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FROM JOINT CONVEXITY

OF QUANTUM RELATIVE ENTROPY

TO A CONCAVITY THEOREM OF LIEB

JOEL A. TROPP

(Communicated by Marius Junge)

Abstract. This paper provides a succinct proof of a 1973 theorem of Lieb
that establishes the concavity of a certain trace function. The development
relies on a deep result from quantum information theory, the joint convexity
of quantum relative entropy, as well as a recent argument due to Carlen and
Lieb.

1. Introduction

In his 1973 paper on trace functions, Lieb establishes an important concavity
theorem [Lie73, Thm. 6] concerning the trace exponential.

Theorem 1 (Lieb). Let H be a fixed self-adjoint matrix. The map

(1) A �−→ tr exp (H + logA)

is concave on the positive-definite cone.

The most direct proof of Theorem 1 is due to Epstein [Eps73]; see Ruskai’s
papers [Rus02, Rus05] for a condensed version of this argument. Lieb’s original
proof develops the concavity of the function (1) as a corollary of another deep
concavity theorem [Lie73, Thm. 1]. In fact, many convexity and concavity theorems
for trace functions are equivalent with each other, in the sense that the mutual
implications follow from relatively easy arguments. See [Lie73, §5] and [CL08, §5]
for discussions of this point.

The goal of this paper is to demonstrate that a modicum of convex analysis allows
us to derive Theorem 1 directly from another major theorem, the joint convexity of
the quantum relative entropy. The literature contains several elegant, conceptual
proofs of the latter result; for example, see [Eff09]. These arguments now deliver
Lieb’s theorem as an easy corollary.

The author’s interest in Theorem 1 stems from its striking applications in random
matrix theory; refer to the paper [Tro10] for a detailed discussion. Researchers
concerned with these developments may find the current approach to Lieb’s theorem
more transparent than earlier treatments.
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The main ideas in our presentation are drawn from the work of Carlen and
Lieb [CL08], so this dispatch does not contain a truly novel technique. Neverthe-
less, this paper should be valuable because it provides a geometric intuition for
Theorem 1 and connects it to another major result.

2. Background

Our argument rests on the properties of a function, called the quantum relative
entropy, which can be interpreted as a measure of dissimilarity between two positive-
definite matrices.

Definition 2. Let X ,Y be positive-definite matrices. The quantum relative entropy
of X with respect to Y is defined as

D(X ;Y ) := tr(X logX − X logY − (X − Y )).

Other appellations for this function include quantum information divergence and
von Neumann divergence.

The quantum relative entropy has a nice geometric interpretation [DT07, §2.2
and §2.6]. Define the quantum entropy function ϕ(X ) := tr(X logX ) for a positive-
definite argument. The divergence D(X ;Y ) can be viewed as the difference between
ϕ(X ) and the best affine approximation of the entropy ϕ at the matrix Y . That is,

D(X ;Y ) = ϕ(X )− [ϕ(Y ) + 〈∇ϕ(Y ), X − Y 〉].
The entropy ϕ is a strictly convex function, which implies that the affine approxi-
mation strictly underestimates ϕ. This observation yields the following result.

Fact 3. The quantum relative entropy is nonnegative:

D(X ;Y ) ≥ 0.

Equality holds if and only if X = Y .

In quantum statistical mechanics, Fact 3 is usually called Klein’s inequality.
Another proof proceeds by showing that certain functional relations for scalars
extend to matrix trace functions [Pet94, §2].

The convexity properties of quantum relative entropy have paramount impor-
tance. We require a major theorem, due to Lindblad [Lin74, Lem. 2], which encap-
sulates the difficulties of the proof.

Fact 4 (Lindblad). The quantum relative entropy is a jointly convex function. That
is,

D(tX1+(1− t)X2; tY1+(1− t)Y2) ≤ t ·D(X1;Y1)+(1− t) ·D(X2;Y2) for t ∈ [0, 1],

where Xi and Yi are positive definite for i = 1, 2.

Fact 4 follows easily from Lieb’s main concavity theorem [Lie73, Thm. 1];
Bhatia’s book [Bha97, §IX.6 and Prob. IX.8.17] offers a clear account of this ap-
proach. The literature contains several other elegant proofs; see the papers [Uhl77,
PW78, And79, Han06]. We single out Effros’ work [Eff09] because it is accessible
to researchers with experience in matrix theory and convex analysis.

Our final tool is a basic result from convex analysis which ensures that partial
maximization of a concave function produces a concave function [CL08, Lem. 2.3].
We include the simple proof.
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Proposition 5. Let f( · ; · ) be a jointly concave function. Then the function y �→
maxx f(x; y) obtained by partial maximization is concave, assuming the maximum
is always attained.

Proof. For each pair of points y1 and y2, there are points x1 and x2 that satisfy

f(x1; y1) = maxx f(x; y1) and f(x2; y2) = maxx f(x; y2).

For each t ∈ [0, 1], the joint concavity of f implies that

maxx f(x; ty1 + (1− t)y2) ≥ f(tx1 + (1− t)x2; ty1 + (1− t)y2)

≥ t · f(x1; y1) + (1− t) · f(x2; y2)

= t ·maxx f(x; y1) + (1− t) ·maxx f(x; y2).

In words, the partial maximum is a concave function. �

3. Proof of Lieb’s Theorem

We begin with a variational representation of the trace, which is a restatement
of the fact that quantum relative entropy is nonnegative. The symbol 
 denotes
the positive-definite order.

Lemma 6 (Variational Formula for Trace). Let Y be a positive-definite matrix.
Then

trY = max
X�0

tr(X logY − X logX + X ).

Proof. Introduce the definition of the quantum relative entropy into Fact 3 and
rearrange to reach

trY ≥ tr(X logY − X logX + X ).

When X = Y , both sides are equal, which yields the advertised result. �

The main result follows quickly using the variational formula and the other tools
we have assembled. As noted, the structure of this argument is parallel with the
approach of Carlen–Lieb to another concavity theorem [CL08, Thm. 1.1].

Proof of Theorem 1. In the variational formula, Lemma 6, select Y = exp(H +
logA) to obtain

tr exp(H + logA) = max
X�0

tr(X (H + logA)− X logX + X ).

The latter expression can be written compactly using the quantum relative entropy:

(2) tr exp(H + logA) = max
X�0

[tr(XH)− (D(X ;A)− trA)].

For each self-adjoint matrix H, Fact 4 implies that the bracket is a jointly concave
function of the variables A and X . It follows from Proposition 5 that the right-
hand side of (2) defines a concave function of A. This observation establishes the
theorem. �

Remark 7. The expression (2) states that the function f : H �→ tr exp(H + logA) is
the Fenchel conjugate of D( · ;A)− trA. This observation implies that f is convex.
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