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Just Relax: Convex Programming Methods
for Identifying Sparse Signals in Noise

Joel A. Tropp,Member, IEEE

Abstract— This article studies a difficult and fundamental
problem that arises throughout electrical engineering, applied
mathematics, and statistics. Suppose that one forms a short linear
combination of elementary signals drawn from a large, fixed
collection. Given an observation of the linear combination that
has been contaminated with additive noise, the goal is to identify
which elementary signals participated and to approximate their
coefficients. Although many algorithms have been proposed,
there is little theory which guarantees that these algorithms can
accurately and efficiently solve the problem.

This article studies a method called convex relaxation, which
attempts to recover the ideal sparse signal by solving a convex
program. This approach is powerful because the optimization
can be completed in polynomial time with standard scientific
software. The paper provides general conditions which ensure
that convex relaxation succeeds. As evidence of the broad impact
of these results, the article describes how convex relaxation can
be used for several concrete signal recovery problems. It also
describes applications to channel coding, linear regression, and
numerical analysis.

Index Terms— Algorithms, approximation methods, Basis Pur-
suit, convex program, optimization methods, linear regression,
Orthogonal Matching Pursuit, sparse representations

I. I NTRODUCTION

L ATELY, there has been a lot of fuss about sparse ap-
proximation. This class of problems has two defining

characteristics:

1) An input signal is approximated by a linear combination
of elementary signals. In many modern applications,
the elementary signals are drawn from a large, linearly
dependent collection.

2) A preference for “sparse” linear combinations is im-
posed by penalizing nonzero coefficients. The most
common penalty is the number of elementary signals
that participate in the approximation.

Sparse approximation problems arise throughout electrical
engineering, statistics, and applied mathematics. One of the
most common applications is to compress audio [1], im-
ages [2], and video [3]. Sparsity criteria also arise in linear
regression [4], deconvolution [5], signal modeling [6], pre-
conditioning [7], machine learning [8], de-noising [9], and
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regularization [10].

A. The Model Problem

In this work, we will concentrate on the model problem of
identifying a sparse linear combination of elementary signals
that has been contaminated with additive noise. The literature
on inverse problems tends to assume that the noise is an
arbitrary vector of bounded norm, while the signal process-
ing literature usually models the noise statistically; we will
consider both possibilities.

To be precise, suppose we measure a signal of the form

s = Φ copt + ν (1)

whereΦ is a known matrix with unit-norm columns,copt is
a sparse coefficient vector (i.e., few components are nonzero),
andν is an unknown noise vector. Given the signals, our goal
is to approximate the coefficient vectorcopt. In particular, it is
essential that we correctly identify the nonzero components of
the coefficient vector because they determine which columns
of the matrixΦ participate in the signal.

Initially, linear algebra seems to preclude a solution—
wheneverΦ has a nontrivial null space, we face an ill-posed
inverse problem. Even worse, the sparsity of the coefficient
vector introduces a combinatorial aspect to the problem. Nev-
ertheless, if the optimal coefficient vectorcopt is sufficiently
sparse, it turns out that we can accurately and efficiently
approximatecopt given the noisy observations.

B. Convex Relaxation

The literature contains many types of algorithms for ap-
proaching the model problem, including brute force [4, Sec.
3.7–3.9], nonlinear programming [11], and greedy pursuit [12–
14]. In this paper, we concentrate on a powerful method called
convex relaxation. Although this technique was introduced
over thirty years ago in [15], the theoretical justifications are
still shaky. This paper attempts to lay a more solid foundation.

Let us explain the intuition behind convex relaxation meth-
ods. Suppose we are given a signals of the form (1) along
with a bound on thè2 norm of the noise vector, say‖ν‖2 ≤ ε.
At first, it is tempting to look for the sparsest coefficient vector
that generates a signal within distanceε of the input. This idea
can be phrased as a mathematical program:

min
c

‖c‖0 subject to ‖s−Φ c‖2 ≤ ε (2)

where the`0 quasi-norm‖·‖0 counts the number of nonzero
components in its argument. To solve (2) directly, one must sift
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through all possible disbursements of the nonzero components
in c. This method is intractable because the search space is
exponentially large [12, 16].

To surmount this obstacle, one might replace the`0 quasi-
norm with the `1 norm to obtain a convex optimization
problem.

min
b

‖b‖1 subject to ‖s−Φ b‖2 ≤ δ (`1-ERROR)

where the toleranceδ is related to the error boundε. In-
tuitively, the `1 norm is the convex function closest to the
`0 quasi-norm, so this substitution is referred to asconvex
relaxation. One hopes that the solution to the relaxation will
yield a good approximation of the ideal coefficient vectorcopt.
The advantage of the new formulation is that it can be solved
in polynomial time with standard scientific software [17].

We have found that it is more natural to study the closely
related convex program,

min
b

1
2 ‖s−Φ b‖22 + γ ‖b‖1 (`1-PENALTY)

As before, one can interpret thè1 norm as a convex re-
laxation of the`0 quasi-norm. So the parameterγ manages
a tradeoff between the approximation error and the sparsity
of the coefficient vector. This optimization problem can also
be solved efficiently, and one expects that the minimizer will
approximate the ideal coefficient vectorcopt.

Appendix I offers an excursus on the history of convex
relaxation methods for identifying sparse signals.

C. Contributions

The primary contribution of this paper is to justify the
intuition that convex relaxation can solve the model problem.
Our two major theorems describe the behavior of solutions
to (`1-PENALTY) and solutions to (̀1-ERROR). We apply this
theory to several concrete instances of the model problem.

Let us summarize our results on the performance of convex
relaxation. Suppose that we measure a signal of the form
(1) and that we solve one of the convex programs with
an appropriate choice ofγ or δ to obtain a minimizerb?.
Theorems 8 and 14 demonstrate that

• the vectorb? is close to the ideal coefficient vectorcopt.
• The support ofb? (i.e., the indices of its nonzero com-

ponents) is a subset of the support ofcopt.
• Moreover, the minimizer is unique.

In words, the solution to the convex relaxation identifies every
sufficiently large component ofcopt, and it never mistakenly
identifies a column ofΦ that did not participate in the signal.
As other authors have written, “It seems quite surprising that
any result of this kind is possible” [18, Section 6].

The conditions under which the convex relaxations solve the
model problem are geometric in nature. Section III-C describes
the primary factors influencing their success:

• Small sets of the columns fromΦ should be well-
conditioned.

• The noise vector should be weakly correlated with all the
columns ofΦ.

These properties can be difficult to check in general. This
paper relies on a simple approach based on thecoherence
parameterof Φ, which measures the cosine of the minimal
angle between a pair of columns. It may be possible to improve
these results using techniques from Banach space geometry.

As an application of the theory, we will see that convex
relaxation can be used to solve three versions of the model
problem. If the coherence parameter is small,

• both convex programs can identify a sufficiently sparse
signal corrupted by an arbitrary vector of bounded`2
norm (Sections IV-C and V-B).

• The program (̀1-PENALTY) can identify a sparse signal
in additive white Gaussian noise (Section IV-D).

• The program (̀1-ERROR) can identify a sparse signal in
uniform noise of bounded̀2 norm (Section V-C).

In addition, Section IV-E shows that (`1-PENALTY) can be
used for subset selection, a sparse approximation problem
that arises in statistics. Section V-D demonstrates that (`1-
ERROR) can solve another sparse approximation problem from
numerical analysis.

This paper is among the first to analyze the behavior of
convex relaxation when noise is present. Prior theoretical
work has focused on a special case of the model problem
where the noise vectorν = 0. See for example [14, 19–23].
Although these results are beautiful, they simply do not apply
to real-world signal processing problems. We expect that our
work will have a significant practical impact because so many
applications require sparse approximation in the presence of
noise. As an example, Dossal and Mallat have used our results
to study the performance of convex relaxation for a problem
in seismics [24].

After the first draft [25] of this paper had been completed,
it came to the author’s attention that several other researchers
were preparing papers on the performance of convex relaxation
in the presence of noise [18, 26, 27]. These manuscripts are
significantly different from the present work, and they also
deserve attention. Turn to Section VI-B for comparisons and
contrasts.

D. Channel Coding

It may be illuminating to view the model problem in the
context of channel coding. The Gaussian channel allows us
to send one real number during each transmission, but this
number is corrupted by the addition of a zero-mean Gaussian
random variable. Shannon’s channel coding theorem [28,
Chap. 10] shows that the capacity of the Gaussian channel can
be achieved (asymptotically) by grouping the transmissions
into long blocks and using a random code whose size is
exponential in the block length. A major practical problem
with this approach is that decoding requires an exponentially
large lookup table.

In contrast, we could also construct a large code by forming
sparse linear combinations of vectors from a fixed codebook
Φ. Both the choice of vectors and the nonzero coefficients
carry information. The vector length is analogous with the
block length. When we transmit a codeword through the
channel, it is contaminated by a zero-mean, white Gaussian
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random vector. To identify the codeword, it is necessary to
solve the model problem. Therefore, any sparse approximation
algorithm—such as convex relaxation—can potentially be used
for decoding.

To see that this coding scheme is practical, one must show
that the codewords carry almost as much information as the
channel permits. One must also demonstrate that the decoding
algorithm can reliably recover the noisy codewords.

We believe that channel coding is a novel application of
sparse approximation algorithms. In certain settings, these
algorithms may provide a very competitive approach. Sections
IV-D and V-C present some simple examples that take a first
step in this direction. See [29] for some more discussion of
these ideas.

E. Outline

The paper continues with notation and background material
in Section II. Section III develops the fundamental lemmata
that undergird our major results. The two subsequent sections
provide the major theoretical results for (`1-PENALTY) and
(`1-ERROR). Both these sections describe several specific ap-
plications in signal recovery, approximation theory, statistics,
and numerical analysis. The body of the paper concludes
with Section VI, which surveys extensions and related work.
The appendices present several additional topics and some
supporting analysis.

II. BACKGROUND

This section furnishes the mathematicalmise en sc̀ene. We
have adopted an abstract point of view that facilitates our
treatment of convex relaxation methods. Most of the material
here may be found in any book on matrix theory or functional
analysis, such as [30–32].

A. The Dictionary

We will work in the finite-dimensional, complex inner-
product spaceCd, which will be called thesignal space1.
The usual Hermitian inner product forCd will be written as
〈·, ·〉, and we will denote the corresponding norm by‖·‖2.
A dictionary for the signal space is a finite collectionD
of unit-norm elementary signals. The elementary signals are
calledatoms, and each is denoted byϕω, where the parameter
ω is drawn from an index setΩ. The indices may have
an interpretation, such as the time–frequency or time–scale
localization of an atom, or they may simply be labels without
an underlying metaphysics. The whole dictionary structure is
written as

D = {ϕω : ω ∈ Ω}

The letterN will denote the number of atoms in the dictionary.
It is evident thatN = |D | = |Ω|, where |·| returns the
cardinality of a finite set.

1Modifications for real signal spaces should be transparent, but the apotheo-
sis to infinite dimensions may take additional effort.

B. The Coherence Parameter

A summary parameter of the dictionary is thecoherence,
which is defined as the maximum absolute inner product
between two distinct atoms [12, 19].

µ
def= max

λ 6= ω
|〈ϕω, ϕλ〉| . (3)

When the coherence is small, the atoms look very different
from each other, which makes them easy to distinguish. It is
common that the coherence satisfiesµ = O(d−1/2). We say
informally that a dictionary isincoherentwhen we judge that
the coherence parameter is small. An incoherent dictionary
may contain far more atoms than an orthonormal basis (i.e.,
N � d) [14, Sec. II-D].

The literature also contains a generalization of the coherence
parameter called thecumulative coherence function[14, 21].
For each natural numberm, this function is defined as

µ1(m) def= max
|Λ| ≤m

max
ω /∈Λ

∑
λ∈Λ

|〈ϕω, ϕλ〉| .

This function will often provide better estimates than the
coherence parameter. For clarity of exposition, we only present
results in terms of the coherence parameter. Parallel results
using cumulative coherence are not hard to develop [25].

It is essential to be aware that coherence is not fundamental
to sparse approximation. Rather, it offers a quick way to check
the hypotheses of our theorems. It is possible to provide much
stronger results using more sophisticated techniques.

C. Coefficient Space

Every linear combination of atoms is parameterized by a list
of coefficients. We may collect them into acoefficient vector,
which formally belongs to the linear space2 CΩ. The canonical
basis for this space is given by the vectors whose coordinate
projections are identically zero, except for one unit coordinate.
The ω-th canonical basis vector will be denotedeω.

Given a coefficient vectorc, the expressionscω and c(ω)
both represent itsω-th coordinate. We will alternate between
them, depending on what is most typographically felicitous.

The supportof a coefficient vector is the set of indices at
which it is nonzero:

supp(c) def= {ω ∈ Ω : cω 6= 0}. (4)

Suppose thatΛ ⊂ Ω. Without notice, we may embed “short”
coefficient vectors fromCΛ into CΩ by extending them with
zeros. Likewise, we may restrict “long” coefficient vectors
from CΩ to their support. Both transubstantiations will be
natural in context.

D. Sparsity and Diversity

The sparsityof a coefficient vector is the number of places
where it equals zero. The complementary notion,diversity,
counts the number of places where the coefficient vector does
not equal zero. Diversity is calculated with the`0 quasi-norm:

‖c‖0
def= |supp(c)| . (5)

2In case this notation is unfamiliar,CΩ is the collection of functions from
Ω to C. It is equipped with the usual addition and scalar multiplication to
form a linear space.
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For any positive numberp, define

‖c‖p
def=
[∑

ω∈Ω
|cω|p

]1/p

(6)

with the convention that‖c‖∞
def= maxω∈Ω |cω|. As one might

expect, there is an intimate connection between the definitions
(5) and (6). Indeed,‖c‖0 = limp→0 ‖c‖p

p. It is well known that
the function (6) is convex if and only ifp ≥ 1, in which case
it describes thèp norm.

From this vantage, one can see that the`1 norm is the
convex function “closest” to thè0 quasi-norm (subject to
the same normalization on the zero vector and the canonical
basis vectors). For a more rigorous approach to this idea, see
Proposition 2.1 of [33] and also [22].

E. Dictionary Matrices

Let us define a matrixΦ, called thedictionary synthesis
matrix, that maps coefficient vectors to signals. Formally,

Φ : CΩ −→ Cd via Φ : c 7−→
∑

ω∈Ω
cω ϕω.

The matrixΦ describes the action of this linear transforma-
tion in the canonical bases of the underlying vector spaces.
Therefore, the columns ofΦ are the atoms. The conjugate
transpose ofΦ is called thedictionary analysis matrix, and it
maps each signals to a coefficient vector that lists the inner
products between signal and atoms.

Φ∗ : Cd −→ CΩ via (Φ∗ s)(ω) = 〈s, ϕω〉 .

The rows ofΦ∗ are atoms, conjugate-transposed.

F. Sub-dictionaries

A sub-dictionary is a linearly independent collection of
atoms. We will exploit the linear independence repeatedly. If
the atoms in a sub-dictionary are indexed by the setΛ, then
we define a synthesis matrixΦΛ : CΛ → Cd and an analysis
matrix Φ∗

Λ : Cd → CΛ. These matrices are entirely analogous
with the dictionary synthesis and analysis matrices. We will
frequently use the fact that the synthesis matrixΦΛ has full
column rank.

Let Λ index a sub-dictionary. TheGram matrixof the sub-
dictionary is given byΦ∗

Λ ΦΛ. This matrix is Hermitian, it has
a unit diagonal, and it is invertible. Thepseudo-inverseof the
synthesis matrix is denoted byΦ†

Λ, and it may be calculated
using the formulaΦ†

Λ = (Φ∗
ΛΦΛ)−1 Φ∗

Λ. The matrixPΛ will
denote the orthogonal projector onto the span of the sub-
dictionary. This projector may be expressed using the pseudo-
inverse:PΛ = ΦΛΦ†

Λ.
On occasion, the distinguished index set isΛopt instead of

Λ. In this case, the synthesis matrix is written asΦopt, and
the orthogonal projector is denotedPopt.

G. Signals, Approximations, and Coefficients

Let Λ be a sub-dictionary, and lets be a fixed input
signal. This signal has a uniquè2 best approximationaΛ

using the atoms inΛ, which is determined byaΛ = PΛ s.
Note that the approximationaΛ is orthogonal to the residual

(s − aΛ). There is a unique coefficient vectorcΛ supported
on Λ that synthesizes the approximation:aΛ = ΦΛ cΛ. We
may calculate thatcΛ = Φ†

Λ s = Φ†
Λ aΛ.

H. Operator Norms

The (p, q) operator normof a matrixA is given by

‖A‖p,q
def= max

x 6=0

‖A x‖q

‖x‖p

.

An immediate consequence is the upper norm bound

‖A x‖q ≤ ‖A‖p,q ‖x‖p .

Suppose that1/p + 1/p′ = 1 and 1/q + 1/q′ = 1. Then we
have the identity

‖A∗‖q′,p′ = ‖A‖p,q . (7)

We also have the following lower norm bound, which is proved
in [25, Section 3.3].

Proposition 1: For every matrixA,

min
x∈R(A∗)

x 6= 0

‖A x‖q

‖x‖p

≥
∥∥A†∥∥−1

q,p
. (8)

If A has full row rank, equality holds in (8). WhenA is
invertible, this result implies

min
x 6= 0

‖A x‖q

‖x‖p

=
∥∥A−1

∥∥−1

q,p
.

The symbolR(·) denotes the range (i.e., column span) of a
matrix.

III. F UNDAMENTAL LEMMATA

Fix an input signals and a positive parameterγ. Define the
convex function

L(b) = 1
2 ‖s−Φ b‖22 + γ ‖b‖1 . (L)

In this section, we study the minimizers of this function. These
results are important to us because (L) is the objective function
of the convex program (`1-PENALTY), and it is essentially
the Lagrangian function of (`1-ERROR). By analyzing the
behavior of (L), we can understand the performance of convex
relaxation methods.

The major lemma of this section provides a sufficient
condition which ensures that the minimizer of (L) is supported
on a given index setΛ. To develop this result, we first
characterize the (unique) minimizer of (L) when it is restricted
to coefficient vectors supported onΛ. We use this character-
ization to obtain a condition under which every perturbation
away from the restricted minimizer must increase the value
of the objective function. When this condition is in force, the
global minimizer of (L) must be supported onΛ.
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A. Convex Analysis

The proof relies on standard results from convex analysis.
As it is usually presented, this subject addresses the properties
of real-valued convex functions defined on real vector spaces.
Nevertheless, it is possible to transport these results to the
complex setting by defining an appropriate real-linear structure
on the complex vector space. In this section, therefore, we
use the bilinear inner productRe 〈x, y〉 instead of the usual
sesquilinear (i.e., Hermitian) inner product. Note that both
inner products generate the`2 norm.

Suppose thatf is a convex function from a real-linear
inner-product spaceX to R. The gradient ∇f(x) of the
function f at the pointx is defined as the usual (Fréchet)
derivative, computed with respect to the real-linear inner
product. Even when the gradient does not exist, we may define
the subdifferentialof f at a pointx:

∂f(x) def= {g ∈ X : f(y) ≥ f(x) + Re 〈y − x, g〉
for everyy ∈ X}.

The elements of the subdifferential are calledsubgradients.
If f possesses a gradient atx, the unique subgradient is the
gradient. That is,

∂f(x) = {∇f(x)}.

The subdifferential of a sum is the (Minkowski) sum of
the subdifferentials. Finally, iff is a closed, proper convex
function thenx is a global minimizer off if and only if
0 ∈ ∂f(x). The standard reference for this material is [34].

Remark 2:The subdifferential of a convex function pro-
vides a dual description of the function in terms of its
supporting hyperplanes. In consequence, the appearance of
the subdifferential in our proof is analogous with the familiar
technique of studying the dual of a convex program.

B. Restricted Minimizers

First, we must characterize the minimizers of the objective
function (L). Fuchs developed the following result in the real
setting using essentially the same method [23].

Lemma 3:Suppose thatΛ indexes a linearly independent
collection of atoms, and letb? minimize the objective function
(L) over all coefficient vectors supported onΛ. A necessary
and sufficient condition on such a minimizer is that

cΛ − b? = γ (Φ∗
ΛΦΛ)−1 g (9)

where the vectorg is drawn from ∂ ‖b?‖1. Moreover, the
minimizer b? is unique.

Proof: Suppose thatsupp(b) ⊂ Λ. Then the vectors
(s−aΛ) and(aΛ−Φ b) are orthogonal to each other. Apply
the Pythagorean Theorem to see that minimizing (L) over
coefficient vectors supported onΛ is equivalent to minimizing
the function

F (b) def= 1
2 ‖aΛ −ΦΛ b‖22 + γ ‖b‖1 (10)

over coefficient vectors fromCΛ. Recall thatΦΛ has full
column rank. It follows that the quadratic term in (10) is
strictly convex, and so the whole functionF must also be
strictly convex. Therefore, its minimizer is unique.

The functionF is convex and unconstrained, so0 ∈ ∂F (b?)
is a necessary and sufficient condition for the coefficient
vector b? to minimize F . The gradient of the first term of
F at b? equals(Φ∗

Λ ΦΛ) b? −Φ∗
Λ aΛ. From the additivity of

subdifferentials, it follows that

(Φ∗
Λ ΦΛ) b? − Φ∗

Λ aΛ + γ g = 0

for some vectorg drawn from the subdifferential∂ ‖b?‖1. We
pre-multiply this relation by(Φ∗

Λ ΦΛ)−1 to reach

Φ†
ΛaΛ − b? = γ (Φ∗

Λ ΦΛ)−1 g.

Apply the fact thatcΛ = Φ†
ΛaΛ to reach the conclusion.

Now we identify the subdifferential of thè1 norm. To that
end, define the signum function as

sgn (r ei θ) def=
{

ei θ for r > 0
0 for r = 0.

One may extend the signum function to vectors by applying
it to each component.

Proposition 4: Let z be a complex vector. The complex
vectorg lies in the subdifferential∂ ‖z‖1 if and only if
• |gk| ≤ 1 wheneverzk = 0, and
• gk = sgn zk wheneverzk 6= 0.

Indeed,‖g‖∞ = 1 unlessz = 0, in which case‖g‖∞ ≤ 1.

We omit the proof. At last, we may develop bounds on how
much a solution to the restricted problem varies from the
desired solutioncΛ.

Corollary 5 (Upper Bounds):Suppose thatΛ indexes a
sub-dictionary, and letb? minimize the function (L) over all
coefficient vectors supported onΛ. The following bounds are
in force:

‖cΛ − b?‖∞ ≤ γ
∥∥(Φ∗

Λ ΦΛ)−1
∥∥
∞,∞ (11)

‖ΦΛ (cΛ − b?)‖2 ≤ γ
∥∥Φ†

Λ

∥∥
2,1

. (12)

Proof: We begin with the necessary and sufficient
condition

cΛ − b? = γ (Φ∗
Λ ΦΛ)−1 g (13)

whereg ∈ ∂ ‖b?‖1. To obtain (11), we take thè∞ norm of
(13) and apply the upper norm bound.

‖b? − cΛ‖∞ = γ
∥∥(Φ∗

Λ ΦΛ)−1 g
∥∥
∞

≤ γ
∥∥(Φ∗

Λ ΦΛ)−1
∥∥
∞,∞ ‖g‖∞ .

Proposition 4 shows that‖g‖∞ ≤ 1, which proves the result.
To develop the second bound (12), we pre-multiply (13) by

the matrixΦΛ and compute thè2 norm:

‖ΦΛ (cΛ − b?)‖2 = γ
∥∥(Φ†

Λ)∗ g
∥∥

2

≤ γ
∥∥(Φ†

Λ)∗
∥∥
∞,2

‖g‖∞ .
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As before,‖g‖∞ ≤ 1. Finally, we apply the identity (7) to
switch from the(∞, 2) norm to the(2, 1) norm.

C. The Correlation Condition

Now, we develop a condition which ensures that the global
minimizer of (L) is supported inside a given index set. This
result is the soul of the analysis.

Lemma 6 (Correlation Condition):Assume thatΛ indexes
a linearly independent collection of atoms. Letb? minimize
the function (L) over all coefficient vectors supported onΛ.
Suppose that

‖Φ∗ (s− aΛ)‖∞ ≤ γ
[
1 − maxω/∈Λ

∣∣〈Φ†
Λ ϕω, g

〉∣∣]
whereg ∈ ∂ ‖b?‖1 is determined by (9). It follows thatb? is
the unique global minimizer of (L). In particular, the condition

‖Φ∗ (s− aΛ)‖∞ ≤ γ
[
1 − maxω/∈Λ

∥∥Φ†
Λ ϕω

∥∥
1

]
guarantees thatb? is the unique global minimizer of (L).

In this work, we will concentrate on the second sufficient
condition because it is easier to work with. Nevertheless, the
first condition is significantly more powerful. Note that either
sufficient condition becomes worthless when the bracket on
its right-hand side is negative.

We typically abbreviate the bracket in the second condition:

ERC(Λ) def= 1 − maxω/∈Λ

∥∥Φ†
Λ ϕω

∥∥
1
.

The notation “ERC” stands forExact Recovery Coefficient,
which reflects the fact thatERC(Λ) > 0 is a sufficient
condition for several different algorithms to recover the op-
timal representation of an exactly sparse signal [14]. Roughly,
ERC(Λ) measures how distinct the atoms inΛ are from
the remaining atoms. Observe that if the index set satisfies
ERC(Λ) > 0, then the sufficient condition of the lemma will
hold as soon asγ becomes large enough. But ifγ is too large,
thenb? = 0.

Given a nonzero signalv, define the function

maxcor(v) def=
maxω∈Ω |〈v, ϕω〉|

‖v‖2
,

and place the convention thatmaxcor(0) = 0. This quantity
measures the maximum correlation between the signalv and
any atom in the dictionary. To interpret the left-hand side of
the sufficient conditions in the lemma, observe that

‖Φ∗ (s− aΛ)‖∞ = max
ω∈Ω

|〈s− aΛ, ϕω〉|

= maxcor(s− aΛ) ‖s− aΛ‖2 .

Therefore, the lemma is strongest when the magnitude of
the residual and itsmaximum correlationwith the dictionary
are both small. If the dictionary is not exponentially large,
a generic vector is weakly correlated with the dictionary on
account of measure concentration phenomena. Since the atoms
are normalized, the maximum correlation never exceeds one.
This fact yields a (much weaker) result that depends only on
the magnitude of the residual.

Corollary 7: Let Λ index a sub-dictionary, and lets be an
input signal. Suppose that the residual vector satisfies

‖s− aΛ‖2 ≤ γ ERC(Λ).

Then any coefficient vectorb? that minimizes the function (L)
must be supported insideΛ.

One might wonder whether the conditionERC(Λ) ≥ 0 is
really necessary to develop results of this type. The answer is
a qualified affirmative. Appendix II offers a partial converse
of Lemma 6.

D. Proof of the Correlation Condition Lemma

We now establish Lemma 6. The argument presented here
is different from the original proof in the technical report [25].
It relies on a perturbation technique that can be traced to the
independent works [18, 25].

Proof: Let b? be the unique minimizer of the objective
function (L) over coefficient vectors supported onΛ. In
particular, the value of the objective function increases if we
change any coordinate ofb? indexed inΛ. We will develop
a condition which guarantees that the value of the objective
function also increases when we change any other component
of b?. Since (L) is convex, these two facts will imply thatb?

is the global minimizer.
Choose an indexω not listed inΛ, and letδ be a nonzero

scalar. We must develop a condition which ensures that

L(b? + δ eω) − L(b?) > 0

where eω is the ω-th canonical basis vector. To that end,
expand the left-hand side of this relation to obtain

L(b? + δ eω) − L(b?) =
1
2

[
‖(s−Φ b?)− δ ϕω‖22 − ‖s−Φ b?‖22

]
+ γ

[
‖b? + δ eω‖1 − ‖b?‖1

]
.

Next, simplify the first bracket by expanding the`2 norms
and canceling like terms. Simplify the second bracket by
recognizing that‖b? + δ eω‖1 = ‖b?‖1 + ‖δ eω‖1 since the
two vectors have disjoint supports. Hence

L(b? + δ eω) − L(b?) =
1
2 ‖δ ϕω‖22 − Re 〈s−Φ b?, δ ϕω〉 + γ |δ| .

Add and subtractΦΛ cΛ in the left-hand side of the inner
product, and use linearity to split the inner product into two
pieces. We reach

L(b? + δ eω) − L(b?) =
1
2 ‖δ ϕω‖22 − Re 〈s−ΦΛ cΛ, δ ϕω〉

− Re 〈ΦΛ (cΛ − b?), δ ϕω〉 + γ |δ| .

We will bound the right-hand side below. To that end, observe
that the first term is strictly positive, so we may discard it.
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Then invoke the lower triangle inequality, and use the linearity
of the inner products to draw out|δ|.

L(b? + δ eω) − L(b?) >

γ |δ| − |〈ΦΛ (cΛ − b?), ϕω〉| |δ|
− |〈s−ΦΛ cΛ, ϕω〉| |δ| . (14)

It remains to rewrite (14) in a favorable manner.
First, identify aΛ = ΦΛ cΛ in the last term on the right-

hand side of (14). Next, let us examine the second term.
Lemma 3 characterizes the difference(cΛ − b?). Introduce
this characterization, and identify the pseudo-inverse ofΦΛ

to discover that

|〈ΦΛ (cΛ − b?), ϕω〉| = γ
∣∣〈(Φ†

Λ)∗ g, ϕω

〉∣∣
= γ

∣∣〈Φ†
Λ ϕω, g

〉∣∣ (15)

whereg ∈ ∂ ‖b?‖1 is determined by (9). Substitute (15) into
the bound (14).

L(b? + δ eω) − L(b?) >[
γ − γ

∣∣〈Φ†
Λ ϕω, g

〉∣∣ − ∣∣〈s− aΛ, ϕω

〉∣∣] |δ| . (16)

Our final goal is to ensure that the left-hand side of (16) is
strictly positive. This situation occurs whenever the bracket is
nonnegative. Therefore, we need

|〈s− aΛ, ϕω〉| ≤ γ
[
1 −

∣∣〈Φ†
Λ ϕω, g

〉∣∣] .

We require this expression to hold for every indexω that does
not belong toΛ. Optimizing each side overω in Ω \Λ yields
the stronger condition

maxω/∈Λ |〈s− aΛ, ϕω〉| ≤

γ
[
1 − maxω/∈Λ

∣∣〈Φ†
Λ ϕω, g

〉∣∣] .

Since(s−aΛ) is orthogonal to the atoms listed inΛ, the left-
hand side does not change if we maximize over allω from Ω.
Therefore,

maxω/∈Λ |〈s− aΛ, ϕω〉| = maxω∈Ω |〈s− aΛ, ϕω〉|
= ‖Φ∗ (s− aΛ)‖∞ .

We conclude that the relation

‖Φ∗ (s− aΛ)‖∞ ≤ γ
[
1 − maxω/∈Λ

∣∣〈Φ†
Λ ϕω, g

〉∣∣]
is a sufficient condition for every perturbation away fromb? to
increase the objective function. Since (L) is convex, it follows
that b? is the unique global minimizer of (L).

In particular, since‖g‖∞ ≤ 1, it is also sufficient that

‖Φ∗ (s− aΛ)‖∞ ≤ γ
[
1 − maxω/∈Λ

∥∥Φ†
Λ ϕω

∥∥
1

]
.

This completes the argument.

IV. `1 PENALIZATION

Suppose thats is an input signal. In this section, we study
applications of the convex program

min
b∈CΩ

1
2 ‖s−Φ b‖22 + γ ‖b‖1 . (`1-PENALTY)

The parameterγ controls the tradeoff between the error
in approximating the input signal and the sparsity of the
approximation.

We begin with a theorem that provides significant infor-
mation about the solution to (`1-PENALTY). Afterward, this
theorem is applied to several important problems. As a first
example, we show that the convex program can identify the
sparsest representation of an exactly sparse signal. Our second
example shows that (`1-PENALTY) can be used to recover
a sparse signal contaminated by an unknown noise vector
of bounded norm, which is a well-known inverse problem.
We will also see that a statistical model for the noise vector
allows us to provide more refined results. In particular, we will
discover that (̀1-PENALTY) is quite effective for recovering
sparse signals corrupted with Gaussian noise. The section
concludes with an application of the convex program to the
subset selection problem from statistics.

The reader should also be aware that convex programs of
the form (̀ 1-PENALTY) have been proposed for numerous
other applications. Geophysicists have long used them for
deconvolution [5, 35]. Certain support vector machines, which
arise in machine learning, can be reduced to this form [8].
Chen, Donoho, and Saunders have applied (`1-PENALTY) to
de-noise signals [9], and Fuchs has put it forth for several
other signal processing problems, e.g., in [36, 37]. Daubechies,
Defrise, and De Mol have suggested a related convex program
to regularize ill-posed linear inverse problems [10]. Most
intriguing, perhaps, Olshausen and Field have argued that
the mammalian visual cortex may solve similar optimization
problems to produce sparse representations of images [38].

Even before we begin our analysis, we can make a few
immediate remarks about (`1-PENALTY). Observe that, as the
parameterγ tends to zero, the solution to the convex program
approaches a point of minimal`1 norm in the affine space
{b : Φ b = s}. It can be shown that, except whens belongs
to a set of signals with Lebesgue measure zero inCd, no point
of the affine space has fewer thand nonzero components [14,
Prop. 4.1]. So the minimizer of (`1-PENALTY) is generically
nonsparse whenγ is small. In contrast, asγ approaches
infinity, the solution tends toward the zero vector.

It is also worth noting that (̀1-PENALTY) has an analytical
solution b? wheneverΦ is unitary. One simply computes
the orthogonal expansion of the signals with respect to the
columns ofΦ and applies the soft thresholding operator to
each coefficient. More precisely,b?(ω) = Tγ(〈s, ϕω〉) where

Tγ(r ei θ) def=
{

(r − γ) ei θ, if r > γ
0, otherwise.

This result will be familiar to anyone who has studied the
process of shrinking empirical wavelet coefficients to de-noise
functions [39, 40].
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A. Performance of(`1-PENALTY)

Our major theorem on the behavior of (`1-PENALTY) simply
collects the lemmata from the last section.

Theorem 8:Let Λ index a linearly independent collection
of atoms for whichERC(Λ) ≥ 0. Suppose thats is an
input signal whosè2 best approximation overΛ satisfies the
correlation condition

‖Φ∗ (s− aΛ)‖∞ ≤ γ ERC(Λ).

Let b? solve the convex program (`1-PENALTY) with param-
eterγ. We may conclude that
• the support ofb? is contained inΛ, and
• the distance betweenb? and the optimal coefficient vector

cΛ satisfies

‖b? − cΛ‖∞ ≤ γ
∥∥(Φ∗

Λ ΦΛ)−1
∥∥
∞,∞ .

• In particular,supp(b?) contains every indexλ in Λ for
which

|cΛ(λ)| > γ
∥∥(Φ∗

Λ ΦΛ)−1
∥∥
∞,∞ .

• Moreover, the minimizerb? is unique.

In words, we approximate the input signal overΛ, and we
suppose that the remaining atoms are weakly correlated with
the residual. It follows then that the minimizerb? of the convex
program involves only atoms inΛ and that this minimizer is
not far from the coefficient vector that synthesizes the best
approximation of the signal overΛ.

To check the hypotheses of this theorem, one must carefully
choose the index setΛ and leverage information about the
relationship between the signal and its approximation overΛ.
Our examples will show how to apply the theorem in several
specific cases. At this point, we can also state a simpler version
of this theorem that uses the coherence parameter to estimate
some of the key quantities. One advantage of this formulation
is that the index setΛ plays a smaller role.

Corollary 9: Suppose thatm µ ≤ 1
2 , and assume that

Λ contains no more thanm indices. Suppose thats is an
input signal whosè2 best approximation overΛ satisfies the
correlation condition

‖Φ∗ (s− aΛ)‖∞ ≤ γ
1 − (2m− 1) µ

1 − (m− 1) µ
.

Let b? solve (̀ 1-PENALTY) with parameterγ. We may con-
clude that
• the support ofb? is contained inΛ, and
• the distance betweenb? and the optimal coefficient vector

cΛ satisfies

‖b? − cΛ‖∞ ≤ γ

1 − (m− 1) µ
.

• In particular,supp(b?) contains every indexλ in Λ for
which

|cΛ(λ)| >
γ

1 − (m− 1) µ
.

• Moreover, the minimizerb? is unique.

Proof: The corollary follows directly from the theorem
when we apply the coherence bounds of Appendix III.

This corollary takes an especially pleasing form if we
assume thatm µ ≤ 1

3 . In that case, the right-hand side of
the correlation condition is no smaller than12 γ. Meanwhile,
the coefficient vectorsb? and cΛ differ in `∞ norm by no
more than3

2 γ.
Note that, whenΦ is unitary, the coherence parameter

µ = 0. Corollary 9 allows us to conclude that the solution
to the convex program identifies precisely those atoms whose
inner products against the signal exceedγ in magnitude. Their
coefficients are reduced in magnitude by at mostγ. This
description matches the performance of the soft thresholding
operator.

B. Example: Identifying Sparse Signals

As a simple application of the foregoing theorem, we offer
a new proof that one can recover an exactly sparse signal by
solving the convex program (`1-PENALTY). Fuchs has already
established this result in the real case [23].

Corollary 10 (Fuchs):Assume thatΛ indexes a linearly
independent collection of atoms for whichERC(Λ) ≥ 0.
Choose an arbitrary coefficient vectorcopt supported onΛ,
and fix an input signals = Φ copt. Let b?(γ) denote the
unique minimizer of (̀1-PENALTY) with parameterγ. We may
conclude that

• There is a positive numberγ0 for which γ < γ0 implies
that supp(b?(γ)) = Λ.

• In the limit asγ ↓ 0, we haveb?(γ) → copt.

Proof: First, note that the best approximation of the
signal overΛ satisfiesaΛ = s and that the corresponding
coefficient vectorcΛ = copt. Therefore,‖Φ∗ (s− aΛ)‖∞ =
0. The Correlation Condition is in force for every positive
γ, so Theorem 8 implies that the minimizerb?(γ) of the
program (̀1-PENALTY) must be supported insideΛ. Moreover,
the distance fromb?(γ) to the optimal coefficient vectorcopt

satisfies

‖b?(γ)− copt‖∞ ≤ γ
∥∥(Φ∗

Λ ΦΛ)−1
∥∥
∞,∞ .

It is immediate thatb?(γ) → copt as the parameterγ ↓ 0.
Finally, observe thatsupp(b?) contains every index inΛ
provided that

minλ∈Λ |copt(λ)|
‖(Φ∗

Λ ΦΛ)−1‖∞,∞
> γ.

Note that the left-hand side of this inequality furnishes an
explicit value forγ0.

As a further corollary, we obtain a familiar result for Basis
Pursuit that was developed independently in [14, 23], gener-
alizing the work in [19–22]. We will require this corollary in
the sequel.
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Corollary 11 (Fuchs, Tropp):Assume thatERC(Λ) > 0.
Let copt be supported onΛ, and fix a signals = Φ copt.
Thencopt is the unique solution to

min
b∈CΩ

‖b‖1 subject to Φ b = s. (BP)

Proof: As γ ↓ 0, the solutions to (̀1-PENALTY) approach
a point of minimum̀ 1 norm in the affine space{b : Φ b = s}.
Sincecopt is the limit of these minimizers, it follows thatcopt

must also solve (BP). The uniqueness claim seems to require a
separate argument and the assumption thatERC(Λ) is strictly
positive. See [23, 41] for two different proofs.

C. Example: Identifying Sparse Signals in Noise

This subsection shows how (`1-PENALTY) can be applied to
the inverse problem of recovering a sparse signal contaminated
with an arbitrary noise vector of bounded`2 norm.

Let us begin with a model for our ideal signals. We will use
this model for examples throughout the paper. Fix aµ-coherent
dictionary Φ containingN atoms in a real signal space of
dimensiond, and place the coherence boundm µ ≤ 1

3 .
Each ideal signal is a linear combination ofm atoms with

coefficients of±1. To formalize things, selectΛ to be any
nonempty index set containingm atoms. Letcopt be a coeffi-
cient vector supported onΛ, and let them nonzero entries of
copt equal±1. Then each ideal signal takes the formΦ copt.
To correctly recover one of these signals, it is necessary to
determine the support setΛ of the optimal coefficient vector
as well as the signs of the nonzero coefficients.

Observe that the total number of ideal signals is

2m

(
N

m

)
since the choice of atoms and the choice of coefficients both
carry information. The coherence estimate in Proposition 26
allows us to establish that the power‖Φ copt‖22 of each ideal
signal satisfies

‖Φ copt‖22 ≤ ‖ΦΛ‖22,2 ‖copt‖22 ≤ 4 m/3.

Similarly, no ideal signal has power less than2 m/3.
In this example, we will form input signals by contaminating

the ideal signals with an arbitrary noise vectorν of bounded
norm, say‖ν‖2 ≤ ε. Therefore, we measure a signal of the
form

s = Φ copt + ν.

We would like to apply Corollary 9 to find circumstances
in which the minimizerb? of (`1-PENALTY) identifies the
ideal signal. That is,sgn b? = sgn copt. Observe that this is a
concrete example of the model problem from the Introduction.

First, let us determine when the Correlation Condition holds
for Λ = supp(copt). According to the Pythagorean Theorem,

‖s− aΛ‖22 = ‖s−Φ copt‖22 − ‖Φ copt − aΛ‖22
= ‖ν‖22 − ‖Φ copt − aΛ‖22 .

Therefore,‖s− aΛ‖2 ≤ ε. Each atom has unit̀2 norm, so

‖Φ∗ (s− aΛ)‖∞ = maxω∈Ω |〈s− aΛ, ϕω〉| ≤ ε.

Referring to the paragraph after Corollary 9, we see that
the correlation condition is in force if we selectγ = 2 ε.
Invoking Corollary 9, we discover that the minimizerb? of
(`1-PENALTY) with parameterγ is supported insideΛ and
also that

‖b? − cΛ‖∞ ≤ 3 γ/2 = 3 ε. (17)

Meanwhile, we may calculate that

‖cΛ − copt‖∞ =
∥∥Φ†

Λ (s−Φ copt)
∥∥
∞

=
∥∥Φ†

Λ ν
∥∥
∞

≤
∥∥Φ†

Λ

∥∥
2,∞ ‖ν‖2 .

The coherence bound in Proposition 26 delivers

‖cΛ − copt‖∞ ≤ ε
√

3/2. (18)

In consequence of the triangle inequality and the bounds (17)
and (18),

‖b? − copt‖∞ ≤
(
3 +

√
3/2
)

ε.

It follows that sgn b? = sgn copt provided that

ε <
1

3 +
√

3/2
≈ 0.2367.

In conclusion, the convex program (`1-PENALTY) can al-
ways recover the ideal signals provided that the`2 norm of
the noise is less than(3 +

√
3/2)−1. At this noise level, the

signal-to-noise ratio (SNR) is no greater than

SNR ≤ 4 m/3
(3 +

√
3/2)−2

= 2m (1 +
√

6)2.

Similarly, the SNR is no smaller thanm (1 +
√

6)2. Note that
the SNR grows linearly with the number of atoms in the signal.

Let’s consider some specific numbers. Suppose that we are
working in a signal space with dimensiond = 28, that the
dictionary containsN = 215 atoms, that the coherenceµ =
2−4, and that the sparsity levelm = 5. We can recover any
of the ideal signals provided that the noise levelε < 0.2367.
For the supremal value ofε, the SNR lies between 17.74 dB
and 20.76 dB. The total number of ideal signals is just over
268, so each one encodes 68 bits of information.

On the other hand, if we have a statistical model for the
noise, we can obtain good performance even when the noise
level is substantially higher. In the next subsection, we will
describe an example of this stunning phenomenon.

D. Example: The Gaussian Channel

A striking application of`1 penalization is to recover a
sparse signal contaminated with Gaussian noise. The fun-
damental reason this method succeeds is that, with high
probability, the noise is weakly correlated with every atom
in the dictionary (provided that the number of atomsN is
sub-exponential in the dimensiond). Note that Fuchs has
developed qualitative results for this type of problem in
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his conference publication [26]; see Section VI-B for some
additional details on his work.

Let us continue with the ideal signals described in the last
subsection. This time, the ideal signals are corrupted by adding
a zero-mean Gaussian random vectorν with covariance matrix
σ2 I. We measure the signal

s = Φ copt + ν,

and we wish to identifycopt. In other words, a codeword is
sent through a Gaussian channel, and we must decode the
transmission. We will approach this problem by solving the
convex program (̀1-PENALTY) with an appropriate choice of
γ to obtain a minimizerb?.

One may establish the following facts about this signal
model and the performance of convex relaxation.

• For each ideal signal, the SNR satisfies

2 m

3 d
σ−2 ≤ SNR ≤ 4 m

3 d
σ−2.

• The capacity of a Gaussian channel [28, Chap. 10] at this
SNR is no greater than

1
2 log2

[
1 +

4 m

3 d
σ−2

]
.

• For our ideal signals, the number of bits per transmission
equals

1
d

[
m + log2

(
N

m

)]
.

• The probability that convex relaxation correctly identifies
the ideal signal exceeds[

1 − exp
{
− 1

8 γ2 σ−2
}]N−m[

1 − exp
{
− 1

3 (1− 3
2 γ)2σ−2

}]m
.

It follows that the failure probability decays exponentially
as the noise power drops to zero.

To establish the first item, we compare the power of the
ideal signals against the power of the noise, which isσ2 d.
To determine the likelihood of success, we must find the
probability (over the noise) that the Correlation Condition is
in force so that we can invoke Corollary 9. Then we must
ensure that the noise does not corrupt the coefficients enough
to obscure their signs. The difficult calculations are consigned
to Appendix IV-A.

We return to the same example from the last subsection.
Suppose that we are working in a signal space with dimension
d = 28, that the dictionary containsN = 215 atoms, that the
coherenceµ = 2−4, and that the sparsity level ism = 5.
Assume that the noise levelσ = 0.05, which is about as large
as we can reliably handle. In this case, a good choice for
the parameterγ is 0.53. With these selections, the SNR is
between 7.17 dB and 10.18 dB, and the channel capacity does
not exceed 1.757 bits per transmission. Meanwhile, we are
sending about 0.267 bits per transmission, and the probability
of perfect recovery exceeds 95% over the noise. Although
there is now a small failure probability, let us emphasize that
the SNR in this example is over 10 dB lower than in the

last example. This improvement is possible because we have
accounted for the direction of the noise.

Let’s be honest. This example still does not inspire much
confidence in our coding scheme: the theoretical rate we
have established is nowhere near the actual capacity of the
channel. The shortcoming, however, is not intrinsic to the
coding scheme. To obtain rates close to capacity, it is necessary
to send linear combinations whose lengthm is on the order
of the signal dimensiond. Experiments indicate that convex
relaxation can indeed recover linear combinations of this
length. But the analysis to support these empirical results
requires tools much more sophisticated than the coherence
parameter. We hope to pursue these ideas in a later work.

E. Example: Subset Selection

Statisticians often wish to predict the value of one random
variable using a linear combination of other random variables.
At the same time, they must negotiate a compromise between
the number of variables involved and the mean squared pre-
diction error to avoid overfitting. The problem of determining
the correct variables is calledsubset selection, and it was
probably the first type of sparse approximation to be studied
in depth. As Miller laments, statisticians have made limited
theoretical progress due to numerous complications that arise
in the stochastic setting [4, Prefaces].

We will consider a deterministic version of subset selection
that manages a simple tradeoff between the squared approx-
imation error and the number of atoms that participate. Let
s be an arbitrary input signal. Supposeτ is a threshold that
quantifies how much improvement in the approximation error
is necessary before we admit an additional term into the
approximation. We may state the formal problem

min
c∈CΩ

‖s−Φ c‖22 + τ2 ‖c‖0 . (SUBSET)

Were the support ofc fixed, then (SUBSET) would be a least-
squares problem. Selecting the optimal support, however, is
a combinatorial nightmare. In fact, if the dictionary is unre-
stricted, it must be NP-hard to solve (SUBSET) in consequence
of results from [12, 16].

The statistics literature contains dozens of algorithmic ap-
proaches to subset selection, which [4] describes in detail.
A method that has recently become popular isthe lasso,
which replaces the difficult subset selection problem with a
convex relaxation of the form (`1-PENALTY) in hope that the
solutions will be related [42]. Our example provides a rigorous
justification that this approach can succeed. If we have some
basic information about the solution to (SUBSET), then we
may approximate this solution using (`1-PENALTY) with an
appropriate choice ofγ.

We will invoke Theorem 8 to show that the solution to
the convex relaxation has the desired properties. To do so, we
require a theorem about the behavior of solutions to the subset
selection problem. The proof appears in Appendix V.

Theorem 12:Fix an input signals, and choose a threshold
τ . Suppose that the coefficient vectorcopt solves the subset
selection problem, and setaopt = Φ copt.
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• For λ ∈ supp(copt), we have|copt(λ)| ≥ τ .
• For ω /∈ supp(copt), we have|〈s− aopt, ϕω〉| ≤ τ .

In consequence of this theorem, any solutioncopt to the
subset selection problem satisfies the Correlation Condition
with Λopt = supp(copt), provided thatγ is chosen so that

τ ≤ γ ERC(Λopt).

Applying Theorem 8 yields the following result.

Corollary 13 (Relaxed Subset Selection):Fix an input sig-
nal s. Suppose that

• the vectorcopt solves (SUBSET) with thresholdτ ;
• the setΛopt = supp(copt) satisfiesERC(Λopt) > 0; and
• the coefficient vectorb? solves (̀1-PENALTY) with pa-

rameterγ ≥ τ / ERC(Λopt).
Then it follows that

• the relaxation never selects a nonoptimal atom since
supp(b?) ⊂ supp(copt);

• the solution to the relaxation is nearly optimal since

‖b? − copt‖∞ ≤

∥∥(Φ∗
optΦopt )−1

∥∥
∞,∞

ERC(Λopt)
τ.

• In particular,supp(b?) contains every indexλ for which

|copt(λ)| >

∥∥(Φ∗
optΦopt )−1

∥∥
∞,∞

ERC(Λopt)
τ.

• Moreover,b? is the unique solution to (`1-PENALTY).

In words, if any solution to the subset selection problem
satisfies a condition on the Exact Recovery Coefficient, then
the solution to the convex relaxation (`1-PENALTY) for an ap-
propriately chosen parameterγ will identify every significant
atom in the solution to (SUBSET) and it will never involve any
atom that does not belong in that optimal solution.

It is true that, in the present form, the hypotheses of this
corollary may be difficult to verify. Invoking Corollary 9
instead of Theorem 8 would yield a more practical result
involving the coherence parameter. Nevertheless, this result
would still involve a strong assumption on the sparsity of an
optimal solution to the subset selection problem. It is not clear
that one could verify this hypothesis in practice, so it may be
better to view these results as philosophical support for the
practice of convex relaxation.

For an incoherent dictionary, one could develop a converse
result of the following shape.

Suppose that the solution to the convex relax-
ation (̀ 1-PENALTY) is sufficiently sparse, has large
enough coefficients, and yields a good approxima-
tion of the input signal. Then the solution to the
relaxation must approximate an optimal solution to
(SUBSET).

As this paper was being completed, it came to the author’s
attention that Gribonval et al. have developed some results of
this type [43]. Their theory should complement the present
work nicely.

V. ERROR-CONSTRAINED `1 M INIMIZATION

Suppose thats is an input signal. In this section, we study
applications of the convex program.

min
b∈CΩ

‖b‖1 subject to ‖s−Φ b‖2 ≤ δ. (`1-ERROR)

Minimizing the `1 norm of the coefficients promotes sparsity,
while the parameterδ controls how much approximation error
we are willing to tolerate.

We will begin with a theorem that yields significant infor-
mation about the solution to (`1-ERROR). Then, we will tour
several different applications of this optimization problem. As
a first example, we will see that it can recover a sparse signal
that has been contaminated with an arbitrary noise vector
of bounded`2 norm. Afterward, we show that a statistical
model for the bounded noise allows us to sharpen our analysis
significantly. Third, we describe an application to a sparse
approximation problem that arises in numerical analysis.

The literature does not contain many papers that apply the
convex program (̀1-ERROR). Indeed, the other optimization
problem (̀ 1-PENALTY) is probably more useful. Nevertheless,
there is one notable study [18] of the theoretical performance
of (`1-ERROR). This manuscript will be discussed in more
detail in Section VI-B.

Let us conclude this introduction by mentioning some of the
basic properties of (`1-ERROR). As the parameterδ approaches
zero, the solutions will approach a point of minimal`1 norm
in the affine space{b : Φ b = s}. On the other hand, as soon
as δ exceeds‖s‖2, the unique solution to (`1-ERROR) is the
zero vector.

A. Performance of(`1-ERROR)

The following theorem describes the behavior of a min-
imizer of (̀ 1-ERROR). In particular, it provides conditions
under which the support of the minimizer is contained in a
specific index setΛ. We reserve the proof until Section V-E.

Theorem 14:Let Λ index a linearly independent collection
of atoms for whichERC(Λ) > 0, and fix an input signals.
Select an error toleranceδ no smaller than1 +

(
maxcor(s− aΛ)

∥∥Φ†
Λ

∥∥
2,1

ERC(Λ)

)21/2

‖s− aΛ‖2 .

Let b? solve the convex program (`1-ERROR) with tolerance
δ. We may conclude that
• the support ofb? is contained inΛ,
• the distance betweenb? and the optimal coefficient vector

cΛ satisfies

‖b? − cΛ‖2 ≤ δ
∥∥Φ†

Λ

∥∥
2,2

.

• In particular,b? contains every indexλ from Λ for which

|cΛ(λ)| > δ
∥∥Φ†

Λ

∥∥
2,2

.

• Moreover, the minimizerb? is unique.

In words, if the parameterδ is chosen somewhat larger than
the error in the optimal approximationaΛ, then the solution
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to (`1-ERROR) identifies every significant atom inΛ and it
never picks an incorrect atom. Note that the manuscript [18]
refers to the first conclusion as asupport resultand the second
conclusion as astability result.

To invoke the theorem, it is necessary to choose the pa-
rameterδ carefully. Our examples will show how this can be
accomplished in several specific cases. Using the coherence
parameter, it is possible to state a somewhat simpler result.

Corollary 15: Suppose thatm µ ≤ 1
2 , and assume thatΛ

lists no more thanm atoms. Suppose thats is an input signal,
and choose the error toleranceδ no smaller than[

1 +
m (1 − (m− 1) µ)
(1 − (2m− 1) µ)2

maxcor(s− aΛ)2
]1/2

‖s− aΛ‖2 .

Let b? solve (̀ 1-ERROR) with toleranceδ. We may conclude
that supp(b?) ⊂ Λ. Furthermore, we have‖b? − cΛ‖2 ≤
δ
∥∥Φ†

Λ

∥∥
2,2

.

Proof: The corollary follows directly from the theorem
when we apply the coherence bounds from Appendix III.

This corollary takes a most satisfying form under the
assumption thatm µ ≤ 1

3 . In that case, if we choose the
tolerance

δ ≥
√

1 + 6 m maxcor(s− aΛ)2 ‖s− aΛ‖2 ,

then we may conclude that‖b? − cΛ‖2 ≤ δ
√

3/2.

B. Example: Identifying Sparse Signals in Noise (Redux)

In Section IV-C, we showed that (`1-PENALTY) can be
used to solve the inverse problem of recovering sparse signals
corrupted with arbitrary noise of bounded magnitude. This
example will demonstrate that (`1-ERROR) can be applied to
the same problem.

We proceed with the same ideal signals described in Section
IV-C. For reference, we quickly repeat the particulars. Fix aµ-
coherent dictionaryΦ containingN atoms in ad-dimensional
real signal space, and assume thatm µ ≤ 1

3 . Let Λ index m
atoms, and letcopt be a coefficient vector supported onΛ
whosem nonzero entries equal±1. Each ideal signal takes
the formΦ copt.

In this example, the ideal signals are contaminated by an
unknown vectorν with `2 norm no greater thanε to obtain
an input signal

s = Φ copt + ν.

We wish to apply Corollary 15 to determine when the mini-
mizer b? of (`1-ERROR) can identify the ideal signals. That
is, sgn b? = sgn copt.

First, we must determine what toleranceδ to use for the
convex program. Since there is no information on the direction
of the residual, we must use the boundmaxcor(s − aΛ) ≤
1. As in Section IV-C, the norm of the residual satisfies
‖s− aΛ‖2 ≤ ε. Therefore, we may chooseδ = ε

√
1 + 6 m.

Invoke Corollary 15 to determine that the support ofb? is
contained inΛ and that

‖b? − cΛ‖2 ≤ δ
√

3/2.

A modification of the argument in Section IV-C yields

‖cΛ − copt‖2 ≤
∥∥Φ†

Λ

∥∥
2,2

‖s− aΛ‖2 .

Proposition 26 provides an upper bound for this operator norm,
from which we conclude that

‖cΛ − copt‖2 ≤ ε
√

3/2.

The triangle inequality furnishes

‖b? − copt‖2 ≤ (ε + δ)
√

3/2.

Recalling the value ofδ, we have

‖b? − copt‖2 ≤ ε (1 +
√

1 + 6 m)
√

3/2.

Therefore,sgn b? = sgn copt provided that

ε <

√
2/3

1 +
√

1 + 6 m
.

Note that this upper bound decreases asm increases.
Let us consider the same specific example as before. Sup-

pose that we are working in a real signal space of dimension
d = 28, that the dictionary contains215 atoms, that the
coherence levelµ = 2−4, and that the level of sparsitym = 5.
Then we may selectδ = ε

√
31 ≈ 5.568 ε. To recover the sign

of each coefficient, we needε < 0.1243. At this noise level,
the SNR is between 23.34 dB and 26.35 dB. Comparing this
example with Section IV-C, we conclude that (`1-PENALTY)
provides a more robust method for recovering our ideal signals.

The manuscript [18] of Donoho et al. contains some results
related to Corollary 15. That article splits Corollary 15 into
two pieces. Their Theorem 6.1 guarantees that the minimizer
of (`1-ERROR) has the desired support properties, while their
Theorem 3.1 ensures that the minimizer approximatescopt, the
optimal coefficient vector. We will use our running example
to illustrate a difference between their theory and ours. Their
support result also requires thatδ ≥ ε

√
31 to ensure that the

support of the minimizerb? is contained in the ideal support.
Their stability result requires thatm µ ≤ 1

4 , so it does not
allow us to reach any conclusions about the distance between
b? andcopt.

C. Example: The Uniform Channel

A compelling application of Theorem 14 is to recover a
sparse signal that is polluted by uniform noise with bounded
`2 norm. As before, the fundamental reason that convex
relaxation succeeds is that, with high probability, the noise
is weakly correlated with every atom in the dictionary. This
subsection describes a simple example that parallels the case
of Gaussian noise.

We retain the same model for our ideal signals. This time,
we add a random vectorν that is uniformly distributed on the
`2 ball of radiusε. The measured signals look like

s = Φ copt + ν.
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In words, we transmit a codeword through a (somewhat
unusual) communication channel. Of course, we will attempt
to recover the ideal signal by solving (`1-ERROR) with an ap-
propriate toleranceδ to obtain a minimizerb?. The minimizer
b? correctly identifies the optimal coefficients if and only if
sgn b? = sgn copt.

Let t be an auxiliary parameter, and suppose that we choose
the tolerance

δ =
[
1 + 6 m t2

]1/2
ε.

We may establish the following facts about the minimizerb?

of (`1-ERROR).

• The probability (over the noise) that we may invoke
Corollary 15 exceeds

1 − 2 (N −m) exp
{
− 1

2 t2 (d−m)
}

.

• In this event, we conclude thatsupp(b?) ⊂ Λ and that
• the distance between the coefficient vectors satisfies

‖b? − copt‖2 ≤ (ε + δ)
√

3/2.

In particular,sgn b? = sgn copt whenever

(ε + δ)
√

3/2 < 1.

To calculate the success probability, we must study the distri-
bution of the correlation between the noise and the nonoptimal
atoms. We relegate the difficult calculations to Appendix IV-B.
The other two items were established in the last subsection.

Let’s do the numbers. Suppose that we are working in a
real signal space of dimensiond = 28, that the dictionary
containsN = 215 atoms, that the coherence levelµ = 2−4,
and that the level of sparsitym = 5. To invoke Corollary 15
with probability greater than 95% over the noise, it suffices
to chooset2 = 0.1123. This corresponds to the selectionδ =
2.090 ε. In the event that the corollary applies, we recover
the index set and the signs of the coefficients provided that
ε < 0.2642. At this noise level, the SNR is between 16.79 dB
and 19.80 dB.

Once again, by taking the direction of the noise into account,
we have been able to improve substantially on the more naı̈ve
approach described in the last subsection. In contrast, none of
the results in [18] account for the direction of the noise.

D. Example: Error-Constrained Sparse Approximation

In numerical analysis, a common problem is to approximate
or interpolate a complicated function using a short linear
combination of more elementary functions. The approximation
must not commit too great an error. At the same time, one pays
for each additional term in the linear combination whenever
the approximation is evaluated. Therefore, one may wish to
maximize the sparsity of the approximation subject to an error
constraint [16].

Suppose thats is an arbitrary input signal, and fix an error
level ε. The sparse approximation problem we have described
may be stated as

min
c∈CΩ

‖c‖0 subject to ‖s−Φ c‖2 ≤ ε. (19)

Observe that this mathematical program will generally have
many solutions that use the same number of atoms but
yield different approximation errors. The solutions will always
become sparser as the error tolerance increases. Instead, we
consider the more convoluted mathematical program

min
c∈CΩ

‖c‖0 + 1
2 ‖s−Φ c‖2 ε−1

subject to ‖s−Φ c‖2 ≤ ε. (ERROR)

Any minimizer of (ERROR) also solves (19), but it produces
the smallest approximation error possible at that level of
sparsity.

We will attempt to produce a solution to the error-
constrained sparse approximation problem by solving the con-
vex program (̀1-ERROR) for a value ofδ somewhat larger than
ε. Our major result shows that, under appropriate conditions,
this procedure approximates the solution of (ERROR).

Corollary 16 (Relaxed Sparse Approximation):Fix an in-
put signals. Suppose that

• the vectorcopt solves (ERROR) with toleranceε;
• the set Λopt = supp(copt) satisfies the condition

ERC(Λopt) > 0; and
• the vectorb? solves the convex relaxation (`1-ERROR)

with thresholdδ such that

δ ≥

1 +

 ∥∥Φ†
opt

∥∥
2,1

ERC(Λopt)

2


1/2

ε.

Then it follows that

• the relaxation never selects a nonoptimal atom since
supp(b?) ⊂ supp(copt);

• yet b? is no sparser than a solution to (ERROR) with
toleranceδ.

• The solution of the relaxation is nearly optimal since

‖b? − copt‖2 ≤ δ
∥∥Φ†

opt

∥∥
2,2

;

• in particular,supp(b?) contains every indexλ for which

|copt(λ)| > δ
∥∥Φ†

opt

∥∥
2,2

.

• Moreover,b? is the unique solution of (`1-ERROR).

Proof: Note that (ERROR) delivers a maximally sparse
vector in the set{c : ‖s−Φc‖2 ≤ δ}. Sinceb? is also in
this set, it certainly cannot be any sparser. The other claims
follow directly by applying Theorem 14 tos with the index set
Λopt = supp(copt). We also use the facts that‖s− aopt‖2 ≤
ε and that the maximum correlation function never exceeds
one. Finally,

It may be somewhat difficult to verify the hypotheses of
this corollary. In consequence, it might be better to view the
result as a philosophical justification for the practice of convex
relaxation.

In the present setting, there is a sort of converse to Corollary
16 that follows from the work in [18]. This result allows us
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to verify that a solution to the convex relaxation approximates
the solution to (ERROR).

Proposition 17: Assume that the dictionary has coherence
µ, and lets be an input signal. Suppose thatb? is a coefficient
vector whose support containsm indices, wherem µ < 1

2 , and
suppose that

‖s−Φ b?‖2 ≤ ε.

Then we may conclude that the optimal solutioncopt to
(ERROR) with toleranceε satisfies

‖b? − copt‖2 ≤ 2 ε√
1− 2 m µ

.

Proof: Theorem 2.12 of [18] can be rephrased as follows.
Suppose that

‖s−Φb?‖2 ≤ ε and ‖b?‖0 < 1
2 sparkη(Φ);

‖s−Φcopt‖2 ≤ ε and ‖copt‖0 < 1
2 sparkη(Φ).

Then ‖b? − copt‖2 ≤ 2ε/η. We may apply this result in the
present context by making several observations.

If b? has sparsity levelm, then the optimal solutioncopt

to (ERROR) with toleranceε certainly has a sparsity level no
greater thanm. Setη =

√
1− 2 m µ, and apply Lemma 2.8

of [18] to see thatsparkη(Φ) ≥ 2 m + 1.

More results of this type would be extremely valuable,
because they make it possible to verify that a given coefficient
vector approximates the solution to (ERROR). For the most
recent developments, we refer the reader to the report [43].

E. Proof of Theorem 14

Now we demonstrate that Theorem 14 holds. This argument
takes some work because we must check the Karush–Kuhn–
Tucker necessary and sufficient conditions for a solution to
the convex program (`1-ERROR).

Proof: Suppose thatΛ indexes a linearly independent
collection of atoms and thatERC(Λ) > 0. Fix an input signal
s, and choose a toleranceδ so that

δ2 ≥ ‖s− aΛ‖22 +
‖Φ∗ (s− aΛ)‖2∞

∥∥Φ†
Λ

∥∥2

2,1

ERC(Λ)2
(20)

This is the same bound as in the statement of the theorem, but
it has been rewritten in a more convenient fashion. Without
loss of generality, take‖s‖2 > δ. Otherwise, the unique
solution to (̀ 1-ERROR) is the zero vector.

Consider the restricted minimization problem

min
{b : supp(b)⊂Λ}

‖b‖1 subject to ‖s−Φ b‖2 ≤ δ. (21)

Since the objective function and the constraint set are both
convex, the Karush–Kuhn–Tucker conditions are necessary
and sufficient [34, Chapter 28]. They guarantee that the
(unique) minimizerb? of the program (21) satisfies

b? ∈ arg min
{b : supp(b)⊂Λ}

ζ? ‖s−Φ b‖22 + ‖b‖1 (22)

‖s−Φ b?‖2 = δ (23)

whereζ? is a strictly positive Lagrange multiplier. If we define
γ? = 1/(2 ζ?), then we may rewrite (22) as

b? ∈ arg min
{b : supp(b)⊂Λ}

1
2 ‖s−Φ b‖22 + γ? ‖b‖1 . (24)

We will show thatb? is also a global minimizer of the convex
program (̀1-ERROR).

SinceaΛ is the best̀ 2 approximation ofs using the atoms
in Λ and the signalΦ b? is also a linear combination of atoms
in Λ, it follows that the vectors(s−aΛ) and(aΛ−Φ b?) are
orthogonal to each other. Applying the Pythagorean Theorem
to (23), we obtain

‖s− aΛ‖22 + ‖aΛ −Φ b?‖22 = δ2

whence

‖aΛ −Φ b?‖2 =
[
δ2 − ‖s− aΛ‖22

]1/2

. (25)

The coefficient vectorb? also satisfies the hypotheses of
Corollary 5, and therefore we obtain

‖aΛ −Φ b?‖2 ≤ γ?

∥∥Φ†
Λ

∥∥
2,1

.

Substituting (25) into this relation, we obtain a lower bound
on γ?: [

δ2 − ‖s− aΛ‖22
]1/2 ∥∥Φ†

Λ

∥∥−1

2,1
≤ γ?.

Next, we introduce (20) into this inequality and make extensive
(but obvious) simplifications to reach

‖Φ∗ (s− aΛ)‖∞ ≤ γ? ERC(Λ).

In view of this fact, the Correlation Condition Lemma allows
us to conclude thatb? is the (unique) global minimizer of the
convex program

min
b∈CΩ

1
2 ‖s−Φ b‖22 + γ? ‖b‖1 .

Dividing through byγ?, we discover that

b? ∈ arg min
b∈CΩ

ζ? ‖s−Φ b‖22 + ‖b‖1 .

Since we also have (23) andζ? > 0, it follows thatb? satisfies
the KKT sufficient conditions for a minimizer of

min
b∈CΩ

‖b‖1 subject to ‖s−Φ b‖2 ≤ δ. (`1-ERROR)

Therefore, we have identified a global minimizer of (`1-
ERROR).

Now we must demonstrate that the coefficient vectorb?

provides theunique minimizer of the convex program. This
requires some work because we have not shown that every
minimizer must be supported onΛ.

Suppose thatbalt is another coefficient vector that solves
(`1-ERROR). First, we argue thatΦ balt = Φ b? by assuming
the contrary. Since‖s‖2 > δ, the error constraint in (`1-
ERROR) is binding at every solution. In particular, we must
have

‖s−Φ balt‖2 = δ = ‖s−Φ b?‖2 .

Since`2 balls are strictly convex,∥∥s− 1
2 Φ (balt + b?)

∥∥
2

< δ.
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It follows that the coefficient vector12 (balt +b?) cannot solve
(`1-ERROR). Yet the solutions to a convex program must form
a convex set, which is a contradiction.

Next, observe thatbalt and b? share the samè1 norm
because they both solve (`1-ERROR). Under our hypothesis
that ERC(Λ) > 0, Corollary 11 states thatb? is the unique
solution to the program

min
b∈CΩ

‖b‖1 subject to Φ b = Φ b?.

Thusbalt = b?. We conclude thatb? is the unique minimizer
of the convex relaxation.

Finally, let us estimate how farb? deviates fromcΛ. We
begin with equation (25), which can be written

‖ΦΛ (cΛ − b?)‖2 =
[
δ2 − ‖s− aΛ‖22

]1/2

.

The right-hand side clearly does not exceedδ, while the left-
hand side may be bounded below as∥∥Φ†

Λ

∥∥−1

2,2
‖cΛ − b?‖2 ≤ ‖ΦΛ (cΛ − b?)‖2 .

Combine the two bounds and rearrange to complete the
argument.

VI. D ISCUSSION

This final section attempts to situate the work of this paper
in context. To that end, it describes some results for another
sparse approximation algorithm, Orthogonal Matching Pursuit,
that are parallel with our results for convex relaxation. Then we
discuss some recent manuscripts that contain closely related
results for convex relaxation. Afterward, some extensions and
new directions for research are presented. We conclude with
a vision for the future of sparse approximation.

A. Related Results for OMP

Another basic technique for sparse approximation is a
greedy algorithm called Orthogonal Matching Pursuit (OMP)
[12, 44]. At each iteration, this method selects the atom most
strongly correlated with the residual part of the signal. Then
it forms the best approximation of the signal using the atoms
already chosen, and it repeats the process until a stopping
criterion is met.

The author feels that it is instructive to compare the the-
oretical performance of convex relaxation against OMP, so
this subsection offers two theorems about the behavior of
the greedy algorithm. We extract the following result from
Theorem 5.3 of [45].

Theorem 18 (Tropp–Gilbert–Strauss):Suppose thatΛ con-
tains no more thanm indices, wherem µ < 1

2 . Suppose that
s is an input signal whose best approximation overΛ satisfies
the correlation condition

‖Φ∗ (s− aΛ)‖∞ ≤ γ
1 − 2 m µ

1 − m µ
.

Apply Orthogonal Matching Pursuit to the input signal, and
halt the algorithm at the end of iterationt if the maximum cor-
relation between the computed residualrt and the dictionary
satisfies

‖Φ∗ rt‖∞ ≤ γ.

We may conclude that
• the algorithm has selectedt indices fromΛ, and
• it has chosen every indexλ from Λ for which

|cΛ(λ)| >
γ

1 − 2 m µ
.

• Moreover, the absolute error in the computed approxima-
tion at satisfies

‖s− at‖22 ≤ ‖s− aΛ‖22 + γ2 m− t

1 − (m− t) µ
.

Note that this theorem relies on the coherence parameter,
and no available version describes the behavior of the al-
gorithm in terms of more fundamental dictionary attributes.
Compare this result with Corollary 9 for (`1-PENALTY).

There is also a result for OMP that parallels Corollary 15
for (`1-ERROR). We quote Theorem 5.9 from [33].

Theorem 19 (Tropp):Let Λ index a linearly independent
collection of atoms for whichERC(Λ) > 0. Suppose that
s is an input signal, and letδ be a number no smaller than1 +

(
maxcor(s− aΛ)

∥∥Φ†
Λ

∥∥
2,1

ERC(Λ)

)2
1/2

‖s− aΛ‖2 .

Suppose that we apply Orthogonal Matching Pursuit to the
input signal, and we halt the algorithm at the end of iteration
t if the norm of the computed residualrt satisfies

‖rt‖2 ≤ δ.

Then we may conclude that the algorithm has chosent
indices fromΛ, and (obviously) the error in the calculated
approximationat satisfies‖s− at‖22 ≤ δ.

It is remarkable how closely results for the greedy algo-
rithm correspond with our theory for convex relaxation. The
manuscript [18] contains some related results for OMP.

B. Comparison with Related Work

As the first draft [25] of the present work was being
released, several other researchers independently developed
some closely related results [18, 26, 27]. This subsection pro-
vides a short guide to these other manuscripts.

In [26], J.-J. Fuchs has studied the qualitative performance
of the`1 penalty method for the problem of recovering a sparse
signal contaminated with zero-mean, white Gaussian noise.
Fuchs shows that the minimizer of (`1-PENALTY) correctly
identifies all of the atoms that participate in the sparse signal,
provided that the signal-to-noise ratio is high enough and the
parameterγ is suitably chosen. He suggests that quantifying
the analysis would be difficult. The example in Section IV-D
of this paper shows that his pessimism is unwarranted.
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Later, Fuchs extended his approach to study the behavior
of the `1 penalty method for recovering a sparse signal
corrupted by an unknown noise vector of bounded`2 norm
[26]. Theorem 4 of his paper provides a quantitative result
in terms of the coherence parameter. The theorem states that
solving (̀ 1-PENALTY) correctly identifies all of the atoms that
participate in the sparse signal, provided that none of the
ideal coefficients are too small and that the parameterγ is
chosen correctly. It is possible to obtain the same result as an
application of our Theorem 8.

The third manuscript [18] provides a sprawling analysis
of the performance of (19), (`1-ERROR), and OMP for the
problem of recovering a sparse signalΦ copt polluted by an
unknown noise vector whosè2 norm does not exceedε. It is
difficult to summarize their work in such a small space, but
we will touch on the highlights.
• Their Theorem 2.1 shows that any solutionc? to (19)

with toleranceε satisfies

‖c? − copt‖2 ≤ K0 ε,

where the constantK0 depends on the coherence of the
dictionary and the sparsity of the ideal signal.

• Theorem 3.1 shows that any solutionb? to (`1-ERROR)
with toleranceδ satisfies

‖b? − copt‖2 ≤ K1 (ε + δ)

where the constantK1 also depends on the coherence
and the sparsity levels.

• Theorem 6.1 is analogous with Corollary 15 of this paper.
Their result, however, is much weaker because it does
not take into account the direction of the noise, and it
estimates everything in terms of the coherence parameter.

The most significant contributions of [18], therefore, are
probably their stability results, Theorems 2.1 and 3.1, which
are not paralleled elsewhere.

We hope this section indicates how these three manuscripts
illuminate different facets of convex relaxation. Along with the
present work, they form a strong foundation for the theoretical
performance of convex relaxation methods.

C. Extensions

There are many different ways to generalize the work in this
paper. This subsection surveys some of the most promising
directions.

1) The Correlation Condition:In this article, we have not
used the full power of Lemma 6, the Correlation Condition.
In particular, we never exploited the subgradient that appears
in the first sufficient condition. It is possible to strengthen our
results significantly by taking this subgradient into account.
Due to the breadth of the present work, we have chosen not
to burden the reader with these results.

2) Beyond Coherence:Another shortcoming of the present
approach is the heavy reliance on the coherence parameter
to make estimates. Several recent manuscripts [46–50] have
exploited methods from Banach space geometry to study the
average-case performance of convex relaxation, and they have
obtained results that far outstrip simple coherence bounds.

None of these works, however, contains theory about recov-
ering the correct support of a synthetic sparse signal polluted
with noise. The author considers this to be one of the most
important open questions in sparse approximation.

3) Other Error Norms: One can imagine situations where
the `2 norm is not the most appropriate way to measure the
error in approximating the input signal. Indeed, it may be more
effective to use the convex program

min
b∈CΩ

‖s−Φ b‖p + γ ‖b‖1 (26)

wherep ∈ [1,∞]. Intuitively, largep will force the approx-
imation to be close to the signal in every component, while
smallp will make the approximation more tolerant to outliers.
Meanwhile, the`1 penalty on the coefficients will promote
sparsity of the coefficients. The casep = ∞ has recently been
studied in [51]. See also [52, 53].

To analyze the behavior of (26), we might follow the same
path as in Section III. For a given index setΛ, we would
characterize the solution to the convex program when the
feasible set is restricted to vectors supported onΛ. Afterward,
we would perturb this solution in a single component outside
Λ to develop a condition which ensures that the restricted
minimizer is indeed the global minimizer. The author has made
some progress with this approach for the casep = ∞, but no
detailed results are presently available.

4) Bregman Divergences:Suppose thatf is a differentiable,
convex function. Associated withf is a directed distance
measure called aBregman divergence. The divergence ofx
from y is defined as

Df (x;y) def= f(x)− f(y)− Re 〈x− y, ∇f(y)〉 .
The most common examples of Bregman divergences are
the squared̀ 2 distance and the (generalized) information
divergence. Like these prototypes, a Bregman divergence has
many attractive properties with respect to best approximation
[54]. Moreover, there is a one-to-one correspondence between
Bregman divergences and exponential families of probability
distributions [55].

In the model problem, suppose that the noise vectorν
is drawn from the exponential family connected with the
Bregman divergenceDf . To solve the problem, it is natural
to apply the convex program

min
b∈CΩ

Df (Φ b; s) + γ ‖b‖1 . (27)

Remarkably, the results in this paper can be adapted for (27)
with very little effort. This coup is possible because Bregman
divergences exhibit behavior perfectly analogous with the
squared̀ 2 norm.

5) The Elastic Net:The statistics literature contains several
variants of (̀1-PENALTY). In particular, Zuo and Hastie have
studied the following convex relaxation method for subset
selection [56].

min
b∈CΩ

1
2 ‖s−Φ b‖22 + γ ‖b‖1 + β ‖b‖22 . (28)

They call this optimization problemthe elastic net. Roughly
speaking, it promotes sparsity without permitting the coeffi-
cients to become too large. It would be valuable to study the
solutions to (28) using our methods.
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6) Simultaneous Sparse Approximation:Suppose that we
had several different observations of a sparse signal con-
taminated with additive noise. One imagines that we could
use the extra observations to produce a better estimate for
the ideal signal. This problem is calledsimultaneous sparse
approximation. The papers [45, 57–60] discuss algorithms for
approaching this challenging problem.

D. Conclusions

Even though convex relaxation has been applied for more
than thirty years, the present results are unprecedented in
the published literature because they apply to the important
case where a sparse signal is contaminated by noise. Indeed,
we have seen conclusively that convex relaxation can be
used to solve the model problem in a variety of concrete
situations. We have also shown that convex relaxation offers a
viable approach to the subset selection problem and the error-
constrained sparse approximation problem. These examples
were based on detailed general theory that describes the
behavior of minimizers to the optimization problems (`1-
PENALTY) and (̀ 1-ERROR). This theory also demonstrates
that the efficacy of convex relaxation is related intimately to
the geometric properties of the dictionary. We hope that this
report will have a significant impact on the practice of convex
relaxation because it proves how these methods will behave
in realistic problem settings.

Nevertheless, this discussion section makes it clear that
there is an enormous amount of work that remains to be
done. In particular, we still do not understand the average-case
behavior of convex relaxation in the presence of noise. But
as Vergil reminds us,“Tantae molis erat Romanam condere
gentem.”Such a burden it was to establish the Roman race.
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APPENDIX I
A BRIEF HISTORY OFRELAXATION

The ascendance of convex relaxation for sparse approxi-
mation was propelled by two theoretical–technological devel-
opments of the last half century. First, the philosophy and
methodology of robust statistics—which derive from work of
von Neumann, Tukey, and Huber—show that`1 loss criteria
can be applied to defend statistical estimators against outly-
ing data points. Robust estimators qualitatively prefer a few
large errors and many tiny errors to the armada of moderate
deviations introduced by mean-squared-error criteria. Second,
the elevation during the 1950s of linear programming to the
level of technologyand the interior-point revolution of the
1980s have made it both tractable and commonplace to solve

the large-scale optimization problems that arise from convex
relaxation.

It appears that a 1973 paper of Claerbout and Muir is the
crucible in which these reagents were first combined for the
express goal of yielding a sparse representation [15]. They
write,

In deconvolving any observed seismic trace, it is
rather disappointing to discover that there is a
nonzero spike at every point in time regardless of
the data sampling rate. One might hope to find
spikes only where real geologic discontinuities take
place. Perhaps theL1 norm can be utilized to give
a [sparse] output trace. . . .

This idea was subsequently developed in the geophysics
literature [5, 61, 62]. Santosa and Symes, in 1986, proposed the
convex relaxation (̀1-PENALTY) as a method for recovering
sparse spike trains, and they proved that the method succeeds
under moderate restrictions [35].

Around 1990, the work oǹ1 criteria in signal processing
recycled to the statistics community. Donoho and Johnstone
wrote a pathbreaking paper which proved that one could
determine a nearly optimal minimax estimate of a smooth
function contaminated with noise by solving (`1-PENALTY)
with the dictionaryΦ an appropriate wavelet basis and the
parameterγ related to the variance of the noise. Slightly later,
Tibshirani proposed this convex program, which he callsthe
lasso, as a method for solving the subset selection problems
in linear regression [42]. From here, it is only a short step to
Basis Pursuit and Basis Pursuit de-noising [9].

This history could not be complete without mention of
parallel developments in the theoretical computer sciences.
It has long been known that some combinatorial problems
are intimately bound up with continuous convex program-
ming problems. In particular, the problem of determining the
maximum value that an affine function attains at some vertex
of a polytope can be solved using a linear program [63].
A major theme in modern computer science is that many
other combinatorial problems can be solved approximately by
means of convex relaxation. For example, a celebrated paper of
Goemans and Williamson proves that a certain convex program
can be used to produce a graph cut whose weight exceeds 87%
of the maximum cut [64]. The present work draws deeply
on the fundamental idea that a combinatorial problem and its
convex relaxation often have closely related solutions.

APPENDIX II
IS THE ERC NECESSARY?

Corollary 10 shows that ifERC(Λ) ≥ 0, then any superpo-
sition of atoms fromΛ can be recovered using (`1-PENALTY)
for a sufficiently small penaltyγ. The following theorem
demonstrates that this type of result cannot hold ifERC(Λ) <
0. It follows from results of Feuer and Nemirovsky [65] that
there are dictionaries in which some sparse signals cannot be
recovered by means of (`1-PENALTY).

Theorem 20:Suppose thatERC(Λ) < 0. Then we may
construct an input signal that has an exact representation using
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the atoms inΛ and yet the minimizer of the function (L) is
not supported onΛ whenγ is small.

Proof: SinceERC(Λ) < 0, there must exist an atomϕω

for which
∥∥Φ†

Λ ϕω

∥∥
1

> 1 even thoughω /∈ Λ. Perversely, we
select the input signal to bes = PΛ ϕω. We can synthesizes
exactly with the atoms inΛ by means of the coefficient vector
cΛ = Φ†

Λϕω.
According to Corollary 5, the minimizerb? of the function

L(b) = 1
2 ‖s−Φ b‖22 + γ ‖b‖1

over all coefficient vectors supported onΛ must satisfy
‖cΛ − b?‖∞ ≤ γ

∥∥(Φ∗
ΛΦΛ)−1

∥∥
∞,∞. Since ‖cΛ‖1 > 1

by construction, we may chooseγ small enough that the
bound‖b?‖1 > 1 is also in force. Define the corresponding
approximationa? = Φ b?.

Now we construct a parameterized coefficient vector

b(t) def= (1− t) b? + t eω for t in [0, 1].

For positive t, it is clear that the support ofb(t) is not
contained inΛ. We will prove thatL(b(t)) < L(b?) for small,
positive t. Sinceb? minimizesL over all coefficient vectors
supported onΛ, no global minimizer ofL can be supported
on Λ.

To proceed, calculate that

L(b(t)) = 1
2 ‖s− a?‖22

+ t Re 〈s− a?, a? −ϕω〉+ 1
2 t2 ‖a? −ϕω‖22

+ γ (1− t) ‖b?‖1 + tγ.

Differentiate this expression with respect tot and evaluate the
derivative att = 0:

dL(b(t))
dt

∣∣∣∣
t=0

= Re 〈s− a?, a? −ϕω〉+ γ (1− ‖b?‖1).

By construction ofb?, the second term is negative. The first
term is nonpositive because

〈s− a?, a? −ϕω〉 = 〈PΛ(s− a?), a? −ϕω〉
= 〈s− a?, PΛ(a? −ϕω)〉
= 〈s− a?, a? − s〉
= −‖s− a?‖22 .

Therefore, the derivative is negative, andL(b(t)) < L(b(0))
for small, positivet. Observe thatb(0) = b? to complete the
argument.

APPENDIX III
COHERENCEBOUNDS

In this section, we collect some coherence bounds from
Section 3 of the technical report [25]. These results help us to
understand the behavior of sub-dictionary synthesis matrices.
We begin with a bound for the singular values.

Proposition 21: Suppose that(m − 1) µ < 1, and assume
that |Λ| ≤ m. Each singular valueσ of the matrixΦΛ satisfies

1 − (m− 1) µ ≤ σ2 ≤ 1 + (m− 1) µ.

The last result yields a useful new estimate.

Proposition 22: Suppose that(m − 1) µ < 1, and assume
that |Λ| ≤ m. Then

∥∥Φ†
Λ

∥∥
2,∞ ≤ [1 − (m − 1) µ]−1/2.

Equivalently, the rowsΦ†
Λ have `2 norms no greater than

[1− (m− 1) µ]−1/2.

Proof: Recall that the operator norm
∥∥Φ†

Λ

∥∥
2,∞ calculates

the maximum`2 norm among the rows ofΦ†
Λ. It is easy to

see that this operator norm is bounded above by
∥∥Φ†

Λ

∥∥
2,2

, the

maximum singular value ofΦ†
Λ. But the maximum singular

value ofΦ†
Λ is the reciprocal of the minimum singular value

of ΦΛ. Proposition 21 provides a lower bound on this singular
value, which completes the argument.

We also require another norm estimate on the pseudo-inverse.

Proposition 23: Suppose that|Λ| ≤ m and(m− 1) µ < 1.
Then ∥∥Φ†

Λ

∥∥
2,1

≤
[

m

1 − (m− 1) µ

]1/2

.

The next result bounds an operator norm of the Gram matrix.

Proposition 24: Suppose that|Λ| ≤ m and(m− 1) µ < 1.
Then ∥∥(Φ∗

Λ ΦΛ)−1
∥∥
∞,∞ ≤ 1

1 − (m− 1) µ
.

We conclude by estimating the Exact Recovery Coefficient.

Proposition 25: Suppose that|Λ| ≤ m, wherem µ ≤ 1
2 . A

lower bound on the Exact Recovery Coefficient is

ERC(Λ) ≥ 1 − (2m− 1) µ

1 − (m− 1) µ
.

APPENDIX IV
DETAILS OF CHANNEL CODING EXAMPLES

This appendix contains the gory details behind the channel
coding examples from Sections IV-D and V-C. In preparation,
let us recall the model for ideal signals. We work with aµ-
coherent dictionaryΦ containingN atoms in ad-dimensional
real signal space. For each setΛ that listsm atoms, we con-
sider coefficient vectorscopt supported onΛ whose nonzero
entries equal±1. Each ideal signal has the formΦ copt.

It will be handy to have some numerical bounds on the
quantities that arise. Using the estimates in Appendix III, we
obtain the following bounds.

Proposition 26: Suppose thatΛ indexes a sub-dictionary
containing m atoms, wheremµ ≤ 1

3 . Then the following
bounds are in force:
•
∥∥Φ†

Λ

∥∥
2,2

≤
√

3/2.
•
∥∥(Φ∗

Λ ΦΛ)−1
∥∥
∞,∞ ≤ 3/2.

• ERC(Λ) ≥ 1/2.
• The rows ofΦ†

Λ have`2 norms no greater than
√

3/2.
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A. The Gaussian Channel

In this example, we attempt to recover an ideal signal from
a measurement of the form

s = Φ copt + ν

whereν is a zero-mean Gaussian random vector with covari-
ance matrixσ2 I. We study the performance of (`1-PENALTY)
for this problem.

First, consider the event that Corollary 9 applies. In other
words, it is necessary to compute the probability that the
Correlation Condition is in force, i.e.,

‖Φ∗ (s− aΛ)‖∞ ≤ γ ERC(Λ)

whereΛ = supp(copt). To that end, we will develop a lower
bound on the probability

E1
def= Prob

{
‖Φ∗ (s− aΛ)‖∞ ≤ 1

2 γ
}

= Prob
{
maxω/∈Λ |〈s− aΛ, ϕω〉| ≤ 1

2 γ
}

.

Observe that(s − aΛ) = (I − PΛ) s = (I − PΛ)ν. Use
adjointness to transfer the projector to the other side of the
inner product, and scaleν by 1/σ to obtain

E1 = Prob
{
maxω/∈Λ |〈z, (I− PΛ) ϕω〉| ≤ 1

2 γ/σ
}

wherez is a zero-mean Gaussian vector with identity covari-
ance. A direct application of Sidak’s Lemma [66, Lemma 2]
yields a lower bound on this probability.

E1 ≥
∏

ω/∈Λ
Prob

{
|〈z, (I− PΛ) ϕω〉| ≤ 1

2 γ/σ
}

.

The atoms have unit norm, so the norm of(I−PΛ) ϕω does
not exceed one. Therefore,

E1 ≥
∏

ω/∈Λ
Prob

{
|〈z, (I− PΛ)ϕω〉|
‖(I− PΛ)ϕω‖2

≤ 1
2 γ/σ

}
.

Suppose thatv is an arbitrary unit vector. Integrating the
Gaussian kernel over the hyperplanev⊥ yields the bound

Prob {|〈z, v〉| ≤ t} =
1√
2π

∫ t

−t

e−x2/2 dx

≥ 1− exp{−t2/2}. (29)

Apply (29) in our bound forE1, and exploit the fact that the
product contains(N −m) identical terms to reach

E1 ≥
[
1 − exp

{
− 1

8 (γ/σ)2
}]N−m

.

In words, we have developed a lower bound on the probability
that the correlation condition holds so that we may apply
Corollary 9.

Assume that the conclusions of Corollary 9 are in force. In
particular,supp(b?) ⊂ Λ and also‖b? − cΛ‖∞ ≤ 3

2 γ. The
upper triangle inequality implies that

‖b? − copt‖∞ ≤ 3
2 γ + ‖cΛ − copt‖∞ .

Each nonzero component ofcopt equals±1, so the corre-
sponding component ofb? has the same sign provided that

‖cΛ − copt‖∞ < 1− 3
2 γ.

We will bound the probability that this event occurs. By
definition, cΛ = Φ†

Λ s, which yields

cΛ = copt + Φ†
Λ ν.

It follows that the noise contaminatingcΛ depends only on
PΛ ν, which is independent from(s−aΛ) = (I−PΛ) ν. We
calculate that

E2
def= Prob

{
‖copt − cΛ‖∞ < 1− 3

2 γ
}

= Prob
{∥∥Φ†

Λ ν
∥∥
∞ ≤ 1− 3

2 γ
}

≥ Prob
{∥∥Φ†

Λ z
∥∥
∞ ≤ (1− 3

2 γ)/σ
}

= Prob
{

max
λ∈Λ

∣∣〈z, (Φ†
Λ)∗ eλ

〉∣∣ ≤ (1− 3
2 γ)/σ

}
wherez is a Gaussian random vector with identity covariance.
Applying Sidak’s Lemma again, we obtain

E2 ≥
∏

λ∈Λ
Prob

{∣∣〈z, (Φ†
Λ)∗ eλ

〉∣∣ ≤ (1− 3
2 γ)/σ

}
.

The `2 norm of each row ofΦ†
Λ is bounded above by

√
3/2.

Renormalizing each row and applying (29) gives

E2 ≥
∏
λ∈Λ

Prob

{∣∣〈z, (Φ†
Λ)∗ eλ

〉∣∣∥∥(Φ†
Λ)∗ eλ

∥∥
2

≤
(1− 3

2 γ)/σ∥∥(Φ†
Λ)∗ eλ

∥∥
2

}
≥
∏

λ∈Λ
Prob

{
|〈z, v〉| ≤

√
2/3 (1− 3

2 γ)/σ
}

=
[
1 − exp

{
− 1

3

(
1− 3

2 γ
)2

σ−2
}]m

wherev denotes any fixed unit vector.
The event that we may apply the corollary and the event

that the coefficients incΛ are sufficiently large are independent
from each other. We may conclude that the probability of both
events occurring isEsucc = E1 E2. Ergo,

Esucc ≥
[
1 − exp

{
− 1

8 γ2 σ−2
}]N−m[

1 − exp
{
− 1

3

(
1− 3

2 γ
)2

σ−2
}]m

.

Using the inequality(1−x)k ≥ 1−kx, which holds forx ≤ 1
andk ≥ 1, we see that the failure probability satisfies

1− Esucc ≤ (N −m) exp
{
− 1

8 γ2 σ−2
}

+ m exp
{
− 1

3

(
1− 3

2 γ
)2

σ−2
}

.

In particular, the failure probability decays exponentially as
the noise power approaches zero. If the noise level is known,
it is possible to optimize this expression overγ to find the
parameter that minimizes the probability of failure.

B. The Uniform Channel

In this example, we attempt to recover ideal signals from
measurements of the form

s = Φ copt + ν

whereν is uniformly distributed on thè2 ball of radiusε.
We study the performance of (`1-ERROR) for this problem.
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Let Λ = supp(copt). First, observe that the residual vector
can be rewritten as

s− aΛ = (I− PΛ) s = (I− PΛ) ν,

so the`2 norm of the residual does not exceedε. According to
the remarks after Corollary 15, we should selectδ no smaller
than

δ ≥
[
1 + 6 m maxcor(s− aΛ)2

]1/2
ε.

The rest of the example will prove that the maximum corre-
lation exhibits a concentration phenomenon: it is rather small
with high probability. Therefore, we can chooseδ much closer
to ε than a näıve analysis would suggest.

To begin the calculation, rewrite

maxcor(s− aΛ) = max
ω/∈Λ

|〈s− aΛ, ϕω〉|
‖s− aΛ‖2

= max
ω/∈Λ

|〈(I− PΛ) ν, (I− PΛ) ϕω〉|
‖(I− PΛ)ν‖2

.

It is not hard to check that(I − PΛ) ν is a spherically
symmetric random variable on the orthogonal complement of
R(PΛ). Therefore, the random variable

u
def=

(I− PΛ) ν

‖(I− PΛ) ν‖2
is uniformly distributed on the unit sphere ofR(PΛ)⊥,
which is a (d − m)-dimensional subspace. In consequence,
maxcor(s − aΛ) has the same distribution as the random
variable

max
ω/∈Λ

|〈u, (I− PΛ) ϕω〉| .

Now, let us bound the probability that the maximum corre-
lation is larger than some numbert. In symbols, we seek

E
def= Prob {maxcor(s− aΛ) ≥ t}
= Prob {maxω/∈Λ |〈u, (I− PΛ)ϕω〉| ≥ t}

≤
∑

ω/∈Λ
Prob {|〈u, (I− PΛ) ϕω〉| ≥ t} .

Fix an indexω /∈ Λ, and consider

Prob {|〈u, (I− PΛ) ϕω〉| ≥ t} .

Since u is spherically symmetric, this probability cannot
depend on the direction of the vector(I−PΛ) ϕω. Moreover,
the probability only increases when we increase the length of
this vector. It follows that we may replace(I−PΛ)ϕω by an
arbitrary unit vectorv from R(PΛ)⊥. Therefore,

E ≤
∑

ω/∈Λ
Prob {|〈u, v〉| ≥ t}

= (N −m) Prob {|〈u, v〉| ≥ t} .

The probability can be interpreted geometrically as the fraction
of the sphere covered by a pair of spherical caps. Since we are
working in a subspace of dimension(d−m), each of the two
caps covers no more thanexp{− 1

2 t2 (d−m)} of the sphere
[67, Lemma 2.2]. Therefore,

E ≤ 2 (N −m) exp{− 1
2 t2 (d−m)}.

Since we can writeE = Prob
{
maxcor(s− aΛ)2 ≥ t2

}
,

we conclude that the choice

δ ≥
[
1 + 6 m t2

]1/2
ε

allows us to invoke Theorem 14 with probability greater than
(1− E) over the noise.

APPENDIX V
SOLUTIONS TO (SUBSET)

In this appendix, we establish Theorem 12, a structural
result for solutions to the subset selection problem. Recall that
the problem is

min
c∈CΩ

‖s−Φ c‖22 + τ2 ‖c‖0 . (SUBSET)

Now we restate the theorem and prove it.

Theorem 27:Fix an input signals, and choose a threshold
τ . Suppose that the coefficient vectorcopt solves the subset
selection problem, and setaopt = Φ copt.

• For λ ∈ supp(copt), we have|copt(λ)| ≥ τ .
• For ω /∈ supp(copt), we have|〈s− aopt, ϕω〉| ≤ τ .

Proof: For a given input signals, suppose that the
coefficient vectorcopt is a solution of (SUBSET) with threshold
τ , and defineΛopt = supp(copt). Put aopt = Φ copt, and
let Popt denote the orthogonal projector onto the span of the
atoms inΛopt. A quick inspection of the objective function
makes it clear thataopt must be the best̀2 approximation of
s using the atoms inΛopt. Therefore,aopt = Popt s.

We begin with the second conclusion of the theorem. Take
any indexω outsideΛopt. The best approximationa′ of s
using the atoms inΛopt ∪ {ω} is

a′
def= aopt +

〈s, (I− Popt) ϕω〉
‖(I− Popt) ϕω‖2

(I− Popt) ϕω

‖(I− Popt) ϕω‖2
.

Orthogonal projectors are self-adjoint, so

a′ = aopt +
〈s− aopt, ϕω〉
‖(I− Popt) ϕω‖22

(I− Popt) ϕω.

Since the two terms are orthogonal, the Pythagorean Theorem
furnishes

‖s− a′‖22 = ‖s− aopt‖22 − |〈s− aopt, ϕω〉|2

‖(I− Popt) ϕω‖22
.

The second term on the right-hand side measures how much
the squared approximation error diminishes if we addϕω to
the approximation. Notice that the second term must be less
than or equal toτ2, or else we could immediately construct a
solution to (SUBSET) that is strictly better thancopt by using
the additional atom. Therefore,

|〈s− aopt, ϕω〉|2 ≤ τ2 ‖(I− Popt) ϕω‖22
Atoms have unit̀ 2 norm, and the projector only attenuates
their `2 norms. It follows that‖(I− Popt) ϕω‖22 ≤ 1, and so
|〈s− aopt, ϕω〉| ≤ τ .

The argument behind the first conclusion of the theorem is
similar. Choose an indexξ from Λopt, and letP denote the
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orthogonal projector onto the span of the atoms inΛopt \{ξ}.
Since aopt =

∑
Λ copt(λ)ϕλ, the best approximation ofs

using the reduced set of indices is given by

P s = P aopt = aopt − (I− P ) aopt

= aopt − copt(ξ) (I− P ) ϕξ

Thus, removing the atomϕξ from the approximation would
increase the squared error by exactly

|copt(ξ)|2 ‖(I− P )ϕξ‖22 .

This quantity must be at leastτ2, or else the reduced set of
atoms would afford a strictly better solution to (SUBSET) than
the original set. Since(I − P ) is an orthogonal projector,
‖(I− P )ϕξ‖22 ≤ 1. We conclude that|copt(ξ)| ≥ τ .

One could obviously prove much more about the solutions
of the subset selection problem using similar techniques, but
these results are too tangential to pursue here.
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