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Abstract. Covariance estimation becomes challenging in the regime where the number p of vari-
ables outstrips the number n of samples available to construct the estimate. One way to circumvent
this problem is to assume that the covariance matrix is nearly sparse and to focus on estimating
only the significant entries. To analyze this approach, Levina and Vershynin (2011) introduce a
formalism called masked covariance estimation, where each entry of the sample covariance estimator
is reweighed to reflect an a priori assessment of its importance.

This paper provides a new analysis of the masked sample covariance estimator based on the
matrix Laplace transform method. The main result applies to general subgaussian distributions.
Specialized to the case of a Gaussian distribution, the theory offers qualitative improvements over
earlier work. For example, the new results show that n = O(B log2 p) samples suffice to estimate
a banded covariance matrix with bandwidth B up to a relative spectral-norm error, in contrast to
the sample complexity n = O(B log5 p) obtained by Levina and Vershynin.

1. Introduction

A fundamental problem in multivariate statistics is to obtain an accurate estimate of the co-
variance matrix of a multivariate distribution given independent samples from the distribution.
This challenge arises whenever we need to understand the spread of the data and its marginals, for
example, when we perform regression analysis [Fre05] or principal component analysis [Jol02].

In the classical setting where the number of samples exceeds the number of variables, the behavior
of standard covariance estimators is textbook material [JW02, Mui82, MKB80]. The random
matrix literature also contains a huge amount of relevant work; we refer to the book [BS10] and
the survey [Ver11] for further information.

Modern applications, in contrast, often involve a small number of samples and a large number
of variables. The paucity of data makes it impossible to obtain an accurate estimate of a gen-
eral covariance matrix. As a remedy, we must frame additional assumptions on the model and
develop estimators that exploit this extra structure. Over the last few years, a number of papers,
including [FB07, BL08b, BL08a, Kar08, RLZ09, CZZ10], have focused on the situation where the
covariance matrix is sparse or nearly so. In this case, we imagine that we could limit our attention
to the significant entries of the covariance matrix and thereby perform more accurate estimation
with fewer samples.

This paper studies a particular technique for the sparse covariance problem that we call the
masked sample covariance estimator. This approach uses a mask matrix, constructed a priori, to
specify the importance we place on each entry of the covariance matrix. By reweighting the sample
covariance estimate using a mask, we can reduce the influence of entires that we cannot estimate
reliably. For instance, if the covariance matrix is approximated by a banded matrix, one sets
the entries of the mask to zero outside of the band. This formalism was introduced by Levina and

Date: 6 September 2011. Corrected 28 September 2011.
2010 Mathematics Subject Classification. Primary: 60B20.
The authors are with Computing and Mathematical Sciences, MC 305-16, California Inst. Technology, Pasadena,

CA 91125. E-mail: ycchen@caltech.edu, gittens@caltech.edu, jtropp@cms.caltech.edu. Research supported by
ONR awards N00014-08-1-0883 and N00014-11-1-0025, DARPA award N66001-08-1-2065, AFOSR award FA9550-09-
1-0643, and a Sloan Fellowship.

1



2 RICHARD Y. CHEN, ALEX GITTENS, AND JOEL A. TROPP

Vershynin [LV11] to provide a unified treatment of earlier methods for sparse covariance estimation;
we refer to their paper for a more detailed discussion of prior work.

Levina and Vershynin derive an elegant bound [LV11, Thm. 2.1] for masked covariance estimation
of a Gaussian distribution. In this work, we develop a completely different analysis based on the
matrix Laplace transform method [AW02, Tro11b]. The advantage of this approach is that it applies
to general subgaussian distributions and it allows us to obtain more refined information about the
quality of the masked sample covariance estimator.

The rest of this Introduction provides an overview of masked covariance estimation and its
relationship with classical covariance estimation. In Section 1.6, we present a simplified result for
the behavior of the masked sample covariance estimator applied to a Gaussian distribution, and
we offer a concrete comparison with the results of Levina and Vershynin [LV11, Thm. 2.1]. More
detailed results appear in Section 3.

1.1. Classical Covariance Estimation. Consider a random vector

x = (X1, X2, . . . , Xp)∗ ∈ Rp.

Let x1, . . .xn be independent random vectors that follow the same distribution as x. For simplicity,
we assume that the distribution is known to have zero mean: E x = 0. The covariance matrix Σ
is a p× p matrix that tabulates the second-order statistics of the distribution:

Σ := E(xx∗) (1.1)

where ∗ denotes the transpose operation. The classical estimator for the covariance matrix is the
sample covariance matrix, which is obtained from (1.1) by the plug-in principle:

Σ̂n :=
1
n

∑n

i=1
xix

∗
i . (1.2)

The sample covariance matrix is an unbiased estimator of the covariance matrix.
Given a tolerance ε ∈ (0, 1), we can study how many samples n are typically required to provide

an estimate with relative error ε in the spectral norm:

E
∥∥Σ̂n −Σ

∥∥ ≤ ε ‖Σ‖ . (1.3)

This type of spectral-norm error bound is quite powerful. It limits the magnitude of the estimation
error for each entry of the covariance matrix; it provides information about the variance of each
marginal of the distribution of x; it even controls the error in estimating the eigenvalues of the
covariance using the eigenvalues of the sample covariance.

Unfortunately, an error bound of the form (1.3) demands a lot of samples. Suppose that the
covariance matrix has full rank. Then the number of samples must be at least as large as the
number of variables to obtain a nontrivial guarantee. Indeed, when n < p, the sample covariance
does not even have full rank, so the spectral norm error is bounded away from zero!

Typical positive results on covariance estimation state that we can obtain an accurate estimate
for the covariance matrix when the number of samples is proportional to the number of variables,
provided that the distribution decays fast enough. For example, assuming that x follows a normal
distribution,

n ≥ C ε−2p =⇒
∥∥Σ̂n −Σ

∥∥ ≤ ε ‖Σ‖ with high probability. (1.4)

We use the analyst’s convention that C denotes an absolute constant whose value may change from
appearance to appearance. See [Ver11, Thm. 57 et seq.] for details of obtaining the bound (1.4).
The work of Srivastava and Vershynin [SV11] contains the most recent news on the classical co-
variance estimation problem.
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1.2. Motivation for Masked Covariance Estimation. In the regime n � p, where we have
very few samples, we can never hope to achieve the estimate (1.3). So we must lower our standards.
The following example provides some insight on how to proceed.

Example 1.1 (Simultaneous Variance Estimation). Let us how many realizations of a Gaussian
random vector we need to accurately estimate the variance of each component.

First, suppose that Z is a zero-mean normal variable with variance v. Given independent copies
Z1, . . . , Zn of the random variable Z, we can compute the sample variance

v̂ :=
1
n

∑n

i=1
Z2
i .

The estimator v̂ is unbiased, and, up to scaling, it follows a chi-square distribution, so the probability
of error satisfies

P {|v̂ − v| ≥ δv} ≤ 2 e−nt
2/4 for t ∈ (0, 1). (1.5)

For a clean proof of this type of inequality, see [Bar05, Prop. (2.2)].
Next, suppose that the random vector x follows a zero-mean normal distribution with arbitrary

covariance Σ, and write σij for the (i, j) entry of this matrix. When we use the sample covariance
to estimate each of the p diagonal entries of Σ, the bound (1.5) implies that

P
{

maxi |(Σ̂n −Σ)ii| ≥ (maxi σii) · t
}
≤ 2p e−nt

2/4.

We conclude that, for ε ∈ (0, 1),

n ≥ C ε−2 log p =⇒ maxi |(Σ̂n −Σ)ii| ≤ εmaxi σii with high probability. (1.6)

Since maxi σii ≤ ‖Σ‖, the error obtained in (1.6) is smaller than the spectral-norm error in (1.4).
When the covariance Σ = I, it can be shown that at least log p samples are required to achieve

the bound (1.6).

Example 1.1 suggests an intriguing possibility. Although we need at least p samples to estimate
the entire covariance matrix, roughly log p samples suffice to estimate the diagonal. It turns out
that this phenomenon is generic: If we estimate only a small portion of the covariance matrix, then
we can reduce the number of samples dramatically. This observation is widely applicable because
there are many problems where we do not need to know all of the second-order statistics.

Partitioning Variables: Suppose that we divide the stock market into disjoint sectors, and
we would like to study the interactions among the monthly returns for stocks within each
sector. The list of returns for all the stocks can be treated as a random vector. We block
the covariance matrix of this random vector to conform with the market sectors, and we
estimate only the entries in the diagonal blocks.

Spatial or Temporal Localization: A simple random model for grayscale images treats
the intensity of each pixel as a random variable. Nearby pixels tend to be bright or dark
together, while distant pixels are usually uncorrelated. Thus, we might limit our attention
to the interactions between a pixel and the pixels directly adjacent to it. This model
suggests that we estimate the entries of the covariance that lie within a (generalized) band
about the diagonal.

Graph Structures: Consider a stochastic model for the spread of an epidemic through a
social network. At each time instant, we label an individual with a random variable that
measures how sick he is. Since transmission only occurs along links in the network, neighbors
are likely to be sick or well together. As a result, we might want to focus on estimating the
covariance for individuals separated by one degree. In this case, the adjacency matrix of
the graph determines which pairs to estimate.



4 RICHARD Y. CHEN, ALEX GITTENS, AND JOEL A. TROPP

1.3. The Mask Matrix. We can treat all the examples from Section 1.2 using a formalism that
was introduced by Levina and Vershynin [LV11]. Let M be a fixed p × p symmetric matrix with
real entries, which we call the mask matrix. The basic idea is to construct a mask that guides our
attention to specific parts of the covariance matrix.

In the simplest case, the mask has 0–1 values that indicate which entries of the covariance we
must attend to. The presence of a unit entry mij = 1 tells us to estimate the interaction between
the ith and jth variable; a zero entry mij = 0 means that we abdicate from making any estimate
of this interaction. In Example 1.1, we are only interested in the diagonal entries of the covariance,
so we are using the mask Mdiag = I. Here are some other basic examples:

Mgroup :=


1 1
1 1

1 1
1 1

1

 ; Mband :=


1 1
1 1 1

1 1 1
1 1 1

1 1

 ; Mgraph :=


1 1 1

1 1
1 1 1
1 1

1 1 1

 .
The matrix Mgroup corresponds to the case where we partition variables into three subgroups, and
we make estimates only within subgroups. Masks such as Mband arise from banded covariance
estimation, which occurs for spatially localized random fields. The mask Mgraph might occur when
the variables exhibit a graphical dependency structure.

In more complicated situations, we can allow the mask to take arbitrary nonnegative values and
then interpret the magnitude of each entry as a requirement on the precision of the estimate. When
mij is large, we must study the interaction between the ith and jth variable carefully. When mij

is small, we are less vigilant about how well we estimate the (i, j) entry of the covariance matrix.
An example of a mask with general entries is the Kac matrix

MKac :=


1 ϕ ϕ2 ϕ3 ϕ4

ϕ 1 ϕ ϕ2 ϕ3

ϕ2 ϕ 1 ϕ ϕ2

ϕ3 ϕ2 ϕ 1 ϕ
ϕ4 ϕ3 ϕ2 ϕ 1

 where ϕ ∈ (0, 1).

The mask MKac tapers the covariances exponentially depending on the distance |i− j| between the
variables. This type of example might be relevant for the study of spatially localized processes.

Most of the regularization techniques for sparse covariance estimation studied in the literature,
such as [BL08b, FB07, CZZ10], can be described using mask matrices. The initial works focus
on specific cases, such as banded masks and tapered masks, whereas we have followed Levina and
Vershynin [LV11] by allowing an arbitrary symmetric matrix M . We refer to the papers cited in
this paragraph for further background and references.

Remark 1.2. Let us emphasize that the entries of the mask can take both positive and negative
values, but it is harder to find a clear interpretation of a mask that has negative entries.

1.4. The Masked Sample Covariance Estimator. Suppose that we have specified a symmetric
p×p mask M with real entries. The masked covariance and the masked sample covariance estimator
are the two matrices

M �Σ and M � Σ̂n,

where the symbol � denotes the componentwise (i.e., Schur or Hadamard) product. The goal of
this work is to study the error incurred when we estimate the masked covariance matrix using the
masked sample covariance: ∥∥M � Σ̂n −M �Σ

∥∥. (1.7)
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As noted by Levina and Vershynin [LV11, Sec. 1], control on the error (1.7) also delivers information
about how well we estimate the full covariance because∥∥M � Σ̂n −Σ

∥∥ ≤ ∥∥M � Σ̂n −M �Σ
∥∥ +

∥∥M �Σ−Σ
∥∥. (1.8)

The first term in (1.8) reflects the variance of the estimator about its mean value, while the second
term represents the bias in the estimate owing to the presence of the mask. It is important to select
a mask M that simultaneously controls both the variance and the bias. Understanding the variance
term requires an excursion into random matrix theory, and it comprises the main subject of this
work. Studying the bias term involves only a deterministic analysis, which should be undertaken
with a specific application in mind.

When the error (1.7) is small, the masked sample covariance yields accurate estimates for each
component of the covariance where the corresponding entry of M is large, as well as the variance of
some specially chosen marginals. When the error (1.8) is also small, the masked sample covariance
provides additional information about the variance of all marginals of the distribution of x, as well
as estimates for the eigenvalues of the covariance.

1.5. The Complexity of a Mask. The number of samples we need to control (1.7) depends on
“how much” of the covariance matrix we are attempting to estimate. We quantify the complexity
of the mask using two separate metrics. First, define the square of the maximum column norm of
the mask matrix:

‖M‖21→2 := maxj
(∑

i
m2
ij

)
.

Roughly, the parenthesis reflects the number of interactions we want to estimate that involve the
variable j, and the maximum computes a bound over all p variables. The second metric is the
spectral norm ‖M‖ of the mask matrix, which provides a more global view of the complexity of
the interactions that we estimate.

Some examples may illuminate how these metrics reflect the properties of the mask. First,
suppose that we estimate the entire covariance matrix, so the mask is the matrix of ones:

M = matrix of ones =⇒ ‖M‖21→2 = p and ‖M‖ = p.

We will see that the value p here corresponds with the factor p in the sample complexity bound (1.4).
Next, consider the mask that arises in banded covariance estimation:

M = 0–1 matrix, bandwidth B =⇒ ‖M‖21→2 ≤ B and ‖M‖ ≤ B

because there are at most B ones in each row and column. When B � p, the banded mask is much
less complex than the matrix of ones, and estimation is commensurately easier. Third, assuming
the mask is a Kac matrix, we have

M = Kac matrix, parameter ϕ =⇒ ‖M‖21→2 ≤
1

1− ϕ2
and ‖M‖ ≤ 1

1− ϕ
.

For a fixed value of ϕ, neither quantity depends on the total number of variables, so covariance
estimation with this mask should require very few samples.

Remark 1.3. In each example above, the two metrics take very similar values, but this coincidence
does not always occur. Although the spectral norm dominates the maximum column norm, the
square of the maximum column norm can be substantially larger or substantially smaller than the
spectral norm. We have omitted examples to support this point because they do not seem to arise
naturally in the setting of masked covariance estimation.
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1.6. Masked Covariance Estimation for Gaussian Distributions. This paper develops a
bound for the estimation error (1.7) when the random vector x follows a subgaussian distribution
with zero mean. For illustrative purposes, this section focuses on the simpler case where the random
vector has a normal distribution. The general results appear in Section 3.

Theorem 1.4 (Masked Covariance Estimation for Gaussian Distributions). Fix a p×p symmetric
mask matrix M . Suppose that x is a Gaussian random vector in Rp with mean zero. Define the
covariance matrix Σ and the sample covariance matrix Σ̂n as in (1.1) and (1.2). Then the expected
estimation error satisfies

E
∥∥M � Σ̂n −M �Σ

∥∥ ≤ 8

(‖M‖21→2 log(6p)
n

)1/2

+
‖M‖ log2(6np)

n

 ‖Σ‖ . (1.9)

Theorem 1.4 is a simplified version of Corollary 3.3. The reader is encouraged to examine the
full result, which includes several substantial refinements.

Remark 1.5. In the actual practice of covariance estimation, we center each sample empirically by
subtracting the sample mean x̄ = n−1

∑n
i=1 xi. The sample covariance (1.2) is computed using

the centered samples x̃i = xi − x̄ instead of the original samples xi. The theory in this paper can
be extended to cover the masked covariance estimator formed with centered samples; see [LV11,
Rem. 4] for the details of the argument.

1.6.1. Sample Complexity Bound. Theorem 1.4 allows us to develop conditions on the number n
of samples that we need to control the estimation error with high probability. Markov’s inequality
can be used to convert (1.9) into an error bound that holds in probability. For example, with
probability at least 99%,

∥∥M � Σ̂n −M �Σ
∥∥ ≤ C

(‖M‖21→2 log p
n

)1/2

+
‖M‖ log2(np)

n

 ‖Σ‖ . (1.10)

For stronger exponential error bounds, we refer to Corollary 3.3. To obtain the sample complexity,
assume that n ≤ p, and let ε ∈ (0, 1). Then (1.10) yields the statement

n ≥ C
[
ε−2 ‖M‖21→2 log p+ ε−1 ‖M‖ log2 p

]
=⇒

∥∥M � Σ̂n −M �Σ
∥∥ ≤ ε ‖Σ‖ (1.11)

with probability at least 99%.

1.6.2. Is this Sample Complexity Bound Optimal? Levina and Vershynin show that the sample
complexity of masked covariance estimation must exhibit a logarithmic dependence on the number
p of variables [LV11, Rem. 3]. They also argue that there should be a linear dependence on the
maximum number of interactions that involve a single variable [LV11, Eqn. (1.4) et seq.]; this term
appears in (1.11) in the guise of ‖M‖21→2. As a consequence of these observations, it seems plausible
that the first summand in the sample bound (1.11) has the optimal form. On the other hand, we
believe that the factor log2 p in the second summand could probably be reduced to log p.

The discussion in Example 1.1 suggests that it may be possible to improve the dependence of
the sample complexity bound (1.11) on the spectral norm ‖Σ‖ of the covariance. Indeed, we have
obtained a refinement of this type. See Corollary 3.3 for details.

1.6.3. Application Example. Consider the banded covariance estimation problem, with the mask

M = 0–1 matrix with bandwidth B.

See the matrix Mband displayed on page 4 for an instance with B = 3 and p = 5. The sample
complexity bound (1.11) and the norm calculations from Section 1.5 demonstrate that

n ≥ C
[
ε−2B log p+ ε−1B log2 p

]
(1.12)
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is sufficient to provide a relative estimation error ε in spectral norm with 99% probability. For
comparison, recall the sufficient condition (1.4) that the sample complexity for estimating the
entire covariance with relative error ε satisfies

n ≥ C ε−2p.

When the bandwidth is much smaller than the number of variables (B � p), the masked covariance
estimator outperforms the classical covariance estimator. On the other hand, when the bandwidth
is comparable with the number of variables, the analysis of the masked covariance estimator gives
a sample complexity bound (1.12) that is worse by a polylogarithmic factor.

We remark that, when ε is constant, the second summand in (1.12) always dominates the first
as p → ∞. On the other hand, the first summand is larger when ε ≤ log−1 p. In other words, the
excess logarithm in the second term of (1.12) does not have an impact on the sample complexity
when we are seeking highly accurate covariance estimates.

1.6.4. Comparison with Bounds of Levina and Vershynin. Theorem 1.4 should be compared with
the main result of Levina and Vershynin [LV11, Thm. 2.1], which states that

E
∥∥M � Σ̂n −M �Σ

∥∥ ≤ C

[
‖M‖1→2 log5/2 p√

n
+
‖M‖ log3 p

n

]
‖Σ‖ .

The associated sample complexity bound is

n ≥ C
[
ε−2 ‖M‖21→2 log5 p+ ε−1 ‖M‖ log3 p

]
. (1.13)

Our sample complexity bound (1.11) has exactly the same structure as (1.13), but we have managed
to remove a moderate number of logarithms.

We do not feel that chopping down logs is an interesting pursuit per se. Instead, the value
of this work stems from the fact that we have applied an argument that is completely different
from previous work on masked covariance estimation. Our approach provides some qualitative
refinements over Levina and Vershynin’s bound in the Gaussian setting (Corollary 3.3), and it also
extends to the general subgaussian distributions (Theorem 3.2).

1.6.5. Proof Techniques. The argument in this paper is based on a recent set of ideas, collectively
known as the matrix Laplace transform method. This approach can be regarded as a generalization
of the classical technique, attributed to Bernstein, that develops probability inequalities for a
random variable in terms of bounds for its cumulant generating function. Tropp [Tro11b], building
on work of Ahlswede and Winter [AW02], demonstrates that the scalar approach admits a tight
analogy in the matrix setting. See Section 2.4 for an overview of this technique.

The matrix Laplace transform method is particularly well suited for studying sums of independent
random matrices. To apply these techniques, we express the error as a sum of i.i.d. random matrices,
each with zero mean:

M � Σ̂n −M �Σ =
1
n

∑n

i=1
M � (xix∗i − E xx∗).

The main challenge is to study the matrix cumulant generating function of each summand:

log E exp (θM � (xix∗i − E xx∗)) for θ > 0. (1.14)

The key technical result of this paper is a semidefinite upper bound for the matrix cgf (1.14).
This estimate requires a number of substantial new ideas, including a symmetrization argument,
a careful analysis of the variance of the random matrix in the exponent of (1.14), and a delicate
truncation bound.
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1.7. Organization of the paper. The rest of the paper is organized as follows. Section 2 in-
troduces our notation and some preliminaries. Section 3 presents the main result for zero-mean
subgaussian distributions, together with its proof and the proof of Theorem 1.4. In Section 4, we
deal with the technical challenge of estimating the matrix cumulant generating function (1.14).

2. Preliminaries

This section sets out the background material we require for the proof. The argument depends on
a very recent set of ideas, collectively known as the matrix Laplace transform method. We introduce
the main results from this theory in Section 2.4, and we provide references to the primary sources.
The rest of the material here is more or less standard. Section 2.1 states our notational conventions,
Section 2.2 describes some basic properties of the Schur product, and Section 2.3 includes key facts
about subgaussian random variables.

2.1. Notation and Conventions. In this paper, we work exclusively with real numbers. Plain
italic letters always refer to scalars. Bold italic lowercase letters, such as a, refer to column vectors.
Bold italic uppercase letters, such as A, denote matrices. All matrices in this work are square;
the dimensions are determined by context. We write 0 for the zero matrix and I for the identity
matrix. The matrix unit Eij has a unit entry in the (i, j) position and zeros elsewhere.

The symbol ∗ denotes the transpose operation on vectors and matrices. We use the term self-
adjoint to refer to a matrix that satisfies A = A∗ to avoid confusion between symmetric matrices
and symmetric random variables. Curly inequalities refer to the positive-semidefinite partial order-
ing on self-adjoint matrices: A 4 B if and only if B −A is positive semidefinite.

The function diag(·) maps a vector a to a matrix whose diagonal entries correspond with the
entries of a. We write tr(·) for the trace of a matrix. The symbol � denotes the componentwise
(i.e., Schur or Hadamard) product of two matrices.

We write ‖·‖ for both the `2 vector norm and the associated operator norm, which is usually called
the spectral norm. The norm ‖·‖∞ returns the absolute maximum entry of a vector. For clarity, we
use a separate notation ‖·‖max for the absolute maximum entry of a matrix. The maximum column
norm ‖·‖1→2 is defined as

‖A‖1→2 := maxj
(∑

i
|aij |2

)1/2
.

The notation reflects the fact that this is the natural norm for linear maps from `1 into `2.
We reserve the symbol ε for a Rademacher random variable, which takes the two values ±1 with

equal probability. We also assume that all random variables are sufficiently regular that we are
justified in computing expectations, interchanging limits, and so forth.

2.2. Facts about the Schur Product. The proof depends on some basic properties of Schur
products. The first result is a simple but useful algebraic identity. For each square matrix A and
each conforming vector x,

A� xx∗ = diag(x)A diag(x). (2.1)

The second result states that the Schur product with a positive-semidefinite matrix is order pre-
serving. That is, for a fixed positive-semidefinite matrix A,

B1 4 B2 implies A�B1 4 A�B2. (2.2)

This property follows from Schur’s theorem [HJ94, Thm. 7.5.3], which demonstrates that the Schur
product of two positive-semidefinite matrices remains positive semidefinite.
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2.3. Subgaussian Random Variables. There are several different ways to formalize the concept
of a random variable that decays faster than a Gaussian random variable [Ver11]. For the purposes
of this paper, the following definition is most convenient.

Definition 2.1 (Subgaussian random variable). A random variable X is subgaussian if there exists
a positive constant K such that

P {|X| > t} ≤ 2 e−t
2/K2

for all t ≥ 0.

The subgaussian coefficient κ(X) is defined to be the infimal K for which this inequality holds.

We can bound all the moments of a subgaussian random variable X in terms of its subgaussian
coefficient:

E |X|q =
∫ ∞

0
qtq−1 P {|X| > t} dt ≤

∫ ∞
0

qtq−1 · 2 e−t
2/κ(X)2 dt = 2κ(X)q Γ(q/2 + 1).

In particular, the raw fourth moment of X satisfies

E |X|4 ≤ 4κ(X)4. (2.3)

2.4. The Matrix Laplace Transform Method. In classical probability, the Laplace transform
method is a powerful tool for obtaining tail bounds for a sum of independent random variables.
In their influential paper [AW02], Ahlswede and Winter describe a generalization of the Laplace
transform method that applies to a sum of independent random matrices. Subsequent papers
by Oliveira [Oli10a, Oli10b], by Tropp [Tro11b, Tro11a], and by Hsu et al. [HKZ11] all contain
substantial refinements and extensions of the original idea. Altogether, these tools are easy to use,
remarkably effective, and widely applicable.

In analogy with the scalar case, we study large deviations using a matrix version of the moment
generating function (mgf) and the cumulant generating function (cgf). Let Z be a self-adjoint ran-
dom matrix. Using the matrix exponential, we define the matrix mgf and matrix cgf, respectively,
to be

MZ(θ) := E eθZ and ΞZ(θ) := log E eθZ for θ ∈ R.
Note that these expectations may not exist for all values of θ. The matrix cgf can be interpreted as
an exponential mean, an average that emphasizes large deviations of the spectrum with the same
sign as the parameter θ.

The matrix mgf contains valuable information about the behavior of the maximum eigenvalue
of a symmetric random matrix. The following result is a matrix analog of the classical approach to
large deviations, which is attributed to Bernstein.

Proposition 2.2 (Matrix Laplace transform bound). Let Z be a random, self-adjoint matrix. For
each t ∈ R,

P {λmax(Z) ≥ t} ≤ inf
θ>0

{
e−θt · E tr eθZ

}
. (2.4)

In this form, Proposition 2.2 is due to Oliveira [Oli10b, Sec. 3], but the main idea goes back to the
paper [AW02] of Ahlswede and Winter. See [Tro11b, Prop. 3.1] for a succinct proof.

In our application, the random matrix Z can be expressed as a sum of i.i.d. zero-mean ran-
dom, self-adjoint matrices. The argument relies on a symmetrization procedure, which introduces
additional randomness into the series.

Proposition 2.3 (Symmetrization bound). Consider a sequence {Y1, . . . ,Yn} of independent, ran-
dom, self-adjoint matrices. For each θ ∈ R,

E tr exp
(∑n

i=1
θ(Yi − E Yi)

)
≤ E tr exp

(∑n

i=1
2θεiYi

)
,

where {εi} are independent Rademacher random variables that are also independent from {Yi}.
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The proof of Proposition 2.3 is essentially identical with the proof of Lemma 7.6 in [Tro11b], so we
omit the argument.

The matrix Laplace transform method derives its power from a deep technical result that allows
us to bound the mgf of a sum of independent random matrices in terms of the cgfs of the summands.
We state a simplified version of this fact that suits our needs.

Proposition 2.4 (Subadditivity of cgfs). Let Y be a random, self-adjoint matrix. Consider a
finite sequence {Y1, . . . ,Yn} of independent copies of Y . For each θ ∈ R,

E tr exp
(∑n

i=1
θYi

)
≤ tr exp

(
n log E eθY

)
.

Proposition 2.4 is due to Tropp [Tro11b, Lem. 3.4]. The main ingredient in the proof is a celebrated
concavity theorem established by Lieb [Lie73, Thm. 6].

We use these techniques to develop a matrix Bernstein inequality that is adapted for partial
covariance estimation. The final ingredient in our argument is a matrix mgf bound that parallels
the classical mgf bound underlying Bernstein’s inequality.

Proposition 2.5 (Bernstein matrix mgf bound). Let Y be a random, self-adjoint matrix that
satisfies

E Y = 0 and λmax(Y ) ≤ R almost surely.
When θ ∈ (0, R−1),

E eθY 4 I +
θ2

2(1− θR)
· E(Y 2).

Proposition 2.5 follows immediately from [Tro11b, Lem. 6.7] and the classical inequality

eθR − θR− 1
R2

≤ θ2

2(1− θR)
valid for θ ∈ (0, R−1).

We can verify this bound by comparing derivatives. The constants in this inequality can be im-
proved, but we have chosen the version here to streamline other aspects of the argument.

3. Masked Covariance Estimation for a Subgaussian Distribution

In this section, we state and prove our main error estimates for masked covariance estimation.
Section 3.1 defines two concentration parameters that measure the spread of the distribution. We
present the main theorem for subgaussian distributions in Section 3.2, and we specialize to Gaussian
distributions in Section 3.3. Section 3.4 shows how to derive the result for Gaussian matrices from
the main theorem. Finally, we establish the main result in Section 3.5.

3.1. Concentration Parameters. The effectiveness of the masked sample covariance estimator
depends on the concentration properties of the distribution of x. Let us introduce two quantities
that measure different facets of the variation of the random vector.

The subgaussian coefficient κ(x) of the distribution is defined to be the maximum subgaussian
coefficient of a single component of the vector:

κ(x) := maxi κ(Xi). (3.1)

In other words, we assume that each component of the distribution exhibit subgaussian decay with
variance controlled by κ(x)2.

We do not need every marginal of the distribution to be subgaussian with controlled variance,
but we do require some information on the spread of the distribution in other directions. Define
the uniform fourth moment ν(x) by the formula

ν(x) := sup
‖u‖=1

(E |u∗x|4)1/4. (3.2)
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The uniform fourth moment measures how much the worst marginal varies.
Note that both κ(x) and ν(x) have the same homogeneity as the random vector x. (This

property is sometimes expressed by saying that the quantities have the same dimension, the same
units, or the same scaling.) As a consequence, κ2(x) and ν2(x) have the same homogeneity as the
covariance matrix Σ.

In the sequel, we abbreviate κ := κ(x) and ν := ν(x) whenever the distribution of the random
vector x is clear.

Remark 3.1. For Gaussian distributions, the uniform fourth moment ν always dominates the sub-
gaussian coefficient κ. In the worst case, ν can be much larger than κ. Indeed, suppose that X
is a standard normal random variable, and consider the random vector x = (X,X, . . . ,X)∗ ∈ Rp.
Although the subgaussian coefficient κ(x) =

√
2, the directional fourth moment ν(x) = 121/4√p.

For other kinds of distributions, the subgaussian coefficient κ may be substantially larger than
the uniform fourth moment ν. Examples of this phenomenon already emerge in the univariate case.

3.2. Main Result for Masked Covariance Estimation. The following theorem provides de-
tailed information about the expectation and tail behavior of the error in the masked sample
covariance estimator for a zero-mean subgaussian distribution.

Theorem 3.2 (Masked Covariance Estimation for Subgaussian Distributions). Fix a p × p sym-
metric mask matrix M . Suppose that x is a subgaussian random vector in Rp with mean zero.
Define the covariance matrix Σ and the sample covariance matrix Σ̂n as in (1.1) and (1.2). Then
the expected estimation error satisfies

E
∥∥M � Σ̂n −M �Σ

∥∥ ≤ [16κ2ν2 ‖M‖21→2 log(2ep)
n

]1/2

+
4κ2 ‖M‖ log2(2enp)

n
. (3.3)

Furthermore, for each t > 0, the estimation error satisfies the tail bound

P
{∥∥M � Σ̂n −M �Σ

∥∥ ≥ t} ≤ 2ep · exp

(
−nt2/2

8κ2ν2 ‖M‖21→2 + 4κ2 ‖M‖ log(4np) · t

)
. (3.4)

The subgaussian coefficient κ and the uniform fourth moment ν are defined in (3.1) and (3.2).

The proof of Theorem 3.2 appears in Section 3.5. We can extend this result to the case where
we center the observations using the sample mean before computing the sample covariance; the
argument is identical with the one described by Levina and Vershynin [LV11, Rem. 4] for the
Gaussian case.

3.2.1. Interpretation and Consequences. Let us take a moment to discuss Theorem 3.2. First, we
note that the error in the masked sample covariance estimator can be expressed as

M � Σ̂n −M �Σ =
1
n

∑n

i=1
M � (xix∗i − E xx∗), (3.5)

using the definitions (1.1) and (1.2) of the covariance and sample covariance. For each i, the paren-
thesis in (3.5) has subexponential tails because the random vector xi is subgaussian. Therefore,
the formula (3.5) expresses the error as an average of subexponential random variables.

Consequently, we expect the estimation error to obey a probability inequality just like (3.4). For
moderate values of t, the error (3.4) exhibits subgaussian decay, an intimation of the normal profile
that emerges when the number of samples tends to infinity. For large values of t, the error has
subexponential decay, owing to the heavier tails of the summands in (3.5). Likewise, the two terms
in the expected error bound (3.3) correspond with the two regimes in the tail bound. The first
term reflects the subgaussian decay, while the second term comes from the subexponential decay.
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The scale for subgaussian decay is controlled by a measure of the variance σ2 of each summand:

σ2 = 8κ2ν2 ‖M‖21→2 .

We see that moderate deviations depend on the local properties of the mask, as encapsulated
in ‖M‖21→2. The appearance of the subgaussian coefficient κ in σ2 reflects the variance of each
component of the random vector. The presence of the uniform fourth moment ν shows that there
is also a role for the spread of the random vector in every direction.

The scale for subexponential decay is controlled by a second quantity,

R = 4κ2 ‖M‖ log(4np).

Large deviations reflect more global properties of the mask owing to the presence of ‖M‖. The
subgaussian coefficient κ arises here because the tails of the distribution drive the tails of the error.
Note that the large-deviation behavior only depends on the individual components of the random
vector being subgaussian; we attribute this fact to the basis-dependent nature of the Schur product.
The logarithmic factor in R emerges from a truncation argument, and we believe it is parasitic.

We can obtain a sample complexity bound directly from the probability inequality (3.4) in
Theorem 3.2. Assume that n ≤ p and that ε ∈ (0, 1). Then

n ≥ C · κ
2

ν2

[
‖M‖21→2 log p

ε2
+
‖M‖ log2 p

ε

]
=⇒

∥∥M � Σ̂n −M �Σ
∥∥ ≤ εν2 (3.6)

with high probability. The square ν2 of the uniform fourth moment has the same homogeneity
as the covariance matrix, so (3.6) is a type of relative error bound. As before, the first summand
reflects the subgaussian part of the tail, while the second summand comes from the subexponential
part. A novel feature of the sample bound (3.6) is the presence of the ratio κ2/ν2, which is a
dimensionless measure of the shape of the distribution. This ratio can be very large or very small,
so it should be assessed within the scope of a particular application.

3.3. Specialization to Gaussian Distributions. It is natural to apply Theorem 3.2 to study
the performance of masked covariance estimation for a zero-mean Gaussian random vector. In
this case, the covariance matrix determines the distribution completely, so we can obtain a more
transparent statement that does not involve the concentration parameters κ and ν.

Corollary 3.3 (Masked Covariance Estimation for Gaussian Distributions). Fix a p×p symmetric
mask matrix M . Suppose that x is a Gaussian random vector in Rp with mean zero. Define the
covariance matrix Σ and the sample covariance matrix Σ̂n as in (1.1) and (1.2). Then the expected
estimation error satisfies

E
∥∥M � Σ̂n −M �Σ

∥∥ ≤
√

56 ‖Σ‖max ‖Σ‖ ‖M‖
2
1→2 log(6p)

n
+

8 ‖Σ‖max ‖M‖ log2(6np)
n

.

Furthermore, for each t > 0, the estimation error satisfies the tail bound

P
{∥∥M � Σ̂n −M �Σ

∥∥ ≥ t}
≤ 6p · exp

(
−nt2

56 ‖Σ‖max ‖Σ‖ ‖M‖
2
1→2 + 16 ‖Σ‖max ‖M‖ log(4np) · t

)
.

The proof of Corollary 3.3 appears below in Section 3.4. Theorem 1.4 of the Introduction follows
quickly from this result when we apply the inequality ‖Σ‖max ≤ ‖Σ‖ and complete some numerical
estimates.
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It is fruitful to compare Corollary 3.3 directly with earlier work on masked covariance estimation
for a Gaussian distribution. Assume that n ≤ p and ε ∈ (0, 1). Then Corollary 3.3 delivers a
sample complexity bound of the form

n ≥ C ·
‖Σ‖max

‖Σ‖

[
‖M‖21→2 log p

ε2
+
‖M‖ log2 p

ε

]
=⇒

∥∥M � Σ̂n −M �Σ
∥∥ ≤ ε ‖Σ‖ (3.7)

with high probability. The bound (3.7) is similar with the results of Levina and Vershynin [LV11],
stated in (1.13), but two improvements are worth mentioning.

First, recall that the sample complexity bound (1.6) we present in Example 1.1 depends on
the absolute maximum entry of the covariance matrix, rather than its spectral norm. A similar
refinement appears in the bound (3.7) on account of the ratio of the two norms. This ratio never
exceeds one, and it can be as small as p−1 for particular choices of the covariance matrix. We
interpret this term as saying that covariance estimation is easier when the variables are highly
correlated with each other. This represents a new phenomenon that previous authors have not
identified.

The second improvement over (1.13), which has less conceptual significance, is the reduction of
the number of logarithmic factors.

3.4. Proof of Corollary 3.3 from Theorem 3.2. The result for Gaussian distributions is a
direct consequence of the main theorem because the covariance matrix Σ of a zero-mean Gaussian
vector x characterizes the distribution completely. As a consequence, we just need to estimate the
concentration parameters κ(x) and ν(x) in terms of Σ.

First, we compute the subgaussian coefficient κ(x). Observe that the ith component Xi of the
vector x is a Gaussian random variable with variance σii, where σii denotes the ith diagonal entry
of Σ. The usual Gaussian tail bound demonstrates that

P {|Xi| > t} ≤ 2 e−t
2/2σii .

According to Definition 2.1, the subgaussian coefficient κ(Xi)2 ≤ 2σii, and so the subgaussian
coefficient of the vector satisfies

κ(x)2 ≤ maxi 2σii = 2 ‖Σ‖max .

The latter equality holds because the absolute maximum entry of a positive-definite matrix occurs
on its diagonal.

Next, we compute the uniform fourth moment ν(x). Fix a unit vector u. The distribution of
the marginal u∗x is Gaussian with mean zero. To compute the variance σ2

u of the marginal, we
write x = Σ1/2g, where g is a standard Gaussian vector. Then

σ2
u = E |u∗x|2 = E |u∗(Σ1/2g)|2 = u∗Σ1/2(E gg∗)Σ1/2u = u∗Σu ≤ ‖Σ‖ .

The fourth moment of a Gaussian variable equals three times its squared variance, so

E |u∗x|4 = 3σ4
u ≤ 3 ‖Σ‖2 .

We conclude that the uniform fourth moment satisfies

ν(x) = sup
‖u‖=1

(E |u∗x|4)1/4 ≤ 31/4 ‖Σ‖1/2 .

To complete the argument, substitute the estimates for κ(x) and ν(x) into Theorem 3.2 and
make some numerical estimates.

3.5. Proof of Theorem 3.2. The argument follows the same lines as the classical Laplace trans-
form technique. For clarity, we break the presentation into discrete steps.
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3.5.1. The Matrix Laplace Transform Method. We begin with the proof of the probability inequal-
ity (3.4). First, split the tail bound for the spectral norm into two pieces:

P
{∥∥M � Σ̂n −M �Σ

∥∥ ≥ t}
≤ P

{
λmax(M � Σ̂n −M �Σ) ≥ t

}
+ P

{
λmax(M �Σ−M � Σ̂n) ≥ t

}
. (3.8)

This inequality depends on the fact ‖A‖ = max{λmax(A), λmax(−A)}, valid for each self-adjoint
matrix A, and an invocation of the union bound. We develop an estimate for the first term on the
right-hand side of (3.8); an essentially identical argument applies to the second term.

The matrix Laplace transform bound, Proposition 2.2, allows us to control the first term on the
right-hand side of (3.8) in terms of a matrix mgf.

P
{
λmax(M � Σ̂n −M �Σ) ≥ t

}
= P

{
λmax

(
n(M � Σ̂n −M �Σ)

)
≥ nt

}
≤ inf

θ>0

{
e−θnt · E tr exp

(
θn(M � Σ̂n −M �Σ)

)}
. (3.9)

In the first line of (3.9), we have rescaled both sides of the event and applied the positive homo-
geneity of the maximum eigenvalue. Let us introduce notation for the trace of the matrix mgf:

E(θ) := E tr exp
(
θn(M � Σ̂n −M �Σ)

)
. (3.10)

Our main task is to obtain a suitable bound for E(θ).

3.5.2. Symmetrizing the Random Sum. The random matrix appearing in (3.10) admits a natural
expression as a sum of centered, independent random matrices. To see why, substitute the defini-
tions (1.1) and (1.2) of the population covariance matrix Σ and the sample covariance matrix Σ̂n

to obtain
E(θ) = E tr exp

(∑n

i=1
θ
(
M � xix

∗
i − E M � xix

∗
i

))
.

The samples x1, . . . ,xn are statistically independent, so the summands are independent, centered
random matrices. Therefore, we may apply the symmetrization lemma, Proposition 2.3, to reach

E(θ) ≤ E tr exp
(∑n

i=1
2θεi(M � xix

∗
i )
)
, (3.11)

where {εi} is a sequence of independent Rademacher random variables that is also independent
from the sequence {xi} of samples. The benefit of the estimate (3.11) is that each Schur product
involves a rank-one matrix, which greatly simplifies our computations.

3.5.3. Matrix cgf Bound for the Matrix mgf. The summands on the right-hand side of (3.11) are
i.i.d., so we can apply Proposition 2.4 on the subadditivity of matrix cgfs to see that

E(θ) ≤ tr exp(n · log E exp(2θεM � xx∗)). (3.12)

The chief technical contribution of this paper consists in the following matrix cgf bound:

log E exp(2θεM � xx∗) 4
θ2σ2

2(1− θR)
· I +

1
n
· I when θ ∈ (0, R−1), (3.13)

where
σ2 := 8κ2ν2 ‖M‖21→2 and R := 4κ2 ‖M‖ log(4np). (3.14)

The concentration parameters κ and ν that characterize x are defined as in (3.1) and (3.2). The
calculation underlying (3.13) requires several pages and some substantial new ideas. We encapsulate
the details in Lemma 4.1, which is the subject of Section 4.
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The trace exponential is monotone with respect to the semidefinite order [Pet94, Prop. 1], so we
can substitute the cgf bound (3.13) into our estimate (3.12) for E(θ). Thus,

E(θ) ≤ tr exp
(

θ2σ2n

2(1− θR)
· I + I

)
= ep · exp

(
θ2σ2n

2(1− θR)

)
. (3.15)

The second relation depends on the fact that the identity matrix has dimension p. The inequal-
ity (3.15) is just what we need to establish the probability inequality and the expectation bound
that constitute the conclusions of Theorem 3.2.

3.5.4. Probability Bound for the Estimation Error. We are now prepared to complete our bound
for the tail probability, initiated in (3.8). Substitute the estimate (3.15) for the matrix mgf into
the Laplace transform bound (3.9) to discover that

P
{
λmax

(
M � Σ̂n −M �Σ

)
≥ t
}
≤ ep · inf

θ>0
exp

(
−θnt+

θ2σ2n

2(1− θR)

)
.

Select the classical value for the parameter: θ = t/(σ2 + Rt). This choice yields an upper bound
for the first term on the right-hand side of (3.8):

P
{
λmax

(
M � Σ̂n −M �Σ

)
≥ t
}
≤ ep · exp

(
−nt2

2(σ2 +Rt)

)
. (3.16)

The second term on the right-hand side of (3.8) admits the same upper bound:

P
{
λmax

(
M �Σ−M � Σ̂n

)
≥ t
}
≤ ep · exp

(
−nt2

2(σ2 +Rt)

)
. (3.17)

The proof of (3.17) is essentially identical with the proof of (3.16), so we omit the details.
Finally, recall the definition (3.14) for the quantities σ2 and R. Then introduce the rela-

tions (3.16) and (3.17) into the probability inequality (3.8) to establish the tail bound (3.4) stated
in Theorem 3.2.

3.5.5. Bound for the Expected Estimation Error. Although it is possible to control the expected
error by integrating the tail bound (3.4), we obtain somewhat better results through a direct
application of the estimate (3.15) for the matrix mgf E(θ).

The argument is based on the following inequality, of independent interest, which provides a
way to bound the expected spectral norm of a matrix in terms of its mgf. Let Z be a random,
self-adjoint matrix, and fix a positive number θ. We have the following chain of relations:

E ‖Z‖ ≤ θ−1 log E eθ‖Z‖

= θ−1 log E emax{λmax(θZ), λmax(−θZ)}

= θ−1 log E max
{
λmax(eθZ), λmax(e−θZ)

}
≤ θ−1 log

(
E tr eθZ + E tr e−θZ

)
. (3.18)

For the first inequality, multiply and divide by θ; then invoke Jensen’s inequality to bound the ex-
pectation by an exponential mean. The second relation expresses the spectral norm of a symmetric
matrix in terms of eigenvalues. In the third line, we pull the maximum through the exponential
and then apply the spectral mapping theorem to draw out the eigenvalue maps. Finally, replace
the maximum by a sum, and bound the maximum eigenvalue of the matrix exponential, which is
positive definite, by the trace.

We intend to apply (3.18) to the random matrix

Z = n(M � Σ̂n −M �Σ).
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According to the definition (3.10) of the function E(θ), the trace of the mgf of the matrix Z
coincides with E(θ). Therefore, when the parameter θ ∈ (0, R−1), our upper bound (3.15) for E(θ)
demonstrates that

E tr eθZ = E(θ) ≤ ep · exp
(

θ2σ2n

2(1− θR)

)
. (3.19)

The argument underlying the bound (3.15) for the trace mgf of Z also applies to −Z, whereby

E tr e−θZ ≤ ep · exp
(

θ2σ2n

2(1− θR)

)
. (3.20)

Introduce (3.19) and (3.20) into the norm bound (3.18) to reach

n · E
∥∥M � Σ̂n −M �Σ

∥∥ ≤ θ−1

(
log(2ep) +

θ2σ2n

2(1− θR)

)
.

Minimize the right-hand side over admissible values of θ, ideally with a computer algebra system.
This computation yields

n · E
∥∥M � Σ̂n −M �Σ

∥∥ ≤√2σ2n log(2ep) +R log(2ep).

Divide through by n and recall the definition (3.14) of the quantities σ2 and R. Combine the
two logarithms in the second term to complete the proof of the expected error bound (3.3) from
Theorem 3.2.

4. The Matrix cgf of a Schur Product

In this section, we work out the details of the matrix cgf bound (3.13) that stands at the center
of Theorem 3.2. The following lemma contains a complete statement of the result.

Lemma 4.1 (Matrix cgf Bound for a Schur Product). Fix a self-adjoint matrix M . Let x =
(X1, . . . , Xp)∗ be a random vector, and let ε be a Rademacher variable, independent from x. For
each positive integer n,

log E exp(2θεM � xx∗) 4
θ2σ2

2(1− θR)
· I +

1
n
· I when θ ∈ (0, R−1),

where
σ2 := 8κ2ν2 ‖M‖21→2 and R := 4κ2 ‖M‖ log(4np).

The concentration parameters κ and ν associated with x are defined as in (3.1) and (3.2).

To prove Lemma 4.1, we would like to invoke the Bernstein mgf bound, Proposition 2.5, but
several obstacles stand in the way. First, estimating the variance of the random matrix 2εM �xx∗

involves a surprisingly delicate calculation. Second, this random matrix is typically unbounded,
which requires us to develop a new type of truncation argument. We address ourselves to these
tasks in the next two subsections.

4.1. Computing the Variance. The Bernstein mgf bound demands that we compute the variance
of the random matrix 2εM �xx∗. The following lemma contains this estimate. Our key insight is
that the monotonicity (2.2) of the Schur product allows us to replace one factor in the product by
a scalar matrix. This act of diagonalization simplifies the estimate tremendously because we erase
the off-diagonal entries when we take the Schur product with an identity matrix.

Lemma 4.2 (Semidefinite variance bound). Under the assumptions of Lemma 4.1, it holds that

E(2εM � xx∗)2 4 8κ2ν2 ‖M‖21→2 · I.
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Proof. First, we treat the leading constant and the Rademacher random variable.

E(2εM � xx∗)2 = 4 E(M � xx∗)2. (4.1)

The expectation with respect to x is not so easy to handle. To begin, we perform some algebraic
manipulations to consolidate the remaining randomness. The Schur product identity (2.1) implies
that

(M � xx∗)2 = (diag(x)M diag(x))2

= diag(x)(M diag(x)2M) diag(x) = (M diag(x)2M)� xx∗.

Rewrite the diagonal matrix as a linear combination of matrix units: diag(x)2 =
∑

iX
2
i Eii. The

bilinearity of the Schur product now yields

(M � xx∗)2 =
[
M
(∑

i
X2
i Eii

)
M
]
� xx∗ =

∑
i
(MEiiM)� (X2

i xx∗).

Take the expectation of this expression to reach

E(M � xx∗)2 =
∑

i
(MEiiM)� [E(X2

i xx∗)]. (4.2)

Next, we invoke the monotonicity (2.2) of the Schur product to make a diagonal estimate for
each summand in (4.2):

(MEiiM)� [E(X2
i xx∗)] 4 λmax(E(X2

i xx∗)) · (MEiiM)� I.

The Rayleigh–Ritz variational formula [Bha97, Cor. III.1.2] allows us to write the maximum eigen-
value as a supremum. Thus,

λmax(E(X2
i xx∗)) = sup

‖u‖=1
u∗ [E(X2

i xx∗)] u = sup
‖u‖=1

E
[
X2
i |u∗x|

2]
≤ sup
‖u‖=1

(EX4
i )1/2 (E |u∗x|4)1/2 ≤ 2κ(Xi)2 sup

‖u‖=1
(E |u∗x|4)1/2 ≤ 2κ2ν2.

The first inequality is Cauchy–Schwarz. For the second inequality, we apply (2.3) to bound the
fourth moment of Xi in terms of the subgaussian coefficient. The final inequality follows from the
definitions (3.1) and (3.2) of the concentration parameters. Combine the last two displays to obtain

(MEiiM)� [E(X2
i xx∗)] 4 2κ2ν2 · (MEiiM)� I. (4.3)

To complete our bound for the variance, we introduce (4.3) into (4.2), which delivers

E(M � xx∗)2 4 2κ2ν2 ·M2 � I

The remaining matrix is diagonal, so we can control it using only its maximum entry:

E(M � xx∗)2 4 2κ2ν2 maxi(M2)ii · I = 2κ2ν2 ‖M‖21→2 · I
The second relation follows from the fact that the diagonal entries of M2 list the squared norms
of the columns of M , and ‖M‖1→2 computes the maximum column norm of M . Substitute the
latter expression into (4.1) to conclude. �

4.2. Proof of Lemma 4.1. This subsection contains the main steps in the proof of Lemma 4.1.
We begin by explaining the motivation behind our approach.

We would like to invoke the Bernstein matrix mgf inequality, Proposition 2.5, to control the mgf
of 2εM �xx∗. This proposition requires the maximum eigenvalue of the random matrix to satisfy
an almost sure bound. Using the Schur product identity (2.1), we can develop a simple estimate
for the maximum eigenvalue:

λmax(2εM � xx∗) ≤ 2 ‖diag(x)M diag(x)‖ ≤ 2 ‖M‖ ‖diag(x)‖2 = 2 ‖M‖ ‖x‖2∞ . (4.4)

Unfortunately, the random variable ‖x‖∞ is typically unbounded, which suggests that we cannot
apply the Bernstein approach directly.
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To tackle this problem, we develop a truncation argument in Section 4.2.1, which splits the
distribution of the random matrix 2εM � xx∗ into two pieces, depending on the size of ‖x‖∞.
This technique allows us to apply the Bernstein estimate to the bounded part of the random
matrix (Section 4.2.2). To handle the unbounded part, we use the inequality (4.4) to develop a
coarse tail estimate that we can integrate directly (Section 4.2.3). Section 4.2.4 combines these
results to complete the argument.

4.2.1. The Truncation Argument. As we have explained, we intend to decompose the random ma-
trix 2εM � xx∗ based on the magnitude of the random variable ‖x‖∞. To that end, define the
event

A := {‖x‖2∞ ≤ B}, (4.5)

where we determine a suitable truncation level B later.
Now, let us split the matrix mgf into expectations over A and A c:

E exp(2θεM � xx∗) = E [exp(2θεM � xx∗)1A ] + E [exp(2θεM � xx∗)1A c ]

4 E exp((2θεM � xx∗)1A ) + E [exp(2θεM � xx∗)1A c ] . (4.6)

The first identity follows because the two indicators form a partition of unity. In the second line,
notice that the first term can only increase in the semidefinite order when we draw the indicator
1A into the exponential.

4.2.2. Bernstein Estimate for the Bounded Part of the Random Matrix. We can interpret the first
term on the right-hand side of (4.6) as the mgf of a random matrix whose maximum eigenvalue is
bounded; this matrix mgf admits a Bernstein-type estimate.

We must verify that the truncated matrix (2εM � xx∗)1A satisfies the hypotheses of Proposi-
tion 2.5. First, note that

E[(2εM � xx∗)1A ] = 0

because the Rademacher variable ε is independent from x and, hence, from A . Second, continuing
the calculation (4.4), we determine that the maximum eigenvalue is bounded.

λmax((2εM � xx∗)1A ) ≤ 2 ‖M‖ ‖x‖2∞ · 1A ≤ 2B ‖M‖ . (4.7)

The second inequality in (4.7) relies on the definition (4.5) of the truncation event. Third, we apply
Lemma 4.2 to obtain a semidefinite bound for the variance.

E[(2εM � xx∗)1A ]2 4 E[(2εM � xx∗)2] 4 8ν2κ2 ‖M‖1→2 · I. (4.8)

Of course, discarding the indicator in (4.8) only increases the semidefinite order.
In view of (4.7) and (4.8), we define a variance parameter and a uniform bound parameter

σ2 := 8κ2ν2 ‖M‖21→2 and R := 2B ‖M‖ . (4.9)

Finally, we apply Proposition 2.5 and the variance estimate (4.8) to achieve

E exp((2θεM � xx∗)1A ) 4 I +
θ2σ2

2(1− θR)
· I. (4.10)

The relation (4.10) is valid for all θ ∈ (0, R−1).
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4.2.3. Controlling the Unbounded Part of the Random Matrix. We treat the second term on the
right-hand side of (4.6) by making a rough bound that we can integrate directly. First, observe
that

exp(2θεM � xx∗) 4 exp(2θ · λmax(M � xx∗)) · I 4 exp(2θ ‖M‖ ‖x‖2∞) · I.
We have applied the semidefinite relation eA 4 eλmax(A) · I, valid for each self-adjoint matrix A,
followed by the eigenvalue bound (4.4). Multiply both sides by the indicator 1A c , and take the
expectation to reach

E[exp(2θεM � xx∗)1A c ] 4 E[exp(2θ ‖M‖ ‖x‖2∞)1A c ] · I
=: E[eαW1A c ] · I. (4.11)

In the expression (4.11), we have abbreviated

α := 2θ ‖M‖ and W := ‖x‖2∞ . (4.12)

We apply classical techniques to bound the remaining expectation.
Observe that we can control the tail probability of W using the subgaussian coefficient κ. Indeed,

P {W > w} = P
{

maxi |Xi|2 > w
}

≤
∑p

i=1
P
{
|Xi|2 > w

}
≤
∑p

i=1
2 e−w/κ(Xi)

2 ≤ 2p e−w/κ
2
. (4.13)

The second relation is the union bound. The third follows from Definition 2.1 of the subgaussian
coefficient κ(X) of a random variable X, while the last depends on the definition (3.1) of the
subgaussian coefficient κ of the random vector x.

Next, we invoke a standard integration-by-parts argument [Bil79, Eqn. (21.10)] to study the
expectation in (4.11). Since A c = {W > B},

E[eαW1A c ] = eαB · P {W > B}+ α

∫ ∞
B

eαw · P {W > w} dw

≤ eαB · 2p e−B/κ
2

+ α

∫ ∞
B

eαw · 2p e−w/κ
2

dw

= 2p
[
1 +

α

1/κ2 − α

]
e−(1/κ2−α)B. (4.14)

We have used the tail bound (4.13) twice to obtain the inequality in the second line. The third line
follows when we evaluate the definite integral under the assumption that α < 1/κ2.

To continue the bound on the right-hand side of (4.14), we need to make a careful estimate.
Owing to definition (4.12) of α, the condition

θ ≤ 1
4κ2 ‖M‖

=⇒ α ≤ 1
2κ2

. (4.15)

Assume that θ satisfies the hypothesis of (4.15). Now, observe that the right-hand side of the
inequality (4.14) is an increasing function of α. Therefore, we may increase α to 1/2κ2 on the
right-hand side of (4.14) and then set the truncation level

B = 2κ2 log(4np) (4.16)

to obtain the bound

E[eαW1A c ] ≤ 4p e−B/2κ
2

=
1
n
.

Introduce this expression into (4.11) to conclude that

E[exp(2θεM � xx∗)1A c ] 4
1
n
· I. (4.17)
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Finally, we verify that the truncation level B forces the parameter θ to satisfy the hypothesis
of (4.15). Recall the definition (4.9) of the bound parameter and the definition (4.16) of the
truncation level to see that

R = 2B ‖M‖ = 4κ2 ‖M‖ log(4np).
We have already assumed that θ < R−1. It follows that

θ <
1
R

=
1

log(4np)
· 1

4κ2 ‖M‖
≤ 1

4κ2 ‖M‖
.

This observation completes the tail estimate.

4.2.4. Combining the Results. We have obtained estimates for the two terms in our truncation
bound (4.6). Introduce (4.10) and (4.17) into (4.6) to reach

E exp(2θεM � xx∗) 4 I +
θ2σ2

2(1− θR)
· I +

1
n
· I,

where σ2 and R are defined in (4.9). We have also assumed that θ ∈ (0, R−1). The logarithm is
operator monotone [Bha07, Exer. 4.2.5], so

log E exp(2θεM � xx∗) 4 log
[
I +

θ2σ2

2(1−R)
· I +

1
n
· I
]
.

To complete the proof of Lemma 4.1, we invoke the semidefinite relation log(I + A) 4 A, which
holds for each positive semidefinite matrix A.
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