofobtain a sequence of residuals, q1,...,gn—1 and a

a Hamming ball. Meanwhile, the coherence of a Gaussiarquence of column indices, ws, .. .,w.,. The algorithm is

matrix also satisfiegt > vc¢N—!Ind with high probability. deterministic, so these sequences are both functiomsawid

This argument proceeds from lower bounds for Gaussian téil,p. In particular, the residuals are statistically indeperide

12eerlle  I®amerls

probabilities. from W. It is also evident that each residual lies in the column
span of®;.

B. Proof of Theorem 6 Execute OMP with the input signal and the full matrix
® to obtain the actual sequence of residualsry, ..., rn_1

Most of the argument follows the approach developed in -
[20]. The main difficulty here is to deal with the nast and the actual sequence of column indices Ay, ..., Am.

Yy . i 5
independence issues that arise in the random setting. 1%%”0'.'“0”"?" onx., OMF.) succeeds_ in reconstructingatter m
: . . . iterations if and only if the algorithm selects the columns
primary novelty is a route to avoid these perils.

We begin with some notation and simplifying assumption(s)]c @opy In SOme order. We use induction to prove that this

Without loss of generality, assume that the firsentries of the S|t_L|J_";]1t|ontoScurs \;vhefpigt) <| ! fqtrheacht =0, 1’&; .t’ntlh_ 1.' itial
original signals are nonzero, while the remainialg-m entries 'de lsa etr_nen O_ € ggo? :?1 ensu(rj(?ts at the 1'”' 'a
equal zero. Therefore, the data vecitds a linear combination residuals satisfygo = ro. Clearly, the conditions(go) <

of the firstrm columns from the matrix. Partition the matrix S"SUresp(ro) < 1. It follows that the actual invocation
as® = [®,,; | ¥] so that®,,, hasm columns and¥ has chooses the columa; from ®,,; whose inner product with

d — m columns. Note that the vectar — ®s is statistically o9 has the largest magnitude (ties broken deterministically)
independent from the random matni Meanwhile, the imaginary invocation chooses the column

Consider the eventi.,.. where the algorithm correctly from @, whose inner product witly, has largest magnitude.

identifies the signaé afterm iterations. We only decrease theE\”demly’)‘1 = Wi Th's ObSGrYa“F’” cqmpletes the base case.
Suppose that, during the firét iterations, the actual exe-

probability of success if we impose the additional requizain X X ;
that the smallest singular value @,,, meet a lower bound. cution of OMP chooses the same columns as the imaginary

To that end, define the event execgtion. That is); = w; for j = 1,2,k Sin(_:e the
o algorithm calculates the new residual as the (unique) best
Y = {om(Popt) > 0.5}. approximation of the signas from the span of the chosen

columns, the actual and imaginary residuals must be idantic
at the beginning of iteratiork. In symbols,r, = gqx. An
P(Esuce) > P(Esuee NY) obvious consequence is thatg,) < 1 implies p(r;) < 1.
= P(Baee | D) - P(D). (IV.1) ?epeat the argument of the last paragraph to establish that
k+1 = WE41-
Property (M3) control (X), so it remains to develop a lower \we conclude that the conditional probability satisfies
bound on the conditional probability.

To prove thatFEy,.. occurs conditional ort, it suffices to P (Egee | £) > P{max; p(q;) < 1| X} (IV.2)
check that the algorithm correctly identifies the columns of
®,,.¢. These columns determiméhich entries of the signal are where {q;} is a sequence ofn random vectors that fall in
nonzero. Thevaluesof the nonzero entries are determined bthe column span o®,,,; and that are statistically independent
solving a least-squares problem, which has a unique salutivom ¥,

Applying the definition of conditional probability, we reac
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Assume that: occurs. For each index=0,1,...,m —1,
we have V. EXPERIMENTS
_ maxy [(¥, qi)| : o : -
plar) = H‘I)T th : This section illustrates experimentally that OMP is a pow-
opt 50

Since®! | q; is anm-dimensional vector,

P
Vi maxy |66, ai)]

plg) <

erful algorithm for signal recovery. It also shows that the
theoretical bounds of the last section are qualitativelyesti
even though they are slightly pessimistic.

H‘I)T th The main empirical question is to determine hOW many
o ) ) opt =tz measurements’ are necessary to recover ansparse signal
To simplify this expression, define the vector in R< with high probability. Let us describe the experimental
u, 0.5 g ' setup. In each trial, we generate amsparse signak by
| @, a H2 choosingm components (out of) at random and setting them
The basic properties of singular values furnish the indtyual equal to oné.We draw ar!Nxd Gaussian measureme_nt matrix
T & and execute OMP with the data vector= ®s. Finally,
||‘I’opt qH we check whether the recovered sigralis identical with

2 > om(®opr) > 0.5 ot , ; "
llally Z om(®opt) 2 the original signals by comparing their supports. Proposition

for any vectorq in the range Of‘I)opt- The vectorg; falls in 7 Implles that, if the supports match then the algorithm has
this subspace, spu||, < 1. In summary, succeeded with probability one. For each triple, NV, d), we
perform 1000 independent trials.
plar) < 2v/m maxy (3, )l The first plot, Fig. 1, describes the situation in dimension
for each indext. On account of this fact, d = 256. It shows what percentage (of the 1000 trial signals)
were recovered correctly as a function &f the number of
P {max, p(q:) <1 %} measurements. Each curve represents a different spargdl |
> ]P’{ 1 } m. As expected, when the number of nonzero components
> P < max; maxy [(P, w)| < . :
2v/m increases, more measurements are necessary to guarantee
Exchange the two maxima and use the independence of fi@nal recovery.
columns of®¥ to obtain Fig. 2 presents another view of the same data. It displays
the percentage of signals recovered correctly as a function
of the sparsity level. We discover that, for a fixed sparsity
level, the recovery probability increases as we take mor@ me
} : surements. This figure also exhibits a point that is impdrtan
in applications. Suppose that we have only enough space to
oreN = 100 measurements or we have only enough time to
measure and process = 100 pieces of data. In dimension
d = 256, we should expect to recover a signal with 16 terms
D in 90% of instances and a signal with 20 terms in about 50%
P {max, p(q) < 1|5} > [1 —9m e*CN/‘“”} . of instances.

Pursuing this idea, let us see how many measurements are
required to identify a sparse signal with a fixed rate of sesce
Fig. 3 displays the relationship betweshandm necessary to
achieve a recovery probability of 95% in dimensidn- 256.

The data exhibit a clear trend/ ~ 1.5mIn256. Table |
. examines the relationship betweéwi and m to achieve a

P(Egee) > |1 — Qme—cN/zlm} [1 — e <N, recovery probability of 99% in dimensiong = 256, 1024.

For this error rate, we hav&/ ~ 2mlInd in both cases. In

To complete the argument, we need to make some numerigghparison, our best theoretical bound for the Gaussias cas
estimates. Apply the inequalityl — 2)¥ > 1~ ka, valid for s ahoutn > 4m(Ind + 4.6) if we want a 99% probability of
k> 1 andx < 1. This step delivers success [26].

P (Eguee) > 1—2m(d—m)e °N/4m _e=eN,

Next, observe holds that,(d — m) < d?/4. Absorb the third
term into the second term, altering the constants if necgss
We see that

P (Esuee) > 1—d?e <N/,

In conclusion, the choicév > Kmlog(d/d) is sufficient to
reduce the failure probability below. To ensure that the | _ o ,
The analysis suggests that this is a challenging case for, GNP our

Iogarlthm exceeds one for all values df we require that experience has shown that other methods for choosing deefficlead to
0 < 0.36. similar results.

P {max; p(q;) <1 | X}

1
Z pr{ma){t |<1/J, Ut>| < m

Since every column o is independent fror{u;} and from
Y, Property (M2) of the measurement matrix yields a low
bound on each of thd — m terms appearing in the product.
It emerges that

Property (M3) furnishes a bound dh(X), namely
P (%) = P{om(Popt) > 0.5} > 1—e V.

Introduce the latter two bounds into (1V.2), then substttite
result into (IV.1) to reach

Fig. 4 provides a graphical comparison between the empir-
ical results and theoretical bounds from the technical ntepo
26]. This chart matches three theoretical error curvesnaga

e corresponding empirical curves in dimensiba= 1024.
Observe that the shape of the theoretical curves is very
similar to the shape of the empirical curves, even though the
theoretical bounds are somewhat too pessimistic.
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Fig. 1. The percentage of 1000 input signals correctly recV as a function of the numbaf of measurements for different sparsity levelsin dimension
d = 256.
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Fig. 2. The percentage of 1000 input signals correctly recV as a function of the sparsity level for different numbersV of measurements in dimension
d = 256.
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Fig. 3. The numberV of measurements necessary to recovemasparse signal in dimensioh = 256 at least 95% of the time. The regression line has
equationN = 1.5m In 256 + 15.4.
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Fig. 4. The probability of recovering am-sparse signal in dimensiath = 1024 from N measurements. The marked lines display empirical datdewhi
the unmarked lines show the theoretical bounds from The&@ah[26].
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| =256 I d = 1024 | measurements required in practice is somewhat smaller than
m N | N/(mlnd) || m N | N/(mlnd) dict
7| 56 252 5| 80 231 we predict. . .
8| 96 2.16 || 10 | 140 2.02 Let us describe several technical reasons that the analysis
ig igg 3-8‘7* 15| 210 2.02 is loose. The most significant problem is that the vectors
20 | 228 205 u; constructed during the analysis may have large mutual
TABLE | inner products. As a result, Property (M2) yields a pesgimis
THE NUMBER N OF MEASUREMENTS NECESSARY TO RECOVER AN aSS€Ssment of the maximum correlation wjthA secondary
m-SPARSE SIGNAL AT LEAST99%OF THE TIME IN DIMENSIONS issue is thaf|u. ||, is somewhat smaller than one because these
d = 256, 1024. vectors are unlikely to be aligned with the smallest singula

subspace ofb,;. It does not seem easy to account for these
factors. In addition, thg/m term in the estimate fas(q;) can

. . ) be improved toym — t. The effect of this change, however,
In the first set of experiments, we used Gaussian measWEams to be minimal

ment matrices. We repeated the same body of experiments

with Bernoulli measurement matrices and obtained striking )

similar results. For the sake of brevity, we include just ong: Nonsparse Signals

graphic for Bernoulli measurements. Fig. 5 shows the numberOur assumption that signals are precisely sparse is ndy like
of Bernoulli measurements necessary for OMP to recover #nhobtain in most applications. Therefore, it would be valea
m-sparse signal in dimensiah= 256. Comparing this chart to develop results for signals that are “nearly sparse” meso
with Fig. 1, we discover that OMP performs almost identigallsense. One potential model contaminatesitheparse signals
with Gaussian and Bernoulli measurements. with additive white noise. We might also consider signals

To deliver some intuition about the execution cost ofthose sorted components decay in magnitude according to a
running OMP, we present Fig. 6, which displays executiggower law. Candes and Tao [11] argue that the second model
times (as opposed to processor times) for several expetsmdh appropriate for many types of natural signals. Of course,
with Bernoulli measurement matrices. Timings for Gaussidhe correct model must match the application domain.
matrices are similar. Let us emphasize that the chart displa Unfortunately, the strategy we used to prove Theorem 6
the clock time required for 1000 complete trials, which independs heavily on the fact that the input signals are gxactl
cludes the time to generate 1000 sparse signals and 16@@rse. When the ideal signals are not sparse, the nondptima
random measurement matrigasaddition tothe time required columns of the matrix@ are statistically correlated with the
by 1000 invocations of the OMP algorithm. For the modesidual vectorsg, generated by the imaginary invocation
computationally intensive experiment(= 64, N = 400, of the algorithm. This fact creates serious difficulties e t
andd = 1024), each trial takes an average of 0.20 secondsanalysis.

While the absolute execution time for a particular paramete The literature does contain a body of results on the stgbilit
setting is impossible for others to duplicate (nor is it espky 0of OMP for nonsparse signals. For example, Theorem 5.3
meaningful), the asymptotic growth of execution time as @ [32] can be used to establish that OMP identifies signal
function of the sparsity level, the numberN of measure- components above the noise level, provided that the number
ments, and the dimensiahprovides a useful and reproducibleof measurementd is on the order ofn* Ind. We consider it
curve. The graph clearly demonstrates that the executioa tilikely that a stability result also holds in the same regirse a
grows linearly withm. Unfortunately, we do not have enoughlheorem 6. At present, we do not know exactly what such a
data to determine the empirical dependence of the executl@sult should look like, nor do we know a promising method
time ond and N. of proof.

VI. DISCUSSION C. Randomness

This section addresses several major issues that arise frorhike computation time and storage space, randomness is an
our work. First, we describe how the analysis might pexpensive resource that should be used sparingly. At prresen
extended to match the empirical results better. Afterwarel, all approaches to signal recovery using (BP) or OMP involve
discuss more realistic models for input signals and thegerets SOme degree of randomness. For now, it is an open question
of applying OMP to recover signals that are not perfectwhether a truly deterministic measurement matrix exists fo
sparse. Next, we comment on the role of randomness in Gl (Stable) recovery algorithm. _
theory. Then, we describe another basic type of measuremerfour result for OMP, Theorem 6, requires that the mea-

ensemble. Finally, we discuss the relationship between cgyffement matrix be statistically independent from the aign
work and results on the linear program (BP). Unfortunately, it takes/N random bits to select a Bernoulli

measurement ensemble, and a Gaussian measurement ensem-
, ble demands even more. Since the failure probability of OMP
A. Theory vs. Practice is polynomially small in the dimensiod, it follows that a
Although it appears that our theory correctly describgmlynomially large collection of input signals can be reecad
the qualitative performance of OMP for the signal recovemgliably with a single random measurement ensemble. There-
problem, our experiments demonstrate that the number fofe, we can amortize the randomness over a moderately large
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Fig. 5. The percentage of 1000 input signals correctly reem) as a function of the numbéf of Bernoulli measurements for different sparsity levels
in dimensiond = 256.

set of input signals. Still, this amount of randomness is fahow that the first iteration of OMP is likely to choose a

from ideal. correct column from the measurement matrix, giggm In d)
measurements of am-sparse signal ifR?. Unfortunately,
D. OMP with Frequency Measurements since the columns of the measurement matrix are no longer

The work in this paper focuses on rather generic measuféatistically independent, it is difficult to analyze sufpsent
ment ensembles, such as Bernoulli and Gaussian matridé&fations of the algorithm. It remains an open problem to
From an algorithmic point of view, it is preferable to employscertain whether a result analogous to Theorem 6 holds for
a structured measurement ensemble that can be stored @fglom frequency measurements.
processed efficiently. For this reason, the literature oR)(B Extremely recently, Needell and Vershynin have shown that
advocates the use of random frequency measurements. Th¥ariant of OMP, called Regularized OMP (ROMP), can, with
is, the N' rows of the measurement matri are drawn at high probability, recover alin-sparse signals fror® (i In” d)
random from the rows of thé-dimensional DFT matrix. random frequency measurements [33]. This development is

For OMP, random frequency measurements offer sevef@sed on the Restricted Isometry Property [11] of random
specific advantages. Most significantly, it is possible tmeo frequency measurements, and it should be considered a major
pute the maximum correlation between a signal and tiséep forward.
columns of the matrix in tim®(d In d) using an FFT. Second, ) _ ] ]
the matrix can be constructed and stored using Ol Ind) E- Comparison with Basis Pursuit
bits because it is only necessary to chodéeows from ad- This subsection offers a brief comparison between known
row matrix. results for the greedy algorithm and results for the convex

Kunis and Rauhut have studied the performance of OMP faglaxation approach.
signal recovery from random frequency measurements [23].First, we note that there are situations where (BP) is
Their empirical work suggests th&i(m Ind) measurements provably more powerful than OMP. For example, with a
are sufficient for OMP to recover am-sparse signal iR¢. Gaussian or Bernoulli measurement matrix, (BP) can, with
Moreover, OMP often produces signal approximations that anigh probability, recover all sparse signals. In the santingg
superior to (BP). They also find that OMP executes faster th@MP recovers each sparse signal with high probability but
several algorithms for solving (BP). with high probability fails to recover all sparse signalseD

Kunis and Rauhut were able to provide a partial theoreticalay infer the latter statement from Theorem 3.10 of [20] glon
explanation of their empirical work [23]. In particular,eyp with a somewhat involved probability estimate.
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Fig. 6. The processor time, as a function of the sparsityl lewe for 1000 complete trials in dimensio®h = 256, 1024 with N = 250,400 Bernoulli
measurements. The regression curves are linear polyrocastulated with least-squares.

Since OMP is inherently more difficulty to analyze thamaper [35], which discusses software engineering chadleng
(BP), the literature on the convex relaxation also containsin optimization.)
richer variety of results. Right now, we understand theiktab
of (BP) much better than the stability of OMP. More researdh Conclusions

in this direction would be valuable. The theoretical and empirical work in this paper demon-
Greedy pursuit gains some advantages when we ask abg@ptes that OMP is an effective alternative to (BP) for algn
computational cost. In certain parameter regimes, OMP fscovery from random measurements. Our results offer a
faster than standard approaches for completing the miaimigremendous improvement over previous work on OMP, and
tion (BP). OMP is especially efficient when the signal is iygh they significantly narrow the gap between the theoretical pe
sparse although homotopy methods for (BP) are competitimance of the greedy algorithm and the linear programming
here [14]. When the signal is not very sparse, OMP may B@proach. On account of the fact that OMP may be faster and

a poor choice because the cost of orthogonalization ineseagasier to implement, it offers an attractive alternativeother
quadratically with the number of iterations. In this sedtin words, greed is still good.

other types of greedy algorithms, such as StOMP [34] or
ROMP [33], can alleviate the computational burden by re- ACKNOWLEDGMENTS
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