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Abstract. A simultaneous sparse approximation problem requests a good approximation of several
input signals at once using different linear combinations of the same elementary signals. At the
same time, the problem balances the error in approximation against the total number of elementary
signals that participate. These elementary signals typically model coherent structures in the input
signals, and they are chosen from a large, linearly dependent collection.

The first part of this paper proposes a greedy pursuit algorithm, called Simultaneous Orthogonal
Matching Pursuit, for simultaneous sparse approximation. Then it presents some numerical exper-
iments that demonstrate how a sparse model for the input signals can be identified more reliably
given several input signals. Afterward, the paper proves that the S-OMP algorithm can compute
provably good solutions to several simultaneous sparse approximation problems.

The second part of the paper develops another algorithmic approach called convex relaxation,
and it provides theoretical results on the performance of convex relaxation for simultaneous sparse
approximation.

Date: Typeset on March 17, 2005.
Key words and phrases. Greedy algorithms, Orthogonal Matching Pursuit, multiple measurement vectors, simul-

taneous sparse approximation, subset selection.
The authors may be reached by e-mail at {jtropp,annacg,martinjs}@umich.edu or by post at the Department

of Mathematics, The University of Michigan, 2074 East Hall, Ann Arbor, MI 48109-1109.
This research has been supported by NSF DMS 0354600.

1



2 J. A. TROPP, A. C. GILBERT, AND M. J. STRAUSS

1. Introduction

In recent years, the signal processing community has lavished attention on the class of simple
sparse approximation problems. These problems have two facets:

(1) A signal vector is approximated using a linear combination of elementary signals, which
are drawn from a fixed collection. In modern problems, this collection is often linearly
dependent and large.

(2) The problem seeks a compromise between the approximation error (usually measured with
Euclidean distance) and the number of elementary signals that participate in the linear com-
bination. The goal is to identify a good approximation involving few elementary signals—a
sparse approximation.

Simple sparse approximation problems originally arose in the study of linear regression. In this
setting, we wish to approximate a data vector using a linear combination of regressors, but we must
control the number of regressors to avoid fitting noise in the data. Statisticians developed many of
the numerical algorithms that are used for solving simple sparse approximation problems [Mil02].

One striking generalization of simple sparse approximation has garnered little attention in the
literature. Consider the following scenario. Suppose that we have several observations of a sig-
nal that has a sparse representation. Each view is contaminated with noise, which need not be
statistically independent. It seems clear that we should be able to use the additional information
to produce a superior estimate of the underlying signal. This intuition suggests that we study
simultaneous sparse approximation:

Given several input signals, approximate all these signals at once using different
linear combinations of the same elementary signals, while balancing the error in
approximating the data against the total number of elementary signals that are used.

Simultaneous sparse approximation problems arise in several specific domains. For example,
B. D. Rao and his colleagues have considered applications to magnetoencephalography [GGR95]
and to the equalization of sparse communications channels [CR02]. R. Gribonval has developed
applications to blind source separation [Gri02]. Malioutov et al. have shown that source localization
using a linear array of sensors can be posed as a simultaneous sparse approximation problem [Mal03,
MÇW03]. It is easy to imagine many other applications in statistics, wireless communications, and
machine learning.

1.1. Contributions. This work examines simultaneous sparse approximation from the practical
and the theoretical point of view.

In the first part of the paper, we propose a greedy algorithm that generalizes the familiar
Orthogonal Matching Pursuit procedure, which was developed for simple sparse approximation
[PRK93, DMA97]. At each iteration, a greedy pursuit makes the best local improvement to the
current approximations in hope of obtaining a good overall solution. The same algorithm has been
developed independently in [CH04a, CH04b].

Then we summarize some numerical experiments using this greedy algorithm. These experiments
confirm our intuition that having multiple observations of a sparse signal can improve our ability
to identify the underlying sparse representation. They also give a measure of how the algorithm’s
performance depends on the number of input signals, the level of sparsity, and the signal-to-noise
ratio.

Afterward, we prove that the greedy algorithm can calculate good solutions to simultaneous
sparse approximation problems. Moreover, if we have some basic information about the signals,
this information can be used to enhance the performance of the algorithm. Our proofs require
that the collection of elementary signals possess a geometric property called incoherence. Roughly,
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incoherence means the elementary signals are weakly correlated with each other. The theoretical
arguments build on work in [Tro04b, Tro04e, TGS04].

In the second part of the paper, we develop a more sophisticated numerical method for simul-
taneous sparse approximation based on convex relaxation. Convex relaxation replaces the difficult
simultaneous sparse approximation problem by a convex optimization problem, which can be solved
in polynomial time with standard mathematical programming software. Using a variation of the
argument in [Tro04c], we prove that convex programming yields good solutions to simultaneous
sparse approximation problems, even in the presence of noise.

Our analysis of these two algorithmic methods for simultaneous sparse approximation yields
the first rigorous proof that these algorithms can succeed for sparse signals contaminated with
noise. The present work also underscores the value of the abstract approach to simple sparse
approximation adopted in [Tro04b, Tro04c]. Indeed, it is possible to obtain lovely results for
simultaneous sparse approximation just by “capitalizing” proofs from the earlier articles. (That
is, signal vectors are replaced by signal matrices.) But this paper offers more than an a slavish
repetition of old ideas: our theory for the simultaneous greedy pursuit algorithm also contains
strong, qualitatively new results for simple sparse approximation problems. We hope that this
work provides a firm practical and theoretical foundation for future research on simultaneous sparse
approximation problems.

1.2. Outline. Let us offer a brief outline of the paper. Section 2 provides an introduction to
the approximation model, as well as the means for measuring approximation error and sparsity.
Section 3 states the greedy algorithm and discusses some of its basic properties. The results of
some numerical experiments appear in Section 4. Section 5 demonstrates that the greedy pursuit
algorithm can calculate provably good solutions to simultaneous sparse approximation problems.
In the final Section 6, we make some comparisons with previous work.

2. Background

2.1. Signal Matrices. A signal is an element of Cd, the linear space of d-dimensional complex
vectors. We prefer the complex setting because the real case follows from a transparent adaptation.
The usual Euclidean norm on signals will be written as ‖·‖2. A signal matrix is drawn from Cd×K ,
the linear space of d×K complex matrices. The matrix space is equipped with the usual Hermitian
inner product:

〈S, X〉 def= trace(X∗ S),

where the trace of a (square) matrix is the sum of diagonal entries. The Frobenius norm falls from
this inner product:

‖S‖2
F

def= 〈S, S〉 .

The Frobenius norm will be used to measure the error in approximating a signal matrix.
We will frequently adopt the point of view that the columns of a signal matrix can be treated

as K independent d-dimensional signals:

S =
[
s1 s2 . . . sK

]
.

Note that the Frobenius norm of S can also be written as

‖S‖2
F =

∑K

k=1
‖sk‖2

2 .
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2.2. The Dictionary. Our goal will be to approximate each column of a signal matrix using a
linear model called a dictionary. A dictionary is a finite collection D of unit-norm signals in Cd.
The elements of the dictionary are called atoms, and each atom is denoted by ϕω, where the
parameter ω ranges over an index set Ω. We use a general index set because the atoms may not
admit a natural ordering and because it simplifies many of the technical arguments. The letter N
will denote the number of atoms in the dictionary. It is clear that N = |D | = |Ω|, where |·| denotes
the cardinality of a set. In summary, the whole dictionary structure can be written

D = {ϕω : ω ∈ Ω} ⊂ Cd.

Let us emphasize that the atoms have unit Euclidean norm.
The choice of dictionary depends on the application. For many problems, the atoms are selected

to resemble the coherent structures that appear in the input signals. In other applications, it is
possible to design a dictionary that has properties favorable for sparse approximation. In this work,
we assume that the dictionary has been predetermined.

From the dictionary, we may form a matrix whose ω-th column is the atom ϕω. This matrix
is denoted Φ, and it is called the dictionary synthesis matrix. Formally, the dictionary synthesis
matrix belongs to the linear space1 Cd×Ω. We will rarely distinguish between the dictionary and
its synthesis matrix. The conjugate transpose Φ∗ of the synthesis matrix is called the dictionary
analysis matrix.

2.3. Coherence. One way of summarizing the behavior of the dictionary is to examine how the
atoms are correlated with each other. To that end, we define the coherence parameter µ of the
dictionary as

µ
def= max

λ6=ω
|〈ϕλ, ϕω〉| .

In words, the coherence is the cosine of the acute angle between the closest pair of atoms. Informally,
we say that a dictionary is incoherent if we judge that µ is small. A valuable heuristic is that sparse
approximation is easy for incoherent dictionaries. Nevertheless, one must recognize that incoherence
is not fundamental to sparse approximation; it is only used to provide concrete results.

A generalization of the coherence parameter is the cumulative coherence function µ1(·). It is
defined for each natural number t by the formula

µ1(t)
def= max

|Λ|≤t
max
ω/∈Λ

∑
λ∈Λ

|〈ϕω, ϕλ〉|

where the index set Λ ⊂ Ω. We place the convention that µ1(0) = 0. Roughly, the cumulative
coherence measures the maximum total correlation between a fixed atom and t distinct atoms. We
have the trivial bound µ1(t) ≤ t µ for each natural number t.

The coherence parameter was first introduced in [DMA97]. The cumulative coherence function
was independently developed in [DE03, Tro04b].

2.4. Coefficient Matrices. Next we will develop a formal mechanism for synthesizing signal ma-
trices using atoms from the dictionary. A coefficient matrix is an element of the linear space CΩ×K .
The k-th column of a coefficient matrix C will be denoted by ck. The (ω, k) entry of the coefficient
matrix is written as cωk or in functional notation as C(ω, k). We will use whichever notation is
typographically felicitous.

Given a coefficient matrix C, observe that the matrix product S = ΦC yields a signal matrix.
It should be obvious that

sk = Φ ck =
∑

ω∈Ω
cωk ϕω (2.1)

1In case this notation is unfamiliar, Cd×Ω is the set of functions from {1, . . . , d} ×Ω to C. We equip this set with
the usual addition of functions multiplication by complex scalars to form a linear space.
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for each k. In other words, the k-th column of the signal matrix is synthesized with a linear
combination of atoms whose coefficients are listed in the k-th column of the coefficient matrix.

Suppose that Λ is a subset of Ω. We will often consider coefficient matrices in CΛ×K . Without
notice, these small coefficient matrices may be treated as elements of CΩ×K by extending them
with zeros. Likewise, we may restrict a coefficient matrix in CΩ×K to its nonzero rows. These
transformations will be clear in context.

2.5. Cost of Approximation. A sparse approximation problem seeks an approximation of a
signal matrix that can be expressed with low cost. In this work, the cost is measured as the total
number of atoms that participate in the approximation. In light of (2.1), we see that a coefficient
matrix uses the atom ϕω to synthesize a signal matrix if and only if the ω-th row of the coefficient
matrix is nonzero. Therefore, the row support of a coefficient matrix is defined as the set of indices
for its nonzero rows. More precisely,

rowsupp(C) def= {ω ∈ Ω : cωk 6= 0 for some k}. (2.2)

In particular, the support of a coefficient vector is the set of indices at which it is nonzero. Note
that the definition (2.2) is not standard.

We define the row-`0 quasi-norm of a coefficient matrix to be the number of nonzero rows.

‖C‖row-0
def= |rowsupp(C)| . (2.3)

In particular, ‖c‖row-0 is the number of nonzero entries in the vector c. Therefore, the matrix `0

quasi-norm can also be calculated as

‖C‖row-0 =
∣∣∣∣⋃K

k=1
supp(ck)

∣∣∣∣
where the ck ranges over the columns of C and supp(·) denotes the support of a vector. If we judge
that a coefficient matrix has few nonzero rows, we may refer to it as row-sparse.

2.6. Vector and Matrix Norms. This work relies heavily on the use of matrix norms, some of
which are probably unfamiliar. This subsection provides an overview of the tools that we will need,
and it assumes a basic working knowledge of functional analysis. The casual reader may prefer to
skip this material.

We will be working with vectors and matrices from finite-dimensional complex linear spaces.
We equip these spaces with the usual Hermitian inner product, which generates the Euclidean or
Frobenius norm. In addition, we will impose one or more norm structures. It is implicit that
vectors and matrices are expressed with respect to the canonical coordinate basis.

If x is a vector, its `p norms are defined as

‖x‖p
def=

[∑
j
|xj |p

]1/p
for 1 ≤ p < ∞, and

‖x‖∞
def= maxj |xj | .

The dual of the normed linear space (Cm, ‖·‖p) is the normed linear space (Cm, ‖·‖p′) with the
conjugacy relation 1/p + 1/p′ = 1.

Suppose that X and Y are normed linear spaces of vectors or matrices. If A is a matrix
with appropriate dimensions, we may view it as a linear operator acting on X via left matrix
multiplication to produce elements of Y . Formally, the adjoint A∗ is treated as a map between the
dual spaces Y ∗ and X∗. In the current setting, A∗ is simply the conjugate transpose of A, and it
also acts by left matrix multiplication.

If the matrix A maps X to Y , its operator norm is defined as

‖A‖X, Y
def= sup

x6=0

‖A x‖Y

‖x‖X

. (2.4)
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We will sometimes write this operator norm in the form ‖A‖X→Y . Meanwhile, the operator norm
of the adjoint satisfies the identity

‖A∗‖Y ∗, X∗ = ‖A‖X, Y .

In consequence of (2.4), we always have the following upper norm bound:

‖A x‖Y ≤ ‖A‖X, Y ‖x‖X .

It is also possible to develop a lower norm bound. The notation R(·) indicates the range (i.e.,
column span) of a matrix, and the dagger marks a pseudo-inverse.

Proposition 2.1. Every matrix A satisfies the following estimate.

min
x∈R(A∗)

x6=0

‖A x‖Y

‖x‖X

≥
∥∥A†∥∥−1

Y, X
. (2.5)

If R(A∗) = X, then equality holds in (2.5). When A is invertible,

min
x6=0

‖A x‖Y

‖x‖X

=
∥∥A−1

∥∥−1

Y, X
.

The proof follows the same lines as Proposition 3.2 from [Tro04d].
The norm on operators mapping from `p to `q will be written ‖·‖p,q. Several of the (p, q) operator

norms can be computed easily.
• The (1, q) norm is the maximum `q norm of any column of A.
• The (2, 2) norm yields the maximum singular value of A.
• The (p,∞) norm is the maximum `p norm of any row of A.

Note that the dual of the (p, q) operator norm is not generally the (q′, p′) operator norm. In
particular, the dual of the (∞,∞) norm is not the (1, 1) norm. For more discussion of this point,
see Section 3.2 of the second part of this paper [Tro04a].

We often view matrices as maps from one matrix space to another, and the attendant norms can
become quite complicated. In several places, we will encounter the operator norm for maps between
matrices equipped with the Frobenius norm and the (∞,∞) norm. The following two results will
be useful.

• If the matrix A has K rows, then ‖A‖F→(∞,∞) ≤ K ‖A‖2,∞.
• On the other hand, ‖A‖(∞,∞)→F = ‖A‖∞,2.

Note that it is not trivial to establish the identity in the second bullet. Incidentally, it is generally
NP-hard to calculate the (∞, 2) norm of a matrix in consequence of results from [Roh00].

3. Simultaneous Orthogonal Matching Pursuit

In this section, we present a greedy pursuit algorithm that can be used to solve several different
simultaneous sparse approximation problems. To tune the algorithm for different problems, one
simply changes the criterion for halting the algorithm.

3.1. Statement of Algorithm. First, we give a formal description of the algorithm, and then we
discuss some of its basic properties.

Algorithm 3.1 (S-OMP).
Input:

• A d×K signal matrix S
• A stopping criterion

Output:

• A set ΛT containing T indices, where T is the number of iterations completed
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• A d×K approximation matrix AT

• A d×K residual matrix RT

Procedure:

(1) Initialize the residual matrix R0 = S, the index set Λ0 = ∅, and the iteration counter t = 1.
(2) Find an index λt that solves the easy optimization problem

max
ω∈Ω

∑K

k=1
|〈Rt−1 ek, ϕω〉| .

We use ek to denote the k-th canonical basis vector in CK .
(3) Set Λt = Λt−1 ∪ {λt}.
(4) Determine the orthogonal projector Pt onto the span of the atoms indexed in Λt.
(5) Calculate the new approximation and residual:

At = Pt S

Rt = S −At.

(6) Increment t, and return to Step 2 unless the stopping criterion is met.

This procedure reduces to the usual Orthogonal Matching Pursuit [DMA97] when K = 1. Note
that Chen and Huo have independently introduced an identical algorithm [CH04a, CH04b]. This
algorithm seems to be distinct from the vector greedy algorithms studied by Temlyakov et al. in
[LT03a, LT03b]. Please turn to Section 6 for comparison between S-OMP and other algorithms for
simultaneous sparse approximation.

Step 2 of the algorithm is referred to as the greedy selection. The intuition behind maximizing
the sum of absolute correlations is that we wish to find an atom that can contribute a lot of energy
to every column of the signal matrix. This approach is likely to be most effective when all the
input signals are well approximated by the same set of atoms. If the signals involve disparate sets
of atoms, another greedy selection may be preferable. We will require the facts that the absolute
sum in Step 2 equals ‖Rt−1

∗ ϕω‖1 and that its the maximum has the equivalent expressions

max
ω∈Ω

∑K

k=1
|〈Rt−1 ek, ϕω〉| = ‖Rt−1

∗Φ‖1,1 = ‖Φ∗ Rt−1‖∞,∞ .

Steps 4 and 5 have been written to emphasize the conceptual structure of the algorithm. It
is possible to implement them much more efficiently using standard techniques for least-squares
problems. See [GVL96, Ch. 5] for extensive details. It is important to recognize that each column
of the residual Rt is orthogonal to the atoms indexed in Λt. Therefore, no atom is ever chosen
twice.

Remark 3.2. Note that the greedy selection can also be weakened. Instead of searching for an
atom that maximizes the absolute sum, we could also choose an atom that comes within a constant
factor of the maximum. This type of weak greedy step may admit a more efficient implementation
[GMS03]. Weak greedy algorithms for simultaneous sparse approximation are discussed in [LT03a,
LT03b].

3.2. Stopping Criteria. Since Simultaneous Orthogonal Matching Pursuit is an iterative algo-
rithm, we must supply a method for deciding when to halt the iteration. There are three obvious
possibilities:

(1) Stop the algorithm after a fixed number T of iterations, i.e., when t = T .
(2) Wait until the Frobenius norm of the residual declines to a level ε. That is, ‖Rt‖F ≤ ε.
(3) Halt the algorithm when the maximum total correlation between an atom and the residual

drops below a threshold τ . In symbols, ‖Φ∗ Rt‖∞,∞ ≤ τ .
In the sequel, we will see how these stopping rules apply to different flavors of simultaneous sparse
approximation.
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4. Numerical Experiments

We have performed some numerical experiments to demonstrate the simultaneous sparse ap-
proximation problems are a valuable extension of simple sparse approximation. These experiments
also provide confirmation that the Simultaneous Orthogonal Matching Pursuit algorithm can solve
these problems in practice.

In this section, we will be working with the Dirac–Fourier dictionary, which consists of impulses
and complex exponentials. In a d-dimensional signal space, the dictionary contains 2d atoms:
ϕω[t] = δω[t] for ω = 1, . . . , d and also ϕω[t] = e−2πi tω/d for ω = d + 1, . . . , 2d. Note that this
dictionary has coherence µ = 1/

√
d.

Our test signals will be formed using three different models. In each case, the signals take
the form sk = xk + νk, where νk is random noise and where xk can be expressed using a linear
combination of T atoms. The models differ in the way the atoms and their coefficients are drawn.
In each case, we will seek a sparse approximation of the K input signals using a total of T atoms,
so we halt S-OMP after precisely T iterations.

For our first experiment, we constructed signals of the form

sk =
T∑

j=1

αjk ϕωjk
. (I)

For each signal sk, we select T distinct atoms independently and uniformly from the dictionary.
The coefficients αjk are drawn from i.i.d. normal distributions with zero mean and unit variance.
Our goal is to identify the best T atoms with which to represent all K signals, each of which is
a linear combination of T atoms. We have observed that the S-OMP algorithm always recovers
T atoms from the collection of approximately KT distinct atoms that participate in the K input
signals. Indeed, all of the error in the residual is due to the fact that the input signals involve more
atoms than we are allowed to use. We omit the figures since they are not very illuminating.

The second type of input signal has the form

sk =
T∑

j=1

αjk ϕωj (II)

For all K signals, we use the same core of T atoms, but the coefficients αjk are chosen from
i.i.d. normal distributions. For these experiments, we fix the number of signals at K = 2 and the
dimension of the signal space at d = 128. We vary the value of T to explore how many core atoms
we can successfully recover with our algorithm. For each set of parameters, we performed 1000
independent trials. We computed the Hamming distance between the set of recovered atoms and
the core set. (Hamming distance zero means that we recover the entire core set, while distance one
means that we fail to recover any of the core atoms.) In Figure 1, we plot the average Hamming
distance as a function of T . The error bars mark one standard deviation from the mean. Even
when T = 90 (in dimension 128!), we typically recover most of the core set. We can see from this
figure that our theoretical bounds are far too pessimistic in this case.

We have performed a more detailed version of the same experiment with K = 1. The results are
displayed in Figure 2. In this case, the problem is no longer simultaneous sparse approximation since
we have only one input signal Although the performance of the algorithm when K = 1 is similar
to the performance when K = 2, an additional input vector does provide a slight improvement in
the success rate. That is, the average Hamming distance between the core set and the recovered
set is greater when K = 1 than when K = 2. For a theoretical explanation of a closely related
phenomenon, see the forthcoming paper [TG05].
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Figure 1. (Input type II) The average Hamming distance between the core set of
the vectors and the recovered set as a function of the number of vectors T in the
core set. In this experiment, d = 128 and K = 2. Compare with Figure 2.

Our third set of experiments involves input signals of the form

sk =
T∑

j=1

αj ϕωj + νk. (III)

In this case, we choose T atoms at random and form a linear combination with random coefficients
αj ∈ {±1}. Here, the coefficients have unit magnitude to ensure that the noise does not obliterate
any of the atoms. Then we construct K input signals by corrupting the original signal with i.i.d.
additive white Gaussian noise νk. For these experiments, we fix the dimension d = 256; we vary
T from 2 to 4; we vary K from 2 to 6; and we examine SNR values of 10, 13, 16, and 20 dB.
For each parameter set, we perform 1000 trials. Figure 3 displays the average Hamming distance
as a function of the number of signals. For each value of T , we use a distinct line type (e.g.,
dashed), so the four dashed lines correspond to four different SNR values. Naturally, the Hamming
distance increases as the SNR decreases. Observe that, independent of the number of core atoms T
and the SNR, we recover the core signal better when we have more observations. Furthermore, the
presence of noise has a significant effect on the performance of the algorithm. The previous example
showed that we can often recover core sets of atoms that are almost as large as the dimension of
the signal space. Yet for moderate SNR (e.g., 13 dB), we cannot reliably recover three atoms in
a 256-dimensional signal space. With the parameter settings we have chosen, Theorem 5.1 of the
sequel predicts that

‖S −AT ‖2
F∑K

k=1 ‖νk‖2
2

≤ 1 + 3 KT.

To see if this bound accurately identifies the dependence of the error on K and T , we plot in
Figure 4 the total relative error as a function of the number of signals K. For each T , we use a
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Figure 2. (Input type II) The average Hamming distance between the core set of
the vectors and the recovered set as a function of the number of vectors T in the
core set. In this experiment, d = 128 and K = 1. Compare with Figure 1.

different line type. The two groups of lines represent the extreme SNR values (10 and 20 dB). The
plot shows that the size of T has a negligible effect on the error. That is, the theoretical bounds
reflect a dependence on T that is absent in the empirical evidence. Again, our algorithm performs
better than the theoretical results might lead us to believe.

In the foregoing, we have observed that for fixed values of T and SNR, we recover the signal
better as the number of observations K increases. We cannot, however, effectively recover a small
number of atoms in the presence of noise. To explore more thoroughly the interaction between
noise and the number of atom T in our sparse representation, we fix the number of observations
K = 1 and examine the average Hamming distance between the core and the recovered sets of
vectors as a function of T and the SNR. While we cannot hope to recover many of the atoms in
the core set when the noise level is significant, Figure 5 shows that we do recover a higher fraction
of them as the size of the core set grows. We also observe that the error grows as a function of
T vectors in the core set until it hits a maximum value and then decreases as we add more to the
core set. A more thorough analysis of this intriguing and surprising behavior is beyond the scope
of this paper. It is possible that some of the effect is due to the noise overwhelming atoms with
small coefficients.

5. Performance Guarantees for S-OMP

In this section, we will develop theoretical results for the performance of S-OMP for different
types of simultaneous sparse approximation problems. These problems reflect different types of a
priori information that we might have about the desired approximation input signal. For example,
we might know that the approximation involves only T atoms or that the error in the residual is
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Figure 3. (Input type III) The average Hamming distance between the core set of
vectors and the recovered set as a function of the number of signals and the SNR.
Each line type corresponds to a different number of atoms. For each line type, the
bottom line reflects the highest SNR (20 dB) and the top line the lowest (10 dB).

bounded. By varying the stopping criterion, we can tune S-OMP to obtain the best performance
for each problem.

5.1. Approximation with a Sparsity Bound. In the numerical experiments, we considered how
to approximate the columns of a signal matrix S using different linear combinations of the same T
atoms. We may state this problem more rigorously as

min
C ∈CΩ×K

‖S −ΦC‖F subject to ‖C‖row-0 ≤ T. (sparse)

Note that a solution to (sparse) is a coefficient matrix, not a signal matrix. If Copt solves the
optimization problem, the corresponding approximation of the signal matrix is Aopt = ΦCopt.

To solve the sparsity-constrained approximation problem, we may apply the S-OMP algorithm,
stopping at the end of T iterations. At this stage, the algorithm produces an approximation of S
using at most T atoms. We have the following theoretical guarantee.

Theorem 5.1 (S-OMP with a Sparsity Bound). Assume that µ1(T ) < 1
2 . Given an input matrix

S, suppose that Copt solves (sparse) and that Aopt = ΦCopt. After T iterations, S-OMP will
produce an approximation AT that satisfies the error bound

‖S −AT ‖F ≤
[
1 + KT

1− µ1(T )
[1− 2 µ1(T )]2

]1/2

‖S −Aopt‖F . (5.1)

In words, S-OMP is an approximation algorithm for (sparse).
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A sketch of the proof appears in [TGS04]. It follows the basic outline of an analogous result for
simple sparse approximation from [Tro04b]. In fact, when K = 1, we retrieve Corollary 4.3 from
[Tro04b].

Some comments may clarify the meaning of this theorem and its limitations. First, observe that
the error in the computed approximation is never more than a constant factor greater than the
optimal approximation error. In particular, if the signal matrix can be expressed exactly using T
atoms or fewer, then S-OMP will also produce an exact representation of the signal matrix. Indeed,
a slightly weaker version of Theorem 4.3 from [CH04a] can be obtained as a special case of this
result.

Suppose that the dictionary is orthonormal, so the cumulative coherence function is identically
zero. We see that the bracket in (5.1) simplifies to

√
1 + KT . Unfortunately, the theorem offers an

overly pessimistic assessment of the algorithm’s performance in this case. Indeed, the factor of T in
the constant seems to be an artifact of the proof method, and it could probably be eliminated with
a more subtle approach. It is also possible that the S-OMP algorithm is more appropriate for an
error measure slightly different from the Frobenius norm. These points deserve further attention,
but they lie beyond the scope of the present work.

Finally, we remark that properties of the cumulative coherence function can be used to simplify
the theorem. For example, one may apply the bound µ1(T ) ≤ T µ. In addition, we can obtain a
more quantitative result by placing a sharper restriction on µ1(T ). If µ1(T ) ≤ 1

3 , then

1− µ1(T )
(1− 2 µ1(T ))2

≤ 6.

Of course, tighter bounds on the cumulative coherence will lead to better results.

5.2. Approximation with an Error Bound. Suppose that our signal matrix consists of multiple
views of an artificially generated sparse signal contaminated by bounded noise. Then we may have
information about the ideal set of atoms for approximating the signal matrix as well as a bound on
the approximation error. In this setting, we can prove the following theorem on the performance
of S-OMP.

Theorem 5.2 (S-OMP with an Error Bound). Let Λopt be an index set containing T atoms or
fewer, where µ1(T ) < 1

2 . Suppose that the best approximation Aopt of the signal matrix S over Λopt

satisfies the error bound
‖S −Aopt‖F ≤ ε.

Let us halt S-OMP at the end of iteration t if the norm of the residual satisfies

‖Rt‖F ≤
[
1 + KT

1− µ1(T )
(1− 2 µ1(T ))2

]1/2

ε.

It follows that each atom chosen is optimal, i.e., Λt ⊂ Λopt.

The proof follows the same lines as the analogous theorem for simple sparse approximation [Tro04e,
Thm. 5.9], so we do not reproduce it. In fact, it is possible to develop a rather more sophisticated
result using the same techniques, but we have opted to present a more comprehensible version.

In words, the theorem says that the algorithm can calculate an approximation that achieves an
error within a constant factor of ε. Meanwhile, it guarantees that every atom participating in the
computed approximation is drawn from the ideal set of atoms.

If the dictionary is orthonormal, the bracketed constant equals
√

1 + KT . Unlike the case for
(sparse), the factor of T is essential in this result. See Section 5.3 of [Tro04e] for some discussion of
this fact in the case of simple sparse approximation. We may also apply the cumulative coherence
function to develop simpler versions of the result. See the previous subsection for details.
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5.3. Approximation with a Correlation Bound. Suppose now that our signal matrix consists
of multiple observations of a sparse signal contaminated with additive noise. It is often possible to
develop estimates on the correlation between the dictionary and the residual left over in approx-
imation. For an example, see [Tro04c, Sec. IV-D]. If bounds on this correlation are available, it
is possible to develop strong results on the performance of S-OMP. To make the statement of the
theorem more transparent, define the quantity

M(t) = M(t;T ) def=
µ1(T − t)
1 − µ1(t)

for t = 0, . . . , T .

We will discuss this function more in a moment.

Theorem 5.3 (S-OMP with a Correlation Bound). Suppose that Λopt lists at most T atoms, where
µ1(T ) < 1

2 and M(T ) < 1
2 . Let S be a signal matrix, Aopt its best approximation over Λopt, and

Copt the coefficient matrix that synthesizes Aopt. Finally, assume we have a bound

‖Φ∗ (S −Aopt)‖∞,∞ ≤ τ.

After iteration t of Simultaneous Orthogonal Matching Pursuit, halt the algorithm if

‖Φ∗ Rt‖∞,∞ ≤ 1−M(t)
1− 2 M(t)

τ.

If the algorithm terminates at the end of iteration t, we may conclude that
• the algorithm has chosen t indices from Λopt, and
• it has identified every index λ from Λopt for which∑K

k=1
|Copt(λ, k)| >

τ

1− 2 M(t)
.

• The absolute error in the computed approximation satisfies

‖S −At‖2
F ≤ ‖S −Aopt‖2

F + τ2

[
1−M(t)

1− 2 M(t)

]2 T − t

1− µ1(T − t)
.

• In particular, if

min
λ∈Λopt

∑K

k=1
|Copt(λ, k)| >

τ

1− 2 M(t)

then t = T , Λt = Λopt, and At = Aopt.

This result is qualitatively new, although an analogous theorem for simple sparse approximation
has been announced without proof in [Tro04d]. Donoho, Elad, and Temlyakov have announced a
related theorem for simple sparse approximation [DET04, Thm. 4.1]. Their result is contained in
the last bullet of Theorem 5.3. We will provide a complete demonstration of the theorem in the
next subsection.

In words, Theorem 5.3 says that S-OMP can be used to recover all the atoms whose coefficients
are sufficiently large provided that the maximum total correlation between the residual and the
remaining atoms is small. If a bound on the norm of the residual is available, it is possible to
develop simple bounds on the maximum correlation. As examples,

‖Φ∗ (S −Aopt)‖∞,∞ ≤
√

K ‖S −Aopt‖F

‖Φ∗ (S −Aopt)‖∞,∞ ≤ K ‖S −Aopt‖1,2 .

It follows that, if the signal matrix can be represented perfectly using the atoms in Λopt, then we
can choose τ = 0. Therefore, S-OMP will recover the signal matrix perfectly (provided the other
hypotheses of the theorem). It is also worth noting that this theorem is essentially as strong as the
analogous result for convex relaxation [Tro04a, Cor. 5.1].



SIMULTANEOUS SPARSE APPROXIMATION—PART I 15

We may use properties of the cumulative coherence function to simplify the theorem. Provided
that T µ < 1, we have the bound

M(t) ≤ (T − t) µ

1− t µ
for each t = 0, . . . , T .

Maximizing the right-hand side over t, we discover that the extreme value occurs when t = 0.
Therefore,

M(t) ≤ T µ.

If we place numerical restrictions, we can obtain a more quantitative result. For example, if T µ ≤ 1
3 ,

then we discover that

1−M(t)
1− 2 M(t)

≤ 2 and
[

1−M(t)
1− 2 M(t)

]2 1
1− µ1(T − t)

≤ 6.

As usual, tighter bounds lead to sharper versions of the theorem.

5.4. Proof of Theorem 5.3. Now we will prove the theorem on the performance of the algorithm.
The major technical challenge is to develop bounds on the maximum total correlation between an
optimal atom and the residual matrix at iteration t. We retain the notation from the statement of
Theorem 5.3 and from the statement of the S-OMP algorithm. Finally, given an index set Λopt, we
will partition the dictionary matrix as

Φ = [Φopt | Ψopt ] ,

where Φopt contains the columns listed in Λopt and Ψopt contains the remaining columns.

Lemma 5.4. Assume that Λt ⊂ Λopt, and let C∼t be the (T − t)×K matrix formed from the rows
of Copt listed in Λopt \ Λt. Then the following bounds are in force.

‖Φopt
∗ Rt‖∞,∞ ≥ (1−M(t)) ‖C∼t‖∞,∞

‖Ψopt
∗ (Aopt −At)‖∞,∞ ≤ M(t) ‖C∼t‖∞,∞

Proof. This lemma contains the most difficult part of the proof, and it is further complicated by a
heavy notational burden. Since Λt ⊂ Λopt, we may split the optimal synthesis matrix Φopt into two
pieces. The matrix Φt contains the t columns that are indexed by Λt and the matrix Φ∼t contains
the remaining (T − t) columns. Then, we write C∼t for the matrix formed from the (T − t) rows
of Copt indexed by Λopt \Λt. As usual, Pt indicates the orthogonal projector onto the range of Φt.

First, observe that

Φopt
∗ Rt = Φopt

∗ (S −At) = Φopt
∗ (Aopt −At)

since (S − Aopt) is orthogonal to the range of Φopt. Then rewrite the matrix (Aopt − At) in the
following manner:

Aopt −At = (I− Pt) Aopt

= (I− Pt)Φopt Copt

= (I− Pt)Φ∼t C∼t.

The last equality holds because (I − Pt) annihilates the atoms indexed in Λt. Therefore, our goal
is to produce a lower bound for

‖Φopt
∗ Rt‖∞,∞ = ‖Φ∼t

∗ (I− Pt)Φ∼t C∼t‖∞,∞ (5.2)

and to produce an upper bound for

‖Ψopt
∗ (Aopt −At)‖∞,∞ = ‖Ψopt

∗ (I− Pt)Φ∼t C∼t‖∞,∞ . (5.3)



16 J. A. TROPP, A. C. GILBERT, AND M. J. STRAUSS

These last two equations are the key to the proof. We will use the cumulative coherence function
to develop the estimates.

We begin with a bound on (5.3), since we will reuse our observations when we study (5.2). First,
apply the standard norm bound to (5.3) and invoke the triangle inequality.

‖Ψopt
∗ (Aopt −At)‖∞,∞ ≤

[
‖Ψopt

∗Φ∼t‖∞,∞ + ‖Ψopt
∗ Pt Φ∼t‖∞,∞

]
‖C∼t‖∞,∞ . (5.4)

We must find an upper bound for the bracketed term in (5.4). This process takes five steps.
(1) Each row of the matrix (Ψopt

∗Φ∼t) lists the inner products between an atom and (T − t)
distinct atoms. It follows that ‖Ψopt

∗Φ∼t‖∞,∞ ≤ µ1(T − t).
(2) Rewrite the orthogonal projector as Pt = Φt (Φt

∗Φt)−1Φt
∗, and use the fact that ‖·‖∞,∞

is submultiplicative to see that

‖Ψopt
∗ Pt Φ∼t‖∞,∞ ≤ ‖Ψopt

∗Φt‖∞,∞
∥∥(Φt

∗Φt)−1
∥∥
∞,∞ ‖Φt

∗Φ∼t‖∞,∞ .

(3) Using the same rationale as in Step (1), we see that ‖Ψopt
∗Φt‖∞,∞ ≤ µ1(t). Similarly,

‖Φt
∗Φ∼t‖∞,∞ ≤ µ1(T − t).

(4) Note that the Gram matrix (Φt
∗Φt) lists the inner products between t different atoms.

Since the atoms are normalized, the matrix has a unit diagonal. Therefore, we may write

Φt
∗Φt = I−X

where ‖X‖∞,∞ ≤ µ1(t). We expand the inverse in a Neumann series and make the standard
estimate to obtain ∥∥(Φt

∗Φt)−1
∥∥
∞,∞ ≤ 1

1− µ1(t)
.

For details, refer to the proof of Proposition 3.6 in [Tro04d].
(5) Introduce the bounds from Steps (1)–(4) into (5.4). We reach

‖Ψopt
∗ (Aopt −At)‖∞,∞ ≤

[
µ1(T − t) +

µ1(t) µ1(T − t)
1− µ1(t)

]
‖C∼t‖∞,∞ .

Finally, simplify the bracketed expression to conclude that

‖Ψopt
∗ (Aopt −At)‖∞,∞ ≤ µ1(T − t)

1− µ1(t)
‖C∼t‖∞,∞ .

Identify M(t) to complete the first bound.
It remains to provide a lower bound for ‖Φ∼t

∗ (I− Pt)Φ∼t C∼t‖∞,∞. For the moment, let us
abbreviate Y = Φ∼t

∗ (I− Pt)Φ∼t. The lower norm bound of Proposition 2.1 gives

‖Y C∼t‖∞,∞ ≥
∥∥Y −1

∥∥−1

∞,∞ ‖C∼t‖∞,∞

Write Y = I− (I−Y ), and expand its inverse in a Neumann series. We make the usual estimates
to obtain a geometric series, and we sum this series to reach

‖Y C∼t‖∞,∞ ≥
(
1 − ‖I− Y ‖∞,∞

)
‖C∼t‖∞,∞ . (5.5)

Recall the definition of Y and apply the triangle inequality to obtain

‖I− Y ‖∞,∞ ≤ ‖(I−Φ∼t
∗Φ∼t)‖∞,∞ + ‖Φ∗

∼t Pt Φ∼t‖∞,∞ .

This bound on the right-hand side of this inequality is completely analogous with the bound we
made in Steps (1)–(5). Repeating these steps, mutatis mutandis, we have

‖I− Y ‖∞,∞ ≤ µ1(T − t)
1− µ1(t)

. (5.6)
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Introduce (5.6) into (5.5) and write out Y in full to conclude

‖Φ∼t
∗ (I− Pt)Φ∼t C∼t‖∞,∞ ≥

[
1 − µ1(T − t)

1− µ1(t)

]
‖C∼t‖∞,∞ .

Identify M(t) to complete the argument. �

With Lemma 5.4 at hand, it is easy to develop a condition which ensures that S-OMP chooses
an optimal atom in the (t + 1)-st iteration.

Lemma 5.5 (Optimal Atom Selection). Assume that Λt ⊂ Λopt. Provided that

‖Φ∗ Rt‖∞,∞ >
1−M(t)

1− 2 M(t)
‖Φ∗ (S −Aopt)‖∞,∞ ,

S-OMP will identify another optimal atom in the (t + 1)-st iteration.

Proof. Assume that the greedy selection identifies a nonoptimal atom in the (t+1)-st iteration. We
will use this hypothesis to develop an upper bound on ‖Φ∗ Rt‖∞,∞. The condition in the statement
of the theorem is the logical negation of this upper bound. Therefore, the condition ensures that
the algorithm must identify an optimal atom in the (t + 1)-st iteration.

The assumption that greedy selection picks a nonoptimal atom is equivalent with the relations

‖Φopt
∗ Rt‖∞,∞ ≤ ‖Ψopt

∗ Rt‖∞,∞ (5.7)

‖Ψopt
∗ Rt‖∞,∞ = ‖Φ∗ Rt‖∞,∞ . (5.8)

In words, the maximum correlation between an optimal atom and the residual is smaller than the
maximum correlation between a nonoptimal atom and the residual, which equals the maximum
correlation between any atom and the residual. We begin our calculation by rewriting

Rt = (S −Aopt) + (Aopt −At). (5.9)

Invoke (5.8) and (5.9). Then apply the triangle inequality to reach

‖Φ∗ Rt‖∞,∞ = ‖Ψopt
∗ Rt‖∞,∞

≤ ‖Ψopt
∗ (S −Aopt)‖∞,∞ + ‖Ψopt

∗ (Aopt −At)‖∞,∞

Since the columns of Φopt are orthogonal to the columns of (S −Aopt), one may replace Ψopt by
Φ in the first term without changing its value. Then apply Lemma 5.4 to the second term (twice!).
It follows that

‖Φ∗ Rt‖∞,∞ ≤ ‖Φ∗ (S −Aopt)‖∞,∞ +
M(t)

1−M(t)
‖Φopt

∗ Rt‖∞,∞ .

In consequence of (5.7) and (5.8), we reach

‖Φ∗ Rt‖∞,∞ ≤ ‖Φ∗ (S −Aopt)‖∞,∞ +
M(t)

1−M(t)
‖Φ∗ Rt‖∞,∞ .

Rearrange this relation to obtain

‖Φ∗ Rt‖∞,∞ ≤ 1−M(t)
1− 2 M(t)

‖Φ∗ (S −Aopt)‖∞,∞ .

If this inequality fails, then S-OMP must identify another optimal atom in iteration (t + 1). �

We are now prepared to complete the proof of the theorem.
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Proof of Theorem 5.3. Observe that Λ0 = ∅ ⊂ Λopt, and make the inductive hypothesis that Λt ⊂
Λopt. By assumption, the maximum correlation between an atom and the residual satisfies

‖Φ∗ (S −Aopt)‖∞,∞ ≤ τ.

Therefore, Lemma 5.5 ensures that the greedy selection will identify an optimal atom in iteration
(t + 1) provided that

‖Φ∗ Rt‖∞,∞ >
1−M(t)

1− 2 M(t)
τ. (5.10)

If this inequality fails, we halt the algorithm. By induction, the algorithm identifies an optimal
atom in each iteration.

Next, we will argue that the algorithm cannot halt unless all the atoms that have been chosen
are associated with small coefficients. To that end, we assume that the algorithm has halted, i.e.,

‖Φ∗ Rt‖∞,∞ ≤ 1−M(t)
1− 2 M(t)

τ, (5.11)

and we will derive an upper bound on the coefficients associated with the remaining atoms. It is
always true that ‖Φopt

∗ Rt‖∞,∞ ≤ ‖Φ∗ Rt‖∞,∞ so

‖Φopt
∗ Rt‖∞,∞ ≤ 1−M(t)

1− 2 M(t)
τ. (5.12)

Bound the left-hand side below using Lemma 5.4, and cancel the terms (1−M(t)) from each side
to obtain

‖C∼t‖∞,∞ ≤ τ

1− 2 M(t)
where C∼t contains the (T − t) rows of Copt listed in Λopt \ Λt. In consequence,

‖C∼t‖∞,∞ = max
λ∈Λopt\Λt

∑K

k=1
|Copt(λ, k)| .

Therefore, each row of C∼t has `1 norm less than τ/(1− 2 M(t)) when the algorithm halts.
Finally, we develop the absolute error bound. If the algorithm has halted, then (5.12) is in force.

Recall from the proof of Lemma 5.4 that

Φopt
∗ Rt = Φopt

∗ (Aopt −At) = Φ∼t
∗ (Aopt −At).

Proposition 2.1 and the succeeding remarks yield the lower norm bound∥∥(Φ∼t)†
∥∥−1

2,1
‖Aopt −At‖F ≤ ‖Φ∼t

∗ (Aopt −At)‖∞,∞ .

Combining these results, we reach

‖Aopt −At‖F ≤ 1−M(t)
1− 2 M(t)

∥∥(Φ∼t)†
∥∥

2,1
τ.

Square this inequality and add ‖S −Aopt‖2
F to both sides. Then apply the Pythagorean Theorem

to the left-hand side to obtain

‖S −At‖2
F ≤ ‖S −Aopt‖2

F +
[

1−M(t)
1− 2 M(t)

∥∥(Φ∼t)†
∥∥

2,1
τ

]2

.

Proposition 3.9 of [Tro04d] shows that∥∥(Φ∼t)†
∥∥2

2,1
≤ T − t

1− µ1(T − t)
.

Combine the last two bounds to complete the argument. �
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6. Comparison with Previous Work

In this section, we will try to address the relationship between this paper and other work on
simultaneous sparse approximation. The second part of the paper contains a separate section that
compares our theory about convex relaxation with results from the literature.

First, let us discuss the numerical investigation of simultaneous sparse approximation. In this
work, we have only performed experiments using Simultaneous Orthogonal Matching Pursuit.
Other papers have performed experiments with `1 minimization [CH04b] and with M-FOCUSS
[CREKD04]. Aside from the actual algorithm used, the methodology in our experiments is quite
different from other numerical simulations that have appeared in the literature. First of all, we
change each parameter in the problem separately, and we perform 1000 trials for each choice of
parameters so that we may draw statistical inferences with some degree of confidence. Moreover,
we have explored a broad range of parameters to identify distinct regimes in the algorithm’s per-
formance.

The greedy pursuit algorithm that we have proposed is also distinct from some other greedy
algorithms that have been suggested for simultaneous sparse approximation. One major difference
among these algorithms is the greedy selection that occurs during each iteration. Several variations
on the greedy selection rule take the form

max
ω∈Ω

‖Rt−1
∗ ϕω‖p

p . (6.1)

Intuitively, small values of p promote the selection of atoms that contribute to many different signals
at once, even if the contributions are relatively small. Larger values of p favor atoms that contribute
a lot to a single signal. If each column of the signal matrix can be approximated well with the same
set of atoms, then it is preferable to set p = 1. On the other hand, signal matrices whose columns
require somewhat different collections of atoms may be approximated more successfully when p is
larger. An interesting possibility that has not been explored is to select 0 ≤ p < 1, although the
lack of convexity may complicate the analysis.

Different versions of the selection rule (6.1) have been considered in the literature. The S-OMP
algorithm, described here and in [CH04b], uses p = 1. Cotter et al. [CREKD04] have proposed to set
p = 2. Leviatan and Temlyakov [LT03a] have also proposed p = 2 (their WSOGA2 algorithm). In
their paper, Chen and Huo have compared several of these algorithms for the problem of recovering
a sparse signal matrix [CH04b, Sec. IV-B]. They prove that S-OMP can recover any signal matrix
that has a representation using (µ−1 + 1)/2 atoms or fewer. They also show that, when p = 2, the
corresponding version of S-OMP can recover (µ−1+1)/(1+

√
K) atoms or fewer. These facts suggest

(but do not prove) that S-OMP is more effective for recovering sparse signals than algorithms that
make p larger.

Another way to alter the greedy algorithm is to change the way that new approximations are
formed. Cotter et al. have considered greedy algorithms, called M-BMP and M-ORMP, that use
different methods for constructing the new approximation [CREKD04].

The literature contains several different types of theoretical results for simultaneous greedy pur-
suit. The results of Chen and Huo mentioned above demonstrate that S-OMP and a variant can
recover a signal matrix that has a sufficiently sparse representation [CH04b]. At present, their work
does not address approximation of sparse signal matrices that have been corrupted with noise. The
conference paper [TGS04] contains a result for the noisy case, which we quoted as Theorem 5.1.
These results all depend on the coherence parameter.

Results of a very different type have been established by Temlyakov and his colleagues. See for
example [LT03c, LT03a, LT03b, Tem04]. Temlyakov et al. have developed many different types
of greedy algorithms for simultaneous sparse approximation in Hilbert spaces and Banach spaces.
These methods include the (Orthogonal) Vector Weak Greedy Algorithm, the Weak Simultaneous
(Orthogonal) Greedy Algorithms 1 and 2, the Vector Weak Relaxed Greedy Algorithm, the Vector
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Weak Chebyshev Greedy Algorithm, and the Chebyshev Vector Weak Greedy Algorithm. (Each
one is abbreviated by its acronym.) These algorithms use different types of selection rules and
different techniques for forming the approximation at each iteration. In particular, we remark that
WSOGA2 is essentially S-OMP with a (weak) selection rule of the form (6.1) for p = 2.

A typical result for this family of algorithms shows that the norm of the residual decays at a
certain rate as the number of atoms increases. For example, the residual matrix Rt generated by
OVWGA, WSOGA1, or WSOGA2 (with weakness parameters identically one) satisfies

‖Rt‖2
F ≤ K2

[
1 +

t

K

]−1

for t = 1, 2, 3, . . . .

Note that this result holds for an arbitrary dictionary; it does not involve the coherence parameter.
On the other hand, it does not compare the residual against the optimal t-term residual. Nor does
it guarantee that any specific choice of atoms will participate in the approximation. The scope
of this paper does not allow us to discuss the theory of Temlyakov et al. in more detail. It is
unfortunate that our brief remarks cannot do justice to this body of work.

There are still many open questions in the study of greedy pursuit algorithms for simultaneous
sparse approximation. For example, our result for sparsity-constrained approximation can certainly
be improved. It would also be valuable to study the performance of the algorithm when the
approximation error is measured with other norms or divergences. Moreover, an average-case
analysis of greedy pursuit is still lacking. Of course, it is also essential to investigate the performance
of greedy algorithms in the context of particular applications.
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