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Signal Recovery from Random Measurements
via Orthogonal Matching Pursuit

Joel A. Tropp,Member, IEEE, and Anna C. Gilbert

Abstract—This article demonstrates theoretically and empiri-
cally that a greedy algorithm called Orthogonal Matching Pursuit
(OMP) can reliably recover a signal with m nonzero entries in
dimension d given O(m ln d) random linear measurements of
that signal. This is a massive improvement over previous results,
which require O(m2) measurements. The new results for OMP
are comparable with recent results for another approach called
Basis Pursuit (BP). In some settings, the OMP algorithm is faster
and easier to implement, so it is an attractive alternative to BP
for signal recovery problems.

Index Terms—Algorithms, approximation, Basis Pursuit, Com-
pressed Sensing, group testing, Orthogonal Matching Pursuit,
signal recovery, sparse approximation

I. I NTRODUCTION

L ET s be a d-dimensional real signal with at mostm
nonzero components. This type of signal is calledm-

sparse. Let{x1, . . . ,xN} be a sequence of measurement
vectors in R

d that does not depend on the signal. We use
these vectors to collectN linear measurements of the signal:

〈s, x1〉 , 〈s, x2〉 , . . . , 〈s, xN 〉
where〈·, ·〉 denotes the usual inner product. The problem of
signal recoveryasks two distinct questions:

1) How many measurements are necessary to reconstruct
the signal?

2) Given these measurements, what algorithms can perform
the reconstruction task?

As we will see, signal recovery is dual to sparse approxima-
tion, a problem of significant interest [1], [2], [3], [4], [5].

To the first question, we can immediately respond that no
fewer thanm measurements will do. Even if the measurements
were adapted to the signal, it would still takem pieces of infor-
mation to determine the nonzero components of anm-sparse
signal. In the other direction,d nonadaptive measurements
always suffice because we could simply list thed components
of the signal. Although it is not obvious, sparse signals can
be reconstructed with far less information.

The method for doing so has its origins during World
War II. The US Army had a natural interest in screening
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soldiers for syphilis. But syphilis tests were expensive, and
the Army realized that it was wasteful to perform individual
assays to detect an occasional case. Their solution was to pool
blood from groups of soldiers and test the pooled blood. If a
batch checked positive, further tests could be performed. This
method, calledgroup testing, was subsequently studied in the
computer science and statistics literatures. See [6] for a survey.

Recently, a specific type of group testing has been proposed
by the computational harmonic analysis community. The idea
is that, by randomly combining the entries of a sparse signal,
it is possible to generate a small set of summary statistics
that allow us to identify the nonzero entries of the signal. The
following theorem, drawn from the papers of Candès–Tao [7]
and Rudelson–Vershynin [8], describes one example of this
remarkable phenomenon.

Theorem 1:Let N ≥ Km ln(d/m), and drawN vectors
x1,x2, . . . ,xN independently from the standard Gaussian
distribution on R

d. The following statement is true with
probability exceeding1 − e−kN . It is possible to reconstruct
everym-sparse signals in R

d from the data{〈s, xn〉 : n =
1, 2, . . . , N}.

We follow the analysts’ convention that upright letters
(c, C, K, etc.) indicate positive, universal constants that may
vary at each appearance.

An important detail is that a particular choice of the Gaus-
sian measurement vectors succeeds foreverym-sparse signal
with high probability. This theorem extends earlier results
of Candès–Romberg–Tao [9], Donoho [10], and Candès–
Tao [11].

All five of the papers [9], [10], [11], [8], [7] offer construc-
tive demonstrations of the recovery phenomenon by proving
that the original signals is the unique solution to the mathe-
matical program

minf ‖f‖1 subject to

〈f , xn〉 = 〈s, xn〉 for n = 1, 2, . . . , N. (BP)

This optimization can be recast as an ordinary linear program
using standard transformations, and it suggests an answer to
our second question about algorithms for reconstructing the
sparse signal. Note that this formulation requires knowledge
of the measurement vectors.

When researchers talk about (BP), we often say that the
linear program can be solved in polynomial time with standard
scientific software. In reality, commercial optimization pack-
ages tend not to work very well for sparse signal recovery
because the solution vector is sparse and the measurement
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matrix is dense. Instead it is necessary to apply specialized
techniques.

The literature describes a bewildering variety of algorithms
that perform signal recovery by solving (BP) or a related
problem. These methods include [3], [12], [13], [14], [15],
[16]. The algorithms range widely in effectiveness, (empirical)
computational cost, and implementation complexity. Unfortu-
nately, there is little guidance available on choosing a good
technique for a given parameter regime.

As a result, it seems valuable to explore alternative ap-
proaches that are not based on optimization. Thus, we adapted
a sparse approximation algorithm called Orthogonal Match-
ing Pursuit (OMP) [17], [18] to handle the signal recovery
problem. The major advantages of this algorithm are its
speed and its ease of implementation. On the other hand,
conventional wisdom on OMP has been pessimistic about its
performance outside the simplest settings. A notable instance
of this complaint appears in a 1996 paper of DeVore and
Temlyakov [19]. Pursuing their reasoning leads to an example
of a nonrandom ensemble of measurement vectors and a sparse
signal that OMP cannot identify withoutd measurements [3,
Sec. 2.3.2]. Other negative results, such as Theorem 3.10 of
[20] and Theorem 5 of [21], echo this concern.

But these negative results about OMP are deceptive. Indeed,
the empirical evidence suggests that OMP can recover anm-
sparse signal when the number of measurementsN is nearly
proportional tom. The goal of this paper is to present a
rigorous proof that OMP can perform this feat. In particular,
the following theorem holds.

Theorem 2 (OMP with Gaussian Measurements):Fix δ ∈
(0, 0.36), and chooseN ≥ Km ln(d/δ). Suppose thats is an
arbitrarym-sparse signal inRd. DrawN measurement vectors
x1,x2, . . . ,xN independently from the standard Gaussian dis-
tribution onR

d. Given the data{〈s, xn〉 : n = 1, 2, . . . , N},
Orthogonal Matching Pursuit can reconstruct the signal with
probability exceeding1 − 2δ. The constant satisfiesK ≤ 20.
For large values ofm, it can be reduced toK ≈ 4.

In comparison, earlier positive results, such as Theorem 3.6
from [20], only demonstrate that Orthogonal Matching Pursuit
can recoverm-sparse signals when the number of measure-
mentsN is roughly m2. Theorem 2 improves massively on
this earlier work.

Theorem 2 is weaker than Theorem 1 for several rea-
sons. First, our result requires somewhat more measurements
than the result for (BP). Second, the quantifiers are ordered
differently. Whereas we prove that OMP can recover any
sparse signal given random measurements independent from
the signal, the result for (BP) shows that a single set of random
measurement vectors can be used to recover all sparse signals.
We argue in Section VI that Orthogonal Matching Pursuit
remains nevertheless a valuable tool. Indeed, we believe that
the advantages of Orthogonal Matching Pursuit make Theorem
2 extremely compelling.

II. ORTHOGONAL MATCHING PURSUIT FORSIGNAL

RECOVERY

This section describes how to apply a fundamental al-
gorithm from sparse approximation to the signal recovery

problem. Suppose thats is an arbitrarym-sparse signal inRd,
and let{x1, . . . ,xN} be a family ofN measurement vectors.
Form anN × d matrix Φ whoserows are the measurement
vectors, and observe that theN measurements of the signal
can be collected in anN -dimensional data vectorv = Φs. We
refer toΦ as themeasurement matrixand denote its columns
by ϕ1, . . . ,ϕd.

As we mentioned, it is natural to think of signal recovery
as a problem dual to sparse approximation. Sinces has only
m nonzero components, the data vectorv = Φs is a linear
combination ofm columns fromΦ. In the language of sparse
approximation, we say thatv has anm-term representation
over the dictionaryΦ.

Therefore, sparse approximation algorithms can be used for
recovering sparse signals. To identify the ideal signals, we
need to determinewhich columns of Φ participate in the
measurement vectorv. The idea behind the algorithm is to
pick columns in a greedy fashion. At each iteration, we choose
the column ofΦ that is most strongly correlated with the
remaining part ofv. Then we subtract off its contribution to
v and iterate on the residual. One hopes that, afterm iterations,
the algorithm will have identified the correct set of columns.

Algorithm 3 (OMP for Signal Recovery):
INPUT:

• An N × d measurement matrixΦ
• An N -dimensional data vectorv
• The sparsity levelm of the ideal signal

OUTPUT:
• An estimateŝ in R

d for the ideal signal
• A set Λm containingm elements from{1, . . . , d}
• An N -dimensional approximationam of the datav
• An N -dimensional residualrm = v − am

PROCEDURE:
1) Initialize the residualr0 = v, the index setΛ0 = ∅, and

the iteration countert = 1.
2) Find the indexλt that solves the easy optimization

problem

λt = arg maxj=1,...,d |〈rt−1, ϕj〉| .
If the maximum occurs for multiple indices, break the
tie deterministically.

3) Augment the index set and the matrix of chosen atoms:
Λt = Λt−1 ∪ {λt} andΦt =

[
Φt−1 ϕλt

]
. We use the

convention thatΦ0 is an empty matrix.
4) Solve a least-squares problem to obtain a new signal

estimate:

xt = argminx ‖v − Φt x‖2 .

5) Calculate the new approximation of the data and the new
residual:

at = Φt xt

rt = v − at.

6) Incrementt, and return to Step 2 ift < m.
7) The estimatês for the ideal signal has nonzero indices at

the components listed inΛm. The value of the estimate
ŝ in componentλj equals thejth component ofxt.
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Steps 4, 5, and 7 have been written to emphasize the
conceptual structure of the algorithm; they can be implemented
more efficiently. It is important to recognize that the residual
rt is always orthogonal to the columns ofΦt. Provided that
the residualrt−1 is nonzero, the algorithm selects a new atom
at iterationt and the matrixΦt has full column rank. In which
case the solutionxt to the least-squares problem in Step 4 is
unique. (It should be noted that the approximation and residual
calculated in Step 5 are always uniquely determined.)

The running time of the OMP algorithm is dominated
by Step 2, whose total cost isO(mNd). At iteration t,
the least-squares problem can be solved with marginal cost
O(tN). To do so, we maintain aQR factorization ofΦt.
Our implementation uses the Modified Gram–Schmidt (MGS)
algorithm because the measurement matrix is unstructured
and dense. The book [22] provides extensive details and a
survey of alternate approaches. When the measurement matrix
is structured, more efficient implementations of OMP are
possible; see the paper [23] for one example.

According to [24], there are algorithms that can solve
(BP) with a dense, unstructured measurement matrix in time
O(N2d3/2). We focus on the case whered is much larger than
m or N , so there is a substantial gap between the theoretical
cost of OMP and the cost of BP. We compare their empirical
costs in Section VI

A prototype of the OMP algorithm first appeared in the
statistics community at some point in the 1950s, where it was
called stagewise regression. The algorithm later developed a
life of its own in the signal processing [1], [17], [18] and
approximation theory [25], [5] literatures.

III. R ANDOM MEASUREMENT ENSEMBLES

This article demonstrates that Orthogonal Matching Pursuit
can recover sparse signals given a set of random linear
measurements. The two obvious distributions for theN × d
measurement matrixΦ are (1) Gaussian and (2) Bernoulli,
normalized for mathematical convenience:

1) Independently select each entry ofΦ from the
NORMAL(0, N−1) distribution. For reference, the den-
sity functionp of this distribution is

p(x) =
1√

2πN
e−x2N/2 for x ∈ R.

2) Independently select each entry ofΦ to be±1/
√

N with
equal probability.

Indeed, either one of these distributions can be used to collect
measurements. More generally, the measurement ensemble
can be chosen from any distribution that meets a few basic
requirements. We abstract these properties even though we
are primarily interested in the foregoing examples.

A. Admissible Measurement Matrices

An admissible measurement matrixfor m-sparse signals in
R

d is anN × d random matrixΦ with four properties.
(M0) Independence: The columns ofΦ are statistically inde-

pendent.
(M1) Normalization:E ‖ϕj‖2

2 = 1 for j = 1, . . . , d.

(M2) Joint correlation: Let{ut} be a sequence ofm vectors
whoseℓ2 norms do not exceed one. Letϕ be a column
of Φ that is independent from this sequence. Then

P {maxt |〈ϕ, ut〉| ≤ ε} ≥ 1 − 2m e−cε2N .

(M3) Smallest singular value: For a givenN×m submatrixZ
from Φ, themth largest singular valueσm(Z) satisfies

P {σm(Z) ≥ 0.5} ≥ 1 − e−cN .

Some remarks may help delineate the range of this defi-
nition. First, note that the columns ofΦ need not have the
same distribution. Condition (M0) only requires independence
of columns; the entries within each column may be correlated.
The unit normalization in (M1) is chosen to simplify our
proofs, but it should be obvious that the signal recovery
problem does not depend on the scale of the measurement
matrix. The property (M2) depends on the tail behavior of the
random variables‖ϕj‖2. Property (M3) controls how much
the matrix is likely to shrink a sparse vector.

In the two subsections below, we explain why the Gaussian
and Bernoulli ensembles both yield admissible measurement
matrices. We make no effort to determine the precise value
of the constants. See the technical report [26] for a detailed
treatment of the Gaussian case, including explicit constants.
Afterward, we compare admissible measurement matrices with
other types of measurement ensembles that have appeared in
the literature.

B. Joint Correlation

The joint correlation property (M2) is essentially a large
deviation bound for sums of random variables. For the Gaus-
sian and Bernoulli measurement ensembles, we can leverage
classical concentration inequalities to establish this property.

Proposition 4: Let {ut} be a sequence ofm vectors whose
ℓ2 norms do not exceed one. Independently, choosez to be a
random vector with i.i.d.NORMAL(0, N−1) entries. Then

P {maxt |〈z, ut〉| ≤ ε} ≥ 1 − m e−ε2N/2.

Proof: Observe that the probability only decreases as the
length of each vectorut increases. Therefore, we may assume
that ‖ut‖2 = 1 for eacht. Suppose thatz is a random vector
with i.i.d. NORMAL(0, N−1) entries. Then the random variable
〈z, ut〉 also has theNORMAL(0, N−1) distribution. A well-
known Gaussian tail bound (see [27, p. 118] for example)
yields

P {|〈z, ut〉| > ε} =

√
2

π

∫ ∞

ε
√

N

e−x2/2 dx ≤ e−ε2N/2.

Owing to Boole’s inequality,

P {maxt |〈z, ut〉| > ε} ≤ m e−ε2N/2.

This bound is complementary to the one stated.
For Bernoulli measurements, we simply replace the Gaus-

sian tail bound with

P {|〈z, ut〉| > ε} ≤ 2 e−ε2N/2. (III.1)
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This is a direct application of the Hoeffding inequality. (See
[28] for example). For other types of measurement matrices,
it may take some effort to obtain the quadratic dependence on
ε. We omit a detailed discussion.

C. Smallest Singular Value

It requires more sophistication to develop the lower singular
value property. Using a clever combination of classical argu-
ments, Baraniuk et al. establish the following result [29].

Proposition 5 (Baraniuk et al.):Suppose thatZ is anN ×
m matrix whose entries are all i.i.d.NORMAL(0, N−1) or else
i.i.d. uniform on{±1/

√
N}. Then

0.5 ‖x‖2 ≤ ‖Zx‖2 ≤ 1.5 ‖x‖2 for all x ∈ R
m

with probability at least

1 − 2 · 24m · e−cN .

We conclude that Property (M3) holds for Gaussian and
Bernoulli measurement ensembles, provided thatN ≥ Cm.

D. Other Types of Measurement Ensembles

It may be interesting to compare admissible measurement
matrices with the measurement ensembles introduced in other
works on signal recovery. Here is a short summary of the types
of measurement matrices that have appeared in the literature.

• In one of their papers [11], Candès and Tao define random
matrices that satisfy the Uniform Uncertainty Principle
and the Exact Reconstruction Principle. Gaussian and
Bernoulli matrices both meet these requirements. In an-
other paper [7], they study a class of matrices whose
“restricted isometry constants” are under control. They
show that both Gaussian and Bernoulli matrices satisfy
this property with high probability.

• Donoho introduces the deterministic class of compressed
sensing (CS) matrices [10]. He shows that Gaussian
random matrices fall in this class with high probability.

• The approach in Rudelson and Vershynin’s paper [8]
is more direct. They prove that, if the rows of the
measurement matrix span a random subspace, then (BP)
succeeds with high probability. Their method relies on the
geometry of random slices of a high-dimensional cube.
As such, their measurement ensembles are described
intrinsically, in contrast with the extrinsic definitions of
the other ensembles.

IV. SIGNAL RECOVERY WITH ORTHOGONAL MATCHING

PURSUIT

If we take random measurements of a sparse signal using
an admissible measurement matrix, then OMP can be used to
recover the original signal with high probability.

Theorem 6 (OMP with Admissible Measurements):Fix
δ ∈ (0, 0.36), and chooseN ≥ Km log(d/δ) where K
is an absolute constant. Suppose thats is an arbitrary
m-sparse signal inRd, and draw a randomN × d admissible
measurement matrixΦ independent from the signal. Given the

datav = Φs, Orthogonal Matching Pursuit can reconstruct
the signal with probability exceeding1 − δ.

For Gaussian measurements, we have obtained more precise
estimates for the constant. In this case, a very similar result
(Theorem 2) holds withK ≤ 20. Moreover, when the number
m of nonzero components approaches infinity, it is possible to
takeK ≤ 4 + η for any positive numberη. See the technical
report [26] for a detailed proof of these estimates.

Even though OMP may fail, the user can detect a success
or failure in the present setting. We state a simple result for
Gaussian measurements.

Proposition 7: Choose an arbitrarym-sparse signals from
R

d, and letN ≥ 2m. Suppose thatΦ is anN × d Gaussian
measurement ensemble, and execute OMP with the datav =
Φs. If the residualrm after m iterations is zero, then OMP
has correctly identifieds with probability one. Conversely, if
the residual afterm iterations is nonzero, then OMP has failed.

Proof: The converse is obvious, so we concentrate on the
forward direction. Ifrm = 0 but ŝ 6= s, then it is possible to
write the data vectorv as a linear combination ofm columns
from Φ in two different ways. In consequence, there is a
linear dependence among2m columns fromΦ. SinceΦ is an
N × d Gaussian matrix and2m ≤ N , this event occurs with
probability zero. Geometrically, this observation is equivalent
with the fact that independent Gaussian vectors lie in general
position with probability one. This claim follows from the
zero–one law for Gaussian processes [30, Sec. 1.2]. The kernel
of our argument originates in [21, Lemma 2.1].

For Bernoulli measurements, a similar proposition holds
with probability exponentially close to one. This result follows
from the fact that an exponentially small fraction of (square)
sign matrices are singular [31].

A. Comparison with Prior Work

Most results on OMP rely on thecoherence statisticµ of
the matrixΦ. This number measures the correlation between
distinct columns of the matrix:

µ
def

= max
j<k

|〈ϕj , ϕk〉| .

The next lemma shows that the coherence of a Bernoulli matrix
is fairly small.

Lemma 8:Fix δ ∈ (0, 1). For anN × d Bernoulli mea-
surement matrix, the coherence statisticµ ≤

√
4N−1 ln(d/δ)

with probability exceeding1 − δ2.
Proof: Suppose thatΦ is anN×d Bernoulli measurement

matrix. For eachj < k, the Bernoulli tail bound (III.1)
establishes that

P {|〈ϕj , ϕk〉| > ε} ≤ 2 e−ε2N/2.

Choosingε2 = 4N−1 ln(d/δ) and applying Boole’s inequality,

P

{
maxj<k |〈ϕj , ϕk〉| >

√
4N−1 ln(d/δ)

}

< d2 e−2 ln(d/δ) = δ2.

This estimate completes the proof.
A typical coherence result for OMP, such as Theorem 3.6 of

[20], shows that the algorithm can recover anym-sparse signal
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provided thatmµ ≤ 1
2 . This theorem applies immediately to

the Bernoulli case.
Proposition 9: Fix δ ∈ (0, 1). Let N ≥ 16m2 ln(d/δ), and

draw anN×d Bernoulli measurement matrixΦ. The following
statement holds with probability at least1 − δ2. OMP can
reconstruct everym-sparse signals in R

d from the datav =
Φs.

Very similar coherence results hold for Gaussian matrices,
but they are messier because the columns of a Gaussian matrix
do not have identical norms. We prefer to omit a detailed
discussion.

There are several important differences between Proposition
9 and Theorem 6. The proposition shows that a particular
choice of the measurement matrix succeeds foreverym-sparse
signal. In comparison with our new results, however, it requires
an enormous number of measurements.

Remark 10:It is impossible to develop stronger results by
way of the coherence statistic on account of the following
observations. First, the coherence of a Bernoulli matrix satis-
fies µ ≥

√
cN−1 ln d with high probability. One may check

this statement by using standard estimates for the size of
a Hamming ball. Meanwhile, the coherence of a Gaussian
matrix also satisfiesµ ≥

√
cN−1 ln d with high probability.

This argument proceeds from lower bounds for Gaussian tail
probabilities.

B. Proof of Theorem 6

Most of the argument follows the approach developed in
[20]. The main difficulty here is to deal with the nasty
independence issues that arise in the random setting. The
primary novelty is a route to avoid these perils.

We begin with some notation and simplifying assumptions.
Without loss of generality, assume that the firstm entries of the
original signals are nonzero, while the remainingd−m entries
equal zero. Therefore, the data vectorv is a linear combination
of the firstm columns from the matrixΦ. Partition the matrix
asΦ = [Φopt | Ψ] so thatΦopt hasm columns andΨ has
d − m columns. Note that the vectorv = Φs is statistically
independent from the random matrixΨ.

Consider the eventEsucc where the algorithm correctly
identifies the signals afterm iterations. We only decrease the
probability of success if we impose the additional requirement
that the smallest singular value ofΦopt meet a lower bound.
To that end, define the event

Σ
def

= {σm(Φopt) ≥ 0.5}.
Applying the definition of conditional probability, we reach

P (Esucc) ≥ P (Esucc ∩ Σ)

= P (Esucc | Σ) · P (Σ) . (IV.1)

Property (M3) controlsP (Σ), so it remains to develop a lower
bound on the conditional probability.

To prove thatEsucc occurs conditional onΣ, it suffices to
check that the algorithm correctly identifies the columns of
Φopt. These columns determinewhichentries of the signal are
nonzero. Thevaluesof the nonzero entries are determined by
solving a least-squares problem, which has a unique solution

because the eventΣ implies thatΦopt has full column rank.
In other words, there is just one explanation for the signals

using the columns inΦopt.
Now we may concentrate on showing that the algorithm

locates the columns ofΦopt. For a vectorr in R
N , define the

greedy selection ratio

ρ(r)
def

=

∥∥ΨT r
∥∥
∞∥∥ΦT

opt r
∥∥
∞

=
maxψ |〈ψ, r〉|∥∥ΦT

opt r
∥∥
∞

where the maximization takes place over the columns ofΨ.
If r is the residual vector that arises in Step 2 of OMP, the
algorithm picks a column fromΦopt wheneverρ(r) < 1. In
caseρ(r) = 1, an optimal and a nonoptimal column both
achieve the maximum inner product. The algorithm has no
cause to prefer one over the other, so we cannot be sure it
chooses correctly. The greedy selection ratio was first isolated
and studied in [20].

Imagine that we could executem iterations of OMP with
the input signals and the restricted measurement matrixΦopt

to obtain a sequence of residualsq0, q1, . . . , qm−1 and a
sequence of column indicesω1, ω2, . . . , ωm. The algorithm is
deterministic, so these sequences are both functions ofs and
Φopt. In particular, the residuals are statistically independent
from Ψ. It is also evident that each residual lies in the column
span ofΦopt.

Execute OMP with the input signals and the full matrix
Φ to obtain the actual sequence of residualsr0, r1, . . . , rm−1

and the actual sequence of column indicesλ1, λ2, . . . , λm.
Conditional onΣ, OMP succeeds in reconstructings after m
iterations if and only if the algorithm selects them columns
of Φopt in some order. We use induction to prove that this
situation occurs whenρ(qt) < 1 for eacht = 0, 1, . . . , m− 1.

The statement of the algorithm ensures that the initial
residuals satisfyq0 = r0. Clearly, the conditionρ(q0) < 1
ensuresρ(r0) < 1. It follows that the actual invocation
chooses the columnλ1 from Φopt whose inner product with
r0 has the largest magnitude (ties broken deterministically).
Meanwhile, the imaginary invocation chooses the columnω1

from Φopt whose inner product withq0 has largest magnitude.
Evidently,λ1 = ω1. This observation completes the base case.

Suppose that, during the firstk iterations, the actual exe-
cution of OMP chooses the same columns as the imaginary
execution. That is,λj = ωj for j = 1, 2, . . . , k. Since the
algorithm calculates the new residual as the (unique) best
approximation of the signals from the span of the chosen
columns, the actual and imaginary residuals must be identical
at the beginning of iterationk. In symbols,rk = qk. An
obvious consequence is thatρ(qk) < 1 implies ρ(rk) < 1.
Repeat the argument of the last paragraph to establish that
λk+1 = ωk+1.

We conclude that the conditional probability satisfies

P (Esucc | Σ) ≥ P {maxt ρ(qt) < 1 | Σ} (IV.2)

where{qt} is a sequence ofm random vectors that fall in
the column span ofΦopt and that are statistically independent
from Ψ.
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Assume thatΣ occurs. For each indext = 0, 1, . . . , m− 1,
we have

ρ(qt) =
maxψ |〈ψ, qt〉|∥∥ΦT

opt qt

∥∥
∞

.

SinceΦ
T
opt qt is anm-dimensional vector,

ρ(qt) ≤
√

m maxψ |〈ψ, qt〉|∥∥ΦT
opt qt

∥∥
2

.

To simplify this expression, define the vector

ut
def

=
0.5 qt∥∥ΦT
opt qt

∥∥
2

.

The basic properties of singular values furnish the inequality
∥∥ΦT

opt q
∥∥

2

‖q‖2

≥ σm(Φopt) ≥ 0.5

for any vectorq in the range ofΦopt. The vectorqt falls in
this subspace, so‖ut‖2 ≤ 1. In summary,

ρ(qt) ≤ 2
√

m maxψ |〈ψ, ut〉|
for each indext. On account of this fact,

P {maxt ρ(qt) < 1 | Σ}

≥ P

{
maxt maxψ |〈ψ, ut〉| <

1

2
√

m

∣∣∣∣ Σ

}
.

Exchange the two maxima and use the independence of the
columns ofΨ to obtain

P {maxt ρ(qt) < 1 | Σ}

≥
∏

ψ
P

{
maxt |〈ψ, ut〉| <

1

2
√

m

∣∣∣∣ Σ

}
.

Since every column ofΨ is independent from{ut} and from
Σ, Property (M2) of the measurement matrix yields a lower
bound on each of thed − m terms appearing in the product.
It emerges that

P {maxt ρ(qt) < 1 | Σ} ≥
[
1 − 2m e−cN/4m

]d−m

.

Property (M3) furnishes a bound onP (Σ), namely

P (Σ) = P {σm(Φopt) ≥ 0.5} ≥ 1 − e−cN .

Introduce the latter two bounds into (IV.2), then substitute the
result into (IV.1) to reach

P (Esucc) ≥
[
1 − 2m e−cN/4m

]d−m [
1 − e−cN

]
.

To complete the argument, we need to make some numerical
estimates. Apply the inequality(1 − x)k ≥ 1 − kx, valid for
k ≥ 1 andx ≤ 1. This step delivers

P (Esucc) ≥ 1 − 2m(d − m) e−cN/4m − e−cN .

Next, observe holds thatm(d − m) ≤ d2/4. Absorb the third
term into the second term, altering the constants if necessary.
We see that

P (Esucc) ≥ 1 − d2 e−cN/m.

In conclusion, the choiceN ≥ Km log(d/δ) is sufficient to
reduce the failure probability belowδ. To ensure that the
logarithm exceeds one for all values ofd, we require that
δ < 0.36.

V. EXPERIMENTS

This section illustrates experimentally that OMP is a pow-
erful algorithm for signal recovery. It also shows that the
theoretical bounds of the last section are qualitatively correct
even though they are slightly pessimistic.

The main empirical question is to determine how many
measurementsN are necessary to recover anm-sparse signal
in R

d with high probability. Let us describe the experimental
setup. In each trial, we generate anm-sparse signals by
choosingm components (out ofd) at random and setting them
equal to one.1 We draw anN×d Gaussian measurement matrix
Φ and execute OMP with the data vectorv = Φs. Finally,
we check whether the recovered signalŝ is identical with
the original signals by comparing their supports. Proposition
7 implies that, if the supports match then the algorithm has
succeeded with probability one. For each triple(m, N, d), we
perform 1000 independent trials.

The first plot, Fig. 1, describes the situation in dimension
d = 256. It shows what percentage (of the 1000 trial signals)
were recovered correctly as a function ofN , the number of
measurements. Each curve represents a different sparsity level
m. As expected, when the number of nonzero components
increases, more measurements are necessary to guarantee
signal recovery.

Fig. 2 presents another view of the same data. It displays
the percentage of signals recovered correctly as a function
of the sparsity level. We discover that, for a fixed sparsity
level, the recovery probability increases as we take more mea-
surements. This figure also exhibits a point that is important
in applications. Suppose that we have only enough space to
storeN = 100 measurements or we have only enough time to
measure and processN = 100 pieces of data. In dimension
d = 256, we should expect to recover a signal with 16 terms
in 90% of instances and a signal with 20 terms in about 50%
of instances.

Pursuing this idea, let us see how many measurements are
required to identify a sparse signal with a fixed rate of success.
Fig. 3 displays the relationship betweenN andm necessary to
achieve a recovery probability of 95% in dimensiond = 256.
The data exhibit a clear trendN ≈ 1.5m ln 256. Table I
examines the relationship betweenN and m to achieve a
recovery probability of 99% in dimensionsd = 256, 1024.
For this error rate, we haveN ≈ 2m lnd in both cases. In
comparison, our best theoretical bound for the Gaussian case
is aboutN ≥ 4m(ln d+4.6) if we want a 99% probability of
success [26].

Fig. 4 provides a graphical comparison between the empir-
ical results and theoretical bounds from the technical report
[26]. This chart matches three theoretical error curves against
the corresponding empirical curves in dimensiond = 1024.
Observe that the shape of the theoretical curves is very
similar to the shape of the empirical curves, even though the
theoretical bounds are somewhat too pessimistic.

1The analysis suggests that this is a challenging case for OMP, and our
experience has shown that other methods for choosing coefficients lead to
similar results.
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Fig. 1. The percentage of 1000 input signals correctly recovered as a function of the numberN of measurements for different sparsity levelsm in dimension
d = 256.
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d = 256 d = 1024

m N N/(m lnd) m N N/(m lnd)
4 56 2.52 5 80 2.31
8 96 2.16 10 140 2.02

12 136 2.04 15 210 2.02
16 184 2.07
20 228 2.05

TABLE I
THE NUMBER N OF MEASUREMENTS NECESSARY TO RECOVER AN
m-SPARSE SIGNAL AT LEAST99%OF THE TIME IN DIMENSIONS

d = 256, 1024.

In the first set of experiments, we used Gaussian measure-
ment matrices. We repeated the same body of experiments
with Bernoulli measurement matrices and obtained strikingly
similar results. For the sake of brevity, we include just one
graphic for Bernoulli measurements. Fig. 5 shows the number
of Bernoulli measurements necessary for OMP to recover an
m-sparse signal in dimensiond = 256. Comparing this chart
with Fig. 1, we discover that OMP performs almost identically
with Gaussian and Bernoulli measurements.

To deliver some intuition about the execution cost off
running OMP, we present Fig. 6, which displays execution
times (as opposed to processor times) for several experiments
with Bernoulli measurement matrices. Timings for Gaussian
matrices are similar. Let us emphasize that the chart displays
the clock time required for 1000 complete trials, which in-
cludes the time to generate 1000 sparse signals and 1000
random measurement matricesin addition tothe time required
by 1000 invocations of the OMP algorithm. For the most
computationally intensive experiment (m = 64, N = 400,
andd = 1024), each trial takes an average of 0.20 seconds.

While the absolute execution time for a particular parameter
setting is impossible for others to duplicate (nor is it especially
meaningful), the asymptotic growth of execution time as a
function of the sparsity levelm, the numberN of measure-
ments, and the dimensiond provides a useful and reproducible
curve. The graph clearly demonstrates that the execution time
grows linearly withm. Unfortunately, we do not have enough
data to determine the empirical dependence of the execution
time ond andN .

VI. D ISCUSSION

This section addresses several major issues that arise from
our work. First, we describe how the analysis might be
extended to match the empirical results better. Afterward,we
discuss more realistic models for input signals and the prospect
of applying OMP to recover signals that are not perfectly
sparse. Next, we comment on the role of randomness in our
theory. Then, we describe another basic type of measurement
ensemble. Finally, we discuss the relationship between our
work and results on the linear program (BP).

A. Theory vs. Practice

Although it appears that our theory correctly describes
the qualitative performance of OMP for the signal recovery
problem, our experiments demonstrate that the number of

measurements required in practice is somewhat smaller than
we predict.

Let us describe several technical reasons that the analysis
is loose. The most significant problem is that the vectors
ut constructed during the analysis may have large mutual
inner products. As a result, Property (M2) yields a pessimistic
assessment of the maximum correlation withψ. A secondary
issue is that‖ut‖2 is somewhat smaller than one because these
vectors are unlikely to be aligned with the smallest singular
subspace ofΦopt. It does not seem easy to account for these
factors. In addition, the

√
m term in the estimate forρ(qt) can

be improved to
√

m − t. The effect of this change, however,
seems to be minimal.

B. Nonsparse Signals

Our assumption that signals are precisely sparse is not likely
to obtain in most applications. Therefore, it would be valuable
to develop results for signals that are “nearly sparse” in some
sense. One potential model contaminates them-sparse signals
with additive white noise. We might also consider signals
whose sorted components decay in magnitude according to a
power law. Candès and Tao [11] argue that the second model
is appropriate for many types of natural signals. Of course,
the correct model must match the application domain.

Unfortunately, the strategy we used to prove Theorem 6
depends heavily on the fact that the input signals are exactly
sparse. When the ideal signals are not sparse, the nonoptimal
columns of the matrixΦ are statistically correlated with the
residual vectorsqt generated by the imaginary invocation
of the algorithm. This fact creates serious difficulties in the
analysis.

The literature does contain a body of results on the stability
of OMP for nonsparse signals. For example, Theorem 5.3
of [32] can be used to establish that OMP identifies signal
components above the noise level, provided that the number
of measurementsN is on the order ofm2 ln d. We consider it
likely that a stability result also holds in the same regime as
Theorem 6. At present, we do not know exactly what such a
result should look like, nor do we know a promising method
of proof.

C. Randomness

Like computation time and storage space, randomness is an
expensive resource that should be used sparingly. At present,
all approaches to signal recovery using (BP) or OMP involve
some degree of randomness. For now, it is an open question
whether a truly deterministic measurement matrix exists for
any (stable) recovery algorithm.

Our result for OMP, Theorem 6, requires that the mea-
surement matrix be statistically independent from the signal.
Unfortunately, it takesdN random bits to select a Bernoulli
measurement ensemble, and a Gaussian measurement ensem-
ble demands even more. Since the failure probability of OMP
is polynomially small in the dimensiond, it follows that a
polynomially large collection of input signals can be recovered
reliably with a single random measurement ensemble. There-
fore, we can amortize the randomness over a moderately large
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Fig. 5. The percentage of 1000 input signals correctly recovered as a function of the numberN of Bernoulli measurements for different sparsity levelsm
in dimensiond = 256.

set of input signals. Still, this amount of randomness is far
from ideal.

D. OMP with Frequency Measurements

The work in this paper focuses on rather generic measure-
ment ensembles, such as Bernoulli and Gaussian matrices.
From an algorithmic point of view, it is preferable to employ
a structured measurement ensemble that can be stored and
processed efficiently. For this reason, the literature on (BP)
advocates the use of random frequency measurements. That
is, the N rows of the measurement matrixΦ are drawn at
random from the rows of thed-dimensional DFT matrix.

For OMP, random frequency measurements offer several
specific advantages. Most significantly, it is possible to com-
pute the maximum correlation between a signal and the
columns of the matrix in timeO(d lnd) using an FFT. Second,
the matrix can be constructed and stored using onlyO(N ln d)
bits because it is only necessary to chooseN rows from ad-
row matrix.

Kunis and Rauhut have studied the performance of OMP for
signal recovery from random frequency measurements [23].
Their empirical work suggests thatO(m lnd) measurements
are sufficient for OMP to recover anm-sparse signal inRd.
Moreover, OMP often produces signal approximations that are
superior to (BP). They also find that OMP executes faster than
several algorithms for solving (BP).

Kunis and Rauhut were able to provide a partial theoretical
explanation of their empirical work [23]. In particular, they

show that the first iteration of OMP is likely to choose a
correct column from the measurement matrix, givenO(m lnd)
measurements of anm-sparse signal inRd. Unfortunately,
since the columns of the measurement matrix are no longer
statistically independent, it is difficult to analyze subsequent
iterations of the algorithm. It remains an open problem to
ascertain whether a result analogous to Theorem 6 holds for
random frequency measurements.

Extremely recently, Needell and Vershynin have shown that
a variant of OMP, called Regularized OMP (ROMP), can, with
high probability, recover allm-sparse signals fromO(m ln5 d)
random frequency measurements [33]. This development is
based on the Restricted Isometry Property [11] of random
frequency measurements, and it should be considered a major
step forward.

E. Comparison with Basis Pursuit

This subsection offers a brief comparison between known
results for the greedy algorithm and results for the convex
relaxation approach.

First, we note that there are situations where (BP) is
provably more powerful than OMP. For example, with a
Gaussian or Bernoulli measurement matrix, (BP) can, with
high probability, recover all sparse signals. In the same setting,
OMP recovers each sparse signal with high probability but
with high probability fails to recover all sparse signals. One
may infer the latter statement from Theorem 3.10 of [20] along
with a somewhat involved probability estimate.
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Since OMP is inherently more difficulty to analyze than
(BP), the literature on the convex relaxation also containsa
richer variety of results. Right now, we understand the stability
of (BP) much better than the stability of OMP. More research
in this direction would be valuable.

Greedy pursuit gains some advantages when we ask about
computational cost. In certain parameter regimes, OMP is
faster than standard approaches for completing the minimiza-
tion (BP). OMP is especially efficient when the signal is highly
sparse although homotopy methods for (BP) are competitive
here [14]. When the signal is not very sparse, OMP may be
a poor choice because the cost of orthogonalization increases
quadratically with the number of iterations. In this setting,
other types of greedy algorithms, such as StOMP [34] or
ROMP [33], can alleviate the computational burden by re-
ducing the number of least-squares problems that need to be
solved.

Since we first announced our results on OMP in April 2005,
there has been a significant amount of work on algorithms for
(BP) and related problems. In consequence, it appears that the
performance differences between the greedy approach and the
optimization approach are becoming smaller.

Finally, note that greedy algorithms, such as OMP, are
typically much easier to implement than algorithms for (BP).
One should not underestimate the difficulties inherent in soft-
ware engineering, so implementation complexity is a relevant
point of comparison between algorithms. (As evidence, see the

paper [35], which discusses software engineering challenges
in optimization.)

F. Conclusions

The theoretical and empirical work in this paper demon-
strates that OMP is an effective alternative to (BP) for signal
recovery from random measurements. Our results offer a
tremendous improvement over previous work on OMP, and
they significantly narrow the gap between the theoretical per-
formance of the greedy algorithm and the linear programming
approach. On account of the fact that OMP may be faster and
easier to implement, it offers an attractive alternative. In other
words, greed is still good.
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