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ABSTRACT. A simultaneous sparse approximation problem requests a good approximation of several
input signals at once using different linear combinations of the same elementary signals. At the
same time, the problem balances the error in approximation against the total number of elementary
signals that participate. These elementary signals typically model coherent structures in the input
signals, and they are chosen from a large, linearly dependent collection.

The first part of this paper presents theoretical and numerical results for a greedy pursuit
algorithm, called Simultaneous Orthogonal Matching Pursuit.

The second part of the paper develops another algorithmic approach called convex relaxation.
This method replaces the combinatorial simultaneous sparse approximation problem with a closely
related convex program that can be solved efficiently with standard mathematical programming
software. The paper develops conditions under which convex relaxation computes good solutions
to simultaneous sparse approximation problems.
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1. INTRODUCTION

A simultaneous sparse approximation problem has the following shape.

Given several input signals, approximate all these signals at once using different
linear combinations of the same elementary signals, while balancing the error in
approzimating the data against the total number of elementary signals that are used.

A natural example of a simultaneous sparse approximation problem occurs if we have multiple
observations of a sparse signal that are contaminated with additive noise. This situation might occur
in a communications system where a sparse signal is generated artificially and then transmitted
through a noisy channel. One imagines that multiple looks could be used to provide a better
estimate of the underlying sparse signal.

The first part of this paper [TGS04] contains some numerical experiments which compare si-
multaneous sparse approximation against simple sparse approximation. It also proposes a greedy
algorithm, Simultaneous Orthogonal Matching Pursuit, for solving simultaneous sparse approx-
imation problems. At each iteration, the greedy algorithm identifies an elementary signal that
most improves the current approximation, and then it computes the best approximation of the
input signals using all the elementary signals that have been chosen up to that stage. An analysis
of the algorithm’s theoretical performance shows that it succeeds in solving simultaneous sparse
approximation problems when the elementary signals are weakly correlated with each other.

This second part of the paper presents an entirely different algorithmic approach, called convex
relazation. Here is one way to motivate this method. Suppose that ® is a matrix whose columns
are elementary signals. Imagine that we measure several signals of the form

s, = ®copt + v,

where copt is a sparse coefficient vector (that is, it has few nonzero entries) and vq,..., vk are
unknown noise vectors. Form a matrix S whose columns are the measurement vectors, and suppose
that we also have a bound on the total energy of the noise, say > ||I/kH§ < &2. One way to recover
the ideal coefficient vector cqps is to solve the mathematical program

mcip (# of nonzero rows in C) subject to |S—@C|p < e

By controlling the number of nonzero rows in C, we limit the total number of elementary signals
that may participate in the approximation of the signal matrix S. If the nonzero rows of C' correctly
identify the nonzero entries of cgpt, then we may use linear methods to find an estimate of cqp.

Although this plan is intuitively appealing, it suffers from a tragic flaw. The number of nonzero
rows in the coefficient matrix C' is a discrete-valued function, and the optimization problem is
completely intractable in its current form. Fortunately, there is still hope. We can replace the ob-
jective function with a closely related convex function. This step converts the original combinatorial
problem into a convex optimization problem that can be solved efficiently.

This paper develops the convex relaxation approach in more detail, and it provides theoretical
justification that it actually works. The notational burden is somewhat heavy, so we must postpone
a precise description of our results until later.

1.1. Outline. In Section 2, we give an overview of our notation. Section 3 develops the idea
of convex relaxation in more detail, and it shows how two different formulations of simultaneous
sparse approximation lead to two different convex relaxations. The major technical work appears
in Section 4. Sections 5 and 6 provide results on the behavior of the two convex relaxations, and
they give some examples to demonstrate how the theory can be applied. The final Section 7 shows
how this work compares with the literature.
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2. NOTATION

We begin with a very brief introduction to our notation. For more details and interpretation,
please refer to Section 2 of [TGS04].

A signal is a vector from C¢, and a signal matriz is a d x K complex matrix whose K columns
are signals. We use ||-||, to denote the Euclidean norm on signals and ||-|| for the Frobenius norm
(aka the Hilbert-Schmidt norm or Schatten 2-norm) on signal matrices. The usual Hermitian inner
product on vectors and matrices is written (-, -). All the results and derivations hold without
modification for real signals. A reader more comfortable with the real setting may prefer to ignore
the complications that arise in the complex setting.

A dictionary is a collection of unit-Euclidean-norm signals. These signals are called atoms, and
each atom is written ¢,,, where the index is drawn from a set Q. We form a matrix ® in C%*
whose columns are atoms. The coherence parameter of the dictionary [DMA97, CDS99] is defined
as

= max|( )|
poo = maxf(en @)l

If the coherence parameter is small (e.g., p = O(v/d)), we say that the dictionary is incoherent.
An incoherent dictionary may contain far more atoms than an orthonormal basis. See [Tro04a] for
specific examples of incoherent dictionaries.

For simplicity, we will present our results in terms of the coherence parameter instead of the more
general cumulative coherence function [DE03, Tro04a]. Note that the coherence parameter is not
fundamental to sparse approximation but rather provides a simple way to confirm the hypotheses
of our theorems.

Let A be a subset of Q. A coefficient matriz is an element of CAXK . If C is a coefficient matrix,
the product ® C is a signal matrix. The row-support of a coefficient matrix is defined as

rowsupp(C) £ {w e Q: ey # 0 for some k},

and the row-£y quasi-norm of a coefficient matrix is given by

ICll = |supp(C)|.

row-0

When the matrix C is a (column) vector, the row-support reduces to the support of the vector,
and the row-£y quasi-norm reduces to the usual /3 quasi-norm.

For p € [1,00], we use [|||,, to denote the £, vector norm. The operator norm between £, and £,
will be written ||-, -

Suppose that A indexes a linearly independent collection of atoms. Denote by ®, the matrix in
C¥A whose A-th column is the atom ). Give a signal matrix S, we denote by A, the (unique)
best Frobenius-norm approximation of S using the atoms listed in A. Let Cx be the (unique)
coefficient matrix in CA*¥ that synthesizes Ax. That is, Ay = &5 Cy.

3. CONVEX RELAXATION

3.1. Combinatorial Optimization. It is immediately clear that simultaneous sparse approxi-
mation is at least as hard as simple sparse approximation, which is just a special case. It was
already established a decade ago that simple sparse approximation is NP-hard in the general case
[Nat95, DMA97].

Here is the intuition behind the computationally complexity result. Sparse approximation prob-
lems attempt to limit the number of elementary signals that participate in the approximation.
For the worst instances of sparse approximation, it is necessary to search through all the possible
subcollections of elementary signals to identify the best one. Since the number of different subcol-
lections is exponential in the size of dictionary, the search is intractable for any problem of realistic
size.
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3.2. Convex Relaxation. A beautiful approach to simultaneous sparse approximation is to re-
place the row-£y quasi-norm by a closely related convex function. One hopes that the solution of the
convex relaxation will be very close to the solution of the difficult sparse approximation problem.
But the relaxation is a convex optimization problem, and so it can be solved in polynomial time
by standard mathematical programming software [BV04].

For motivation, consider the case of simple sparse approximation. These problems involve the £,
quasi-norm of a coefficient vector. In this case, convex relaxation replaces the £y quasi-norm with
the ¢; vector norm [CDS99, Tro04b, DET04]. One rationale is that the ¢; norm is the “smallest”
convex function that satisfies the same normalization as the ¢y quasi-norm. See [Tro04d, Sec. 2.1.5]
for some discussion of this idea. Another intuition is that minimizing the /1 norm promotes sparsity
whereas minimizing the /., norm promotes nonsparsity.

Let us return to simultaneous sparse approximation. Our intuition is that we want few atoms
to participate in the approximation, but we want each atom to contribute to as many columns of
the signal matrix as possible. In other words, most rows of the coefficient matrix should be zero,
but the nonzero rows should have many nonzero entries. This leads us to consider the following
relaxation of the row-£y quasi-norm:

def
1Bl = > maxk [bul. (3.1)

In words, the norm identifies the maximum absolute entry in each row of B and adds them up.
This is equivalent to applying the ¢, norm to rows (to promote nonsparsity) and then applying
the ¢1 norm to the resulting vector (to promote sparsity).

Although (3.1) may appear mysterious, it is not far removed from more familiar norms. It is
very easy to prove that |||, is the dual of the (0o, 00) matrix norm. Note that, if the matrix
B has a single column, the relaxed norm reduces to the ¢; norm. Therefore, the relaxation of a
simultaneous sparse approximation problem involving one signal will be the same as the relaxation
of the corresponding simple sparse approximation problem. Apparently, the norm ||-|| . also appears
in the literature on interpolation spaces [BL76].

Other relaxations of the row-y quasi-norm are certainly possible, as we will discuss in Section
7. Unfortunately, there are few theoretical results available for these other relaxations. It would
be very interesting to perform numerical experiments to compare the behavior of these different
approaches.

3.3. Relaxed Simultaneous Sparse Approximation. Suppose that S is a signal matrix whose
columns admit a good simultaneous approximation over the dictionary ®. The most natural way
to formulate the search for this simultaneous sparse approximation of S is

row-0 °

-
min S—-®C|% + — ||C
min | 12+~ Icl
The parameter 7 balances the approximation error against the number of nonzero rows in the
coefficient matrix C. As we have discussed, this problem is not tractable in its current form.
Relaxing this combinatorial problem leads to the convex program

Jmin 3 IS- @B} + 7B, (RX-PENALTY)
Here the parameter + negotiates a compromise between approximation error and row-sparsity.
(The change of normalization in the convex program is inessential but very convenient.) In Sec-
tion 5, we will prove that the (RX-PENALTY) offers an effective approach to simultaneous sparse
approximation. Indeed, if S has a good approximation using the atoms in A, then the solution to
(RX-PENALTY) will identify all the significant atoms in the approximation, and it will never identify
an atom outside A.
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A second formulation of simultaneous sparse approximation is the mathematical program de-
scribed in the Introduction:

min  ||C||

n subject to |S—@C|p < e
CecCix

row-0

In words, this problem requests the sparsest approximation of S that achieves an error no greater
than e. The convex relaxation of this combinatorial problem is

pluin | Bl 1 subject to IS —® Bl < 4. (RX-ERROR)

In Section 6, we will prove that (RX-ERROR) also yields an effective approach to simultaneous sparse
approximation. But our results suggest that the first convex relaxation is more powerful.

Although it is possible to develop interesting relationships between the solutions to the combi-
natorial problems and the solutions to the relaxations, we will not follow this route. Instead, we
will demonstrate that the convex relaxations themselves can be used to solve simultaneous sparse
approximation problems.

4. LEMMATA

In this section, we will be studying minimizers of the convex function
2
LB) = 5|S-®Bly + 7B, (4.1)

This is the objective function of (RX-PENALTY), and it is essentially the Lagrangian function of
(RX-ERROR). If we understand the minimizers of this function, we will understand the performance
of our convex relaxations. The casual reader can skip this section without any loss of continuity.

We will develop a sufficient condition for the minimizer of the function (4.1) to be supported
on a given index set A. The proof of this condition is based primarily on the work in [Tro04b].
First, we characterize the unique minimizer of the objective function, when it is restricted to
matrices supported on A. We use this characterization to show that any perturbation away from
this restricted minimizer must increase the objective function. The idea of using a perturbation
argument has appeared in Section 4.3 of [Tro04c|, and it is also an element of the argument in
[DET04]. The present approach is cleaner and more powerful than either of its precedents, and it
provides a route toward studying several important extensions of simple and simultaneous sparse
approximation.

4.1. Convex Analysis. The proof relies on standard results from convex analysis. As it is usually
presented, this subject addresses the properties of real-valued convex functions defined on real vector
spaces. Nevertheless, it is possible to transport these results to the complex setting by defining
an appropriate real-linear structure on the complex vector space. In this section, therefore, we
use the bilinear inner product Re (X, Y) = Retrace(Y* X) instead of the usual sesquilinear (i.e.,
Hermitian) inner product. Note that both inner products generate the Frobenius norm.

If f is a convex function from a complex matrix space M to R, then we define the gradient V f(X)
as the usual (Fréchet) derivative of f at X, computed with respect to the real inner product. The
subdifferential of f at a matrix X is defined as

Af(X) ¥ {GeM:f(Y)>f(X)+Re(Y —X, G) forevery Y € M}.

The elements of the subdifferential are called subgradients. If f has a well-defined gradient at X,
the unique subgradient is the gradient. That is,

of(X) = {VAX)}
The subdifferential of a sum is the (Minkowski) sum of the subdifferentials. Finally, if f is a (closed,

proper) convex function then X is a minimizer of f if and only if 0 € 9f(X). The standard reference
on this subject is [Roc70].
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Remark 4.1. The subdifferential of a convex function provides a dual description of the function in
terms of its supporting hyperplanes. In consequence, the appearance of the subdifferential in our
proof is analogous with the familiar technique of studying the dual of a convex program.

4.2. Restricted Minimizers. Our first goal is to characterize the minimizers of the objective
function (4.1). The following result generalizes Lemma 3 from [Tro04b] to the matrix case. The
proof is identical.

Lemma 4.2. Suppose that the matriz B, minimizes the objective function (4.1) over all coefficient
matrices supported on A. A necessary and sufficient condition on such a minimizer is that

C\—B, = ’y((I)A* ‘I)A>_1G (4.2)

where G is drawn from the subdifferential 0 || By||,. Moreover, the minimizer is unique.

Proof. Apply the Pythagorean Theorem to (4.1) to see that minimizing L over coefficient vectors
supported on A is equivalent to minimizing the function
def 2
F(B) = 3$[[AA—®AC|y + 7Bl (4.3)

over matrices from C**¥ . Recall that the atoms indexed by A form a linearly independent collec-
tion, so ®, has full column rank. It follows that the quadratic term in (4.3) is strictly convex, and
so the whole function F' must also be strictly convex. Therefore, its minimizer is unique.

The function F is convex and unconstrained, so 0 € 9F(B,) is a necessary and sufficient condition
for B, to minimize F'. The gradient of the first term of F' equals (®7* ®5) B, — ®po* Ap. From
the additivity of subdifferentials, it follows that

(PA*"PA) B, — P\ Ay +7G = 0

for some vector G drawn from the subdifferential 0| By||,.. Since the atoms indexed by A are
linearly independent, we may pre-multiply this relation by (®,* ®4)~! to reach

'I’ATAAfB* = ’y(q)A*‘I’A)_l G.
Apply the fact that Cy = ® Al A, to reach the conclusion. O

Next, we identify the subdifferential of the relaxed norm ||-||,,. To that end, define the signum

function as

10\ def el? forr >0
sgn (re’”) = 0 for r = 0.

The notation conv(.S) indicates the convex hull of a set S.

Lemma 4.3. A matriz G is a subgradient of |||, at the matriz B if and only if the w-th row of
G satisfies

e G ¢ {g":llgll; <1} if by = 0 for each k, and
“ conv{(sgnbyy)exr* : |byk| = max; |b,;|} otherwise.

In particular, |G||, <1 for any subgradient G of ||| -

In words, we determine the rows of a subgradient of B in the following manner. In each nonzero
row of B, identify the component(s) that have the largest absolute value. The corresponding row
of the subgradient must fall in the convex hull of the (signed) canonical basis vectors corresponding
with these components. If a row of B equals zero, the corresponding row of the subgradient must
lie in the ¢; unit ball.
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Proof. For a matrix B in CA*K | the relaxed norm is computed as

1Bl = >, maxe bl

By definition, a matrix G lies in 0 || B||,, if and only if
1Z|l, > B, + Re(Z-B, G)

for every matrix Z in CA*K. Now, we use the fact that the relaxed norm and the bilinear inner
product are both row-separable to see that each row of G must belong to the subdifferential of the
f~ norm at the corresponding row of B. It is well known that

o conv{(sgn by) ey : |bx| = max; |b;|} otherwise.
The formula for 0 ||B||,, just applies the ¢, subdifferential to each row of B. O

In consequence, we may develop bounds on how much a solution to the restricted problem varies
from the desired solution Cy. The proof is essentially the same as that of Corollary 5 from [Tro04b].

Corollary 4.4 (Upper Bounds). Suppose that the matriz B, minimizes the function (4.1) over all
coefficient matrices supported on A. The following bounds are in force:

ICA = Billooo < 7 (@47 @2) | o0 (4.4)
@A (Cr = BJ)llp < ’YH@ATHQJ' (4.5)

Proof. We begin with the necessary and sufficient condition
Cr—B, = ~(®\,'®,)'G (4.6)

where G € 0| B,||,,. To obtain (4.4), we take the (co0,00) norm of (4.6) and apply the usual
estimate:

IBi = Chllwoo = 7@ 2A)TC o = 7 [[(@2"2A) | o G o0 -

Lemma 4.3 shows that [|G||, ., < 1, which proves the result.
To develop the second bound (4.5), left-multiply (4.6) by the matrix ®, and compute the
Frobenius norm:

18a(B.=Cu)lp = Y[ @A) Gllp, < A[[(@AN |5 1Gllo,o0

(Note that the norm bound here is not trivial to establish. One approach is to apply Proposition
2.1 from [TGS04] use this characterization to show that |||/ o)—.p = [llcc2-) To complete the
argument, recall that |G ||OQ7C>O < 1. Finally, we use adjointness to switch from the (oo, 2) operator
norm to the (2,1) operator norm. O

4.3. Perturbation Theory. Now, we develop a sufficient condition for the minimizer of (4.1) to
be supported inside the index set A. This result is the key to our analysis.

Lemma 4.5 (Correlation Condition). A sufficient condition for the minimizer B, of the objective
function (4.1) to be supported on A is that

127 (S~ Ao = 7 [1 = maxun [|G7 @7

where G € 0||B,||,,.. In particular, it sufficient that

197 (S = Al < 7 [1 = masgn @07 o],
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We will typically abbreviate the bracket in the second sufficient condition:

ERC(A) = 1 — maxgg, |[®a7 o, (4.7)
For a geometric description of this quantity, see Section 3.6 of [Tro04c].
Proof. Let B, be the minimizer of the objective function (4.1) over coefficient matrices supported
on A. We will develop a condition which guarantees that the objective function increases when
B, is perturbed so that its support extends outside A. Since the objective function is convex and
unconstrained, this fact implies that the minimizer must be supported on A. Therefore, By is the
global minimizer of the objective function.

Choose an index w that is not contained in A, and let § be a nonzero K-dimensional column
vector. We must develop a condition which ensures that

L(B.+e,0") — L(B,) > 0.
To that end, we expand the left-hand side of this equation to obtain

L(B,+e,6%) — L(B,) =
LIS - @B~ @ o'} ~ IS—®BuR| + 7 [IB. + e8| — Bl

We denote by e, the w-th canonical basis vector in C*2. Next, simplify the first bracket by expanding
the Frobenius norms and canceling like terms. Simplify the second bracket by applying the definition
of the relaxed norm and recognizing that the row-support of B, is disjoint from the row-support
of e, 6*.
L(B.+e,6) — L(B.) = 1lp.d'2 — Re(S—@B., .6 + 7 [d]...

Next, transfer the atom ¢, to the other side of the inner product via adjointness. Then add and
subtract ®5 C on the left-hand side of the inner product, and use linearity to split the inner
product into two pieces. We reach

L(B,+e,0%) — L(B,) =
3 lew %7 — Re(pu" (S — @2 Ch), 6) — Relp,"®a(Ca—B.), §) + 7|6, -
We will bound the right-hand side below. To that end, observe that the first term is strictly positive,
and invoke the lower triangle inequality.
L(B,+e,0%) — L(By) >
V16l = K™ (S = @A Ch), 67)| — [(¢u” ®a(Cr — By), 67)]. (4.8)

It remains to inspect the right-hand side of (4.8).
Let us examine the second of the three terms on the right-hand side of (4.8). Identify Ay =
®, Cy, and then apply Hoélder’s Inequality to obtain

(pu" (S = @A Ch), 7)< [I(S—An) pully 16 (4.9)

We continue with the third term on the right-hand side of (4.8). Lemma 4.2 characterizes the
difference (Cp — B,). Introduce this characterization, and identify the pseudo-inverse of ®, to
discover that

(e @a(Ca—B.), 09 = |{e. (@16, &)
where G € 0 || B4||,,. Apply Holder’s Inequality again.
(. @ (Ca—B.), 89 < 7] G @], 18] (410)

Now we introduce the bounds (4.9) and (4.10) into the bound (4.8).
L(B.+e,6) — LB > [v - [(S- A4 eul, — 1[G @i ]| 1oll. (411)
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Our final goal is to ensure that the left-hand side of this relation is strictly positive.
The left-hand side of (4.11) is positive whenever the bracket is nonnegative. Therefore, we need

IS = A el = 7 [1 - |6 @nlell,].

This expression must hold for every index w that does not belong to A. Optimizing both sides over
w in Q\ A, we reach the stronger condition

maxogr (S = A0 @l < 7 |1 — maxugy [GF@aT ]

Since (S — Ap) is orthogonal to the atoms listed in A, the left-hand side does not change if we
maximize over all w from 2. We rewrite the left-hand side to conclude that the relation

1S~ Ao = 7 [1 = maxugs |G @aT ]

is a sufficient condition for every perturbation away from B, to increase the objective function L.
In particular, since |G|, o, < 1, it is also sufficient that

[ (S = A)lwoe = 7 [1 = maxugn [@aT o], ]

This completes the argument. ([l

5. THE PENALTY METHOD

Suppose that S is an observed signal matrix, and we wish to approximate the columns of S
simultaneously using linear combinations of the same atoms from ®. In this section, we approach
this problem by means of the convex program

] 1 _ 2 -
i3 |S—® By + 7Bl - (RX-PENALTY)
Intuitively, the parameter v negotiates a compromise between the approximation error and the level
of sparsity. If the signal matrix contains a single column s, observe that (RX-PENALTY) reduces to
. 1 2
min 5 |[|[s—®b|; + bl . {1-PENALTY
pece 2 | ||2 vl ||1 (4 )
This method for simple sparse approximation has been studied in [FucO4c, Fuc04b, Tro04b].

In this section, we will present a theorem that describes the behavior of the minimizer of (RX-
PENALTY). Afterward, we will show how to apply this theorem to the problem of recovering a
sparse signal from multiple observations that have been contaminated with additive noise. Other
related examples for the case of simple sparse approximation are available in [Tro04b].

5.1. Performance of the Relaxation. Our major theorem on the behavior of (RX-PENALTY)
follows immediately from the lemmata in the last section. The definition of ERC(A) appears in
equation (4.7).

Theorem 5.1. Let A index a linearly independent collection of atoms for which ERC(A) > 0.
Suppose that S is a signal matriz whose best approximation Ax over A satisfies the condition

|®* (S — Ap) < ~ ERC(A)

loo,c0
Define B, to be the unique solution to (RX-PENALTY) with parameter ~y. We may conclude that

e the row-support of By is contained in A, and
e the distance between B, and the optimal coefficient matriz Cp satisfies

IBi = Cillwoe < 7 [[(®a"@2) 7| -
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e In particular, rowsupp(By) contains every index \ from A for which
K * —1
Zk:1|CA()\,k)\ > v (A" @0) 7| o

That is, we approximate the signal matrix over A, and we assume that the remaining atoms are
weakly correlated with the residual. If so, the unique solution to (RX-PENALTY) identifies every
atom that participates significantly in A, and it never selects an atom outside A. Note that the
uniqueness of the minimizer is one of the conclusions of the theorem.

To use this theorem, it is necessary to leverage information about the problem domain to deter-
mine an appropriate choice for the set A. In the sequel, we will show how to apply the theorem to
a couple of specific cases. One can also use the coherence parameter to simplify the statement of
the theorem. This formulation has the advantage that the index set A plays a smaller role.

Corollary 5.2. Suppose that m p < % and that A contains no more than m indices. Suppose that
S is a signal matriz whose best approximation over A satisfies
< ’71 - (2m—1),u‘

1 — (m=—1)p

197 (S — Ar)ll 0 00

Define B, to be the unique solution to (RX-PENALTY) with parameter vy. We may conclude that

e the row-support of By is contained in A, and
e the distance between B, and C\y satisfies

~

B,-C < .
|| * AHoo,oo — 1 — (m—l),u

e In particular, rowsupp(By) contains every index \ from A for which

S ek > )
g L= (m—Du
Proof. The result follows immediately from the coherence estimates of [Tro0O4c, Sec. 3]. O

The corollary takes a particularly attractive form if we assume that m p < % Then the sufficient
condition becomes ||®* (S — Ay) < v/2, and the distance between the coefficient vectors
satisfies || By — Cp ||y 00 < 37/2-

Hoo,oo

5.2. Comparison with Simple Sparse Approximation. It may be illuminating to compare
Theorem 5.1 against the analogous result for simple sparse approximation [Tro04b, Thm. 8]. First,
we note that Theorem 5.1 reduces to the original result for simple sparse approximation if the signal
matrix S has a single column. Therefore, nothing has been lost in the analysis.

Still, there are some qualitative differences. In the case of simultaneous sparse approximation,
we expect that the left-hand side of the condition

|97 (S — An) < 4 ERC(A)

Hoo,oo

will be somewhat larger than it is in the case of simple sparse approximation. As a result, it may
be necessary to increase the value of the parameter v to ensure that the condition is in force. In
compensation, we also expect that

S 1CanR)]

will be somewhat larger than it is in the simple case. As a result, it should be easier for an index
A to lie in the row-support of By. To determine whether simultaneous sparse approximation is
valuable for a given problem domain, one must check which of the two effects dominates.
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5.3. Sparse Representation of Signal Matrices. We obtain an important corollary when the
signal matrix S can be represented exactly using the atoms in A. This result provides a sufficient
condition for convex relaxation to identify the sparsest exact representation of a signal matrix. The
analogous result for simple sparse approximation is due to Fuchs [FucO4a]. See also [Tro04b, Cor.
10].

Corollary 5.3. Assume that A lists a linearly independent collection of atoms for which ERC(A) >
0. Choose an arbitrary coefficient matriz Cn who row-support equals A, and fix a signal matrix
S = ®C\. Let By(vy) denote the unique minimizer of (RX-PENALTY) with parameter . We may
conclude that

e there is a positive number ~yy for which v < o implies that rowsupp(By (7)) = A.
o Asy | 0, we have B,(y) — Cy.

Proof. Since S can be expressed using the atoms in A, its best approximation Ay = S. Therefore,
@ (S — Ap)[oo 00 = 0. It follows from Theorem 5.1 that the minimizer B, () is unique for every
positive number . Moreover,

HB*(’-Y) - COPtHoo,oo S v H(QA* q::.A)ilHoo,oo '

It follows immediately that By (y) — Cj as the parameter v | 0. Finally, observe that rowsupp(Bix (7))
contains every index A provided that

minyea Zle |CA(\ K|
[(@A" PA) | o 00

The left-hand side of this equation furnishes an explicit value for ~q. O

.

It is also important to recognize that the limit of the solutions to (4.1) as the parameter v declines
to zero will solve the problem

min _ ||B|,, subject to S=®B.
BecCOxK

The converse, however, is not necessary true. One may wish to compare this result with [CHO4b,
Thm. 3.8].

5.4. Example: Identifying Noisy Sparse Signals. The most natural application of Theorem
5.1 is to the case where the columns of the signal matrix S are multiple observations of an ideal
signal that have been corrupted with additive noise. In this subsection, we will present a basic
example to demonstrate how the theorem applies.

Let us begin with a model for our ideal signals. Suppose that ® is a dictionary with coherence
1, and suppose that m u < % We will form ideal signals by taking linear combinations of m atoms
from ® with all coefficients equal to one. More formally, suppose that cp; is a vector whose m
nonzero entries equal one. Then each ideal signal has the form ® cpt.

For simplicity, we will not model the noise statistically. Let vy, ..., vk be arbitrary noise vectors
whose f5 norms do not exceed . Suppose that we measure K signals

s, = ®copy + v

We form a signal matrix S whose columns are s1,...,sg. Given this signal matrix, the goal is to
determine which atoms participated in the ideal signal.

First, we need to choose v so that the hypotheses of Corollary 5.2 hold. Let A = supp(copt),
and let Py denote the orthogonal projector onto the span of the atoms listed in A. Recall that
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Ap = Py S. According to the Pythagorean Theorem,

Hsk_PAsk”g = Hsk_q)coptng - HCI)Copt_PASIgHg
2 2
= ”VkHQ - ||q)copt _PASk;”Q
< &

In other words, each column of (S — Aj) has ¢3 norm no greater than . Since the columns of ®
have unit ¢5 norm, it follows directly that

27 (S = AN < €K

Referring to the remarks after Corollary 5.2, we discover that it suffices to choose v = 2¢ K.
Invoking the corollary, we see that B, has row-support inside A and also that

IB. ~ Calloe < 37/2 = 3:K.

We wish to ensure that the A-th row of By is nonzero for each A € A. From this fact, it will follow
that rowsupp(By) = A.

Let e denote a K x 1 vector of ones. Clearly, the A\-th row of ¢,y €* has absolute sum equal to K
for each A in A. Therefore, we can ensure that the A-th row of By is nonzero if || By — copt €[ o <
K. Collecting the noise vectors into a d x K matrix IN, we may calculate 7

[CA = copt €| o 0 = H‘IMT (8 — @4 copt eT)Hoom

= [lea" N
K[| @T]], o |
< 6Km.

Here, we have used the coherence bound ||® ATHQ + < 4/3/2 from Appendix IIT of [Tro04b]. The
triangle inequality shows that

|B.—copie’lly < cKB+1/32)

IN

Ny

Therefore, we require that
eK(34++/3/2) < K.

Rearranging this relation yields

1
s m 0.2367.
If the noise level ¢ satisfies this condition, then the solution B, to the convex relaxation with
parameter v = 2¢ K identifies each and every atom in A, and it makes no mistakes.

This calculation does not show that we accrue any advantage from multiple observations of the
signal. This fact is not surprising because we allowed the noise vectors to be completely arbitrary.
Each observation of the signal could be contaminated by the same worst-case noise vector. To see
the benefit of simultaneous sparse approximation, one must model the noise statistically. In that
case, it would be highly unlikely for all the noise vectors to be directed unfavorably. Unfortunately,
we have not made the complicated calculations that are necessary to support this point.

6. THE ERROR-CONSTRAINED METHOD

Another approach to simultaneous sparse approximation is to seek the sparsest coefficient matrix
that synthesizes a signal matrix within a fixed distance of the given signal matrix. We can attempt
to solve this problem by way of the convex program

Bl | B, subject to IS —® By < 4. (RX-ERROR)
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Minimizing the norm ||-||,, promotes row-sparsity in the coefficient matrix, while the parameter §
describes the amount of approximation error we are willing to tolerate. In the case where the signal
matrix has a single column s, the convex program reduces to
min |/bl|, subject to |s —®bl, < 0. (£1-ERROR)
beC®
This method for simple sparse approximation has been studied extensively in [DET04, Tro04b].
The evidence in [Tro04b] suggests that the penalty method for simple sparse approximation is
much more powerful than the error-constrained method, and this paper will provide some evidence
that the same phenomenon occurs in the simultaneous case.
In this section, we will present a theorem on the performance of (RX-ERROR), and we will
show how to apply this theorem to a specific problem. Several related examples for simple sparse
approximation appear in [Tro04b].

6.1. Performance of the Relaxation. Our major theorem provides conditions under which the
solution to (RX-ERROR) has row-support contained inside a given index set A. The definition of
ERC(A) appears in equation (4.7).

Theorem 6.1. Let A index a linearly independent collection of atoms for which ERC(A) > 0, and
fix a signal matriz S. Let Ap be the best approximation of S over A, and let Cy be the associated
synthesis matriz. Select an error tolerance § that satisfies

[Tl 197 (S — AN oo oo
ERC(A)

2

82 > ||IS— Al +

Then it follows that the unique solution B, to (RX-ERROR) with tolerance ¢ has the following
properties.

o The row-support of By is contained in A.

o The distance between By, and Cp satisfies

B« —Callp < 6 Hq)ATHm‘

e In particular, rowsupp(By) contains every index A from A for which
K f
Yo Gk > §[ @]y,

In words, we select the tolerance § somewhat larger than the Frobenius norm of the residual
(S — Ap). This ensures that the solution to the convex relaxation identifies every atom that
participates significantly in the signal, and the relaxation never identifies any atom outside A. The
proof of this theorem is substantially identical with the proof of Theorem 14 from [Tro04b]. In
consequence, we omit the details.

As with Theorem 5.1, one must leverage information about the problem domain to select the
index set A and the tolerance . We can also present a version of the theorem that uses the
coherence parameter to estimate some key quantities.

Corollary 6.2. Let A index a linearly independent collection of atoms for which ERC(A) > 0, and
fix a signal matriz S. Let Ap be the best approximation of S over A, and let Cy be the associated
synthesis matriz. Select an error tolerance 0 that satisfies

m(l — (m—1)p
(1 = (2m—1)p)?
Then it follows that the unique solution B, to (RX-ERROR) with tolerance § has the following
properties. The row-support of By is contained in A, and the distance between the coefficient

vectors satisfies | B, — Cpllp < 0+/1—(m—1) p.

0% = |IS - Aullp + 18* (S — An)[1% oo - (6.1)
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This result follows directly from the coherence estimates developed in Section 3 of [Tro04c]. The
corollary takes an especially pretty form if m p < % Then the fraction in (6.1) reduces to 6 m, and

the distance between the coefficient vectors satisfies | B, — Cpllp < 0 +/3/2.

6.2. Comparison with Simple Sparse Approximation. Theorem 6.1 contains the analogous
result for simple sparse approximation [Tro04b, Thm. 14], so nothing has been lost in our gener-
alization. Once again, there are some qualitative differences between the two results. We expect
that it will be necessary to choose d somewhat larger in the simultaneous case than in the simple
case, and this will increase the distance between B, and Cj. In compensation, we expect that
the absolute row sums of Cy will be somewhat larger in the simultaneous case. The details of the
application will determine which effect dominates.

6.3. Example: Identifying Noisy Sparse Signals (Redux). We will apply Theorem 6.1 to
the same example that we described in Section 5.4. That is, we will show that the convex program
(RX-ERROR) can be used to recover a synthetic sparse signal from multiple observations that have
been contaminated with noise.

Let us repeat the setup. Suppose that ® is a dictionary with coherence p, and suppose that
mp < % Let copt be a vector whose m nonzero entries equal one. Each ideal signal has the form
® copi. Take vy, ..., vk to be arbitrary noise vectors whose /o norms do not exceed . Suppose
that we measure K signals

s, = @ Copt + Vg
We form a signal matrix S whose columns are s1,...,sg. Given this signal matrix, the goal is to
determine which atoms participated in the ideal signal.
First, we must determine an appropriate value for the tolerance §. Referring to the calculations
in Section 5.4, we discover that ||S — Az[z < €2 K and that |[®* (S — Ay) < eK. The
comments after Corollary 6.2 show that it is sufficient to choose

d = eK /1/K+ 6m.

Invoking the corollary, we discover that the row-support of the minimizer B, is contained in A and
that

Hoo,oo

|B. ~ Crllone < 632

We wish to ensure that the A-th row of By is nonzero for each A in A. We follow the same approach
as before.

Recall that the A-th row of copt € has absolute sum equal to K for each A in A. Section 5.4
shows that

ICr —copt €[l e = €K /3/2.
It follows from the triangle inequality that

IB. —copellos < cK\BZ(1 + /K +6m).
Therefore, the A-th row of B, is nonzero provided that
eK\/3/2(1 + V1/K+6m) < K.
Solving this equation for € yields
2/3

1+ /1/K+6m

This condition on ¢ is sufficient to ensure that the solution B, to the convex relaxation has row-
support equal to A.
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It is interesting to see that additional observations do improve the performance of the convex
relaxation (RX-ERROR). For a fixed value of m, the upper bound on ¢ increases with K. Neverthe-
less, the bound on € decreases as m grows. For every value of m, the theoretical evidence suggests
that the penalty method will perform better than the error-constrained method.

7. COMPARISON WITH PREVIOUS WORK

There are many different ways to relax the row-¢y quasi-norm. One may define an entire family
of relaxations [CREKDO04, Eqn. 13] of the form

. p/q
Tp.a(B) = ZwGQ [Zle |b“’kq} ’ (7.1)

Typically p < 1 and ¢ > 1. That is, the ¢, norm is applied to rows of the coefficient matrix, and
the £, quasi-norm is applied to the resulting vector of norms. Note that J,, is convex whenever
pq =1

It seems that the family (7.1) encompasses all the relaxations of ||-||,...o that have appeared in
the literature. The relaxation [-||,, that we have considered in this paper corresponds with the
case p = 1 and ¢ = oo (with the usual convention). Chen and Huo [CHO4a, CHO04b| present theory
for the case p,q = 1. Cotter et al. [CREKDO04] and Malioutov et al. [MCWO3] focus on the case
p <1 and g =2. At present, there is little empirical or theoretical evidence by which to prefer one
relaxation over another.

The most detailed theoretical work so far is due to Chen and Huo [CH04a, CH04b], who have
studied convex relaxations involving Jq 1. They prove that the convex program

min Jy 1(B) subject to S=®B

can be used to recover signals that have a sufficiently sparse representation. General intuitions
about sparse approximation suggest that this method is most appropriate when the coefficient
matrix is very sparse (in the usual sense) and not merely row-sparse. An interesting feature of this
optimization problem is that it separates into independent simple sparse approximation problems
[CHO4b, Rem. 5.3]. This fact makes the analysis much cleaner. On comparison with the arguments
in this paper, one may judge that simplicity is a worthwhile end.

Cotter et al. have developed an algorithm, M-FOCUSS, for solving

min Jj, 2(B) subject to S=®B

where p < 1. A pragmatic reason for considering the relaxation Jp,9 is that it leads to efficient
algorithms of the factored-gradient type. Cotter et al. prove that their algorithms converge to a
local minimum, which in case of .J; » must also be a global minimum [CREKDO04].

Malioutov et al. have considered convex programs that can handle sparse signal matrices con-
taminated with noise. In particular, they consider problems of the form

min S~ @B + 5J12(B).

They provide empirical evidence that these convex programs offer an effective method for source-
localization using linear arrays of sensors. See [MCWO03] and [Mal03, Sec. 5.1.6] for details.

The methods of this paper can certainly be adapted to develop results for convex relaxations
involving other members of the family {.J; 4}. (Our methods will not work in case p < 1.) It would
be interesting to see how these relaxations compare with each other theoretically. It would also be
valuable to perform numerical experiments to determine which of the convex relaxations offers the
best balance of accuracy and computational cost.
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