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SM1. Analysis of the Low-Rank Approximation. This section contains
the proof of Theorem 5.1, the theoretical result on the behavior of the basic low-rank
approximation (2.9). We maintain the notation from section 2.

SM1.1. Facts about Random Matrices. First, let us state a useful formula
that allows us to compute some expectations involving a Gaussian random matrix.
This identity is drawn from [SM6, Prop. A.1 and A.6]. See also [SM8, Fact A.1].

Fact SM1.1. Assume that t > q + \alpha . Let \bfitG 1 \in \BbbF t\times q and \bfitG 2 \in \BbbF t\times p be indepen-
dent standard normal matrices. For any matrix \bfitB with conforming dimensions,

\BbbE \| \bfitG \dagger 
1\bfitG 2\bfitB \| 22 =

q

t - q  - \alpha 
\cdot \| \bfitB \| 22.

The number \alpha = 1 when \BbbF = \BbbR , while \alpha = 0 when \BbbF = \BbbC .

SM1.2. Results from Randomized Linear Algebra. Our argument also
depends on the analysis of randomized low-rank approximation developed in [SM6,
Sec. 10].

Fact SM1.2 (Halko et al. 2011). Fix \bfitA \in \BbbF m\times n. Let \varrho be a natural number such
that \varrho < k  - \alpha . Draw the random test matrix \Omega \in \BbbF k\times n from the standard normal
distribution. Then the matrix \bfitQ \in \BbbF m\times k computed by (2.7) satisfies

\BbbE \bfOmega \| \bfitA  - \bfitQ \bfitQ \ast \bfitA \| 22 \leq 
\biggl( 

1 +
\varrho 

k  - \varrho  - \alpha 

\biggr) 
\cdot \tau 2\varrho +1(\bfitA ).
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An analogous result holds for the matrix \bfitP \in \BbbF n\times k computed by (2.7):

\BbbE \bfUpsilon \| \bfitA  - \bfitA \bfitP \bfitP \ast \| 22 \leq 
\biggl( 

1 +
\varrho 

k  - \varrho  - \alpha 

\biggr) 
\cdot \tau 2\varrho +1(\bfitA ).

The number \alpha = 1 when \BbbF = \BbbR , while \alpha = 0 when \BbbF = \BbbC .
This result follows immediately from the proof of [SM6, Thm. 10.5] using Fact SM1.1

to handle both the real and complex case simultaneously. See also [SM9, Sec. 8.2].

SM1.3. Decomposition of the Core Matrix Approximation Error. The
first step in the argument is to obtain a formula for the error in the approximation
\bfitC  - \bfitQ \ast \bfitA \bfitP . The core matrix \bfitC \in \BbbF s\times s is defined in (2.8). We constructed the
orthonormal matrices \bfitP \in \BbbF n\times k and \bfitQ \in \BbbF m\times k in (2.7).

Let us introduce matrices whose ranges are complementary to those of \bfitP and \bfitQ :

\bfitP \bot \bfitP 
\ast 
\bot := I - \bfitP \bfitP \ast where \bfitP \bot \in \BbbF n\times (n - k);

\bfitQ \bot \bfitQ 
\ast 
\bot := I - \bfitQ \bfitQ \ast where \bfitQ \bot \in \BbbF m\times (m - k).

The columns of \bfitP \bot are orthonormal, and the columns of \bfitQ \bot are orthonormal. Next,
introduce the submatrices

(SM1.1)
\Phi 1 = \Phi \bfitQ \in \BbbF s\times k and \Phi 2 = \Phi \bfitQ \bot \in \BbbF s\times (m - k);

\Psi \ast 
1 = \bfitP \ast \Psi \ast \in \BbbF k\times s and \Psi \ast 

2 = \bfitP \ast 
\bot \Psi 

\ast \in \BbbF (n - k)\times s.

With this notation at hand, we can state and prove the first result.

Lemma SM1.3 (Decomposition of the Core Matrix Approximation). Assume
that the matrices \Phi 1 and \Psi 1 have full column rank. Then

\bfitC  - \bfitQ \ast \bfitA \bfitP = \Phi \dagger 
1\Phi 2(\bfitQ \ast 

\bot \bfitA \bfitP ) + (\bfitQ \ast \bfitA \bfitP \bot )\Psi \ast 
2(\Psi \dagger 

1)\ast 

+ \Phi \dagger 
1\Phi 2(\bfitQ \ast 

\bot \bfitA \bfitP \bot )\Psi \ast 
2(\Psi \dagger 

1)\ast .

Proof. Adding and subtracting terms, we write the core sketch \bfitZ as

\bfitZ = \Phi \bfitA \Psi \ast = \Phi (\bfitA  - \bfitQ \bfitQ \ast \bfitA \bfitP \bfitP \ast )\Psi \ast + (\Phi \bfitQ )(\bfitQ \ast \bfitA \bfitP )(\bfitP \ast \Psi \ast ).

Using (SM1.1), we identify the matrices \Phi 1 and \Psi 1. Then left-multiply by \Phi \dagger 
1 and

right-multiply by (\Psi \dagger 
1)\ast to arrive at

\bfitC = \Phi \dagger 
1\bfitZ (\Psi \dagger 

1)\ast = \Phi \dagger 
1\Phi (\bfitA  - \bfitQ \bfitQ \ast \bfitA \bfitP \bfitP \ast )\Psi \ast (\Psi \dagger 

1)\ast + \bfitQ \ast \bfitA \bfitP .

We have identified the core matrix \bfitC , defined in (2.8). Move the term \bfitQ \ast \bfitA \bfitP to the
left-hand side to isolate the approximation error.

To continue, notice that

\Phi \dagger 
1\Phi = \Phi \dagger 

1\Phi \bfitQ \bfitQ \ast + \Phi \dagger 
1\Phi \bfitQ \bot \bfitQ 

\ast 
\bot = \bfitQ \ast + \Phi \dagger 

1\Phi 2\bfitQ 
\ast 
\bot .

Likewise,

\Psi \ast (\Psi \dagger 
1)\ast = \bfitP \bfitP \ast \Psi \ast (\Psi \dagger 

1)\ast + \bfitP \bot \bfitP 
\ast 
\bot \Psi 

\ast (\Psi \dagger 
1)\ast = \bfitP + \bfitP \bot \Psi 

\ast 
2(\Psi \dagger 

1)\ast .

Combine the last three displays to arrive at

\bfitC  - \bfitQ \ast \bfitA \bfitP = (\bfitQ \ast + \Phi \dagger 
1\Phi 2\bfitQ 

\ast 
\bot )(\bfitA  - \bfitQ \bfitQ \ast \bfitA \bfitP \bfitP \ast )(\bfitP + \bfitP \bot \Psi 

\ast 
2(\Psi \dagger 

1)\ast ).

Expand the expression and use the orthogonality relations \bfitQ \ast \bfitQ = I and \bfitQ \ast 
\bot \bfitQ = 0

and \bfitP \ast \bfitP = I and \bfitP \ast \bfitP \bot = 0 to arrive at the desired representation.
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SM1.4. Probabilistic analysis of the core matrix. Next, we make distribu-
tional assumptions on the dimension reduction maps \Phi and \Psi . We can then study
the probabilistic behavior of the error \bfitC  - \bfitQ \ast \bfitA \bfitP , conditional on \bfitQ and \bfitP .

Lemma SM1.4 (Probabilistic Analysis of the Core Matrix). Assume that the
dimension reduction matrices \Phi and \Psi are drawn independently from the standard
normal distribution. When s \geq k, it holds that

(SM1.2) \BbbE \bfPhi ,\bfPsi [\bfitC  - \bfitQ \ast \bfitA \bfitP ] = 0.

When s > k + \alpha , we can express the error as

\BbbE \bfPhi ,\bfPsi \| \bfitC  - \bfitQ \ast \bfitA \bfitP \| 22 =
k

s - k  - \alpha 
\cdot \| \bfitA  - \bfitQ \bfitQ \ast \bfitA \bfitP \bfitP \ast \| 22

+
k(2k + \alpha  - s)

(s - k  - \alpha )2
\cdot \| \bfitQ \ast 

\bot \bfitA \bfitP \bot \| 22.

When s < 2k + \alpha , the last term is nonnegative; when s \geq 2k + \alpha , the last term is
nonpositive.

Proof. Since \Phi is standard normal, the orthogonal submatrices \Phi 1 and \Phi 2 are
statistically independent standard normal matrices because of the marginal property
of the normal distribution. Likewise, \Psi 1 and \Psi 2 are statistically independent stan-
dard normal matrices. Provided that s \geq k, both matrices have full column rank with
probability one.

To establish the formula (SM1.2), notice that

\BbbE \bfPhi ,\bfPsi [\bfitC  - \bfitQ \ast \bfitA \bfitP ] = \BbbE \bfPhi 1 \BbbE \bfPhi 2 [\Phi \dagger 
1\Phi 2(\bfitQ \ast 

\bot \bfitA \bfitP )] + \BbbE \bfPsi 1 \BbbE \bfPsi 2 [(\bfitQ \ast \bfitA \bfitP \bot )\Psi \ast 
2(\Psi \dagger 

1)\ast ]

+ \BbbE \BbbE \bfPhi 2 [\Phi \dagger 
1\Phi 2(\bfitQ \ast 

\bot \bfitA \bfitP \bot )\Psi \ast 
2(\Psi \dagger 

1)\ast ].

We have used the decomposition of the approximation error from Lemma SM1.3. Then
we invoke independence to write the expectations as iterated expectations. Since \Phi 2

and \Psi 2 have mean zero, this formula makes it clear that the approximation error has
mean zero.

To study the fluctuations, apply the independence and zero-mean property of \Phi 2

and \Psi 2 to decompose

\BbbE \bfPhi ,\bfPsi \| \bfitC  - \bfitQ \ast \bfitA \bfitP \| 22 = \BbbE \bfPhi \| \Phi \dagger 
1\Phi 2(\bfitQ \ast 

\bot \bfitA \bfitP )\| 22 + \BbbE \bfPsi \| (\bfitQ \ast \bfitA \bfitP \bot )\Psi \ast 
2(\Psi \dagger 

1)\ast \| 22
+ \BbbE \bfPhi \BbbE \bfPsi \| \Phi \dagger 

1\Phi 2(\bfitQ \ast 
\bot \bfitA \bfitP \bot )\Psi \ast 

2(\Psi \dagger 
1)\ast \| 22.

Continuing, we invoke Fact SM1.1 four times to see that

\BbbE \bfPhi ,\bfPsi \| \bfitC  - \bfitQ \ast \bfitA \bfitP \| 22

=
k

s - k  - \alpha 
\cdot 
\biggl[ 
\| \bfitQ \ast 

\bot \bfitA \bfitP \| 22 + \| \bfitQ \ast \bfitA \bfitP \bot \| 22 +
k

s - k  - \alpha 
\cdot \| \bfitQ \ast 

\bot \bfitA \bfitP \bot \| 22
\biggr] 
.

Add and subtract \| \bfitQ \ast 
\bot \bfitA \bfitP \bot \| 22 in the bracket to arrive at

\BbbE \| \bfitC  - \bfitQ \ast \bfitA \bfitP \| 22 =
k

s - k  - \alpha 
\cdot 
\biggl[ 
\| \bfitQ \ast 

\bot \bfitA \bfitP \| 22 + \| \bfitQ \ast \bfitA \bfitP \bot \| 22 + \| \bfitQ \ast 
\bot \bfitA \bfitP \bot \| 22

+
2k + \alpha  - s

s - k  - \alpha 
\cdot \| \bfitQ \ast 

\bot \bfitA \bfitP \bot \| 22
\biggr] 
.

Use the Pythagorean Theorem to combine the terms on the first line.
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SM1.5. Probabilistic analysis of the compression error. Next, we estab-
lish a bound for the expected error in the compression of the matrix \bfitA onto the range
of the orthonormal matrices \bfitQ and \bfitP , computed in (2.7). This result is similar in
spirit to the analysis in [SM6], so we pass lightly over the details.

Lemma SM1.5 (Probabilistic Analysis of the Compression Error). For any nat-
ural number \varrho < k  - \alpha , it holds that

\BbbE \| \bfitA  - \bfitQ \bfitQ \ast \bfitA \bfitP \bfitP \ast \| 22 \leq 
\biggl( 

1 +
2\varrho 

k  - \varrho  - \alpha 

\biggr) 
\cdot \tau 2\varrho +1(\bfitA ).

Proof Sketch. Introduce the partitioned SVD of the matrix \bfitA :

\bfitA = \bfitU \Sigma \bfitV \ast =
\bigl[ 
\bfitU 1 \bfitU 2

\bigr] \biggl[ \Sigma 1

\Sigma 2

\biggr] \biggl[ 
\bfitV \ast 
1

\bfitV \ast 
2

\biggr] 
where \Sigma 1 \in \BbbF \varrho \times \varrho .

Define the matrices

\Upsilon 1 := \Upsilon \bfitU 1 \in \BbbF s\times \varrho and \Upsilon 2 := \Upsilon \bfitU 2 \in F s\times (m - \varrho );

\Omega \ast 
1 := \bfitV \ast 

1 \Omega \ast \in \BbbF \varrho \times s and \Omega \ast 
2 := \bfitV \ast 

2 \Omega \ast \in \BbbF (n - \varrho )\times s;

\bfitP 1 := \bfitV \ast 
1 \bfitP \in \BbbF \varrho \times k and \bfitP 2 := \bfitV \ast 

2 \bfitP \in \BbbF (n - \varrho )\times k.

With this notation, we proceed to the proof.
First, add and subtract terms and apply the Pythagorean Theorem to obtain

\| \bfitA  - \bfitQ \bfitQ \ast \bfitA \bfitP \bfitP \ast \| 22 = \| \bfitA (I - \bfitP \bfitP \ast )\| 22 + \| (I - \bfitQ \bfitQ \ast )\bfitA \bfitP \bfitP \ast \| 22.

Use the SVD to decompose the matrix \bfitA in the first term, and apply the Pythagorean
Theorem again:

\| \bfitA  - \bfitQ \bfitQ \ast \bfitA \bfitP \bfitP \ast \| 22 = \| (\bfitU 2\Sigma 2\bfitV 
\ast 
2 )(I - \bfitP \bfitP \ast )\| 22

+ \| (\bfitU 1\Sigma 1\bfitV 
\ast 
1 )(I - \bfitP \bfitP \ast )\| 22 + \| (I - \bfitQ \bfitQ \ast )\bfitA \bfitP \| 22.

The result [SM9, Prop. 9.2] implies that the second term satisfies

\| (\bfitU 1\Sigma 1\bfitV 
\ast 
1 )(I - \bfitP \bfitP \ast )\| 22 \leq \| \Upsilon 

\dagger 
1\Upsilon 2\Sigma 2\| 22.

We can obtain a bound for the third term using the formula [SM6, p. 270, disp. 1].
After a short computation, this result yields

\| (I - \bfitQ \bfitQ \ast )\bfitA \bfitP \| 22 \leq \| \Sigma 2\bfitP 2\| 22 + \| \Sigma 2\Omega 
\ast 
2(\Omega \ast 

1)\dagger \bfitP 1\| 22
\leq \| \Sigma 2\| 22 + \| \Sigma 2\Omega 

\ast 
2(\Omega \ast 

1)\dagger \| 22.

We can remove \bfitP 1 and \bfitP 2 because their spectral norms are bounded by one, being
submatrices of the orthonormal matrix \bfitP . Combine the last three displays to obtain

\| \bfitA  - \bfitQ \bfitQ \ast \bfitA \bfitP \bfitP \ast \| 22 \leq \| \Sigma 2\| 22 + \| \Upsilon \dagger 
1\Upsilon 2\Sigma 2\| 22 + \| \Sigma 2\Omega 

\ast 
2(\Omega \ast 

1)\dagger \| 22.

We have used the Pythagorean Theorem again.
Take the expectation with respect to \Upsilon and \Omega to arrive at

\BbbE \| \bfitA  - \bfitQ \bfitQ \ast \bfitA \bfitP \bfitP \ast \| 22 \leq \| \Sigma 2\| 22 + \BbbE \| \Upsilon \dagger 
1\Upsilon 2\Sigma 2\| 22 + \BbbE \| \Sigma 2\Omega 

\ast 
2(\Omega \ast 

1)\dagger \| 22

= \| \Sigma 2\| 22 +
2\varrho 

k  - \varrho  - \alpha 
\cdot \| \Sigma 2\| 22.

Finally, note that \| \Sigma 2\| 22 = \tau 2\varrho +1(\bfitA ).
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SM1.6. The Endgame. At last, we are prepared to finish the proof of Theo-
rem 5.1. Fix a natural number \varrho < k  - \alpha . Using the formula (2.9) for the approxi-

mation \̂bfitA , we see that

\| \bfitA  - \̂bfitA \| 22 = \| \bfitA  - \bfitQ \bfitC \bfitP \ast \| 22
= \| \bfitA  - \bfitQ \bfitQ \ast \bfitA \bfitP \bfitP \ast + \bfitQ (\bfitQ \ast \bfitA \bfitP  - \bfitC )\bfitP \ast \| 22
= \| \bfitA  - \bfitQ \bfitQ \ast \bfitA \bfitP \bfitP \ast \| 22 + \| \bfitQ (\bfitQ \ast \bfitA \bfitP  - \bfitC )\bfitP \ast \| 22.

The last identity is the Pythagorean theorem. Drop the orthonormal matrices in the
last term. Then take the expectation with respect to \Phi and \Psi :

\BbbE \bfPhi ,\bfPsi \| \bfitA  - \̂bfitA \| 22 = \| \bfitA  - \bfitQ \bfitQ \ast \bfitA \bfitP \bfitP \ast \| 22 + \BbbE \bfPhi ,\bfPsi \| \bfitQ \ast \bfitA \bfitP  - \bfitC \| 22

We treat the two terms sequentially.
To continue, invoke the expression Lemma SM1.4 for the expected error in the

core matrix \bfitC :

\BbbE \bfPhi ,\bfPsi \| \bfitA  - \̂bfitA \| 22 \leq 
\biggl( 

1 +
k

s - k  - \alpha 

\biggr) 
\cdot \| \bfitA  - \bfitQ \bfitQ \ast \bfitA \bfitP \bfitP \ast \| 22

+
k(2k + \alpha  - s)

(s - k  - \alpha )2
\cdot \| \bfitQ \ast 

\bot \bfitA \bfitP \bot \| 22.

Now, take the expectation with respect to \Upsilon and \Omega to arrive at

(SM1.3)

\BbbE \| \bfitA  - \̂bfitA \| 22 \leq 
\biggl( 

1 +
k

s - k  - \alpha 

\biggr) 
\cdot 
\biggl( 

1 +
2\varrho 

k  - \varrho  - \alpha 

\biggr) 
\cdot \tau 2\varrho +1(\bfitA )

+
k(2k + \alpha  - s)

(s - k  - \alpha )2
\cdot \BbbE \| \bfitQ \ast 

\bot \bfitA \bfitP \bot \| 22.

We have invoked Lemma SM1.5. The last term is nonpositive because we require
s \geq 2k + \alpha , so we may drop it from consideration. Finally, we optimize over eligible
choices \varrho < k  - \alpha to complete the argument. The result stated in Theorem 5.1 is
algebraically equivalent.

SM2. A Posteriori Error Estimation. This section contains proofs of the
bounds on the a posteriori error estimator err2 computed using a Gaussian error
sketch. It also establishes the linear algebra results that we need to diagnose spectral
decay in the input matrix.

SM2.1. The Frobenius Norm Estimator. Fix an arbitrary matrix \bfitM \in 
\BbbF m\times n, which plays the role of the discrepancy \bfitA  - \̂bfitA \mathrm{o}\mathrm{u}\mathrm{t}. For a parameter q, draw a
standard normal dimension reduction map \Theta \in \BbbF q\times m. Define the random variable

\varphi 2
2 :=

1

\beta q
\cdot \| \Theta \bfitM \| 22.

The field parameter \beta = 1 for \BbbF = \BbbR and \beta = 2 for \BbbF = \BbbC . This random variable
can be regarded as a randomized estimator for the Schatten 2-norm of the matrix \bfitM .
The goal of this section is to develop probabilistic results to support this claim.

Remark SM2.1 (Prior Work). The analysis here is similar in spirit to recent pa-
pers on randomized trace estimators [SM1, SM7, SM5]. The details here are slightly
different, but we claim no novelty of insight.
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SM2.1.1. An Alternative Representation. By the unitary invariance of the
Schatten norm and the standard normal matrix, we can and will assume that \bfitM =
diag(\sigma 1, . . . , \sigma m) \in \BbbR m\times m is a real diagonal matrix with (weakly) decreasing entries.

Since \bfitM is real and diagonal, the estimator can be written as

(SM2.1) \varphi 2
2 =

1

\beta q
\cdot \| \Theta \bfitM \| 22 =

1

\beta q
\cdot 
\sum m

i=1
\sigma 2
i \cdot \| \bfittheta :i\| 22 \sim 

1

\beta q
\cdot 
\sum m

i=1
\sigma 2
i \chi 

2
i .

Here, \bfittheta :i is the ith column of \Theta . We have also introduced an independent family
\{ \chi 2

i : i = 1, . . . , n\} of chi-squared random variables, each with \beta q degrees of freedom.
The symbol \sim denotes equality of distribution.

SM2.1.2. The Mean and Variance. Using the representation (SM2.1), we
quickly compute the mean and variance of the estimator. By linearity of expectation,

\BbbE \varphi 2
2 =

1

\beta q
\cdot 
\sum m

i=1
\sigma 2
i \BbbE \chi 2

i =
\sum m

i=1
\sigma 2
i = \| \bfitM \| 22.

For the second relation, we introduce the mean of a chi-squared variable with \beta q
degrees of freedom. Since the chi-squared variables are independent,

Var[\varphi 2
2] =

1

(\beta q)2
\cdot 
\sum m

i=1
\sigma 4
i Var[\chi 2

i ] =
2

\beta q

\sum m

i=1
\sigma 4
i =

2

\beta q
\| \bfitM \| 44.

We have also used the fact that the variance is 2-homogeneous, and we introduced
the variance of a chi-squared variable with \beta q degrees of freedom.

SM2.1.3. Upper Tail Probabilities. Our goal is to develop bounds on the
probability that the estimator takes an extreme value. We begin with the upper tail.

We can use the Laplace transform method. For \varepsilon \geq 0, by Markov’s inequality,

log\BbbP 
\bigl\{ 
\varphi 2
2 \geq (1 + \varepsilon ) \cdot \| \bfitM \| 22

\bigr\} 
\leq inf

\eta >0

\Bigl( 
 - \eta (1 + \varepsilon )\| \bfitM \| 22 + log\BbbE e\eta \varphi 

2
2

\Bigr) 
.

To compute the moment generating function, we exploit independence of the chi-
squared variates in the representation (SM2.1):

log\BbbE e\eta \varphi 
2
2 =

\prod m

i=1
log\BbbE e(\eta \sigma 

2
i /(\beta q))\cdot \chi 

2
i =
 - \beta q

2

\sum m

i=1
log

\biggl[ 
1 - 2\eta \sigma 2

i

\beta q

\biggr] 
.

The last relation follows when we introduce the moment generating function of a chi-
squared variable with \beta q degrees of freedom. We tacitly assume that \eta is sufficiently
small. We have the bound

log\BbbE e\eta \varphi 
2
2 \leq  - \beta q

2
log

\biggl[ 
1 - 

2\eta 
\sum m

i=1 \sigma 
2
i

\beta q

\biggr] 
=
 - \beta q

2
log

\biggl[ 
1 - 2\eta \| \bfitM \| 22

\beta q

\biggr] 
.

This point follows by repeated application of the numerical inequality (1 - a)(1 - b) \geq 
1 - a - b, valid when ab \geq 0. In summary,

log\BbbP 
\bigl\{ 
\varphi 2
2 \geq (1 + \varepsilon ) \cdot \| \bfitM \| 22

\bigr\} 
\leq inf

\eta >0

\biggl( 
 - \eta (1 + \varepsilon )\| \bfitM \| 22  - 

\beta q

2
log

\biggl[ 
1 - 2\eta \| \bfitM \| 22

\beta q

\biggr] \biggr) 
=
 - \beta q

2
[\varepsilon  - log(1 + \varepsilon )] .

Exponentiate this expression to reach the required bound.

Remark SM2.2 (Improvements). Sharper estimates are possible in the case where
the stable rank of the matrix \bfitM is large. For results of this type, see [SM5].
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SM2.1.4. Lower Tail Probabilities. For the lower tail, we use essentially the
same argument. Therefore, we gloss over most of the details.

For \varepsilon \in (0, 1), the Laplace transform method gives

log\BbbP 
\bigl\{ 
\varphi 2
2 \leq (1 - \varepsilon ) \cdot \| \bfitM \| 22

\bigr\} 
\leq inf

\eta >0

\Bigl( 
\eta (1 - \varepsilon )\| \bfitM \| 22 + log\BbbE e - \eta \varphi 2

2

\Bigr) 
.

We bound the moment generating function as

log\BbbE e - \eta \varphi 2
2 \leq  - \beta q

2
log

\biggl[ 
1 +

2\eta \| \bfitM \| 22
\beta q

\biggr] 
.

Combine the last two displays:

log\BbbP 
\bigl\{ 
\varphi 2
2 \leq \varepsilon \cdot \| \bfitM \| 22

\bigr\} 
\leq inf

\eta >0

\biggl( 
\eta (1 - \varepsilon )\| \bfitM \| 22  - 

\beta q

2
log

\biggl[ 
1 +

2\eta \| \bfitM \| 22
\beta q

\biggr] \biggr) 
=

\beta q

2
[\varepsilon + log(1 - \varepsilon )] .

Exponentiate this expression to reach the desired bound.

SM2.2. Diagnosing Spectral Decay. In this section, we explain why the
square root of the tail energy is a Lipschitz function. For a matrix \bfitA \in \BbbF m\times n and an
integer r \geq 0, recall that

\tau 2r+1(\bfitA ) =
\sum 

j>r
\sigma 2
j (\bfitA ) =

\sum 
j>r

\lambda j(\bfitA 
\ast \bfitA ).

As usual, \lambda j returns the jth largest eigenvalue of an Hermitian matrix. Ky Fan’s min-
imum principle [SM2, Prob. I.6.15] gives a variational representation for this quantity:

\tau 2r+1(\bfitA ) = min
\bfitU \in \BbbF n\times (n - r)

tr[\bfitU \ast (\bfitA \ast \bfitA )\bfitU ] = min
\bfitU \in \BbbF n\times (n - r)

\| \bfitA \bfitU \| 22

where \bfitU ranges over matrices with orthonormal columns. As a consequence, for
conformal matrices \bfitA and \bfitB , we have

\tau r+1(\bfitA ) - \tau r+1(\bfitB ) = min\bfitU \| \bfitA \bfitU \| 2  - min\bfitU \| \bfitB \bfitU \| 2
\leq \| \bfitA \bfitU \bfitB \| 2  - \| \bfitB \bfitU \bfitB \| 2
= \| (\bfitA  - \bfitB )\bfitU \bfitB \| 2 \leq \| \bfitA  - \bfitB \| 2.

We have written \bfitU \bfitB for the orthonormal matrix in \BbbF n\times (n - r) that minimizes the
functional \bfitU \mapsto \rightarrow \| \bfitB \bfitU \| 2. The last inequality follows because \bfitU \bfitB has spectral norm
one. Reverse the roles of the two matrices to conclude that

| \tau r+1(\bfitA ) - \tau r+1(\bfitB )| \leq \| \bfitA  - \bfitB \| 2.

This is the advertised result.

SM3. Code \& Pseudocode. This section contains pseudocode for the dimen-
sion reduction maps described in section 3. We use the same mathematical notation
as the rest of the paper. We also rely on Matlab R2018b commands, which appear
in typewriter font. The electronic materials include a Matlab implementation of
these methods.
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Algorithm SM3.1 Gaussian Dimension Reduction Map. (subsection 3.1)

1 class GaussDR (DimRedux)  \triangleleft Subclass of DimRedux

2 local variable \Xi (dense matrix)
3 function randn(d,N ;\BbbF )  \triangleleft Gaussian matrix over field \BbbF 
4 if \BbbF = \BbbR then return randn(d,N)

5 if \BbbF = \BbbC then return randn(d,N) + 1i * randn(d,N)

6 function GaussDR(k,N)  \triangleleft Constructor
7 \Xi \leftarrow randn(d,N ;\BbbF )  \triangleleft Gaussian over \BbbF 
8 function GaussDR.mtimes(DRmap, \bfitM )
9 return mtimes(\Xi , \bfitM )

Algorithm SM3.2 SSRFT Dimension Reduction Map. (subsection 3.2)

1 class SSRFT (DimRedux)  \triangleleft Subclass of DimRedux
2 local variables coords, permj , \bfitvarepsilon j for j = 1, 2
3 function SSRFT(d,N)  \triangleleft Constructor
4 coords\leftarrow randperm(N, d)
5 permj \leftarrow randperm(N) for j = 1, 2
6 \bfitvarepsilon j \leftarrow sign(randn(N, 1;\BbbF )) for j = 1, 2

7 function SSRFT.mtimes(DRmap, \bfitM )
8 if \BbbF = \BbbR then
9 \bfitM \leftarrow dct(diag(\bfitvarepsilon 1)\bfitM (perm1, :))

10 \bfitM \leftarrow dct(diag(\bfitvarepsilon 2)\bfitM (perm2, :))

11 if \BbbF = \BbbC then
12 \bfitM \leftarrow dft(diag(\bfitvarepsilon 1)\bfitM (perm1, :))
13 \bfitM \leftarrow dft(diag(\bfitvarepsilon 2)\bfitM (perm2, :))

14 return \bfitM (coords, :)

\bullet The template for the DimRedux class appears in the body of the paper
as Algorithm 3.1.

\bullet Algorithm SM3.1 defines a Gaussian dimension reduction class (GaussDR),
which is a subclass of DimRedux. It describes the constructor and the left
and right action of this dimension reduction map. See subsection 3.1 for the
explanation.

\bullet Algorithm SM3.2 defines a SSRFT dimension reduction class (SSRFT). It
is a subclass of DimRedux. It describes the constructor and the left and
right action of this dimension reduction map. See subsection 3.2 for the
explanation.

\bullet Algorithm SM3.3 defines a sparse dimension reduction class (SparseDR),
which is a subclass of DimRedux. It describes the constructor and the left
and right action of this dimension reduction map. See subsection 3.3 for the
explanation.

SM4. Supplemental Numerical Results. This section summarizes the addi-
tional numerical results that are presented in this supplement. The Matlab code in
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Algorithm SM3.3 Sparse Dimension Reduction Map. (subsection 3.3)

1 class SparseDR (DimRedux)  \triangleleft Subclass of DimRedux
2 local variable \Xi (sparse matrix)
3 function SparseDR(d,N)  \triangleleft Constructor
4 \zeta \leftarrow min\{ d, 8\}  \triangleleft Sparsity of each column
5 for j = 1, . . . , N do
6 \Xi (randperm(d, \zeta ), j)\leftarrow sign(randn(\zeta , 1;\BbbF ))

7 function SparseDR.mtimes(DRmap, \bfitM )
8 return mtimes(\Xi , \bfitM )

the electronic materials can reproduce these experiments.

SM4.1. Alternative Sketching and Reconstruction Methods. In this sec-
tion, we give full mathematical descriptions of other sketching and reconstruction
methods from the literature. We compare our approach against these algorithms.

SM4.1.1. The [HMT11] Method. The paper [SM6, Sec. 5.4] describes a one-
pass SVD algorithm, which can be reinterpreted as a sketching algorithm for low-
rank matrix approximation. This method simplifies a more involved approach [SM11,
Sec. 5.2] due to Woolfe et al. The two approaches have similar performance in practice.

This method uses two dimension reduction maps, controlled by one parameter k:

\Upsilon \in \BbbF k\times m and \Omega \in \BbbR k\times n.

The sketch takes the form

\bfitX = \Upsilon \bfitA and \bfitY = \bfitA \Omega .

To obtain a rank-r approximation from the sketch, we first compute r leading singular
vectors of the sketch matrices:

(\bfitP ,\sim ,\sim ) = svd(\bfitX \ast , 'econ') and \bfitP = \bfitP (:, 1:r);

(\bfitQ ,\sim ,\sim ) = svd(\bfitY , 'econ') and \bfitQ = \bfitQ (:, 1:r).

Next, we compute two separate estimates for the core matrix by solving two families
of least-squares problems:

\bfitC 1 = (\bfitQ \ast \bfitY )(\bfitP \ast \Omega )\dagger \in \BbbF r\times r and \bfitC \ast 
2 = (\bfitP \ast \bfitX )(\bfitQ \ast \Upsilon )\dagger \in \BbbF r\times r.

Combine these two estimates and compute the SVD:

(\bfitU ,\Sigma ,\bfitV ) = svd((\bfitC 1 + \bfitC 2)/2).

Last, we obtain the rank-r approximation in factored form:

\̂bfitA \mathrm{h}\mathrm{m}\mathrm{t} := (\bfitQ \bfitU )\Sigma (\bfitP \bfitV )\ast .

This approach is not competitive with more modern techniques. Some of the defi-
ciencies stem from truncating the singular vectors to rank r at the first step of the
procedure; see Figures SM21 and SM22.
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SM4.1.2. The [TYUC17] Method. In our previous paper, we developed and
analyzed a sketching algorithm [SM8, Alg. 7] for low-rank matrix approximation. Our
work contains a detailed theoretical analysis, prescriptions for choosing algorithm
parameters, and an extensive numerical evaluation. We later discovered that this
method is algebraically (but not numerically) equivalent to a proposal of Clarkson
& Woodruff [SM4, Thm. 4.9]. The paper [SM4] also lacks reliable instructions for
implementation.

This approach uses two dimension reduction maps that are indexed by two pa-
rameters k, \ell :

\Upsilon \in \BbbF \ell \times m and \Omega \in \BbbF k\times n where k \leq \ell .

The sketch takes the form

\bfitX = \Upsilon \bfitA and \bfitY = \bfitA \Omega \ast .

To obtain a rank-r approximation from the sketch, we compute a thin orthogonal–
triangular decomposition:

\bfitY =: \bfitQ \bfitR where \bfitQ \in \BbbF m\times k.

Then we form the approximation:

(SM4.1) \̂bfitA \mathrm{t}\mathrm{y}\mathrm{u}\mathrm{c} := \bfitQ J(\Upsilon \bfitQ )\dagger \bfitX Kr.

Of course, we solve the least-squares problems, rather than computing and applying
the pseudoinverse. We use a dense SVD or a randomized SVD [SM6] to calculate the
best rank-r approximation.

This method works well, but it uses more storage than necessary because \ell needs
to be somewhat larger than k. The algorithm can also be sensitive to the relative size
of the parameters k, \ell .

SM4.1.3. The [Upa16] Method. In a paper on privacy-preserving matrix ap-
proximation, Upadhyay [SM10, Sec. 3] developed an algorithm that also serves for
streaming low-rank matrix approximation. This method simplifies a far more compli-
cated approach due to Boutsidis et al. [SM3, Sec. 6].

Upadhyay proposed the sketch (2.2)–(2.4), which depends on two parameters
k, s. We are building on his idea in this paper. In contrast to our work, Upadhyay
designs a rank-r reconstruction algorithm using the “sketch-and-solve” framework;
see subsection 2.8.

His approach leads to the following algorithm. First, compute orthonormal bases
\bfitQ and \bfitP for the range and co-range:

\bfitX \ast =: \bfitP \bfitR 1 where \bfitP \in \BbbF n\times k;

\bfitY =: \bfitQ \bfitR 2 where \bfitQ \in \BbbF m\times k.

Next, form thin singular value decompositions:

\Phi \bfitQ = \bfitU 1\Sigma 1\bfitV 
\ast 
1 \in \BbbF s\times k and \Psi \bfitP = \bfitU 2\Sigma 2\bfitV 

\ast 
2 \in \BbbF s\times k.

Construct the rank-r approximation using the formula

(SM4.2) \̂bfitA \mathrm{u}\mathrm{p}\mathrm{a} := \bfitQ \bfitV 1\Sigma 
\dagger 
1 J\bfitU \ast 

1\bfitZ \bfitU 2Kr \Sigma 
\dagger 
2\bfitV 

\ast 
2 \bfitP \ast .
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Fig. SM1. Spectra of input matrices. Plots of the singular value spectrum for an input
matrix from each of the synthetic classes (LowRank, PolyDecay, ExpDecay with effective rank R = 10)
and from each of the real data classes (MinTemp, StreamVel, MaxCut, PhaseRetrieval) described in
subsection 7.3.

We use a truncated SVD to perform the rank truncation of the central matrix. Of
course, we should take care in applying the pseudoinverses.

Superficially, the approximation \̂bfitA \mathrm{u}\mathrm{p}\mathrm{a} may appear similar to the approximation
we developed in (2.10). Nevertheless, they are designed using different principles, and
their performance is quite different in practice. The [Upa16] method cannot achieve
high relative accuracy, even for matrices with rapid spectral decay. Furthermore, it
has the bizarre feature that decreasing the rank parameter r can actually make the
approximation less reliable! See Figures SM23 and SM24.

SM4.2. Spectra of Input Matrices. Figure SM1 plots the spectrum of each
of the synthetic and application matrices that we use in our experiments.

SM4.3. Insensitivity to the Dimension Reduction Map. Our first exper-
iment is designed to show that the proposed rank-r reconstruction formula (2.10) is
insensitive to the distribution of the dimension reduction map at the oracle parameter
values (subsection 7.2.2) for synthetic input matrices.

We plot the oracle error for (2.10) as a function of storage budget T for Gaussian,
SSRFT, and sparse dimension reduction maps. See Figures SM2 to SM7. The curves
are almost identical, except that the unitary SSRFT map performs slightly better than
the others when the storage budget is very large. Similar results hold for matrices
drawn from real applications.

We have also found that the other reconstruction methods [HMT11], [TYUC17],
and [Upa16] are insensitive to the choice of dimension reduction map. These observa-
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tions justify the transfer of theoretical and empirical results for Gaussians to SSRFT
and sparse dimension reduction maps.

SM4.4. Achieving the Oracle Performance. Next, we show that we can
almost achieve the oracle error by implementing (2.10) with sketch size parameters
chosen using our theory.

We perform the following experiment. For synthetic input matrices, we compare
the oracle performance (subsection 7.2.2) of our rank-r approximation (2.10) with
its performance at the theoretical parameters proposed in subsection 5.4. (In the
formula (5.7) for a flat spectrum, we set the tail location \varrho = r.) We use Gaussian
dimension reduction maps, but equivalent results hold for other types of dimension
reduction maps. Plots of the results appear in Figures SM8 to SM13.

For most of the examples, the general parameter choice (5.6) is able to deliver a
relative error that tracks the oracle error closely. The parameter choice (5.7) for a
flat spectrum works somewhat better for matrices whose spectral tail exhibits slow
decay (LowRankLowNoise, LowRankMedNoise, LowRankHiNoise). We also learn that
the theoretical formulas are not entirely reliable when the storage budget is very small.
Matrices with a lot of tail energy (LowRankHiNoise, PolyDecaySlow) are very hard
to approximate accurately with a sketching algorithm, so it is not surprising that our
theoretical parameter choices fall short of the oracle parameters in these cases.

SM4.5. Algorithm Comparisons for Synthetic Instances. We compared
all four of the reconstruction formulas at the oracle parameters for a wide range of
synthetic problem instances. See subsection 7.6 for details.

Figures SM14, SM15, SM17, and SM18 contain the results for matrices with
effective rank R = 5 and R = 20 with relative error measured in Schatten 2-norm and
Schatten \infty -norm.

SM4.6. Algorithm Comparisons for Real Data Instances. In this exper-
iment, we compared all four of the reconstruction formulas at the oracle parameters
and at theoretically chosen parameters for several application examples.

Here are the details of the a priori parameter selections for the several methods.
For the proposed method (2.10), we use the “natural” parameter choice (5.6) that
follows from our theoretical analysis. The [Upa16] algorithm uses the same sketch—
but lacks a comparable theory—so we instantiate it with the parameters (5.6). For
[TYUC17], we assume that the input matrix \bfitA \in \BbbF m\times n is tall (m \geq n), and we use
the theoretically motivated parameter values

k = max\{ r + \alpha + 1, \lfloor (T  - n\alpha )/(m + 2n)\rfloor \} and \ell = \lfloor (T  - km)/n\rfloor .

This choice adapts the arguments in [SM8, Sec. 4.5.2] to use the current definition of
the storage budget T . The [HMT11] algorithm does not have any free parameters.

SM4.7. Flow-Field Reconstruction. Figure SM20 illustrates the streamwise
velocity field StreamVel and its rank-10 approximation via (2.10) using storage budget
T = 48(m + n) and the parameter choices (5.6). We see that the approximation
captures the large-scale features of the flow, although there are small errors visible
for the higher-order singular vectors.

We also performed the same experiment with the algorithms [HMT11], [Upa16],
and [TYUC17]. We set the truncation rank r = 5 and r = 10 to see whether this
change affects the behavior of the methods. We plot the leading left singular vectors of
the flow fields in Figures SM21 to SM25. For truncation r = 10, all of the algorithms
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produce reasonable results. Nevertheless, with algorithms [HMT11], [Upa16], and
[TYUC17], the singular vector estimates for rank 6, 7, 8, 9 start to deviate from the
singular vectors of the original matrix.

When we change the truncation rank to r = 5, our methods [TYUC17] and (2.10)
give exactly the same singular vector estimates as with r = 10, by construction of the
algorithm. On the other hand, the methods [HMT11] and [Upa16] behave far worse
when r = 5 than when r = 10. This feature is both strange and dissatisfying. By
itself, this lack of stability is already enough to disqualify the algorithms [HMT11]
and [Upa16] from practical use.
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Fig. SM2. Insensitivity of proposed method to the dimension reduction map. (Effective
rank R = 5, approximation rank r = 10, Schatten 2-norm.) We compare the oracle performance
of the proposed fixed-rank approximation (2.10) implemented with Gaussian, SSRFT, or sparse
dimension reduction maps. See subsection SM4.3 for details.



STREAMING MATRIX APPROXIMATION SM15

Storage: T/(m+ n)
12 24 48 96 192

R
el
at
iv
e
E
rr
or

(S
∞
)

10
-1

10
0

(a) LowRankHiNoise

Storage: T/(m+ n)
12 24 48 96 192

10
-1

10
0

10
1

(b) LowRankMedNoise

Storage: T/(m+ n)
12 24 48 96 192

10
-1

10
0

10
1

(c) LowRankLowNoise

Storage: T/(m+ n)
12 24 48 96 192

R
el
at
iv
e
E
rr
o
r
(S

∞
)

10
-2

10
-1

10
0

(d) PolyDecaySlow

Storage: T/(m+ n)
12 24 48 96 192

10
-3

10
-2

10
-1

10
0

(e) PolyDecayMed

Storage: T/(m+ n)
12 24 48 96 192

10
-6

10
-4

10
-2

10
0

(f) PolyDecayFast

Storage: T/(m+ n)
12 24 48 96 192

R
el
at
iv
e
E
rr
o
r
(S

∞
)

10
-4

10
-3

10
-2

10
-1

10
0

Gauss
SSRFT
Sparse

(g) ExpDecaySlow

Storage: T/(m+ n)
12 24 48 96 192

10
-8

10
-6

10
-4

10
-2

10
0

(h) ExpDecayMed

Storage: T/(m+ n)
12 24 48 96 192

10
-8

10
-6

10
-4

10
-2

10
0

(i) ExpDecayFast

Fig. SM3. Insensitivity of proposed method to the dimension reduction map. (Effective
rank R = 5, approximation rank r = 10, Schatten \infty -norm.) We compare the oracle performance
of the proposed fixed-rank approximation (2.10) implemented with Gaussian, SSRFT, or sparse
dimension reduction maps. See subsection SM4.3 for details.
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Fig. SM4. Insensitivity of proposed method to the dimension reduction map. (Effective
rank R = 10, approximation rank r = 10, Schatten 2-norm.) We compare the oracle performance
of the proposed fixed-rank approximation (2.10) implemented with Gaussian, SSRFT, or sparse
dimension reduction maps. See subsection SM4.3 for details.
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Fig. SM5. Insensitivity of proposed method to the dimension reduction map. (Effective
rank R = 10, approximation rank r = 10, Schatten \infty -norm.) We compare the oracle performance
of the proposed fixed-rank approximation (2.10) implemented with Gaussian, SSRFT, or sparse
dimension reduction maps. See subsection SM4.3 for details.
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Fig. SM6. Insensitivity of proposed method to the dimension reduction map. (Effective
rank R = 20, approximation rank r = 10, Schatten 2-norm.) We compare the oracle performance
of the proposed fixed-rank approximation (2.10) implemented with Gaussian, SSRFT, or sparse
dimension reduction maps. See subsection SM4.3 for details.
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Fig. SM7. Insensitivity of proposed method to the dimension reduction map. (Effective
rank R = 20, approximation rank r = 10, Schatten \infty -norm.) We compare the oracle performance
of the proposed fixed-rank approximation (2.10) implemented with Gaussian, SSRFT, or sparse
dimension reduction maps. See subsection SM4.3 for details.
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Fig. SM8. Relative error for proposed method with \bfa \bfp \bfr \bfi \bfo \bfr \bfi parameters. (Gaussian
maps, effective rank R = 5, approximation rank r = 10, Schatten 2-norm.) We compare the oracle
performance of the proposed fixed-rank approximation (2.10) with its performance at theoretically
justified parameter values. See subsection SM4.4 for details.
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Fig. SM9. Relative error for proposed method with \bfa \bfp \bfr \bfi \bfo \bfr \bfi parameters. (Gaussian maps,
effective rank R = 5, approximation rank r = 10, Schatten \infty -norm.) We compare the oracle
performance of the proposed fixed-rank approximation (2.10) with its performance at theoretically
justified parameter values. See subsection SM4.4 for details.
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Fig. SM10. Relative error for proposed method with \bfa \bfp \bfr \bfi \bfo \bfr \bfi parameters. (Gaussian
maps, effective rank R = 10, approximation rank r = 10, Schatten 2-norm.) We compare the oracle
performance of the proposed fixed-rank approximation (2.10) with its performance at theoretically
justified parameter values. See subsection SM4.4 for details.
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Fig. SM11. Relative error for proposed method with \bfa \bfp \bfr \bfi \bfo \bfr \bfi parameters. (Gaussian
maps, effective rank R = 10, approximation rank r = 10, Schatten \infty -norm.) We compare the oracle
performance of the proposed fixed-rank approximation (2.10) with its performance at theoretically
justified parameter values. See subsection SM4.4 for details.



SM24 J. A. TROPP, A. YURTSEVER, M. UDELL, AND V. CEVHER

Storage: T/(m+ n)
12 24 48 96 192

R
el
at
iv
e
E
rr
or

(S
2
)

10
-2

10
-1

(a) LowRankHiNoise

Storage: T/(m+ n)
12 24 48 96 192

10
-2

10
-1

(b) LowRankMedNoise

Storage: T/(m+ n)
12 24 48 96 192

10
-4

10
-3

10
-2

10
-1

(c) LowRankLowNoise

Storage: T/(m+ n)
12 24 48 96 192

R
el
at
iv
e
E
rr
o
r
(S

2
)

10
-2

10
-1

(d) PolyDecaySlow

Storage: T/(m+ n)
12 24 48 96 192

10
-3

10
-2

10
-1

(e) PolyDecayMed

Storage: T/(m+ n)
12 24 48 96 192

10
-8

10
-6

10
-4

10
-2

(f) PolyDecayFast

Storage: T/(m+ n)
12 24 48 96 192

R
el
at
iv
e
E
rr
o
r
(S

2
)

10
-3

10
-2

10
-1

Oracle
Natural (5.6)
Flat (5.7)

(g) ExpDecaySlow

Storage: T/(m+ n)
12 24 48 96 192

10
-8

10
-6

10
-4

10
-2

(h) ExpDecayMed

Storage: T/(m+ n)
12 24 48 96 192

10
-8

10
-6

10
-4

10
-2

(i) ExpDecayFast

Fig. SM12. Relative error for proposed method with \bfa \bfp \bfr \bfi \bfo \bfr \bfi parameters. (Gaussian
maps, effective rank R = 20, approximation rank r = 10, Schatten 2-norm.) We compare the oracle
performance of the proposed fixed-rank approximation (2.10) with its performance at theoretically
justified parameter values. See subsection SM4.4 for details.



STREAMING MATRIX APPROXIMATION SM25

Storage: T/(m+ n)
12 24 48 96 192

R
el
at
iv
e
E
rr
o
r
(S

∞
)

10
-1

10
0

(a) LowRankHiNoise

Storage: T/(m+ n)
12 24 48 96 192

10
-2

10
-1

10
0

(b) LowRankMedNoise

Storage: T/(m+ n)
12 24 48 96 192

10
-4

10
-3

10
-2

10
-1

10
0

(c) LowRankLowNoise

Storage: T/(m+ n)
12 24 48 96 192

R
el
at
iv
e
E
rr
o
r
(S

∞
)

10
-2

10
-1

10
0

(d) PolyDecaySlow

Storage: T/(m+ n)
12 24 48 96 192

10
-4

10
-2

10
0

(e) PolyDecayMed

Storage: T/(m+ n)
12 24 48 96 192

10
-8

10
-6

10
-4

10
-2

10
0

(f) PolyDecayFast

Storage: T/(m+ n)
12 24 48 96 192

R
el
at
iv
e
E
rr
o
r
(S

∞
)

10
-4

10
-3

10
-2

10
-1

10
0

Oracle
Natural (5.6)
Flat (5.7)

(g) ExpDecaySlow

Storage: T/(m+ n)
12 24 48 96 192

10
-8

10
-6

10
-4

10
-2

10
0

(h) ExpDecayMed

Storage: T/(m+ n)
12 24 48 96 192

10
-8

10
-6

10
-4

10
-2

10
0

(i) ExpDecayFast

Fig. SM13. Relative error for proposed method with \bfa \bfp \bfr \bfi \bfo \bfr \bfi parameters. (Gaussian
maps, effective rank R = 20, approximation rank r = 10, Schatten \infty -norm.) We compare the oracle
performance of the proposed fixed-rank approximation (2.10) with its performance at theoretically
justified parameter values. See subsection SM4.4 for details.



SM26 J. A. TROPP, A. YURTSEVER, M. UDELL, AND V. CEVHER

Storage: T/(m+ n)
12 24 48 96 192

R
el
at
iv
e
E
rr
or

(S
2
)

10
-2

10
-1

10
0

(a) LowRankHiNoise

Storage: T/(m+ n)
12 24 48 96 192

10
-2

10
-1

10
0

(b) LowRankMedNoise

Storage: T/(m+ n)
12 24 48 96 192

10
-2

10
-1

10
0

(c) LowRankLowNoise

Storage: T/(m+ n)
12 24 48 96 192

R
el
at
iv
e
E
rr
o
r
(S

2
)

10
-2

10
-1

10
0

(d) PolyDecaySlow

Storage: T/(m+ n)
12 24 48 96 192

10
-2

10
-1

10
0

(e) PolyDecayMed

Storage: T/(m+ n)
12 24 48 96 192

10
-4

10
-3

10
-2

10
-1

10
0

(f) PolyDecayFast

Storage: T/(m+ n)
12 24 48 96 192

R
el
a
ti
ve

E
rr
or

(S
2
)

10
-4

10
-3

10
-2

10
-1

10
0

[HMT11]
[UPA16]
[TYUC17]
Eqn. (2.10)

(g) ExpDecaySlow

Storage: T/(m+ n)
12 24 48 96 192

10
-8

10
-6

10
-4

10
-2

10
0

(h) ExpDecayMed

Storage: T/(m+ n)
12 24 48 96 192

10
-8

10
-6

10
-4

10
-2

10
0

(i) ExpDecayFast

Fig. SM14. Comparison of reconstruction formulas: Synthetic examples. (Gaussian
maps, effective rank R = 5, approximation rank r = 10, Schatten 2-norm.) We compare the
oracle error achieved by the proposed fixed-rank approximation (2.10) against methods (SM4.1) and
(SM4.2) from the literature. See subsection 7.2.2 for details.
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Fig. SM15. Comparison of reconstruction formulas: Synthetic examples. (Gaussian
maps, effective rank R = 5, approximation rank r = 10, Schatten \infty -norm.) We compare the
oracle error achieved by the proposed fixed-rank approximation (2.10) against methods (SM4.1) and
(SM4.2) from the literature. See subsection 7.2.2 for details.
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Fig. SM16. Comparison of reconstruction formulas: Synthetic examples. (Gaussian
maps, effective rank R = 10, approximation rank r = 10, Schatten \infty -norm.) We compare the
oracle error achieved by the proposed fixed-rank approximation (2.10) against methods (SM4.1) and
(SM4.2) from the literature. See subsection 7.2.2 for details.
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Fig. SM17. Comparison of reconstruction formulas: Synthetic examples. (Gaussian
maps, effective rank R = 20, approximation rank r = 10, Schatten 2-norm.) We compare the
oracle error achieved by the proposed fixed-rank approximation (2.10) against methods (SM4.1) and
(SM4.2) from the literature. See subsection 7.2.2 for details.
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Fig. SM18. Comparison of reconstruction formulas: Synthetic examples. (Gaussian
maps, effective rank R = 20, approximation rank r = 10, Schatten \infty -norm.) We compare the
oracle error achieved by the proposed fixed-rank approximation (2.10) against methods (SM4.1) and
(SM4.2) from the literature. See subsection 7.2.2 for details.
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(a) MinTemp (r = 10)

Storage: T/(m+ n)
12 24 48 96 192

10
-8

10
-6

10
-4

10
-2

10
0

(b) StreamVel (r = 10)
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(c) MaxCut (r = 1)
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(e) PhaseRetrieval (r = 1)

Storage: T/(m+ n)
12 24 48 96

10
-8

10
-6

10
-4

10
-2

10
0

(f) PhaseRetrieval (r = 5)

Fig. SM19. Comparison of reconstruction formulas: Real data examples. (Sparse maps,
Schatten \infty -norm.) We compare the relative error achieved by the proposed fixed-rank approxima-
tion (2.10) against methods (SM4.1) and (SM4.2) from the literature. Solid lines are oracle errors;
dashed lines are errors with ``natural"" parameter choices. See subsection 7.7 for details.
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Fig. SM20. Approximation of StreamVel via (\bftwo .\bfone \bfzero ). (Sparse maps, approximation rank r =
10, storage budget T = 48(m+ n).) The columns of the matrix StreamVel describe the fluctuations
of the streamwise velocity field about its mean value as a function of time. From top to bottom,
the panels show columns 1, 1001, 1501, 2001, 2501, 3001, 3501, 4001. The left-hand side displays the
approximation (2.10) of the flow field, and the right-hand side displays the exact flow field. The
heatmap indicates the magnitude of the fluctuation. See subsection 7.8.
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Fig. SM21. Left singular vectors of StreamVel via [HMT11]. (Sparse maps, approximation
rank r = 5, storage budget T = 48(m + n).) The columns of the matrix StreamVel describe the
fluctuations of the streamwise velocity field about its mean value as a function of time. From top to
bottom, the panels show the first nine computed left singular vectors of the matrix. The left-hand
side is computed using [HMT11], while the right-hand side is computed from the exact flow field.
The heatmap indicates the magnitude of the fluctuation. See subsection 7.8.
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Fig. SM22. Left singular vectors of StreamVel via [HMT11]. (Sparse maps, approximation
rank r = 10, storage budget T = 48(m + n).) The columns of the matrix StreamVel describe the
fluctuations of the streamwise velocity field about its mean value as a function of time. From top to
bottom, the panels show the first nine computed left singular vectors of the matrix. The left-hand
side is computed using [HMT11], while the right-hand side is computed from the exact flow field.
The heatmap indicates the magnitude of the fluctuation. See subsection 7.8.
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Fig. SM23. Left singular vectors of StreamVel via [Upa16]. (Sparse maps, approximation
rank r = 5, storage budget T = 48(m + n).) The columns of the matrix StreamVel describe the
fluctuations of the streamwise velocity field about its mean value as a function of time. From top to
bottom, the panels show the first nine computed left singular vectors of the matrix. The left-hand
side is computed using [Upa16], while the right-hand side is computed from the exact flow field.
The heatmap indicates the magnitude of the fluctuation. See subsection 7.8.
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Fig. SM24. Left singular vectors of StreamVel via [Upa16]. (Sparse maps, approximation
rank r = 10, storage budget T = 48(m + n).) The columns of the matrix StreamVel describe the
fluctuations of the streamwise velocity field about its mean value as a function of time. From top to
bottom, the panels show the first nine computed left singular vectors of the matrix. The left-hand
side is computed using [Upa16], while the right-hand side is computed from the exact flow field.
The heatmap indicates the magnitude of the fluctuation. See subsection 7.8.
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Fig. SM25. Left singular vectors of StreamVel via [TYUC17]. (Sparse maps, approximation
rank r = 10, storage budget T = 48(m + n).) The columns of the matrix StreamVel describe the
fluctuations of the streamwise velocity field about its mean value as a function of time. From top to
bottom, the panels show the first nine computed left singular vectors of the matrix. The left-hand
side is computed using [TYUC17], while the right-hand side is computed from the exact flow field.
The heatmap indicates the magnitude of the fluctuation. See subsection 7.8.
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