
ON THE LINEAR INDEPENDENCE OF SPIKES AND SINES

JOEL A. TROPP

Abstract. The purpose of this work is to survey what is known about the linear independence
of spikes and sines. The paper provides new results for the case where the locations of the spikes
and the frequencies of the sines are chosen at random. This problem is equivalent to studying the
spectral norm of a random submatrix drawn from the discrete Fourier transform matrix. The proof
depends on an extrapolation argument of Bourgain and Tzafriri.

1. Introduction

An investigation central to sparse approximation is whether a given collection of impulses and
complex exponentials is linearly independent. This inquiry appears in the early paper of Donoho
and Stark on uncertainty principles [DS89], and it has been repeated and amplified in the work
of subsequent authors. Indeed, researchers in sparse approximation have developed a much deeper
understanding of general dictionaries by probing the structure of the unassuming dictionary that
contains only spikes and sines.

The purpose of this work is to survey what is known about the linear independence of spikes
and sines and to provide some new results on random subcollections chosen from this dictionary.
The method is adapted from a paper of Bourgain–Tzafriri [BT91]. The advantage of this approach
is that it avoids some of the complicated combinatorial arguments that are used in related works,
e.g., [CRT06]. The proof also applies to other types of dictionaries, although we do not pursue this
line of inquiry here.

1.1. Spikes and Sines. Let us shift to formal discussion. We work in the inner-product space
C

n, and we use the symbol ∗ for the conjugate transpose. Define the Hermitian inner product

〈x, y〉 = y∗x and the ℓ2 vector norm ‖x‖ = |〈x, x〉|1/2. We also write ‖·‖ for the spectral norm,
i.e., the operator norm for linear maps from (Cn, ℓ2) to itself.

We consider two orthonormal bases for C
n. The standard basis {ej : j = 1, 2, . . . , n} is given by

ej(t) =

{

1, t = j

0, t 6= j
for t = 1, 2, . . . , n.

We often refer to the elements of the standard basis as spikes or impulses. The Fourier basis
{fj : j = 1, 2, . . . , n} is given by

fj(t) =
1√
n

e2πijt/n for t = 1, 2, . . . , n.

We often refer to the elements of the Fourier basis as sines or complex exponentials.
The discrete Fourier transform (DFT) is the n × n matrix F whose rows are f∗1 , f∗2 , . . . , f∗n. The

matrix F is unitary. In particular, its spectral norm ‖F‖ = 1. Moreover, the entries of the DFT

matrix are bounded in magnitude by n−1/2. Let T and Ω be subsets of {1, 2, . . . , n}. We write

Date: 4 September 2007. Revised 15 April 2008.
2000 Mathematics Subject Classification. Primary: 46B07, 47A11, 15A52. Secondary: 41A46.
Key words and phrases. Fourier analysis, local theory, random matrix, sparse approximation, uncertainty principle.
The author is with Applied & Computational Mathematics, MC 217-50, California Institute of Technology, 1200

E. California Blvd., Pasadena, CA 91125-5000. E-mail: jtropp@acm.caltech.edu. Supported by NSF 0503299.

1



2 JOEL A. TROPP

FΩT for the restriction of F to the rows listed in Ω and the columns listed in T . Since FΩT is a
submatrix of the DFT matrix, its spectral norm does not exceed one.

We use the analysts’ convention that upright letters represent universal constants. We reserve
c for small constants and C for large constants. The value of a constant may change at each
appearance.

1.2. Linear Independence. Let T and Ω be subsets of {1, 2, . . . , n}. Consider the collection of
spikes and sines listed in these sets:

X = X (T,Ω) = {ej : j ∈ T} ∪ {fj : j ∈ Ω}.

Today, we will discuss methods for determining when X is linearly independent. Since a linearly
independent collection in C

n contains at most n vectors, we obtain a simple necessary condition
|T | + |Ω| ≤ n. Developing sufficient conditions, however, requires more sophistication.

We approach the problem by studying the Gram matrix G = G(X ), whose entries are the inner
products between pairs of elements from X . It is easy to check that the Gram matrix can be
expressed as

G =

[

I|Ω| FΩT

(FΩT )∗ I|T |

]

where Im denotes an m × m identity matrix and |·| denotes the cardinality of a set.
It is well known that the collection X is linearly independent if and only if its Gram matrix is

nonsingular. The Gram matrix is nonsingular if and only if its eigenvalues are nonzero. A basic
(and easily confirmed) fact of matrix analysis is that the extreme eigenvalues of G are 1± ‖FΩT‖.
Therefore, the collection X is linearly independent if and only if ‖FΩT ‖ < 1.

One may also attempt to quantify the extent to which collection X is linearly independent.
To that end, define the condition number κ of the Gram matrix, which is the ratio of its largest
eigenvalue to its smallest eigenvalue:

κ(G) =
1 + ‖FΩT ‖
1 − ‖FΩT ‖

.

If ‖FΩT ‖ is bounded away from one, then the condition number is constant. One may interpret
this statement as evidence the collection X is strongly linearly independent. The reason is that
the condition number is the reciprocal of the relative spectral-norm distance between G and the
nearest singular matrix [Dem97, p. 33]. As we have mentioned, G is singular if and only if X is
linearly dependent.

This article focuses on statements about linear independence, rather than conditioning. Never-
theless, many results can be adapted to obtain precise information about the size of ‖FΩT ‖.

1.3. Summary of Results. The major result of this paper to show that a random collection of
spikes and sines is extremely likely to be strongly linearly independent, provided that the total
number of spikes and sines does not exceed a constant proportion of the ambient dimension. We
also provide a result which shows that the norm of a properly scaled random submatrix of the DFT
is at most constant with high probability. For a more detailed statement of these theorems, turn
to Section 2.3.

1.4. Outline. The next section provides a survey of bounds on the norm of a submatrix of the
DFT matrix. It concludes with detailed new results for the case where the submatrix is random.
Section 3 contains a proof of the new results. Numerical experiments are presented in Section 4,
and Section 5 describes some additional research directions. Appendix A contains a proof of the
key background result.
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2. History and Results

The strange, eventful history of our problem can be viewed as a sequence of bounds on norm of
the matrix FΩT . Results in the literature can be divided into two classes: the case where the sets
Ω and T are fixed and the case where one of the sets is random. In this work, we investigate what
happens when both sets are chosen randomly.

2.1. Bounds for fixed sets. An early result, due to Donoho and Stark [DS89], asserts that an
arbitrary collection of spikes and sines is linearly independent, provided that the collection is not
too big.

Theorem 1 (Donoho–Stark). Suppose that |T | |Ω| < n. Then ‖FΩT ‖ < 1.

The original argument relies on the fact that F is a Vandermonde matrix. We present a short
proof that is completely analytic. A similar argument using an inequality of Schur yields the more
general result of Elad and Bruckstein [EB02, Thm. 1].

Proof. The entries of the |Ω|×|T | matrix FΩT are uniformly bounded by n−1/2. Since the Frobenius

norm dominates the spectral norm, ‖FΩT‖2 ≤ ‖FΩT ‖2
F ≤ |Ω| |T | /n. Under the hypothesis of the

theorem, this quantity does not exceed one. �

Theorem 1 has an elegant corollary that follows immediately from the basic inequality for geo-
metric and arithmetic means.

Corollary 2 (Donoho–Stark). Suppose that |T | + |Ω| < 2
√

n. Then ‖FΩT ‖ < 1.

The contrapositive of Theorem 1 is usually interpreted as an discrete uncertainty principle: a
vector and its discrete Fourier transform cannot simultaneously be sparse. To express this claim
quantitatively, we define the ℓ0 “quasinorm” of a vector by ‖α‖0 = |{j : αj 6= 0}|.
Corollary 3 (Donoho–Stark). Fix a vector x ∈ C

n. Consider the representations of x in the

standard basis and the Fourier basis:

x =
∑n

j=1
αjej and x =

∑n

j=1
βjfj.

Then ‖α‖0 ‖β‖0 ≥ n.

The example of the Dirac comb shows that Theorem 1 and its corollaries are sharp. Suppose
that n is a square, and let T = Ω = {√n, 2

√
n, 3

√
n, . . . , n}. On account of the Poisson summation

formula,
∑

j∈T
ej =

∑

j∈Ω
fj.

Therefore, the set of vectors X (T,Ω) is linearly dependent and |T | |Ω| = n.
The substance behind this example is that the abelian group Z/Zn contains nontrivial subgroups

when n is composite. The presence of these subgroups leads to arithmetic cancelations for properly
chosen T and Ω. See [DS89] for additional discussion.

One way to eradicate the cancelation phenomenon is to require that n be prime. In this case,
the group Z/Zn has no nontrivial subgroup. As a result, much larger collections of spikes and sines
are linearly independent. Compare the following result with Corollary 2.

Theorem 4 (Tao [Tao05, Thm. 1.1]). Suppose that n is prime. If |T |+ |Ω| ≤ n, then ‖FΩT ‖ < 1.

The proof of Theorem 4 is algebraic in nature, and it does not provide information about con-
ditioning. Indeed, one expects that some submatrices have norms very near to one.

When n is composite, subgroups of Z/Zn exist, but they have a very rigid structure. Conse-
quently, one can also avoid cancelations by choosing T and Ω with care. In particular, one may
consider the situation where T is clustered and Ω is spread out. Donoho and Logan [DL92] study
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this case using the analytic principle of the large sieve, a powerful technique from number theory
that can be traced back to the 1930s. See the lecture notes [Jam06] for an engaging introduction
and references.

Here, we simply restate the (sharp) large sieve inequality [Jam06, LS1.1] in a manner that
exposes its connection with our problem. The spread of a set is measured as the difference (modulo
n) between the closest pair of indices. Formally, define

spread(Ω) = min{|j − k mod n| : j, k ∈ Ω, j 6= k}
with the convention that the modulus returns values in the symmetric range {−⌈n/2⌉+1, . . . , ⌊n/2⌋}.
Observe that |Ω| · spread(Ω) ≤ n.

Theorem 5 (Large Sieve Inequality). Suppose that T is a block of adjacent indices:

T = {m + 1,m + 2, . . . ,m + |T |} for an integer m. (2.1)

For each set Ω, we have

‖FΩT ‖2 ≤ |T | + n/spread(Ω) − 1

n
.

In particular, when T has form (2.1), the bound |T |+n/spread(Ω) < n+1 implies that ‖FΩT ‖ < 1.

Of course, we can reverse the roles of T and Ω in this theorem on account of duality. The same
observation applies to other results where the two sets do not participate in the same way.

The discussion above shows that there are cases where delicately constructed sets T and Ω lead
to linearly dependent collections of spikes and sines. Explicit conditions that rule out the bad
examples are unknown, but nevertheless the bad examples turn out to be quite rare. To quantify
this intuition, we must introduce probability.

2.2. Bounds when one set is random. In their work [DS89, Sec. 7.3], Donoho and Stark discuss
numerical experiments designed to study what happens when one of the sets of spikes or sines is
drawn at random. They conjecture that the situation is vastly different from the case where the
spikes and sines are chosen in an arbitrary fashion. Within the last few years, researchers have made
substantial theoretical progress on this question. Indeed, we will see that the linearly dependent
collections form a vanishing proportion of all collections, provided that the total number of spikes
and sines is slightly smaller than the dimension n of the vector space.

First, we describe a probability model for random sets. Fix a number m ≤ n, and consider the
class Sm of index sets that have cardinality m:

Sm = {S : S ⊂ {1, 2, . . . , n} and |S| = m}.
We may construct a random set Ω by drawing an element from Sm uniformly at random. That is,

P {Ω = S} = |Sm|−1 for each S ∈ Sm.

In the sequel, we substitute the symbol |Ω| for the letter m, and we say “Ω is a random set with
cardinality |Ω|” to describe this type of random variable. This phrase should cause no confusion,
and it allows us to avoid extra notation for the cardinality.

In the sparse approximation literature, the first rigorous result on random sets is due to Candès
and Romberg. They study the case where one of the sets is arbitrary and the other set is chosen
at random. Their proof draws heavily on their prior work with Tao [CRT06].

Theorem 6 (Candès–Romberg [CR06, Thm. 3.2]). Fix a number s ≥ 1. Suppose that

|T | + |Ω| ≤ cn
√

(s + 1) log n
. (2.2)

If T is an arbitrary set with cardinality |T | and Ω is a random set with cardinality |Ω|, then

P

{

‖FΩT ‖2 ≥ 0.5
}

≤ C((s + 1) log n)1/2n−s.
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The numerical constant c ≥ 0.2791, provided that n ≥ 512.

One should interpret this theorem as follows. Fix a set T , and consider all sets Ω that satisfy (2.2).
Of these, the proportion that are not strongly linearly independent is only about n−s. One should
be aware that the logarithmic factor in (2.2) is intrinsic when one of the sets is arbitrary. Indeed,
one can construct examples related to the Dirac comb which show that the failure probability is
constant unless the logarithmic factor is present. We omit the details.

The proof of Theorem 6 ultimately involves a variation of the moment method for studying
random matrices, which was initiated by Wigner. The key point of the argument is a bound on the
expected trace of a high power of the random matrix

√

n/ |Ω| · F∗
ΩTFΩT − I|T |. The calculations

involve delicate combinatorial techniques that depend heavily on the structure of the matrix F.
This approach can also be used to establish that the smallest singular value of FΩT is bounded

well away from zero [CRT06, Thm. 2.2]. This lower bound is essential in many applications, but
we do not need it here. For extensions of these ideas, see also the work of Rauhut [Rau07].

Another result, similar to Theorem 6, suggests that the arbitrary set and the random set do not
contribute equally to the spectral norm. We present one version, whose derivation is adapted from
[Tro07, Thm. 10 et seq.].

Theorem 7. Fix a number s ≥ 1. Suppose that

|T | log n + |Ω| ≤ cn

s
.

If T is an arbitrary set of cardinality |T | and Ω is a random set of cardinality |Ω|, then

P

{

‖FΩT‖2 ≥ 0.5
}

≤ n−s.

The proof of this theorem uses Rudelson’s selection lemma [Rud99, Sec. 2] in an essential way.
This lemma in turn hinges on the noncommutative Khintchine inquality [LP86, Buc01]. For a
related application of this approach, see [CR07].

Theorems 6 and 7 are interesting, but they do not predict that a far more striking phenomenon
occurs. A random collection of sines has the following property with high probability. To this
collection, one can add an arbitrary set of spikes without sacrificing linear independence.

Theorem 8. Fix a number s ≥ 1, and assume n ≥ N(s). Except with probability n−s, a random

set Ω whose cardinality |Ω| ≤ n/3 has the following property. For each set T whose cardinality

|T | ≤ cn

s log5 n
,

it holds that ‖FΩT ‖2 ≤ 0.5.

This result follows from the (deep) fact that a random row-submatrix of the DFT matrix satisfies
the restricted isometry property (RIP) with high probability. More precisely, a random set Ω with
cardinality |Ω| verifies the following condition, except with probability n−s.

|Ω|
2n

≤ ‖FΩT ‖2 ≤ 3 |Ω|
2n

when |T | ≤ c |Ω|
s log5 n

. (2.3)

This result is adapted from [RV06, Thm. 2.2 et seq.].
The bound (2.3) was originally established by Candès and Tao [CT06] for sets T whose cardinality

|T | ≤ c |Ω| /s log6 n. Rudelson and Vershynin developed a simpler proof and reduced the exponent
on the logarithm [RV06]. Experts believe that the correct exponent is just one or two, but this
conjecture is presently out of reach.

Proof. Let c be the constant in (2.3). Abbreviate m = c |Ω| /s log5 n, and assume that m ≥ 1 for
now. Draw a random set Ω with cardinality |Ω|, so relation (2.3) holds except with probability n−s.
Select an arbitrary set T whose cardinality |T | ≤ cn/6s log5 n. We may assume that 2 |T | /m ≥ 1
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because |Ω| ≤ n/3. Partition T into at most 2 |T | /m disjoint blocks, each containing no more than
m indices: T = T1 ∪ T2 ∪ · · · ∪ T2|T |/m. Apply (2.3) to calculate that

‖FΩT‖2 ≤ 2 |T |
m

maxk ‖FΩTk
‖2 ≤ |T | · 2s log5 n

c |Ω| · 3 |Ω|
2n

≤ 1

2
.

Adjusting constants, we obtain the result when |Ω| is not too smal.
In case m < 1, draw a random set Ω and then draw additional random coordinates to form a

larger set Ω′ for which c |Ω′| /s log5 n ≥ 1 and |Ω′| ≤ n/3. This choice is possible because n ≥ N(s).
Apply the foregoing argument to Ω′. Since the spectral norm of a submatrix is not larger than the
norm of the entire matrix, we have the bound ‖FΩT ‖2 ≤ ‖FΩ′T ‖2 ≤ 0.5 for each sufficiently small
set T . �

2.3. Bounds when both sets are random. To move into the regime where the number of spikes
and sines is proportional to the dimension n, we need to randomize both sets. The major goal of
this article is to establish the following theorem.

Theorem 9. Fix a number ε > 0, and assume that n ≥ N(ε). Suppose that

|T | + |Ω| ≤ c(ε) · n.

Let T and Ω be random sets with cardinalities |T | and |Ω|. Then

P

{

‖FΩT ‖2 ≥ 0.5
}

≤ exp
{

−n1/2−ε
}

.

The constant c(ε) ≥ e−C/ε.

Note that the probability bound here is superpolynomial, in contrast with the polynomial bounds
of the previous section. The estimate is essentially optimal. Take ε > 0, and suppose it were possible
to obtain a bound of the form

P {‖FΩT‖ = 1} ≤ exp{−n1/2+ε} where |T | + |Ω| ≤ 2n1/2.

According to Stirling’s approximation, there are about exp{n1/2 log n} ways to select two sets sat-
isfying the cardinality bound. At the same time, the proportion of sets that are linearly dependent
is at most exp{−n1/2+ε}. Multiplying these two quantities, we find that no pair of sets meeting
the cardinality bound is linearly dependent. This claim contradicts the fact that the Dirac comb
yields a linearly dependent collection of size 2n1/2.

Remark 10. As we will see, Theorem 9 holds for every n × n matrix A with constant spectral

norm and uniformly bounded entries:

‖A‖ ≤ 1 and |aωt| ≤ n−1/2 for ω, t = 1, 2, . . . , n.

The proof does not rely on any special properties of the discrete Fourier transform.

2.4. Random matrix theory. Finally, we consider an application of this approach to random
matrix theory. Note that each column of FΩT has ℓ2 norm

√

|Ω| /n. Therefore, it is appropriate to

rescale the matrix by
√

n/ |Ω| so that its columns have unit norm. Under this scaling, it is possible
that the norm of the matrix explodes when |Ω| is small in comparison with n. The content of the
next result is that this event is highly unlikely if the submatrix is drawn at random.

Theorem 11. Fix a number δ ∈ (0, c). Suppose that n ≥ N(δ) and that

|T | ≤ |Ω| = δn.

If T and Ω are random sets with cardinalities |T | and |Ω|, then

P

{
√

n

|Ω| ‖FΩT‖ ≥ 9

}

≤ n−C.
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For δ in the range [c, 1], it is evident that
√

n

|Ω| ‖FΩT‖ ≤ c−1.

Therefore, we obtain a constant bound for the norm of a normalized random submatrix throughout
the entire parameter range.

Remark 12. Theorem 11 also holds for the class of matrices described in Remark 10.

3. Norms of random submatrices

In this section, we prove Theorem 9 and Theorem 11. First, we describe some problem simplifi-
cations. Then we provide a moment estimate for the norm of a very small random submatrix, and
we present a device for extrapolating a moment estimate for the norm of a much larger random
submatrix. This moment estimate is used to prove a tail bound, which quickly leads to the two
major results of the paper.

3.1. Reductions. Denote by Pδ a random n× n diagonal matrix where exactly m = ⌊δn⌋ entries
equal one and the rest equal zero. This matrix can be seen as a projector onto a random set of m
coordinates. With this notation, the restriction of a matrix A to m random rows and m random
columns can be expressed as PδAP ′

δ, where the two projectors are statistically independent from
each other.

Lemma 13 (Square case). Let A be an n×n matrix. Suppose that T and Ω are random sets with

cardinalities |T | and |Ω|. If δ ≥ max{|T | , |Ω|}/n, then

P {‖AΩT ‖ ≥ u} ≤ P
{∥

∥PδAP ′
δ

∥

∥ ≥ u
}

for u ≥ 0.

Proof. It suffices to show that the probability is weakly increasing as the cardinality of one set
increases. Therefore, we focus on Ω and remove T from the notation for clarity. Let Ω be a random
subset of cardinality |Ω|. Conditional on Ω, we may draw a uniformly random element ω from Ωc,
and put Ω′ = Ω ∪ {ω}. This Ω′ is a uniformly random subset with cardinality |Ω| + 1. We have

P {‖AΩ‖ ≥ u} = E I(‖AΩ‖ ≥ u)

≤ E I(
∥

∥AΩ∪{ω}

∥

∥ ≥ u)

= E I(‖AΩ′‖ ≥ u)

= P {‖AΩ′‖ ≥ u}
where we have written I(E) for the indicator variable of an event. The inequality follows because
the spectral norm is weakly increasing when we pass to a larger matrix, and so we have the inclusion
of events {Ω′ : ‖AΩ‖ ≥ u} ⊂ {Ω′ :

∥

∥AΩ∪{ω}

∥

∥ ≥ u}. �

It can be inconvenient to work with projectors of the form Pδ because their entries are dependent.
We would prefer a model where coordinates are selected independently. To that end, denote by Rδ

a random n × n diagonal matrix whose entries are independent 0–1 random variables of mean δ.
This matrix can be seen as a projector onto a random set of coordinates with average cardinality
δn. The following lemma establishes a relationship between the two types of coordinate projectors.
The argument is drawn from [CR06, Sec. 3].

Lemma 14 (Random coordinate models). Fix a number δ in [0, 1]. For every n × n matrix A,

P {‖PδA‖ ≥ u} ≤ 2P {‖RδA‖ ≥ u} for u ≥ 0.

In particular,

P
{
∥

∥PδAP ′
δ

∥

∥ ≥ u
}

≤ 4P
{
∥

∥RδAR′
δ

∥

∥ ≥ u
}

for u ≥ 0.
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Proof. Given a coordinate projector R, denote by σ(R) the set of coordinates onto which it projects.
For typographical felicity, we use #σ(R) to indicate the cardinality of this set.

First, suppose that δn is an integer. For every u ≥ 0, we may calculate that

P {‖RδA‖ ≥ u} ≥
∑n

j=δn
P {‖RδA‖ ≥ u | #σ(Rδ) = j} · P {#σ(Rδ) = j}

≥ P {‖RδA‖ ≥ u | #σ(Rδ) = δn} ·
∑n

j=δn
P {#σ(Rδ) = j}

≥ 1

2
P {‖PδA‖ ≥ u} .

The second inequality holds because the spectral norm of a submatrix is smaller than the spectral
norm of the matrix. The third inequality relies on the fact [JS68, Thm. 3.2] that the medians of
the binomial distribution binomial(δ, n) lie between δn − 1 and δn.

In case δn is not integral, the monotonicity of the spectral norm yields that

P {‖RδA‖ ≥ u} ≥ P
{
∥

∥R⌊δn⌋/nA
∥

∥ ≥ u
}

.

Since P⌊δn⌋/n = Pδ, this point completes the argument. �

3.2. Small submatrices. We focus on matrices with uniformly bounded entries. The first step in
the argument is an elementary estimate on the norm of a random submatrix with expected order
one. In this regime, the bound on the matrix entries determines the norm of the submatrix; the
signs of the entries do not play a role. The proof shows that most of the variation in the norm
actually derives from the fluctuation in the order of the submatrix.

Lemma 15 (Small Submatrices). Let A be an n×n matrix whose entries are bounded in magnitude

by n−1/2. Abbreviate ̺ = 1/n. When q ≥ 2 log n ≥ e,
(

E
∥

∥R̺AR′
̺

∥

∥

2q
)1/2q

≤ 2qn−1/2.

Proof. By homogeneity, we may rescale A so that its entries are bounded in magnitude by one.
Define the event Σjk where the random submatrix has order j × k.

Σjk = {#σ(R̺) = j and #σ(R′
̺) = k}.

On this event, the norm of the submatrix can be bounded as
∥

∥R̺AR′
̺

∥

∥ ≤
∥

∥R̺AR′
̺

∥

∥

F
≤

√

jk.

Using elementary inequalities, we may estimate the probability that this event occurs.

P (Σjk) =

(

n

j

)(

n

k

)

̺j+k(1 − ̺)2n−(j+k) ≤
(

en

j

)j
(en

k

)k
n−(j+k) = (e/j)j · (e/k)k .

With this information at hand, the rest of the proof follows from some easy calculations:

E
∥

∥R̺AR′
̺

∥

∥

2q
=

∑n

j,k=1
E

[

∥

∥R̺AR′
̺

∥

∥

2q | Σjk

]

· P (Σjk)

≤
∑n

j,k=1
(jk)q · (e/j)j · (e/k)k

=
[

∑n

k=1
kq · (e/k)k

]2
.

A short exercise in differential calculus shows that the maximum term in the sum occurs when
k log k = q. Write k⋆ for the solution to this equation, and note that k⋆ ≤ q. Bounding all the
terms by the maximum, we find

∑n

k=1
kq · (e/k)k ≤ n · exp{q log k⋆ − k⋆ log k⋆ + k⋆} ≤ n · exp{q log k⋆} ≤ n · qq.
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Combining the last two inequalities, we reach
(

E
∥

∥R̺AR′
̺

∥

∥

2q
)1/2q

≤
(

n2 · q2q
)1/2q

= n1/q · q.

When q ≥ 2 log n, the first term is less than two. �

Remark 16. This argument delivers a moment estimate that is roughly a factor of log q smaller

than the one stated. This fact can be used to sharpen the major results slightly at a cost we prefer

to avoid.

3.3. Extrapolation. The key technique in the proof is an extrapolation of the moments of the
norm of a large random submatrix from the moments of a smaller random submatrix. Without
additional information, extrapolation must be fruitless because the signs of matrix entries play a
critical role in determining the spectral norm. It turns out that we can fold in information about
the signs by incorporating a bound on the spectral norm of the matrix. The proof, which we provide
in Appendix A, ultimately depends on the minimax property of the Chebyshev polynomials. The
method is essentially the same as the one Bourgain and Tzafriri develop to prove Proposition 2.7
in [BT91]. See also [Tro08, Sec. 7].

Proposition 17. Suppose that A is an n × n matrix with ‖A‖ ≤ 1. Let q be an integer that

satisfies 13 log n ≤ q ≤ n/2. Write ̺ = 1/n, and choose δ in the range [1/n, 1]. For each λ ∈ (0, 1),
it holds that

(

E
∥

∥RδAR′
δ

∥

∥

2q
)1/2q

≤ 8δλ max

{

1, nλ
(

E
∥

∥R̺AR′
̺

∥

∥

2q
)1/2q

}

.

Although the statement is a little complicated, we require the full power of this estimate. As
usual, the parameter q is the moment that we seek. The proposition extrapolates from a matrix
of expected order 1 up to a matrix of expected order δn. The parameter λ is a tuning knob that
controls how much of the estimate is determined by the spectral norm of the full matrix and how
much is determined by the norm bound for small submatrices. Indeed, the first member of the
maximum reflects the spectral norm bound ‖A‖ ≤ 1.

3.4. A tail bound. We are now prepared to develop a tail bound for the random norm ‖RδAR′
δ‖.

Lemma 18 (Tail Bound). Let A be an n × n matrix for which

‖A‖ ≤ 1 and |ajk| ≤ n−1/2 for j, k = 1, 2, . . . , n.

Choose δ from [1/n, 1] and an integer q that satisfies 13 log n ≤ q ≤ n/2. For each λ ∈ (0, 1), it

holds that

P

{

∥

∥RδAR′
δ

∥

∥ ≥ 8δλ max
{

1, 2qnλ−1/2
}

· u
}

≤ u−2q for u ≥ 1.

Proof of Lemma 18. Choose an integer q in the range [13 log n, n/2]. Markov’s inequality allows
that

P

{

∥

∥RδAR′
δ

∥

∥ ≥
(

E
∥

∥RδAR′
δ

∥

∥

2q
)1/2q

· u
}

≤ u−2q.

Therefore, we may establish the result by obtaining a moment estimate. This estimate is a direct
consequence of Lemma 15 and Proposition 17:

(

E
∥

∥RδAR′
δ

∥

∥

2q
)1/2q

≤ 8δλ max
{

1, nλ · 2qn−1/2
}

.

Combine the two bounds to complete the argument. �

The two major results of this paper, Theorem 9 and Theorem 11, both follow from a simple
corollary of Lemma 18.
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Corollary 19. Suppose that T and Ω are random sets with cardinalities |T | and |Ω|. Assume

δ ≥ max{|T | , |Ω|}/n. For each integer q that satisfies 13 log n ≤ q ≤ n/2 and for λ ∈ [0, 1], it holds

that

P

{

‖FΩT ‖ ≥ 8δλ max
{

1, 2qnλ−1/2
}

· u
}

≤ 4u−2q for u ≥ 1.

Proof. Consider the matrix A = F. Perform the reductions from Section 3.1, Lemma 13 and
Lemma 14. Then apply the tail bound, Lemma 18. �

3.5. Proof of Theorem 9. The content of Theorem 9 is to provide a bound on δ which ensures
that ‖FΩT ‖ is somewhat less than one with extremely high probability. To that end, we want to
make λ close to zero and q large. The following selections accomplish this goal:

λ =
log 16

log(1/δ)
and q = ⌊0.5n1/2−λ⌋.

Note that we can make λ as small as we like by taking δ sufficiently small. For any value of λ < 0.5,
the number q satisfies the requirements of Corollary 19 as soon as n is sufficiently large.

Now, the bound of Corollary 19 results in

P {‖FΩT‖ ≥ 0.5u} ≤ 4u−2q.

For u =
√

2, we see that

P

{

‖FΩT ‖2 ≥ 0.5
}

≤ 4 · 2−q.

If follows that, for any assignable ε > 0, we can make

P

{

‖FΩT‖2 ≥ 0.5
}

≤ exp
{

−n1/2−ε
}

provided that δ ≤ e−C/ε = c(ε) and that n ≥ N(ε).

3.6. Proof of Theorem 11. To establish Theorem 11, we must make the parameter λ as close to
0.5 as possible. Choose

λ =
1

2
− 0.1

log(1/δ)
and q = ⌊C log n⌋.

where C is a large constant. These choices are acceptable once δ is sufficiently small and n is
sufficiently large.

Corollary 19 delivers

P

{

‖FΩT ‖ ≥ 8.9δ1/2u
}

≤ 4u−C log n.

For u = 90/89, we reach

P

{

‖FΩT‖ ≥ 9δ1/2
}

≤ n−C,

adjusting constants as necessary. Finally, we transfer the factor δ1/2 to the other side of the
inequality and set δ = |Ω| /n to complete the proof.

4. Numerical Experiments

The theorems of this paper provide gross information about the norm of a random submatrix of
the DFT. To complement these results, we performed some numerical experiments to give a more
detailed empirical view.

The first set of experiments concerns random square submatrices of a DFT matrix of size n,
where we varied the parameter n over several orders of magnitude. Given a value of δ ∈ (0, 0.5),
we formed one hundred random submatrices with dimensions δn × δn and computed the average
spectral norm of these matrices. We did not plot data when δ ∈ (0.5, 1) because the norm of a
random submatrix equals one.
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Figure 1. Sample average of the norm of a random δn× δn submatrix drawn from
the n × n DFT.

Figure 1 shows the raw data for this first experiment. As n grows, one can see that the norm
tends toward an apparent limit: 2

√

δ(1 − δ). In Figure 2, we re-scale each matrix by δ−1/2 so its
columns have unit norm and then compute the average spectral norm. More elaborate behavior is
visible in this plot:

• For δ = 1/n, the norm of a random submatrix is identically equal to one.

• For δ = 2/n, the norm tends toward 1 + 2−1/2 = 1.7071 . . . , which can be verified by a
relatively simple analytic computation.

• The maximum value of the norm appears to occur at δ = 2/
√

n.
• The apparent limit of the scaled norm is 2

√
1 − δ, in agreement with the first figure.

These phenomena are intriguing, and it would be valuable to understand them in more detail.
Unfortunately, the methods of this paper are not refined enough to provide an explanation.

In the second set of experiments, we studied the norm of a random rectangular submatrix of the
128 × 128 DFT matrix. We varied the proportion δT of columns and the proportion δΩ of rows
in the range (0, 1). For each pair (δT , δΩ), we drew 100 random submatrices and computed the
average norm. Figure 3 shows the raw data. The apparent trend is that

E
∥

∥PδΩFP ′
δT

∥

∥ = 2
√

δ(1 − δ) where δ =
|T | + |Ω|

2
.

Figure 4 shows the same data, rescaled by max{|T | , |Ω|}−1/2. As in the square case, this plot
reveals a variety of interesting phenomena that are worth attention.

5. Further Research Directions

The present research suggests several directions for future exploration.

(1) It may be possible to improve the constants in Proposition 17 using a variation of the
current approach. Instead of using the Chebyshev polynomial to estimate the coefficients
of the polynomial that arises in the proof, one might use the nonnegative polynomial of least
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the n × n DFT and re-scaled by δ−1/2.
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Figure 4. Sample average of the norm of a random δΩn × δT n submatrix drawn
from the 128 × 128 DFT matrix and rescaled by max{|T | , |Ω|}−1/2.

deviation from zero on the interval [0, 1]. The paper [BK85] is relevant in this connection:
its authors identify the nonnegative polynomials with least deviation from zero with respect
to Lp norms for p < ∞. The p = ∞ case appears to be open, and uniqueness may be an
issue.

(2) Instead of reducing the problem to the square case, it would be valuable to understand
the rectangular case directly. Again, it may be possible to adapt Proposition 17 to handle
this situation. This approach would probably require the bivariate polynomials of least
deviation from zero identified by Sloss [Slo65].

(3) A harder problem is to determine the limiting behavior of the expected norm of a random
submatrix as the dimension grows and the proportion of rows and columns remains fixed.
We frame the following conjecture.

Conjecture 20 (Quartercircle Law). A random square submatrix of the n×n DFT satisfies

E
∥

∥PδFP ′
δ

∥

∥ ≤ 2
√

δ(1 − δ).

The inequality becomes an equality as n → ∞.

One can develop a similar statement about random rectangular submatrices. At present,
however, these conjectures are out of reach.

(4) Finally, one might study the behavior of the lower singular value of a (suitably normalized)
random submatrix drawn from the DFT. There are some results available when one set,
say T , is fixed [CRT06]. It is possible that the behavior will be better when both sets
are random. The present methods do not seem to provide much information about this
problem.
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Appendix A. Chebyshev Extrapolation

One of the major tools in the proof of Theorem 9 is Proposition 17. This result extrapolates the
moments of the norm of a large random submatrix drawn from a fixed matrix, given information
about a small random submatrix. An important idea behind the result is to fold information about
the spectral norm of the matrix into the estimate. The extrapolation technique is due to Bourgain
and Tzafriri [BT91]. We require a variant of their result, so we repeat the argument in its entirety.
The complete statement of the result follows.

Proposition 21. Suppose that A is an n×n matrix with ‖A‖ ≤ 1. Let q be an integer that satisfies

13 log n ≤ q ≤ n/2. Choose parameters ̺ ∈ (0, 1) and δ ∈ [̺, 1]. For each λ ∈ [0, 1], it holds that

(

E
∥

∥RδAR′
δ

∥

∥

2q
)1/2q

≤ 8δλ max

{

1, ̺−λ
(

E
∥

∥R̺AR′
̺

∥

∥

2q
)1/2q

}

.

The same result holds if we replace R′
δ by Rδ and replace R′

̺ by R̺.

V. A. Markov observed that the coefficients of an arbitrary polynomial can be bounded in
terms of the coefficients of a Chebyshev polynomial because Chebyshev polynomials are the unique
polynomials of least deviation from zero on the unit interval. See [Tim63, Sec. 2.9] for more details.

Proposition 22 (Markov). Let p(t) =
∑r

k=0 ckt
k. The coefficients of the polynomial p satisfy the

inequality

|ck| ≤
rk

k!
max
|t|≤1

|p(t)| ≤ er max
|t|≤1

|p(t)| .

for each k = 0, 1, . . . , r.

With Markov’s result at hand, we can prove Proposition 21.

Proof of Proposition 21. We establish the result when the two diagonal projectors are independent;
the other case is almost identical because this independence is never exploited. Define the function

F (s) = E
∥

∥RsAR′
s

∥

∥

2q
for s ∈ [0, 1].

Note that F (s) ≤ 1 because ‖RsAR′
s‖ ≤ ‖A‖ ≤ 1. Furthermore, F does not decrease.

The function F is comparable with a polynomial. Use the facts that 2q is even and that A has
dimension n to check the inequalities

F (s) ≤ E trace[(RsAR′
s)

∗(RsAR′
s)]

q ≤ nF (s). (A.1)

Define a second function

p(s) = E trace[(RsAR′
s)

∗(RsAR′
s)]

q = E trace(A∗RsAR′
s)

q,

where we used the cyclicity of the trace and the fact that Rs and R′
s are diagonal matrices with

0–1 entries. Expand the product and compute the expectation using the additional fact that the
entries of the diagonal matrices are independent random variables of mean s. We discover that p
is a polynomial of maximum degree 2q in the variable s:

p(s) =
∑2q

k=1
cks

k

The polynomial has no constant term because R0 = 0.
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We can use Markov’s technique to bound the coefficients of the polynomial. First, make the
change of variables s = ̺t2 to see that

∣

∣

∣

∑2q

k=1
ck̺

kt2k
∣

∣

∣
=

∣

∣p(̺t2)
∣

∣ ≤ nF (̺t2) ≤ nF (̺) for |t| ≤ 1.

The first inequality follows from (A.1) and the second follows from the monotonicity of F . The
polynomial p(̺t2) has degree 4q in the variable t, so Proposition 22 yields

|ck| ̺k ≤ ne4qF (̺) for k = 1, 2, . . . , 2q. (A.2)

Evaluate this expression at ̺ = 1 and recall that F ≤ 1 to obtain a second bound,

|ck| ≤ ne4q for k = 1, 2, . . . , 2q. (A.3)

To complete the proof, we evaluate the polynomial at a point δ in the range [̺, 1]. Fix a value
of λ in [0, 1], and set K = ⌊2λq⌋. In view of (A.2) and (A.3), we obtain

F (δ) ≤
∑K

k=1
|ck| δk +

∑2q

k=K+1
|ck| δk

≤
∑K

k=1
ne4qF (̺)(δ/̺)k +

∑2q

k=K+1
ne4qδk

≤ ne4q
[

K(δ/̺)KF (̺) + (2q − K)δK+1
]

≤ ne4qδ2λq
[

K̺−2λqF (̺) + (2q − K)
]

≤ ne4qδ2λq · 2q max{1, ̺−2λqF (̺)}
The third and fourth inequalities use the conditions δ/̺ ≥ 1 and δ ≤ 1, and the last bound is an
application of Jensen’s inequality. Taking the (2q)th root, we reach

F (δ)1/2q ≤ (2qn)1/2qe2δλ max{1, ̺−λF (̺)1/2q}.
The leading constant is less than 8, provided that 13 log n ≤ q ≤ n/2. �
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