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Recovery of Short, Complex Linear Combinations
via `1 Minimization

Joel A. Tropp,Member, IEEE

Abstract— This note provides a condition under which`1 min-
imization (also known as Basis Pursuit) can recover short linear
combinations of complex vectors chosen from fixed, overcomplete
collection. This condition has already been established in the real
setting by J.-J. Fuchs, who used convex analysis. The proof given
here is more direct.

Index Terms— Algorithms, approximation, Basis Pursuit, linear
program, redundant dictionaries, sparse representations.

I. I NTRODUCTION

The (complex) sparse approximation problem is set in the
Hilbert spaceCd. For practical reasons, we work in a finite-
dimensional space, but the theory can be extended to the
infinite-dimensional setting. Adictionary for Cd is a finite
collection of unit-norm vectors that spans the whole space.
The elements of the dictionary are calledatoms, and they are
denoted byϕω, where the parameterω is drawn from an index
set Ω. The letterN will indicate the number of atoms in the
dictionary. Now, form thedictionary synthesis matrix, whose
columns are atoms:

Φ
def
=

ˆ
ϕω1 ϕω2 . . . ϕωN

˜
.

The order of the atoms does not matter, so long as it is fixed.
Given a signals from Cd, the problem is to determine the

shortest linear combination of atoms that equals the signal. If
we define‖b‖0 to be the number of nonzero components of the
vectorb, then we may write thissparse approximation problem
as

min
b∈Cd

‖b‖0 subject to Φ b = s. (P0)

This problem is somewhat academic since the signals that have
a sparse representation using fewer thand atoms form a set
of Lebesgue measure zero inCd [1, Prop. 4.1]. Nevertheless,
the question has value for the insight it can provide on more
difficult sparse approximation problems.

One approach to solving (P0) is to replace the horribly
nonlinear function‖·‖0 with the norm‖·‖1 and hope that the
solutions coincide. That is,

min
b∈Cd

‖b‖1 subject to Φ b = s. (P1)

This convex minimization problem can be solved efficiently
with standard mathematical programming software. Chen,
Donoho, and Saunders introduce this method in [2], where they
call it Basis Pursuit. They provide copious empirical evidence
that the method of̀1 minimization can indeed solve (P0).

Several years ago, Donoho and Huo established that the Ba-
sis Pursuit method provably recovers short linear combinations
of vectors fromincoherentdictionaries [3]. Roughly speaking,
an incoherent dictionary has small inner products between its
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atoms. This basic result was sharpened and extended by Elad–
Bruckstein [4], Donoho–Elad [5], Gribonval–Nielsen [6], and
Tropp [1]. The strongest result in this direction, which we
will soon explore, is due to Fuchs [7]. This article provides
a completely different method of reaching Fuchs’ result.

II. FUCHS’ CONDITION

Imagine that the sparsest representation of a given signals
requiresm atoms, say

s =
X
Λopt

bλ ϕλ,

whereΛopt ⊂ Ω is an index set of sizem. Without loss of
generality, assume that the atoms inΛopt are linearly indepen-
dent and that the coefficientsbλ are nonzero. Otherwise, the
signal has an exact representation using fewer thanm atoms.

From the dictionary synthesis matrix, extract thed × m
matrix Φopt whose columns are the atoms listed inΛopt:

Φopt
def
=

ˆ
ϕλ1 ϕλ2 . . . ϕλm

˜
,

where λk ranges overΛopt. Note thatΦopt is nonsingular
because its columns form a linearly independent set. The signal
can now be expressed as

s = Φopt bopt

for a vector bopt of m complex coefficients, which vector
formally belongs toCΛopt .

A few other preliminaries remain. It is sometimes necessary
to extend a short coefficient vector with zeros so that it lies
in CΩ. We indicate this operation with a prime mark (′). For
example, we might extend them-dimensional vectorbopt to
the N -dimensional vectorb′opt whose nonzero entries all lie
at coordinates indexed byΛopt. Finally, we require a precise
definition of the signum function.

Definition 1 (Signum Function):Applied to a complex
number, the signum functionsgn (·) returns the unimodular
part of that number, i.e.,

sgn (r ei θ) =


ei θ whenr > 0 and
0 whenr = 0.

We extend the signum function to vectors by applying it to
each component separately.

For the case of a real dictionary in a real vector space, Fuchs
has developed a condition under which the unique solution to
the Basis Pursuit problem isb′opt.

Theorem 2 (Fuchs [7]):Suppose that the sparsest represen-
tation of a real vector isΦopt bopt. If there exists a vectorh
in Rd at which

1) ΦT
opt h = sgn (bopt) and

2) |〈h, ϕω〉| < 1 for eachω not listed inΛopt,

then the (unique) solution to thè1 minimization problem (P1)
is b′opt, which coincides with the (unique) solution to the sparse
approximation problem (P0).

It is somewhat difficult to interpret the hypotheses of this
theorem, and there is no known method for checking them
directly. We may obtain a more intuitive corollary by choosing
a natural value for the auxiliary vectorh. From the subspace of
vectors that satisfy Condition (1) of Theorem 2, select the one
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with minimal `2 norm, namelyh = (Φ†
opt)

T (sgn bopt). We
have used the dagger to represent the Moore–Penrose pseudo-
inverse, which is defined for full-column-rank matrices by the
formula Φ†

opt = (Φ∗
optΦopt)

−1 ΦT
opt.

Corollary 3 (Fuchs [7]): Suppose that the sparsest repre-
sentation of a real vector isΦopt bopt. If it happens that˛̨̨D

(Φ†
opt)

T (sgn bopt), ϕω

E˛̨̨
< 1

for everyω not contained inΛopt, (1)

then the solution to thè1 minimization problem (P1) is b′opt.
At first sight, Condition (1) may look just as confusing as

Conditions (1) and (2) of Theorem 2. It will become more clear,
perhaps, upon inspection. The presence of the pseudo-inverse
shows that the conditioning of the optimal synthesis matrix
plays a major role in how well̀1 minimization can recover the
synthesis coefficients: Basis Pursuit works best when the set of
optimal atoms is more or less orthogonal. It is also important
that the nonoptimal atoms are significantly different from the
optimal atoms. Condition (1) also shows that the signs of the
coefficients significantly affect the performance of the method.
If we choose the worst possible disbursement of signs, then
we obtain a third condition.

Corollary 4 (Tropp [1]): Suppose that the sparsest repre-
sentation of a real vector isΦopt bopt. The condition‚‚‚Φ†

opt ϕω

‚‚‚
1

< 1

for everyω not contained inΛopt (2)

implies that the unique solution to the`1 minimization problem
(P1) is b′opt.

In fact, the proof of [1] establishes this condition in the
complex setting. The same article demonstrates that (2) can
guarantee the success of another algorithm, Orthogonal Match-
ing Pursuit. Moreover, it offers techniques for checking the
condition. Recently, Gribonval and Vandergheynst have proven
that a third algorithm, Matching Pursuit, also performs well
when Condition (2) is in force [8].

III. G ENERALIZATION OF FUCHS’ T HEOREM

We may reach a complex version of Theorem 2 by modifying
the proof of Corollary 4 that appears in [1].

Theorem 5:Suppose that the sparsest representation of a
complex vector isΦopt bopt. If there exists a vectorh in Cd

at which

1) Φ∗
opt h = sgn (bopt) and

2) |〈h, ϕω〉| < 1 for eachω not listed inΛopt,

then the (unique) solution to thè1 minimization problem (P1)
is b′opt, which coincides with the (unique) solution to the sparse
approximation problem (P0).

Note that we have started using the conjugate transpose
symbol ∗ instead of the transpose symbolT because we have
moved to the complex setting. Our proof requires a simple
lemma.

Lemma 6:Suppose thatz is a vector whose components are
all nonzero and thatv is a vector whose entries do not have
identical moduli. Then|〈z, v〉| < ‖z‖1 ‖v‖∞.

The lemma is straightforward to establish, so we continue with
the proof of the theorem.

Proof: Suppose thats is a signal whose sparsest represen-
tation isΦopt bopt. Say that the vectorbopt hasm components
(all nonzero), and letΛopt index these components. Assume
too that there exists a vectorh in Cd at which

1) Φ∗
opt h = sgn (bopt) and

2) |〈h, ϕω〉| < 1 for eachω not listed inΛopt.

Let s = Φalt balt be a different representation of the signal.
We may suppose that its components are all nonzero and that
they are indexed byΛalt. It must be shown that thè1 norm
of the extended coefficient vectorb′opt is strictly less than the
`1 norm of the extended coefficient vectorb′alt. We begin with
a calculation that should explain itself.‚‚b′opt

‚‚
1

= ‖bopt‖1

= |(sgn bopt)
∗ bopt|

= |(h∗ Φopt) bopt|
= |h∗ s|
= |h∗ (Φalt balt)|
= |〈balt, Φ

∗
alt h〉| .

Now assume that the vectorΦ∗
alt h has components whose

moduli are not identical. By assumption,balt has no zero
entries, so we may apply the lemma. Hence‚‚b′opt

‚‚
1

< ‖balt‖1 ‖Φ∗
alt h‖∞

= ‖balt‖1 max
λ∈Λalt

|〈h, ϕλ〉|

≤ ‖balt‖1

=
‚‚b′alt

‚‚
1
.

The second inequality holds because the conditions we have
placed onh imply that |〈h, ϕω〉| ≤ 1 for everyω in Ω.

On the contrary, suppose that each component of the vector
Φ∗

alt h has the same modulus. As noted in Section II, the matrix
Φopt is nonsingular, soΦopt bopt is the unique representation
of s using the vectors inΛopt. Moreover,Λopt is the smallest
possible index set whose atoms can represents. Thus Λalt

contains at least one index, sayλ0, that is not contained in
Λopt. By assumption, the number|〈h, ϕλ0〉| is strictly less
than one. We may identify this number as a component of
Φ∗

alt h. In consequence,everycomponent of the vectorΦ∗
alt h

has modulus less than one. Therefore, we may calculate that‚‚b′opt

‚‚
1
≤ ‖balt‖1 ‖Φ∗

alt h‖∞
< ‖balt‖1

=
‚‚b′alt

‚‚
1
.

In words, any set of nonoptimal coefficients for representing
the signal has strictly larger̀1 norm than the optimal coef-
ficients. We conclude that Basis Pursuit must recover these
optimal coefficients. Finally, suppose that the hypotheses of
the theorem hold, while the sparse approximation problem (P0)
has two distinct solutions. The preceding argument shows that
each one would have a strictly smaller`1 norm than the other,
a reductio ad absurdum.

A complex version of Corollary 3 follows immediately.
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Corollary 7: Suppose that the sparsest representation of a
complex vector isΦopt bopt. If it happens that˛̨̨D

(Φ†
opt)

∗ (sgn bopt), ϕω

E˛̨̨
< 1

for everyω not listed inΛopt,

then the unique solution to thè1 minimization problem (P1)
is b′opt.

Remark 8:One of the anonymous referees outlined another
proof of Theorem 5 via classical duality theory. The dual of
(P1) is

max
u

Re 〈s, u〉 subject to ‖Φ∗ u‖∞ ≤ 1.

If a coefficient vectorb is feasible for (P1), thenRe 〈s, u〉 ≤
‖b‖1 for every dual-feasibleu. Strong duality implies thatb′opt

is a minimizer of (P1) if and only if we can identify a dual-
feasibleu for which Re 〈s, u〉 =

‚‚b′opt

‚‚
1
. Suppose that there

exists a vectorh that meets Conditions (1) and (2) of Theorem
5. It is clear that this vectorh is dual feasible, and furthermore

Re 〈s, h〉 = Re
˙
Φ b′opt, h

¸
= Re

˙
b′opt, Φ

∗ h
¸

= Re
˙
b′opt, sgn b′opt

¸
=

‚‚b′opt

‚‚
1
.

To see thatb′opt uniquely solves (P1), observe that the third
equality can hold only if the support ofbopt equalsΛopt.
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