
ON THE CONDITIONING OF RANDOM SUBDICTIONARIES

JOEL A. TROPP

Abstract. An important problem in the theory of sparse approximation is to identify well-
conditioned subsets of vectors from a general dictionary. In most cases, current results do not
apply unless the number of vectors is smaller than the square root of the ambient dimension, so
these bounds are too weak for many applications. This paper shatters the square-root bottleneck
by focusing on random subdictionaries instead of arbitrary subdictionaries. It provides explicit
bounds on the extreme singular values of random subdictionaries that hold with overwhelming
probability. The results are phrased in terms of the coherence and spectral norm of the dictionary,
which capture information about its global geometry. The proofs rely on standard tools from the
area of Banach space probability.

As an application, the paper shows that the conditioning of a subdictionary is the major obstacle
to the uniqueness of sparse representations and the success of `1 minimization techniques for signal
recovery. Indeed, if a fixed subdictionary is well conditioned and its cardinality is slightly smaller
than the ambient dimension, then a random signal formed from this subdictionary almost surely
has no other representation that is equally sparse. Moreover, with overwhelming probability, the
maximally sparse representation can be identified via `1 minimization.

Note that the results in this paper are not directly comparable with recent work on subdictionar-
ies of random dictionaries.

1. Introduction

To motivate the results of this article, we begin with sparse representation, the problem of finding
a sparse solution to an underdetermined system of linear equations. Fix a dictionary Φ, which is
a d ×N complex matrix whose columns have unit `2 norm. Suppose we are given a signal s that
is formed as a linear combination of m columns from Φ:

s = Φc where ‖c‖0 = m.

(The `0 quasi-norm ‖·‖0 counts the number of nonzero components in its argument.) The sparse
representation problem asks us to determine the vector c of coefficients, given only the dictionary Φ
and the observed signal s. In particular, we must locate the nonzero components of c to determine
which columns participate in the signal. Observe that the active columns must form a linearly
independent set before this problem is even well posed.

One of the central challenges in sparse representation, therefore, is to identify the linearly in-
dependent collections of columns from a dictionary. In fact, many applications demand stronger
information on the conditioning of column submatrices in the form of bounds for their extreme
singular values. Ideally, these results should depend only on global properties of the dictionary
matrix and on the number of columns extracted.
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The coherence of a dictionary encapsulates information about its global geometry, and it can be
used to study the conditioning of its column submatrices. The coherence is defined by

µ
def= max

j 6=k
|〈ϕj , ϕk〉|

where ϕk denotes the kth column of Φ. In words, µ bounds the cosine of the acute angle between
pairs of columns from the dictionary. The following easy result connects the coherence with the
extreme singular values of a column submatrix from the dictionary. Here and elsewhere, ‖·‖ denotes
the spectral norm (i.e., the norm on linear maps from `2 to `2), and the letter I represents a
conformal identity matrix.

Proposition 1. Let Φ be a dictionary with coherence µ, and let A be an arbitrary m-column
submatrix of Φ. Then

‖A∗A− I‖ ≤ (m− 1)µ

In particular, every collection of m columns is linearly independent when (m− 1)µ < 1.

To interpret this theorem, one should note that

‖A∗A− I‖ = max
{
σ2

max(A)− 1, 1− σ2
min(A)

}
,

where σ2
max(A) and σ2

min(A) indicate the extreme eigenvalues of A∗A.

Proof sketch. Apply Gershgorin’s Theorem to the Gram matrix A∗A. See [DE03, Thm. 5] for
details. �

This result is quite attractive, but its utility is limited by the fact that the coherence cannot be
very small [SH03, Thm. 2.3]:

µ ≥

√
N − d
d(N − 1)

. (1.1)

When N ≥ 2d, it follows that µ ≥ (2d− 1)−1/2. In this common parameter regime, Proposition 1
only yields information on the smallest singular value when m = O(

√
d). It would be valuable to

understand larger collections of columns, but deterministic methods cannot provide a much better
assessment than Proposition 1. Instead of asking about arbitrary sets of columns, therefore, we
study random collections of columns from the dictionary. This change of focus allows us to shatter
the square-root bottleneck.

1.1. Contributions. This paper provides explicit bounds for the extreme singular values of ran-
dom collections of columns from a general dictionary. The results are phrased in terms of the global
geometry of the dictionary, and they are vastly superior to the simple bounds of Proposition 1. The
proofs involve standard methods from the field of Banach space probability, such as the systematic
use of symmetrization and (noncommutative) Khintchine inequalities. Although the approach is
not new, this paper provides satisfying answers to fundamental questions, and we believe that both
the results and the methods will be valuable to the computational harmonic analysis community.

1.2. Outline. A brief outline is standard at this point. Section 2 offers a snapshot of the most
important theorems, and Section 3 compares our findings with earlier work from the fields of sparse
approximation and Banach space theory. The key technical tools are introduced without proof in
Section 4. Sections 5 and 6 develop the main results upon these foundations. Sections 7 and 8
discuss applications of these results to problems in sparse representation. Finally, Sections 9 and 10
contain complete proofs of the technical theorems, which is valuable because the functional analysis
literature tends to be indifferent about the precise values of numerical constants.
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2. Background and Major Results

This section presents some background material and sets the notation for the rest of the work.
Then it states four representative theorems that summarize the major contributions of the paper.

2.1. Background and notation. For each p ≥ 1, we write ‖·‖p for the usual `p vector norm,
while the symbol ‖·‖p,q denotes the norm on linear maps from `p to `q. In this work, two norms
are especially important:

• The quantity ‖A‖1,2 is the maximum `2 norm of a column of A.
• The spectral norm ‖A‖2,2 returns the largest singular value of A. It is always written as
‖·‖ without any subscripts.

For a natural number N , abbreviate the set {1, 2, . . . , N} by the symbol JNK. Given a subset
Ω of JNK, we write CΩ for the set of functions mapping Ω to C, equipped with the usual addition
and scalar multiplication to form a linear space.

The symbol P {·} denotes the probability operator, which returns the probability of a given
event. The letter E indicates the expectation operator. We use a special notation for conditional
expectation. For example, if Z is a random variable, then EZ denotes integration with respect to
Z, holding other variables fixed.

The (positive homogeneous) qth moment of a random variable is computed via the expression
(E |·|q)1/q. This expression defines the Lq norm on the space of complex-valued random variables.
In particular, it verifies a triangle inequality:

(E |Y + Z|q)1/q ≤ (E |Y |q)1/q + (E |Z|q)1/q.

Throughout this work, the word random, without additional qualification, always means “uni-
formly random over the specified set.” For example, the phrase “a random m-column submatrix”
means that each m-column submatrix is drawn with equal probability.

We follow the analysts’ convention that upright Roman letters (c, C, D, . . . ) denote absolute
constants that may change at each appearance. Finally, be aware that all logarithms in this paper
have base e.

2.2. The dictionary. The term dictionary refers to a d × N complex matrix Φ whose columns
have unit `2 norm. Without loss of generality, we may assume that the columns of Φ span Cd,
which implies that N ≥ d. A column submatrix of Φ is referred to as a subdictionary. If T is a
subset of JNK, we sometimes write ΦT for the subdictionary consisting of the columns in T .

After the coherence, the spectral norm ‖Φ‖ is the most important geometric quantity associated
with the dictionary. It measures how much the dictionary matrix can dilate a unit-norm coefficient
vector, so it reflects how much the columns of Φ are “spread out.” Using Hölder’s inequality, one
may develop a lower bound on the spectral norm of the dictionary:

‖Φ‖2 = ‖Φ∗Φ‖ ≥ d−1 trace(Φ∗Φ) =
N

d
. (2.1)

When equality holds in this relation, the dictionary is called a unit-norm tight frame. Equivalently,
the rows of Φ are mutually orthogonal vectors with equal norms.

2.3. Pairs of orthonormal bases. One frequently encounters dictionaries that are formed as a
concatenation of two orthonormal bases:

Φ =
[
Φ1 Φ2

]
,

where Φ1 and Φ2 are both d× d unitary matrices. The paradigmatic example is the Fourier–Dirac
dictionary, in which Φ1 is the discrete Fourier transform matrix and Φ2 is the identity matrix. This
dictionary is connected with discrete uncertainty principles [DS89, DH01].
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The coherence of a pair of orthonormal bases is calculated as

µ = max
j,k

∣∣∣〈ϕ(1)
j , ϕ

(2)
k

〉∣∣∣ for j, k = 1, 2, . . . , d.

In this setting, the coherence satisfies a more stringent bound:

µ ≥ d−1/2. (2.2)

Note that the Fourier–Dirac dictionary has coherence µ = d−1/2.
For a pair of orthonormal bases, we can strengthen Proposition 1 substantially [DH01, DE03].

Proposition 2. Let Φ be a pair of orthonormal bases. Suppose the subdictionary A contains |Ω|
columns from the first basis and |T | columns from the second basis. Then

‖A∗A− I‖ ≤ µ
√
|Ω| |T |.

In particular, A has linearly independent columns whenever |Ω| |T | < µ−2.

Proof sketch. Let B denote the off-diagonal block of A∗A. Observe that ‖A∗A− I‖ = ‖B‖, and
apply the estimate ‖B‖2 ≤ ‖B‖1,1 ‖B‖∞,∞. �

2.4. Results for incoherent dictionaries. This subsection presents two central results about
the conditioning of random subdictionaries drawn from an incoherent dictionary. The proofs ap-
pear in Section 6. The first theorem focuses on the special case of a unit-norm tight frame with
typical coherence. These hypotheses enable us to offer a transparent statement that illuminates
the pessimism of the predictions in Proposition 1.

Theorem A. Let Φ be a unit-norm tight frame for Cd with at least 2d columns. Suppose that X
is a random m-column subdictionary. Then

E ‖X∗X − I‖ ≤ C
√
µ2m log(m+ 1),

provided that the right-hand side is less than one.

It is instructive to compare Theorem A with Proposition 1. Consider the important case where
µ = d−1/2. The theorem predicts that most m-column subdictionaries are linearly independent
when m = const · d/ log d. In sharp contrast, the proposition allows that all m-column subdic-
tionaries are linearly independent only when m ≤

√
d. The price we pay for the better bound is a

weakening from certainty about the conditioning to near certainty. Our arguments do not yield a
good estimate for the constant; the proof delivers a value of about 12. As a consequence, the new
result does not quantitatively improve on the older result until the dimension d is quite large.

Theorem A is straightforward, but it does not take full advantage of the information available.
In particular, our methods yield strong estimates on the probability that a random subdictionary
is well conditioned. Here is a more detailed (i.e., complicated) result.

Theorem B. Let Φ be a dictionary, and let X be a random m-column subdictionary. The condition√
µ2m log(m+ 1) · s+

m

N
‖Φ‖2 ≤ cδ with s ≥ 1

implies that
P {‖X∗X − I‖ ≥ δ} ≤ m−s.

In words, the number δ controls the range of the extreme singular values of a random subdic-
tionary. The probability that a subdictionary is ill conditioned drops exponentially fast as the
parameter s increases. This result also exposes the participation of the spectral norm, which was
hidden in Theorem A because of the hypotheses.
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To appreciate why Theorem B improves on Proposition 1, just compare the term µ2m logm here
against the term µm in the older result. On account of (2.1), we also have the bound

m

N
‖Φ‖2 ≥ m

d
.

This contribution ensures that—no matter how small the coherence—the estimate of the smallest
singular value is vacuous when the size of the subdictionary is close to the ambient dimension. Of
course, this condition is natural because we cannot construct a linearly independent collection of
more than d vectors in d dimensions.

2.5. Results for pairs of orthonormal bases. The special structure of a pair of orthonormal
bases allows us to prove theorems that are essentially different, and it also yields improved constants.
This section describes two major results that are established in Section 5. The first theorem
estimates the expected spread of the extreme singular values of a partially random subdictionary.

Theorem C. Let Φ be a pair of orthonormal bases, and suppose that X contains |Ω| arbitrary
columns from the first basis and |T | random columns from the second basis. Then

E ‖X∗X − I‖ ≤ C
√
µ2 |Ω| log(m+ 1) +

√
|T |
d

where m = min{|Ω| , |T |}.

This result should be compared with Proposition 2. Consider the case where µ = d−1/2. Theorem
C allows the subdictionary to contain |Ω| = const · d/ log d arbitrary columns from the first basis
and |T | = const · d random columns from the second basis. In sharp contrast, the proposition
requires that the subdictionary contain no more than

√
d columns from at least one basis.

We would like to emphasize several curious features of Theorem C. First, the coherence and the
logarithm only limit the size of the arbitrary basis; the number of randomly chosen columns can
be proportional to the ambient dimension. Second, the logarithm only involves the cardinality of
the smaller set of columns. Finally, note that it is possible to obtain strong probability estimates,
even though this point is not immediately apparent from the statement of the theorem.

Here is another result for pairs of orthonormal bases that provides a probability estimate and is
directly comparable with earlier work. In the next section, we weigh this theorem against results
of Candès and Romberg [CR06].

Theorem D. Assume d ≥ 3. Let Φ be a pair of orthonormal bases, and let X consist of |Ω|
arbitrary columns from the first basis and |T | random columns from the second basis. If

|Ω|+ |T | ≤ cµ−2

s log d
with s ≥ 1

then
P {‖X∗X − I‖ ≥ 0.5} ≤ d−s.

The constant c is no smaller than 0.004212.

2.6. Applications and Extensions. This paper also develops applications of these theorems
in the field of sparse representation. Consider a subdictionary that is well conditioned and has
cardinality slightly smaller than the ambient dimension. We show that a random signal formed from
this subdictionary almost surely has no other representation that is equally sparse. Moreover, with
overwhelming probability, the maximally sparse representation can be identified by `1 minimization.
Detailed statements of these results require some background, so we refer the reader to Sections 7
and 8.

It is also important to be aware that the work in this paper is tailored to the case where the
dictionary is “uniformly coherent.” That is, many of inner products between columns are close
to the coherence bound. When the dictionary has a different type of correlation structure, the
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theory here may give poor results. In particular, it is possible to develop much stronger estimates
for localized dictionaries—those whose Gram matrix is concentrated near the diagonal. These
conclusions can be reached with similar methods, but we have chosen not to present them for several
reasons. The theorems are more complicated and less compelling; the proofs are substantially
longer; and the constants are awful. If there is sufficient interest, we may pursue this line of inquiry
in a future paper.

3. Related Work

This section describes two strands of related work: one from the field of sparse approximation
and the second from the field of Banach space theory. The former provides us our motivations,
while the latter equips us with the technical tools to solve the problems.

3.1. Results from sparse approximation. The earliest work on the behavior of subdictionaries
can be traced to the paper of Donoho and Stark [DS89] about applications of uncertainty principles
in signal processing. Their results include a proof of Proposition 2 for the Fourier–Dirac dictionary.
The works [DH01, EB02, GN03] broadened this investigation to cover other pairs of orthonormal
bases, resulting in Proposition 1 and the general form of Proposition 2.

Early work of Fuchs [Fuc04] hinted that certain results on sparse representation could be strength-
ened substantially by shifting to a probabilistic viewpoint. The first explicit results in this direction
were established by Candès, Romberg, and Tao. In particular, they developed a probabilistic un-
certainty principle for the Fourier–Dirac dictionary that outstrips Proposition 2 [CRT06]. The
following result, which is representative, appears in [CR06].

Proposition 3 (Candès–Romberg–Tao). Assume that d ≥ 512. Suppose that X contains |Ω|
arbitrary columns from the Fourier basis and |T | random columns from the Dirac basis. For each
s ≥ 1,

|Ω|+ |T | ≤ cd√
(s+ 1) log d

,

implies that
P {‖X∗X − I‖ ≥ 0.5} ≤ Cd−s log d.

The constant c is no smaller than 0.2660.

This theorem states that almost all collections of columns from the Fourier–Dirac dictionary are
well conditioned, provided that the total number of columns is smaller than the dimension d by
a factor of

√
log d. In contrast, Theorem D requires that we back away from the dimension by a

factor of log d. The present methods are not perspicuous enough to reproduce this result.
Candès and Romberg also state a result for general pairs of orthonormal bases [CR06].

Proposition 4 (Candès–Romberg). Suppose that Φ is a pair of orthonormal bases whose coherence
satisfies

µ ≤ 1√
2(s+ 1) log d

.

Assume that each column of the first basis appears in X independently with probability d−1 |Ω| and
each column of the second basis appears independently with probability d−1 |T |. If

|Ω|+ |T | ≤ cµ−2

((s+ 1) log d)5/2
,

then
P {‖X∗X − I‖ ≥ 0.5} ≤ Cd−s log d.
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Theorem D improves on this proposition in several ways. Our result removes the coherence
restriction; it reduces the power on the logarithm; it improves the probability decay; and it allows
us to choose an arbitrary set of columns from one basis.

We believe that there are no direct precedents in the sparse approximation literature for the
results on general dictionaries, Theorems A and B.

The results of Candès–Romberg–Tao actually come from a different strand of research about
the properties of random dictionaries. Over the last two years, this area has seen impressive
contributions from a variety of researchers. A partial list of important works includes [CT06, RV06,
BDDW07, CDD06, DT06]. The results in this paper come from a different tradition that focuses
on sparse approximation with respect to a fixed, deterministic dictionary. Structured dictionaries
appear in many applications, which is why our results are valuable.

3.2. Results from Banach space geometry. The Banach space literature does not directly
address the problem we are studying, but Rudelson has completely solved the dual problem [Rud99]
by building on earlier work of Bourgain [Bou99]. One version of the result follows.

Proposition 5 (Rudelson). Let Φ be a unit-norm tight frame. Let X be a random collection of m
columns from Φ. Then

E
∥∥∥∥ 1
m
XX∗ − 1

d
I
∥∥∥∥ ≤ C

√
d log d
m

,

provided that the right-hand side does not exceed one.

Since Φ is a tight frame, its normalized inertia matrix N−1ΦΦ∗ = d−1I. This proposition states
that we can approximate the normalized inertia matrix by drawing m = const · d log d random
columns and computing a sample average. The result is qualitatively optimal, and it completes a
line of inquiry initiated by Kannan et al. [KLS97]. For recent progress on a closely related problem,
see [Aub07]. The present work relies strongly on Rudelson’s techniques.

It is also interesting to view our work in the light of the Restricted Invertibility Principle of
Bourgain and Tzafriri. They prove that every matrix whose columns are not too small and whose
spectral norm is not too large must contain a large column submatrix that is well conditioned
[BT87].

Proposition 6 (Restricted Invertibility Principle). Let Φ be a dictionary. There exists a collection
T of columns with cardinality

|T | ≥ cN
‖Φ‖2

whose smallest singular value is bounded away from zero:

‖ΦTx‖2 ≥ c ‖x‖2 for all x.

This remarkable theorem has applications in harmonic analysis and Banach space geometry. Other
authors have extended this work; see [Ver05] and its bibliography for recent progress.

A result with such weak hypotheses can only guarantee the existence of a well-conditioned sub-
dictionary. Our goal is to understand when well-conditioned subdictionaries are prevalent, and this
investigation requires additional hypotheses. To verify this point, consider a dictionary Φ that
consists of two copies of the same orthonormal basis for Cd. It is easy to find orthonormal sub-
dictionaries, but a random subdictionary with expected cardinality m usually contains duplicated
columns when 2m ≥

√
d. One may explain this phenomenon by noting that the coherence of the

dictionary is heinous (µ = 1), even though the spectral norm is small (‖Φ‖ =
√

2).
After the present paper was complete, we learned of another paper by Bourgain and Tzafriri

[BT91] that bears directly on our work. Here is a simplified version of their result.
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Proposition 7 (Bourgain–Tzafriri). Let A be an n × n matrix whose norm ‖A‖ ≤ 1 and whose
entries satisfy

|ajk| ≤
1

log2 n
.

From A, draw a random principal submatrix B with dimensions cn× cn. Then

P {‖B‖ ≥ 0.5} ≤ n−c.

By applying this proposition to the hollow Gram matrix of a dictionary, it is possible to obtain
estimates for the conditioning of random subdictionaries that are much stronger than the ones
presented here. Nevertheless, we feel that our results remain valuable. The primary advantage of
our approach is its versatility and accessibility. In fact, we have used the methods of this paper to
develop a modern proof of Proposition 7 [Tro06b]. A secondary advantage is that our techniques
yield explicit and somewhat reasonable constants.

4. The Toolbox

Our investigation centers around expressions of the form ‖RAR∗‖ where A is a fixed matrix
and R is a restriction to a randomly chosen set of coordinates. We must understand the habitat
and behavior of this animal. What is its expectation? What is the probability that it achieves an
unusually large value? These questions are answered with methods from the field of probability
in Banach spaces [LT91]. The technologies are standard, although most of the results have not
appeared in the precise form given here. Major sources for this work include [LP86, BT91, LT91,
Rud99, Buc01, RV07]; more detailed citations appear throughout the paper.

4.1. Restriction maps. Before we continue, let us introduce a little more notation. Let Ω be a
subset of JNK. We may define a restriction map

RΩ : CN → CΩ via the rule (RΩf)(ω) = f(ω) for ω ∈ Ω.

That is, the map RΩ limits a vector in CN to the components in Ω. The adjoint is an extension
map with the action

(R∗Ωf)(k) =

{
f(k) when k ∈ Ω
0 when k ∈ JNK \ Ω.

In words, the map R∗Ω extends a vector from CΩ to CN by padding it with zeros. We often drop
the subscript from the restriction if it is obvious or irrelevant. In this work, the term “restriction”
always refers to a coordinate restriction.

4.2. Key Technical Results. Our most important theorem is adapted from work of Rudelson and
Vershynin [RV07], who build essentially on earlier work of Rudelson [Rud99]. This theorem gives
information about the spectral norm of a matrix that has been restricted to a random collection of
columns.

Theorem 8 (Spectral Norm of a Random Compression). Suppose that A is a matrix with N
columns, and let R be a restriction to m coordinates, chosen at random from JNK. Fix q ≥ 1. For
each p ≥ max{2, 2 log(rankAR∗), q/2}, it holds that

(E ‖AR∗‖q)1/q ≤ 3
√
p ‖A‖1,2 +

√
m

N
‖A‖ .

This theorem tells us that the spectral norm of a random submatrix of A carries its share of the
spectral norm of the entire matrix, plus an additional component that depends on the size of the
columns of A. As we will see, the

√
p can be converted into information about tail probabilities.

Section 9 contains a complete proof of Theorem 8.
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The next major theorem is a decoupling result. It is challenging to work directly with expressions
like ‖RAR∗‖ because the random restriction appears twice. Decoupling allows us to move to an
expression that involves (conditionally) independent restrictions. This alteration permits us to
apply tools such as Theorem 8.

Theorem 9 (Decoupling). Let A be a 2N × 2N Hermitian matrix with a zero diagonal, and let R
be a restriction to m random coordinates. For each q ≥ 1, there exists a partition of J2NK into two
blocks T1 and T2 with N elements each so that

(E ‖RAR∗‖q)1/q < 2 max
m1+m2=m

(E ‖R1AT1×T2R
∗
2‖
q)1/q

where
• the maximum occurs over integers m1,m2 ∈ [0, N ],
• the symbol AT1×T2 denotes the submatrix of A indexed by T1 × T2, and
• the maps Ri are independent restrictions to mi random coordinates from Ti for i = 1, 2.

When A has odd order (2N + 1) × (2N + 1), an analogous result holds for a partition into blocks
of size N and N + 1.

The proof of this theorem is the subject of Section 10. The argument is a variation on a classical
technique [LT91, Sec. 4.4]

Finally, we need to understand the relationship between the moments of a random variable and
its tail behavior. In particular, a random variable whose Lq norm is proportional to

√
q exhibits

subgaussian decay. The following result is essentially Lemma 4.10 from [LT91].

Proposition 10 (Subgaussian Tail Bound). Let Z be a nonnegative random variable whose mo-
ments satisfy

[E(Zq)]1/q ≤ α√q + β for all q ≥ Q.
For all u ≥

√
Q, one has the tail bound

P
{
Z ≥ e1/4(αu+ β)

}
≤ e−u

2/4.

Proof. Let κ be a nonnegative number. Combining Markov’s inequality with the moment bound,
we have

P {Z ≥ eκ(αu+ β)} ≤ EZq

(eκ(αu+ β))q
≤
[
α
√
q + β

eκ(αu+ β)

]q
.

Choose q = u2 to make the bracket equal e−κ. Then select κ = 0.25. �

5. Pairs of Orthonormal Bases

We begin with results for subdictionaries drawn from a pair of orthonormal bases. The special
structure of these dictionaries allows us to simplify the arguments substantially.

Fix the ambient dimension d. Suppose that the dictionary Φ =
[
Φ1 Φ2

]
, where the blocks Φ1

and Φ2 are unitary matrices of dimension d. In this case, the number of columns N = 2d. The
Gram matrix of the dictionary has the form

Φ∗Φ =
[

I F
F ∗ I

]
where F = Φ∗1Φ2 is a unitary matrix of dimension d. It is easy to check that the spectral norm of
the dictionary always satisfies ‖Φ‖ =

√
2. The coherence µ of the dictionary can be calculated as

µ = max
j,k
|fjk| = max

j,k

∣∣∣〈ϕ(1)
j , ϕ

(2)
k

〉∣∣∣ for j, k = 1, 2, . . . , d

where ϕ(i)
j is the jth column from basis i. Recall from (2.2) that µ ≥ d−1/2.
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5.1. Random Subdictionaries. Now, we describe our model for choosing a random subdic-
tionary. Suppose that Ω indexes a fixed set of columns from the first basis, and let us draw a
random set T of columns from the second basis. Define m = min{|Ω| , |T |}. These choices lead to
the subdictionary

X =
[
Φ1R

∗
Ω Φ2R

∗
T

]
.

Its Gram matrix has the form

X∗X =
[

I RΩFR
∗
T

(RΩFR
∗
T )∗ I

]
.

Using a standard identity, we find that

‖X∗X − I‖ = ‖RΩFR
∗
T ‖ . (5.1)

We must estimate the moments of this random variable.
This calculation is an easy consequence of Theorem 8. It is clear that rank(RΩFR

∗
T ) ≤ m.

Therefore, given q ≥ 1, we may select p = max{2, 2 log(m+ 1), q/2}. Invoking the theorem to draw
|T | random columns from RΩF , we find that

(ET ‖RΩFR
∗
T ‖

q)1/q ≤ 3 max
{√

2,
√

2 log(m+ 1),
√
q/2
}
‖RΩF ‖1,2 +

√
|T |
d
‖RΩF ‖ .

Since the entries of F have magnitude no greater than µ and RΩF has |Ω| rows,

‖RΩF ‖1,2 ≤ µ
√
|Ω|.

It also holds that ‖RΩF ‖ ≤ ‖F ‖ = 1. Recalling (5.1), we obtain

(E ‖X∗X − I‖q)1/q ≤
√

18µ2 |Ω|max
{

1,
√

log(m+ 1),
√
q/4
}

+

√
|T |
d
. (5.2)

5.2. Results. With the moments at hand, we can immediately prove several different results. The
statement of Theorem C is furnished by the choice q = 1 in (5.2).

Next, we prove a more detailed result. Let us assume m ≥ 2 so that log(m + 1) > 1. (In case
m = 1, the theorem is vacuous.) Select q ≥ 4 log(m+ 1) in (5.2) to obtain

(E ‖X∗X − I‖q)1/q ≤
√

18µ2 |Ω| √q +

√
|T |
d
. (5.3)

Choose s ≥ 1 and muster Proposition 10 with the parameter u =
√

4s log(m+ 1) to reach the
following theorem.

Theorem 11. Let Φ be a pair of orthonormal bases. Let X consist of |Ω| arbitrary columns from
the first basis and |T | random columns from the second basis. Suppose that√

18µ2 |Ω| log(m+ 1) · s+

√
|T |
d
≤ e−1/4δ

where m = min{|Ω| , |T |} and s ≥ 1. Then

P {‖X∗X − I‖ ≥ δ} ≤ m−s.

Finally, let us explain how to adduce Theorem D, which is really just a simplified version of the
last result. Assume that d ≥ 3. Continuing from (5.3), recall that µ ≥ d−1/2 to advance to

(E ‖X∗X − I‖q)1/q ≤
√

4.5µ2
(√
|Ω|+

√
|T |
)√

q for q ≥ 4 log d.

The square-root function is concave, whence

(E ‖X∗X − I‖q)1/q ≤
√

9µ2(|Ω|+ |T |)√q.
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Fix s ≥ 1. Calling on Proposition 10 with parameter u =
√

4s log d, we find that the condition√
36µ2(|Ω|+ |T |) log d · s ≤ 0.5e−0.25

ensures that the random variable exceeds 0.5 with probability less than d−s. Perform some algebraic
manipulations to isolate |Ω|+ |T |:

|Ω|+ |T | ≤ cµ−2

s log d
where c ≥ 0.004212.

6. Incoherent Dictionaries

In this section, we develop results for subdictionaries of a general dictionary. To that end,
suppose that Φ is a d×N matrix with unit-norm columns and coherence µ.

6.1. Moment bounds. Let X be an m-column submatrix of Φ, drawn at random. In this section,
we calculate for q ≥ 1 that

(E ‖X∗X − I‖q)1/q ≤
√

144µ2mmax
{

1,
√

log(m/2 + 1),
√
q/4
}

+
2m
N
‖Φ‖2 (6.1)

In the sequel, we assume that N , the number of columns in the dictionary, is even; the proof in the
odd case is essentially the same.

Define the hollow Gram matrix of the dictionary: H = Φ∗Φ − I. This matrix has a zero
diagonal since the columns of the dictionary have unit norm. Let R be a random restriction onto
m coordinates from JNK. With this new notation, the matrix of interest may be viewed as a
compression of the hollow Gram matrix:

X∗X − I = RHR∗.

To begin our calculation, we invoke the decoupling result, Theorem 9, to see that(
E
∥∥X∗X − I

∥∥q)1/q ≤ 2 max
m1+m2=m

(
E
∥∥∥R1ĤR

∗
2

∥∥∥q)1/q
(6.2)

where Ĥ is a submatrix of H of dimension N/2 × N/2 and the matrices Ri are independent
restrictions to mi random coordinates for each i = 1, 2. In the sequel, the symbol Ei will denote
expectation with respect to Ri, holding the other random restriction fixed.

We may express (
E
∥∥R1ĤR

∗
2

∥∥q)1/q
=
(

E1

(
E2

∥∥R1ĤR
∗
2

∥∥q)q/q)1/q

.

It is evident that rank(R1ĤR
∗
2) ≤ m/2 since one of the numbers m1 or m2 is less than or equal to

m/2. Therefore, we may choose

p = max{2, 2 log(m/2 + 1), q/2}. (6.3)

Apply the random compression bound, Theorem 8, to the inner expectation to select m2 of the
N/2 columns from Ĥ. This step results in(

E2

∥∥R1ĤR
∗
2

∥∥q)1/q
≤ 3
√
p
∥∥R1Ĥ

∥∥
1,2

+
√

m2

N/2

∥∥R1Ĥ
∥∥.

Observe that R1Ĥ is a submatrix of H with m1 rows. Therefore, none of its columns has `2 norm
greater than µ

√
m1. Combining these bounds,(

E
∥∥R1ĤR

∗
2

∥∥q)1/q
≤
(

E1

[
3µ
√
m1
√
p+

√
m2

N/2

∥∥R1Ĥ
∥∥]q)1/q

.
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Apply the triangle inequality and the homogeneity of the Lq norm to reach(
E
∥∥R1ĤR

∗
2

∥∥q)1/q
≤ 3µ

√
m1
√
p+

√
m2

N/2

(
E1

∥∥R1Ĥ
∥∥q)1/q

. (6.4)

Next, we examine the remaining expectation. The spectral norm is invariant under conjugate
transposition, so we apply the compression theorem to Ĥ∗R∗1 to select m1 of the N/2 columns.
With the same choice of p as in (6.3),(

E1

∥∥R1Ĥ
∥∥q)1/q

≤ 3
√
p
∥∥Ĥ∗∥∥

1,2
+
√

m1

N/2

∥∥Ĥ∗∥∥.
We may bound the two norms above in terms of properties of the dictionary. The entries of the
matrix Ĥ are inner products between distinct columns of Φ, so the coherence controls the (1, 2)
norm: ∥∥Ĥ∗∥∥

1,2
≤ µ

√
N/2.

The spectral norm of the dictionary controls the spectral norm of Ĥ:∥∥Ĥ∗∥∥ ≤ ‖H∗‖ = ‖Φ∗Φ− I‖ = max{1, ‖Φ‖2 − 1} ≤ ‖Φ‖2 .

Introduce the last three estimates into (6.4) to discover that(
E
∥∥R1ĤR

∗
2

∥∥q)1/q
≤ 3µ (

√
m1 +

√
m2)
√
p+
√

4m1m2

N
‖Φ‖2 . (6.5)

Let us maximize this inequality over parameters m1 +m2 = m, subject to 0 ≤ mi ≤ N/2. First,
notice that

√
4m1m2 ≤ m. The square-root function is concave, so

√
m1 +

√
m2 ≤ 2

√
(m1 +m2)/2 =

√
2m.

Introducing the last two bounds into (6.5), we reach(
E
∥∥R1ĤR

∗
2

∥∥q)1/q
≤
√

18µ2m
√
p+

m

N
‖Φ‖2 .

Finally, recall the value of p from (6.3) and substitute the most recent bound into (6.2) to reach
the announced inequality (6.1).

6.2. Results. First, we show how to reach Theorem A of Section 2. This result frames the hy-
potheses that N ≥ 2d and that Φ is a unit-norm tight frame. For simplicity, assume that m ≥ 6
so that log(m/2 + 1) > 1. The moment bound (6.1) with q = 1 implies that

E ‖X∗X − I‖ ≤
√

144µ2m log(m/2 + 1) +
2m
N
‖Φ‖2 .

Since Φ is a tight frame, ‖Φ‖2 = N/d. Thus

E ‖X∗X − I‖ ≤
√

144µ2m log(m/2 + 1) +
2m
d
.

The assumption that N ≥ 2d implies that the coherence µ > (2d)−1/2 on account of inequality
(1.1). When the first term is less than one, it follows that

2m
d

< 4µ2m� 4
√
µ2m.

Therefore, we can absorb the first term into the second term by adjusting the constant. Increasing
log(m/2 + 1) to log(m + 1) completes the argument. When m < 6, the same result clearly holds
with a (potentially) larger constant.
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Our major result contains more detailed information about the role of the dictionary’s spectral
norm and the probability decay. In case q ≥ 4 log(m/2 + 1) ≥ 4, the moment bound (6.1) becomes

(E ‖X∗X − I‖q)1/q ≤
√

36µ2m
√
q +

2m
N
‖Φ‖2 .

Fix s ≥ 1, and invoke Proposition 10 with parameter u =
√

4s log(m/2 + 1).

Theorem 12. Let Φ be a dictionary, and let X be a random m-column subdictionary where m ≥ 4.
Suppose that √

144µ2m log(m/2 + 1) · s+
2m
N
‖Φ‖2 ≤ e−1/4δ with s ≥ 1.

Then
P {‖X∗X − I‖ ≥ δ} ≤ (m/2)−s.

Theorem B of Section 2 follows from a similar argument, along with some algebraic simplifications.

7. Application: Sparse Representation

Our previous results have several interesting applications. The first one concerns uniqueness of
sparse representations, the problem that was raised in the introduction. We draw a random sparse
signal according to the following model and ask about the probability that this signal has another
representation that is equally sparse.

Model (M0) for a random signal s = Φz

The dictionary: Φ has coherence µ.

The subdictionary: ΦT has least singular value σmin(ΦT ) ≥ 2−1/2,

and its cardinality satisfies µ2 |T | < 2−1/2.

The coefficients: z is supported on T ,

and RTz is continuously distributed.

Observe that our previous results (such as Theorems 11 and 12) allow us to determine the proba-
bility that a randomly chosen subdictionary fits the requirements of this model.

Theorem 13. Suppose that s = Φz is a random signal drawn from Model (M0). Then z is almost
surely the unique vector that satisfies the constraints

Φc = s and ‖c‖0 ≤ m.

This theorem is closely related to results of Candès and Romberg about the uniqueness of signals
that are sparse with respect to a pair of orthonormal bases [CR06, Thms. 4.1, 5.2]. The extension
to other types of dictionaries is new.

Proof. We make the abbreviation m = |T |. Since ΦT has full rank, the signal s = Φz has a
continuous distribution on the range of ΦT . Let Ω be an arbitrary set of m indices or fewer. We
claim that

range(ΦΩ) = range(ΦT ) =⇒ Ω = T.

In particular,
Ω 6= T =⇒ dim(range(ΦΩ) ∩ range(ΦT )) < m.

To this how this fact implies the result, consider the set of signals in range(ΦT ) that can be
represented using a different set of m columns. This set can be written as a finite union of subspaces
with dimension strictly less than m. Therefore, it has zero volume with respect to any nonatomic
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measure. In other words, it is almost surely the case that the signal has no other representation as
a linear combination of m columns from Φ. The theorem follows.

Let us turn to the claim. We may assume that |Ω| = m, or else the range of ΦΩ cannot exhaust
the range of ΦT . Since the dimensions match, it suffices to find one vector in range(ΦΩ) that does
not lie in range(ΦT ). We check that, for any ω ∈ Ω \ T ,

‖PTϕω‖2 < 1,

where PT is the orthogonal projector onto range(ΦT ). Since Ω is distinct from T , it follows that
Ω \ T is nonempty, which supplies us with the coveted vector.

Observe that the projector can be written as

PT = (Φ†T )∗Φ∗T

where the dagger † indicates the Moore–Penrose pseudoinverse. The usual norm estimate implies
that

‖PTϕω‖2 ≤
∥∥Φ†T∥∥ ‖Φ∗Tϕω‖2 .

Since σmin(ΦT ) ≥ 2−1/2, the first term is no greater than
√

2. Since ω /∈ T , each entry of the vector
Φ∗Tϕω is bounded in magnitude by the coherence µ. Therefore, ‖Φ∗Tϕω‖2 ≤ µ

√
m. We conclude

that

‖PTϕω‖2 ≤
√

2 · µ
√
m < 1

owing to the assumptions in Model (M0). �

8. Application: Sparse Recovery

In this section, we consider an algorithmic method for identifying representations of a sparse
signal. Suppose that Φ is a dictionary. Let s be a signal that has a sparse representation with
respect to the dictionary:

s = Φcopt where ‖copt‖0 ≤ m.

In general, it is NP-hard to identify the coefficient vector copt [Nat95, DMA97], so various heuristic
methods have been developed. One approach, especially popular with mathematicians, is to solve

min ‖c‖1 subject to Φc = s. (P1)

The idea is that the `1 norm is a convex relaxation of the `0 quasi-norm, so one hopes that the
solutions will coincide. The problem (P1) can be cast as a second-order cone program, which means
that the optimization can be completed in polynomial time. The paper [CDS99] was the first to
advocate this heuristic for sparse recovery. Some other references include [DH01, Tro06a, CR06].

Before we present the signal model, a little background is necessary. Define the signum function

sgn (reiθ) def=

{
eiθ when r > 0
0 when r = 0.

Extend this function to vectors by applying it to each component. A Steinhaus random variable is
a complex random variable that is distributed uniformly on the unit circle {w ∈ C : |w| = 1}. A
Steinhaus sequence is a (countable) collection of independent Steinhaus random variables.

We draw a random sparse signal according to the following model and ask about the probability
that this representation can be identified by solving (P1).
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Model (M1) for a random signal s = Φz

The dictionary: has coherence µ.

The subdictionary: ΦT has least singular value σmin(ΦT ) ≥ 2−1/2,

and its cardinality satisfies 8µ2 |T | ≤ log(N/δ).

The coefficients: z is supported on T ,

and sgn (RTz) forms a Steinhaus sequence.

In words, the magnitudes of the nonzero entries of the coefficient vector are completely arbitrary,
but the phases must be independent and uniformly distributed on the circle. If in addition the
distribution of the nonzero coefficients is continuous, then the signal also satisfies the requirements
of Model (M0).

Theorem 14. Suppose that s = Φz is a random signal drawn according to Model (M1). Then z
is the unique solution to (P1), except with probability 2δ.

If the signal satisfies the requirements of both Model (M0) and (M1), then Theorem 13 shows
that the sparsest representation of the random signal is almost surely unique and Theorem 14 shows
that (P1) identifies this maximally sparse representation with overwhelming probability.

The proof of Theorem 14 is an application of a result due to Fuchs [Fuc04] and the present author
[Tro05] combined with a basic large deviation inequality. Candès and Romberg have established an
analogous result for pairs of orthonormal bases [CR06]. The extension to other types of dictionaries
is novel.

Proposition 15 (Fuchs, Tropp). Suppose that s = Φcopt, and write T = supp(copt). If∣∣∣〈Φ†Tϕk, RT sgn (copt)
〉∣∣∣ < 1 for all k /∈ T

then copt is the unique solution to (P1).

As before, the dagger † denotes the Moore–Penrose pseudoinverse.

Proposition 16 (Complex Bernstein). Let a be a complex vector, and let ε be a Steinhaus sequence.
For all u ≥ 0 and all κ ∈ (0, 1),

P
{∣∣∣∑

j
εjaj

∣∣∣ ≥ u ‖a‖2} ≤ e−κu
2

1− κ
.

In particular, we may take the right-hand side to be 2e−u
2/2.

Proof sketch. Let Z =
∣∣∑

j εjaj
∣∣. The Khintchine inequality for Steinhaus sequences yields a sharp

estimate for the even moments of this random variable [PS95, Sec. 9.3]:

EZ2p ≤ p! ‖a‖2p2 .

Apply the Laplace transform method to Z2 to obtain the tail bound. �

Proof of Theorem 14. We abbreviate m = |T |. To ensure that the unique solution to (P1) equals
z, Proposition 15 asks us to verify that∣∣∣〈Φ†Tϕk, RT (sgn z)

〉∣∣∣ < 1 for all k /∈ T .

First, let us estimate the norm of the left-hand member of the inner product. Expanding the
pseudoinverse, we obtain

Φ†Tϕk = (Φ∗TΦT )−1Φ∗Tϕk.
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Taking norms and applying the familiar operator norm bound,∥∥Φ†Tϕk∥∥2
≤
∥∥(Φ∗TΦT )−1

∥∥ ‖Φ∗Tϕk‖2 .
Since σmin(ΦT ) ≥ 2−1/2, the spectral norm of the inverse matrix does not exceed two. Since
k /∈ T , each entry of the vector Φ∗Tϕk is bounded in magnitude by the coherence parameter µ, so
‖Φ∗Tϕk‖2 ≤ µ

√
m. Therefore, ∥∥Φ†Tϕk∥∥2

≤ 2µ
√
m for all k /∈ T .

The inner product can be rewritten as〈
Φ†Tϕk, RT (sgn z)

〉
=
∑

j∈T
(Φ†Tϕk)j sgn zj .

Since {sgn zj : j ∈ T} is a Steinhaus sequence, the complex Bernstein inequality results in

P
{∣∣∣〈Φ†Tϕk, RT (sgn z)

〉∣∣∣ ≥ 1
}
≤ 2e−1/8µ2m.

Invoking the union bound over at most N choices of ϕk, we reach

P
{

maxk/∈T
∣∣∣〈Φ†Tϕk, RT (sgn z)

〉∣∣∣ ≥ 1
}
≤ 2Ne−1/8µ2m.

Owing to the choice of m in Model (M1), the right-hand side does not exceed 2δ. �

9. The Spectral Norm of a Random Compression

The goal of this section is to study the moments of the random variable ‖AR∗Ω‖ where the matrix
A is arbitrary and RΩ is a restriction to m random coordinates. If we treat the columns of A as
separate points in a linear space of matrices, the restriction map effectively creates the sum of a
random subset of these columns:

AR∗Ω =
∑

k∈Ω
ake∗k

where ek is the kth standard basis vector. To estimate the spectral norm of this sum, we first
introduce additional randomness of a type that is easier to understand. Then we can study the
sum by conditioning on the subset Ω and applying methods that are adapted for the simple random
variables.

9.1. Rademacher Sums. The simplest nontrivial random variable is the Rademacher random
variable, which takes the values ±1 with equal probability. It is traditionally denoted by the letter
ε. A Rademacher sequence is a (countable) collection of independent Rademacher random variables.

Let {x1, x2, . . . , xN} be a sequence of points in a normed linear space X. The associated
Rademacher sum is the random linear combination∑N

k=1
εkxk

where {εk} is a Rademacher sequence. As we will see, Rademacher sums play a central role in our
investigation because there are powerful techniques for estimating their norms.

9.2. Symmetrization of Random Subset Sums. A fundamental method for studying the sum
of independent random variables in a normed space is to compare the sum against a related
Rademacher sum. This process is known as symmetrization, and the key result is Lemma 6.3
of [LT91]. This lemma does not apply to random subset sums, but it is possible to establish an
analogous bound. In words, a random subset sum carries its share of the norm plus an additional
component that is dominated by a Rademacher sum.
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Lemma 17. Let {x1, x2, . . . , xN} be a sequence of points in a normed linear space X, and let Ω be
a random subset of JNK with cardinality m. For each q ≥ 1,(

EΩ

∥∥∥∑
Ω
xk

∥∥∥q
X

)1/q
≤ 2

(
EΩ Eε

∥∥∥∑
Ω
εkxk

∥∥∥q
X

)1/q
+
m

N

∥∥∥∥∑N

k=1
xk

∥∥∥∥
X

.

where ε is a Rademacher sequence independent from Ω.

This result may be known, but we do not have a reference. (See the proof of Theorem 3.4
in [RV06], which mistakenly cites Lemma 6.3 of [LT91].) Before we begin, let us make another
definition. A balanced Rademacher sequence of length 2K is a random vector ξ ∈ {±1}2K whose
entries sum to zero, with all such choices equally likely.

Proof. We prove the result for q = 1, since the other cases are substantially identically. Let
δ ∈ {0, 1}N be a random vector with exactly m entries equal to one. The variables {δk} will select
points to participate in the sum. That is,

E
def= EΩ

∥∥∥∑
Ω
xk

∥∥∥
X

= Eδ
∥∥∥∥∑N

k=1
δkxk

∥∥∥∥
X

.

Define δ̄ = m/N to be the (common) expectation of the entries of δ. Center the selectors by
subtracting their mean and applying the triangle inequality:

E ≤ Eδ
∥∥∥∥∑N

k=1
(δk − δ̄)xk

∥∥∥∥
X

+ δ̄

∥∥∥∥∑N

k=1
xk

∥∥∥∥
X

.

(When q > 1, we must apply the triangle inequality a second time to draw the second summand
out of the Lq norm.) Let the random vector δ′ be an independent copy of δ. Then,

E ≤ Eδ
∥∥∥∥Eδ′∑N

k=1
(δk − δ′k)xk

∥∥∥∥
X

+ δ̄

∥∥∥∥∑N

k=1
xk

∥∥∥∥
X

≤ Eδ,δ′
∥∥∥∥∑N

k=1
(δk − δ′k)xk

∥∥∥∥
X

+ δ̄

∥∥∥∥∑N

k=1
xk

∥∥∥∥
X

,

where the second relation follows from Jensen’s inequality.
The rest of the proof focuses on the quantity

F
def= Eδ,δ′

∥∥∥∥∑N

k=1
(δk − δ′k)xk

∥∥∥∥
X

.

Consider the set of places where exactly one of the two selectors is active:

T
def= {k ∈ JNK : δk + δ′k = 1}.

Note the following properties of this set:
(1) The cardinality of T is an even number in the range [0, 2m].
(2) Conditional on |T |, the set T is a uniformly random subset of JNK.
(3) Exactly 1

2 |T | of the components k listed in T have δk = 1. These locations form a uniformly
random subset of T .

If ξ ∈ {±1}T is a balanced Rademacher sequence of length |T |, independent from everything, then
our expression for F becomes

F = ET Eξ
∥∥∥∑

T
ξkxk

∥∥∥
X
.

We estimate the balanced Rademacher sum using Lemma 18 of the sequel, which furnishes

F ≤ 2 ET EU Eε
∥∥∥∑

U
εkxk

∥∥∥
X

where U is a uniformly random subset of T with 1
2 |T | entries and ε is a standard Rademacher

sequence, independent from everything. The distribution induced on U has two notable properties.



18 JOEL A. TROPP

(1) The cardinality |U | is an integer random variable ranging over [0,m].
(2) Conditional on |U |, the set U is a uniformly random subset of JNK.

Forgetting about the subset T , we may write

F ≤ 2 E|U | EU Eε
∥∥∥∑

U
εkxk

∥∥∥
X

≤ 2 max|U |=0,1,...,m EU Eε
∥∥∥∑

U
εkxk

∥∥∥
X
.

Using Jensen’s inequality, one easily checks that Rademacher series are monotonic in the sense that

Eε
∥∥∥∥∑K

k=1
εkyk

∥∥∥∥
X

≤ Eε
∥∥∥∥∑K+1

k=1
εkyk

∥∥∥∥
X

for each sequence {yk} ⊂ X.

It follows that the maximum is attained when |U | = m. We conclude that

F ≤ 2 EΩ Eε
∥∥∥∑

Ω
εkxk

∥∥∥
X
,

where Ω is a uniformly random subset of JNK with cardinality m. �

The next lemma shows that a balanced Rademacher sum is dominated by a certain standard
Rademacher sum.

Lemma 18. Let {x1, x2, . . . , x2K} be a sequence of points in a normed linear space X, and suppose
that ξ is a balanced Rademacher sequence of length 2K. For each q ≥ 1,(

Eξ
∥∥∥∥∑2K

k=1
ξkxk

∥∥∥∥q
X

)1/q

≤ 2
(
EU Eε

∥∥∥∑
U
εkxk

∥∥∥q
X

)1/q

where U is a random set of K numbers from J2KK and ε is a standard Rademacher sequence,
independent from U .

Proof. We establish the result for q = 1 since the proof is the same for the other cases. The basic
strategy is to pair positive and negative entries of the balanced Rademacher sequence at random
and then to turn off one element of each pair, also at random.

Let π be a random permutation of J2KK. For each π, define π+(k) = π(k) and π−(k) = π(K+k)
for each k = 1, 2, . . . ,K. Then

E
def= Eξ

∥∥∥∥∑2K

k=1
ξkxk

∥∥∥∥
X

= Eπ
∥∥∥∥∑K

k=1

[
xπ+(k) − xπ−(k)

]∥∥∥∥
X

.

Independent from π, draw a random vector δ from {0, 1}K , and observe that E δk = 1
2 for each

component k. Using Jensen’s inequality and independence,

E = 2 Eπ
∥∥∥∥Eδ∑K

k=1

[
δkxπ+(k) − (1− δk)xπ−(k)

]∥∥∥∥
X

≤ 2 Eδ Eπ
∥∥∥∥∑K

k=1

[
δkxπ+(k) − (1− δk)xπ−(k)

]∥∥∥∥
X

= 2 Eε Eπ
∥∥∥∥∑K

k=1
εkxπεk

(k)

∥∥∥∥
X

where ε is a standard Rademacher sequence, independent from everything. For each fixed ε,

{πε1(1), πε2(2), . . . , πεK (K)}
is a uniformly random sequence of K distinct numbers from J2KK independent from ε, so we can
write

E ≤ 2 Eε Eπ
∥∥∥∥∑K

k=1
εkxπ(k)

∥∥∥∥
X

.
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Interchange the order of the expectations and invert the permutation:

E ≤ 2 Eπ Eε
∥∥∥∑

U
επ−1(k)xk

∥∥∥
X

where U = π−1(JKK) is a uniformly random set of K numbers from J2KK. Rademacher sequences
are exchangeable, so we may remove the inverse permutation to complete the proof. �

9.3. Schatten Norms. Next, we present another piece of background. To each matrix A, one
may associate the vector σ(A) of singular values. Given a parameter 1 ≤ p ≤ ∞, the Schatten
p-norm is defined as

‖A‖Sp

def= ‖σ(A)‖p ,
where ‖·‖p is the usual `p vector norm. Note that the choices p = 2,∞ lead respectively to the
Frobenius and spectral norms. The Schatten norms inherit many properties from the `p norms. In
particular,

• When q ≤ p, it holds that ‖A‖Sp
≤ ‖A‖Sq

.
• When 1 ≤ p, it holds that ‖A‖Sp

≤ rank(A)1/p ‖A‖.
Moreover, the Schatten spaces form a scale, so we can interpolate between them. The books
[TJ89, Sim05] contain a detailed study of the Schatten classes.

9.4. Khintchine Inequalities. The scalar Khintchine inequality, which dates to 1923, gives de-
tailed information about the moments of a Rademacher sum of real numbers. More recently, it was
discovered that an analogous inequality holds for Rademacher sums of matrices. This astonishing
fact is due to Lust-Picquard [LP86], but the version here depends on an argument of Buchholz
[Buc01] that extends the original method of Khintchine [PS95, Sec. 2].

Proposition 19 (Noncommutative Khintchine Inequality). Let {Ak} be a finite sequence of ma-
trices of the same dimension, and let γ be a sequence of independent, standard Gaussian variables.
For each even number p ≥ 2,[

E
∥∥∥∑

k
γkAk

∥∥∥p
Sp

]1/p

≤ Cp max

{∥∥∥∥(∑k
AkA

∗
k

)1/2
∥∥∥∥
Sp

,

∥∥∥∥(∑k
A∗kAk

)1/2
∥∥∥∥
Sp

}
, (9.1)

where the optimal constant

Cp =
(

p!
2p/2(p/2)!

)1/p

.

This result is a direct application of Theorem 5 from [Buc01] with the expectation playing the role
of the linear functional ψ. It is elementary to check that Gaussian variables have “mixed moments
defined by pairings” with the pairing function mn identically equal to one. Note that the optimal
value of the constant matches the scalar case [Haa82].

The following corollary extends Proposition 19 to other values of p, although it is unable to
locate the best constant.

Corollary 20. When 2 ≤ p < ∞, the Khintchine inequality (9.1) holds with a constant that
satisfies

Cp ≤ 20.25e−1/2√p.

Proof sketch. Choose n ∈ N and θ ∈ (0, 1). To obtain the Khintchine inequality for S2n+2θ, invoke
the Riesz–Thorin theorem [Zyg02, Chap. XII] to interpolate between the inequalities for S2n and
S2n+2. The constant satisfies

C2n+2θ ≤ C1−θ
2n Cθ

2n+2.

A routine estimate (using, for example, Stirling’s approximation) shows that

C2n ≤ 21/4ne−1/2
√

2n.
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Introducing the latter bound into the former yields the conclusion. �

It is an easy consequence of Jensen’s inequality that the noncommutative Khintchine inequality
also holds for Rademacher sums of matrices.

Corollary 21. Let {Ak} be a finite sequence of matrices of the same dimension, and let ε be a
Rademacher sequence. For each p ≥ 2,[

E
∥∥∥∑

k
εkAk

∥∥∥p
Sp

]1/p

≤ Dp max

{∥∥∥∥(∑k
AkA

∗
k

)1/2
∥∥∥∥
Sp

,

∥∥∥∥(∑k
A∗kAk

)1/2
∥∥∥∥
Sp

}
, (9.2)

where the constant

Dp ≤
√
π

2
Cp ≤ 2−0.25

√
π

e
√
p.

The optimal value of the Rademacher constant Dp is not available except in the simplest case
p = 2. The Central Limit Theorem implies that Dp ≥ Cp. It seems possible that the Rademacher
and Gaussian constants are identical, just as they are in the scalar Khintchine inequality, but the
question remains open.

9.5. Rudelson’s Lemma. The noncommutative Khintchine inequality does not apply directly
to the spectral norm, but it can be used to obtain information about the spectral norm of a
Rademacher sum. The following estimate, due to Rudelson [Rud99], shows how to accomplish this.

Lemma 22 (Rudelson). Suppose that a1,a2, . . . ,am are the columns of a matrix A, and fix q > 0.
For any p ≥ max{2, 2 log(rankA), q}, it holds that(

E
∥∥∥∑m

k=1
εkaka

∗
k

∥∥∥q)1/q
< 1.5

√
p ‖A‖1,2 ‖A‖ ,

where ε is a Rademacher sequence.

Proof. Choose a value of p subject to the limitations described above. To begin the estimate, we
bound the spectral norm by the Schatten p-norm and use Hölder’s inequality to move from the Lq
norm to the Lp norm.

E
def=
(
E
∥∥∥∑m

k=1
εkaka

∗
k

∥∥∥q)1/q

≤
(

E
∥∥∥∑m

k=1
εkaka

∗
k

∥∥∥q
Sp

)1/q

≤
(

E
∥∥∥∑m

k=1
εkaka

∗
k

∥∥∥p
Sp

)1/p

.

Apply the noncommutative Khintchine inequality to obtain

E ≤ Dp

∥∥∥∥(∑m

k=1
‖ak‖22 aka

∗
k

)1/2
∥∥∥∥
Sp

.

The rank of matrix inside the norm does not exceed r = rankA. Thus, we may bound the Schatten
p-norm by the spectral norm if we pay a factor of r1/p, which does not exceed

√
e by our choice of

p. Afterward, we draw the square root out from the norm to reach

E ≤ Dp

√
e
∥∥∥∑m

k=1
‖ak‖22 aka

∗
k

∥∥∥1/2
.

The summands are all positive semidefinite, so the spectral norm of the sum increases monotonically
with each scalar coefficient. Therefore, we may replace each coefficient by maxk ‖ak‖22 and use the
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homogeneity of the norm to obtain

E ≤ Dp

√
e ·maxk ‖ak‖2 ·

∥∥∥∑m

k=1
aka

∗
k

∥∥∥1/2
.

The maximum can be rewritten as ‖A‖1,2, and the spectral norm can be expressed as∥∥∥∑m

k=1
aka

∗
k

∥∥∥1/2
= ‖AA∗‖1/2 = ‖A‖ .

Recall that Dp ≤ 2−0.25
√
π/e
√
p, then calculate the leading constant numerically to complete the

proof. �

9.6. Random Compressions. We are now prepared to prove the main theorem. This argument
is essentially due to Rudelson [Rud99]. Some related work appears in [MP06, RV07]. The only
significant change in the proof is the application of the new symmetrization result, Lemma 17, in
place of Lemma 6.3 of [LT91]. We have also made some minor modifications to reduce the size of
the constants.

Theorem 23 (Spectral Norm of a Random Compression). Suppose that A is a matrix with N
columns, and let R be a random restriction to m coordinates, chosen at random from JNK. Fix
q ≥ 2. For each p ≥ max{2, 2 log(rankAR∗), q/2}, it holds that

(E ‖AR∗‖q)1/q ≤ 3
√
p
(
E ‖AR∗‖q1,2

)1/q
+
√
m

N
‖A‖ .

Proof. Let us begin with an overview of the proof. First, we express the random compression as
a subset sum. Then, we symmetrize the subset sum and apply Rudelson’s lemma to obtain an
upper bound involving the value we are trying to estimate. Finally, we solve an algebraic relation
to obtain an explicit estimate.

The object of interest is the quantity

E
def= (E ‖AR∗‖q)1/q .

First, observe that

E2 =
(
E ‖AR∗RA∗‖q/2

)2/q
=
(

E
∥∥∥∑

Ω
aka

∗
k

∥∥∥q/2)2/q

where Ω is the random set of coordinates selected by the restriction R. Since q/2 ≥ 1, the
symmetrization result, Lemma 17, shows that

E2 ≤ 2
(

EΩ Eε
∥∥∥∑

Ω
εkaka

∗
k

∥∥∥q/2)2/q

+
m

N

∥∥∥∥∑N

k=1
aka

∗
k

∥∥∥∥
= 2

[
EΩ

(
Eε
∥∥∥∑

Ω
εkaka

∗
k

∥∥∥q/2)(2/q)(q/2)
]2/q

+
m

N
‖A‖2 .

Choose p subject to the limitations described. To estimate the parenthesis, we invoke Rudelson’s
lemma, conditional on the choice of Ω. The matrix in the statement of the lemma is AR∗, resulting
in

E2 ≤ 3
√
p

[
E
(
‖AR∗‖1,2 ‖AR

∗‖
)q/2]2/q

+
m

N
‖A‖2 .

Invoke the Cauchy–Schwarz inequality to find that

E2 ≤ 3
√
p
(
E ‖AR∗‖q1,2

)1/q
(E ‖AR∗‖q)1/q +

m

N
‖A‖2 .

Observe that we have obtained a copy of E on the right-hand side of the relation.
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This inequality takes the form E2 ≤ bE + c. One obtains an upper bound on E by choosing the
larger root of the quadratic and invoking the subadditivity of the square root:

E ≤ b+
√
b2 + 4c
2

≤ b+
√
c.

We discover that

E ≤ 3
√
p
(
E ‖AR∗‖q1,2

)1/q
+
√
m

N
‖A‖ .

This is the conclusion of the theorem. �

There is some interesting information in the statement of Theorem 23 about the precise role of
the column norms. Adapting an observation of Rudelson and Vershynin [RV07, Lemma 4.1], we
see that

E ‖AR∗‖21,2 ≤ 2 max
|K|=N/m

m

N

∑
k∈K
‖ak‖22 .

More or less, if we draw m columns at random from a matrix with N columns, we expect the max-
imum column norm to be controlled by the average of the largest N/m column norms. Therefore,
if the columns of A have wildly disparate `2 norms, it is valuable to take this fact into account.
For clarity of exposition, we use a simpler result that ignores this information.

Corollary 24. Suppose that A is a matrix with N columns, and let R be a restriction to m
coordinates, chosen at random from JNK. Fix q > 0. For each p ≥ max{2, 2 log(rankAR∗), q/2},
it holds that

(E ‖AR∗‖q)1/q ≤ 3
√
p ‖A‖1,2 +

√
m

N
‖A‖ .

Proof. For any coordinate restriction R, it is true that ‖AR∗‖1,2 ≤ ‖A‖1,2, which yields the result
for q ≥ 2. The result for 0 < q < 2 follows from Hölder’s inequality. �

10. Decoupling under the Spectral Norm

Decoupling is another important method from probability theory that allows one to replace
dependent random variables by independent random variables. The following theorem offers a new
twist on a classical result from harmonic analysis. See [BT87, Prop. 1.9] and [LT91, Sec. 4.4].

Theorem 25 (Decoupling in the Spectral Norm). Let A be a 2N × 2N Hermitian matrix with
a zero diagonal, and let R be a restriction to m random coordinates. Fix q ≥ 1. There exists a
partition of J2NK into two blocks T1 and T2 with N elements each so that

(E ‖RAR∗‖q)1/q < 2 max
m1+m2=m

(E ‖R1AT1×T2R
∗
2‖
q)1/q

where
• the maximum occurs over integers m1,m2 ∈ [0, N ],
• the symbol AT1×T2 denotes the submatrix of A indexed by T1 × T2, and
• the matrices Ri are independent restrictions to mi random coordinates from Ti for i = 1, 2.

When A has odd order (2N + 1) × (2N + 1), an analogous result holds for a partition into blocks
of size N and N + 1.

This theorem offers several important advantages over the classical one. First, the classical result
only applies when the restriction selects each coordinate independent from the others, whereas
the new result allows us to select exactly m coordinates. In consequence, the conclusions are
slightly weaker: we must pass to an unknown submatrix and the restrictions are only conditionally
independent. Second, we have exploited properties of the spectral norm to reduce the constant by
an order of magnitude.
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Proof. We establish the result for the case where the matrix has even order; the other case is
essentially the same. For notational simplicity, we take q = 1; the other cases are similar.

Define the matrices Bjk = ajk eje∗k, and let δ ∈ {0, 1}2N be a random vector with exactly m
components equal to one. Then one can express

RAR∗ =
∑

j 6=k
δjδkBjk

Our goal is to bound the expectation

E
def= Eδ

∥∥∥∑
j 6=k

δjδkBjk

∥∥∥ .
Let η ∈ {0, 1}2N be a random vector with N components equal to one. When j 6= k, it is

elementary that

Eη [ηj(1− ηk) + (1− ηj)ηk] =
N

2N − 1
.

We insinuate this quantity into the norm, use Jensen’s inequality to draw out the expectation, and
exchange the indices in the second copy of the sum:

E =
2N − 1
N

Eδ
∥∥∥∑

j 6=k
Eη [ηj(1− ηk) + ηk(1− ηj)] δjδkBjk

∥∥∥
< 2 Eδ Eη

∥∥∥∑
j 6=k

ηjδj · (1− ηk)δkBjk +
∑

j 6=k
(1− ηj)δj · ηkδkBjk

∥∥∥
= 2 Eη Eδ

∥∥∥∑
j 6=k

ηjδj · (1− ηk)δk (Bjk +Bkj)
∥∥∥ .

There must exist some vector η? for which the inner expectation is no smaller than its average over
η. Define T1 = {j : η?j = 1} and T2 = {k : η?k = 0}. Note that these sets partition J2NK, and each
contains N elements. It holds that

E < 2 Eδ
∥∥∥∥∑j∈T1

k∈T2

δjδk (Bjk +Bkj)
∥∥∥∥.

Since Bkj = B∗jk, the matrix inside the norm is Hermitian. Since T1 and T2 are disjoint, the matrix
is also block counter-diagonal. To complete the argument, we must repackage the matrix as a
submatrix of A.

Let the random variable m1 denote the number of selectors that are active on the set T1, and
write m2 = m−m1. Observe that the sequences {δj : j ∈ T1} and {δk : k ∈ T2} are conditionally
independent, given the numbers m1 and m2. Moreover, under this conditioning, all choices of
mi entries from Ti are equally likely for i = 1, 2. If we write Ri for a random restriction to mi

coordinates from Ti, then we have

E < 2 Emi ERi ‖R1AT1×T2R
∗
2 +R2AT2×T1R

∗
1‖

= 2 Emi ERi ‖R1AT1×T2R
∗
2‖ ,

where the equality holds on account of the identity∥∥∥∥[ 0 B
B∗ 0

]∥∥∥∥ = ‖B‖ .

The expectation with respect to the random variable m1 is certainly less than the maximum over
all choices m1 +m2 = m with the caveat 0 ≤ mi ≤ N . Hence,

E < 2 max
m1+m2=m

E ‖R1AT1×T2R
∗
2‖ .

This is the advertised conclusion. �
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