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Abstract. This paper describes new algorithms for constructing a low-rank approximation of an
input matrix from a sketch, a random low-dimensional linear image of the matrix. These algorithms
come with rigorous performance guarantees. Empirically, the proposed methods achieve significantly
smaller relative errors than other approaches that have appeared in the literature. For a concrete
application, the paper outlines how the algorithms support on-the-fly compression of data from a
direct Navier—Stokes (DNS) simulation.
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1. Motivation. A sketch is a compressed data representation that supports
updates to the underlying data and provides approximate answers to queries about
the data. Over the last decade, sketches have emerged as a powerful tool for large-
scale numerical linear algebra [51, 13, 25, 32, 50]. In particular, we can use a sketch to
track a matrix that is presented as a sequence of linear updates, and we can extract
a low-rank approximation of the induced matrix from the sketch. See [9, 21, 46, 45]
for some recent work.

The purpose of this paper is to develop a new sketching method for low-rank
matrix approximation in the streaming data model (section 2). We provide an infor-
mative mathematical analysis that explains the behavior of our algorithm (section 5).
We also discuss implementation issues (section 4), and we present extensive numeri-
cal experiments on real and simulated data (section 6). The empirical performance of
our technique is significantly better than earlier approaches (see subsection 6.1) that
apply in the same setting.

Sketching methods for low-rank matrix approximation have many compelling ap-
plications. For instance, we have used these ideas to develop a storage-optimal algo-
rithm for convex low-rank matrix optimization [52]. As a motivating example for this
paper, we explain how sketching allows us to perform on-the-fly compression of data
generated by large-scale computer simulations.

1.1. Vignette: On-the-Fly Compression for Simulation. Computer simu-
lations often produce data matrices that are too large to store, process, or transmit in
full. This challenge arises in a wide range of areas, including weather and climate fore-
casting [49, 17, 4], heat transfer and fluid flow [40, 6], computational fluid dynamics
[5, 20], and aircraft design [36, 42]. Nevertheless, in these settings, the data matrix
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2 TROPP, YURTSEVER, UDELL, AND CEVHER

often admits a good low-rank approximation. For many downstream applications,
the low-rank approximation serves as well as—or even better then—the full data ma-
trix because the approximation exposes latent structure [43, 11]. This observation
raises the question of how to construct a low-rank approximation of simulation data
efficiently.

We can model a simulation as a process that computes the state a;11 € R™ of a
system at time ¢ + 1 from the state a; € R™ of the system at time ¢. The dimension
m of the state increases with the resolution of the simulation. We may collect the
data generated by the simulation into a matrix A = [a1,...,a,] € R™*™,

The standard computational practice is to compute the full matrix A and then
to compress it. Methods include direct computation of a low-rank matrix or tensor
approximation [53, 3] or fitting a statistical model [12, 23, 33]. These approaches
usually involve storage costs of O(mn).

In contrast, we consider replacing these techniques by a sketching algorithm. As
each new state is computed, we update the sketch to reflect the arrival of a new
column a; of the data matrix A. Then we discard the state a;. Once the simulation
is complete, we can extract a provably good rank-r approximation of A from the
sketch. As we will see, this approach succeeds using total storage O(r(m + n)). For
large matrices, the savings can be substantial. Subsection 6.7 contains a numerical
demonstration of this idea.

1.2. Summary of Related Work. Randomized algorithms for low-rank ma-
trix approximation were proposed in the theoretical computer science (TCS) literature
in the late 1990s [39, 19]. Soon after, numerical analysts developed practical versions
of these algorithms [34, 51, 41, 25, 24]. For more background on the history of ran-
domized linear algebra, see [25, 32, 50].

Sketching algorithms are specifically designed for the streaming model; that is,
for data that is presented as a sequence of updates. The paper [51] contains the
first algorithm for low-rank approximation that can operate in this setting. The first
explicit treatment of numerical linear algebra in the streaming model appears in [13].
Recent papers on low-rank matrix approximation in the streaming model include [9,
21, 46, 45]. We refer the reader to the latter works for additional background and
information. This paper also includes detailed citations throughout.

1.3. Notation. We write I for the scalar field, which is either real R or complex
C. The symbol * refers to the (conjugate) transpose of a matrix or vector. The dagger
T denotes the Moore-Penrose pseudoinverse. We write || - ||, for the Schatten p-norm
for p € [1,00]. The operator [-], returns a (simultaneous) best rank-r approximation
of its argument with respect to the Schatten p-norms.

2. Sketching and Low-Rank Approximation of a Matrix. In this section,
we describe the basic procedure for sketching a matrix and for computing a low-rank
approximation from the sketch. We postpone the discussion of implementation details
and variants to section 4.

2.1. Dimension Reduction Maps. We will use dimension reduction to col-
lect information about an input matrix. Assume that k& < n. A randomized linear
dimension reduction map is a random matrix Z € FFX" with the property that

(2.1) E ||Eu|/® = const - [|u|* for all u € F".

In other words, the map reduces a vector of dimension n to dimension k, but it still
preserves distances on average. It is also desirable that we can store the map E and
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MORE MATRIX SKETCHING ALGORITHMS 3

apply it to vectors efficiently. See section 3 for several concrete examples.

Remark 2.1 (Geometry). The analysis of algorithms that use randomized dimen-
sion reduction often depends on more detailed properties than the embedding condi-
tion (2.1). See [25, 50] for more discussion.

2.2. The Input Matrix. Let A € F""*" be an arbitrary matrix that we wish
to approximate. In many applications where sketching is appropriate, the matrix is
presented implicitly as a sequence of linear updates; see subsection 2.4.

To apply sketching methods for low-rank matrix approximation, the user specifies
a value r for the target rank of the approximation. The target rank r is typically far
smaller than the smaller dimension min{m,n} of the matrix.

2.3. The Sketch. Let us describe the sketching method we propose to acquire
data about the input matrix. The sketch is parameterized by two natural numbers
k, s that satisfy

r <k <s<min{m,n},

where 7 is the target rank. In subsection 5.6, we offer specific parameter recommen-
dations that are supported by theoretical analysis. In subsection 6.5, we demonstrate
that these parameter choices are effective in practice.

Independently, draw and fix four randomized linear dimension reduction maps:

Y e F**™  and Qe FF*m;

(2.2)
d cF*™ and ¥ e <",

The sketch itself consists of three matrices:

(2.3) X :=YAcF"”"" and Y :=AQ* c F"*F,

(2.4) Z = PAP* € F**°,

The first two matrices (X,Y) capture information about the co-range and the range
of A. The third matrix (Z) contains information about the action of A.

Remark 2.2 (Prior Work). The paper [48, Sec. 3] uses a sketch of the form (2.3)
and (2.4) for low-rank matrix approximation. Related (but distinct) sketches appear
in the papers [51, 13, 25, 50, 16, 10, 47, 46].

2.4. Linear Updates. In streaming data applications, the input matrix A €
F™>™ is presented as a sequence of linear updates of the form

(2.5) A+ 0A+TH

where 0,7 € F and the matrix H € F™*".
In view of the construction (2.3) and (2.4), we can update the sketch (X,Y, Z)
of the matrix A to reflect the innovation (2.5) by means of the formulae

X<+~ 0X+7YH
(2.6) Y < 0Y + THQ"
Z<+—0Z+7PHYT".
Remark 2.3 (Streaming Model). For the linear update model (2.5), randomized
linear sketches are more or less the only way to track the input matrix [30]. There

are more restrictive streaming models (e.g., the columns of the matrix are presented
in sequence) where it is possible to design other types of algorithms [18, 21].

This manuscript is for review purposes only.
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4 TROPP, YURTSEVER, UDELL, AND CEVHER

2.5. Computing a Low-Rank Approximation. Once we have acquired a
sketch (X,Y, Z) of an input matrix A, our goal is to produce a low-rank approxi-
mation. Let us outline the computations we propose. The intuition appears below in
subsection 2.6, and Section 5 presents the theoretical analysis.

The first two components (X,Y") of the sketch are used to estimate the co-range
and the range of the matrix A. Compute thin orthogonal-triangular factorizations:

X*=: PR, where P eF"*,

(2.7) .
Y =QR; where Q € F™*",

Both P and @ have orthonormal columns; we discard the triangular parts R; and
R5. The third sketch Z is used to compute the core matrix W, which describes the
predominant action of the matrix:

(2.8) W = (®Q) Z((®P)")* € Fk*F,
Last, we construct a rank-k approximation A of the input matrix A:
(2.9) A:=QWP*

In some situations, it is more desirable to produce an approximation with exact rank
r. To do so, we simply replace A by its best rank-r approximation:

(2.10) [4], = Q[W],.P".

[The formula (2.10) is an easy consequence of the Eckart—Young Theorem [26, Sec. 6]
and the fact that @, P have orthonormal columns.]

Remark 2.4 (Extensions). We can construct other structured approximations of
A by projecting A onto a set of structured matrices. See [46, Secs. 5-6] for a discussion
of this idea in the context of another sketching technique. See our paper [45] for a
sketching method designed for positive-semidefinite matrices.

Remark 2.5 (Prior Work). The reconstruction formulae (2.9) and (2.10) are new.
The papers [51, 13, 25, 50, 16, 10, 48, 47, 46] describe alternative methods for low-rank
matrix approximation from a sketch. The numerical work in section 6 demonstrates
that the performance of our method is uniformly superior to the earlier techniques.

2.6. Intuition. The low-rank approximations (2.9) and (2.10) are based on some
well-known insights from randomized linear algebra [25, Sec. 1]. Since P and Q
capture the co-range and range of the input matrix, we expect that

(2.11) A~ Q(Q*AP)P*

(See Lemma SM1.5 for justification.) We cannot compute the core matrix Q* AP
directly from a linear sketch because P and @Q are functions of A. Even so, we can
estimate the core matrix using the action sketch Z. Observe that

Z = BATY = B(QQ*APP*)T" + (A — QQ*APP*)T*.
The approximation (2.11) allows us to drop the second term, so

Z ~ ($Q)(Q*AP)(P*¥").

This manuscript is for review purposes only.
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MORE MATRIX SKETCHING ALGORITHMS 5

Transfer the outer matrices to the left-hand side to discover that
(2.12) W = (2Q)'Z((¥P)")* ~ Q*AP.
In view of (2.11) and (2.12), we arrive at

A~ Q(Q*AP)P* ~ QWP* = A.

When A is a good approximation of A, we can project it onto the set of rank-r
matrices without increasing the error substantially:

A ~ [A], = Q[W],P*.

Theorem 5.1 and Corollary 5.3 justify these heuristics completely for Gaussian di-
mension reduction maps.

Remark 2.6 (Prior Work). Our method is inspired by the intuition in [25, Sec. 1],
which also motivates the low-rank sketching algorithms in [47, 46]. The sketching
techniques in the TCS literature [13, 50, 16, 10, 48] are based on a different idea.

3. Randomized Linear Dimension Reduction Maps. In this section, we
describe several randomized linear dimension reduction maps that are suitable for
implementing sketching algorithms for low-rank matrix approximation. See [31, 25,
50, 46] for additional discussion and examples.

3.1. Gaussian Maps. The most basic dimension reduction map is simply a
Gaussian matrix. That is, & € F*¥*? is a k x n matrix with independent standard
normal entries.’

Algorithm SM3.6 describes an implementation of Gaussian dimension reduction.
The map = requires storage of kn floating-point numbers in the field F. The cost of
applying the map to a vector is O(kn) arithmetic operations.

Gaussian dimension reduction maps are simple, and they are effective in random-
ized algorithms for low-rank matrix approximation [25]. We can also analyze their
behavior in full detail; see section 5. On the other hand, it is expensive to draw a
large number of Gaussian random variables, and the cost of storage and arithmetic
renders these maps less appealing for sketching applications.

Remark 3.1 (History). Gaussian dimension reduction has been used as an algo-
rithmic tool since the paper of Indyk & Motwani [28]. In spirit, this approach is
quite similar to the earlier theoretical work of Johnson & Lindenstrauss [29], which
performs dimension reduction by projection onto a random subspace.

3.2. Scrambled SRFT Maps. Next, we describe a structured dimension re-
duction map, called a scrambled subsampled randomized Fourier transform (SSRFT).
We recommend this approach for practical implementations.

An SSRFT map takes the form

E = RFIIFII € F"*",

The matrices IT,IT' € F"*" are signed permutations,” drawn independently and
uniformly at random. The matrix F € F"*™ denotes a discrete cosine transform

LA real standard normal variable follows the Gaussian distribution with mean zero and variance
one. A complex standard normal variable takes the form g; + ige, where g; are independent real
standard normal variables.

2A signed permutation matrix has precisely one nonzero entry in each row and column, and each
nonzero entry of the matrix has modulus one.

This manuscript is for review purposes only.
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6 TROPP, YURTSEVER, UDELL, AND CEVHER

(F = R) or a discrete Fourier transform (F = C). The matrix R € F¥*™ is a restriction
to k coordinates, chosen uniformly at random.

Algorithm SM3.7 presents an implementation of an SSRFT. The cost of storing
= is just O(n) numbers. The cost of applying = to a vector is O(nlogn) arithmetic
operations, using the Fast Fourier Transform (FFT) or the Fast Cosine Transform
(FCT). This cost can be reduced [51] further to O(nlogk), but the improvement is
rarely worth the implementation effort.

In practice, SSRFTs behave almost the same way as Gaussian matrices, but their
storage cost does not scale with the output dimension k. On the other hand, the
analysis [2, 44, 8] is less complete than in the Gaussian case [25]. A proper implemen-
tation requires fast trigonometric transforms. Last, the random permutations and
FFTs require data movement, which could be a challenge in the distributed setting.

Remark 3.2 (History). SSRFTs are inspired by the work of Ailon & Chazelle [2] on
fast Johnson—Lindstrauss transforms. For applications in randomized linear algebra,
see the papers [51, 31, 25, 44, 8].

3.3. Sparse Sign Matrices. Last, we describe another type of randomized
dimension reduction map, called a sparse sign matriz. We recommend these maps for
practical implementations where data movement (i.e., coherency) is a concern.

To construct a sparse sign matrix 2 € FF*", we fix a sparsity parameter ¢ in the
range 2 < ¢ < k. The columns of the matrix are drawn independently at random.
To construct each column, we take ¢ iid draws from the UNIFORM{z € F : |z| = 1}
distribution, and we place these random variables in p coordinates, chosen uniformly
at random. Empirically, we have found that ¢ = min{k,2log(1 4+ n)} is an effective
parameter selection. See [15] for some theoretical justification.

Algorithm SM3.8 describes an implementation of sparse dimension reduction.
Since the matrix Z € FF*™ has ¢ nonzeros per column, we can store the matrix with
O(¢nlog(l + k/¢)) numbers. The cost of applying the map to a vector is O({n)
arithmetic operations.

Sparse sign matrices have benefits for data coherency because the columns are
generated independently and the matrices can be applied using (blocked) matrix mul-
tiplication. One weakness is that we must use sparse data structures and arithmetic
to enjoy the benefit of these maps.

Remark 3.3 (History). Sparse dimension reduction maps are inspired by the work
of Achlioptas [1] on database-friendly random projections. For applications in ran-
domized linear algebra, see [14, 35, 37, 38, 7, 15].

4. Implementation and Costs. This section contains further details about the
implementation of the sketching and reconstruction methods from section 2, including
an account of storage and arithmetic costs. All pseudocode appears in section SM2.
The supplementary materials include MATLAB code for the algorithms.

4.1. Sketching and Updates. Algorithms SM3.1 and SM3.2 contain the pseu-
docode for initializing the sketch and for performing the linear update (2.5).

The sketch requires the storage of four dimension reduction maps with size k x m,
kxn, sxm, sxn. We recommend using SSRFTs or sparse sign matrices to minimize
the storage costs associated with the dimension reduction maps.

The sketch itself consists of three matrices with dimensions k xn, m x k, and s X s.
In general, the sketch matrices are dense, so they require k(m +n) + s? floating-point
numbers in the field F.

The arithmetic cost of the linear update A <+ A + 7H is dominated by the

This manuscript is for review purposes only.
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MORE MATRIX SKETCHING ALGORITHMS 7

minimum cost of computing ® H or HW¥. That is, we apply the dimension reduction
map to s vectors of length min{m, n}. The cost of the update depends heavily on the
structure of the matrix H and the type of dimension reduction map.

4.2. Low-Rank Approximation. Algorithm SM3.3 lists the pseudocode for
computing a rank-k£ approximation A of the matrix A contained in the sketch;
see (2.9).

The method requires additional storage of k(m +n) numbers for the orthonormal
matrices P and @Q, as well as k2 numbers for the core matrix W. The arithmetic cost
is usually dominated by the computation of the orthogonal-triangular factorizations
of X* and Y, which require O(k?(m -+ n)) operations. When the parameters satisfy
s> k, it is possible that the cost O(ks?) of forming the core matrix W will be larger.

4.3. Fixed-Rank Approximation. Algorithm SM3.4 presents the pseudocode
for computing the rank-r approximation [[A}]T of the matrix A contained in the sketch;
see (2.10).

The working storage cost O(k(m + n)) is dominated by the call to the routine
Algorithm SM3.3. Typically, the arithmetic cost is also dominated by the O(k?(m +
n)) cost of the call to Algorithm SM3.3. When s > k, it is possible that the O(s?)
cost of the truncated SVD will drive the arithmetic cost.

5. Theoretical Results. It is always important to characterize the behavior of
numerical algorithms, but the challenge is more acute for sketching methods. Indeed,
we cannot store the stream of updates, so we cannot repeat the computation with
new parameters if it is unsuccessful. As a consequence, we must perform a priori
theoretical analysis to be able to implement sketching algorithms with confidence.

In this section, we analyze our sketching and reconstruction algorithms in the
ideal case where all of the dimension reduction maps are standard normal. These
results allow us to make concrete recommendations for the sketch size parameters.
Empirically, other types of dimension reduction exhibit the identical performance
(subsection 6.4), so our analysis also supports more practical implementations based
on SSRFTs or sparse sign matrices. The numerical work in section 6 confirms the
value of this analysis.

5.1. The Tail Energy. For each natural number r, define the rth tail energy of

the input matrix
2 o : 2 _ 2
Tr <A) o rargtlgl<r HA B BH2 - ;Uj (A)’
Jj=r

where o; returns the jth largest singular value of a matrix. The second identity
follows from the Eckart—Young Theorem [26, Sec. 6].

5.2. The Field Parameter. We also introduce a parameter that reflects the
field over which we are working:

(5.1) a:=aF):= {(1)’ E z E

This quantity allows us to capture the behavior of real and complex Gaussian matrices
within the same formula.

5.3. Analysis of Low-Rank Approximation. The first result gives a bound
for the expected error in the rank-k approximation A of the input matrix A.

This manuscript is for review purposes only.
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8 TROPP, YURTSEVER, UDELL, AND CEVHER

THEOREM 5.1 (Low-Rank Approximation: Error Bound). Let A € F™*™ pe
an arbitrary input matriz. Assume that the sketch size parameters satisfy s > 2k +
a. Draw independent Gaussian dimension reduction maps (T, Q, ®,¥), as in (2.2).
Extract a sketch (2.3) and (2.4) of the input matriz. Then the rank-k approzimation
A, constructed in (2.9), satisfies the error bound
s—« k+o—a ,

- )
. — < . . .
(5.2) E||lA—-A|; < P — gg}clilak—g—a Tor1(A)

We postpone the proof to section SM1. The analysis is similar in spirit to the proof
of [46, Thm. 4.3], but it is somewhat more challenging.

Theorem 5.1 contains explicit and reasonable constants, so we can use it to design
algorithms that achieve a specific error tolerance. For example, suppose that r is the
target rank of the approximation. Then the choice

(5.3) k=5r+a and s=2k+a«

ensures that the error in the rank-k approximation A is within a constant factor 3 of
the optimal rank-r approximation:

E|A—-Al3<3-72,(A).

In practice, we have found the parameter selection (5.3) to be effective for a range
of examples. Moreover, if k/r — oo and s/k — oo, we drive the leading constant in
(5.2) to one.

The true meaning of Theorem 5.1 is more subtle. The minimum over g indicates
that the approximation automatically adapts to the spectral decay of the input matrix.
This effect is usually more significant than any benefit we may achieve by adjusting
the parameters to control the leading constant. In subsection 5.6, we exploit this idea
to recommend sketch size parameters for a given storage budget.

Remark 5.2 (Failure probability). It is well known that the expected performance
of randomized linear algebra methods also characterizes the typical performance [25,
Fig. 7.3]. The probability that the error is significantly larger than (5.2) is negligible.

5.4. Analysis of Fixed-Rank Approximation. Our second result gives a
bound for the error in the rank-r approximation [A], of the input matrix A.

COROLLARY 5.3 (Fixed-Rank Approximation: Error Bound). Instate the as-
sumptions of Theorem 5.1. Then the rank-r approxzimation [A], satisfies the error
bound

s— . kto—a

E A~ [A] |2 < 7r41(A) +2 “Tor1(A)

— . min ——
s—k—a o<k—ak—0—a

This statement is an immediate consequence of Theorem 5.1 and the result [46,
Prop. 6.1]. We omit the details.

Let us elaborate on Corollary 5.3. When the approximation Ais a good rank-k
approximation of A, then the matrix [A], is also a good rank-r approximation of
A. In particular, the rank-r approximation can exploit decay in the spectrum of the
input matrix. The empirical work in section 6 highlights the practical importance of
this phenomenon.
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MORE MATRIX SKETCHING ALGORITHMS 9

5.5. The Storage Budget. It is important to understand the storage we need
to maintain a sketch of an input matrix. We have recommended using structured
dimension reduction maps (Y, €2, &, ¥) so the storage cost for the dimension reduction
maps does not increase with the sketch size parameters (k,s). In this case, we may
focus on the cost of maintaining the sketch (X,Y, Z) itself.

Counting dimensions, via (2.3) and (2.4), we see that the three sketch matrices
require a total storage budget of

(5.4) T :=k(m +n) + s>

floating-point numbers in the field F. To achieve a rank-r approximation, the min-
imum allowable values for the sketch size parameters are kyny;, = 7 + a + 1 and
Smin = 2kmin + . Therefore, the minimum storage budget is

Tin(7) := (r + a+1)(m +n) + (2r + 3a + 1)%

Of course, larger parameters (k, s) support better approximations. In the next section,
we offer a more practical approach for choosing (k, s).

5.6. Theoretical Guidance for Sketch Size Parameters. Suppose that we
fix the storage budget T, defined in (5.4). We may ask how to apportion the sketch
size parameters (k, s) to achieve superior empirical performance. Theorem 5.1 offers
insight on this question; see subsection 6.5 for numerical support.

5.6.1. General Spectrum. To control the theoretical bound Theorem 5.1 on
the approximation error, it is natural to make the parameter k as large as possible.
Indeed, when k is large, the parameter ¢ in the error bound (5.2) has more room to
adapt to decay in the spectrum of A. Note that the condition s > 2k + « ensures
that the first fraction in the error bound cannot exceed two.

Therefore, for T' > Tpnin(r), we pose the optimization problem

(5.5) maxk subject to s>2k+a, and k(m+n)+s®="T.

Up to rounding, the solution is

ky = E <\/(m+n+4a)2+16(Tfa2)f (m+n+4a)>J ;
(5.6)

sei= | T = hatm )

The parameter choice (ky, s) is suitable for a wide range of examples.

5.6.2. Flat Spectrum. Suppose we know that the spectrum of the input matrix
does not decay past a certain point: o;(A) ~ 0;(A) for j > 7. In this case, the
minimum value of the error (5.2) tends to occur when o = 7.

In this case, we can obtain a theoretically supported parameter choice (ky, s,) by
numerical solution of the optimization problem

. s —« k+7—«
min

(5.7) s—k—a k—7—a

subject to s>2k+a, k>F4+a+1,
and k(m+n)+s?=T.

In fact, this problem admits a closed-form solution, but we have chosen to omit the
complicated formula.

This manuscript is for review purposes only.
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10 TROPP, YURTSEVER, UDELL, AND CEVHER

6. Numerical Experiments. This section presents computer experiments that
are designed to evaluate the performance of the proposed sketching algorithms for low-
rank matrix approximation. We include comparisons with alternative methods from
the literature, and we argue that the proposed approach produces superior results.

6.1. Alternative Sketching and Reconstruction Methods. We compare
our approach with two sketching algorithms for low-rank matrix approximation that
have appeared in the literature. Our recent work [46] identifies these two algorithms
as the best techniques available, so we omit comparisons with additional methods.

6.1.1. A Three-Sketch Method. Boutsidis et al. [10, Sec. 6] recently intro-
duced a new method for low-rank matrix approximation from a sketch; Upadhyay [48,
Sec. 3] later proposed some refinements.

Upadhyay’s variant is based on the same kind of sketch (2.2)—(2.4) that we are
using in this paper. He develops the following formula for approximating the input
matrix. First, compute orthonormal bases @ and P for the range and co-range
via (2.7). Then form thin singular value decompositions:

PQ =U;5,V;" and PP =U,S,V,.
Construct the rank-r approximation
(6.1) Aupa = QViS! U ZU,], SIVy P*.

Superficially, the approximation Aupa may look similar to the approximation we de-
veloped in (2.10). Nevertheless, they are designed using different principles, and their
performance is quite different in practice.

6.1.2. A Two-Sketch Method. In [46], we developed and analyzed a very
simple sketching algorithm for low-rank matrix approximation. This approach uses
only two dimension reduction maps:

YT eF>*™ and QeF"™" where k < (.
The sketch takes the form
X="TA and Y =AQ".
To obtain a rank-r approximation from this sketch, we compute
(6.2) Y=QR and Ay, =QYQ)'X],.

The numerically stable implementation is a little more complicated; see [46, Alg. 7]
for details.

6.2. Experimental Setup. Our experimental design is quite similar to our
previous papers [46, 45] on sketching algorithms for low-rank matrix approximation.

6.2.1. Procedure. Fix an input matrix A € F"*" and a target rank r. Then
select the sketch size parameters (k,s) or (k,£). For each trial, we draw dimension
reduction maps from a specified distribution and form the sketch of the input matrix.
We compute a rank-r approximation Aout using a specified reconstruction formula.
The approximation error is calculated relative to the best rank-r approximation error
in Schatten p-norm:

(6.3) S, relative error = A= Aowlly _ 1

A = [All»
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FiG. 1: Spectra of input matrices. Plots of the singular value spectrum for an
input matrix from each of the synthetic classes (LowRank, PolyDecay, ExpDecay with
effective rank R = 10) and from each of the real data classes (MinTemp, StreamVel,
MaxCut, PhaseRetrieval) described in subsection 6.3.

We perform 20 independent trials and report the average error. Owing the measure
concentration effects, the average error is also the typical error; cf. [25, Fig. 7.3].

The body of this paper presents a limited selection of results. Section SM3 con-
tains additional numerical evidence. The supplementary materials also include MAT-
LAB code that can reproduce these experiments.

6.2.2. The Oracle Error. To make fair comparisons among algorithms, we
fix the storage budget and identify the parameter choices that minimize the relative
error (6.3) incurred. We refer to the minimum as the oracle error for an algorithm.

For our new reconstruction (2.10) and for the Upadhyay method (6.1), we compute
the total storage cost as T' = k(m+n)+s® and we require that k > r+a and s > 2k+a.
For the two-sketch method (6.2), the total storage cost is T' = km + ¢n and we require
that k > r+« and £ > k+«a. Note that the storage budget neglects the cost of storing
the dimension reduction maps because this cost has lower order than the sketch when
we use structured dimension reduction maps.

6.3. Classes of Input Matrices. As in our previous papers [46, 45], we consider
several different types of synthetic and real input matrices. See Figure 1 for a plot of
the spectra of these input matrices.

6.3.1. Synthetic Examples. We work over the complex field C. The matrix di-
mensions m = n = 10, and we introduce an effective rank parameter R € {5, 10, 20}.

Thi. 1Script 15 f VIeWw P ly.
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We compute an approximation with actual rank r = 10.

1. Low-rank + noise: Let £ > 0 be a signal-to-noise parameter. These matri-

ces take the form

A = diag(1,...,1,0,...,0) + &n~ W € C™*7,
——
R
where W = GG* for a standard normal matrix G € F**". We consider

several parameter values: LowRankLowNoise (¢ = 10%), LowRankMedNoise
(¢ =107?), LowRankHiNoise (£ = 1071).

. Polynomial decay: For a decay parameter p > 0, consider matrices

A =diag(1,...,1,277,377 .. (n— R+ 1)7P) € C"™.
R

We study three examples: PolyDecaySlow (p = 0.5), PolyDecayMed (p = 1),
PolyDecayFast (p = 2).

. Exponential decay: For a decay parameter ¢ > 0, consider matrices

A = diag(1,...,1,1079,10724,. .. 10~ (»~Ba) ¢ crx",
R

We consider the cases ExpDecaySlow (¢ = 0.01), ExpDecayMed (¢ = 0.1),
ExpDecayFast (¢ = 0.5).

6.3.2. Application Examples. We also consider instances of low-rank data
matrices that arise in applications. For these matrices, we consider a range of values
for the actual rank r of the approximation.

1. Navier—Stokes: We test the hypothesis, discussed in subsection 1.1, that

sketching methods can be used to perform on-the-fly compression of the out-
put of a PDE simulation. We have obtained a 2D Direct Navier—Stokes (DNS)
simulation of low-Reynolds number flow around a cylinder on a coarse mesh.
The simulation is started impulsively from a rest state. Transient dynamics
emerge in the first third of the simulation, while the remaining time steps
capture the limit cycle. Each of the velocity and pressure fields is centered
around its temporal mean. This data is courtesy of Beverley McKeon and
Sean Symon.

The real m x n matrix StreamVel contains streamwise velocities at m =
10,738 points for each of n = 5,001 time instants. The first 20 singular
values of the matrix decay by two orders of magnitude, and the rest of the
spectrum exhibits slow exponential decay. This is typical for physical models.

. Weather: We also test the hypothesis that sketching methods can be used

to perform on-the-fly compression of temporal data as it is collected. We have
obtained a matrix that tabulates meteorological variables at weather stations
across the northeastern United States on days during the years 1981-2016.
This data is courtesy of William North.
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The real m x n matrix MinTemp contains the minimum temperature recorded
at each of m = 19, 264 stations on each of n = 7,305 days. The first 10 singu-
lar values decay by two orders of magnitude, while the rest of the spectrum
has medium polynomial decay. This is typical for measured data.

3. Sketchy Decisions: Last, we consider matrices that arise from an opti-
mization algorithm for solving large-scale semidefinite programs [52]. In this
application, the data matrices are presented as a long series of rank-one up-
dates, and sketching is a key element of the algorithm.

(a) MaxCut: This is a real psd matrix with m = n = 2,000 that gives a
high-accuracy solution to the MAXCuT SDP for a sparse graph [22].
This matrix is effectively rank deficient with R = 14, and the spec-
trum has fast exponentially decay after this point.

(b) PhaseRetrieval: Thisis a complex psd matrix with m = n = 25,921
that gives a low-accuracy solution to a phase retrieval SDP [27]. This
matrix is effectively rank deficient with R = 5, and the spectrum has
fast exponential decay after this point.

6.4. Insensitivity to Dimension Reduction Map. Our first experiment is
designed to show that the proposed rank-r reconstruction formula (2.10) is insensitive
to the distribution of the dimension reduction map at the oracle parameter values
(subsection 6.2.2).

Figure 2 presents experiments with synthetic test matrices with effective rank
R = 10, approximation rank r = 10, and the Schatten 2-norm error (6.3). For most
storage budgets T', the Gaussian, SSRF'T, and sparse dimension reduction maps yield
equivalent values for the oracle error. In fact, because it is unitary, the SSRFT map
even performs slightly better than the others when the storage budget is very large.
See subsection SM3.1 for more numerics, which transmit the same message.

The other reconstruction methods (6.1) and (6.2) are also insensitive to the choice
of dimension reduction maps. We omit the numerical evidence. These observations
justify the transfer of theoretical and empirical results for Gaussians to SSRFT and
sparse dimension reduction maps.

6.5. Approaching the Oracle Performance. Next, we show that theoretical
parameter choices in (2.10) produce results almost as good as the oracle performance.

Figures 3 and 4 display the outcome of the following experiment. For synthetic
test matrices with effective rank R = 10 and approximation rank » = 10, we compare
the oracle performance (subsection 6.2.2) of our rank-r approximation (2.10) with
its performance at the theoretical parameters proposed in subsection 5.6. (In the
formula (5.7) for a flat spectrum, we set the tail location # = r.) We use Gaussian
dimension reduction maps, but equivalent results hold for other types of dimension
reduction maps. See subsection SM3.2 for effective rank R = 5 and R = 20.

For most of the examples, the general parameter choice (5.6) is able to deliver a
relative error that tracks the oracle error closely. The parameter choice (5.7) for a
flat spectrum works somewhat better for matrices whose spectral tail exhibits slow
decay (LowRankLowNoise, LowRankMedNoise, LowRankHiNoise). We also learn that
the theoretical formulas are not entirely reliable when the storage budget is very small.
Matrices with a lot of tail energy (LowRankHiNoise, PolyDecaySlow) are very hard
to approximate accurately with a sketching algorithm, so it is not surprising that our
theoretical parameter choices fall short of the oracle parameters in these cases.
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6.6. Comparison of Reconstruction Formulas: Synthetic Examples. Let
us now compare the proposed rank-r reconstruction formula (2.10) with the Upadhyay
approximation (6.1) and the two-sketch approximation (6.2).

Figures 5 and 6 present the results of the following experiment. For synthetic
matrices with effective rank R = 10 and approximation rank r = 10, we compare the
relative error (6.3) achieved by each of the three rank-r reconstructions as a function
of storage (subsection 6.2.2). We use Gaussian dimension reduction maps in these
experiments; similar results are evident for other types of maps. Results for effective
rank R =5 and R = 20 appear in subsection SM3.3.

Let us make some remarks:

e This experiment demonstrates clearly that the proposed approximation (2.10)
dominates the earlier methods for all the synthetic input matrices, almost
uniformly and sometimes by orders of magnitude.

e For input matrices where the spectral tail decays slowly (PolyDecaySlow,
LowRankLowNoise, LowRankMedNoise, LowRankHiNoise), the newly proposed
method (2.10) has identical behavior to the Upadhyay method (6.1).

e For input matrices whose spectral tail decays more quickly (ExpDecaySlow,
ExpDecayMed, ExpDecayFast, PolyDecayMed, PolyDecayFast), the proposed
method improves massively over Upadhyay (6.1).

e The new method (2.10) shows its strength over the two-sketch method (6.2)
when the storage budget is small. It also yields superior performance in
Schatten co-norm. These differences are most evident for matrices with slow
spectral decay.

In summary, the proposed method (2.10) enjoys the advantages of the Upad-
hyay (6.1) method and our previous approach (6.2), with no evident disadvantages.

6.7. Comparison of Reconstruction Formulas: Real Data Examples.
Our last set of experiments is designed to show that our sketching and reconstruction
pipeline is effective for real data.

Figures 7 and 8 contains the results of the following experiment. For each of
the three rank-r reconstruction methods, we display the relative error (6.3) as a
function of storage. We use sparse dimension reduction maps, which is justified by
the experiments in subsection 6.4.

We plot the oracle error (subsection 6.2.2) attained by each method. Since the
oracle error is not achievable in practice, we also chart the performance of each method
at an a priori selection of parameters. For the proposed method (2.10), we use
the natural parameter choice (5.6) that follows from our theoretical analysis. The
Upadhyay sketch takes the same form as ours but lacks a comparable theory, so we
instantiate his method with the same parameters (5.6) we used in our sketch. Last,
for the two-sketch method (6.2), we assume that the input matrix A € F™*" is tall
(m > n), and we use the theoretically motivated parameter values

k=max{r +a+1,[(T —na)/(m+2n)]} and ¢=|(T —km)/n].

This choice adapts the arguments in [46, Sec. 4.5.2] to use the current definition of
the storage budget T'.

As with the synthetic examples, the proposed method (2.10) dominates the com-
peting methods for all the examples we considered. This is true when we compare
oracle errors or when we compare the errors using a prior: parameter choices. The
benefits of the new method are least pronounced for the matrix MinTemp, whose spec-
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MORE MATRIX SKETCHING ALGORITHMS 15

trum has medium polynomial decay. The benefits of the new method are quite clear
for the matrix StreamVel, which has an exponentially decaying spectrum. The ad-
vantages are even more striking for the two matrices MaxCut and PhaseRetrieval,
which are effectively rank deficient.

In summary, we believe that the numerical work here supports the use of our new
method (2.10). The Upadhyay (6.1) method cannot achieve a small relative error (6.3),
even with a large amount of storage. The two-sketch method (6.2) can achieve small
relative error, but it often requires more storage to achieve this goal—especially at
the a priori parameter choices.

6.8. Example: Flow-Field Reconstruction. Finally, we elaborate on using
sketching to compress the DNS data matrix StreamVel. We compute the best rank-
10 approximation of the matrix via (2.10) using storage T'/(m + n) = 48 and the
parameter choices (5.6). For this example, we can use plots of the flow field to make
visual comparisons.

Figure 9 illustrates the leading left singular vectors of the streamwise velocity
field StreamVel, as computed from the sketch and the full matrix. We see that
the approximate left singular vectors closely match the actual left singular vectors,
although some small errors appear, especially at the inlet (on the left-hand side of the
images). See subsection SM3.4 for additional numerics.

If we normalize StreamVel so that its largest singular value equals one, then
the best rank-10 approximation of StreamVel has absolute S, error 2.223 - 1072,
Meanwhile, the computed rank-10 approximation has absolute S error 2.226 - 10~2.
(The S, relative error (6.3) is 1.3 - 1073.) We can easily improve these numbers by
computing a higher-rank approximation and/or increasing the storage budget.

We learn that the sketched matrix supports an excellent rank-10 reconstruction,
even though it only uses 5.8 MB of storage in double precision. For comparison,
the full matrix requires 409.7 MB of storage. The compression rate is 70.6x. This
demonstration suggests that it is indeed possible to automatically compress the output
of the DNS simulation using sketching.

7. Conclusions. This paper exhibits a sketching method and a new reconstruc-
tion algorithm for low-rank approximation of matrices that are presented as a sequence
of linear updates (section 2). We have described how to implement the method using
SSRFTs or sparse dimension reduction methods (section 3), and we have argued that
the performance of the method is insensitive to the choice of dimension reduction map
(subsection 6.4). In addition, a detailed theoretical analysis (section 5) prescribes how
to select parameter values for the sketch a priori, and we have shown that these pa-
rameter values yield good performance across a range of examples (subsection 6.5).
Finally, we have demonstrated that the new reconstruction method dominates existing
techniques for both synthetic matrices (subsection 6.6) and real data (subsection 6.7).

A potential application of these techniques is for on-the-fly-compression of data
from large-scale simulations. Our work with DNS data indicates that we can achieve
significant data reduction A key advantage of our new approach over (6.2) is that it
extends to higher-dimensional (i.e., tensor) data. This generalization should allow for
higher compression rates, and we plan to explore this idea in a future work.

Acknowledgments. The authors wish to thank Beverley McKeon and Sean
Symon for providing DNS simulation data and visualization software. William North
contributed the weather data.
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Fic. 2: Insensitivity of proposed method to the dimension reduction
map. (Effective rank R = 10, approximation rank r = 10, Schatten 2-norm.) We
compare the oracle performance of the proposed fixed-rank approximation (2.10)
implemented with Gaussian, SSRFT, or sparse dimension reduction maps. See sub-

section 6.4 for details.
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(Gaussian maps, effective rank R = 10, approximation rank r = 10, Schatten
2-norm.) We compare the oracle performance of the proposed fixed-rank approxi-
mation (2.10) with its performance at theoretically justified parameter values. See
subsection 6.5 for details.
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Fic. 4: Relative error for proposed method with a prior: parameters.
(Gaussian maps, effective rank R = 10, approximation rank r = 10, Schatten
oo-norm.) We compare the oracle performance of the proposed fixed-rank approx-
imation (2.10) with its performance at theoretically justified parameter values. See

subsection 6.5 for details.
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Synthetic examples.

(Gaussian maps, effective rank R = 10, approximation rank r = 10, Schatten
2-norm.) We compare the oracle error achieved by the proposed fixed-rank ap-
proximation (2.10) against methods (6.1) and (6.2) from the literature. See subsec-

tion 6.2.2 for details.
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(Gaussian maps, effective rank R = 10, approximation rank r = 10, Schatten
oo-norm.) We compare the oracle error achieved by the proposed fixed-rank ap-
proximation (2.10) against methods (6.1) and (6.2) from the literature. See subsec-

tion 6.2.2 for details.
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Fic. 7. Comparison of reconstruction formulas: Real data examples.
(Sparse maps, Schatten 2-norm.) We compare the relative error achieved by
the proposed fixed-rank approximation (2.10) against methods (6.1) and (6.2) from
the literature. Solid lines are oracle errors; dashed lines are errors with “natural”
parameter choices. See subsection 6.7 for details.
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Fic. 8: Comparison of reconstruction formulas: Real data examples.
(Sparse maps, Schatten co-norm.) We compare the relative error achieved by
the proposed fixed-rank approximation (2.10) against methods (6.1) and (6.2) from
the literature. Solid lines are oracle errors; dashed lines are errors with “natural”
parameter choices. See subsection 6.7 for details.
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Fic. 9: Left singular vectors of StreamVel. (Sparse maps, approximation rank
r = 10, storage budget T' = 48(m + n).) The columns of the matrix StreamVel
describe the fluctuations of the streamwise velocity field about its mean value as a
function of time. From top to bottom, the panels show the first nine computed left
singular vectors of the matrix. The left-hand side is computed from the sketch,
while the right-hand side is computed from the exact flow field. The heatmap
indicates the magnitude of the fluctuation. See subsection 6.8 for details.
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SUPPLEMENTARY MATERIALS: MORE PRACTICAL SKETCHING
ALGORITHMS FOR LOW-RANK MATRIX APPROXIMATION*

JOEL A. TROPPT, ALP YURTSEVER}, MADELEINE UDELL!, AND VOLKAN CEVHER#

SM1. Analysis of the Low-Rank Approximation. This section contains
the proof of Theorem 5.1, the theoretical result on the behavior of the basic low-rank
approximation (2.9). We maintain the notation from section 2.

SM1.1. Facts about Random Matrices. First, let us state a useful formula
that allows us to compute some expectations involving a Gaussian random matrix.
This identity is drawn from [SM1, Prop. A.1 and A.6]. See also [SM2, Fact A.1].

FACT SM1.1. Assume thatt > q+ «. Let G € Ft*9 and G5 € F*™*P be indepen-
dent standard normal matrices. For any matriz B with conforming dimensions,

q

E||GiG:B|} = PE— IB]3.

The number « is given by (5.1).

SM1.2. Results from Randomized Linear Algebra. Our argument also
depends on the analysis of randomized low-rank approximation developed in [SM1,
Sec. 10].

Fact SM1.2 (Halko et al. 2011). Fiz A € F™*™. Let ¢ be a natural number such
that 0 < k — «. Draw the random test matriz Q € FF*™ from the standard normal
distribution. Then the matriz Q computed by (2.7) satisfies

* 0
EqllA-QQ*All; < (1 + m) Toi1(A).

The number « is given by (5.1).

This result follows immediately from the proof of [SM1, Thm. 10.5] using Fact SM1.1
to handle both the real and complex case simultaneously. See also [SM3, Sec. 8.2].

SM1.3. Decomposition of the Core Matrix Approximation Error. The
first step in the argument is to obtain a formula for the error in the approximation
W — Q*AP. The core matrix W € F***® is defined in (2.8). We constructed the
orthonormal matrices P € F***¥ and Q € F™** in (2.7).

Let us introduce matrices whose ranges are complementary to those of P and Q:

P P :=1— PP* where P, € F"X("=h),
Q.Q% :=1-QQ* where Q, € Fmx(m=k),

*First draft: 22 March 2017. First release: 16 July 2018.
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The columns of P, and @, are orthonormal. Next, introduce the submatrices

&, =PQcF** and &, = € Fox(m=k).
(SML.1) 1= ®Q 2=®Q.
Ut = P*®* € F*** and W) = Pr@* e FnFR)xs,

With this notation at hand, we can state and prove the first result.

LEMMA SM1.3 (Decomposition of the Core Matrix Approximation). Assume
that the matrices ®1 and ¥y have full column rank. Then

W — QAP = 1 ®,(Q" AP) + (Q* AP, )¥3(wi)*
+B]®y(Q1 AP )T3(T])".
Proof. Adding and subtracting terms, we write the core sketch Z as
Z =PAV" =P(A-QQ"APP"V* + (®Q)(Q"AP)(P*T™).
Using (SM1.1), we identify the matrices ®; and ¥;. Then left-multiply by <I>J{ and
right-multiply by (®1)* to arrive at
W =@l Z(¥)) = d]®A - QQ*APP*)U*(¥!)* + Q*AP.

We have identified the core matrix W, defined in (2.8). Move the term Q* AP to the
left-hand side to isolate the approximation error.
To continue, notice that

P =30QQ" +2[2Q . Q" = Q" + 218.,Q".
Likewise,
(O = PP () 4+ P P O (0] = P4 P (w)
Combine the last three displays to arrive at
W - QAP = (Q" + ®®,Q" )(A - QQ"APP")(P + P W;(¥!)").

Expand the expression and use the orthogonality relations Q*Q = I and Q7 Q =0
and P*P =1 and P*P, = 0 to arrive at the desired representation. 0

SM1.4. Probabilistic Analysis of the Core Matrix. Next, we make distri-
butional assumptions on the dimension reduction maps ® and ¥. We can then study
the probabilistic behavior of the error W — Q* AP.

LEMMA SM1.4 (Probabilistic Analysis of the Core Matrix). Assume that the
dimension reduction matrices ® and ¥ are drawn independently from the standard
normal distribution. When s > k, it holds that

Eg.o[W — Q*AP] = 0.

When s > k + a, we can express the error as

k
Eew [W-Q"AP|3= —— - [|A - QQ"APP*|;3
s—k—a«
k(2k 4+ a —s) 9
+ (S_k_a)g HQJ_ J—H2

When s > 2k + «, the last term is always nonpositive.

This manuscript is for review purposes only.



60

61

62

63

64

66

67

68

SUPPLEMENTARY MATERIALS: MORE MATRIX SKETCHING ALGORITHMS SM3

Proof. Since ® is standard normal, the orthogonal submatrices ®; and ®- are
statistically independent standard normal matrices because of the marginal property
of the normal distribution. Likewise, ¥, and W, are statistically independent stan-
dard normal matrices. Provided that s > k, both matrices have full column rank with
probability one.

To establish the first point, notice that

Eg.u[W — Q*AP] = Eg, Eg,[®]®:(Q1 AP)| + Eg, Eg,[(Q* AP, )¥}(¥])*]
+EEs,[®]®:(Q AP, )T3(¥])*].

We have used the decomposition of the approximation error from Lemma SM1.3. Then
we invoke independence to write the expectations as iterated expectations. Since ®q
and ¥, have mean zero, this formula makes it clear that the approximation error has
mean zero.

To study the fluctuations, apply the independence and zero-mean property of ®5
and W5 to decompose

Esw ||W — Q" AP|} = Eq |®]82(Q" AP)|3 + Eg |(Q" AP, ) W3 (1) |2
+Eo By |®]®,(Q7 AP, )W (T])" (3.

Continuing, we invoke Fact SM1.1 four times to see that

Esw||W - Q"AP|3

k * *
- [lerari 10 A+ —

k * 2
—— ——|QLAP 3

Add and subtract || Q% AP, ||3 in the bracket to arrive at

* k * * *
BIW - @ AP} = - [|QLAPIE + Q" APLIE + QL AP. |
2k+a—s
.y AP. 3.
+ B0 grap ]
Use the Pythagorean Theorem to combine the terms on the first line. 0

SM1.5. Probabilistic Analysis of the Compression Error. Next, we es-
tablish a bound for the expected error in the compression of the matrix A onto the
range of the matrices @ and P, computed in (2.7). This result is similar in spirit to
the analysis in [SM1], so we pass lightly over the details.

LEMMA SM1.5 (Probabilistic Analysis of the Compression Error). For any nat-
ural number o < k — «a, it holds that

. 2
BlA- Q@ APPE < (1422 ) 2 ()

Proof Sketch. Introduce the partitioned SVD of the matrix A:

‘/1*

A=UXV"=[U U] [21 EJ {V] where X, € Foxe.
2
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Define the matrices
Y, :=YU; € F*¢ and Y,:= YU, e Fs*(m-o).
Q= VQ* € FO° and Q= Vy;Q* e Fn—9)xs,
P =V P ecF** and P,:=VyP eFr-oxk

With this notation, we proceed to the proof.
First, add and subtract terms and apply the Pythagorean Theorem to obtain

IA - QQ APP*||3 = |[A(L - PP")|3 + (I - QQ")APP"|3.
Use the SVD to decompose the matrix A in the first term, and apply the Pythagorean
Theorem again:
14— QQ APP’||3 = [|(T>E:Vy')(I - PP)|3
+ (U V) (I =~ PP + (I - QQ")AP3.
The result [SM3, Prop. 9.2] implies that the second term satisfies
[TV (T = PP < [ X]X2%s]5.

We can obtain a bound for the third term using the formula [SM1, p. 270, disp. 1].
After a short computation, this result yields
I(I-QQ")AP|3 < ||Z2Py||5 + [|Z225(27) Py 13
< (U222V5)P; + 22925 (20) 3.

We can remove P; because its spectral norm is bounded by one, being a submatrix
of an orthonormal matrix. Combine the last three displays to obtain

1A = QQ"APP" |5 < | U= V5|13 + X IXo %03 + | Z2025(021) 5.

We have used the Pythagorean Theorem again.
Take the expectation with respect to Y and €2 to arrive at
EA - QQ APP*|3 < [|Z]5 + E|| Y] YoXoll3 + E | Zo25(25)TI3

20 2
2 s
> 12215

= ||X12
12215 + =,

Finally, note that [|X,]|3 = 72,,(A). |

SM1.6. The Endgame. At last, we are prepared to finish the proof of Theo-
rem 5.1. Fix a natural number ¢ < k — a.. Using the formula (2.9) for the approxi-
mation A, we see that

|A—AlZ=|A-QWP*|3
=|A-QQ*APP* + Q(Q"AP — W)P*|3
=|A-QQ*APP*|; + |Q(Q*AP — W)P*|3.

The last identity is the Pythagorean theorem. Drop the orthonormal matrices in the
last term. Then take the expectation with respect to ® and W:

Esw|A-Al}=[A- QQ APP*|?+Es ¢ ||Q"AP — W|[3
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We treat the two terms sequentially.
To continue, invoke the expression Lemma SM1.4 for the expected error in the
core matrix W:

1 k * *
Baw A= AR < (14— ) 14 - QQ APP'[3
k(2k +a —s) 9
— - |QYV AP, ||5.
+ (s—k—oz)Z ||QJ_ J—||2

Now, take the expectation with respect to Y and €2 to arrive at

(SM1.2)

N k 20
ElA-AI2<(1+— ) - [1+—= ). 72 (A
la- A< (14— ) (14 os ) e
kE(2k+a—s)

—k—ap ‘E||QTAP..

We have invoked Lemma SM1.5. The last term is nonpositive because we require
s > 2k 4+ «, so we may drop it from consideration. Finally, we optimize over eligible
choices ¢ < k — a to complete the argument. The result stated in Theorem 5.1 is
algebraically equivalent.

SM2. Code & Pseudocode. This supplement contains pseudocode for the
sketching and low-rank reconstruction algorithms described in this paper. In many
places, we use the same mathematical notation as the rest of the paper. We also rely
on MATLAB R2018A commands, which appear in typewriter font. The electronic
materials include a MATLAB implementation of these methods.

Algorithm SM3.1 contains the constructor for the SKETCH object. It draws
random test matrices and initializes the sketch for the zero input matrix. This
code implements (2.2)—(2.4).

Algorithm SM3.2 implements a general rank-one linear update (2.5) to the
input matrix contained in the sketch.

Algorithm SM3.3 implements the basic low-rank reconstruction formula (2.9).
It returns the approximation in factored form.

Algorithm SM3.4 implements the rank-r reconstruction formula (2.10). It
returns the approximation in factored form.

Algorithm SM3.5 is the template for the dimension reduction (DIMREDUX)
class for input matrices over the field F. It outlines the methods that a
DIMREDUX needs to implement.

Algorithm SM3.6 defines the Gaussian dimension reduction (GAUSS) class,
which is a subclass of DIMREDUX. It describes the constructor and the left
and right action of this dimension reduction map. See subsection 3.1 for the
explanation.

Algorithm SM3.7 defines the SSRFT dimension reduction (SSRFT) class,
which is a subclass of DIMREDUX. It describes the constructor and the left
and right action of this dimension reduction map. See subsection 3.2 for the
explanation.

Algorithm SM3.8 defines the sparse dimension reduction (SPARSE) class,
which is a subclass of DIMREDUX. It describes the constructor and the left
and right action of this dimension reduction map. See subsection 3.3 for the
explanation.

Thi. 1SCript 15 f VIeWw P ly.
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SM3. Supplemental Numerical Results. This section summarizes the addi-
tional numerical results that are presented in this supplement. The MATLAB code in
the electronic materials can reproduce these experiments.

SM3.1. Insensitivity to the Dimension Reduction Map. We undertook
a more comprehensive set of experiments to demonstrate that our reconstruction
formula (2.10) is insensitive to the choice of dimension reduction map at the oracle
parameters. See subsection 6.4 for details.

Figures SM1 to SM5 contain the results for matrices with effective rank R = 5,
R =10, and R = 20 with relative error measured in Schatten 2-norm and Schatten
oo-norm.

SM3.2. Achieving the Oracle Performance. We also performed experi-
ments to see how closely the theoretical parameter choices allow us to approach the
oracle performance of our reconstruction formula (2.10). See subsection 6.5 for details.

Figures SM6 to SM9 contain the results for matrices with effective rank R = 5
and R = 20 with relative error measured in Schatten 2-norm and Schatten oco-norm.

SM3.3. Algorithm Comparisons for Synthetic Instances. We compared
all three of the reconstruction formulas (2.10), (6.1), and (6.2) at the oracle parameters
for a wide range of synthetic problem instances. See subsection 6.6 for details.

Figures SM10 to SM13 contain the results for matrices with effective rank R =5
and R = 20 with relative error measured in Schatten 2-norm and Schatten co-norm.

SM3.4. Flow-Field Reconstruction. Figure SM14 illustrates the streamwise
velocity field StreamVel and its rank-10 approximation via (2.10) using storage budget
T/(m + n) = 48 and the parameter choices (5.6). We see that the approximation
captures the large-scale features of the flow, although there are small errors visible,
especially at the inlet (on the left-hand side of the images).
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Algorithm SM3.1 Sketch for Low-Rank Approximation. Implements (2.2)—(2.4).

Input: Input matrix dimensions m x n; sketch size parameters k < s < min{m, n}
Output: Draw dimension reduction maps (2.2); sketch (2.3) and (2.4) of A=0

1 class SKETCH
2 local variables YT, Q, ®, ¥ (DIMREDUX)
3 local variables XY, Z (matrices)

4 function SKETCH(m,n, k, s; DR) > Constructor; DR is a DIMREDUX
5 Y < DR(k,m) > Draw new dimension reduction maps
6 Q < DR(k,n)

7 ® «— DR(s,m)

8 ¥+ DR(s,n)

9 X + zeros(k,n) > Sketch of zero matrix
10 Y < zeros(m, k)

11 Z <+ zeros(s,s)

Algorithm SM3.2 Linear Update to Sketch. Implements (2.5).

Input: Innovation H € F™*™; scalars 0,7 € F
Output: Modifies sketch to reflect linear update A < 0A +17H

1 function SKETCH.LINEARUPDATE(H; 0, T)
2 X—0X+717TH

3 Y <« 0Y +THQ*

4 Z +—0Z+T17PHY*

Algorithm SM3.3 Low-Rank Approximation. Implements (2.9).

Output: Rank-k approximation of sketched matrix in form A= QW P* with or-
thonormal Q € F™** and P € FrxF

1 function SKETCH.LOWRANKAPPROX( )

2 (Q,~) + ar(Y,0)

3 (P,~) + qr(X*,0)

4 W+ ((2Q)\Z)/((TP)*) > Least-squares via QR or SVD
5 return (Q, W, P)
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Algorithm SM3.4 Fixed-Rank Approximation. Implements (2.10).

Input: Rank r of approximation .
Output: Rank-r approximation of sketched matrix in form A = UXV™* with or-
thonormal U € F"*" and V € F™*" and nonnegative diagonal ¥ € R"™*"

1 function SKETCH.FIXEDRANKAPPROX(r)

2 (Q,W, P) + SKETCH.LOWRANKAPPROX( )

3 (U,X, V) + svds(W,r) > Truncate full SVD to rank r
4 U+~ QU > Consolidate unitary factors
5 V < PV

6 return (U, X, V)

Algorithm SM3.5 Dimension Reduction Map Class.

1 class DIMREDUX (F) > Dimension reduction map over field F
2 function DIMREDUX(k, n) > Construct map Z : F* — F*
3 function DIMREDUX.MTIMES(DRmap, M ) > Left action of map
4 function DIMREDUX.MTIMES(M , DRmap*) > Right action of adjoint

return (DIMREDUX.MTIMES(DRmap, M *))* > Default behavior

Algorithm SM3.6 Gaussian Dimension Reduction Map. (subsection 3.1)

1 class Gauss (DIMREDUX) > Subclass of DIMREDUX
2 local variable E (dense matrix)

function RANDN(k, n; F) > Gaussian matrix over field F
4 if F = R then return randn(k,n)
5 if F = C then return randn(k,n) + 1i * randn(k,n)
6 function Gauss(k,n) > Constructor
7 E < RANDN(k, n; ) > Gaussian over F

8 function GAUSS.MTIMES(DRmap, M)
9 return mtimes(Z, M)
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Algorithm SM3.7 SSRF'T Dimension Reduction Map. (subsection 3.2)

1 class SSRFT (DIMREDUX) > Subclass of DIMREDUX
2 local variables coords, perm;, ¢; for j = 1,2

3 function SSRFT(k,n) > Constructor
4 coords < randperm(n, k)

5 perm; < randperm(n) for j = 1,2

6 g, < sign(RANDN(n, 1;F)) for j = 1,2

7 function SSRFT.MTIMES(DRmap, M)
8 if F =R then

9 M < dct(diag(e1)M (permy, :))
10 M < dct(diag(e2) M (perm,, :))
11 if F = C then
12 M < dft(diag(e;)M (permy, :))
13 M < dft(diag(e2) M (perm,, :))
14 return M (coords, :)

Algorithm SM3.8 Sparse Dimension Reduction Map. (subsection 3.3)

1 class SPARSE (DIMREDUX) > Subclass of DIMREDUX
2 local variable = (sparse matrix)

3 function SPARSE(k,n) > Constructor
4 ¢ + min{k, [2log(1 +n)|} > Sparsity of each column
5 for j=1,...,ndo

6 Z(randpern(k, (), j) + sign(RANDN((, 1;F))

7 function SPARSE.MTIMES(DRmap, M)
8 return mtimes(2, M)
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Storage: T'/(m + n)
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10° A,
1 s
107 4 =
N
<
N

1072 s T T T T

12 24 48 96 192

Storage: T/(m + n)

(¢) LowRankLowNoise
100 4
10—1 4
1024
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Storage: T/(m + n)
(F) PolyDecayFast

100
102
107+
10+
10

T T T T
12 24 48 96 192
Storage: T'/(m + n)

(1) ExpDecayFast

Fic. SM1: Insensitivity of proposed method to the dimension reduction
map. (Effective rank R = 5, approximation rank r = 10, Schatten 2-norm.) We
compare the oracle performance of the proposed fixed-rank approximation (2.10)
implemented with Gaussian, SSRFT, or sparse dimension reduction maps. See sub-
section 6.4 for details.
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Fic. SM2: Insensitivity of proposed method to the dimension reduction
map. (Effective rank R = 5, approximation rank r = 10, Schatten oco-norm.) We
compare the oracle performance of the proposed fixed-rank approximation (2.10)
implemented with Gaussian, SSRFT, or sparse dimension reduction maps. See sub-
section 6.4 for details.
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Fic. SM3: Insensitivity of proposed method to the dimension reduction
map. (Effective rank R = 10, approximation rank r = 10, Schatten co-norm.) We
compare the oracle performance of the proposed fixed-rank approximation (2.10)
implemented with Gaussian, SSRFT, or sparse dimension reduction maps. See sub-

section 6.4 for details.
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Fic. SM4: Insensitivity of proposed method to the dimension reduction
map. (Effective rank R = 20, approximation rank r = 10, Schatten 2-norm.) We
compare the oracle performance of the proposed fixed-rank approximation (2.10)
implemented with Gaussian, SSRFT, or sparse dimension reduction maps. See sub-
section 6.4 for details.
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Fic. SM5: Insensitivity of proposed method to the dimension reduction
map. (Effective rank R = 20, approximation rank r = 10, Schatten co-norm.) We
compare the oracle performance of the proposed fixed-rank approximation (2.10)
implemented with Gaussian, SSRFT, or sparse dimension reduction maps. See sub-

section 6.4 for details.
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Fic. SM6: Relative error for proposed method with a priori parame-
ters. (Gaussian maps, effective rank R = 5, approximation rank r = 10, Schatten
2-norm.) We compare the oracle performance of the proposed fixed-rank approxi-
mation (2.10) with its performance at theoretically justified parameter values. See

subsection 6.5 for details.
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Fic. SM7: Relative error for proposed method with a priori parame-
ters. (Gaussian maps, effective rank R = 5, approximation rank r = 10, Schatten
oo-norm.) We compare the oracle performance of the proposed fixed-rank approxi-
mation (2.10) with its performance at theoretically justified parameter values. See

subsection 6.5 for details.
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Fic. SMS&: Relative error for proposed method with a priori parame-
ters. (Gaussian maps, effective rank R = 20, approximation rank r = 10, Schatten
2-norm.) We compare the oracle performance of the proposed fixed-rank approxi-
mation (2.10) with its performance at theoretically justified parameter values. See

subsection 6.5 for details.
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Fic. SM9: Relative error for proposed method with a priori parame-
ters. (Gaussian maps, effective rank R = 20, approximation rank r = 10, Schatten
oo-norm.) We compare the oracle performance of the proposed fixed-rank approxi-
mation (2.10) with its performance at theoretically justified parameter values. See

subsection 6.5 for details.
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Fic. SM10: Comparison of reconstruction formulas: Synthetic examples.
(Gaussian maps, effective rank R = 5, approximation rank r = 10, Schatten 2-
norm.) We compare the oracle error achieved by the proposed fixed-rank approx-
imation (2.10) against methods (6.1) and (6.2) from the literature. See subsec-

tion 6.2.2 for details.
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Fic. SM11: Comparison of reconstruction formulas: Synthetic examples.
(Gaussian maps, effective rank R = 5, approximation rank r = 10, Schatten oco-
norm.) We compare the oracle error achieved by the proposed fixed-rank approxima-
tion (2.10) against methods (6.1) and (6.2) from the literature. See subsection 6.2.2

for details.
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Fic. SM12: Comparison of reconstruction formulas: Synthetic examples.
(Gaussian maps, effective rank R = 20, approximation rank r = 10, Schatten 2-
norm.) We compare the oracle error achieved by the proposed fixed-rank approxima-
tion (2.10) against methods (6.1) and (6.2) from the literature. See subsection 6.2.2

for details.
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Fic. SM13: Comparison of reconstruction formulas: Synthetic examples.
(Gaussian maps, effective rank R = 20, approximation rank r = 10, Schatten oco-
norm.) We compare the oracle error achieved by the proposed fixed-rank approxima-
tion (2.10) against methods (6.1) and (6.2) from the literature. See subsection 6.2.2

for details.
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4 4

Fic. SM14: Approximation of StreamVel. (Sparse maps, approximation
rank r = 10, storage budget T = 48(m + n).) The columns of the matrix
StreamVel describe the fluctuations of the streamwise velocity field about its mean
value as a function of time. From top to bottom, the panels show columns
1,501, 1001, 1501, 2001, 2501, 3001, 3501, 4001. The left-hand side displays the ap-
proximation of the flow field, and the right-hand side displays the exact flow
field. The heatmap indicates the magnitude of the fluctuation. See subsection 6.8
for details.
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