
SIAM J. MATRIX ANAL. APPL. c© 2017 Society for Industrial and Applied Mathematics
Vol. 38, No. 4, pp. 1454–1485

PRACTICAL SKETCHING ALGORITHMS FOR LOW-RANK
MATRIX APPROXIMATION∗

JOEL A. TROPP† , ALP YURTSEVER‡ , MADELEINE UDELL§ , AND VOLKAN CEVHER‡

Abstract. This paper describes a suite of algorithms for constructing low-rank approximations
of an input matrix from a random linear image, or sketch, of the matrix. These methods can preserve
structural properties of the input matrix, such as positive-semidefiniteness, and they can produce
approximations with a user-specified rank. The algorithms are simple, accurate, numerically stable,
and provably correct. Moreover, each method is accompanied by an informative error bound that
allows users to select parameters a priori to achieve a given approximation quality. These claims are
supported by numerical experiments with real and synthetic data.

Key words. dimension reduction, matrix approximation, numerical linear algebra, randomized
algorithm, single-pass algorithm, sketching, streaming algorithm, subspace embedding

AMS subject classifications. Primary, 65F30; Secondary, 68W20

DOI. 10.1137/17M1111590

1. Motivation. This paper presents a framework for computing structured low-
rank approximations of a matrix from a sketch, which is a random low-dimensional
linear image of the matrix. Our goal is to develop simple, practical algorithms that
can serve as reliable modules in other applications. The methods apply for the real
field (F = R) and for the complex field (F = C).

1.1. Low-rank matrix approximation. Suppose that A ∈ Fm×n is an arbi-
trary matrix. Let r be a target rank parameter where r � min{m,n}. The com-
putational problem is to produce a low-rank approximation Â of A whose error is
comparable to a best rank-r approximation:

(1.1) ‖A− Â‖F ≈ min
rank(B)≤r

‖A−B‖F.

The notation ‖ · ‖F refers to the Frobenius norm. We explicitly allow the rank of Â
to exceed r because we can obtain more accurate approximations of this form, and
the precise rank of Â is unimportant in many applications. There has been extensive
research on randomized algorithms for (1.1); see Halko, Martinsson, and Tropp [19].

1.2. Sketching. Here is the twist. Imagine that our interactions with the matrix
A are severely constrained in the following way. We construct a linear map L :
Fm×n → Fd that does not depend on the matrix A. Our only mechanism for collecting

∗Received by the editors January 17, 2017; accepted for publication (in revised form) by August
18, 2017; published electronically December 6, 2017.

http://www.siam.org/journals/simax/38-4/M111159.html
Funding: The work of the first and third authors was supported in part by ONR award N00014-

11-1002 and the Gordon & Betty Moore Foundation. The work of the third author was also supported
in part by DARPA award FA8750-17-2-0101. The work of the second and fourth authors was sup-
ported in part by the European Commission under the ERC Future Proof grant and grants SNF
200021-146750, and SNF CRSII2-147633.
†Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA 91125-

5000 (jtropp@cms.caltech.edu).
‡École Polytechnique Fédéral de Lausanne, Lausanne 1015, Switzerland (alp.yurtsever@epfl.ch,

volkan.cevher@epfl.ch).
§Cornell University, Ithaca, NY 14853 (mru8@cornell.edu).

1454

http://www.siam.org/journals/simax/38-4/M111159.html
mailto:jtropp@cms.caltech.edu
mailto:alp.yurtsever@epfl.ch
mailto:volkan.cevher@epfl.ch
mailto:mru8@cornell.edu

SKETCHING ALGORITHMS FOR MATRIX APPROXIMATION 1455

data S about A is to apply the linear map L :

(1.2) S := L (A) ∈ Fd.

We refer to S as a sketch of the matrix, and L is called a sketching map. The number
d is called the dimension or size of the sketch.

The challenge is to make the sketch as small as possible while collecting enough
information to approximate the matrix accurately. In particular, we want the sketch
dimension d to be much smaller than the total dimension mn of the matrix A. As
a consequence, the sketching map L has a substantial null space. Therefore, it is
natural to draw the sketching map at random so that we are likely to extract useful
information from any fixed input matrix.

1.3. Why sketch? There are a number of situations where the sketching model
(1.2) is a natural mechanism for acquiring data about an input matrix.

First, imagine that A is a huge matrix that can only be stored outside of core
memory. The cost of data transfer may be substantial enough that we can only afford
to read the matrix into core memory once [19, sect. 5.5]. We can build a sketch
as we scan through the matrix. Other types of algorithms for this problem appear
in [15, 16].

Second, there are applications where the columns of the matrix A are revealed
one at a time, and we must be able to compute an approximation at any instant. One
approach is to maintain a sketch that is updated when a new column arrives. Other
types of algorithms for this problem appear in [4, 21].

Third, we may encounter a setting where the matrix A is presented as a sum of
ordered updates:

(1.3) A = H1 + H2 + H3 + H4 + · · · .

We must discard each innovation Hi after it is processed [9, 34]. In this case, the
random linear sketch (1.2) is more or less the only way to maintain a representation
of A through an arbitrary sequence of updates [23]. Our research was motivated by
a variant [36] of the model (1.3); see subsection 3.8.

1.4. Overview of algorithms. Let us summarize our basic approach to sketch-
ing and low-rank approximation of a matrix. Fix a target rank r and an input matrix
A ∈ Fm×n. Select sketch size parameters k and `. Draw and fix independent stan-
dard normal matrices Ω ∈ Fn×k and Ψ ∈ F`×m; see Definition 2.1. We realize the
randomized linear sketch (1.2) via left and right matrix multiplication:

(1.4) Y := AΩ and W := ΨA.

We can store the random matrices and the sketch using (k + `)(m+ n) scalars. The
arithmetic cost of forming the sketch is Θ((k+ `)mn) floating-point operations (flops)
for a general matrix A.

Given the random matrices (Ω,Ψ) and the sketch (Y ,W), we compute an ap-
proximation Â in three steps:

1. Form an orthogonal–triangular factorization Y =: QR, where Q ∈ Fm×k.
2. Solve a least-squares problem to obtain X := (ΨQ)†W ∈ Fk×n.
3. Construct the rank-k approximation Â := QX.

The total cost of this computation is Θ(kl(m + n)) flops. See subsection 4.2 for the
intuition behind this approach.

1456 J. A. TROPP, A. YURTSEVER, M. UDELL, AND V. CEVHER

Now, suppose that we set the sketch size parameters k = 2r + 1 and ` = 4r + 2.
For this choice, Theorem 4.3 yields the error bound

E ‖A− Â‖F ≤ 2 · min
rank(B)≤r

‖A−B‖F.

In other words, we typically obtain an approximation with rank ≈ 2r whose error
lies within twice the optimal rank-r error! Moreover, the total storage cost is about
6r(m + n), which is comparable to the number of degrees of freedom in an m × n
matrix with rank r, so the sketch size cannot be reduced substantially.

1.5. Our contributions. This paper presents a systematic treatment of sketch-
ing algorithms for low-rank approximation of a matrix. All of the methods rely on
the simple sketch (1.4) of the input matrix (subsection 3.5). The main algorithm uses
this sketch to compute a high-quality low-rank approximation Â of the input matrix
(Algorithm 4). We prove that this method automatically takes advantage of spectral
decay in the input matrix (Theorem 4.3); this result is new.

We also explain how to compute approximations with additional structure—
such as symmetry, positive semidefiniteness, or fixed rank—by projecting the initial
low-rank approximation onto the family of structured matrices (sections 5 and 6).
This approach ensures that the structured approximations also exploit spectral decay
(Fact 5.1 and Proposition 6.1). In the sketching context, this idea is new.

Each algorithm is accompanied by an informative error bound that provides a
good description of its actual behavior. As a consequence, we can offer the first
concrete guidance on algorithm parameters for various types of input matrices (sub-
section 4.5), and we can implement the methods with confidence. We also include
pseudocode and an accounting of computational costs.

The paper includes a collection of numerical experiments (section 7). This work
demonstrates that the recommended algorithms can significantly outperform alter-
native methods, especially when the input matrix has spectral decay. The empirical
work also confirms our guidance on parameter choices.

Our technical report [32] contains some more error bounds for the reconstruction
algorithms. It also documents additional numerical experiments.

1.6. Limitations. The algorithms in this paper are not designed for all low-
rank matrix approximation problems. They are specifically intended for environments
where we can only make a single pass over the input matrix or where the data matrix
is presented as a stream of linear updates. When it is possible to make multiple passes
over the input matrix, we recommend the low-rank approximation algorithms docu-
mented in [19]. Multipass methods are significantly more accurate because they drive
the error of the low-rank approximation down to the optimal low-rank approximation
error exponentially fast in the number of passes.

1.7. Overview of related work. Randomized algorithms for matrix approx-
imation date back to research [30, 17] in theoretical computer science (TCS) in the
late 1990s. Starting around 2004, this work inspired numerical analysts to develop
practical algorithms for matrix approximation and related problems [26]. See the pa-
per [19, sect. 2] for a comprehensive historical discussion. The surveys [25, 34] provide
more details about the development of these ideas within the TCS literature.

1.7.1. Sketching algorithms for matrix approximation. To the best of our
knowledge, the first sketching algorithm for low-rank matrix approximation appears
in Woolfe et al. [35, sect. 5.2]. Their primary motivation was to compute a low-rank

SKETCHING ALGORITHMS FOR MATRIX APPROXIMATION 1457

matrix approximation faster than any classical algorithm, rather than to work under
the constraints of a sketching model. A variant of their approach is outlined in [19,
sect. 5.5].

Clarkson and Woodruff [9] explicitly frame the question of how to perform numer-
ical linear algebra tasks under the sketching model (1.2). Among other things, they
develop algorithms and lower bounds for low-rank matrix approximation. Some of
the methods that we recommend are algebraically—but not numerically—equivalent
to formulas [9, Thms. 4.7 and 4.8] that they propose. Their work focuses on obtaining
a priori error bounds. In contrast, we also aim to help users implement the methods,
choose parameters, and obtain good empirical performance in practice. Additional
details appear throughout our presentation.

There are many subsequent theoretical papers on sketching algorithms for low-
rank matrix approximation, including [34, 12, 6]. This line of research exploits a
variety of tricks to obtain algorithms that, theoretically, attain better asymptotic up-
per bounds on computational resource usage. Subsection 7.3 contains a representative
selection of these methods and their guarantees.

1.7.2. Note added in press. When we wrote this paper, the literature did not
contain sketching methods tailored for symmetric or positive-semidefinite (psd) matrix
approximation. A theoretical paper [8] on algorithms for low-rank approximation of
a sparse psd matrix was released after our work appeared.

1.7.3. Error bounds. Almost all previous papers in this area have centered on
the following problem. Let A ∈ Fm×n be an input matrix, let r be a target rank, and
let ε > 0 be an error tolerance. Given a randomized linear sketch (1.2) of the input
matrix, produce a rank-r approximation Âeps that satisfies

(1.5) ‖A− Âeps‖2F ≤ (1 + ε) · min
rank(B)≤r

‖A−B‖2F with high probability.

To achieve (1.5) for a general input, the sketch must have dimension Ω(r(m + n)/ε)
[9, Thm. 4.10]. Furthermore, the analogous error bound for the spectral norm cannot
be achieved for all input matrices under the sketching model [34, Chap. 6.2]. Never-
theless, Gu [18, Thm. 3.4] has observed that (1.5) implies a weak error bound in the
spectral norm.

Li et al. [22, App.] caution that the guarantee (1.5) is often vacuous. For example,
we frequently encounter matrices for which the Frobenius-norm error of an optimal
rank-r approximation is larger than the Frobenius norm of the approximation itself.
In other settings, it may be necessary to compute an approximation with very high
accuracy. Either way, ε must be tiny before the bound (1.5) sufficiently constrains
the approximation error. For a general input matrix, to achieve a small value of ε,
the sketch size must be exorbitant. We tackle this issue by providing alternative error
estimates (e.g., Theorem 4.3) that yield big improvements for most examples.

1.7.4. Questions.... Our aim is to address questions that arise when one at-
tempts to use sketching algorithms in practice. For instance, how do we implement
these methods? Are they numerically stable? How should algorithm parameters de-
pend on the input matrix? What is the right way to preserve structural properties?
Which methods produce the best approximations in practice? How small an ap-
proximation error can we actually achieve? Does existing theoretical analysis predict
performance? Can we obtain error bounds that are more illuminating than (1.5)?
These questions have often been neglected in the literature.

1458 J. A. TROPP, A. YURTSEVER, M. UDELL, AND V. CEVHER

Our empirical study (section 7) highlights the importance of this inquiry. Surpris-
ingly, numerical experiments reveal that the pursuit of theoretical metrics has been
counterproductive. More recent algorithms often perform worse in practice, even
though—in principle—they offer better performance guarantees.

2. Background. In this section, we collect notation and conventions, as well as
some background on random matrices.

2.1. Notation and conventions. We write F for the scalar field, which is either
R or C. The letter I signifies the identity matrix; its dimensions are determined by
context. The asterisk ∗ refers to the (conjugate) transpose operation on vectors and
matrices. The dagger † is the Moore–Penrose pseudoinverse. The symbol ‖·‖F denotes
the Frobenius norm.

The expression “M has rank r” and its variants mean that the rank of M does not
exceed r. The symbol JMKr represents an optimal rank-r approximation of M with
respect to the Frobenius norm; this approximation need not be unique [20, sect. 6].

It is valuable to introduce notation for the error incurred by a best rank-r ap-
proximation in the Frobenius norm. For each natural number j, we define the jth tail
energy

(2.1) τ2
j (A) := min

rank(B)<j
‖A−B‖2F =

∑
i≥j

σ2
i (A).

We have written σi(A) for the ith largest singular value of A. The equality follows
from the Eckart–Young theorem; for example, see [20, sect. 6].

The symbol E denotes expectation with respect to all random variables. For
a given random variable Z, we write EZ to denote expectation with respect to the
randomness in Z only. Nonlinear functions bind before the expectation.

In the description of algorithms in the text, we primarily use standard mathe-
matical notation. In the pseudocode, we rely on some MATLAB R2017a functions in
an effort to make the presentation more concise.

We use the computer science interpretation of Θ(·) to refer to the class of functions
whose growth is bounded above and below up to a constant.

2.2. Standard normal matrices. Let us define an ensemble of random matri-
ces that plays a central role in this work.

Definition 2.1 (standard normal matrix). A matrix G ∈ Rm×n has the real
standard normal distribution if the entries form an independent family of standard
normal random variables (i.e., Gaussian with mean zero and variance one).

A matrix G ∈ Cm×n has the complex standard normal distribution if it has the
form G = G1+iG2, where G1 and G2 are independent, real standard normal matrices.

Standard normal matrices are also known as Gaussian matrices.

We introduce numbers α and β that reflect the field over which the random matrix
is defined:

(2.2) α := α(F) :=

{
1, F = R,
0, F = C,

and β := β(F) :=

{
1, F = R,
2, F = C.

This notation allows us to treat the real and complex cases simultaneously. The
number β is a standard parameter in random matrix theory.

SKETCHING ALGORITHMS FOR MATRIX APPROXIMATION 1459

Finally, we introduce notation to help make our theorem statements more suc-
cinct:

(2.3) f(s, t) :=
s

t− s− α
for integers that satisfy t > s+ α > α.

Observe that the function f(s, ·) is decreasing, with range (0, s].

3. Sketching the input matrix. First, we discuss how to collect enough data
about an input matrix to compute a low-rank approximation. We summarize the
matrix by multiplying it on the right and the left by random test matrices. The
dimension and distribution of these random test matrices together determine the
potential accuracy of the approximation.

3.1. The input matrix. Let A ∈ Fm×n be a matrix that we wish to approxi-
mate. Our algorithms work regardless of the relative dimensions of A, but there may
sometimes be small benefits if we apply them to A∗ instead.

3.2. The target rank. Let r be a target rank parameter with 1 ≤ r ≤ min{m,n}.
We aim to construct a low-rank approximation of A whose error is close to the op-
timal rank-r error. We explicitly allow approximations with rank somewhat larger
than r because they may be significantly more accurate.

Under the sketching model (1.2), the practitioner must use prior knowledge about
the input matrix A to determine a target rank r that will result in satisfactory error
guarantees. This decision is outside the scope of our work.

3.3. Parameters for the sketch. The sketch consists of two parts: a summary
of the range of A and a summary of the co-range. The parameter k controls the size
of the range sketch, and the parameter ` controls the size of the co-range sketch. They
should satisfy the conditions

(3.1) r ≤ k ≤ ` and k ≤ n and ` ≤ m.

We often choose k ≈ r and ` ≈ k. See (4.6) and subsection 4.5 below.
The parameters k and ` do not play symmetrical roles. We need ` ≥ k to ensure

that a certain `× k matrix has full column rank. Larger values of both k and ` result
in better approximations at the cost of more storage and arithmetic. These trade-offs
are quantified in what follows.

3.4. The test matrices. To form the sketch of the input matrix, we draw and
fix two (random) test matrices:

(3.2) Ω ∈ Fn×k and Ψ ∈ F`×m.

This paper contains a detailed analysis of the case where the test matrices are sta-
tistically independent and follow the standard normal distribution. Subsection 3.9
describes other potential distributions for the test matrices. We always state when
we are making distributional assumptions on the test matrices.

3.5. The sketch. The sketch of A ∈ Fm×n consists of two matrices:

(3.3) Y := AΩ ∈ Fm×k and W := ΨA ∈ F`×n.

The matrix Y collects information about the action of A, while the matrix W collects
information about the action of A∗. Both parts are necessary.

1460 J. A. TROPP, A. YURTSEVER, M. UDELL, AND V. CEVHER

Algorithm 1 Sketch for Low-Rank Approximation. Implements (3.2) and (3.3).

Require: Input matrix A ∈ Fm×n; sketch size parameters k ≤ `
Ensure: Constructs test matrices Ω ∈ Fn×k and Ψ ∈ F`×m, range sketch Y = AΩ ∈

Fm×k, and co-range sketch W = ΨA ∈ F`×n as private variables

1 private: Ω,Ψ,Y ,W . Internal variables for Sketch object
. Accessible to all Sketch methods

2 function Sketch(A; k, `) . Constructor
3 if F = R then
4 Ω← randn(n, k)
5 Ψ← randn(`,m)
6 if F = C then
7 Ω← randn(n, k) + i randn(n, k)
8 Ψ← randn(`,m) + i randn(`,m)
9 Ω← orth(Ω) . (optional) Improve numerical stability

10 Ψ∗ ← orth(Ψ∗) . (optional) Improve numerical stability
11 Y ← AΩ
12 W ← ΨA

Remark 3.1 (prior work). The matrix sketching algorithms that appear in [35,
sect. 5.2], [9, Thm. 4.9], [19, sect. 5.5], and [34, Thm. 4.3] all involve a sketch of the
form (3.3). In contrast, the most recent approaches ([6, sect. 6.1.2] and [33, sect. 3])
use more complicated sketches; see subsection 7.3.2.

3.6. The sketch as an abstract data type. We present the sketch as an
abstract data type using ideas from object-oriented programming. Sketch is an
object that contains information about a specific matrix A. The test matrices (Ω,Ψ)
and the sketch matrices (Y ,W) are private variables that are only accessible to the
Sketch methods. A user interacts with the Sketch object by initializing it with a
specific matrix and by applying linear updates. The user can query the Sketch object
to obtain an approximation of the matrix A with specific properties. The individual
algorithms described in this paper are all methods that belong to the Sketch object.

3.7. Initializing the sketch and its costs. See Algorithm 1 for pseudocode
that implements the sketching procedure (3.2) and (3.3) with either standard normal
test matrices (default) or random orthonormal test matrices (optional steps). Note
that the orthogonalization step requires additional arithmetic and communication.

The storage cost for the sketch (Y ,W) is mk+ `n floating-point numbers in the
field F. The storage cost for two standard normal test matrices is nk + `m floating-
point numbers in F. Some other types of test matrices (Ω,Ψ) have lower storage
costs, but the sketch (Y ,W) remains the same size.

For standard normal test matrices, the arithmetic cost of forming the sketch (3.3)
is Θ((k + `)mn) flops when A is dense. If A is sparse, the cost is proportional to
the number nnz(A) of nonzero entries: Θ((k + `) nnz(A)) flops. Other types of test
matrices sometimes yield lower arithmetic costs.

SKETCHING ALGORITHMS FOR MATRIX APPROXIMATION 1461

Algorithm 2 Linear Update to Sketch. Implements (3.4).

Require: Update matrix H ∈ Fm×n; scalars θ, η ∈ F
Ensure: Modifies sketch (Y ,W) to reflect linear update A← θA + ηH

1 function Sketch.LinearUpdate(H; θ, η)
2 Y ← θY + ηHΩ . Linear update to range sketch
3 W ← θW + ηΨH . Linear update to co-range sketch

3.8. Processing linear updates. The sketching model (3.3) supports a linear
update that is more general than (1.3). Suppose the input matrix A is modified as

A← θA + ηH, where θ, η ∈ F.

Then we update the sketch (3.3) via the rule

(3.4) Y ← θY + ηHΩ and W ← θW + ηΨH.

The precise cost of the computation depends on the structure of H. See Algorithm 2
for the pseudocode. This type of update is crucial for certain applications [36].

3.9. Choosing the distribution of the test matrices. Our analysis is spe-
cialized to the case where the test matrices Ω and Ψ are standard normal so that we
can obtain highly informative error bounds.

But there are potential benefits from implementing the sketch using test matrices
drawn from another distribution. The choice of distribution leads to some trade-
offs in the range of permissible parameters; the costs of randomness, arithmetic, and
communication to generate the test matrices; the storage costs for the test matrices
and the sketch; the arithmetic costs for sketching and updates; the numerical stability
of matrix approximation algorithms; and the quality of a priori error bounds.

Let us list some of the contending distributions along with background references.
We have ranked these in decreasing order of reliability.

• Orthonormal. The optional steps in Algorithm 1 generate matrices Ω and
Ψ∗ with orthonormal columns that span uniformly random subspaces of di-
mension k and `. When k and ` are very large, these matrices result in smaller
errors and better numerical stability than Gaussians [14, 19].

• Gaussian. Following [26, 19], this paper focuses on test matrices with the
standard normal distribution. Benefits include excellent practical perfor-
mance and accurate a priori error bounds.

• Rademacher. These test matrices have independent Rademacher1 entries.
Their behavior is similar to Gaussian test matrices, but there are minor im-
provements in the cost of storage and arithmetic, as well as the amount of
randomness required. For example, see [9].

• Subsampled randomized Fourier transform (SRFT). These test ma-
trices take the form

(3.5) Ω = D1F1P1 and Ψ = P2F
∗
2 D2,

1A Rademacher random variable takes the values ±1 with equal probability.

1462 J. A. TROPP, A. YURTSEVER, M. UDELL, AND V. CEVHER

where D1 ∈ Fn×n and D2 ∈ Fm×m are diagonal matrices with independent
Rademacher entries; F1 ∈ Fn×n and F2 ∈ Fm×m are discrete cosine transform
(F = R) or discrete Fourier transform (F = C) matrices; and P1 ∈ Fn×k and
P2 ∈ F`×m are restrictions onto k and ` coordinates, chosen uniformly at
random. These matrices work well in practice, they require a modest amount
of storage, and they support fast arithmetic. See [1, 35, 2, 19, 31, 5, 13].

• Ultrasparse Rademacher. Let s be a sparsity parameter. In each row
of Ω and column of Ψ, we place independent Rademacher random variables
in s uniformly random locations; the remaining entries of the test matrices
are zero. These matrices help control storage, arithmetic, and randomness
costs. On the other hand, they are somewhat less reliable. For more details,
see [10, 28, 27, 29, 34, 3, 11].

Except for ultrasparse Rademacher matrices, these distributions often behave quite
like a Gaussian distribution in practice [19, sect. 7.4]. An exhaustive comparison of
distributions for the test matrices is outside the scope of this paper; see [24].

4. Low-rank approximation from the sketch. Suppose that we have ac-
quired a sketch (Y ,W) of the input matrix A, as in (3.2) and (3.3). This section
presents the most basic algorithm for computing a low-rank approximation of A from
the data in the sketch. This simple approach is similar to earlier proposals; see [35,
sect. 5.2], [9, Thm. 4.7], [19, sect. 5.5], and [34, Thm. 4.3, display 1].

We have obtained the first accurate error bound for this method. Our result
shows how the spectrum of the input matrix affects the approximation quality. This
analysis allows us to make parameter recommendations for specific input matrices.

In section 5, we explain how to refine this algorithm to obtain approximations
with additional structure. In section 6, we describe modifications of the procedures
that produce approximations with fixed rank and additional structure. Throughout,
we maintain the notation of section 3.

4.1. The main algorithm. Our goal is to produce a low-rank approximation
of the input matrix A using only the knowledge of the test matrices (Ω,Ψ) and the
sketch (Y ,W). Here is the basic method.

The first step in the procedure is to compute an orthobasis for the range of Y by
means of an orthogonal–triangular factorization:

(4.1) Y =: QR, where Q ∈ Fm×k.

The matrix Q has orthonormal columns; we discard the triangular matrix R. The
second step uses the co-range sketch W to form the matrix

(4.2) X := (ΨQ)†W ∈ Fk×n.

The random matrix ΨQ ∈ F`×k is very well-conditioned when ` � k, so we can
perform this computation accurately by solving a least-squares problem. We report
the rank-k approximation

(4.3) Â := QX ∈ Fm×n, where Q ∈ Fm×k and X ∈ Fk×n.

The factors Q and X are defined in (4.1) and (4.2).

Remark 4.1 (prior work). The approximation Â is algebraically, but not numer-
ically, equivalent with the approximation that appears in Clarkson and Woodruff [9,
Thm. 4.7]; see also [34, Thm. 4.3, display 1]. Our formulation improves upon theirs
by avoiding a badly conditioned least-squares problem.

SKETCHING ALGORITHMS FOR MATRIX APPROXIMATION 1463

Algorithm 3 Simplest Low-Rank Approximation. Implements (4.3).

Ensure: For some q ≤ k, returns factors Q ∈ Fm×q with orthonormal columns and
X ∈ Fq×n that form a rank-q approximation Âout = QX of the sketched matrix

1 function Sketch.SimpleLowRankApprox()
2 Q← orth(Y) . Orthobasis for range of Y
3 X ← (ΨQ)\W . Multiply (ΨQ)† on left side of W
4 return (Q,X)

Algorithm 4 Low-Rank Approximation. Implements (4.3).

Ensure: Returns factors Q ∈ Fm×k with orthonormal columns and X ∈ Fk×n that
form a rank-k approximation Âout = QX of the sketched matrix

1 function Sketch.LowRankApprox()
2 (Q,∼)← qr(Y , 0) . Orthobasis for range of Y
3 (U ,T)← qr(ΨQ, 0) . Orthogonal–triangular factorization
4 X ← T †(U∗W) . Apply inverse by back-substitution
5 return (Q,X)

4.2. Intuition. To motivate the algorithm, we recall a familiar heuristic [19,
sect. 1] from randomized linear algebra, which states that

(4.4) A ≈ QQ∗A.

Although we would like to form the rank-k approximation Q(Q∗A), we cannot com-
pute the factor Q∗A without revisiting the input matrix A. Instead, we exploit the
information in the co-range sketch W = ΨA. Notice that

W = Ψ(QQ∗A) + Ψ(A−QQ∗A) ≈ (ΨQ)(Q∗A).

The heuristic (4.4) justifies dropping the second term. Multiplying on the left by the
pseudoinverse (ΨQ)†, we arrive at the relation

X = (ΨQ)†W ≈ Q∗A.

These considerations suggest that

Â = QX ≈ QQ∗A ≈ A.

One of our contributions is to give substance to these nebulae.

Remark 4.2 (prior work). This intuition is inspired by the discussion in [19,
sect. 5.5], and it allows us to obtain sharp error bounds. Our approach is quite
different from that of [9, Thm. 4.7] or [34, Thm. 4.3].

4.3. Algorithm and costs. Algorithms 3 and 4 give pseudocode for computing
the approximation (4.3). The first presentation uses MATLAB functions to abbreviate
some of the steps, while the second includes more implementation details. Note that
the use of the orth command may result in an approximation with rank q for some
q ≤ k, but the quality of the approximation does not change.

1464 J. A. TROPP, A. YURTSEVER, M. UDELL, AND V. CEVHER

Let us summarize the costs of the approximation procedure (4.1)–(4.3), as imple-
mented in Algorithm 4. The algorithm has working storage of O (k(m+ n)) floating-
point numbers. The arithmetic cost is Θ(k`(m+n)) flops, which is dominated by the
matrix–matrix multiplications. The orthogonalization step and the back-substitution
require Θ(k2(m+ n)) flops, which is almost as significant.

4.4. A bound for the Frobenius-norm error. We have established a very
accurate error bound for the approximation (4.3) that is implemented in Algorithms 3
and 4. This analysis is one of the key contributions of this paper.

Theorem 4.3 (low-rank approximation: Frobenius error). Assume that the sketch
size parameters satisfy ` > k+α. Draw random test matrices Ω ∈ Fn×k and Ψ ∈ F`×m
independently from the standard normal distribution. Then the rank-k approximation
Â obtained from formula (4.3) satisfies

(4.5)

E ‖A− Â‖2F ≤ (1 + f(k, `)) · min
%<k−α

(1 + f(%, k)) · τ2
%+1(A)

=
k

`− k − α
· min
%<k−α

k

k − %− α
· τ2
%+1(A).

The index % ranges over natural numbers. The quantities α(R) := 1 and α(C) := 0;
the function f(s, t) := s/(t− s− α); and the tail energy τ2

j is defined in (2.1).

The proof of Theorem 4.3 appears below in Appendix A.3.
To begin to understand Theorem 4.3, it is helpful to consider a specific parameter

choice. Let r be the target rank of the approximation, and select

(4.6) k = 2r + α and ` = 2k + α.

For these sketch size parameters, with % = r, Theorem 4.3 implies that

E ‖A− Â‖2F ≤ 4 · τ2
r+1(A).

In other words, for k ≈ 2r, we can construct a rank-k approximation of A that
has almost the same quality as a best rank-r approximation. This parameter choice
balances the sketch size against the quality of approximation.

But the true meaning of Theorem 4.3 lies deeper. The minimum in (4.5) reveals
that the approximation (4.3) automatically takes advantage of decay in the tail energy.
This fundamental fact explains the strong empirical performance of (4.3) and other
approximations derived from it. Our analysis is the first to identify this feature.

Remark 4.4 (prior work). The analysis in [9, Thm. 3.7] shows that Â achieves
a bound of the form (1.5) when the sketch size parameters scale as k = Θ(r/ε) and
` = Θ(k/ε). A precise variant of the same statement follows from Theorem 4.3.

Remark 4.5 (high-probability error bound). The expectation bound presented in
Theorem 4.3 also describes the typical behavior of the approximation (4.3) because
of measure concentration effects. It is possible to develop a high-probability bound
using the methods from [19, sect. 10.3].

Remark 4.6 (spectral-norm error bound). It is also possible to develop bounds for
the spectral-norm error incurred by the approximation (4.3). These results depend
on the decay of both the singular values and the tail energies. See [32, Thm. 4.2].

SKETCHING ALGORITHMS FOR MATRIX APPROXIMATION 1465

Table 1
Theoretical sketch size parameters. This table summarizes how to choose the sketch size pa-

rameters (k, `) to exploit prior information about the spectrum of the input matrix A.

Problem regime Notation Equation
General purpose (k\, `\) (4.9)
Flat spectrum (k[, `[) (4.7) and (4.8)

Decaying spectrum (k\, `\) (4.9)
Rapidly decaying spectrum (k], `]) (4.10)

4.5. Theoretical guidance on the sketch size. Theorem 4.3 is precise enough
to predict the performance of the approximation (4.3) for many types of input ma-
trices. As a consequence, we can offer concrete guidance on the best sketch size
parameters (k, `) for various applications.

Observe that the storage cost of the sketch (3.3) is directly proportional to the
sum T := k + ` of the sketch size parameters k and `. In this section, we investigate
the best way to apportion k and ` when we fix the target rank r and the total sketch
size T . Throughout this discussion, we assume that T ≥ 2r+ 3α+ 3. See Table 1 for
a summary of these rules; see subsection 7.5 for an empirical evaluation.

4.5.1. Flat spectrum. First, suppose that the singular values σj(A) of the
input matrix A do not decay significantly for j > r. This situation occurs, for
example, when the input is a rank-r matrix plus white noise.

In this setting, the minimum in (4.5) is likely to occur when % ≈ r. It is natural
to set % = r and to minimize the resulting bound subject to the constraints k+ ` = T
and k > r + α and ` > k + α. For F = C, we obtain the parameter recommendations

(4.7) k[:= max

{
r + 1,

⌊
T ·
√
r(T − r)− r
T − 2r

⌋}
and `[:= T − k[.

In the case F = R, we modify the formula (4.7) so that

(4.8) k[:= max

{
r + 2,

⌊
(T − 1) ·

√
r(T − r − 2)(1− 2/(T − 1))− (r − 1)

T − 2r − 1

⌋}
.

We omit the routine details behind these calculations.

4.5.2. Decaying spectrum or spectral gap. Suppose that the singular values
σj(A) decay at a slow to moderate rate for j > r. Alternatively, we may suppose that
there is a gap in the singular value spectrum at an index j > r.

In this setting, we want to exploit decay in the tail energy by setting k � r, but
we need to ensure that the term f(k, `) in (4.5) remains small by setting ` ≈ 2k + α.
This intuition leads to the parameter recommendations

(4.9) k\ := max{r + α+ 1, b(T − α)/3c} and `\ := T − k\.

This is the best single choice for handling a range of examples. The parameter rec-
ommendation (4.6) is an instance of (4.9) with a minimal value of T .

4.5.3. Rapidly decaying spectrum. Last, assume that the singular values
σj(A) decay very quickly for j > r. This situation occurs in the application [36] that
motivated us to write this paper.

1466 J. A. TROPP, A. YURTSEVER, M. UDELL, AND V. CEVHER

In this setting, we want to exploit decay in the tail energy fully by setting k as large
as possible; the benefit outweighs the increase in f(k, `) from choosing ` = k+ α+ 1,
the minimum possible value. This intuition leads to the parameter recommendations

(4.10) k] := b(T − α− 1)/2c and `] := T − k].

Note that the choice (4.10) is unwise unless the input matrix has sharp spectral decay.

5. Low-rank approximations with convex structure. In many instances,
we need to reconstruct an input matrix that has additional structure, such as sym-
metry or positive-semidefiniteness. The approximation formula (4.3) from section 4
produces an approximation with no special properties aside from a bound on its rank.
Therefore, we may have to reform our approximation to instill additional virtues.

In this section, we consider a class of problems where the input matrix belongs
to a convex set, and we seek an approximation that belongs to the same set. To
accomplish this goal, we replace our initial approximation with the closest point in
the convex set. This procedure always improves the Frobenius-norm error.

We address two specific examples: (i) the case where the input matrix is conjugate
symmetric, and (ii) the case where the input matrix is positive-semidefinite (psd).
In both situations, we must design the algorithm carefully to avoid forming large
matrices.

5.1. Projection onto a convex set. Let C be a closed and convex set of
matrices in Fm×n. Define the projector ΠC onto the set C to be the map

ΠC : Fm×n → C where ΠC(M) := arg min
{
‖C −M‖2F : C ∈ C

}
.

The arg min operator returns the matrix C? ∈ C that solves the optimization problem.
The solution C? is uniquely determined because the squared Frobenius norm is strictly
convex and the constraint set C is closed and convex.

5.2. Structure via convex projection. Suppose that the input matrix A be-
longs to the closed convex set C ⊂ Fm×n. Let Âin ∈ Fm×n be an initial approximation
of A. We can produce a new approximation ΠC(Âin) by projecting the initial approx-
imation onto the constraint set. This procedure always improves the approximation
quality in Frobenius norm.

Fact 5.1 (convex structure reduces error). Let C ∈ Fm×n be a closed convex set,
and suppose that A ∈ C. For any initial approximation Âin ∈ Fm×n,

(5.1) ‖A−ΠC(Âin)‖F ≤ ‖A− Âin‖F.

This result is well known in convex analysis. It follows directly from the first-
order optimality conditions [7, sect. 4.2.3] for the Frobenius-norm projection of a
matrix onto the set C. We omit the details.

Warning 5.2 (spectral norm). Fact 5.1 does not hold if we replace the Frobenius
norm by the spectral norm.

5.3. Low-rank approximation with conjugate symmetry. When the input
matrix is conjugate symmetric, it is often critical to produce a conjugate symmetric
approximation. We can do so by combining the simple approximation from section 4
with the projection step outlined in subsection 5.1.

SKETCHING ALGORITHMS FOR MATRIX APPROXIMATION 1467

5.3.1. Conjugate symmetric projection. Define the set Hn(F) of conjugate
symmetric matrices with dimension n over the field F:

Hn := Hn(F) := {C ∈ Fn×n : C = C∗}.

The set Hn(F) is convex because it forms a real-linear subspace in Fn×n. In what
follows, we omit the field F from the notation unless there is a possibility of confusion.

The projection Msym of a matrix M ∈ Fn×n onto the set Hn takes the form

(5.2) Msym := ΠHn(M) =
1
2

(M + M∗).

For example, see [20, sect. 2].

5.3.2. Computing a conjugate symmetric approximation. Assume that
the input matrix A ∈ Hn is conjugate symmetric. Let Â := QX be an initial rank-k
approximation of A obtained from the approximation procedure (4.3). We can form
a better Frobenius-norm approximation Âsym by projecting Â onto Hn:

(5.3) Âsym := ΠHn(Â) =
1
2

(Â + Â∗) =
1
2

(QX + X∗Q∗).

The second relation follows from (5.2).
In most cases, it is preferable to present the approximation (5.3) in factored form.

To do so, we observe that

1
2

(QX + X∗Q∗) =
1
2
[
Q X∗

] [0 I
I 0

] [
Q X∗

]∗
.

Concatenate Q and X∗, and compute the orthogonal–triangular factorization

(5.4)
[
Q X∗

]
=: U

[
T1 T2

]
, where U ∈ Fn×2k and T1 ∈ F2k×k.

Of course, we only need to orthogonalize the k columns of X∗, which permits some
computational efficiencies. Next, introduce the matrix

(5.5) S :=
1
2
[
T1 T2

] [0 I
I 0

] [
T1 T2

]∗ =
1
2

(T1T
∗
2 + T2T

∗
1) ∈ F2k×2k.

Combine the last four displays to obtain the rank-(2k) conjugate symmetric approxi-
mation

(5.6) Âsym = USU∗.

From this expression, it is easy to obtain other types of factorizations, such as an
eigenvalue decomposition, by further processing.

5.3.3. Algorithm, costs, and error. Algorithm 5 contains pseudocode for
producing a conjugate symmetric approximation of the form (5.6) from a sketch of
the input matrix. One can make this algorithm slightly more efficient by taking
advantage of the fact that Q already has orthogonal columns; we omit the details.

For Algorithm 5, the total working storage is Θ(kn) and the arithmetic cost is
Θ(k`n). These costs are dominated by the call to Sketch.LowRankApprox.

Combining Theorem 4.3 with Fact 5.1, we have the following bound on the error of
the symmetric approximation (5.6), implemented in Algorithm 5. As a consequence,
the parameter recommendations from subsection 4.5 are also valid here.

1468 J. A. TROPP, A. YURTSEVER, M. UDELL, AND V. CEVHER

Algorithm 5 Low-Rank Symmetric Approximation. Implements (5.6).

Require: Matrix dimensions m = n
Ensure: For q = 2k, returns factors U ∈ Fn×q with orthonormal columns and S ∈ Hq

that form a rank-q conjugate symmetric approximation Âout = USU∗ of the
sketched matrix

1 function Sketch.LowRankSymApprox()
2 (Q,X)← LowRankApprox() . Get Âin = QX
3 (U ,T)← qr([Q,X∗], 0) . Orthogonal factorization of concatenation
4 T1 ← T (:, 1:k) and T2 ← T (:, (k + 1):(2k)) . Extract submatrices
5 S ← (T1T

∗
2 + T2T

∗
1)/2 . Symmetrize

6 return (U ,S) . Return factors

Corollary 5.3 (low-rank symmetric approximation). Assume that the input ma-
trix A ∈ Hn(F) is conjugate symmetric, and assume that the sketch size parameters
satisfy ` > k+α. Draw random test matrices Ω ∈ Fn×k and Ψ ∈ F`×n independently
from the standard normal distribution. Then the rank-(2k) conjugate symmetric ap-
proximation Âsym produced by (5.3) or (5.6) satisfies

E ‖A− Âsym‖2F ≤ (1 + f(k, `)) · min
%<k−α

(1 + f(%, k)) · τ2
%+1(A).

The index % ranges over natural numbers. The quantities α(R) := 1 and α(C) := 0;
the function f(s, t) := s/(t− s− α); and the tail energy τ2

j is defined in (2.1).

5.4. Low-rank positive-semidefinite approximation. We often encounter
the problem of approximating a psd matrix. In many situations, it is important to
produce an approximation that maintains positivity. Our approach combines the
approximation (4.3) from section 4 with the projection step from subsection 5.1.

5.4.1. Positive-semidefinite projection. We introduce the set Hn
+(F) of psd

matrices with dimension n over the field F:

Hn
+ := Hn

+(F) :=
{
C ∈ Hn : z∗Cz ≥ 0 for each z ∈ Fn

}
.

The set Hn
+(F) is convex because it is an intersection of half-spaces. In what follows,

we omit the field F from the notation unless there is a possibility for confusion.
Given a matrix M ∈ Fn×n, we construct its projection onto the set Hn

+ in three
steps. First, form the projection Msym := ΠHn(M) onto the conjugate symmetric
matrices, as in (5.2). Second, compute an eigenvalue decomposition Msym =: V DV ∗.
Third, form D+ by zeroing out the negative entries of D. Then the projection M+
of the matrix M onto Hn

+ takes the form

M+ := ΠHn
+

(M) = V D+V ∗.

For example, see [20, sect. 3].

5.4.2. Computing a positive-semidefinite approximation. Assume that
the input matrix A ∈ Hn

+ is psd. Let Â := QX be an initial approximation of A
obtained from the approximation procedure (4.3). We can form a psd approximation
Â+ by projecting Â onto the set Hn

+.

SKETCHING ALGORITHMS FOR MATRIX APPROXIMATION 1469

Algorithm 6 Low-Rank Positive-Semidefinite Approximation. Implements (5.7).

Require: Matrix dimensions m = n
Ensure: For q = 2k, returns factors U ∈ Fn×q with orthonormal columns and non-

negative, diagonal D ∈ Hq
+ that form a rank-q psd approximation Âout = UDU∗

of the sketched matrix

1 function Sketch.LowRankPSDApprox()
2 (U ,S)← LowRankSymApprox() . Get Âin = USU∗

3 (V ,D)← eig(S) . Form eigendecomposition
4 U ← UV . Consolidate orthonormal factors
5 D ← max(D, 0) . Zero out negative eigenvalues
6 return (U ,D)

To do so, we repeat the computations (5.4) and (5.5) to obtain the symmetric
approximation Âsym presented in (5.6). Next, form an eigenvalue decomposition of
the matrix S given by (5.5):

S =: V DV ∗.

In view of (5.6), we obtain an eigenvalue decomposition of Âsym:

Âsym = (UV)D(UV)∗.

To obtain the psd approximation Â+, we simply replace D by its nonnegative part
D+ to arrive at the rank-(2k) psd approximation

(5.7) Â+ := ΠHn
+

(Â) = (UV)D+(UV)∗.

This formula delivers an approximate eigenvalue decomposition of the input matrix.

5.4.3. Algorithm, costs, and error. Algorithm 6 contains pseudocode for
producing a psd approximation of the form (5.7) from a sketch of the input matrix.
As in Algorithm 5, some additional efficiencies are possible

The costs of Algorithm 6 are similar with the symmetric approximation method,
Algorithm 5. The working storage cost is Θ(kn), and the arithmetic cost is Θ(k`n).

Combining Theorem 4.3 and Fact 5.1, we obtain a bound on the approximation
error identical to Corollary 5.3. We omit the details.

6. Fixed-rank approximations from the sketch. The algorithms in sec-
tions 4 and 5 produce high-quality approximations with rank k, but we sometimes
need to reduce the rank to match the target rank r. At the same time, we may have
to impose additional structure. This section explains how to develop algorithms that
produce a rank-r structured approximation.

The technique is conceptually similar to the approach in section 5. We project
an initial high-quality approximation onto the set of rank-r matrices. This procedure
preserves both conjugate symmetry and the psd property. The analysis in subsec-
tion 5.1 does not apply because the set of matrices with fixed rank is not convex. We
present a general argument to show that the cost is negligible.

6.1. A general error bound for fixed-rank approximation. If we have a
good initial approximation of the input matrix, we can replace this initial approxima-
tion by a fixed-rank matrix without increasing the error significantly.

1470 J. A. TROPP, A. YURTSEVER, M. UDELL, AND V. CEVHER

Proposition 6.1 (error for fixed-rank approximation). Let A ∈ Fm×n be a input
matrix, and let Âin ∈ Fm×n be an approximation. For any rank parameter r,

(6.1) ‖A− JÂinKr‖F ≤ τr+1(A) + 2‖A− Âin‖F.

Recall that J·Kr returns a best rank-r approximation with respect to the Frobenius norm.

Proof. Calculate that

‖A− JÂinKr‖F ≤ ‖A− Âin‖F + ‖Âin − JÂinKr‖F
≤ ‖A− Âin‖F + ‖Âin − JAKr‖F
≤ 2‖A− Âin‖F + ‖A− JAKr‖F.

The first and last relations are triangle inequalities. To reach the second line, note
that JÂinKr is a best rank-r approximation of Âin, while JAKr is an undistinguished
rank-r matrix. Finally, identify the tail energy (2.1).

Remark 6.2 (spectral norm). A result analogous to Proposition 6.1 also holds
with respect to the spectral norm. The proof is the same.

6.2. Fixed-rank approximation from the sketch. Suppose that we wish to
compute a rank-r approximation of the input matrix A ∈ Fm×n. First, we form
an initial approximation Â := QX using the procedure (4.3). Then we obtain a
rank-r approximation JÂKr of the input matrix by replacing Â with its best rank-r
approximation in the Frobenius norm:

(6.2) JÂKr = JQXKr.

We can complete this operation by working directly with the factors. Indeed,
suppose that X = UΣV ∗ is an SVD of X. Then QX has an SVD of the form

QX = (QU)ΣV ∗.

As such, there is also a best rank-r approximation of QX that satisfies

JQXKr = (QU)JΣKrV ∗ = QJXKr.

Therefore, the desired rank-r approximation (6.2) can also be expressed as

(6.3) JÂKr = QJXKr.

The formula (6.3) is more computationally efficient than (6.2) because the factor
X ∈ Fk×n is much smaller than the approximation Â ∈ Fm×n.

Remark 6.3 (prior work). The approximation JÂKr is algebraically, but not nu-
merically, equivalent to a formula proposed by Clarkson and Woodruff [9, Thm. 4.8].
As above, our formulation improves upon theirs by avoiding a badly conditioned
least-squares problem.

6.2.1. Algorithm and costs. Algorithm 7 contains pseudocode for computing
the fixed-rank approximation (6.3).

The fixed-rank approximation in Algorithm 7 has storage and arithmetic costs
on the same order as the simple low-rank approximation (Algorithm 3). Indeed,
to compute the truncated SVD and perform the matrix–matrix multiplication, we
expend only Θ(k2n) additional flops. Thus, the total working storage is Θ(k(m+ n))
numbers and the arithmetic cost is Θ(k`(m+ n)) flops.

SKETCHING ALGORITHMS FOR MATRIX APPROXIMATION 1471

Algorithm 7 Fixed-Rank Approximation. Implements (6.3).

Require: Target rank r ≤ k
Ensure: Returns factors Q ∈ Fm×r and V ∈ Fn×r with orthonormal columns and

nonnegative diagonal Σ ∈ Fr×r that form a rank-r approximation Âout = QΣV ∗

of the sketched matrix

1 function Sketch.FixedRankApprox(r)
2 (Q,X)← LowRankApprox() . Get Âin = QX
3 (U ,Σ,V)← svds(X, r) . Form full SVD and truncate
4 Q← QU . Consolidate orthonormal factors
5 return (Q,Σ,V)

6.2.2. A bound for the error. We can obtain an error bound for the rank-r
approximation (6.3) by combining Theorem 4.3 and Proposition 6.1.

Corollary 6.4 (fixed-rank approximation: Frobenius-norm error). Assume the
sketch size parameters satisfy k > r + α and ` > k + α. Draw random test matrices
Ω ∈ Fn×k and Ψ ∈ F`×m independently from the standard normal distribution. Then
the rank-r approximation JÂKr obtained from the formula (6.3) satisfies

(6.4) E ‖A − JÂKr‖F ≤ τr+1(A) + 2
√

1 + f(k, `) · min
%<k−α

√
1 + f(%, k) · τ%+1(A).

The index % ranges over natural numbers. The quantities α(R) := 1 and α(C) := 0;
the function f(s, t) := s/(t− s− α); and the tail energy τ2

j is defined in (2.1).

This result indicates that the fixed-rank approximation JÂKr automatically ex-
ploits spectral decay in the input matrix A. Moreover, we can still rely on the
parameter recommendations from subsection 4.5. Ours is the first theory to provide
these benefits.

Remark 6.5 (prior work). The analysis [9, Thm. 4.8] of Clarkson and Woodruff
implies that the approximation (6.3) can achieve the bound (1.5) for any ε > 0,
provided that k = Θ(r/ε2) and ` = Θ(k/ε2). It is possible to improve this scaling;
see [32, Thm. 5.1].

Remark 6.6 (spectral-norm error bound). It is possible to obtain an error bound
for the rank-r approximation (6.3) with respect to the spectral norm by combining
[32, Thm. 4.2] and Remark 6.2.

6.3. Fixed-rank conjugate symmetric approximation. Assume that the
input matrix A ∈ Hn is conjugate symmetric, and we wish to compute a rank-r
conjugate symmetric approximation. First, form an initial approximation Âsym using
the procedure (5.6) in subsection 5.3.2. Then compute an r-truncated eigenvalue
decomposition of the matrix S defined in (5.5):

S =: V JDKrV ∗ + approximation error.

In view of the representation (5.6),

(6.5) JÂsymKr = (UV)JDKr(UV)∗.

Algorithm 8 contains pseudocode for the fixed-rank approximation (6.5). The total
working storage is Θ(kn), and the arithmetic cost is Θ(k`n).

1472 J. A. TROPP, A. YURTSEVER, M. UDELL, AND V. CEVHER

Algorithm 8 Fixed-Rank Symmetric Approximation. Implements (6.5).

Require: Matrix dimensions m = n; target rank r ≤ k
Ensure: Returns factors U ∈ Fn×r with orthonormal columns and diagonal D ∈ Hr

that form a rank-r conjugate symmetric approximation Âout = UDU∗ of the
sketched matrix

1 function Sketch.FixedRankSymApprox(r)
2 (U ,S)← LowRankSymApprox() . Get Âin = USU∗

3 (V ,D)← eigs(S, r, ’lm’) . Truncate full eigendecomposition
4 U ← UV . Consolidate orthonormal factors
5 return (U ,D)

Algorithm 9 Fixed-Rank PSD Approximation. Implements (6.6).

Require: Matrix dimensions m = n; target rank r ≤ k
Ensure: Returns factors U ∈ Fn×r with orthonormal columns and nonnegative,

diagonal D ∈ Hr
+ that form a rank-r psd approximation Âout = UDU∗ of the

sketched matrix

1 function Sketch.FixedRankPSDApprox(r)
2 (U ,S)← LowRankSymApprox() . Get Âin = USU∗

3 (V ,D)← eigs(S, r, ’lr’) . Truncate full eigendecomposition
4 U ← UV . Consolidate orthonormal factors
5 D ← max(D, 0) . Zero out negative eigenvalues
6 return (U ,D)

If A is conjugate symmetric, then Corollary 5.3 and Proposition 6.1 show that
JÂsymKr admits an error bound identical to Corollary 6.4. We omit the details.

6.4. Fixed-rank positive-semidefinite approximation. Assume that the in-
put matrix A ∈ Hn

+ is psd, and we wish to compute a rank-r psd approximation
JÂ+Kr. First, form an initial approximation Â+ using the procedure (5.7) in sub-
section 5.4.2. Then compute an r-truncated positive eigenvalue decomposition of the
matrix S defined in (5.5):

S =: V JD+KrV ∗ + approximation error.

In view of the representation (5.7),

(6.6) JÂ+Kr = (UV)JD+Kr(UV)∗.

Algorithm 9 contains pseudocode for the fixed-rank psd approximation (6.6). The
working storage is Θ(kn), and the arithmetic cost is Θ(k`n). If A is psd, then Corol-
lary 5.3 and Proposition 6.1 show that JÂpsdKr satisfies an error bound identical to
Corollary 6.4; we omit the details.

7. Computational experiments. This section presents the results of some
numerical tests designed to evaluate the empirical performance of our sketching algo-
rithms for low-rank matrix approximation. We demonstrate that the approximation
quality improves when we impose structure, and we show that our theoretical param-
eter choices are effective. The presentation also includes comparisons with several
other algorithms from the literature.

SKETCHING ALGORITHMS FOR MATRIX APPROXIMATION 1473

j
10

0
10

1
10

2
10

3

j
th

si
n
g
u
la
r
v
a
lu
e

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

LowRank

LowRankMed

LowRankHigh

j
10

0
10

1
10

2
10

3

10
-5

10
-4

10
-3

10
-2

10
-1

10
0 PolySlow

PolyFast

ExpSlow

ExpFast

j
10

0
10

1
10

2
10

3

10
-15

10
-12

10
-9

10
-6

10
-3

10
0

Data

Fig. 1. Spectra of input matrices. These plots display the singular value spectrum for an
input matrix from each of the classes (LowRank, LowRankMedNoise, LowRankHiNoise, PolyDecaySlow,
PolyDecayFast, ExpDecaySlow, ExpDecayFast, Data) described in subsection 7.2.

7.1. Overview of experimental setup. For our numerical assessment, we
work with the complex field (F = C). Results for the real field (F = R) are similar.

Let us summarize the procedure for studying the behavior of a specified approxi-
mation method on a given input matrix. Fix the input matrix A and the target rank
r. Then select a pair (k, `) of sketch size parameters where k ≥ r and ` ≥ r.

Each trial has the following form. We draw (complex) standard normal test
matrices (Ω,Ψ) to form the sketch (Y ,W) of the input matrix. (We do not use the
optional orthogonalization steps in Algorithm 1.) Next, we compute an approximation
Âout of the matrix A by means of a specified approximation algorithm. Then we
calculate the error relative to the best rank-r approximation:

(7.1) relative error :=
‖A− Âout‖F
τr+1(A)

− 1.

The tail energy τj is defined in (2.1). If Âout is a rank-r approximation of A, the
relative error is always nonnegative. To facilitate comparisons, our experiments only
examine fixed-rank approximation methods.

To obtain each data point, we repeat the procedure from the last paragraph 20
times, each time with the same input matrix A and an independent draw of the test
matrices (Ω,Ψ). Then we report the average relative error over the 20 trials.

We include our MATLAB implementations in the accompanying supplementary
material file M111159 01.zip [local/web 78.3KB] for readers who seek more details on
the methodology.

7.2. Classes of input matrices. We perform our numerical tests using several
types of complex-valued input matrices. Figure 1 illustrates the singular spectrum of
a matrix from each of the categories.

7.2.1. Synthetic examples. We fix a dimension parameter n = 103 and a
parameter R = 10 that controls the rank of the “significant part” of the matrix. In
our experiments, we compute approximations with target rank r = 5. Similar results
hold when the parameter R = 5 and when n = 104.

We construct the following synthetic input matrices:

1. Low-Rank + Noise: These matrices take the form[
IR 0
0 0

]
+

√
γR

2n2 (G + G∗) ∈ Cn×n.

M111159_01.zip
http://epubs.siam.org/doi/suppl/10.1137/17M1111590/suppl_file/M111159_01.zip

1474 J. A. TROPP, A. YURTSEVER, M. UDELL, AND V. CEVHER

The matrix G is complex standard normal. The quantity γ−2 can be inter-
preted as the signal-to-noise ratio (SNR). We consider three cases:

(a) No noise (LowRank): γ = 0.
(b) Medium noise (LowRankMedNoise): γ = 10−2.
(c) High noise (LowRankHiNoise): γ = 1.

For these models, all the experiments are performed on a single exemplar that
is drawn at random and then fixed.

2. Polynomially decaying spectrum: These matrices take the form

diag
(

1, . . . , 1︸ ︷︷ ︸
R

, 2−p, 3−p, 4−p, . . . , (n−R+ 1)−p
)
∈ Cn×n,

where p > 0 controls the rate of decay. We consider two cases:

(a) Slow polynomial decay (PolyDecaySlow): p = 1.
(b) Fast polynomial decay (PolyDecayFast): p = 2.

3. Exponentially decaying spectrum: These matrices take the form

diag
(

1, . . . , 1︸ ︷︷ ︸
R

, 10−q, 10−2q, 10−3q, . . . , 10−(n−R)q) ∈ Cn×n,

where q > 0 controls the rate of decay. We consider two cases:

(a) Slow exponential decay (ExpDecaySlow): q = 0.25.
(b) Fast exponential decay (ExpDecayFast): q = 1.

We can focus on diagonal matrices because of the rotational invariance of the test
matrices (Ω,Ψ). Results for dense matrices are similar.

7.2.2. A matrix from an application in optimization. We also consider a
dense, complex psd matrix (Data) obtained from a real-world phase-retrieval appli-
cation. This matrix has dimension n = 25,921 and exact rank 250. The first five
singular values decrease from 1 to around 0.1; there is a large gap between the fifth
and sixth singular values; the remaining nonzero singular values decay very fast. See
our paper [36] for more details about the role of sketching in this context.

7.3. Alternative sketching algorithms for matrix approximation. In ad-
dition to the algorithms we have presented, our numerical study comprises other
methods that have appeared in the literature. We have modified all of these algo-
rithms to improve their numerical stability and to streamline the computations. To
the extent possible, we adopt the sketch (3.3) for all the algorithms to make their
performance more comparable.

7.3.1. Methods based on the sketch (3.3). We begin with two additional
methods that use the same sketch (3.3) as our algorithms.

First, let us describe a variant of a fixed-rank approximation scheme that was
proposed by Woodruff [34, Thm. 4.3, display 2]. First, form a matrix product and
compute its orthogonal–triangular factorization: ΨQ =: UT , where U ∈ F`×k has
orthonormal columns. Then construct the rank-r approximation

(7.2) Âwoo := QT †JU∗W Kr.

Woodruff shows that Âwoo satisfies (1.5) when the sketch size scales as k = Θ(r/ε)
and ` = Θ(k/ε2). Compare this result with Remark 6.5.

SKETCHING ALGORITHMS FOR MATRIX APPROXIMATION 1475

Second, we outline a fixed-rank approximation method that is implicit in Cohen
et al. [12, sect. 10.1]. First, compute the r dominant left singular vectors of the
range sketch: (V ,∼,∼) := svds(Y , r). Form a matrix product and compute its
orthogonal–triangular factorization: ΨV =: UT , where U ∈ F`×r. Then form the
rank-r approximation

(7.3) Âcemmp := V T †JU∗W Kr.

The results of Cohen et al. imply that Âcemmp satisfies (1.5) when the sketch size
scales as k = Θ(r/ε2) and ` = Θ(r/ε2).

The approximations (7.2) and (7.3) both appear similar to our fixed-rank approx-
imation, Algorithm 7. Nevertheless, they are derived from other principles, and their
behavior is noticeably different.

7.3.2. A method based on an extended sketch. Next, we present a variant
of a recent approach that requires a more complicated sketch and more elaborate com-
putations. The following procedure is adapted from [6, Thm. 12], using simplifications
suggested in [33, sect. 3].

Let A ∈ Fm×n be an input matrix, and let r be a target rank. Choose integer
parameters k and s that satisfy r ≤ k ≤ s ≤ min{m,n}. For consistent notation, we
also introduce a redundant parameter ` = k. Draw and fix four test matrices:

(7.4) Ψ ∈ Fk×m; Ω ∈ Fn×`; Φ ∈ Fs×m; and Ξ ∈ Fn×s.

The matrices (Ψ,Ω) are standard normal, while (Φ,Ξ) are SRFTs; see subsection 3.9.
The sketch now has three components:

(7.5) W := ΨA; Y := AΩ; and Z := ΦAΞ.

To store the test matrices and the sketch, we need (2k+1)(m+n)+s(s+2) numbers.
To obtain a rank-r approximation of the input matrix A, first compute four thin

orthogonal–triangular factorizations:

Y =: Q1R1 and W =: R∗2Q
∗
2;

ΦQ1 =: U1T1 and Q∗2Ξ =: T ∗2 U∗2 .

Then construct the rank-r approximation

(7.6) Âbwz := Q1T
†
1 JU∗1 ZU2Kr(T ∗2)†Q∗2.

By adapting and correcting [6, Thm. 12], one can show that Âbwz achieves (1.5)
for sketch size parameters that satisfy k = Θ(r/ε) and s = Θ((r log(1 + r))2/ε6).
With this scaling, the total storage cost for the random matrices and the sketch is
Θ((m+ n)r/ε+ (r log(1 + r))2/ε6).

The authors of [6] refer to their method as “optimal” because the scaling of the
term (m+n)r/ε in the storage cost cannot be improved [9, Thm. 4.10]. Nevertheless,
because of the ε−6 term, the bound is incomparable with the storage costs achieved
by other algorithms.

7.4. Performance with oracle parameter choices. It is challenging to com-
pare the relative performance of sketching algorithms for matrix approximation be-
cause of the theoretical nature of previous research. In particular, earlier work does
not offer any practical guidance for selecting the sketch size parameters.

1476 J. A. TROPP, A. YURTSEVER, M. UDELL, AND V. CEVHER

The only way to make a fair comparison is to study the oracle performance of the
algorithms. That is, for each method, we fix the total storage, and we determine the
minimum relative error that the algorithm can achieve. This approach allows us to
see which techniques are most promising for further development. Nevertheless, we
must emphasize that the oracle performance is not achievable in practice.

7.4.1. Computing the oracle error. It is straightforward to compare our
fixed-rank approximation methods, Algorithms 7 to 9, with the alternatives (7.2) and
(7.3) from the literature. In each case, the sketch (3.3) requires storage of (k+`)(m+n)
numbers, so we can parameterize the cost by T := k + `. For a given choice of T , we
obtain the oracle performance by minimizing the empirical approximation error for
each algorithm over all pairs (k, `) where the sum k + ` = T .

It is trickier to include the Boutsidis–Woodruff–Zhong [6, Thm. 12] method (7.6).
For a given T , we obtain the oracle performance of (7.6) by minimizing the empirical
approximation error over pairs (k, s) for which the storage cost of the sketch (7.5)
matches the cost of the simple sketch (3.3). That is, (2k + 1)(m + n) + s(s + 2) ≈
T (m+ n).

7.4.2. Numerical comparison with prior work. For each input matrix de-
scribed in subsection 7.2, Figure 2 compares the oracle performance of our fixed-rank
approximation, Algorithm 7, against several alternative methods, (7.2), (7.3), and
(7.6), from the literature. We make the following observations:

• For matrices that are well approximated by a low-rank matrix (LowRank,
PolyDecayFast, ExpDecaySlow, ExpDecayFast, Data), our fixed-rank ap-
proximation, Algorithm 7, dominates all other methods when the storage
budget is adequate. In particular, for the rank-1 approximation of the matrix
Data, our approach achieves relative errors 3–6 orders of magnitude better
than any competitor.

• When we consider matrices that are poorly approximated by a low-rank
matrix (LowRankMedNoise, LowRankHiNoise, PolyDecaySlow), the recent
method (7.6) of Boutsidis, Woodruff, and Zhong [6, Thm. 12] has the best
performance, especially when the storage budget is small. But see subsec-
tion 7.4.3 for more texture.

• Our method, Algorithm 7, performs reliably for all of the input matrices,
and it is the only method that can achieve high accuracy for the matrix
Data. Its behavior is less impressive for matrices that have poor low-rank
approximations (LowRankMedNoise, LowRankHiNoise, PolyDecaySlow), but
it is still competitive for these examples.

• The method (7.6) of Boutsidis, Woodruff, and Zhong [6, Thm. 12] offers
mediocre performance for matrices with good low-rank approximations
(LowRank, ExpDecaySlow, ExpDecayFast, Data). Strikingly, this approach
fails to produce a high-accuracy rank-5 approximation of the rank-10 matrix
LowRank, even with a large storage budget.

• The method (7.2) of Woodruff [34, Thm. 4.3, display 2] is competitive for
most synthetic examples, but it performs rather poorly on the matrix Data.

• The method (7.3) of Cohen et al. [12, sect. 10.1] has the worst performance
for almost all the examples.

SKETCHING ALGORITHMS FOR MATRIX APPROXIMATION 1477

T

13 26 52 104 208

r
e
la
t
iv
e
e
r
r
o
r

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

(a) LowRank

T

13 26 52 104 208

10
-2

10
-1

10
0

(b) LowRankMedNoise

T

13 26 52 104 208

10
-1

10
0

(c) LowRankHiNoise

T

13 26 52 104 208

r
e
la
t
iv
e
e
r
r
o
r

10
-3

10
-2

10
-1

10
0

(d) PolyDecaySlow

T

13 26 52 104 208

10
-6

10
-4

10
-2

10
0

(e) PolyDecayFast

T

13 26 52 104 208

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

(f) ExpDecaySlow

T

13 26 52 104 208

r
e
la
t
iv
e
e
r
r
o
r

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

(g) ExpDecayFast

T

5 10 20 40 80

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

(h) Data (r = 1)

T

13 26 52 104 208

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

Woo (7.2)
Cemmp (7.3)
Bwz (7.6)
Algorithm 7

(i) Data (r = 5)

Fig. 2. Oracle performance of sketching algorithms for fixed-rank matrix approximation as a
function of storage cost. For each of the input matrices described in subsection 7.2, we compare
the oracle performance of our fixed-rank approximation, Algorithm 7, against alternative methods
(7.2), (7.3), and (7.6) from the literature. The matrix dimensions are m = n = 103 for the synthetic
examples and m = n = 25,921 for the matrix Data from the phase retrieval application. Each
approximation has rank r = 5, unless otherwise stated. The variable T on the horizontal axis is
(proportional to) the total storage used by each sketching method. Each data series displays the best
relative error (7.1) that the specified algorithm can achieve with storage T . See subsection 7.4.1 for
details.

In summary, Algorithm 7 has the best all-around behavior, while the Boutsidis–
Woodruff–Zhong [6, Thm. 12] method (7.6) works best for matrices that have a poor
low-rank approximation. See subsection 7.6 for more discussion.

1478 J. A. TROPP, A. YURTSEVER, M. UDELL, AND V. CEVHER

T

13 26 52 104 208

r
e
la
t
iv
e
e
r
r
o
r

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

(a) LowRank

T

13 26 52 104 208

10
-2

10
-1

10
0

(b) LowRankMedNoise

T

13 26 52 104 208

10
-1

10
0

(c) LowRankHiNoise

T

13 26 52 104 208

r
e
la
t
iv
e
e
r
r
o
r

10
-3

10
-2

10
-1

10
0

(d) PolyDecaySlow

T

13 26 52 104 208

10
-6

10
-4

10
-2

10
0

(e) PolyDecayFast

T

13 26 52 104 208

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

(f) ExpDecaySlow

T

13 26 52 104 208

r
e
la
t
iv
e
e
r
r
o
r

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

(g) ExpDecayFast

T

5 10 20 40 80

10
-10

10
-8

10
-6

10
-4

10
-2

(h) Data (r = 1)

T

13 26 52 104 208

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

Algorithm 7

Algorithm 8

Algorithm 9

(i) Data (r = 5)

Fig. 3. Oracle performance of sketching algorithms for structured fixed-rank matrix approx-
imation as a function of storage cost. For each of the input matrices described in subsection 7.2,
we compare the oracle performance of the unstructured approximation (Algorithm 7), the conjugate
symmetric approximation (Algorithm 8), and the psd approximation (Algorithm 9). The matrix di-
mensions are m = n = 103 for the synthetic examples and m = n = 25, 921 for the matrix Data from
the phase retrieval application. Each approximation has rank r = 5, unless otherwise stated. The
variable T on the horizontal axis is (proportional to) the total storage used by each sketching method.
Each data series displays the best relative error (7.1) that the specified algorithm can achieve with
storage T . See subsection 7.4.1 for details.

7.4.3. Structured approximations. In this section, we investigate the effect
of imposing structure on the low-rank approximations. Figure 3 compares the oracle
performance of our fixed-rank approximation methods, Algorithms 7 to 9. We make
the following observations:

SKETCHING ALGORITHMS FOR MATRIX APPROXIMATION 1479

• The symmetric approximation method, Algorithm 8, and the psd approxima-
tion method, Algorithm 9, are very similar to each other for all examples.

• The structured approximations, Algorithms 8 and 9, always improve upon the
unstructured approximation, Algorithm 7. The benefit is most significant
for matrices that have a poor low-rank approximation (LowRankMedNoise,
LowRankHiNoise, PolyDecaySlow).

• Algorithms 8 and 9 match or exceed the performance of the Boutsidis–
Woodruff–Zhong [6, Thm. 12] method (7.6) for all examples.

In summary, if we know that the input matrix has structure, we can achieve a
decisive advantage by enforcing the structure in the approximation.

7.5. Performance with theoretical parameter choices. It remains to un-
derstand how closely we can match the oracle performance of Algorithms 7 to 9 in
practice. To that end, we must choose the sketch size parameters a priori using only
the knowledge of the target rank r and the total sketch size T . In some instances,
we may also have insight into the spectral decay of the input matrix. Figure 4 shows
how the fixed-rank approximation method, Algorithm 7, performs with the theoretical
parameter choices outlined in subsection 4.5. We make the following observations:

• The parameter recommendation (4.7), designed for a matrix with a flat spec-
tral tail, works well for the matrices LowRankMedNoise, LowRankHiNoise, and
PolyDecaySlow. We also learn that this parameter choice should not be used
for matrices with spectral decay.

• The parameter recommendation (4.9), for a matrix with a slowly decay-
ing spectrum, is suited to the examples LowRankMedNoise, LowRankHiNoise,
PolyDecaySlow, and PolyDecayFast. This parameter choice is effective for
the remaining examples as well.

• The parameter recommendation (4.10), for a matrix with a rapidly decaying
spectrum, is appropriate for the examples PolyDecayFast, ExpDecaySlow,
ExpDecayFast, and Data. This choice must not be used unless the spectrum
decays quickly.

• We have observed that the same parameter recommendations allow us to
achieve near-oracle performance for the structured matrix approximations,
Algorithms 8 and 9. As in the unstructured case, it helps if we tune the
parameter choice to the type of input matrix.

In summary, we always achieve reasonably good performance using the parameter
choice (4.9). Furthermore, if we match the parameter selection (4.7), (4.9), and
(4.10) to the spectral properties of the input matrix, we can almost achieve the oracle
performance in practice.

7.6. Recommendations. Among the fixed-rank approximation methods that
we studied, the most effective are Algorithms 7 to 9 and the Boutsidis–Woodruff–
Zhong [6, Thm. 12] method (7.6). Let us make some final observations based on our
numerical experience.

Algorithms 7 to 9 are superior to methods from the literature for input matrices
that have good low-rank approximations. Although Algorithm 7 suffers when the in-
put matrix has a poor low-rank approximation, the structured variants, Algorithms 8
and 9, match or exceed other algorithms for all the examples we tested. We have

1480 J. A. TROPP, A. YURTSEVER, M. UDELL, AND V. CEVHER

T

13 26 52 104 208

r
e
la
t
iv
e
e
r
r
o
r

10
-2

10
-1

10
0

(a) LowRankMedNoise

T

13 26 52 104 208

10
-1

10
0

(b) LowRankHiNoise

T

13 26 52 104 208

r
e
la
t
iv
e
e
r
r
o
r

10
-3

10
-2

10
-1

10
0

(c) PolyDecaySlow

T

13 26 52 104 208

10
-6

10
-4

10
-2

10
0

(d) PolyDecayFast

T

13 26 52 104 208

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

(e) ExpDecaySlow

T

13 26 52 104 208

r
e
la
t
iv
e
e
r
r
o
r

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

(f) ExpDecayFast

T

5 10 20 40 80

10
-10

10
-8

10
-6

10
-4

10
-2

(g) Data (r = 1)

T

13 26 52 104 208

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

ORACLE

FLAT

DECAY

RAPID

(h) Data (r = 5)

Fig. 4. Performance of a sketching algorithm for fixed-rank matrix approximation with a priori
parameter choices. For each of the input matrices described in subsection 7.2, we compare the oracle
performance of the fixed-rank approximation, Algorithm 7, against its performance at theoretically
motivated parameter choices. The matrix dimensions are m = n = 103 for the synthetic examples
and m = n = 25,921 for the matrix Data from the phase retrieval application. Each approximation
has rank r = 5, unless otherwise stated. The variable T on the horizontal axis is (proportional to)
the total storage used by each sketching method. The oracle performance is drawn from Figure 2.
Each data series displays the relative error (7.1) that Algorithm 7 achieves for a specific param-
eter selection. The parameter choice FLAT (4.7) is designed for matrices with a flat spectral tail;
DECAY (4.9) is for a slowly decaying spectrum; RAPID (4.10) is for a rapidly decaying spectrum. See
subsection 7.5 for details.

also established that we can attain near-oracle performance for our methods using
the a priori parameter recommendations from subsection 4.5. Finally, our methods
are simple and easy to implement.

The Boutsidis–Woodruff–Zhong [6, Thm. 12] method (7.6) exhibits the best per-

SKETCHING ALGORITHMS FOR MATRIX APPROXIMATION 1481

formance for matrices that have very poor low-rank approximations when the storage
budget is very small. This benefit is diminished by its mediocre performance for ma-
trices that do admit good low-rank approximations. The method (7.6) requires more
complicated sketches and additional computation. Unfortunately, the analysis in [6]
does not provide guidance on implementation.

In conclusion, we recommend the sketching methods, Algorithms 7 to 9, for com-
puting structured low-rank approximations. In future research, we will try to design
new methods that simultaneously dominate our algorithms and (7.6).

Appendix A. Analysis of the low-rank approximation. In this appendix,
we develop theoretical results on the performance of the basic low-rank approxima-
tion (4.3) implemented in Algorithms 3 and 4.

A.1. Facts about random matrices. Our arguments require classical formu-
lae for the expectations of functions of a standard normal matrix. In the real case,
these results are [19, Props. A.1 and A.6]. The complex case follows from the same
principles, so we omit the details.

Fact A.1. Let G ∈ Ft×s be a standard normal matrix. For all matrices B and
C with conforming dimensions,

(A.1) E ‖BGC‖2F = β‖B‖2F‖C‖2F.

Furthermore, if t > s+ α,

(A.2) E ‖G†‖2F =
1
β
· s

t− s− α
=

1
β
· f(s, t).

The numbers α and β are given by (2.2); the function f is introduced in (2.3).

A.2. Results from randomized linear algebra. Our arguments also de-
pend heavily on the analysis of randomized low-rank approximation developed in [19,
sect. 10]. We state these results using the familiar notation from sections 3 and 4.

Fact A.2 (Halko, Martinsson, and Tropp [19]). Fix A ∈ Fm×n. Let % be a
natural number such that % < k − α. Draw the random test matrix Ω ∈ Fk×n from
the standard normal distribution. Then the matrix Q computed by (4.1) satisfies

EΩ ‖A−QQ∗A‖2F ≤ (1 + f(%, k)) · τ2
%+1(A).

The number α is given by (2.2); the function f is introduced in (2.3).

This result follows immediately from the proof of [19, Thm. 10.5] using Fact A.1
to handle both the real and complex cases simultaneously.

A.3. Proof of Theorem 4.3: Frobenius error bound. In this section, we
establish a second Frobenius-norm error bound for the low-rank approximation (4.3).
We maintain the notation from sections 3 and 4, and we state explicitly when we are
making distributional assumptions on the test matrices.

A.3.1. Decomposition of the approximation error. Fact A.2 formalizes
the intuition that A ≈ Q(Q∗A). The main object of the proof is to demonstrate that
X ≈ Q∗A. The first step in the argument is to break down the approximation error
into these two parts.

Lemma A.3. Let A be an input matrix, and let Â = QX be the approximation
defined in (4.3). The approximation error decomposes as

‖A− Â‖2F = ‖A−QQ∗A‖2F + ‖X −Q∗A‖2F.

1482 J. A. TROPP, A. YURTSEVER, M. UDELL, AND V. CEVHER

We omit the proof, which is essentially just the Pythagorean theorem.

A.3.2. Approximating the second factor. Next, we develop an explicit ex-
pression for the error in the approximation X ≈ Q∗A. It is convenient to construct
a matrix P ∈ Fn×(n−k) with orthonormal columns that satisfies

(A.3) PP ∗ = I−QQ∗.

Introduce the matrices

(A.4) Ψ1 := ΨP ∈ F`×(n−k) and Ψ2 := ΨQ ∈ F`×k.

We are now prepared to state the result.

Lemma A.4. Assume that the matrix Ψ2 has full column rank. Then

(A.5) X −Q∗A = Ψ†2Ψ1(P ∗A).

The matrices Ψ1 and Ψ2 are defined in (A.4).

Proof. Recall that W = ΨA, and calculate that

W = ΨA = ΨPP ∗A + ΨQQ∗A = Ψ1(P ∗A) + Ψ2(Q∗A).

The second relation holds because PP ∗+QQ∗ = I. Then we use (A.4) to identify Ψ1
and Ψ2. By hypothesis, the matrix Ψ2 has full column rank, so we can left-multiply
the last display by Ψ†2 to attain

Ψ†2W = Ψ†2Ψ1(P ∗A) + Q∗A.

Turning back to (4.2), we identify X = Ψ†2W .

A.3.3. The expected Frobenius-norm error in the second factor. We are
now prepared to compute the average Frobenius-norm error in approximating Q∗A
by means of the matrix X. In contrast to the previous steps, this part of the argument
relies on distributional assumptions on the test matrix Ψ. Remarkably, for a Gaussian
test matrix, X is even an unbiased estimator of the factor Q∗A.

Lemma A.5. Assume that Ψ ∈ F`×n is a standard normal matrix that is inde-
pendent from Ω. Then

EΨ[X −Q∗A] = 0.

Furthermore,
EΨ ‖X −Q∗A‖2F = f(k, `) · ‖A−QQ∗A‖2F.

Proof. Observe that P and Q are partial isometries with orthogonal ranges. Ow-
ing to the marginal property of the standard normal distribution, the random matri-
ces Ψ1 and Ψ2 are statistically independent standard normal matrices. In particular,
Ψ2 ∈ F`×k almost surely has full column rank because (3.1) requires that ` ≥ k.

First, take the expectation of the identity (A.5) to see that

EΨ[X −Q∗A] = EΨ2 EΨ1 [Ψ†2Ψ1P
∗A] = 0.

In the first relation, we use the statistical independence of Ψ1 and Ψ2 to write the
expectation as an iterated expectation. Then we observe that Ψ1 is a matrix with
zero mean.

SKETCHING ALGORITHMS FOR MATRIX APPROXIMATION 1483

Next, take the expected squared Frobenius norm of (A.5) to see that

EΨ ‖X −Q∗A‖2F = EΨ2 EΨ1 ‖Ψ
†
2Ψ1(P ∗A)‖2F

= β · EΨ2

[
‖Ψ†2‖2F · ‖P ∗A‖2F

]
= f(k, `) · ‖P ∗A‖2F.

The last two identities follow from (A.1) and (A.2), respectively, where we use the
fact that Ψ2 ∈ F`×k. To conclude, note that

‖P ∗A‖2F = ‖PP ∗A‖2F = ‖A−QQ∗A‖2F.

The first relation holds because P is a partial isometry and the Frobenius norm is
unitarily invariant. Last, we apply the definition (A.3) of P .

A.3.4. Proof of Theorem 4.3. We are now prepared to complete the proof
of the Frobenius-norm error bound stated in Theorem 4.3. For this argument, we
assume that the test matrices Ω ∈ Fn×k and Ψ ∈ F`×m are drawn independently
from the standard normal distribution.

According to Lemma A.3,

‖A− Â‖2F = ‖A−QQ∗A‖2F + ‖X −Q∗A‖2F.

Take the expectation of the last display to reach

E ‖A− Â‖2F = EΩ ‖A−QQ∗A‖2F + EΩ EΨ ‖X −Q∗A‖2F
= (1 + f(k, `)) · EΩ ‖A−QQ∗A‖2F
≤ (1 + f(k, `)) · (1 + f(%, k)) · τ2

%+1(A).

In the first line, we use the independence of the two random matrices to write the
expectation as an iterated expectation. To reach the second line, we apply Lemma A.5
to the second term. Invoke the randomized linear algebra result, Fact A.2. Finally,
minimize over eligible indices % < k − α.

REFERENCES

[1] N. Ailon and B. Chazelle, Approximate nearest neighbors and the fast Johnson-
Lindenstrauss transform, in STOC’06: Proceedings of the 38th Annual ACM Symposium
on Theory of Computing, ACM, New York, 2006, pp. 557–563, https://doi.org/10.1145/
1132516.1132597.

[2] N. Ailon and B. Chazelle, The fast Johnson–Lindenstrauss transform and approximate
nearest neighbors, SIAM J. Comput., 39 (2009), pp. 302–322, https://doi.org/10.1137/
060673096.

[3] J. Bourgain, S. Dirksen, and J. Nelson, Toward a unified theory of sparse dimensionality
reduction in Euclidean space, Geom. Funct. Anal., 25 (2015), pp. 1009–1088, https://doi.
org/10.1007/s00039-015-0332-9.

[4] C. Boutsidis, D. Garber, Z. Karnin, and E. Liberty, Online principal components analysis,
in Proceedings of the 26th Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM,
Philadelphia, 2015, pp. 887–901.

[5] C. Boutsidis and A. Gittens, Improved matrix algorithms via the subsampled randomized
Hadamard transform, SIAM J. Matrix Anal. Appl., 34 (2013), pp. 1301–1340, https://doi.
org/10.1137/120874540.

[6] C. Boutsidis, D. Woodruff, and P. Zhong, Optimal principal component analysis in dis-
tributed and streaming models, in Proceedings of the 48th Annual ACM Symposium on
Theory of Computing (STOC 2016), Cambridge, MA, 2016.

[7] S. Boyd and L. Vandenberghe, Convex optimization, Cambridge University Press, Cam-
bridge, 2004, https://doi.org/10.1017/CBO9780511804441.

https://doi.org/10.1145/1132516.1132597
https://doi.org/10.1145/1132516.1132597
https://doi.org/10.1137/060673096
https://doi.org/10.1137/060673096
https://doi.org/10.1007/s00039-015-0332-9
https://doi.org/10.1007/s00039-015-0332-9
https://doi.org/10.1137/120874540
https://doi.org/10.1137/120874540
https://doi.org/10.1017/CBO9780511804441

1484 J. A. TROPP, A. YURTSEVER, M. UDELL, AND V. CEVHER

[8] K. Clarkson and D. Woodruff, Low-rank PSD approximation in input-sparsity time, Un-
published, Jan. 2017.

[9] K. L. Clarkson and D. P. Woodruff, Numerical linear algebra in the streaming model, in
Proceedings of the 41st ACM Symposium on Theory of Computing (STOC), ACM, New
York, 2009, pp. 205–214.

[10] K. L. Clarkson and D. P. Woodruff, Low rank approximation and regression in input
sparsity time, in STOC’13—Proceedings of the 2013 ACM Symposium on Theory of Com-
puting, ACM, New York, 2013, pp. 81–90, https://doi.org/10.1145/2488608.2488620.

[11] M. Cohen, Nearly tight oblivious subspace embeddings by trace inequalities, in Proceedings of
the 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), SIAM, Philadel-
phia, ACM, New York, 2016, pp. 278–287.

[12] M. B. Cohen, S. Elder, C. Musco, C. Musco, and M. Persu, Dimensionality reduction for
k-means clustering and low rank approximation, in Proceedings of the 47th Annual ACM
Symposium on Theory of Computing, ACM, New York, 2015, pp. 163–172.

[13] M. B. Cohen, J. Nelson, and D. P. Woodruff, Optimal approximate matrix product in
terms of stable rank, in the 43rd International Colloquium on Automata, Languages,
and Programming (ICALP 2016), I. Chatzigiannakis, M. Mitzenmacher, Y. Rabani, and
D. Sangiorgi, eds., Leibniz International Proceedings in Informatics (LIPIcs) 55, Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 2016, pp. 11:1–11:14,
https://doi.org/10.4230/LIPIcs.ICALP.2016.11.

[14] J. Demmel, I. Dumitriu, and O. Holtz, Fast linear algebra is stable, Numer. Math., 108
(2007), pp. 59–91, https://doi.org/10.1007/s00211-007-0114-x.

[15] D. Feldman, M. Schmidt, and C. Sohler, Turning big data into tiny data: Constant-size
coresets for k-means, PCA and projective clustering, in Proceedings of the 24th Annual
ACM-SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia, ACM, New York,
2012, pp. 1434–1453.

[16] D. Feldman, M. Volkov, and D. Rus, Dimensionality reduction of massive sparse datasets
using coresets, in Advances in Neural Information Processing Systems 29 (NIPS 2016),
Curran Associates, 2016, pp 2766–2774.

[17] A. Frieze, R. Kannan, and S. Vempala, Fast Monte-Carlo algorithms for finding low-
rank approximations, J. ACM, 51 (2004), pp. 1025–1041, https://doi.org/10.1145/1039488.
1039494.

[18] M. Gu, Subspace iteration randomization and singular value problems, SIAM J. Sci. Comput.,
37 (2015), pp. A1139–A1173, https://doi.org/10.1137/130938700.

[19] N. Halko, P. G. Martinsson, and J. A. Tropp, Finding structure with randomness: Prob-
abilistic algorithms for constructing approximate matrix decompositions, SIAM Rev., 53
(2011), pp. 217–288, https://doi.org/10.1137/090771806.

[20] N. J. Higham, Matrix nearness problems and applications, in Applications of Matrix Theory
(Bradford, 1988), Oxford University Press, New York, 1989, pp. 1–27.

[21] P. Jain, C. Jin, S. M. Kakade, P. Netrapalli, and A. Sidford, Streaming PCA: Matching
matrix Bernstein and near-optimal finite sample guarantees for Oja’s algorithm, in 29th
Annual Conference on Learning Theory, Columbia University, New York, 2016, pp. 1147–
1164.

[22] H. Li, G. C. Linderman, A. Szlam, K. P. Stanton, Y. Kluger, and M. Tygert, Algorithm
971: An implementation of a randomized algorithm for principal component analysis, ACM
Trans. Math. Softw., 43 (2017), pp. 28:1–28:14, http://doi.acm.org/10.1145/3004053.

[23] Y. Li, H. L. Nguyen, and D. P. Woodruff, Turnstile streaming algorithms might as well
be linear sketches, in STOC’14—Proceedings of the 2014 ACM Symposium on Theory of
Computing, ACM, New York, 2014, pp. 174–183.

[24] E. Liberty, Accelerated Dense Random Projections, Ph.D. thesis, Yale University, New Haven,
CT, 2009.

[25] M. W. Mahoney, Randomized algorithms for matrices and data, Found. Trends Machine
Learn., 3 (2011), pp. 123–224.

[26] P.-G. Martinsson, V. Rokhlin, and M. Tygert, A randomized algorithm for the de-
composition of matrices, Appl. Comput. Harmon. Anal., 30 (2011), pp. 47–68, https:
//doi.org/10.1016/j.acha.2010.02.003.

[27] X. Meng and M. W. Mahoney, Low-distortion subspace embeddings in input-sparsity time
and applications to robust linear regression, in STOC’13—Proceedings of the 2013 ACM
Symposium on Theory of Computing, ACM, New York, 2013, pp. 91–100, https://doi.org/
10.1145/2488608.2488621.

[28] J. Nelson and H. L. Nguyen, OSNAP: faster numerical linear algebra algorithms via sparser
subspace embeddings, in 2013 IEEE 54th Annual Symposium on Foundations of Computer

https://doi.org/10.1145/2488608.2488620
https://doi.org/10.4230/LIPIcs.ICALP.2016.11
https://doi.org/10.1007/s00211-007-0114-x
https://doi.org/10.1145/1039488.1039494
https://doi.org/10.1145/1039488.1039494
https://doi.org/10.1137/130938700
https://doi.org/10.1137/090771806
http://doi.acm.org/10.1145/3004053
https://doi.org/10.1016/j.acha.2010.02.003
https://doi.org/10.1016/j.acha.2010.02.003
https://doi.org/10.1145/2488608.2488621
https://doi.org/10.1145/2488608.2488621

SKETCHING ALGORITHMS FOR MATRIX APPROXIMATION 1485

Science—FOCS 2013, IEEE Computer Soc., Los Alamitos, CA, 2013, pp. 117–126, https:
//doi.org/10.1109/FOCS.2013.21.

[29] J. Nelson and H. L. Nguyen, Lower bounds for oblivious subspace embeddings, in Automata,
Languages, and Programming. Part I, Lecture Notes in Comput. Sci. 8572, Springer, Hei-
delberg, 2014, pp. 883–894, https://doi.org/10.1007/978-3-662-43948-7 73.

[30] C. H. Papadimitriou, P. Raghavan, H. Tamaki, and S. Vempala, Latent semantic indexing:
a probabilistic analysis, J. Comput. System Sci., 61 (2000), pp. 217–235, https://doi.org/10.
1006/jcss.2000.1711. Special issue on the Seventeenth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems (Seattle, WA, 1998).

[31] J. A. Tropp, Improved analysis of the subsampled randomized Hadamard transform, Adv.
Adapt. Data Anal., 3 (2011), pp. 115–126, https://doi.org/10.1142/S1793536911000787.

[32] J. A. Tropp, A. Yurtsever, M. Udell, and V. Cevher, Randomized Single-View Algorithms
for Low-Rank Matrix Approximation, ACM Report 2017-01, Caltech, Pasadena, CA, 2017,
https://arXiv.org/abs/1609.00048v1.

[33] J. Upadhyay, Fast and Space-Optimal Low-Rank Factorization in the Streaming Model with
Application in Differential privacy, preprint, https://arXiv.org/abs/1604.01429, 2016.

[34] D. P. Woodruff, Sketching as a tool for numerical linear algebra, Found. Trends Theoret.
Comput. Sci., 10 (2014), pp. iv+157.

[35] F. Woolfe, E. Liberty, V. Rokhlin, and M. Tygert, A fast randomized algorithm for the
approximation of matrices, Appl. Comput. Harmon. Anal., 25 (2008), pp. 335–366.

[36] A. Yurtsever, M. Udell, J. A. Tropp, and V. Cevher, Sketchy decisions: Convex low-
rank matrix optimization with optimal storage, in Proceedings of the 20th International
Conference on Artificial Intelligence and Statistics (AISTATS), Fort Lauderdale, FL, 2017,
http://proceedings.mlr.press/v54/yurtsever17a/yurtsever17a.pdf.

https://doi.org/10.1109/FOCS.2013.21
https://doi.org/10.1109/FOCS.2013.21
https://doi.org/10.1007/978-3-662-43948-7_73
https://doi.org/10.1006/jcss.2000.1711
https://doi.org/10.1006/jcss.2000.1711
https://doi.org/10.1142/S1793536911000787
https://arXiv.org/abs/1609.00048v1
https://arXiv.org/abs/1604.01429
http://proceedings.mlr.press/v54/yurtsever17a/yurtsever17a.pdf

	Motivation
	Low-rank matrix approximation
	Sketching
	Why sketch?
	Overview of algorithms
	Our contributions
	Limitations
	Overview of related work
	Sketching algorithms for matrix approximation
	Note added in press
	Error bounds
	Questions...

	Background
	Notation and conventions
	Standard normal matrices

	Sketching the input matrix
	The input matrix
	The target rank
	Parameters for the sketch
	The test matrices
	The sketch
	The sketch as an abstract data type
	Initializing the sketch and its costs
	Processing linear updates
	Choosing the distribution of the test matrices

	Low-rank approximation from the sketch
	The main algorithm
	Intuition
	Algorithm and costs
	A bound for the Frobenius-norm error
	Theoretical guidance on the sketch size
	Flat spectrum
	Decaying spectrum or spectral gap
	Rapidly decaying spectrum

	Low-rank approximations with convex structure
	Projection onto a convex set
	Structure via convex projection
	Low-rank approximation with conjugate symmetry
	Conjugate symmetric projection
	Computing a conjugate symmetric approximation
	Algorithm, costs, and error

	Low-rank positive-semidefinite approximation
	Positive-semidefinite projection
	Computing a positive-semidefinite approximation
	Algorithm, costs, and error

	Fixed-rank approximations from the sketch
	A general error bound for fixed-rank approximation
	Fixed-rank approximation from the sketch
	Algorithm and costs
	A bound for the error

	Fixed-rank conjugate symmetric approximation
	Fixed-rank positive-semidefinite approximation

	Computational experiments
	Overview of experimental setup
	Classes of input matrices
	Synthetic examples
	A matrix from an application in optimization

	Alternative sketching algorithms for matrix approximation
	Methods based on the sketch eqn:sketches
	A method based on an extended sketch

	Performance with oracle parameter choices
	Computing the oracle error
	Numerical comparison with prior work
	Structured approximations

	Performance with theoretical parameter choices
	Recommendations

	Appendix A. Analysis of the low-rank approximation
	Facts about random matrices
	Results from randomized linear algebra
	Proof of thm:err-frob: Frobenius error bound
	Decomposition of the approximation error
	Approximating the second factor
	The expected Frobenius-norm error in the second factor
	Proof of thm:err-frob

	References

