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A mathematical introduction to compressive sensing by Simon Foucart and Hol-
ger Rauhut [FR13] is about sparse solutions to systems of random linear equations.
To begin, let me describe some striking phenomena that take place in this con-
text. Afterward, I shall try to explain why these facts have captivated so many
researchers over the last decade. I shall conclude with some comments on the book.

1. Sparse solutions to random linear systems

Suppose that the vector x� ∈ R
n has the property that only s of its coordinates

are nonzero. We say that the vector x� is s-sparse. More colloquially, if s is
somewhat smaller than n, we simply describe the vector as sparse.

Next, draw a random Gaussian matrix A ∈ R
m×n. That is, each entry of A is

an independent normal random variable with mean zero and variance one. This is
the most fundamental model for a random rectangular matrix.

Consider the random linear system

(1.1) Find x such that Ax = Ax�.

The distinguished point x� always solves (1.1). We would like to explore whether
(1.1) has another solution as sparse as the planted solution x�.

To formalize this question, let us pose an optimization problem:

(1.2) minimize
x

card{i : xi �= 0} subject to Ax = Ax�.

We may ask when x� is the unique point that achieves the minimum in (1.2). Here
is a (nearly) complete answer.

Theorem 1.1. Suppose that x� ∈ R
n has s nonzero entries, where s < n, and let

A ∈ R
m×n be Gaussian. With probability one,

(1) if m > s, then x� is the unique solution to (1.2);
(2) if m = s, then x� is a nonunique solution to (1.2);
(3) if m < s, then x� is not a solution to (1.2).

This result follows from a dimension-counting argument [FR13, Thm. 2.16].
Suppose now that we would like to compute the sparsest solution to (1.1). Un-

fortunately, the formulation (1.2) does not lead to practical computer algorithms;
see [Nat95] or [FR13, Sec. 2.3]. The intuition behind this fact is that we might
have to perform a census of each of the 2n possible sets of nonzero entries in the
variable x to solve (1.2).

Instead, we replace (1.2) with a problem that is easier to manage:

(1.3) minimize
x

n∑
i=1

|xi| subject to Ax = Ax�.

The �1 norm in the objective function of (1.3) is a convex proxy for the cardi-
nality in (1.2). We can solve (1.3) efficiently because it is equivalent to a linear
programming problem.
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Figure 1.1. Computationally efficient recovery of a sparse vector
from random linear equations. For n = 64, the heatmap displays
the empirical probability that an n-dimensional vector x� with s
nonzero entries is the unique solution to (1.3) for anm×nGaussian
matrix A. The white curve is the theoretical phase transition
m = nψ(s/n).

We may ask when x� is the unique point that achieves the minimum in (1.3).
The following theorem gives a detailed answer.

Theorem 1.2. Suppose that x� ∈ R
n has s nonzero entries, and let A ∈ R

m×n be
Gaussian. Parameterize

m = n · ψ(s/n) + t for t ∈ R,

where ψ : [0, 1] → [0, 1] is the following concave function that fixes 0 and 1:

ψ(�) := inf
τ≥0

[
�(1 + τ2) + (1− �)

√
2

π

∫ ∞

τ

(u− τ )2e−u2/2 du

]
.

With probability increasing rapidly to one as |t| increases,
(1) if t > 0, then x� is the unique solution to (1.3);
(2) if t < 0, then x� is not a solution to (1.3).

Bounds for the probability are available.

Theorem 1.2 is a deep result that can be established using methods from integral
geometry [DT09b, ALMT14] or statistical physics [BLM15] or Gaussian process
theory [Sto13,TOH14]. See [ALMT14, Sec. 10] for some history.

The easiest way to understand Theorem 1.2 is to look at the computer experiment
in Figure 1.1. In words, there is a sharp change, or phase transition, in the behavior
of (1.3) when m = nψ(s/n). It is possible to bound the phase transition curve using
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elementary functions. The condition m > 2s(1 + log(n/s)) is sufficient to ensure
that x� is the unique solution to (1.3) with high probability; this bound is sharp
for small s.

Here is one interpretation of these results. Theorem 1.1 states that we need pre-
cisely m = s+1 random linear equations to determine an s-sparse vector uniquely.
Theorem 1.2 implies that m = 2s(1 + log(n/s)) random linear equations are suf-
ficient if we want to find the s-sparse vector by means of the computationally
tractable formulation (1.3). In sharp contrast, we need fully m = n linear equa-
tions to describe a general vector in R

n. These results suggest that the number of
degrees of freedom in a sparse vector is roughly proportional to the sparsity level,
not the ambient dimension.

2. Stability

Theorem 1.2 demonstrates that the �1 minimization method (1.3) is a powerful
approach for finding a sparse solution to a random linear system. We can also
investigate how this type of formulation behaves when we relax our assumptions.

Let x� ∈ R
n and e ∈ R

m be arbitrary vectors, and draw a Gaussian matrix
A ∈ R

m×n. Consider the perturbed �1 minimization problem

(2.1) minimize
x

∑n

i=1
|xi| subject to Ax = Ax� + e.

We may study how well a solution to the optimization problem (2.1) approximates
the distinguished point x�. Here is a satisfactory result.

Theorem 2.1. Fix arbitrary vectors x� ∈ R
n and e ∈ R

m, and let A ∈ R
m×n be

Gaussian. Select a positive integer s for which

(2.2) m > Const · s log(n/s).

With probability increasing rapidly to one as m increases, each solution x� to the
optimization problem (2.1) satisfies

‖x� − x�‖2 ≤ Const ·
[

min
s-sparse y

‖x� − y‖2 + 1

m
‖e‖2

]
.

We have written ‖·‖ for the �2 norm, and the constants are absolute.

The analysis requires methods from approximation theory and geometry of Ba-
nach spaces. See [FR13, Thm. 11.23] for the proof and background.

When x� is sparse and e = 0, Theorem 2.1 gives the same qualitative prediction
for (2.1) as Theorem 1.2. As a consequence, we cannot improve the bound (2.2)
on the sparsity level s beyond the precise value of the constant. When x� is not
sparse, Theorem 2.1 demonstrates that (2.1) always delivers an approximation to
x� that is comparable with the best s-sparse approximation.

One may wonder whether the behavior of the optimization problems (1.3) and
(2.1) persists even when the matrix A is not Gaussian. In fact, there is exten-
sive numerical [DT09a] and theoretical [OT15] evidence that the detailed result of
Theorem 1.2 remains valid for some other types of random matrices. Moreover,
it is possible to prove qualitative results, such as Theorem 2.1, for a wide class of
examples that also includes random matrices with additional structure [FR13].
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3. Compressed sensing

The field of compressed sensing is founded on a claim about the technological
implications of results like Theorems 1.2 and 2.1. Compressed sensing interprets
this theory as evidence that we can design sensing technologies that acquire some
types of data using far fewer measurements than classical systems allow. This
claim is surprising, persuasive, and inspirational. But the jury has not yet reached
a verdict on the practical impact; see Section 5.

To provide some background, let me say a few words about sensing technologies.
We use the word signal to describe an information-bearing function, such as an
image, a sound, or a radio wave. For simplicity, we only consider signals that are
represented as finite-dimensional vectors, rather than continuous functions.

Sensors are mechanisms for acquiring data about a target signal out in the world.
Sensors include antennas, microphones, microscopes, digital cameras, X-ray ma-
chines, magnetic resonance imagers (MRI), and far more. Given the measured data
from one of these systems, we wish to perform signal processing tasks, such as
classifying the signal or producing a digital reconstruction.

The main goal of compressed sensing is to develop sensors that allow us to
acquire and reconstruct a target signal using as few measurements as possible. The
approach is based on a family of principles about how to model sensing technologies
and perform signal reconstructions:

Sparsity. The first principle is that we should look for problem domains where
signals of interest are sparse. More precisely, after an appropriate change of coor-
dinates, the target signal x� ∈ R

n should be well approximated by a sparse vector.
For example, audio and radar signals can often be approximated using a small
number of frequency components. Images can be expressed efficiently using a basis
of functions called wavelets ; see Figure 3.1.

Linear measurements. We can abstract the action of a sensor as a linear
transformation that maps a target signal to a vector of measurements. If we write
A ∈ R

m×n for the measurement map, then the measurements of a signal x� take
the form b = Ax� + e, where the vector e models measurement errors. Linearity
gives a good description of many practical systems. For example, a digital camera
returns the intensity of light at locations in the image plane. An X-ray device
collects line integrals of the density of the target object.

Randomness. Some sensing technologies have enough design flexibility that we
can modify the type of measurements they collect. Compressed sensing promotes
the idea that the measurement map A should be “as random as possible” to make
the measurements more informative. For example, in an imaging system, we might
introduce randomness by placing a series of patterned screens between the image
and the sensor.

Efficient algorithms. Once we have collected noisy data b = Ax� + e about
a sparse signal, we wish to perform signal processing tasks, such as digital recon-
struction. To do so, we should use efficient algorithms that can exploit sparsity. For
example, we may solve the optimization problem (2.1) using linear programming
software.

Minimal sampling. The focus of compressed sensing is to acquire a target
signal using the minimal number of measurements. If x� is well approximated by
an s-sparse vector, then Theorem 2.1 predicts that m = Const · s log(n/s) random
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Figure 3.1. Images are approximately sparse in a wavelet basis.
[left] A 1024×1024 pixel grayscale image. [right] An approximation
performed by selecting the largest 1% of the coefficients when the
image is expressed in the orthonormal basis of Daubechies-4 tensor
product wavelets. The reconstruction has dimension n = 1.05 · 106
and sparsity level s = 1.05 · 104.

measurements are sufficient for us to approximate the target signal by solving the
tractable formulation (2.1).

Summary. In short, compressed sensing proposes that we should identify do-
mains where signals are very sparse. We should then design sensors that collect
random measurements. Random measurements allow us to determine a sparse sig-
nal from fewer numbers than its nominal dimension. Last, we should use efficient
computational methods to reconstruct these signals digitally.

This package of ideas is usually attributed to a pair of papers that were released
in 2004. The first paper [CRT06], written by Candès, Romberg, and Tao (CRT),
is called “Robust uncertainty principles: Exact signal reconstruction from highly
incomplete frequency information.” The second paper [Don06], written by Donoho,
is called “Compressed sensing.”

4. History and context

There is a persistent myth that the subject of compressed sensing was born in
2004, without a history and fully grown, like Athena springing from the forehead
of Zeus. In fact, most of the conceptual elements outlined above had already been
established firmly before the appearance of the CRT and Donoho papers. It is
worth noting a few of the precedents, although a complete account of the history
would require a separate essay.

4.1. Algorithms for sparse approximation. A sparse approximation problem
requests the sparsest vector that almost solves a linear system:

(4.1) minimize
x

card{i : xi �= 0} subject to ‖Ax− b‖ ≤ ε.
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Here, the matrix A might be deterministic or random. It is NP-hard to solve (4.1)
for some classes of problem data [Nat95].

Sparse approximation arose in the statistics literature in the 1950s as a model
for selecting a small set of informative variables for linear regression [Mil02]. To
solve (4.1), statisticians developed heuristic greedy algorithms that build up a so-
lution iteratively, adding one nonzero entry at a time to reduce the error. Dur-
ing the 1970s, researchers in geophysics proposed techniques based on �1 mini-
mization, similar to (2.1), to solve inverse problems that arise in geological imag-
ing [CM73, TBM79]. In spite of the long history, there was little rigorous the-
ory on sparse approximation before the 1990s, aside from a few scattered pa-
pers [Log65,SS86,DS89].

We can trace contemporary interest in sparse approximation to research in ap-
plied harmonic analysis in the 1970s and 1980s. This community demonstrated
that there is a correspondence between the regularity of a function and the com-
plexity of representing the function. In particular, a piecewise smooth function
admits a sparse approximation as a linear combination of wavelets. This idea plays
an important role in image and video compression because many real-world signals
are piecewise smooth; see Figure 3.1 for an illustration. More background appears
in [DVDD98,Mal09].

By the early 1990s, a number of researchers were studying procedures for pro-
ducing sparse approximations of functions with respect to wavelets and other sys-
tems of basis functions. Inter alia, see [CW92,Bar93,DMZ94,DJ94,DT96,CDS98].
Around the same time, statisticians began to direct fresh attention to variable
selection problems as they sought to improve the accuracy and interpretability of
predictions in large-scale regression models [Tib96]. We should also mention a third
line of work on total-variation minimization that emerged in imaging science; the
connection endures because the total variation of a signal is roughly the �1 norm of
its gradient [ROF92].

After 2000, researchers began to develop a systematic theory of sparse approx-
imation. This effort led to geometric assumptions on the matrix A which ensure
that tractable sparse approximation methods, such as (2.1), solve the problem (4.1).
By 2004, a family of sharp results was available for deterministic sparse approxi-
mation problems [DH01,GMS03,DE03,Tro04,Fuc05,DET06,Tro06]. At this point,
the arrival of compressed sensing instigated a careful study of random sparse ap-
proximation problems. See Foucart and Rauhut [FR13] for more discussion.

4.2. Randomness and minimal sampling. There are several strands of research
that support the notion that random measurements offer an efficient mechanism
for acquiring information about a sparse vector.

In the early 1990s, the theoretical computer science literature developed the
idea that we can reconstruct a function with a sparse approximation from the in-
formation in random point evaluations [KM93,Man95]. In the early 2000s, Gilbert
et al. introduced efficient computer algorithms that use a small number of ran-
dom point evaluations to solve sparse approximation problems with respect to
wavelets [GGI+02b] or discrete Fourier modes [GGIMS02]. The primary goal of
these papers is to develop fast algorithms for specific computational problems,
rather than to design new sensors.

Donoho [Don06] has also identified a mathematical prototype for compressed
sensing in classical results from approximation theory. In a Euclidean space, the
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Gel’fand m-width of a centrally symmetric set is the diameter of the smallest in-
tersection between the set and a subspace of codimension m. In other words, the
Gel’fand width measures how accurately we can approximate the points in the set
using the best fixed choice of m linear functionals. Kashin [Kas77] and Garnaev
and Gluskin [GG84] showed that a random subspace achieves the Gel’fand width
of the �n1 ball, up to a constant factor, with high probability. Vectors in the �n1 ball
are well approximated by sparse vectors, per Markov’s inequality, and we can find a
point in the �n1 ball that satisfies linear constraints by means of linear programming
software. Connecting the dots, we discover a sketch of the compressed sensing idea.

4.3. Computational sensing. Compressed sensing can also be classified as a
species in a larger research taxon called computational sensing, which dates at
least as far back as the 1970s. In this field, the basic approach is to use modeling
and computation to extract more information from sensing technologies. Let us
mention a few examples.

Most imaging systems can only collect the amplitude of a light field. In the early
1970s, researchers in optics began to apply computer algorithms to reconstruct the
missing phase information [GS72,Fie82].

Around the same time, optics researchers developed imaging systems that use a
series of patterned screens to modulate a light field. These systems are designed
to reduce the intensity of the illumination on the sample, to reduce the number
of measurements required, and to increase the signal-to-noise ratio. They also use
computer algorithms to perform image reconstruction [HS79].

Geophysicists rely on reflection seismograms to map geological features under the
Earth’s surface. The measurements consist of the convolution of a known waveform
with an unknown sparse vector that encodes changes in the subsurface density.
Around 1980, geophysicists began using �1 minimization methods to improve the
quality of these geological maps [TBM79,LF81,OSL83].

4.4. Compressed sensing. We have seen that the research literature already de-
scribes many of the principles that underlie compressed sensing. So, why did the
CRT and Donoho papers have such an outsize impact?

First, these works contain theorems that improve qualitatively on prior art. Both
papers demonstrate that we can reconstruct an s-sparse vector in R

n from about
m ≈ s logn random linear equations by solving a tractable optimization problem
like (1.3). The best previous results in the applied harmonic analysis literature
require m ≈ s2 equations [DE03,Tro04].

Second, the CRT and Donoho papers raise the prospect of technological appli-
cations of these new theoretical results. As a motivating example, the CRT paper
discusses an idealization of MRI. The Donoho paper considers examples in imaging
and spectroscopy. In short, these two works explicitly announce the compressed
sensing project.

The CRT and Donoho papers ignited an explosion of research. This body of work
includes everything from theoretical analyses of structured random matrices all the
way to concrete attempts to design and build technologies based on compressed
sensing principles. After a decade, some of the smoke has cleared, and we are
in a better position to assess the successes and failures of the compressed sensing
program.
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5. Applications?

Compressed sensing was not developed in response to the exigencies of a partic-
ular application. Rather, it is a mathematical theory that includes claims about
its own significance. As we seek to understand the technological value of this ap-
proach, we must delineate conditions under which the theory is relevant and specify
applications in which these conditions prevail.

Compressed sensing has the following prerequisites:

(1) The signal x� must be well approximated by a sparse vector.
(2) The signal-to-noise ratio (SNR) must be high. The SNR is roughly the

relative size of x� and the measurement error e.
(3) The sensing technology must be able to acquire random measurements.
(4) The “unit cost” per measurement must be high.
(5) We can afford the computational cost of the reconstruction algorithm.

There are a few applications where the planets align, but the requirements are
stringent enough that many attempts to design compressed sensing technologies
have failed.

The most prominent successful application is the “Sparse MRI” system, which
uses compressed sensing principles to accelerate signal acquisition in MRI [LDP07].
This approach works because medical images are relatively sparse, the highly en-
gineered equipment achieves good SNR, and MRI measurements can be modified
to insert some randomness. The measurement “cost” reflects the amount of time a
patient spends in the MRI scanner, so it is acceptable to trade the computational
cost of reconstruction for reduced scanning time. Sparse MRI can trim the image
acquisition time by a factor between two and six, which is a meaningful clinical
improvement [VMA+11].

The literature also describes some less successful attempts to invoke the com-
pressed sensing paradigm. For instance, there was an enthusiastic effort to use these
principles to design wideband analog-to-digital converters (ADCs), which record the
voltage of an electrical signal at a high rate. One can make a theoretical case for the
value of this type of technology [TLD+10]. But projects to build practical systems
foundered because of inadequate sparsity and SNR, the difficulty of performing
random sampling in hardware, and also the expense of reconstruction algorithms.
See [DLTB12] for a discussion of some of these issues.

Overall, the greatest obstacles to compressed sensing are the requirements of
high sparsity and high SNR. Many signals do admit sparse approximations, but
the sparsity level s may not be small enough to support a substantial reduction
in the number m of measurements. At the same time, when the measurements
are corrupted by random noise, every reduction in the number m of samples by a
factor of two also decreases the quality of the digital reconstruction by a factor of
two [DLTB12,CD13]; see also Theorem 2.1. As a consequence, reducing the number
of measurements—the very goal of compressed sensing—can be self-defeating.

The theory of compressed sensing promises an exponential decrease in the num-
ber of measurements needed to acquire signals. At this point, I am not aware
of settings where the reduction has been more dramatic than a small, but use-
ful, constant factor. It is hard to predict what applications the future will bring,
but compressed sensing has not had the technological impact that its strongest
proponents anticipated.
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6. The halo effect

Although compressed sensing has not yet achieved its goals fully, the coherent
research effort generated ancillary benefits. First, researchers are better educated
about established insights from applied harmonic analysis, convex optimization,
and random matrix theory. Second, the community has made substantial progress
on basic theoretical and algorithmic methods that will have wider applications.

As we have discussed, compressed sensing depends on foundational research in
applied harmonic analysis. In particular, sparse signal models and algorithms for
sparse approximation play a central role. These powerful ideas have become more
widely known over the last decade. In fact, when people refer to “compressed
sensing”, they often mean “sparse approximation”.

Because of research in compressed sensing, our knowledge of sparse signal models
has increased significantly. We now have a keener understanding of how to find
other types of “structured” solutions to systems of linear equations. For instance,
we can design and analyze optimization templates, similar to (1.3), for finding a
low-rank matrix that satisfies linear constraints [Faz02, RFP10]. This is just one
example from a wide spectrum of problems. See [CRPW12,ALMT14,TOH15] for
some others.

Compressed sensing also makes a vigorous argument for the importance of con-
vex optimization. Indeed, many approaches, such as (1.3), for finding structured
solutions to linear systems depend on convex optimization. Although we can solve
these problems efficiently in principle, they can be quite challenging in practice.
Over the last decade, there has been a flood of work on algorithms for large-scale
convex optimization. We now have significantly better computational methods than
we did a decade ago. For example, see [TW10,BCG11]. These algorithmic advances
will have an impact far beyond compressed sensing.

The theory of compressed sensing also depends heavily on results about the geo-
metric and spectral properties of random matrices. To model realistic measurement
systems more accurately, we must study random matrices with more structure than
a Gaussian matrix. The tools for this inquiry derive from random matrix theory,
stochastic processes, convex geometry, operator theory, and more. These methods
have become a part of the standard toolkit for an entire generation of students.

Theoretical problems in compressed sensing have also motivated the introduction
of novel probabilistic techniques. For instance, we have developed an entire suite
of new inequalities for random matrices [Tro12]. We have also achieved a deeper
understanding of random processes with quadratic structure [KMR14].

Finally, enthusiasm about compressed sensing has inspired engineers to be cre-
ative about designing new types of sensors. For example, Baraniuk’s group has
developed a lensless digital camera that is very thin [AAS+15]. Another group of
researchers has been working on biological assays that can efficiently identify the
constituents of a sample [EGN+15]. Both of these systems rely on clever measure-
ments and sophisticated algorithms.

Although most problem domains are not amenable to minimal sampling, some of
the other principles that support compressed sensing do remain valuable. Indeed,
the field of computational sensing is alive and well.
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7. What’s in it for mathematicians?

For mathematicians, compressed sensing might seem like a spectator sport. This
is hardly the case. The field draws on an astonishing range of mathematical tech-
niques; it has led to a deeper understanding of parts of mathematics; and it even
has some new ramifications. This section offers a brief tour of the connections with
theoretical mathematics.

Random matrix theory. Rudelson and Vershynin used ideas from compressed
sensing to develop quantitative bounds for the minimum singular value of a square
random matrix [RV08]. Related constructions led to universality laws for the action
of a random matrix on a convex set [OT15].

Approximation theory. Proof techniques from compressed sensing allowed
researchers to compute the Gel’fand widths of �p balls in the range 0 < p < 1
[FPRU10].

Combinatorial geometry. The behavior of the optimization problem (1.3) is
closely related to the facial structure of a random image of the �1 ball. This connec-
tion has tendered new results on the existence of “neighborly” polytopes [DT09b].

Integral geometry. Investigations in compressed sensing led to a deeper un-
derstanding of the intrinsic volumes of convex cones [ALMT14,MT14]. This work
also revealed new phase transition phenomena that take place in classical problems
on the intersection properties of randomly oriented cones [MT13].

Harmonic analysis. There is a long-standing connection between sparsity and
uncertainty principles [DS89, DH01, Tao05, CRT06]. In addition, the properties
of random measurement matrices are closely connected with the Λ1 set problem;
see [FR13, Sec. 12.7].

Number theory. There is also a long-standing connection between sparsity and
the analytic principle of the large sieve [DL92]. More recently, authors have used
properties of the Legendre symbol to construct nonrandom measurement matrices
that mimic the properties of random measurements [BFMM16].

Additive combinatorics. Researchers have also used deep facts about the
existence of sum sets inside product sets to construct nonrandom measurement
matrices [BDF+11].

Graph theory. Expander graphs can be applied to design measurement matri-
ces that have few nonzero entries [GI10].

This dizzying assortment of topics indicates why so many researchers have been
drawn to compressed sensing. We expect that some of the research challenges that
have arisen from compressed sensing will only be resolved by the development of
new mathematics.

8. About the book

The book by S. Foucart and H. Rauhut is the first textbook on the subject
of compressed sensing, although several compendia [BCEM10,EK12] of expository
research articles appeared earlier. The book is intended as a guide for students
and researchers who are interested in the mathematical underpinnings of the field.
The book does many things well, and it is the best reference I know for some of
its content. On the other hand, it is too exhaustive to be truly introductory, and
it was written before some of the most striking mathematical developments took
place.
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Foucart and Rauhut have focused their attention on the years 2000–2012, which
was the period of greatest activity in sparse approximation and compressed sens-
ing. Almost all of the significant research from this era appears within the book.
The authors discuss the properties of sparse solutions to linear systems, both de-
terministic and random. They present and analyze several classes of algorithms
for solving these problems. They explain techniques for studying the properties
of random matrices qua compressed sensing. They draw deep connections with
several areas of mathematics and computer science. The notes provide a thorough
and honest account of the history, with even-handed discussions about competing
claims of novelty. There is a selection of exercises with varying degrees of difficulty.
The authors, wisely, do not discuss specific applications after the introduction.

In my view, the strongest aspect of the book is the comprehensive treatment of
methods for studying structured random matrices. This is a beautiful and impor-
tant subject that used to be quite difficult to learn. The authors have produced
the first accessible treatment that proceeds from first principles. I expect that their
presentation of this material will serve as a lasting reference.

The book often feels more like a research monograph than an invitation to stu-
dents because of the breadth of topics and the level of detail. I think this is because
Foucart and Rauhut have eschewed judgments about the relative value of different
parts of the compressed sensing project. Researchers who have contributed to com-
pressed sensing will appreciate this ecumenical approach. But some readers may
wish that the authors had curated the material more aggressively.

In spite of its breadth, the book does omit a few subjects that a mathematically
oriented reader might appreciate. For example, Foucart and Rauhut motivate the
idea of sparse models in image processing using numerical examples. There is
limited discussion about how harmonic analysis justifies this approach; readers will
want Mallat’s book [Mal09] for remediation.

Our theoretical understanding of compressed sensing and related problems has
continued to mature since the appearance of Foucart and Rauhut’s book. We
now recognize that ordinary sparsity is part of a spectrum of models that have
relatively few degrees of freedom. We have machinery for developing optimization
problems that can enforce various types of structure. We have sharp results, such
as Theorem 1.2, that describe the number of random measurements we need to
determine a signal from a general model. We also have a precise analysis of the
impact of noise in the measurements. See [CRPW12, ALMT14, TOH15, OT15,
Thr16] for presentations of this material.

Compressed sensing has provided an opportunity for electrical engineers to learn
new mathematics, and it has given mathematicians some challenging new prob-
lems to consider. Foucart and Rauhut have written a comprehensive survey of the
ideas and methods from this field. Their book will engage the interest of many
researchers, both theoretical and applied.
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