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Just Relax: Convex Programming Methods
for lIdentifying Sparse Signals in Noise

Joel A. Tropp,Member, IEEE

Abstract—This article studies a difficult and fundamental regularization [10].
problem that arises throughout electrical engineering, applied
mathematics, and statistics. Suppose that one forms a short linear
combination of elementary signals drawn from a large, fixed A. The Model Problem
collection. Given an observation of the linear combination that  In this work, we will concentrate on the model problem of
has been contaminated with additive noise, the goal is to identify jgentifying a sparse linear combination of elementary signals
which elementary signals participated and to approximate their ¢ has heen contaminated with additive noise. The literature
coefficients. Although many algorithms have been proposed, . . -
there is little theory which guarantees that these algorithms can On inverse problems tends to assume that the noise is an
accurately and efficiently solve the problem. arbitrary vector of bounded norm, while the signal process-
This article studies a method called convex relaxation, which ing literature usually models the noise statistically; we will
attempts to recover the ideal sparse signal by solving a convex consider both possibilities.

program. This approach is powerful because the optimization 14 pe precise, suppose we measure a signal of the form
can be completed in polynomial time with standard scientific ’

software. The paper provides general_ conditions which ensure s = Peopr + v Q)
that convex relaxation succeeds. As evidence of the broad impact
of these results, the article describes how convex relaxation canwhere ® is a known matrix with unit-norm columnsg, is

be used for several concrete signal recovery problems. It also g sparse coefficient vector (i.e., few components are nonzero),
describes applications to channel coding, linear regression, and andv is an unknown noise vector. Given the sigaabur goal
numerical analysis. . . - ) . ..
dmer ys! _ o _ is to approximate the coefficient vectay,. In particular, it is
Index Terms— Algorithms, approximation methods, Basis Pur-  essential that we correctly identify the nonzero components of
suit, convex program, optimization methods, linear regression, he coefficient vector because they determine which columns
Orthogonal Matching Pursuit, sparse representations of the matrix® participate in the signal
Initially, linear algebra seems to preclude a solution—
. INTRODUCTION yvheneve@ has a nontrivial null space, we face an iII-pqs_ed
inverse problem. Even worse, the sparsity of the coefficient
L ATELY, there has been a lot of fuss about sparse aactor introduces a combinatorial aspect to the problem. Nev-
proximation. This class of problems has two definingiheless, if the optimal coefficient vector,, is sufficiently
characteristics: sparse, it turns out that we can accurately and efficiently
1) Aninput signal is approximated by a linear combinatioapproximatec,,; given the noisy observatios.
of elementary signals. In many modern applications,
the elementary signals are drawn from a large, linearly. Convex Relaxation

dependent COHeCt'?”' . .. . The literature contains many types of algorithms for ap-

2) A preference for "sparse” linear combinations is imgqching the model problem, including brute force [4, Sec.

posed by penalizing nonzero coefficients. The most;_3 g1 “honlinear programming [11], and greedy pursuit [12—

common penalty is the number of elementary signaisy |, this paper, we concentrate on a powerful method called

that participate in the approximation. convex relaxation. Although this technique was introduced

Sparse approximation problems arise throughout electrigaler thirty years ago in [15], the theoretical justifications are

engineering, statistics, and applied mathematics. One of & shaky. This paper attempts to lay a more solid foundation.

most common applications is to compress audio [1], im- Let us explain the intuition behind convex relaxation meth-
ages [2], and video [3]. Sparsity criteria also arise in lineads. Suppose we are given a sigsabf the form (1) along

regression [4], deconvolution [5], signal modeling [6], prewith a bound on thé, norm of the noise vector, say||, < «.

conditioning [7], machine learning [8], de-noising [9], andt first, it is tempting to look for the sparsest coefficient vector

that generates a signal within distarzcef the input. This idea
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through all possible disbursements of the nonzero componefitese properties can be difficult to check in general. This
in ¢. This method is intractable because the search spaceéper relies on a simple approach based on dbleerence
exponentially large [12, 16]. parameterof ®, which measures the cosine of the minimal

To surmount this obstacle, one might replace theuasi- angle between a pair of columns. It may be possible to improve
norm with the /; norm to obtain a convex optimizationthese results using techniques from Banach space geometry.
problem. As an application of the theory, we will see that convex

relaxation can be used to solve three versions of the model

((1-ERROR)  proplem. If the coherence parameter is small,

« both convex programs can identify a sufficiently sparse
signal corrupted by an arbitrary vector of bounded
norm (Sections IV-C and V-B).

« The program {;-PENALTY) can identify a sparse signal
in additive white Gaussian noise (Section IV-D).

min |bl|, subjectto |s—®b|, <o

where the tolerance is related to the error bound. In-
tuitively, the ¢/ norm is the convex function closest to the
£y quasi-norm, so this substitution is referred to @svex
relaxation One hopes that the solution to the relaxation will
ield a good approximation of the ideal coefficient veatgy;. : ) ; .
the ad?/antaggpof the new formulation is that it can fggsolvew Thg program (1-ERROR) can identify a sparse signalin
in polynomial time with standard scientific software [17]. un'|florm noise of bounded, norm (Section V-C).

We have found that it is more natural to study the closelff ddition, Section IV-E shows that,(-PENALTY) can be

related convex program used for subset selection, a sparse approximation problem
that arises in statistics. Section V-D demonstrates that (
Inbin slls—@ ng + v |bll4 (¢1-PENALTY) ERROR) can solve another sparse approximation problem from

numerical analysis.
As before, one can interpret thg@ norm as a convex re- This paper is among the first to analyze the behavior of
laxation of the/, quasi-norm. So the parametgrmanages convex relaxation when noise is present. Prior theoretical
a tradeoff between the approximation error and the sparsityrk has focused on a special case of the model problem
of the coefficient vector. This optimization problem can als@here the noise vectar = 0. See for example [14,19-23].
be solved efficiently, and one expects that the minimizer wilthough these results are beautiful, they simply do not apply

approximate the ideal coefficient vectay,. to real-world signal processing problems. We expect that our
Appendix | offers an excursus on the history of convework will have a significant practical impact because so many
relaxation methods for identifying sparse signals. applications require sparse approximation in the presence of

noise. As an example, Dossal and Mallat have used our results
to study the performance of convex relaxation for a problem
in seismics [24].

The primary contribution of this paper is to justify the After the first draft [25] of this paper had been completed,
intuition that convex relaxation can solve the model problem.came to the author’s attention that several other researchers
Our two major theorems describe the behavior of solutiopgere preparing papers on the performance of convex relaxation
to (¢1-PENALTY) and solutions to 4 -ERROR). We apply this in the presence of noise [18, 26, 27]. These manuscripts are
theory to several concrete instances of the model problemsignificantly different from the present work, and they also

Let us summarize our results on the performance of convegserve attention. Turn to Section VI-B for comparisons and
relaxation. Suppose that we measure a signal of the fogwontrasts.

(1) and that we solve one of the convex programs with
an appropriate choice of or 6 to obtain a minimizerb,. D. Channel Coding

Theorems 8 and 14 demonstrate that R . .
the vectorb, is close to the ideal coefficient vecto It may be illuminating to view the model problem in the
* The su oFt ofb, (i.e., the indices of its nonzerogztc;m-come)(t of channel coding. The Gaussian channel allows us
* onents)pis a su*bsét .c’)f the supportegf to send one real number during each transmission, but this
E/Ioreover the minimizer is unipEe Bbe- number is corrupted by the addition of a zero-mean Gaussian
* T que. o N random variable. Shannon’s channel coding theorem [28,
In words, the solution to the convex relaxation identifies evetyhap. 10] shows that the capacity of the Gaussian channel can
sufficiently large component af,,,;, and it never mistakenly pe achieved (asymptotically) by grouping the transmissions
identifies a column ofb that did not participate in the signal.jnio long blocks and using a random code whose size is
As other authors have written, “It seems quite surprising thé‘i(ponential in the block length. A major practical problem

any result of this kind is possible” [18, Section 6]. with this approach is that decoding requires an exponentially
The conditions under which the convex relaxations solve tigge lookup table.

model problem are geometric in nature. Section IlI-C describes| contrast, we could also construct a large code by forming

C. Contributions

the primary factors influencing their success: sparse linear combinations of vectors from a fixed codebook
o Small sets of the columns fron® should be well- ®. Both the choice of vectors and the nonzero coefficients
conditioned. carry information. The vector length is analogous with the

« The noise vector should be weakly correlated with all thelock length. When we transmit a codeword through the
columns of®. channel, it is contaminated by a zero-mean, white Gaussian
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random vector. To identify the codeword, it is necessary B. The Coherence Parameter

solve_ the model problem. Therefor_e, any sparse approximatiom summary parameter of the dictionary is theherence
algorithm—such as convex relaxation—can potentially be usghich is defined as the maximum absolute inner product

for decoding. between two distinct atoms [12, 19].
To see that this coding scheme is practical, one must show dor
that the codewords carry almost as much information as the po= max [{py, x| ©)

. : AFw
channel permits. One must also demonstrate that the decoc{wﬁen the coherence is small, the atoms look very different

algorlthm.can reliably recover the noisy codewords: . from each other, which makes them easy to distinguish. It is
We believe that channel coding is a novel application %fommon that the coherence satisfies- O(d~1/2). We say
sparse approximation algorithms. In certain settings, the

. X - . ﬁormally that a dictionary isncoherentwhen we judge that
algorithms may provide a very competitive approach. Sectio

VD and \-C " imol les that take a fi e coherence parameter is small. An incoherent dictionary
-Dand V=L present some simple examples that take a fig tay contain far more atoms than an orthonormal basis (i.e.,
step in this direction. See [29] for some more discussion

> d) [14, Sec. II-D].

these ideas. The literature also contains a generalization of the coherence
parameter called theumulative coherence functidi4, 21].
E. Outline For each natural numben, this function is defined as
The paper continues with notation and background material ~ #1(m) = ax max ) ca {pw, @x)l-

in Section Il. Section Ill develops the fundamental lemmata . ) ) . )
that undergird our major results. The two subsequent sectiofys function will often provide better estimates than the

provide the major theoretical results fof, {PENALTY) and coheren_ce parameter. For clarity of exposition, we only present
(£,-ERROR). Both these sections describe several specific arﬁ_sults in terms of the coherence parameter. Parallel results
plications in signal recovery, approximation theory, statisticdSing cumulative coherence are not hard to develop [25].

and numerical analysis. The body of the paper concludeslt is essential to be aware that coherence is not fundamental

with Section VI, which surveys extensions and related worlQ Sparse approximation. Rather, it offers a quick way to check

The appendices present several additional topics and sdiffe NyPotheses of our theorems. Itis possible to provide much

supporting analysis stronger results using more sophisticated techniques.

C. Coefficient Space

Every linear combination of atoms is parameterized by a list
This section furnishes the mathematicgise en sene We of coefficients. We may collect them intocaefficient vectqr
have adopted an abstract point of view that facilitates owthich formally belongs to the linear sp&c&‘. The canonical
treatment of convex relaxation methods. Most of the materig@sis for this space is given by the vectors whose coordinate
here may be found in any book on matrix theory or functiongrojections are identically zero, except for one unit coordinate.
analysis, such as [30-32]. The w-th canonical basis vector will be denoteg.
Given a coefficient vectoe, the expressions,, and c(w)
both represent its;-th coordinate. We will alternate between
A. The Dictionary them, depending on what is most typographically felicitous.
We will work in the finite-dimensional, complex inner- 1he supportof a coefficient vector is the set of indices at
product spaceC¢, which will be called thesignal spack Which it is nonzero:
The usual Hermitian inner product f@¢ will be written as supp(c) = {weQ : ¢, #0}. 4)

(-, -, and we will denote the corresponding norm py,. _ . . .,
A dictionary for the signal space is a finite collectioi SUPPOSe thalt C 2. Without notice, we may embed “short

of unit-norm elementary signals. The elementary signals drgefficient vectors fronC* into CQ by extending them with

calledatoms and each is denoted lay,,, where the parameter 2€0S- leeW|se_, we may restrict “long” coef_f|c_|ent veptors

w is drawn from an index sef2. The indices may have from (Cf_l to their support. Both transubstantiations will be

an interpretation, such as the time—frequency or time—sciftural in context.

localization of an atom, or they may simply be labels without ) . )

an underlying metaphysics. The whole dictionary structure & Sparsity and Diversity

written as The sparsityof a coefficient vector is the number of places
9 = {p, + weQ} where it equals zero. The complementary notidiversity,

counts the number of places where the coefficient vector does

The letterN will denote the number of atoms in the dictionarynot equal zero. Diversity is calculated with thequasi-norm

It is evident thatN = |Z| = |Q|, where |-| returns the def

cardinality of a finite set. llello. = supp(e)]- )

2In case this notation is unfamiliag*? is the collection of functions from

IModifications for real signal spaces should be transparent, but the apoth@oto C. It is equipped with the usual addition and scalar multiplication to
sis to infinite dimensions may take additional effort. form a linear space.

Il. BACKGROUND
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For any positive numbep, define (s — ay). There is a unique coefficient vecter supported
" 1/p on A that synthesizes the approximatiamy = ®, cy. We
lell, = [ZMEQ \cwlp} (6) may calculate thaty, = ®' s = &1 a,.

with the convention thafe|| = max,cq |c.|. As one might

expect, there is an intimate connection between the definitidils Operator Norms
(5) and (6). Indeed|c||, = lim, o ||c||§. Itis well known that  he (p, q) operator normof a matrix A is given by
the function (6) is convex if and only i > 1, in which case
it describes the/, norm. gof Az,
From this vantage, one can see that thenorm is the 1All,, = posirs T
convex function “closest” to the, quasi-norm (subject to P
the same normalization on the zero vector and the canoniédl immediate consequence is the upper norm bound
basis vectors). For a more rigorous approach to this idea, see

Proposition 2.1 of [33] and also [22]. [Azl, < [Al,, ],
Suppose that/p+1/p’ =1 and1/q+ 1/¢' = 1. Then we
E. Dictionary Matrices have the identity
Let us define a matrixP, called thedictionary synthesis .
matrix, that maps coefficient vectors to signals. Formally, 1A ”q’,p' = ”A”p,q' @)
®:C? —C? via ®:cr— Z Co Po- We also have the following lower norm bound, which is proved
wEeN

in [25, Section 3.3].
The matrix ® describes the action of this linear transforma-
tion in the canonical bases of the underlying vector spacesProposition 1: For every matrixA4,
Therefore, the columns oP are the atoms. The conjugate
transpose ofb is called thedictionary analysis matrixand it min HA”’Hq
maps each signal to a coefficient vector that lists the inner zez(A) |z,
products between signal and atoms. @70

& :C!—C? via (9" s)(w)=(s, pu).

[y (®)

If A has full row rank, equality holds in (8). WheA is
invertible, this result implies

Az,

min
z20 |z,

The rows of®* are atoms, conjugate-transposed.

1A=,
.. . q,p
F. Sub-dictionaries

A sub-dictionaryis a linearly independent collection of
atoms. We will exploit the linear independence repeatedly. The symbolZ(-) denotes the range (i.e., column span) of a
the atoms in a sub-dictionary are indexed by the/sethen matrix.
we define a synthesis matrik, : C* — C? and an analysis
matrix &3} : C? — C*. These matrices are entirely analogous

: Lo ) : . ; [1l. FUNDAMENTAL LEMMATA
with the dictionary synthesis and analysis matrices. We will

frequently use the fact that the synthesis mafbix has full Fix an input signak and a positive parameter Define the
column rank. convex function

Let A index a sub-dictionary. Th&ram matrixof the sub- )
dictionary is given by®% ®,. This matrix is Hermitian, it has L) = 5 ls—@bl; + bl . L

a unit diagonal, and it is invertible. Theseudo-inversef the
synthesis matrix is denoted bﬂ\, and it may be calculated
using the formula®’, = (®3®4)"! ®3. The matrix Py will
denote the orthogonal projector onto the span of the s
dictionary. This projector may be expressed using the pseu
inverse:Py = ®,®1,.

On occasion, the distinguished index sef\is,; instead of
A. In this case, the synthesis matrix is written &g, and
the orthogonal projector is denotd® ..

In this section, we study the minimizers of this function. These
results are important to us because (L) is the objective function

f the convex program/(-PENALTY), and it is essentially
\%'e Lagrangian function of/(-ERROR). By analyzing the
o .

ehavior of (L), we can understand the performance of convex
relaxation methods.

The major lemma of this section provides a sufficient
condition which ensures that the minimizer of (L) is supported
on a given index setA. To develop this result, we first
) o o characterize the (unique) minimizer of (L) when it is restricted
G. Signals, Approximations, and Coefficients to coefficient vectors supported dn We use this character-

Let A be a sub-dictionary, and let be a fixed input ization to obtain a condition under which every perturbation
signal. This signal has a uniqug best approximatiora, away from the restricted minimizer must increase the value
using the atoms im\, which is determined byiy = P, s. of the objective function. When this condition is in force, the
Note that the approximatioa, is orthogonal to the residual global minimizer of (L) must be supported an
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A. Convex Analysis over coefficient vectors fronC». Recall that®, has full

The proof relies on standard results from convex analysfolumn rank. It follows that the quadratic term in (10) is
As it is usually presented, this subject addresses the properfilictly convex, and so the whole functiafi must also be
of real-valued convex functions defined on real vector spac&§ictly convex. Therefore, its minimizer is unique.
Nevertheless, it is possible to transport these results to thel N€ functionf”is convex and unconstrained, 8a= 9F'(b.)
complex setting by defining an appropriate real-linear structdfe @ necessary and sufficient condition for the coefficient
on the complex vector space. In this section, therefore, WECOr b. to minimize F'. The gradient of the first term of
use the bilinear inner produte (z, y) instead of the usual £ &t bx €qualS(®} ®4) b, — @} ax. From the additivity of
sesquilinear (i.e., Hermitian) inner product. Note that bofHbdifferentials, it follows that
inner products generate tlig norm. (B ®A)b, — ®ay + 7g = 0

Suppose thatf is a convex function from a real-linear ) )
inner-product spac& to R. The gradient V f(z) of the for some vectoy dravyn from the subdifferential || b, ||,. We
function f at the pointz is defined as the usual @ehet) Pre-multiply this relation by(®j3 ®,)~" to reach
derivative, computed with r.espect to the 'real-linear inngr @Ra,\—b* = (B ®)) g
product. Even when the gradient does not exist, we may define
the subdifferentialof f at a pointz: Apply the fact thatey, = <I>jf\aA to reach the conclusion. m

of(x) = {geX: f(y) > f(x)+Re(y—=z, g) Now we identify the subdifferential of thg norm. To that

end, define the signum function as
for everyy € X}.

{0\ de el? for r > 0
The elements of the subdifferential are calleabgradients sgn (re'’) = { 0 for r = 0.
If f possesses a gradientat the unique subgradient is the . ) )
gradient. That is One may extend the signum function to vectors by applying

it to each component.

of(x) = {Vf(=)} .
) ) ] ] ) Proposition 4: Let z be a complex vector. The complex
The subdifferential of a sum is the (Minkowski) sum Otlectorg lies in the subdifferentiad ||z||, if and only if

the subdifferentials. Finally, iff is a closed, proper convex
function thenx is a global minimizer off if and only if
0 € 0f(x). The standard reference for this material is [34].

e |gx| <1 wheneverz, =0, and
e gr = sgn z; Wheneverz; # 0.

Indeed,||g||,, = 1 unlessz = 0, in which casé|g|| < 1.

Remark 2: The subdifferential of a convex function pro- .
vides a dual description of the function in terms of ithe omit the proof. At last, we may develop bounds on how

supporting hyperplanes. In consequence, the appearanc eg'rheda z‘l)“,:.t(')on to the restricted problem varies from the
the subdifferential in our proof is analogous with the familiag S| solutiore,.

technique of studying the dual of a convex program. Corollary 5 (Upper Bounds):Suppose thatA indexes a

sub-dictionary, and leb, minimize the function (L) over all

coefficient vectors supported an The following bounds are

B. Restricted Minimizers in force:
First, we must characterize the minimizers of the objective
function (L). Fuchs developed the following result in the real

setting using essentially the same method [23]. [@4a (ca — by,

IN

lea=bull < v (@5 8) o (AD)

vl @kl (12)

IN

Lemma 3:Suppose that\ indexes a linearly independent

. N - X Proof: We begin with the necessary and sufficient
collection of atoms, and lét, minimize the objective function

- condition
(L) over_a_ll coefﬂmg_nt vectors suppo_rt_ed_ an _A necessary cn—b, = 7 (@5 ®y) g (13)
and sufficient condition on such a minimizer is that
. o whereg € 0|b,||,. To obtain (11), we take thé, norm of
ca—be = 7(®3Pr) g ©) (13) and apply the upper norm bound.

Whe.re. the vectorg is drawn from 0 ||b,||,. Moreover, the [bs —ealle = 7 [[(®20) " 9]l
minimizer b, is unique. < 5 H(‘I’?\ ‘I’A)_IH gl .

Proof:  Suppose thatupp(b) C A. Then the vectors proposition 4 shows thag|| . < 1, which proves the result.

(s —ax) and(as — @ b) are orthogonal to each other. Apply 1o develop the second bound (12), we pre-multiply (13) by
the Pythagorean Theorem to see that minimizing (L) oVefe matrix®, and compute thé, norm:

coefficient vectors supported a@nis equivalent to minimizing -~
the function [@a(ca — b)), = 7 ||(<I’A) 9“2

. < N
FB) “ 1llay— @502 + 7 6],  (10) < 7@y
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As before, ||g||,, < 1. Finally, we apply the identity (7) to  Corollary 7: Let A index a sub-dictionary, and let be an
switch from the(co, 2) norm to the(2,1) norm. B input signal. Suppose that the residual vector satisfies

ls—axll, < ~ERCA).

C. The Correlation Condition - o .
. ) Then any coefficient vectdr, that minimizes the function (L)
Now, we develop a condition which ensures that the globg|,,st pe supported insidé.

minimizer of (L) is supported inside a given index set. This

result is the soul of the analysis. One might wonder whether the conditi®RC(A) > 0 is
really necessary to develop results of this type. The answer is
a qualified affirmative. Appendix Il offers a partial converse
of Lemma 6.

Lemma 6 (Correlation Condition)Assume that\ indexes
a linearly independent collection of atoms. Lt minimize
the function (L) over all coefficient vectors supported &n
Suppose that

1@ (s —an)ly < 7 [1 — maxuga (@] e 9)]
We now establish Lemma 6. The argument presented here
whereg € 0 ||b.||, is determined by (9). It follows thah, is s different from the original proof in the technical report [25].
the unique global minimizer of (L). In particular, the conditiont rejies on a perturbation technique that can be traced to the
independent works [18, 25].
Proof: Let b, be the unique minimizer of the objective
guarantees thdi, is the unique global minimizer of (L). function (L) over coefficient vectors supported an In
particular, the value of the objective function increases if we
In this work, we will concentrate on the second sufficierdhange any coordinate @, indexed inA. We will develop
condition because it is easier to work with. Nevertheless, thecondition which guarantees that the value of the objective

first condition is significantly more powerful. Note that eithefunction also increases when we Change any other component
sufficient condition becomes worthless when the bracket @np, . Since (L) is convex, these two facts will imply théat

its right-hand side is negative. is the global minimizer.
We typically abbreviate the bracket in the second condition: choose an index not listed inA, and lets be a nonzero
ERC(A) def g max, ¢ a H'ﬁj\ ‘PWHy scalar. We must develop a condition which ensures that

D. Proof of the Correlation Condition Lemma

J# (s —an)le < 7 [1 - maxags B ool

The notation “ERC” stands foExact Recovery Coefficient L(by+de,) — L(by) > 0

which reflects the fact thaERC(A) > 0 is a sufficient . ) )

condition for several different algorithms to recover the op¥here e, is the w-th canonical basis vector. To that end,
timal representation of an exactly sparse signal [14]. RoughfPand the left-hand side of this relation to obtain

ERC(A) measures how distinct the atoms in are from

the remaining atoms. Observe that if the index set satisfiesl (b« +deu) — L(bs) =

ERC(A) > 0, then the sufficient condition of the lemma will 1 [”(3 —®b,) e’ — |s—® b*‘ﬂ
hold as soon as becomes large enough. Butifis too large, 2 2 2
thend, = 0. 4oy [||b*+6ew||1 - ||b*|\1}.

Given a nonzero signal, define the function
Next, simplify the first bracket by expanding tife norms
def MAX,eQ |<'U7 90w>| . . . f
maxcor(v) = , and canceling like terms. Simplify the second bracket by

ol recognizing that|b, + de.||; = ||bs]l; + || eu||; since the
and place the convention thataxcor(0) = 0. This quantity two vectors have disjoint supports. Hence
measures the maximum correlation between the sigrahd
any atom in the dictionary. To interpret the left-hand side of L(b, +de,) — L(b,) =
the sufficient conditions in the lemma, observe that L6gul2 — Re(s— ®b., dpu) + ~ 6.

@7 (s —an)lloe = max [(s —an, pu)l : . :
we N Add and subtract®, ¢, in the left-hand side of the inner
= maxcor(s —ay) ||s —axll,- product, and use linearity to split the inner product into two

Therefore, the lemma is strongest when the magnitude Rypees. We reach

the residual and itsnaximum correlatiorwith the dictionary

are both small. If the dictionary is not exponentially large, L(b, +dey) — L(by) =

a generic vector is weakly correlated with the dictionary on 6 cpw||§ — Re(s—®pca, dp,)

account of measure concentration phenomena. Since the atoms — Re(®, (ca — by), du) + 70|

are normalized, the maximum correlation never exceeds one.

This fact yields a (much weaker) result that depends only &¥We will bound the right-hand side below. To that end, observe
the magnitude of the residual. that the first term is strictly positive, so we may discard it.
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Then invoke the lower triangle inequality, and use the linearity IV. ¢; PENALIZATION

of the inner products to draw old|. . : : . .
P i Suppose thas is an input signal. In this section, we study

Lib, +dey) — L(by) > applications of the convex program

Y 16] — [(@a(ea —by), @u)l [d] Jnin, T ls—®bl5 + (bl - ({1-PENALTY)
= [(s—=®arca, wu)l [0]. (14)
The parametery controls the tradeoff between the error
It remains to rewrite (14) in a favorable manner. in approximating the input signal and the sparsity of the
First, identify ay = ®, c, in the last term on the right- approximation.

hand side of (14). Next, let us examine the second term.We begin with a theorem that provides significant infor-
Lemma 3 characterizes the differenge, — b,). Introduce mation about the solution to/{-PENALTY). Afterward, this
this characterization, and identify the pseudo-inversabaf theorem is applied to several important problems. As a first

to discover that example, we show that the convex program can identify the
sparsest representation of an exactly sparse signal. Our second
(@A (ca — by), pu)| = 7|<(¢'TA)*9, s%}! example shows that/{-PENALTY) can be used to recover
_ 7|<‘I’R Do, g>| (15) @ sparse signal contaminated by an unknown noise vector

of bounded norm, which is a well-known inverse problem.
whereg € 9 ||b, |, is determined by (9). Substitute (15) intoVe will also see that a statistical model for the noise vector

the bound (14). allows us to provide more refined results. In particular, we will
discover that {;-PENALTY) is quite effective for recovering
L(b, +de,) — L(b,) > sparse signals corrupted with Gaussian noise. The section
concludes with an application of the convex program to the
[V — y{(®L oo, g)| — [(s—aa, Q%M 0] . (16) subset selection problem from statistics.

_ _ _ ~ The reader should also be aware that convex programs of
Our final goal is to ensure that the left-hand side of (16) the form @1-PENALTY) have been proposed for numerous
strictly positive. This situation occurs whenever the bracket dﬁher app"cations_ Geophysicists have |0ng used them for

nonnegative. Therefore, we need deconvolution [5, 35]. Certain support vector machines, which
) arise in machine learning, can be reduced to this form [8].
(s —an, pu)] < [1 - |<‘I’A Puws g>ﬂ . Chen, Donoho, and Saunders have appli@dPENALTY) to

_ _ _ _ de-noise signals [9], and Fuchs has put it forth for several
We require this expression to hold for every indexhat does other signal processing problems, e.g., in [36, 37]. Daubechies,
not belong toA. Optimizing each side over in 2\ A yields pefrise, and De Mol have suggested a related convex program

the stronger condition to regularize ill-posed linear inverse problems [10]. Most
intriguing, perhaps, Olshausen and Field have argued that
max,¢ga [(s — ax, wu)| < the mammalian visual cortex may solve similar optimization

problems to produce sparse representations of images [38].
Even before we begin our analysis, we can make a few
immediate remarks about,(-PENALTY). Observe that, as the
parametery tends to zero, the solution to the convex program
approaches a point of minima&l norm in the affine space
{b: ®b = s}. It can be shown that, except whanbelongs
to a set of signals with Lebesgue measure zef@4nno point
of the affine space has fewer thdmonzero components [14,
loo - Prop. 4.1]. So the minimizer of¢{-PENALTY) is generically
nonsparse wheny is small. In contrast, agy approaches
infinity, the solution tends toward the zero vector.
1@ (s —an)ll. < 7 [1 _ maxngK‘I’R Pu, g>|} It i; also worth noting t'hatf(leENALTY) h{;\s an analytical
solution b, whenever® is unitary. One simply computes
is a sufficient condition for every perturbation away fromto the orthogonal expansion of the signalwith respect to the
increase the objective function. Since (L) is convex, it follow§olumns of® and applies the soft thresholding operator to
thatb, is the unique global minimizer of (L). each coefficient. More precisely, (w) = 75 ({(s, ¢.)) where

In particular, sincg|g||, < 1, it is also sufficient that

0% [1 - maxw¢A|<¢'j\cpw, g>”

Since(s —a,) is orthogonal to the atoms listed in the left-
hand side does not change if we maximize ovetuaitom €.
Therefore,

maxw¢A|<3*aA, Pu)| = max,eql(s —an, pu)l
= [|[®" (s —ax)

We conclude that the relation

T, (rei?) (r—=)e'?, if >y
. i v 0, otherwise.

12 (s —an)le < 7 [1 - maxuga]|Bl e,

This result will be familiar to anyone who has studied the
This completes the argument. B process of shrinking empirical wavelet coefficients to de-noise

functions [39, 40].
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A. Performance of(¢;-PENALTY) Proof: The corollary follows directly from the theorem

Our major theorem on the behavior @ {PENALTY) simply When we apply the coherence bounds of Appendix I1l. m

collects the lemmata from the last section. i i i )
This corollary takes an especially pleasing form if we

Theorem 8:Let A index a linearly independent collectionassume thain i < 3. In that case, the right-hand side of
of atoms for WhIChERC(A) > 0. Suppose thats is an the correlation condition is no smaller th%ny MeanWh”e,
input signal whose, best approximation ovek satisfies the the coefficient vectors, and c, differ in /., norm by no
correlation condition more than3 .

Note that, when® is unitary, the coherence parameter
|@" (s — as) < 7 ERC(A). w1 = 0. Corollary 9 allows us to conclude that the solution
Let b, solve the convex progrant,(-PENALTY) with param- {0 the convex program identifies precisely those atoms whose
etery. We may conclude that inner products against the signal exceeith magnitude. Their
. the support ob, is contained inA, and coefficients are reduced in magnitude by at mestThis

. the distance betwedh and the optimal coefficient Vectordescrlptlon matches the performance of the soft thresholding
e operator.
c, satisfies

1bs —ealle < 7 [[(@R24) 7 o -

« In particular,supp(b,) contains every index in A for

oo

B. Example: Identifying Sparse Signals
As a simple application of the foregoing theorem, we offer

which :
lea(N)| > ||(‘I’* ‘E'A)_lu a new proof that one can recover an exactly sparse signal by
A A 00,00 solving the convex progran?{-PENALTY). Fuchs has already
« Moreover, the minimizeb, is unigque. established this result in the real case [23].

In words, we approximate the input signal overand we Corollary 10 (Fuchs): Assume thatA indexes a linearly
suppose that the remaining atoms are weakly correlated witldlependent collection of atoms for whidiRC(A) > 0.
the residual. It follows then that the minimizker of the convex Choose an arbitrary coefficient vectey,, supported on\,
program involves only atoms in and that this minimizer is and fix an input signals = ® c,. Let b,(y) denote the
not far from the coefficient vector that synthesizes the bastique minimizer of {;-PENALTY) with parametery. We may
approximation of the signal ovek. conclude that

To check the hypotheses of this theorem, one must carefully, There is a positive numbey, for which v < v, implies
choose the index sek and leverage information about the thatsupp (b (7)) = A.
relationship between the signal and its approximation dwver
Our examples will show how to apply the theorem in several
specific cases. At this point, we can also state a simpler version proof: First, note that the best approximation of the
of this theorem that uses the coherence parameter to estingi@al overA satisfiesay, = s and that the corresponding
some of the key quantities. One advantage of this formulatiegefficient vectorc, = Copt- Therefore,||®* (s — ay)|,, =
is that the index sed plays a smaller role. 0. The Correlation Condition is in force for every positive

_ L v, S0 Theorem 8 implies that the minimizér () of the

Corollary 9: Suppose thatnp < 3, and assume that ooqram ¢, -pENALTY) must be supported inside Moreover,

A contains no more tham indices. Suppose that iS an e gistance fronb, (v) to the optimal coefficient vectat,
input signal whosée, best approximation ovek satisfies the

correlation condition

o In the limit asvy | 0, we haveb, () — copt.

satisfies

1 - @2m-1)p 1B:(7) = Coptllo < v (@R 2A) | -

1 — (m-1p . :
) It is immediate thatb,(v) — copt as the parametey | 0.
Let b, solve (1-PENALTY) with parametery. We may CON- Finally, observe thatupp(b,) contains every index in\

@7 (s —an)llc < 7

clude that provided that
« the support ob, is contained inA, and )
« the distance betwedr and the optimal coefficient vector minje [Cops (A _—
¢, satisfies (@R 2A) oo o
[br —call, < S — Note that the left-hand side of this inequality furnishes an
1 —(m=-1p explicit value for-. [ ]
« In particular,supp(b,) contains every index in A for
which As a further corollary, we obtain a familiar result for Basis
lea(N)] > - r Pursuit that was developed independently in [14, 23], gener-
L= (m=1p alizing the work in [19-22]. We will require this corollary in

« Moreover, the minimizeb, is unique. the sequel.
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Corollary 11 (Fuchs, Tropp):Assume thatERC(A) > 0. Therefore,/|s — a4, < e. Each atom has unit; norm, so
Let c.pt be supported om\, and fix a signals = ® c,p.

Then ¢,y is the unique solution to 127 (s — an)lloe = maxovenl(s —an, @u)| < e
. . _ Referring to the paragraph after Corollary 9, we see that
pech Ibll,  subjectto &b =s. (BP) the correlation condition is in force if we selegt = 2e¢.

Invoking Corollary 9, we discover that the minimizéy of
(¢1-PENALTY) with parametery is supported inside\ and

Proof: As~ | 0, the solutions to4; -PENALTY) approach
also that

a point of minimum¢; norm in the affine spacgh : ® b = s}.
Sincec,y: is the limit of these minimizers, it follows that, .. 1bx —ealle < 37/2 = 3¢ A7)
must also solve (BP). The uniqueness claim seems to requirgi@anwhile, we may calculate that

separate argument and the assumption FRAE(A) is strictly ;

positive. See [23,41] for two different proofs. N lea = Coptlloe = || @) (8= @ copt) ||

(EI8T

The coherence bound in Proposition 26 delivers

IN

C. Example: Identifying Sparse Signals in Noise

This subsection shows how;(PENALTY) can be applied to
the inverse problem of recovering a sparse signal contaminated llea — coptll, < €v/3/2. (18)
with an arbitrary noise vector of boundég norm. . . .

Let us begin with a model for our ideal signals. We will uselzn consequence of the triangle inequality and the bounds (17)
this model for examples throughout the paper. Fix@herent and (18),
d?ctiona}ry@ containing N atoms in a real signal space of 16y — coptll . < (3+ /3/2) c.
dimensiond, and place the coherence bound: < %

Each ideal signal is a linear combination raf atoms with It follows thatsgn b, = sgn cp,; provided that

coefficients of+1. To formalize things, selech to be any 1

nonempty index set containing atoms. Letc,,; be a coeffi- € < T\/ﬁ ~ 0.2367.

cient vector supported oA, and let them nonzero entries of

copt €Qual+1. Then each ideal signal takes the fofBre,;. In conclusion, the convex progrand;¢(PENALTY) can al-

To correctly recover one of these signals, it is necessaryways recover the ideal signals provided that thenorm of
determine the support sét of the optimal coefficient vector the noise is less thaf8 + /3/2)~. At this noise level, the
as well as the signs of the nonzero coefficients. signal-to-noise ratio (SNR) is no greater than
Observe that the total number of ideal signals is 4m/3
SNR < ———— = 2m(1+V6)".
- (N ) (3+v/3/2)

m Similarly, the SNR is no smaller tham (1 + /6)2. Note that
since the choice of atoms and the choice of coefficients bdtie SNR grows linearly with the number of atoms in the signal.
carry information. The coherence estimate in Proposition 26Let's consider some specific numbers. Suppose that we are
allows us to establish that the powe® coptHg of each ideal working in a signal space with dimensioh= 2%, that the

signal satisfies dictionary containsV = 2'® atoms, that the coherenge=
9 9 9 2~4, and that the sparsity leveh = 5. We can recover any
1@ copilly < [[@allz l[Coptlly < 4m/3. of the ideal signals provided that the noise levet 0.2367.

Similarly, no ideal signal has power less tham/3. For the supremal value af, the SNR lies between 17.74 dB

In this example, we will form input signals by contaminatin%ﬁnd 20.76 dB. The total number of ideal signals is just over

68 . ) .
the ideal signals with an arbitrary noise vectoiof bounded » 50 each one encodes 68 bits of information.

norm, say|v, < . Therefore, we measure a signal of the Qn the other har_ld, if we have a statistical model for th_e
form noise, we can obtain good performance even when the noise

level is substantially higher. In the next subsection, we will
describe an example of this stunning phenomenon.

We would like to apply Corollary 9 to find circumstances
in which the minimizerb, of (¢,-PENALTY) identifies the D. Example: The Gaussian Channel

ideal signal. That issgn b, = sgn cope. Observe thatthisis @ » gyiking application of¢, penalization is to recover a
concrete example of the model problem from the Introductlogparse signal contaminated with Gaussian noise. The fun-

First, let us determine when the Correlation Condition holdg, antal reason this method succeeds is that. with high
for A = supp(copt). According to the Pythagorean Theoremy, apility. the noise is weakly correlated with every atom
in the dictionary (provided that the number of atoivsis
5 5 sub-exponential in the dimensiod). Note that Fuchs has
= vl = l[®copt — anll;- developed qualitative results for this type of problem in

s = ®cop + V.

2 2 2
s —anlly = lis = ®coptlly; = [P Copr —anll;
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his conference publication [26]; see Section VI-B for somkast example. This improvement is possible because we have
additional details on his work. accounted for the direction of the noise.

Let us continue with the ideal signals described in the lastLet’s be honest. This example still does not inspire much
subsection. This time, the ideal signals are corrupted by addicanfidence in our coding scheme: the theoretical rate we
a zero-mean Gaussian random veetavith covariance matrix have established is nowhere near the actual capacity of the

o2 1. We measure the signal channel. The shortcoming, however, is not intrinsic to the
coding scheme. To obtain rates close to capacity, it is necessary
s = Pcopy + vV, to send linear combinations whose lengthis on the order

and we wish to identifyc,,. In other words, a codeword is of the signal dimensionl. Experiments indicate that convex

sent through a Gaussian channel, and we must decode rgl@xation can indeed recover linear combinations of this
transmission. We will approach this problem by solving th€ngth. But the analysis to support these empirical results

convex program  -PENALTY) with an appropriate choice of requires tools much more sophisticated than the coherence
~ to obtain a minimizeib, . parameter. We hope to pursue these ideas in a later work.

One may establish the following facts about this signal

model and the performance of convex relaxation. E. Example: Subset Selection
« For each ideal signal, the SNR satisfies Statisticians often wish to predict the value of one random
2m Am _, variable using a linear combination of other random variables.
Evd < SNR < 347 At the same time, they must negotiate a compromise between

) ) the number of variables involved and the mean squared pre-
« The cgpamty of a Gaussian channel [28, Chap. 10] at ﬂ?ﬁtion error to avoid overfitting. The problem of determining
SNR is no greater than the correct variables is calledubset selectignand it was
1 dm probably the first type of sparse approximation to be studied
3 logs {1 oo } in depth. As Miller laments, statisticians have made limited

3d
) ) ) . .theoretical progress due to numerous complications that arise
« For our ideal signals, the number of bits per transmissioR ihe stochastic setting [4, Prefaces].

equals 1 N We will consider a deterministic version of subset selection
- {m + log, ( )} ) that manages a simple tradeoff between the squared approx-
d m imation error and the number of atoms that participate. Let

« The probability that convex relaxation correctly identifies be an arbitrary input signal. Supposeis a threshold that

the ideal signal exceeds guantifies how much improvement in the approximation error
is necessary before we admit an additional term into the
[1 — exp {_% 72 0—2}]1\7”” approximation. We may state the formal problem
1 3 2 _—21™ .
[1 — exp{-L1(1-25y)2%72}". Join, Is—®cl3 + 72 el - (SUBSET)

It follows that the failure probability decays exponentiall)were the support of fixed, then 6UBSET) would be a least-

as the noise power drops to zero. squares problem. Selecting the optimal support, however, is
To establish the first item, we compare the power of thg combinatorial nightmare. In fact, if the dictionary is unre-
ideal signals against the power of the noise, whiclrisl.  stricted, it must be NP-hard to solveyBSET) in consequence
To determine the likelihood of success, we must find thsf results from [12, 16].
probability (over the noise) that the Correlation Condition is The statistics literature contains dozens of algorithmic ap-
in force so that we can invoke Corollary 9. Then we mugfroaches to subset selection, which [4] describes in detail.
ensure that the noise does not corrupt the coefficients enoyghmethod that has recently become popularttie lasso
to obscure their signs. The difficult calculations are consigneghich replaces the difficult subset selection problem with a
to Appendix IV-A. convex relaxation of the form¢(-PENALTY) in hope that the

We return to the same example from the last subsectigilutions will be related [42]. Our example provides a rigorous

Suppose that we are working in a signal space with dimensipitification that this approach can succeed. If we have some
d = 28, that the dictionary containd = 2'° atoms, that the basic information about the solution t®BSET), then we
coherencey = 27*, and that the sparsity level iss = 5. may approximate this solution using;¢PENALTY) with an
Assume that the noise level= 0.05, which is about as large appropriate choice of.
as we can reliably handle. In this case, a good choice forwe will invoke Theorem 8 to show that the solution to
the parametery is 0.53. With these selections, the SNR ishe convex relaxation has the desired properties. To do so, we
between 7.17 dB and 10.18 dB, and the channel capacity d@gguire a theorem about the behavior of solutions to the subset
not exceed 1.757 bits per transmission. Meanwhile, we a@lection pr0b|em_ The proof appears in Appendix V.
sending about 0.267 bits per transmission, and the probability
of perfect recovery exceeds 95% over the noise. AlthoughTheorem 12:Fix an input signals, and choose a threshold
there is now a small failure probability, let us emphasize that Suppose that the coefficient vectay,; solves the subset
the SNR in this example is over 10 dB lower than in theelection problem, and set,,; = ® copt.
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o For X\ € supp(copt), We have|copi(A)| > 7.
o Forw ¢ supp(copt), We have|(s — aops, Puw)| < T.

In consequence of this theorem, any solutigp, to the

subset selection problem satisfies the Correlation Conditionbm‘%gz bl
[S

with Ao, = supp(copt), provided thaty is chosen so that
T S Y ERC(AOpt).
Applying Theorem 8 yields the following result.

Corollary 13 (Relaxed Subset Selectiofix an input sig-
nal s. Suppose that
« the vectorc,,; solves EUBSET) with thresholdr;
o the setA,p; = supp(copt) satisfieSERC(Aqpe) > 0; and
« the coefficient vectob, solves (;-PENALTY) with pa-
rametery > 7 / ERC(Aopt)-
Then it follows that

11

V. ERROR-CONSTRAINED ¢; MINIMIZATION

Suppose thag is an input signal. In this section, we study
applications of the convex program.

subjectto |s —®b|l, < d. (¢;-ERROR

Minimizing the ¢; norm of the coefficients promotes sparsity,
while the paramete¥ controls how much approximation error
we are willing to tolerate.

We will begin with a theorem that yields significant infor-
mation about the solution to/{-ERROR). Then, we will tour
several different applications of this optimization problem. As
a first example, we will see that it can recover a sparse signal
that has been contaminated with an arbitrary noise vector
of bounded/s norm. Afterward, we show that a statistical
model for the bounded noise allows us to sharpen our analysis
significantly. Third, we describe an application to a sparse
approximation problem that arises in numerical analysis.

. the relaxation never selects a nonoptimal atom sinceThe literature does not contain many papers that apply the

supp(bx) C supp(Copt);
« the solution to the relaxation is nearly optimal since

H (q’zptq)c)pt )_1 HOC,OO
ERC(Aopt)

Hb* - copt”OO <

« In particular,supp(b,) contains every index for which
(2501 Popt )|
ERC(Aopt)

« Moreover,b, is the unique solution to/(-PENALTY).

|Copt (A)] >

convex program £ -ERROR). Indeed, the other optimization
problem ¢;-PENALTY) is probably more useful. Nevertheless,
there is one notable study [18] of the theoretical performance
of (/1-ERROR). This manuscript will be discussed in more
detail in Section VI-B.

Let us conclude this introduction by mentioning some of the
basic properties off{ -ERROR). As the parametef approaches
zero, the solutions will approach a point of mininfalnorm
in the affine spacéb : ® b = s}. On the other hand, as soon
as ¢ exceeds|s||,, the unique solution to/(-ERROR) is the
zero vector.

In words, if any solution to the subset selection problemy performance of(¢,-ERROR)

satisfies a condition on the Exact Recovery Coefficient, then

the solution to the convex relaxatioty (PENALTY) for an ap-

propriately chosen parameterwill identify every significant
atom in the solution toguBSET) and it will never involve any

atom that does not belong in that optimal solution.

The following theorem describes the behavior of a min-
imizer of (/,-ERROR). In particular, it provides conditions
under which the support of the minimizer is contained in a
specific index sef\. We reserve the proof until Section V-E.

Itis true that, in the present form, the hypotheses of this theqrem 14:Let A index a linearly independent collection

corollary may be difficult to verify. Invoking Corollary 9 of atoms for whichERC(A) > 0, and fix an input signab.
instead of Theorem 8 would yield a more practical resuf{,jact an error toleranceno smaller than

involving the coherence parameter. Nevertheless, this result 0 1/2
would still involve a strong assumption on the sparsity of an maxcor(s — a,) H@RHQ )
optimal solution to the subset selection problem. It is not clear |1 + ( ERC(A) . )

that one could verify this hypothesis in practice, so it may be

better to view these results as philosophical support for thet ;, solve the convex progran?(-ERROR) with tolerance
practice of convex relaxation. 5. We may conclude that

For an mcoherel_"nt dictionary, one could develop a converse, support ob, is contained inA,
result of the following shape.

« the distance betweds and the optimal coefficient vector
Suppose that the solution to the convex relax-

cy satisfies
ation (/;-PENALTY) is sufficiently sparse, has large
enough coefficients, and yields a good approxima-
tion of the input signal. Then the solution to the « In particular,b, contains every index from A for which
relaxation must approximate an optimal solution to
(SUBSE—D. |CA(>‘)| > 6 ||@}L\H272
As this paper was being completed, it came to the author's, Moreover, the minimizeb, is unique.
attention that Gribonval et al. have developed some results of
this type [43]. Their theory should complement the presentin words, if the parameteris chosen somewhat larger than
work nicely. the error in the optimal approximatiam,, then the solution

Is —aally-

b —eall, < 3[|@]],.,
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to (¢1-ERROR) identifies every significant atom iA and it Invoke Corollary 15 to determine that the supportbgfis
never picks an incorrect atom. Note that the manuscript [18)ntained inA and that
refers to the first conclusion assapport resuliand the second

PP b —eall, < 6/3/2.

conclusion as atability result

To invoke the theorem, it is necessary to choose the pa-modification of the argument in Section IV-C yields
rameters carefully. Our examples will show how this can be ;
accomplished in several specific cases. Using the coherence lea = coptlly < ||‘I’A||2,2 Is = aall;-

parameter, it is possible to state a somewhat simpler resuliprgposition 26 provides an upper bound for this operator norm,

L from which we conclude that
Corollary 15: Suppose thatn . < 5, and assume that

lists no more thamn atoms. Suppose thatis an input signal, llea — coptll, < €4/3/2.

and choose the error toleranéeo smaller than . . . .
The triangle inequality furnishes

1/2
maxcor(s — ay)? lbx — Coptll, < (e+0)+/3/2.

Recalling the value of, we have

. b, —c, < e(l + V1+6m)+/3/2.
Let b, solve {;-ERROR) with toleranced. We may conclude | w2 ( VI+6m) 3/
that supp(b,) C A. Furthermore, we havglb, — cp|, < Thereforesgnb, = sgnc,,: provided that
T
6H(I)AH2,2' 2/3
e <

Proof: The corollary follows directly from the theorem I1+v1I+6m
when we apply the coherence bounds from Appendix I. Note that this upper bound decreasesraicreases.
Let us consider the same specific example as before. Sup-
This corollary takes a most satisfying form under thgose that we are working in a real signal space of dimension
assumption thatn . < 3. In that case, if we choose the; — 98 that the dictionary contain@'® atoms, that the
tolerance coherence level = 274, and that the level of sparsity = 5.
Then we may seledt = £ /31 ~ 5.568 ¢. To recover the sign
of each coefficient, we need < 0.1243. At this noise level,
then we may conclude théb, — cal|, < 6 1/3/2. the SNR is between 23.34 dB and 26.35 dB. Comparing this
example with Section IV-C, we conclude that {PENALTY)
provides a more robust method for recovering our ideal signals.
B. Example: Identifying Sparse Signals in Noise (ReduX)  The manuscript [18] of Donoho et al. contains some results
In Section IV-C, we showed that/{(-PENALTY) can be related to Corollary 15. That article splits Corollary 15 into
used to solve the inverse problem of recovering sparse sign{ pieces. Their Theorem 6.1 guarantees that the minimizer
corrupted with arbitrary noise of bounded magnitude. ThR (¢/1-ERROR) has the desired support properties, while their
example will demonstrate that;cERROR) can be applied to Theorem 3.1 ensures that the minimizer approximaigs the
the same problem. optimal coefficient vector. We will use our running example
We proceed with the same ideal signals described in Sectignillustrate a difference between their theory and ours. Their
IV-C. For reference, we quickly repeat the particulars. Fixa SUPPOIt resuit also requires that> € v/31 to ensure that the
coherent dictionaryp containingN' atoms in ad-dimensional Support of the minimizeb, is contained in the ideal support.
real signal space, and assume that: < 1. Let A index m Their stability result requires thah p < s so it does not
atoms, and letc,,, be a coefficient vector supported an allow us to reach any conclusions about the distance between
whosem nonzero entries equatl. Each ideal signal takes b+ @nd Cops-
the form ® copt.
In this example, the ideal signals are contaminated by @ Example: The Uniform Channel
unknown vectorr with ¢, norm no greater than to obtain
an input signal

m(l — (m—1)p)

Yt o emoDee

Is —aall,-

§ > /1+6m maxcor(s — ay)? ||s — axll,,

A compelling application of Theorem 14 is to recover a
sparse signal that is polluted by uniform noise with bounded
s = ®Pcop + V. /5 norm. As before, the fundamental reason that convex

We wish to apply Corollary 15 to determine when the mini.r_elaxatlon succeeds is that, with high probability, the noise

. : : : : is weakly correlated with every atom in the dictionary. This
mizer b, of (¢/1-ERROR) can identify the ideal signals. That v . . y y
: subsection describes a simple example that parallels the case
is, sgn b, = sgn copt.

; . of Gaussian noise.
First, we must determine what toleranéeto use for the

. . . : -~ \We retain the same model for our ideal signals. This time,
convex program. Since there is no information on the dlrect|%le add a random vector that is uniformly distributed on the
of the residual, we must use the boundxcor(s — ap) <

Il of iuse. Th i Is look lik
1. As in Section IV-C, the norm of the residual satisfieé2 ball of radiuse e measured signals look like

|s — aall, < e. Therefore, we may choose= ¢ /1 + 6m. s = Pcopy + V.
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In words, we transmit a codeword through a (somewh@bserve that this mathematical program will generally have

unusual) communication channel. Of course, we will attemptany solutions that use the same number of atoms but

to recover the ideal signal by solving,;(ERROR) with an ap- vyield different approximation errors. The solutions will always

propriate toleranceé to obtain a minimizeb,. The minimizer become sparser as the error tolerance increases. Instead, we

b, correctly identifies the optimal coefficients if and only ifconsider the more convoluted mathematical program

sgn b, = sgn copt.

Let ¢ be an auxiliary parameter, and suppose that we choosemin [[c[|, + 1ls—®c|, e

the tolerance et bect t ® _
5= [1 +6mt2]1/2 - subjectto ||ls—®c|, < e. (ERROR

Any minimizer of (ERROR) also solves (19), but it produces

We may establish the following facts about the minimiker the smallest approximation error possible at that level of

of (/1-ERROR).

. _ ) sparsity.
« The probability (over the noise) that we may invoke \we will attempt to produce a solution to the error-
Corollary 15 exceeds constrained sparse approximation problem by solving the con-
1 — 2(N —m) exp {71 2 (d — m)} vex program {; -ERROR) for a value ofd somewhat larger than
! .

e. Our major result shows that, under appropriate conditions,
« In this event, we conclude thatipp(b,) C A and that this procedure approximates the solution BRROR).

« the distance between the coefficient vectors satisfies
Corollary 16 (Relaxed Sparse Approximatiorfjix an in-

[bs = Coptlly, < (e+6)v/3/2. put signals. Suppose that
In particular,sgn b, = sgn cop; Whenever « the vectorc,,; solves ERROR) with tolerances;
o the set A,y = supp(copy) Ssatisfies the condition
(e+0)v/3/2 < 1. ERC(Aopt) > 0; and

. _ e the vectorb, solves the convex relaxatiorf;ERROR)
To calculate the success probability, we must study the distri- \ith thresholds such that

bution of the correlation between the noise and the nonoptimal

atoms. We relegate the difficult calculations to Appendix IV-B. ||q,T H
The other two items were established in the last subsection. 5> |1 + optli2,1
Let's do the numbers. Suppose that we are working in a ERC(Aopt)

real signal space of dimensiah = 28, that the dictionary

containsN = 2'% atoms, that the coherence level= 2%, Then it follows that

and that the level of sparsity. = 5. To invoke Corollary 15 | yhe relaxation never selects a nonoptimal atom since

with probability greater than 95% over the noise, it suffices supp(bs) C Supp(Copt);

to chooset? = 0.1123. This corresponds to the selectidénr= « yet b, is no sparser than a solution t&RROR) with

2.090¢. In the event that the corollary applies, we recover i;ierances.

the index set and the signs of the coefficients provided that, The solution of the relaxation is nearly optimal since

€ < 0.2642. At this noise level, the SNR is between 16.79 dB

and 19.80 dB. by — Coptll, < 8]|®]
Once again, by taking the direction of the noise into account, . . . )

we have been able to improve substantially on the moreena * in Particular,supp(b,) contains every index for which

approach described in the last subsection. In contrast, none of o (V)] > 6 ||‘I’T

the results in [18] account for the direction of the noise. opt ©

PtHQ,Q;

ptHz,Q'
o Moreover,b, is the unigue solution of/({-ERROR).

D. Example: Error-Constrained Sparse Approximation Proof: Note that ERROR) delivers a maximally sparse

In numerical analysis, a common problem is to approxima@ctor in the seffc : |s — ®c||, < d}. Sinceb, is also in
or interpolate a complicated function using a short lineakis set, it certainly cannot be any sparser. The other claims
combination of more elementary functions. The approximatiggllow directly by applying Theorem 14 te with the index set
must not commit too great an error. At the same time, one pays;, = supp(c,,). We also use the facts this — Aopt|y <
for each additional term in the linear combination WheneV@rand that the maximum correlation function never exceeds

the approximation is evaluated. Therefore, one may wish ée. Finally, m
maximize the sparsity of the approximation subject to an error
constraint [16]. It may be somewhat difficult to verify the hypotheses of

Suppose thas is an arbitrary input signal, and fix an errorthis corollary. In consequence, it might be better to view the
level e. The sparse approximation problem we have describegbsult as a philosophical justification for the practice of convex
may be stated as relaxation.

In the present setting, there is a sort of converse to Corollary

min, [lcfl, subjectto s —@cll, < e (19) 16 that follows from the work in [18]. This result allows us

ceC



14 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 1, NUM. 1, JANUARY 1948

to verify that a solution to the convex relaxation approximateghere(, is a strictly positive Lagrange multiplier. If we define
the solution to ERROR). v = 1/(2¢,), then we may rewrite (22) as

. 1 2
Proposition 17: Assume that the dictionary has coherence bx € ® arg n(flbl;lc A s —@bly + v [bll,. (24)
. . . .. Iosu
1, and lets be an input signal. Suppose tligtis a coefficient _ PP _ o
vector whose support containsindices, wheren u < 1, and We will show thatb, is also a global minimizer of the convex

suppose that program (;-ERROR).
s — @b, < e Sincea, is the best; approximation ofs using the atoms

in A and the signafb b, is also a linear combination of atoms
Then we may conclude that the optimal solutiep,; 10 in A, it follows that the vectorgs —a,) and(ay — ® b,) are
(ERROR) with tolerances satisfies orthogonal to each other. Applying the Pythagorean Theorem
2¢e to (23), we obtain

1B — optll, < ———-
vi-2mu Is—aal} + llax — ®b,J3 = o
Proof: Theorem 2.12 of [18] can be rephrased as follow¥/hence

Suppose that 1/2
i las = ®buly = [0 — [s—aal}] . @5)

|s — ®b.|, <e and |[b,||, < 5 spark, (®);

1 The coefficient vectorb, also satisfies the hypotheses of
s — ®coptll, <& and |leoptlly < 5 spark, (®).

Corollary 5, and therefore we obtain
Then b, — coptll, < 25/_1;. We may apply th_is result in the las —®b,], < % ||‘I’
present context by making several observations.

If b, has sparsity levein, then the optimal solutior,,; Substituting (25) into this relation, we obtain a lower bound
to (ERROR) with tolerances certainly has a sparsity level noon ~,:
greater thanm. Setn = /1 — 2mu, and apply Lemma 2.8 ) )
of [18] to see thaspark, (&) > 2m + 1. [ {5 —[ls —aally

Az

1/2 1
| ek, <

More results of this type would be extremely valuabldVext, we introduce (20) into this inequality and make extensive
@[ut obvious) simplifications to reach

because they make it possible to verify that a given coefficie
vector approximates the solution t@RROR). For the most |@* (s —ap)|l, < v« ERC(A).

recent developments, we refer the reader to the report [43]. . ) ) N
In view of this fact, the Correlation Condition Lemma allows

E Proof of Theorem 14 us to conclude thah, is the (unique) global minimizer of the
convex program

Now we demonstrate that Theorem 14 holds. This argument oy )
takes some work because we must check the Karush—Kuhn— Jnin, 5 s —@bly + v [0l
Tucker necessary and sufficient conditions for a solution

the convex programé{-ERROR). B)ividing through by~,, we discover that

Proof: Suppose that\ indexes a linearly independent b, € argmin (, |[s—®bl> + [b],.
collection of atoms and th&RC(A) > 0. Fix an input signal beC®
s, and choose a tolerangeso that Since we also have (23) and > 0, it follows thatb, satisfies

18" (s —a )”2 H‘I’T Hz the KKT sufficient conditions for a minimizer of
— OA)llco All2.1
52 > |ls—aal’ + 1 (20 , - N ]
> | allz ERC(M)? (20) Join [bll,  subject to [|s — @b, < 4. ((1-ERROR)

This is the same bound as in the statement of the theorem, PHerefore, we have identified a global minimizer of,«

it has been rewritten in a more convenient fashion. WithosRkroR).

loss of generality, take|s||, > §. Otherwise, the unique Now we must demonstrate that the coefficient vedipr

solution to ¢;-ERROR) is the zero vector. provides theunique minimizer of the convex program. This
Consider the restricted minimization problem requires some work because we have not shown that every

min Ibll, subjectto [ls— ®b], < 6. (21) minimizer must be _supported ah. N

{b : supp(b)C A} Suppose thab,;; is another coefficient vector that solves

Since the objective function and the constraint set are bdfi~ERROR). First, we argue tha® b.i; = ® b, by assuming

convex, the Karush-Kuhn-Tucker conditions are necessdi§ contrary. Since|s||, > 4, the error constraint in (-

and sufficient [34, Chapter 28]. They guarantee that tFRROR) is binding at every solution. In particular, we must

(unique) minimizerb, of the program (21) satisfies have
) 9 [s = @barl, = 0 = [|s—@b,.
b, ¢ argmin ¢, [|s — ®bl; + [b], (22) . .
{b : supp(b)C A} Since/s balls are strictly convex,

ls— @b, = o (23) ls = 3 @ (bar + b, < &
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It follows that the coefficient vectog (bayt + bs) cannot solve Apply Orthogonal Matching Pursuit to the input signal, and
(¢1-ERROR). Yet the solutions to a convex program must forrhalt the algorithm at the end of iteratienf the maximum cor-

a convex set, which is a contradiction. relation between the computed residealand the dictionary
Next, observe thab,; and b, share the samé; norm satisfies
because they both solve;¢ERROR). Under our hypothesis @ 7|l < 7.

that ERC(A) > 0, Corollary 11 states th&h, is the unique

solution to the program We may conclude that

« the algorithm has selectedindices fromA, and

min [|b]|, subjectto ®b=®b.. « it has chosen every index from A for which
beC
B _ . _ leaV)| > — L
Thusb,;; = b,. We conclude thab, is the unique minimizer 1 — 2mp
of the convex relaxation. _ « Moreover, the absolute error in the computed approxima-
Finally, let us estimate how fab, deviates frome,. We tion a, satisfies
begin with equation (25), which can be written m—t

2 2
/2 Is —adll; < lls—anll; +

1 — _
[Br (er ~ b, = [52 — s - anl? Lo e
Note that this theorem relies on the coherence parameter,
and no available version describes the behavior of the al-
gorithm in terms of more fundamental dictionary attributes.
12 (ca — b)), - Compare this result with Corollary 9 fol(-PENALTY).
There is also a result for OMP that parallels Corollary 15
Combine the two bounds and rearrange to complete tfeg (¢;-ERROR). We quote Theorem 5.9 from [33].

argument. |

The right-hand side clearly does not exceéedvhile the left-
hand side may be bounded below as

184 ]15s llea —bull, <

Theorem 19 (Tropp)Let A index a linearly independent
collection of atoms for whichERC(A) > 0. Suppose that
s is an input signal, and let be a number no smaller than

21 1/2

VI. DISCUSSION

in context. To that end, it describes some results for another ERC(A) s = aall;-

sparse approximation algorithm, Orthogonal Matching Pursuit,
that are parallel with our results for convex relaxation. Then wuppose that we apply Orthogonal Matching Pursuit to the
discuss some recent manuscripts that contain closely relaigglut signal, and we halt the algorithm at the end of iteration
results for convex relaxation. Afterward, some extensions andf the norm of the computed residuaj satisfies
new directions for research are presented. We conclude with
a vision for the future of sparse approximation.

This final section attempts to situate the work of this paper (maXCOF(S —ap) H‘I’j\Hzl>

el < 0.

Then we may conclude that the algorithm has chosen
indices from A, and (obviously) the error in the calculated
A. Related Results for OMP approximationa, satisfies||s — a,|> < .
Another basic technique for sparse approximation is a
greedy algorithm called Orthogonal Matching Pursuit (OMP) It is remarkable how closely results for the greedy algo-
[12, 44]. At each iteration, this method selects the atom mdéfim correspond with our theory for convex relaxation. The
strongly correlated with the residual part of the signal. TheRanuscript [18] contains some related results for OMP.
it forms the best approximation of the signal using the atoms
already chosen, and it repeats the process until a stoppBigComparison with Related Work

criterion is met. As the first draft [25] of the present work was being
The author feels that it is instructive to compare the thegleased, several other researchers independently developed
oretical performance of convex relaxation against OMP, $@me closely related results [18, 26, 27]. This subsection pro-
this subsection offers two theorems about the behavior @Hes a short guide to these other manuscripts.
the greedy algorithm. We extract the following result from |n [26], J.-J. Fuchs has studied the qualitative performance
Theorem 5.3 of [45]. of the/; penalty method for the problem of recovering a sparse
. signal contaminated with zero-mean, white Gaussian noise.
Theorem 18 (Tropp-Gilbert-Strausspuppose thah con-  £ychs shows that the minimizer of;(PENALTY) correctly
tains no more tham: indices, wheren . < % Suppose that jgentifies all of the atoms that participate in the sparse signal,
s is an input signal whose best approximation olesatisfies provided that the signal-to-noise ratio is high enough and the

the correlation condition parametery is suitably chosen. He suggests that quantifying
P < 1 —2muy the analysis would be difficult. The example in Section IV-D
8% (s —ar)l = 7 1 - mu of this paper shows that his pessimism is unwarranted.
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Later, Fuchs extended his approach to study the behavid¢one of these works, however, contains theory about recov-
of the ¢; penalty method for recovering a sparse signaring the correct support of a synthetic sparse signal polluted
corrupted by an unknown noise vector of boundgdnorm with noise. The author considers this to be one of the most
[26]. Theorem 4 of his paper provides a quantitative resufhportant open questions in sparse approximation.
in terms of the coherence parameter. The theorem states tha) Other Error Norms: One can imagine situations where
solving (/1-PENALTY) correctly identifies all of the atoms thatthe ¢, norm is not the most appropriate way to measure the
participate in the sparse signal, provided that none of tleerorin approximating the input signal. Indeed, it may be more
ideal coefficients are too small and that the parametés effective to use the convex program
chogen _correctly. It is possible to obtain the same result as an min ||s — ® pr + 7 |Ibl, (26)
application of our Theorem 8. ece

The third manuscript [18] provides a sprawling analysiwherep e [1,c]. Intuitively, large p will force the approx-
of the performance of (19),/{-ERROR), and OMP for the imation to be close to the signal in every component, while
problem of recovering a sparse sigrilc,,; polluted by an smallp will make the approximation more tolerant to outliers.
unknown noise vector whosg norm does not exceed Itis Meanwhile, thel; penalty on the coefficients will promote
difficult to summarize their work in such a small space, béparsity of the coefficients. The case= co has recently been

we will touch on the highlights. studied in [51]. See also [52,53].
« Their Theorem 2.1 shows that any solutiap to (19) To analyze the behavior of (26), we might follow the same
with tolerances satisfies path as in Section lll. For a given index s&t we would

characterize the solution to the convex program when the
feasible set is restricted to vectors supportediorfterward,

where the constank, depends on the coherence of th&e would perturb this solution in a single component outside

lex — coptll, < Ko,

dictionary and the sparsity of the ideal signal. A to develop a condition which ensures that the restricted
« Theorem 3.1 shows that any solutibn to (¢;-ERROR) Minimizer is indeed the global minimizer. The author has made
with tolerances satisfies some progress with this approach for the case co, but no
detailed results are presently available.
[bx = coptll, < Ki(e+9) 4) Bregman DivergencesSuppose thaf is a differentiable,

where the constank, also depends on the coherenc&ONVEX function. Associated witff is a directed distance
and the sparsity levels. measure call_ed Bregman divergenceThe divergence ofc
. Theorem 6.1 is analogous with Corollary 15 of this papelf®™ ¥ is defined as

Their result, however, is much weaker because it does D (z;y) < f(x)— f(y) —Re(x —y, Vi(y)).

not take into account the direction of the noise, and .he most common examples of Bregman divergences are

estimates everything in terms of the coherence parame% re. squared, distance and the ( lized) i .

o oo 2 generalized) information

The most sygnlflcgpt contributions of [18], therefore, a_rﬁivergence. Like these prototypes, a Bregman divergence has
probably their stability results, Theorems 2.1 and 3.1, whigRian attractive properties with respect to best approximation
are not paralleled elsewhere. 54]. Moreover, there is a one-to-one correspondence between

_We hope this section indicates how these three manuscrigigyman divergences and exponential families of probability
illuminate different facets of convex relaxation. Along with thejictributions [55].

present work, they form a strong foundation for the theoretical |, the model problem, suppose that the noise vector

performance of convex relaxation methods. is drawn from the exponential family connected with the
Bregman divergencé);. To solve the problem, it is natural
C. Extensions to apply the convex program
There are many different ways to generalize the work in this min Dy(®b;s) + 7 [|b]]; . (27)
paper. This subsection surveys some of the most promising becC? -
directions. Remarkably, the results in this paper can be adapted for (27)

1) The Correlation Condition:In this article, we have not with very little effort. This coup is possible because Bregman
used the full power of Lemma 6, the Correlation Conditiorflivergences exhibit behavior perfectly analogous with the
In particular, we never exploited the subgradient that appeaguared/s norm.
in the first sufficient condition. It is possible to strengthen our 5) The Elastic NetThe statistics literature contains several
results significantly by taking this subgradient into accouritariants of ¢;-PENALTY). In particular, Zuo and Hastie have
Due to the breadth of the present work, we have chosen sttdied the following convex relaxation method for subset
to burden the reader with these results. selection [56].

2) Beyond Coherenceé\npther shortcoming of the present min % s — <I>b||§ + bl + B Hb”;_ (28)
approach is the heavy reliance on the coherence parameter becC®
to make estimates. Several recent manuscripts [46-50] haveey call this optimization problerthe elastic netRoughly
exploited methods from Banach space geometry to study tmeaking, it promotes sparsity without permitting the coeffi-
average-case performance of convex relaxation, and they hasnts to become too large. It would be valuable to study the
obtained results that far outstrip simple coherence boundslutions to (28) using our methods.



TROPP: JUST RELAX 17

6) Simultaneous Sparse ApproximatioSBuppose that we the large-scale optimization problems that arise from convex
had several different observations of a sparse signal comlaxation.
taminated with additive noise. One imagines that we couldIt appears that a 1973 paper of Claerbout and Muir is the
use the extra observations to produce a better estimate daucible in which these reagents were first combined for the
the ideal signal. This problem is callesimultaneous sparse express goal of yielding a sparse representation [15]. They
approximation The papers [45, 57-60] discuss algorithms fawrite,

approaching this challenging problem. In deconvolving any observed seismic trace, it is
rather disappointing to discover that there is a
D. Conclusions nonzero spike at every point in time regardless of

the data sampling rate. One might hope to find

Even though convex relaxation has been applied for more spikes only where real geologic discontinuities take

than thirty years, the present results are unprecedented in - .
. ! ) lace. Perh I
the published literature because they apply to the important place. Perhaps thé, norm can be utilized to give

. . : . a [sparse] output trace.. ..
case where a sparse signal is contaminated by noise. Indeed, [sp I outp

we have seen conclusively that convex relaxation can B8iS idea was subsequently developed in the geophysics
used to solve the model problem in a variety of concretitérature [5,61,62]. Santosa and Symes, in 1986, proposed the
situations. We have also shown that convex relaxation offerS@Vex relaxation 4 -PENALTY) as a method for recovering
viable approach to the subset selection problem and the erfg@rse spike trains, and they proved that the method succeeds
constrained sparse approximation problem. These exampfgder moderate restrictions [35]. ,
were based on detailed general theory that describes thé'round 1990, the work o, criteria in signal processing
behavior of minimizers to the optimization problemé, recycled to the sta'qstlcs commur_uty. Donoho and Johnstone
PENALTY) and ¢ -ERROR). This theory also demonstratesVrote a pathbreaking paper which proved that one could
that the efficacy of convex relaxation is related intimately t§€términe a nearly optimal minimax estimate of a smooth
the geometric properties of the dictionary. We hope that tHignction contaminated with noise by solving; {PENALTY)
report will have a significant impact on the practice of conve¥ith the dictionary® an appropriate wavelet basis and the
relaxation because it proves how these methods will beh@ameten related to the variance of the noise. Slightly later,
in realistic problem settings. Tibshirani proposed this convex program, Whlch_ he ctils
Nevertheless, this discussion section makes it clear thaFSQ @s @ method for solving the subset selection problems
there is an enormous amount of work that remains to H&linear regression [42]. From here, it is only a short step to
done. In particular, we still do not understand the average-c&3&'S Pursuit and Basis Pursuit de-noising [9]. ,
behavior of convex relaxation in the presence of noise. But 1his history could not be complete without mention of
as Vergil reminds us‘Tantae molis erat Romanam condergP@rallel developments in the theoretical computer sciences.

gentem”Such a burden it was to establish the Roman racd! has long been known that some combinatorial problems
are intimately bound up with continuous convex program-

ming problems. In particular, the problem of determining the
maximum value that an affine function attains at some vertex

I wish to thank A. C. Gilbert and M. J. Strauss fofof a polytope can be solved using a linear program [63].
their patience and encouragement. The detailed and insighffulmajor theme in modern computer science is that many
remarks of the anonymous referees prompted me to see gtlyer combinatorial problems can be solved approximately by
resultsde novo | believe that the current work is immeasurablyneans of convex relaxation. For example, a celebrated paper of
better than the original submission on account of their attentiGoemans and Williamson proves that a certain convex program
and care. Thanks also to the Austinites, who have told me fg#in be used to produce a graph cut whose weight exceeds 87%
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years that | should just relax. of the maximum cut [64]. The present work draws deeply
on the fundamental idea that a combinatorial problem and its
APPENDIX | convex relaxation often have closely related solutions.
A BRIEF HISTORY OF RELAXATION
The ascendance of convex relaxation for sparse approxi- APPENDIXII
mation was propelled by two theoretical-technological devel- IS THEERCNECESSARY?

opments of the last half century. First, the philosophy and Corollary 10 shows that iERC(A) > 0, then any superpo-
methodology of robust statistics—which derive from work ojtion of atoms fromA can be recovered using ¢ PENALTY)

von Neumann, Tukey, and Huber—show tliatloss criteria for a sufficiently small penaltyy. The following theorem

can be applied to defend statistical estimators against outf§emonstrates that this type of result cannot holERIC(A) <

ing data points. Robust estimators qualitatively prefer a few It follows from results of Feuer and Nemirovsky [65] that
large errors and many tiny errors to the armada of moderatre are dictionaries in which some sparse signals cannot be
deviations introduced by mean-squared-error criteria. Secopgcovered by means of(-PENALTY).

the elevation during the 1950s of linear programming to the

level of technologyand the interior-point revolution of the Theorem 20:Suppose thaERC(A) < 0. Then we may
1980s have made it both tractable and commonplace to sobamstruct an input signal that has an exact representation using
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the atoms inA and yet the minimizer of the function (L) is The last result yields a useful new estimate.
not supported oM\ when~ is small.
Proposition 22: Suppose thafm — 1) p < 1, and assume
Proof: SinceERC(A) < 0, there must exist an atogp,,  that [A| < m. Then ||®} < 1= (m—1)puY2

H2,o<> -

for which H‘I’I\ @ ||, > 1 even thoughw ¢ A. Perversely, we gquivalently, the rows®| have £, norms no greater than
select the input signal to he= P, ¢.,. We can synthesize [1— (m—1) Y2

exactly with the atoms itk by means of the coefficient vector

cp = <I>R<,.ow. o . Proof: Recall that the operator norﬁ@j\H2 _, calculates
According to Corollary 5, the minimizels, of the function e maximume, norm among the rows obl. It is easy to
Lb) = L s—®b|2 + ~ b, see that this operator norm is bounded above{® ||, ,, the

maximum singular value 0@&. But the maximum singular
value of ®, is the reciprocal of the minimum singular value
of ®,. Proposition 21 provides a lower bound on this singular
d/alue, which completes the argument. ]

over all coefficient vectors supported oh must satisfy
lea = bully, < v [[(@58a) 7|, .- Since eal, > 1
by construction, we may choosg small enough that the
bound||b.||, > 1 is also in force. Define the correspondin
approximationa, = ® b,.
Now we construct a parameterized coefficient vector
b(t) X (1—1)b, + te, for ¢ in [0, 1]. Th::)position 23: Suppose thatA| <m and(m — 1) < 1.

We also require another norm estimate on the pseudo-inverse.

For positive ¢, it is clear that the support ob(t) is not . < m 1/2
contained inA. We will prove thatZ(b(t)) < L(b,) for small, H AH2,1 ~ 1 - (m-1p ’
positive t. Sinceb, minimizes L over all coefficient vectors

supported o\, no global minimizer ofL can be supported The next result bounds an operator norm of the Gram matrix.
onA.

To proceed, calculate that Proposition 24: Suppose thatA| < m and (m — 1) u < 1.

L ) Then
L) = bls - a2 o |
£ Re(s = any ax— pu) + 32 0 — a2 [@ 20 e = T
+y (L =0) [|bully +tv.

Differentiate this expression with respectttand evaluate the
derivative att = 0: Proposition 25: Suppose thafA| < m, wherem u < 3. A

We conclude by estimating the Exact Recovery Coefficient.

dL(b(t lower bound on the Exact Recovery Coefficient is
O] Re(s—an, an—gu) +7 (01— [oul). ecovery Coe
=0 . . , ERC(A) L= 0@m=Dpu
By construction ofb,, the second term is negative. The first 1 — (m=—1pu
term is nonpositive because
APPENDIX IV
(s @ av —pu) = (Pa(s —a.), ax —pu) DETAILS OF CHANNEL CODING EXAMPLES
= (s —a., Prla, —¢u)) This appendix contains the gory details behind the channel
= (s—ay, a,—s) coding examples from Sections IV-D and V-C. In preparation,
= —|s— a*||§- let us recall the model for ideal signals. We work withua

coherent dictionaryp containing/N atoms in ad-dimensional
Therefore, the derivative is negative, ah@b(t)) < L(b(0)) real signal space. For each sethat listsm atoms, we con-
for small, positivet. Observe thab(0) = b, to complete the sider coefficient vectors,,; supported on\ whose nonzero
argument. B entries equalt1. Each ideal signal has the for c,:.
It will be handy to have some numerical bounds on the
guantities that arise. Using the estimates in Appendix Ill, we

APPENDIXIII obtain the following bounds.

COHERENCEBOUNDS

In this section, we collect some coherence bounds fromProposition 26: Suppose that\ indexes a sub-dictionary
Section 3 of the technical report [25]. These results help usaentainingm atoms, wheremy < 3. Then the following
understand the behavior of sub-dictionary synthesis matriceeunds are in force:

We begin with a bound for the singular values. . HQ}RHM </3/2.
« ERC(A) >1/2.
e The rows of<I>TA have/; norms no greater thaW:%TQ.

Proposition 21: Suppose thatm — 1) u < 1, and assume
that|A| < m. Each singular value of the matrix®, satisfies

1 —(m-p < o> < 14+ (m—1)p
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A. The Gaussian Channel We will bound the probability that this event occurs. By

In this example, we attempt to recover an ideal signal frofffinition, ca = @, s, which yields

a measurement of the form cA = Copr + @j\ v.

$ = ®copr + v It follows that the noise contaminating, depends only on

wherev is a zero-mean Gaussian random vector with covadZ ¥, Which is independent fronts —as) = (I - Py) v. We
ance matrixs2 I. We study the performance of,¢PENALTY) Calculate that
for this problem. det 3
. ) . Es; = Prob{|lespt — ¢ < 1-=
First, consider the event that Corollary 9 applies. In other ? {” pi — Callo 2 7}
words, it is necessary to compute the probability that the = Prob{Hi’RVHOO < 1- %7}

Correlation Condition is in force, i.e., i 3
> Prob{[[@} 2], < (1-3)/0}

[@7 (s —an)llc < 7 ERC(A)
= Prob {ma{i( (=, (@R)*eﬂ’ < (lgfy)/a}

where A = supp(copt). TO that end, we will develop a lower e

bound on the probability wherez is a Gaussian random vector with identity covariance.

B Prob{HtI»* (s—ap)|. < %7} Applying Sidak’s Lemma again, we obtain

= Prob{maxgalls —an el < 373 By > [ Prob{|(z (@) en)| < (1-$)/0}.

Observe that(s —ap) = (I — Pyn)s = (I — Py)v. Use
adjointness to transfer the projector to the other side of t
inner product, and scale by 1/ to obtain

E, = Prob{maxngKz, (I—=Pr)pw)| < %7/0} By > HProb{|<z7 (‘I’j\)*eA>| < (137)/0}

wherez is a zero-mean Gaussian vector with identity covari- H( A) eAH2 H( A) e’\H2
ance. A direct application of Sidak's Lemma [66, Lemma 2] > 1_[A AProb {|<z, v)| < v2/3(1— %'y)/a}
yields a lower bound on this probability. <

2
= |1 — exp —% (1—%7) o ?
B > ] L Prob{[(z, A= Py)eu)| < 37/0}. [ { . . }
w wherewv denotes any fixed unit vector.
The atoms have unit norm, so the norm(df- P,) ., does  The event that we may apply the corollary and the event
not exceed one. Therefore, that the coefficients im, are sufficiently large are independent
Iz, (I— Py) ) . from each other. We may conclude that the probability of both
Ey > Prob{ < 57v/0¢. events occurring i = F1 E». Ergo,
IL.. [=Pogll, ~ 2 ? P =
Suppose tha is an arbitrary unit vector. Integrating the E,... > [I — exp{—1+? s
Gaussian kernel over the hyperplané yields the bound 1 3 32 __9)1™
[1 — exp{—g (1—57) o H .

F[ge £5 norm of each row ofIﬂA is bounded above by/3/2.
Renormalizing each row and applying (29) gives

AEA

m

1 t 2
- —x%/2
Prob{[(z, v)| <t} = N /_te dw Using the inequality1—z)* > 1—kaz, which holds forz < 1
> 1 exp{—t2/2}. (29) andk > 1, we see that the failure probability satisfies

Apply (29) in our bound forE;, and exploit the fact that the 1 — Eguee < (N —m)exp{—%+°07%}
roduct containg N — identical terms to reach 2 _
P W =m) +mep{—§ (1-§2) 072}

By 2 [l - exp{-g (7/0)2}]N i In particular, the failure probability decays exponentially as
In words, we have developed a lower bound on the probabili§}e noise power approaches zero. If the noise level is known,
that the correlation condition holds so that we may apply iS possible to optimize this expression overto find the
Corollary 9. parameter that minimizes the probability of failure.
Assume that the conclusions of Corollary 9 are in force. In

particular,supp(b,) C A and also||b, — call., < 2+. The B. The Uniform Channel

upper triangle inequality implies that . . .
PP g g y imp In this example, we attempt to recover ideal signals from

b — Coptll, < 29 + |lea — coptll, - measurements of the form

Each nonzero component ef,,; equals+1, so the corre- s = Py + v

sponding component di, has the same sign provided that _ . . _
wherev is uniformly distributed on the/; ball of radiuse.

lea — Coptll, < 1—27. We study the performance of;-ERROR) for this problem.
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Let A = supp(copt). First, observe that the residual vectoSince we can writeF = Prob {maxcor(s —ay)? > t*},
can be rewritten as we conclude that the choice

s—ay = (I-Pp)s = (I— Pyp)v, o > [1+6mt2}1/2€

SO the€2 norm Of the residua' does not excegmccording to allows us to invoke Theorem 14 with probablllty greater than
the remarks after Corollary 15, we should selécto smaller (1 — E) over the noise.
than

§ > [1+6m maxcor(s — ay)?] V2 APPENDIXV

SOLUTIONS TO (SUBSET)

In this appendix, we establish Theorem 12, a structural
sult for solutions to the subset selection problem. Recall that
the problem is

The rest of the example will prove that the maximum corre-
lation exhibits a concentration phenomenon: it is rather sm?g
with high probability. Therefore, we can choasenuch closer
to £ than a néve analysis would suggest.

To begin the calculation, rewrite Crgi& |s—®c|> + 2 llell - (SUBSET)
maxcor(s — ay) = max I{s —aa, »u)l Now we restate the theorem and prove it.
wgh s —aall,
(I = Py)v, (I— Pr)p,)] Theorem 27:Fix an input signals, and choose a threshold
- rfgff [(T— Py v, : 7. Suppose that the coefficient vectay,; solves the subset

selection problem, and set,,; = P copt.
o For X € supp(copt), We have|copi(A)] > 7.
o Forw ¢ supp(copt), We have|(s — aops, Pu)| < 7.

It is not hard to check tha{l — P,)v is a spherically
symmetric random variable on the orthogonal complement of
Z(Py). Therefore, the random variable

wi (I-Py v Proof: For a given input signals, suppose that the
v =TI Povll coefficient vectok,. is a solution of §UBSET) with threshold
[(T—=Pr)vl, : _ _
7, and defineAqpy = supp(copt). PuUt aopy = ® cope, and
is uniformly distributed on the unit sphere o#(P,)*, let P,,. denote the orthogonal projector onto the span of the
which is a (d — m)-dimensional subspace. In consequencatoms inA,.. A quick inspection of the objective function
maxcor(s — ap) has the same distribution as the randormmakes it clear that,,. must be the best, approximation of

variable s using the atoms im\,;. Therefore,aop, = Popt, s.
max [(u, (I— Py)@y,)]. We begin with the second conclusion of the theorem. Take
wEA any indexw outside A.¢. The best approximatiom’ of s
Now, let us bound the probability that the maximum corrgssing the atoms im\,,, U {w} is
lation is larger than some numbérin symbols, we seek o (s, A= Po) o) (- Pon) oo
E = Prob{maxcor(s — ap) > t} " 1T = Popt) pully 1T = Popt) pull,
= Prob{max,¢x [(u, (I-Py)p.)| > t} Orthogonal projectors are self-adjoint, so
S ngA PI‘Ob{|<’U,7 (I - PA) (Pw>| Z t} . a/ — opt 4 <S B aopta Sow> ( _ Popt) Do

2
(I = Popt) ol

Since the two terms are orthogonal, the Pythagorean Theorem
Prob {|(u, (I — Py)¢u)| > t}. furnishes

Fix an indexw ¢ A, and consider

2
(8 = @opt, Pu)
5
(T = Popt) pull;
ﬂtne second term on the right-hand side measures how much

the squared approximation error diminishes if we agld to
the approximation. Notice that the second term must be less

Since u is spherically symmetric, this probability cannot
depend on the direction of the vectdr— P,) ¢.,. Moreover,
the probability only increases when we increase the length
this vector. It follows that we may repla¢é — P, ) ., by an
arbitrary unit vectorw from %2(Py)~+. Therefore,

2 2
Is —a'll; = lIs = acpll; —

E < Z Prob {|(u, v)| > t} than or equal ta?, or eIsc_e we _could immediately const_ruct a
wgA solution to EUBSET) that is strictly better thaw,,; by using
= (N —m) Prob {[{u, v)| = t}. the additional atom. Therefore,
The probability can be interpreted geometrically as the fraction |(8 — @opts (pw>‘2 < 72 |(I = Pop) <pw||§

of the sphere covered by a pair of spherical caps. Since we are ) .
working in a subspace of dimensidid — m), each of the two Ato.ms have unit/s norm, and the prOJectorQOnIy attenuates
caps covers no more tharp{—3 ¢* (d — m)} of the sphere their £; norms. It follows that|[(I — P,,¢) . ||; < 1, and so

[67, Lemma 2.2]. Therefore, (8 — @opt, pu)l < 7. _ . .
The argument behind the first conclusion of the theorem is

E < 2(N—m)exp{—3t*(d—m)}. similar. Choose an indeg from A,,., and letP denote the
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orthogonal projector onto the span of the atoma\ip, \ {{}.  [21]
Since aqpe = Y, Copt(A) @, the best approximation of
using the reduced set of indices is given by [22]
Ps = Paopy = Qopt (I—-P)aopt
= Qopt — copt(g) (I —- P) {43 [23]

Thus, removing the atonp: from the approximation would [24]
increase the squared error by exactly

|copt ()1 [[(T— P) ¢l

This quantity must be at leas®, or else the reduced set ofjog]
atoms would afford a strictly better solution teuBsET) than
the original set. Sincél — P) is an orthogonal projector,
(1= P) p¢ll5 < 1. We conclude thatcoy (€)] > 7. n

(25]

(27]

One could obviously prove much more about the solutioifi28]
of the subset selection problem using similar techniques, kf&g]
these results are too tangential to pursue here.
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