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Greed is Good.:
Algorithmic Results for Sparse Approximation

Joel A. Tropp,Student Member, IEEE

Abstract— This article presents new results on using a nonlinear methods were developed. One fundamental
greedy algorithm, Orthogonal Matching Pursuit (OMP),  technique is to project each signal onto thestlinear
to solve the sparse approximation problem over redundant subspace spanned by elements of a fixed orthonor-

dictionaries. It provides a sufficient condition under which . . . L .
both OMP and Donoho’s Basis Pursuit paradigm (BP) can mal basis. This type of approximation is quite easy to

recover the optimal representation of an exactly sparse Perform due to the rigid structure of an orthonormal
signal. It leverages this theory to show that both OMP and system. In comparison with the linear method, it may

BP succeed for every sparse input signal from a wide class yield a significant improvement in the approximation
of dictionaries. These quasi-incoherent dictionaries offr a error [1], [2]. But, as noted, some functions just do not

natural generalization of incoherent dictionaries, and tte fit int th | basis. To deal with thi bl
cumulative coherence function is introduced to quantify 't INt0 a@n orthonormaibasis. o deal with this probiem,

the level of incoherence. This analysis unifies all the recen researchers have spent the last fifteen years developing
results on BP and extends them to OMP. redundant systems, called dictionaries, for analyzing and

Furthermore, the paper develops a sufficient condition representing complicated functions. A Gabor dictionary,
under which OMP can identify atoms from an optimal  ¢5r example, consists of complex exponentials smoothly

approximation of a nonsparse signal. From there, it argues . . - . -
that Orthogonal Matching Pursuit is an approximation windowed to short time intervals. It is used for joint

algorithm for the sparse problem over a quasi-incoherent time—frequency analysis [3]- _ . .
dictionary. That is, for every input signal, OMP calculates The problem of approximating a signal with the best

a sparse approximant whose error is only a small factor linear combination ofm elements from a redundant
worse than the minimal error that can be attained with dictionary is calledsparse approximationr highly non-

the same number of terms. . . . . . L
linear approximation The core algorithmic question is
Index Terms— Approximation methods, algorithms, iter-  the following.

ative methods, linear programming, Orthogonal Matching For a given class of dictionaries, how does one

Pursult, Basis Pursult design a fast algorithm that provably calculates
a nearly optimal sparse representation of an
|. INTRODUCTION arbitrary input signal?
OME SIGNALS cannot be represented efficiently iidnfortunately, it is quite difficult to answer. At present,
an orthonormal basis. For example, neither impuls#sere are two major approaches, Orthogonal Matching
nor sinusoids adequately express the behavior of Rursuit (OMP) and Basis Pursuit (BP). OMP is an
intermixture of impulses and sinusoids. In this case, twiterative greedy algorithm that selects at each step the
types of structures appear in the signal, but they logkctionary element best correlated with the residual part
so radically different that neither one can effectivelpf the signal. Then it produces a new approximant by
mimic the other. Although orthonormal bases have Rrojecting the signal onto the elements that have already
distinguished service record in approximation theorfeen selected. This technique extends the trivial greedy
examples like this have led researchers to enlist moatgorithm that succeeds for an orthonormal system. Basis
complicated techniques. Pursuit is a more sophisticated approach that replaces
The most basic instrument of approximation projecthe original sparse approximation problem by a linear
each signal onto a fixeth-dimensional linear subspace programming problem. Empirical evidence suggests that
A familiar example is interpolation by means of fixedBP is more powerful than OMP [4]. The major advantage
knot polynomial splines. For some functions, this elof Orthogonal Matching Pursuit is that it admits simple,
ementary procedure works quite well. Later, varioust implementations [5], [6].
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called atoms. A representation of a signal is a linear Theorem B is a restatement of Theorem 3.5, Corollary
combination of atoms that equals the signal. Every signalé and Corollary 3.9. Note that Theorems A and B unify
has an infinite number of distinct representations overadl of the recent results for Basis Pursuit [7], [8], [9] and
redundant dictionary. TheXAcT-SPARSEproblem is to extend them to Orthogonal Matching Pursuit as well.
identify the representation of the input signal that uses Our second problem, BRSE requests the best ap-
the least number of atoms, i.e., the sparsest one. proximation of a general signal using a linear combina-
Our first result is a sufficient condition for Orthogonation of m atoms, where the approximation error is mea-
Matching Pursuit and Basis Pursuit to solvexAET- sured with the Euclidean nori||,. Although EXACT-
SPARSE To state the theorem, we need a little notaSPARSE and SARSE are related, the latter is much
tion. Given an input signal, form a matri®.,, whose harder to solve. Nevertheless, Orthogonal Matching Pur-
columns are the atoms that make up the optimal repmuit is a provably good approximation algorithm for the
sentation of the signal. The pseudo-inverse of this matréparse problem over a quasi-incoherent dictionary.
is defined as®;,; = (@5, Popt) " Popr. The notation  Theorem C:Suppose thap (m) < 1. For every in-
|I-Il; indicates the¢; vector norm, which returns the put signals, Orthogonal Matching Pursuit will calculate
absolute sum of a vector's components. an m-term approximant,,, that satisfies

Theorem A:Suppose that
IIs — amHQ <V1+6m|s— aor)t”Q

max || @7 b, <1 (ERC)
s where a.p,; is an optimalm-term approximant of the

where the maximization occurs over atoms that do n@{put signal.

participate in the optimal representation of the signal. Theorem C is Corollary 4.4 of the sequel. It extends

It follows that the sparsest representation of the sign@le work of Gilbert, Muthukrishnan and Strauss [6].

is unique. Moreover, both Orthogonal Matching Pursui§ignificantly stronger results for Orthogonal Matching

and Basis Pursuit identify the optimal atoms and thepyrsuit have recently been announced in [10], [11].
coefficients.

This result encapsulates Theorem 3.1, Theorem 3.3,
and discussion from Section llI-E. Theorem A is essen-
tially the best possible for Orthogonal Matching Pursui. Important Definitions

(Theorem 3.10), and it is also the best possible for BP The standard sparse approximation problem is set in
in certain cases (Section IlI-D). It is remarkable tha},q finite-dimensional inner-product spac€?, which
(ERC) is a natural sufficient condition for such disparatg .gjjed thesignal space We use angle brackets to
techniques to resolve sparse signals. This fact SUgYESES,ote the usual Hermitian inner produgt z) = z*s

that EXACT-SPARSE has tremendous structure. where* represents the complex-conjugate transpose. The

_Theorem A would not be very u_s_eful without a teChEucIidean norm is defined via the inner prodjt], def
nigue for checking when the condition (ERC) holds. TO\/@

that end, we define the coherence paramgtewhich

Il. BACKGROUND

) . A dictionaryfor the signal space is a finite collection
equals the maximum absolute inner product between tV&)of unit-norm vectors that spans the whole space. The

distinct atoms. This quantity reflects how much atoms o mbers of the dictionary are callatbms and they are
look alike. A generalization of the coherence parametgr, | g bye.,, where the parametes is drawn from
wy

IS thle i;:mulatw_e cohe[)emlzet functlop,}(_m), Wh'C:I an index sef). The indices may have an interpretation,
equais the maximum absolute sum of Inner pro UclRich as the time-frequency or time-scale localization
between a fixed atom anth other atoms. If the cu-

. . of an atom, or they may simply be labels without an
mulative coherence function grows slowly, we say th%derlying meaning. The whole dictionary is thus
the dictionary is quasi-incoherent.

Theorem B:The condition (ERC) holds for every D ={p,:weN}.

signal with anm-term representation provided that o ) o
The letter N will indicate the size of the dictionary.

m<g(p+1) Clearly, N = |2| = ||, where|-| returns the cardinality
or, more generally, whenever of a finite set.
A representatiorof a signal is a linear combination of
pa(m = 1)+ p (m) < 1. atoms that equals the signal. Without loss of generality,
Suppose that the dictionary consists.bfconcatenated we assume that all the coefficients in a representation are

orthonormal bases. The condition (ERC) is in force if
1 1We work in a finite-dimensional space because infinite-diiteral
m < \/5 — 14 Mil- vectors do not fit inside a computer. Nonetheless, the thearsies
2 (J — 1) over with appropriate modifications to an infinite-dimemsibsetting.
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nonzero. Naturally, am-term representation is a repre4in two flavors. Greedy methods make a sequence locally
sentation that involves: atoms. Identifying the atoms optimal choices in an effort to determine a globally
and coefficients that appear in the sparsest representatiptimal solution. Convex relaxation methods replace
of a signal will be referred to a®coveringthe sparsest the combinatorial sparse approximation problem with
representation or, equivalently, recovering the signal. a related convex program. We begin with the greedy
techniques.
B. Sparse Approximation Problems 1) Matching Pur_suit:l_f the dictionary is_orthonorl_”nal,
the sparse approximation problem admits a straightfor-
_The fundamental problem is to approximate a givefyard algorithm. It is possible to build a solution one term
signal s using a linear combination o atoms. Since 4t 3 time by selecting at each step the atom that correlates
m is taken to be much smaller than the dimensibof  most strongly with the residual signal. Matching Pursuit
the signal space, the approximansisarse Specifically, (\Mp) extends this idea to other types of dictionaries.
we seek a solution to the minimization problem Matching Pursuit begins by setting the initial residual
equal to the input signa¢ and making a trivial initial

A oar HS B ZAeA oA “”Hz (1) approximation. That is,
where the index sef\ C Q and {b,} is a collection To = S, and  ao=0.

of complex coefficients. For a fixed, the inner min- 5, stepk, MP chooses another atog, by solving an
imization of (1) can be accomplished with the usu asy optimization problem: *

least-squares techniques. The real difficulty lies in the
optimal selection ofA, since the naive strategy would A € argmax [ (r-1, w)| (2)
involve sifting through all(") possibilities.

The computational problem (1) will be callée?, m)- Then it calculates a new approximation and a new

SPARSE Note that it is posed for amrbitrary input residual.
signal with respect to dixed dictionary and sparsity ap = a1+ (re—1,¥x,) P, and @)
level. One reason for posing the problem with respect T =1TE1 — (Th_1,Pxr.) Prp-

to a specific dictionary is to reduce the time complexityhe residual can also be expressed-as s — ay.
of the problem. If the dictionary were an input parameter, when the dictionary is an orthonormal basis, the
then an algorithm would have to process the emir&pproximantam is always an optimaln-term repre-
dictionary as one of its computational duties. It is bett&fentation of the signal. For general dictionaries, Jones
to transfer this burden to a preprocessing stage becausg shown that the norm of the residual converges to
we are likely to use the same dictionary for manyerg [13]. In fact, it converges exponentially when the
approximations. A second reason is that solving or evefynal space is finite dimensional [5].
approximating the solution of (1) is NP-hard if the atching Pursuit was developed in the statistics com-
dictionary is unrestricted [12], [5]. Nevertheless, it stn munity under the cognomen Projection Pursuit Regres-
quixotic to seek algorithms for the sparse problem ovefon [14]. It was introduced to the signal processing
a particular dictionary. community by [15] and independently by [16]. In the
We will also consider a second problem calle@pproximation communitity, MP is known as the Pure
(2, m)-EXACT-SPARSE, where the input signal is re- Greedy Algorithm [2]. For more history, theory, and a
quired to have a representation usimgatoms or fewer |jst of references, see Temlyakov’s monograph [2].
from 2. There are several motivations. Although natural 2) Orthogonal Matching PursuitOrthogonal Match-
signals are not perfectly sparse (Proposition 4.1), oy Pursuit (OMP) adds a least-squares minimization to
might imagine applications in which a sparse sign@ach step of MP to obtain the best approximation over
is constructed and transmitted without erroxA€T-  the atoms that have already been chosen. This revision
SPARSE models just this situation. Second, analysisignificantly improves the behavior of the algorithm.
of the simpler problem can provide lower bounds on Orthogonal Matching Pursuit is initialized the same
the computational complexity of FARSE if the first way as MP, and at each step, a new atom is selected ac-
problem is NP-hard, the second one is too. Finally, Wwsording to the same rule as MP, via (2). But the approxi-
might hope that understandingKEcT-SPARSEWill lead  mants are calculated differently. Lag, = A, M)
to insights on the more general case. list the atoms that have been chosen at étephen the
k-th approximant is

C. Algorithms

In this section, we will describe some of the basic )
algorithms for sparse approximation. The methods come subject toa € span {px : A € Ar}. (4)

def .
a, = argmin|/s —all,
a
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This minimization can be performed incrementally with 1) Coherence:The most fundamental quantity asso-
standard least-squares techniques. As before, the résidtiated with a dictionary is theoherence parameteu.
is calculated ag;, = s — a;. It equals the maximum absolute inner product between
Note that OMP never selects the same atom twi¢eo distinct atoms:
because the residual is orthogonal to the atoms that have o
already been chosen. In consequence, the residual must =T [{Puss )| -
equal zero afted steps.
Orthogonal Matching Pursuit was developed ind
pendently by many researchers. The earliest refere

é?oughly speaking, this number measures how much two
nact8m5 can look alike. Coherence is a blunt instrument

appears to be a 1989 paper of Chen, Billings a nce it only reflects the most extreme correlations in

Luo [17]. The first signal processing papers on OM e dictionary. Nevertheless, it is easy to calculate, and
arrived a.round 1993 [18], [19] it captures well the behavior of uniform dictionaries.

3) Weak Greedy AlgorithmsOrthogonal Matching Info_rmally, we say that a dictionary imcoherentwhen
e judge thaty is small.

Pursuit has a cousin called Weak Orthogonal MatchirY& It is obvi that h | basis h
Pursuit (WOMP) that makes a brief appearance in thjs IS 0 vtnuz Aa every ?rt onorrtr;]a a5|s| bas co-
article. Instead of selecting the optimal atom at ea{berenceu e union of two orthonormal bases

—1/2 i i i
step, WOMP settles for one that is nearly optima.as colheLent(;]eL g d F. T_h|sdpcignd IS atrt]".:“?]ed’ fqrt
Specifically, it finds an index, so that example, by the Dirac—Fourier dictionary, which consists

of impulses and complex exponentials. A dictionary
[(Pr—1, 00 )| > @ max |[(re_1, Pu)] (5) of concatenated orthonormal bases is callednalti-
@ ONB. For somed, it is possible to build a multi-ONB
wherea € (0,1] is a fixedweakness parameteOnce that containsd or even(d + 1) bases yet retains the
the new atom is chosen, the approximation is calculatesinimal possible coherenge= d—'/2 [21]. For general

as before, via (4). dictionaries, a lower bound on the coherence is
4) Basis Pursuit: Convex relaxation offers another
approach to sparse approximation. The fundamental idea o> N—d

is that the number of terms in a representation can be d(N—-1)
approximated by the absolute sum of the coefficienttﬁ. h atomic i duct ts this bound. th
This absolute sum is a convex function, and so it can o €ach atomic inner- product meets this bound, the
minimized in polynomial time. dictionary is called arquiangular tight frameSee [22]
. . . : 1:5)r more details.
Basis Pursuit (BP) is a convex relaxation metho

designed fof 2, m)-EXACT-SPARSE[4]. Given an input . Thedl_d(;:‘_a of usrllng thglctqhergnhcedparg.rneter,:/(I) Islu;nmg-
signals, the Basis Pursuit problem is rize a dictionary has a distinguished pedigree. Mallat an

Zhang introduced it as a quantity of heuristic interest for
min Z |b,| subject to Z by P, =8 Matching Pursuit [15]. The first theoretical developments
(b} weh weh appeared in Donoho and Huo's paper [23]. Stronger

where{b,,} is a collection of complex coefficients. oneresults for Basis Pursuit, phrased in terms of coherence,
hopes that the nonzero coefficients in the solution dfere provided in [7], [8], [9]. Gilbert, Muthukrishnan,
the Basis Pursuit problem will identify the atoms ir@nd Strauss have recently exhibited an approximation
the optimal representation of the input signal and theigorithm for sparse problems over suitably incoherent
coefficients. dictionaries [6].

Strictly speaking, Basis Pursuit is not an algorithm but 2) The Cumulative Coherenc&he coherence param-
a principle. At least two algorithms have been proposéder does not characterize a dictionary very well since
for solving the BP problem. The original paperadvocaté%omy reflects the most extreme correlations between
interior-point methods of linear programming [4]. Sardyatoms. When most of the inner products are tiny, the co-
Bruce, and Tseng have suggested another procednpéence can be downright misleading. A wavelet packet

called Block Coordinate Relaxation [20]. Both techdictionary exhibits this type of behavior. To remedy
niques are computationally intensive. this shortcoming, we introduce tltemulative coherence

function which measures the maximum total coherence
o ) between a fixed atom and a collection of other atoms. In
D. Dictionary Analysis a sense, the cumulative coherence indicates how much
To prove some of our major results, we need a wahe atoms are “speaking the same language.” It is much
to summarize the behavior of the dictionary. The cohesimpler to distinguish Russian from English than it is
ence parameter and the cumulative coherence functimndistinguish Russian from Ukrainian. Likewise, if the
perform this duty. vectors in the dictionary are foreign to each other, they
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are much easier to tell apart. The cumulative coheren *
function will arise naturally in the analysis. Althoughos- .
it is more difficult to compute than the coherence, | |
is a sharper scalpel. Donoho and Elad have definec
similar notion of generalized incoherence, but they dic7; ]
not develop it sufficiently for present purposes [8].

For a positive integern, the cumulative coherence
function is defined as

) * pax max Sl (O

0.5F q
04t —

031

where the vectory) ranges over the atoms indexec”|
by @\ A. We place the convention that; (0) = 0. o ﬁ 1
The subscript in the notation serves to distinguish tt | T T %2000
cumulative coherence function from the coherence aid
to remind us that it is an absolute sum. When thgg 1. The atompg with parameter3 = 0.75.
cumulative coherence of a dictionary grows slowly, we
say informally that the dictionary iquasi-incoherent

Inspection of the definition (6) shows that(1) = u Here is the calculation of the cumulative coherence
and thatu, is a non-decreasing function et. The next function in detail:
proposition provides more evidence that the cumulative

&
5 10 15 20 25 30

coherence generalizes the coherence parameter. pa(m) = s e Z 2v
Proposition 2.1:If a dictionary has coherenge then
u1(m) < mp for every natural numbern. = ‘f\l‘lix maXZ| (¢ ©5)]

JEA

= max max E Blk=il,

Al=m k¢gA
[Al=m kgA

Proof: Calculate that

pi(m) = |§\I\1ax max Z| b, o)

The maximum occurs, for example, when= | % | and
N A={0,1,2,..., %] -1, %] +1,...,m—1,m}.

The exact form of the cumulative coherence function
depends on the parity of.. For m even,

26(1-p6m"?)
1-p

[ |
3) An Example:For a realistic dictionary where the
atoms have analytic definitions, the cumulative coher- pa(m) =
ence function is not too difficult to compute. As a\Nh"e for m odd,
simple example, let us study a dictionary of decay
ing atoms. To streamline the calculations, we Work _ 2801 gm0/ (m+1)/2
in the infinite-dimensional Hilbert spadg of square- pa(m) = 1-4 +0 '

summable complex-valued sequences. _ Notice thatu;(m) < 23/(1 — ) for all m. On the

Fix a parameteps < 1. For each index > 0, define  iher hand, the quantity. 2 grows without bound. Later,
an atom by we will return to this example to demonstrate how
0, 0<t<k much the cumulative coherence function improves on

pr(t) = { ] the coherence parameter.
p 1-6, k<t 4) Uniqueness: The cumulative coherence can be

A specimen appears in Fig. 1. It can be shown that tised to develop conditions under whielrterm repre-
atoms spart,, so they form a dictionary. The absoluteSentations are unique. The material in this section is not

inner product between two atoms is essential to understand most of the paper.
Thesparkof a dictionary is the least number of atoms
{er, pi)| = Ble=il. that form a linearly dependent set [8]. The following

theorem from [8], [9] is fundamental.
In particular, each atom has unit norm. It also follows Theorem 2.2 (Donoho-Elad, Gribonval-Nielsen):
that the coherence of the dictionary equals A necessary and sufficient condition for every linear



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 1, NUM. 1, JANARY 1948 6

combination of m atoms to have a uniquen-term any guarantees on the quality of approximation. Later,

representation is that < % spark (2). Villemoes developed an algorithm that produces prov-
We can use the cumulative coherence function ardbly good approximations over the Haar wavelet packet

the coherence parameter to develop lower bounds on thietionary [26].

spark of a dictionary. Le®,,, be a matrix whose columns  2) OMP and the Sparse ProblenGilbert, Muthukr-

arem distinct atoms. The following lemma and its proofshnan, and Strauss have shown that Orthogonal Match-

are essentially due to Donoho and Elad [8]. ing Pursuit is an approximation algorithm f¢&, m)-
Lemma 2.3:The squared singular values df,, ex- SpaARSE provided that the dictionary is suitably incoher-
ceed(l — pi(m —1)). ent [6]. One version of their result is the following.

Proof: Consider the Gram matrig = (&, ®,,). Theorem 2.6 (Gilbert—Muthukrishnan—Strauss [6]):
The Gershgorin Disc Theorem [24] states that evenyet 2 have coherencep, and assume that

eigenvalue ofG lies in one of them discs m < <=p~" — 1. For an arbitrary signa$, Orthogonal
Matching Pursuit generates am-term approximant,,
Ay = {z | Gre — 2] < Z IijI}. that satisfies
ik
The normalization of the atoms implies th&,, = Is = amll, <8vm |ls = aopll,

1. The sum is bounded above by, |Gjql

, ,on )] < m — 1). The result follows . . : .
gr{ééek Lé\?éigﬁ?wj\fal\lu_esﬂéé equal) the squared singular This theorem is a progenitor of the results in the cur-
values of ® rent paper, although the techniques differ significantly.

me- . . . . .

If the singular values of,, are nonzero, then the: 3) Basis PurSL_ut: For Basis Pursuit, there is a se-
atoms that comprise the matrix are linearly independet/e€nce of attractive results dtv, m)-EXACT-SPARSE
Lower bounds on the spark follow instantly. In their seminal paper [23], Donoho and Huo established

Theorem 2.4 (Donoho—Elad [8])The spark of a dic- @ connection between uncertainty principles and sparse
tionary satisfies the bounds approximation. Using this link, they proved a recovery

theorem for Basis Pursuit.
1) spark (Z) > mi : —1)>1} and .
2; :Ezikggg > m,ull{j_nl pa(m—1) = 1} Theorem 2.7 (Donoho—-Huo [23])tet 2 be a union
=# ' of two orthonormal bases with coherenge If m <

The secor]d_bound also appears in [9]. _ L(u~! + 1), then Basis Pursuit recovers every signal
If the dictionary has additional structure, it may be(2

: ! _ hat has ann-term representation.
possible to refine these estimates. In [7], Elad and Bruckstein made some improvements
Theorem 2.5 (Gribonval-Nielsen [9))f 2 is a u- ' b

h ¢ dicti isting df orth b to the bounds onn, which turn out to be sharp [27].
conerent dictionary consisting @i orthonormal bases, ;e recently, the theorem of Donoho and Huo has been

extended to multi-ONBs and arbitrary incoherent dictio-
naries [8], [9]. Donoho and Elad have also developed
a generalized notion of incoherence that is equivalent to
E. Related Work the cu_mullative coherence fungtion defined !n this article.
) ] ] ] ~ We will discuss these results in more detail later.
This section contains a brief survey of other major Very recently, Basis Pursuit has been modified to solve

result_s on sparse approxmatlor!, but it makes no prete%rse approximation problems for general input signals.
of being comprehensive. We will pay close attention hese results appear in [10], [11]

theory about whether or not each algorithm is provably
correct.

1) Structured DictionariesEarly computational tech- I1l. RECOVERING SPARSE SIGNALS
nigues for sparse approximation concentrated on specific
dictionaries. For example, Coifman and Wickerhauser In this section, we consider the restricted problem
designed the Best Orthogonal Basis (BOB) algorithifz, m)-EXACT-SPARSE The major result is a single
to calculate sparse approximations over wavelet pacleiffficient condition under which both Orthogonal Match-
and cosine packet dictionaries, which have a natural tragy Pursuit and Basis Pursuit recover a linear combina-
structure. BOB minimizes an entropy function over &on of m atoms from the dictionary. We also develop a
subclass of the orthogonal bases contained in the dioethod for checking when this condition is in force for
tionary. Then it returns the best-term approximation an arbitrarym-term superposition. Together, these results
with respect to the distinguished basis [25]. Althougprove that OMP and BP are both correct algorithms for
BOB frequently produces good results, it does not offéXACT-SPARSE over quasi-incoherent dictionaries.

wherea,pt is an optimalm-term approximation os.

1
> e — -1
spark (2) > [14— L—J I
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A. The Exact Recovery Condition attained among the inner products, whgrg = denotes
Suppose that a given signatan be written as a linear the £ vector norm. Similarly, | WG, 7| expresses
combination ofm atoms and no fewer. Thus the largest inner product between the residual and any
nonoptimal atom. In consequence, to see whether the
= ZAeA bx P largest inner product occurs at an optimal atom, we just
opt

] i o i need to examine the quotient
whereA,p is a subset of) with cardinalitym. Without

loss of generality, assume that the atomsAig,; are aer | Wape el
- : I p(ry) = =" (7
linearly independent and that the coefficierits are | @5 ||

nonzero. Otherwise, the signal has a representation usgﬁ account of the selection criterion (2), we see that a

fewer thanm atoms. . . :
Let &, be thed x m matrix whose columns are thegreedy choicg will recover another one of the optimal
b atoms if and only ifo(r) < 1.

atoms listed inAgps: . . -
opt Notice that the ratio (7) bears a suspicious resem-

Dot def [@Al Pry - @Am] blance to an induced matrix norm. Before we can gpply
. the usual norm bound, the ter#y;,, , must appear in

whereAopi = {A1, ..., Am}. (The order of the indices the numerator. Since and a;, both lie in the column
is unimportant, so long as it is fixed.) Then the S'gr@pan of ®ypi, SO does the residuat,. The matrix
can also be expressed as (@1,)* @, is a projector onto the column spanaf,,,

8 = Bopt bopt and so we may calculate that

k
whereb,: is a vector ofm complex coefficients. Since p(ry) = M
the optimal atoms are linearly independemt,,; has Hd)z;pt TkHOO
full column-rank. Define a second matri¥,,, whose Hw* (oF ) ox ?“kH
. _ opt opt opt 00
columns are thé N — m) atoms indexed by \ Agpt. = "
@5 il

Thus ¥,,; contains the atoms thalo notparticipate in
the optimal representation. <[ Vepe(Papt) [ oo

Theorem 3.1 (Exact Recovery for OMPA: ) )
sufficient condition for Orthogonal Matching Pursuit toV& use|-[, , to denote the induced norm for linear
recover the sparsest representation of the input signaPRerators mappingC¢, |-|,) into itself. Since]|-||, .,

that equals the maximum absolutew sum of its argument
max [|¢5 |, <1, (ERc) and||-|; ; equals the maximum absolutelumnsum of
¥ ot its argument, we take a conjugate transpose and switch
where) ranges over the columns (wopt- norms. Continuing the calculation,
A fortiori, Orthogonal Matching Pursuit is a correct

i p(re) < [ Vop (@)
algorithm for (2, m)-EXACT-SPARSE so long as the k) =1l ¥opt\ Fopt/) [loo, 00
condition (ERC) holds for every signal with an-term = chjpt l//optHl_1
representation. ’

_ +
The tag (ERC) abbreviates the phrase “Exact Recovery o mfx ” Popt ¢||1

Condition.” It guarantees tha_t NO spurious atom CqP oo the maximimation occurs over the columns of

masquerade as part of the signal well enough to fog} the nonobtimal atoms

Orthogonal Matching Pursuit. Theorem 3.10 of the se-°>" puma & TS

 <h that (ERC) i ) tially th b. ‘ ible f In summary, assuming thai, lies in the column span
quet Shows tha ( ) is essen 1afly the Dest possivie 1gf Pops, the relationp(ry) < 1 will obtain whenever
OMP. Incredibly, (ERC) also provides a natural sufficient
condition for Basis Pursuit to recover a sparse signal, max || &5, < 1. (ERC)
which we will discover in Section III-B. ¥ _ o _

Proof: Suppose that, after the firktsteps, Orthog- Suppose that (ERC) holds. Since the initial resideial
onal Matching Pursuit has computed an approximgnt lies in the column span ofp,,;, a greedy selection
that is a linear combination df atoms listed inA,;. ecovers an optimal atom at each step. Each residual is
Recall that the residual is defined as = s — a,. We ) ] ]

Id like to develop a condition to guarantee that the.." £2¢ thalo(ry,) = 1, an optimal atom and a nonoptimal atom
wou . p_ g foth attain the maximal inner product. The algorithm has rmwipion
next atom is also optimal. for determining which one to select. In the sequel, we makepis-

Observe that the vectop? . r;, lists the inner prod- simistic assumption that a greedy procedure never choosegtanal
ts bet th id i’pt d th i | at $t0m when a nonoptimal atom also satisfies the selectioerionit
ucts between the residual an € opumal atoms. f}s convention forces greedy techniques to fail for bddercases,

the eXpl’eSSiOI’M Dot rkHOO gives the largest magnitudewhich is appropriate for analyzing algorithmic correcses
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orthogonal to the atoms that have already been selectdht
so OMP will never choose the same atom twice. It

follows thatm steps of OMP will identify allm atoms [Boptl, = H‘I’S}m Popt boptH1
that make up the optimal representationsofTherefore, = || 8,
am :-S. . .. ) = Hd);)td)alt baltH1
An immediate consequence of the proof technique is i
a result for Weak Orthogonal Matching Pursuit. < ”d)optd)a“nl,l [Baell
Corollary 3.2: A sufficient condition for WOMR«) < |lbas [l -
it;) trr?;l:tover the sparsest representation of the input S|gnalIf perchance the columns objpt ... all have the
. same(; norm, that norm must equgko; wOHI, which
mjx H ¢opt¢”1 <a ®) s strictly less than one. Repeat the calculation. Although
the first inequality is no longer strict, the second inequal-
wheret ranges over the columns af,:. ity becomes strict in compensation. We reach the same
Gribonval and Nielsen have pointed out that the proofonclusion.
here also apply to Matching Pursuit [28]. In words, any set of nonoptimal coefficients for rep-

resenting the signal has strictly largér norm than
the optimal coefficients. Therefore, Basis Pursuit will
B. Recovery via Basis Pursuit recover the optimal representation. ]

It is even easier to prove that the Exact Recovery
Condition is sufficient for Basis Pursuit to recover &. Cumulative Coherence Estimates

sparse signal. This theorem will allow us to unify all gj,ce we are unlikely to know the optimal atoras
the recent results about BP. We retain the same notati&rpori Theorems 3.1 and 3.3 may initially seem useless.

as before. But for many dictionaries, the Exact Recovery Condition

Theorem 3.3 (Exact Recovery for BR): sufficient  holds for everym-term signal, so long as: is not too
condition for Basis Pursuit to recover the sparsegrge,

representation of the input signal is that Theorem 3.5:Suppose that:; is the cumulative co-
N herence function of7. The Exact Recovery Condition
max [ @ane I, <1, (ERC)  holds whenever
where) ranges over the atoms that do not participate pa(m —1) + pa(m) < 1. 9)
iN @opt.

. ) . ) Thus, Orthogonal Matching Pursuit and Basis Pursuit are
A fortiori, Basis Pursuit is a correct algorithm for,

correct algorithms for 2, m)-SPARSE whenever (9) is
(2, m)-EXACT-SPARSE whenever (ERC) holds for ev- iy torce. In other words, this condition guarantees that
ery signal that has am-term representation.

either procedure will recover every signal with an

We require a simple lemma abotit norms. term representation.

Lemma 3.4:Suppose that is a vector with nonzero  One interpretation of this theorem is that the Exact
components and thatis a matrix whose columns do notrecovery Condition holds for sparse signals over quasi-
have identica¥; norms. Then|Av||; <|[[All, ; [lvll;- incoherent dictionaries. The present result for Basis

We omit the easy proof and move on to the demorPursuit is slightly stronger than the most general theorem
stration of the theorem. in [8], which is equivalent to Corollary 3.6 of the sequel.

Proof: Suppose thats is an input signal whose Proof: Begin the calculation by expanding the
sparsest representation can be writters as @, bopt.  pseudo-inverse.
Assume that the Exact Recovery Condition holds for the N . .
input signal. max [Poe v, = max ([ (@56 Popt) ™" @5 9] -

Let s = @, by, be a different representation with
nonzero coefficients. It follows tha®,; has at least
one columney that does not appear i,,.. Accord-

Then apply the usual norm bound:

m,l%XH(¢* ¢opt)71 d)::pt’lle

ing to (ERC), we have|| @7, 1|, < 1. Meanwhile, opt
chjptgoHl < 1 for every other atomp, optimal or < ||(@E0 ¢Opt)*1H1 ) max”qptq/,Hl, (10)
nonoptimal. Y

Assume that the columns of' @, do not have The cumulative coherence function offers a tailor-made

opt
identical ¢, norms. We may use the lemma to calculatestimate of the second factor on the right-hand side of
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(20). an equiangular tight frame withv = d + 1 vectors. The
. bound (13) appears in both [8], [9] with reference to
max @5, = max Z {0, o)l Basis Pursuit. The bound (14) also appears in [8].
Aope (1 To see the difference between the two conditions in
< pa(m). Corollary 3.6, let us return to the dictionary of decaying
Bounding the first factor on the right-hand side of (103toms from Section 11-D.3. Recall that
requires more sophistication. We develop the inverse as 28
a Neumann series and use Banach algebra methods to p=_p and  pi(m) < 1-3

estimate its norm. First, notice tha®;; ®,,;) has a
unit diagonal because all atoms are normalized. So tBets = 1. Then the incoherence condition (13) requires
off-diagonal partA satisfies thatm < 3. On the other handy;(m) < % for every

o B —1 4 A m. Th.erefor.e, (24) shoyvs t_hat OMP or.BP can recover

opt Topt T Tm ' any (finite) linear combination of decaying atoms!

Each column ofA lists the inner products between one
atom of ¢, and the remainingm — 1) atoms. By o )
definition of the cumulative coherence function, D. Structured Dictionaries

||A||1,1 _ mgxzk ’<<ka790/\j>’ polgstirilaelze(.jlctlonary has special form, better estimates are
< M1(Trz¢— 1) Theorem 3.7:Suppose that? _consists of J con-
- ' catenated orthonormal bases with overall cohergnce
Whenever||A|l, ; < 1, the Neumann serie§_(—A)* Suppose that the input signal can be written as a super-

converges to the inversg,, + A)~! [29]. In this case, position ofp; atoms from thej-th basis,j =1,...,J.
we may compute Without loss of generality, assume thak p; < py <

H(‘D* ® t)_IH _ H(I +A)_1H -+- < py. The Exact Recovery Condition holds whenever
opt TOpP 1,1 m 1,1

> . 1 Dj 1
=|[>_ (=4 1+ pup; < 2(14pup1) (15)
k=0 1,1 J
< i |\A||k (12) In which case both Orthogonal Matching Pursuit and
= L1 Basis Pursuit recover the optimal representation of the
k=0 . signal.
= W The proof of Theorem 3.7 is quite delicate. We refer
L1 the interested reader to the technical report [31].
;, The major theorem of Gribonval and Nielsen’s pa-
T l-pm(m—1) per [9] is that (15) is a sufficient condition for Basis
Introduce the bounds (11) and (12) into inequality (10jursuit to succeed in this setting. Wheh= 2, we
to obtain retrieve the major theorem of Elad and Bruckstein's
fi1 (m) paper [7].

mgx"‘pc?;c 1/JHl < m Corollary 3.8: Suppose that? consists of two or-

) thonormal bases with overall coherenegeand suppose

We reach the result by applying Theorems 3.1 and 3@t the input signal has a representation usgirajoms
B from the first basis and atoms from the second basis,

A weaker corollary follows directly from basic faCtswherep < ¢. The Exact Recovery Condition holds
about the cumulative coherence function. whenever

Corollary 3.6: Orthogonal Matching Pursuit and Ba-
sis Pursuit both recover every superpositiomoftoms
from 2 whenever one of the following conditions is
satisfied:

2% pg + pg < 1. (16)

Feuer and Nemirovsky have shown that the bound
(16) is the best possible for BP [27]. It follows by
m<S(pt+1), or (13) contraposition that Corollary 3.8 is the best possible
(14) result on the Exact Recovery Condition for a two-ONB.
For an arbitrary m-term superposition from a

The incoherence condition is the best possib|e_ Imultl-ONB, revisit the calculations of Gribonval and
would fail for any [%(#,1 + 1)] atoms chosen from Nielsen [9] to discover the following corollary.

pi(m) < %
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Corollary 3.9: If 2 is a u-coherent dictionary com- choosecy,q € C™ to be a vectore for which equality

prised of.J orthonormal bases, the condition holds in the bound
U (0" |
1 _1 H opt\ Topt o < ||y (¢+ )*
m < \/i—l—Fm M HCHOO = H opt \ Topt 00,00

is sufficient to ensure that the Exact Recovery Conditio(r{?t'maI synthesis matrices have full column rank, so
maps the column span @, ontoC™. Therefore,

holds for every signal with am-term representation. opt . . )
ysig P the column span o,,; contains a signat,.q for which

The bound in Corollary 3.9 is the best possible whefhopt Sbad = Cbaa. Working backward from (17) through
J = 2 on account of [27], but Donoho and Elad havéhe proof of the Exact Recovery Theorem, we discover

pointed out that the result can be improved when 2 that p(spaq) > 1. In conclusion, if we run Orthogonal
Matching Pursuit withsy,,q as input, it chooses a non-

30]. . X ) . .

[30] optimal atom in the first step. Sincé,,; provides
the uniquem-term representation 0§y.q, the initial

E. Uniqueness and Recovery incorrect selection damns OMP from obtaining @an

) term representation ofy,.q. [ |
Theorem 3.1 has another important consequence. If

the Exact Recovery Condition holds for every linear

o . IV. RECOVERING GENERAL SIGNALS
combination ofm atoms, then allm-term superposi- ] o )
tions are unique. Otherwise, the Exact Recovery The- The usual goal of sparse approximation is the analysis

orem states that OMP would simultaneously recov® compression of natural signals. But_the_assumption
two distinctm-term representations of the same signai'at @ signal has a sparse representation is completely
a reductio ad absurdumTherefore, the conditions of @c@demic on account of the following result.
Theorem 3.5, Corollary 3.6, and Corollary 3.9 ensure Proposition 4.1:1f m < d, the collection of signals
that all m-term representations are unique. On the othH?at have an exact representation as a linear combination
hand, Theorem 2.2 shows that the Exact Recovery CdN-™ atom.s forms a set of Lebesgue measure get_{b‘im
dition must fail for some linear combination of atoms Proof: The signals that lie in the span of distinct
whenevenn > %spark@. atoms form arm-dimensional subspace, which has mea-

That a signal has a unique:-term representation sure zero. There ar(aln\i) ways to choosen atoms, so

does not guarantee the Exact Recovery Condition holcﬁlg.e collection of signals that have a representation over

For a union of two orthonormal bases, Theorem 28 atoms is a finite union ofn-dimensional subspaces.

implies that allm-term representations are unique when-[hIS union has measure ze_ro(@fl. -
It follows that a generic signal does not have a sparse

everm < pu~!. But the discussion in the last section , h X

demonstrates that the Exact Recovery Condition m ﬁlpresenta'uo_n. Eve_n worse, t e_optl €rm approx-

fail for m > (v2 — %) u~1. Within this pocket lie imant is a discontinuous, multivalent function of the
" ' faput signal. In consequence, proving that an algorithm

2
uniquely determined signals that cannot be recovered . .

? cceeds for(Z, m)-EXACT-SPARSE is very different

rom proving that it succeeds f¢2, m)-SPARSE Nev-

Orthogonal Matching Pursuit, as this partial converse
ertheless, the analysis in Section IlI-A suggests that

Theorem 3.1 shows.
Theorem 3.10 (Exact Recovery Converse for OI\/lp)?rthogonal Matching Pursuit may be able to recover

Assume that alln-term representations are unique bu . .

that the Exact Recovery Condition fails for a signal wiﬂ"f‘.toms _from the optimal representation even when the

optimal synthesis matrixp,,;. Then there are signalsSlgnal is not perfectly sparse.

in the column span ofp,,; that Orthogonal Matching

Pursuit cannot recover. A. OMP as an ApprOXimation Algorlthm

Proof: If the Exact Recovery Condition fails, then Let s be an arbitrary signal, and suppose tiat,
is an optimalm-term approximation ok. That is, aopt
max | oo ]|, > 1. (17) is a solution to the minimization problem (1). Note that

ao.pt May not be unique. We write

By the uniqueness ofn-term representations, every

signal that has a representation using the atoms,jn Qopt = Zkerpt bx e

ields the same two matrice® and V¥,... Next, . . .
y opt opt for an index set\,,; of sizem. Once again, denote by

b, the d x m matrix whose columns are the atoms
3See the article of Elad and Bruckstein [7] for a very enlightg opt

graph that delineates the regions of uniqueness and regctetwo- listed m_ Aopt' We may assume that the atomsmgpt ]
ONB dictionaries. form a linearly independent set because any atom that is
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linearly dependent on the others could be replaced byt@areach thene plus ultra As the French say, “The best
linearly independent atom to improve the quality of thes the enemy of the good.”

approximation. LetW,,; be the matrix whose columns  pjacing a restriction on the cumulative coherence
are the(N —m) remaining atoms. ~ function leads to a simpler statement of the result, which
Orthogonal Matching Pursuit recovers optimal atoms. Corollary 4.4: Assume thatm < %M_l or, more

Theorem 4.2 (General Recoverngssume that generally, that, (m) < % Then OMP generates:-

1 . .
pa(m) < 3, and suppose thai, is a linear term approximants that satisfy

combination of atoms fromA.,.. At step (k + 1),
Orthogonal Matching Pursuit will recover another atom

from A,y provided that |s —aill, < V1+6m ||s— aop, - (20)
s — agl, > \/1 + m(l_—/‘l(m)z I8 — @opll, - .The constant here is not small, so it is better to regard
(1 =2p1(m)) this as a qualitative theorem on the performance of OMP.

See [32] for another greedy algorithm with a much better

i . constant of approximation. Significantly better results fo
We will call (18) the General Recovery Condition. toMP have also been announced in [10], [11]
says that a greedy algorithm makes absolute progress ' '

whenever the currerit-term approximant compares un- Let us return again to the example of Section II-D.3.

o 1 o i
favorably with an optimaln-term approximant. Theo- lTh'S time, setj = 7r'] The coherenﬁg congltlon of C.OrOI.
rem 4.2 has an important structural implicati@very ary 4.4 suggests that we can achieve the approximation

optimal representation of a signal contains the sarf@nstant/1 + 6”7 only if m= 1,2. But the cumulapve

kernel of atoms. This fact follows from the observatior‘therence function condition demonstrates that, in fact,

that OMP selects the same atoms irrespective of tH%e approximation constant is never more thén- 6m.

optimal approximation that appears in the calculation. Another consequence of the analysis is a corollary for

But the principal corollary of Theorem 4.2 is that OMPNVeak Orthogonal Matching Pursuit.

is an approximation algorithm for%, m)-SPARSE Corollary 4.5: Weak Orthogonal Matching Pursuit
Corollary 4.3: Assume thatu;(m) < i, and let with parameter calculatesm-term approximants that

s be a completely arbitrary signal. Then Orthogonalatisfy

Matching Pursuit produces an-term approximant,,

that satisfies

lIs —amll,. m( — p(m))
Is = amlly < V1+C(Z,m) s —aopill,  (19) = \/1 ot a) mm)E

I — @opilly ~
wherea,pt is an optimalm-term approximant. We may

estimate the constant as As an example, assume that(m) < 1. Then
m (1 — pi(m)) WOMP(2) has an approximation constant that does not
C(Z,m) < A=2m(m)2 exceedy/1 + 24m.

Proof: Imagine that (18) fails at stef@ +1). Then,
we have an upper bound on tlé-term approximation
error as a function of the optimah-term approxima- g proof of the General Recovery Theorem
tion error. If we continue to apply OMP even after
exceedsK, the approximation error will only continue

Proof: Suppose that, aftek steps, Orthogonal
to decrease. PP b g

ithouah O imal Matching Pursuit has produced an approximaptthat
Althoug MP may not recover an optima appProXis 5 Jinear combination of atoms listed iNAope. The

imant aope, it always constructs an approximant Whos?esidual isr, = s—ay, and the condition for recovering
error lies within a constant factor of optimal. One migh&nother optimal atom is

argue that an approximation algorithm has the potential

to inflate a moderate error into a large error. But a

moderate error indicates that the signal does not have wer || VoneTr|
a good sparse representation over the dictionary, and so pre) = W
sparse approximation may not be an appropriate tool. In o o
practice, if it is easy to find a nearly optimal solution,

there is no reason to waste a lot of time and resourcesie may divide the ratio into two pieces, which we
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bound separately.

[VopeTkll
"= e ol
Ve - an)l
H‘Popt(s ar)
_ H Wipt (s — @opt) + Wi (aopt — ak)Hoo
B ||¢ t(s a0pt)+¢opt(a0pt ak)HOO
< || Vapt (s — aopt || + || Wt aopt_ak)Hoo
- 1955 (@opt — ar)l]
difpcrr—Fpopt
(21)

The term®}, (s
inator since(s —
of gyt

To boundp,y:, repeat the arguments of Section Ill-

mutatis mutandisThis yields
pa (m)
1= pr(m—1)
pa(m)
T 1-p(m)
has the following simple estimate:

popt S

(22)

Meanwhile, pe,,

H 0pt aopt)Hoo
[ @5t (@opt — ar)||
maxy [1*(s — aopt)|
| @20t (@opt — ak)”oo
maxy [|4h[|5 |18 — aoptl,
~ m~1/2 ||4>§pt(a0pt —a
Vm ||s — aopil,

o Umin(d)opt) Haopt - ak”Q .

Perr =

(23)

k)H2

Since®,,¢ has full column rankgmin (Popt) is Nonzero.

— aopy) has vanished from the denom-
aopt) is orthogonal to the column span

If this relation is in force, then a step of OMP will
retrieve another optimal atom. [ ]
Remark 4.6:The term./m is an unpleasant aspect
of (23), but it cannot be avoided without a more subtle
approach. When the atoms in our optimal representation
have approximately equal correlations with the signal,
the estimate of the infinity norm is reasonably accurate.
An assumption on the relative size of the coefficients in
bops Might improve the estimate, but this is a severe
restriction. An astute reader could whittle the factor
down tov/m — k, but the subsequent analysis would not
realize any benefit. It is also possible to strengthen the
bound if one postulates a model for the def{git-aop).
If, for example, the nonsparse part of the signal were
distributed “uniformly” across the dictionary vectors, a
single atom would be unlikely to carry the entire error.
But we will retreat from a battle that should be fought

con behalf of a particular application.
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