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ANALYSIS OF RANDOMIZED BLOCK KRYLOV METHODS
PART I: SPECTRAL NORM ESTIMATION

JOEL A. TROPP

ABSTRACT. Randomized block Krylov subspace methods form a powerful class of algorithms for computing
the (extreme) eigenvalues and singular values of a matrix. The purpose of this paper is to develop new
theoretical bounds on the performance of randomized block Krylov subspace methods for these problems.
The results demonstrate that, for many matrices, it is possible to obtain an accurate spectral norm estimate
using only a constant number of steps of the randomized block Krylov method. Furthermore, the analysis
reveals that the behavior of the algorithm depends in a delicate way on the block size.

1. MOTIVATION AND MAIN RESULTS

Randomized block Krylov methods have emerged as a powerful tool for spectral computation and
matrix approximation [HMT11, MRT11, RST09, HMST11, MM15, WZZ15, DIKMI16]. At present, our
understanding of the performance of these methods is more rudimentary than our understanding of
simple Krylov subspace methods in either the deterministic or random setting. The goal of this paper
and its companions is to develop refined bounds that help explain the remarkable numerical perfor-
mance [HMST11, MM15] of randomized block Krylov methods.

1.1. Project Overview. Part I, this paper, focuses on the most basic questions. How well can we estimate
the maximum (or minimum) eigenvalue of a symmetric matrix using a randomized block Krylov method?
How well can we estimate the maximum (or minimum) singular value of a general matrix? We develop
the first detailed theory for these problems. The analysis streamlines and improves the work [KW92] of
Kucziński & Woźniakowski on the simple Krylov method with a randomized starting vector.

Part II of this paper [Tro18a] studies the problem of estimating the largest (or smallest) k eigenvalues of
a symmetric matrix. It also touches on the analogous questions for singular values. We have chosen to
treat these methods separately because the analysis requires more difficult tools from randomized matrix
approximation and random matrix theory [HMT11].

Part III of this paper [Tro18b] turns to the problem of computing a rank-k approximation of a general
matrix. This problem has already been studied in some depth [MM15, DIKMI16]. We are able to obtain
more precise results by exploiting insights from the earlier chapters of our research.

We have tried to make each of these papers self-contained, while minimizing repetition of material.
In future work, we may also treat the problem of estimating invariant subspaces of a symmetric matrix
associated with the largest k eigenvalues. This problem is closer in spirit to low-rank matrix approximation
than eigenvalue estimation, but it requires independent arguments.

1.2. Block Krylov Methods for Computing the Maximum Eigenvalue. Let us begin with a mathematical
description of a block Krylov method for estimating the maximum eigenvalue of a symmetric matrix. See
Section 1.2.6 for a brief discussion about implementations.
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2 J. A. TROPP

1.2.1. Block Krylov Subspaces. Suppose that we are given a symmetric matrix A ∈ Rn×n . Choose a test
matrix B ∈Rn×`, where the number ` is called the block size. Select a parameter q ∈N that controls the
depth of the Krylov subspace. In concept, the block Krylov method constructs the matrix

Sq (A;B ) := [
B AB A2B . . . Aq B

] ∈Rn×(q+1)`. (1.1)

The range Kq of the matrix Sq is called a block Krylov subspace:

Kq (A;B ) := range(Sq ) ⊂Rn . (1.2)

The block Krylov subspace admits an alternative representation in terms of polynomials:

Kq (A;B ) =⊕
ϕ∈Pq

range
(
ϕ(A)B

)
(1.3)

where Pq is the linear space of real polynomials with degree at most q . The ⊕ operator refers to the
ordinary subspace sum.

1.2.2. Invariance Properties of Krylov Subspaces. Krylov subspaces have remarkable invariance properties
that help explain their computational value.

• The block Krylov subspace only depends on the range of the test matrix:

Kq (A;BT ) = Kq (A;B ) for all nonsingular T ∈R`×`.

• The block Krylov subspace co-varies with the orientation of the matrices:

Kq (U AU∗;U B ) =U Kq (A;B ) for all orthogonal U ∈Rn×n .

• The block Krylov subspace is invariant under affine transformations of the spectrum of the input
matrix:

Kq (αA +βI;B ) = Kq (A;B ) for all α,β ∈R.

These facts follow directly from the definition (1.1)–(1.2) of the Krylov subspace and the representa-
tion (1.3) using polynomials. For example, see [Par98, Sec. 12.2.2] for the simple case `= 1.

1.2.3. Computing Maximum Eigenvalues. Block Krylov subspaces support a wide range of matrix compu-
tations. The core idea is to compress the input matrix to the Krylov subspace and to perform calculations
on the (small) compressed matrix. In other words, Krylov methods belong to the class of Ritz–Galerkin
methods; see [Lan50, Pai71, Saa80, Par98, Saa11].

In particular, we can obtain an estimate ξmax(A;B ; q) for the maximum eigenvalue λmax(A) of the input
matrix by maximizing the Rayleigh quotient of A over the block Krylov subspace Kq (A;B ):

ξmax(A;B ; q) := max
v∈Kq (A;B )

v∗Av

v∗v
. (1.4)

The symbol ∗ denotes the transpose of a matrix of vector, and we instate the convention that 0/0 = 0. We
may suppress the dependence of ξmax on A, B , or q when they are clear from context.

The Rayleigh–Ritz theorem [Bha97, Cor. III.2.1] implies that the maximum eigenvalue estimate (1.4)
always satisfies

λmin(A) ≤ ξmax(A;B ; q) ≤λmax(A). (1.5)

The goal of our analysis is to understand how well ξmax(A;B ; q) approximates the maximum eigenvalue of
the input matrix A as a function of the block size ` and the depth q of the Krylov space.

Warning 1.1 (Eigenvectors). The vector v that maximizes the Rayleigh quotient in (1.4) need not provide
a good approximation for any maximum eigenvector of A. See the companion paper [Tro18b] for some
discussion about estimating invariant subspaces.
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1.2.4. Invariance Properties of the Eigenvalue Estimate. The eigenvalue estimate ξmax(A;B ; q) inherits
some invariances from the block Krylov subspace. These properties help us develop effective implemen-
tations and to analyze their performance.

• For fixed depth q , the estimate only depends on the range of the test matrix B :

ξmax(A;BT ) = ξmax(A;B ) for all nonsingular T ∈R`×`. (1.6)

• For fixed depth q , the estimate does not depend on the orientation of A and B in the sense that

ξmax(U AU∗;U B ) = ξmax(A;B ) for all orthogonal U ∈Rn×n . (1.7)

• For fixed depth q , the estimate covaries with increasing affine transformations of A:

ξmax(αA +βI;B ) =αξmax(A;B )+β for all α≥ 0 and β ∈R. (1.8)

These results all follow immediately from the invariance properties of the Krylov subspace (Section 1.2.2)
and the definition (1.4) of the eigenvalue estimate. See [KW92] for the simple case `= 1.

1.2.5. A Random Test Matrix. To ensure that we can estimate the maximum eigenvalue of an arbitrary
input matrix A, we draw the test matrix B that generates the Krylov subspace at random.

How should we select the distribution? Observe that the eigenvalue estimate ξmax(A;B ; q) only depends
on the range of the test matrix B because of the property (1.6). Furthermore, the property (1.7) shows
that the eigenvalue estimate is invariant under rotations. Therefore, we can choose any random test
matrix whose range has a rotationally invariant distribution. This idea is extracted from [KW92]. See
Appendix A.1 for further justification.

In this series of papers, we will consider a standard normal test matrixΩ ∈Rn×`. That is, the entries of
Ω are statistically independent Gaussian random variables, each with mean zero and variance one. It is
well known that the range of this random matrix has a rotationally invariant distribution. The goal of this
paper is to study the behavior of the random eigenvalue estimate ξmax(A;Ω; q).

Remark 1.2 (Other Test Matrices). The analysis and detailed results in this paper depend heavily on the
choice of a standard normal test matrix. In practice, we can achieve similar empirical behavior from test
matrices with other types of distributions. For randomized Krylov subspace methods, the computational
benefits of changing the test matrix are limited because we need to perform repeated multiplications
with the input matrix to generate the Krylov matrix, cf. (1.1). See [HMT11, Secs. 4.6 and 7.4] for some
discussion about other random test matrices.

1.2.6. Implementation. For completeness, we describe the simplest implementation of a block Krylov
method for computing the largest eigenvalue of a symmetric matrix. See Algorithm 1 for pseudocode
with MATLAB-like notation; this approach is adapted from [RST09, HMST11]. Let us emphasize that this
algorithm is not suitable for numerical computations when the depth q is moderate or large or when A is
ill-conditioned.

Here is a summary of the costs of Algorithm 1:

• A total of q matrix–matrix multiplies between A and an n ×` matrix, plus another multiplication
between A and an n × (q +1)` matrix. The arithmetic cost depends on whether the matrix A
supports a fast multiplication operation. For example, the algorithm is more efficient when A is
sparse.

• Orthogonalization of (q +1)` vectors of length n at a cost of O (q2`2n) operations.
• Solution of a dense maximum eigenvalue problem at a cost of O (q3`3) operations.
• Storage of the matrix Sq , which requires O (q`n) units of storage.

More refined algorithms can reduce the resource usage somewhat, but these requirements are fairly
typical.

As noted, Krylov subspace methods are particularly valuable when we have an efficient procedure
for computing matrix–vector products with A. On contemporary computer architectures, the cost of
performing a product with several vectors is similar to the cost of a product with a single vector. Therefore,
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Algorithm 1 A block Krylov method for computing the largest eigenvalue of a symmetric matrix

Input: Symmetric n ×n matrix A; block size `; depth q
Output: Estimate ξ of largest eigenvalue

1 function BLOCKKRYLOVMAXEIG(A, `, q)
2 Y0 ← randn(size(A,1),`) .Draw n ×` standard normal test matrix
3 for t ← 1,2,3, . . . , q do
4 Yt ← AYt−1 . Form blocks of Krylov matrix by repeated multiplication

5 Q ← orth([Y0,Y1, . . . ,Yq ]) . Find orthonormal basis for block Krylov space
6 H ←Q∗(AQ) . Form Rayleigh matrix
7 (∼,ξ) ← eigs(H ,1) . Compute maximum eigenvalue via dense linear algebra

block methods may offer practical benefits. We refer to the books [Par98, BDD+00, Saa11, GVL13] and the
paper [HMST11] for more discussion and references.

1.3. The Role of the Spectrum. Owing to invariance, the theoretical behavior of the eigenvalue estimate
ξmax(A;Ω; q) depends only on the spectrum of the input matrix A. In this section, we develop this idea
further and introduce some spectral features that affect the performance of the eigenvalue estimate.

Warning 1.3 (Numerical Behavior). The numerical performance of a (block) Krylov method depends on
other properties of the input matrix aside from the spectrum; for example, see [Par98, Chaps. 12, 13]. The
current paper does not address numerical issues.

1.3.1. Invariance Properties of the Random Eigenvalue Estimate. The random estimate ξmax(A;Ω; q) of
the maximum eigenvalue has several invariance properties that allow us to simplify the analysis.

First, the rotation invariance (1.7) of the eigenvalue estimate and the rotational invariance of the range
ofΩ imply that

ξmax(A;Ω) ∼ ξmax(Λ;Ω) where A =UΛU∗ is an eigenvalue factorization. (1.9)

The symbol ∼ signifies equality of distribution for two random variables. In other words, the maximum
eigenvalue estimate depends only on the eigenvalues of the input matrix—but not the eigenvectors.

Second, owing to the affine covariance property (1.8), the eigenvalue estimate ξmax(A;Ω; q) only
depends on the “shape” of the spectrum of A, but not its location or scale. As a consequence, we must
assess the behavior of the eigenvalue estimate in terms of spectral features that are affine invariant.

1.3.2. Spectral Features of the Input Matrix. To express the results of our analysis, we introduce terminol-
ogy for some spectral features of the symmetric matrix A ∈Rn×n . First, let us instate compact notation for
the eigenvalues of A:

ai :=λi (A) for i = 1, . . . ,n, and amax := a1 ≥ a2 ≥ ·· · ≥ an =: amin.

The map λi (·) returns the i th largest eigenvalue of a symmetric matrix.
Let us define some functions of the eigenvalue spectrum:

• The spectral range ρ of the input matrix is the distance between the extreme eigenvalues. That is,
ρ := amax −amin.

• The spectral gap γ is the relative difference between the maximum eigenvalue and the next distinct
eigenvalue:

γ := amax −am+1

amax −amin
where amax = am > am+1. (1.10)

If A is a multiple of the identity, then γ= 0. Note that γ ∈ [0,1].
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• Let ν be a nonnegative number. The ν-stable rank is a continuous measure of the “dimension” of
the range of A −aminI that reflects how quickly the spectrum decays. It is defined as

srk(ν) :=
n∑

i=1

(
ai −amin

amax −amin

)2ν

. (1.11)

If A is a multiple of the identity, then srk(ν) = 0. Otherwise, 1 ≤ srk(ν) ≤ rank(A −aminI) ≤ n −1.
When the eigenvalues of A decay at a polynomial rate, the stable rank can be much smaller than
the rank for an appropriate choice of ν.

• Let ξ be any estimate for the largest eigenvalue amax of the input matrix A. We measure the error
in the estimate relative to the spectral range:

err(ξ) := amax −ξ
amax −amin

. (1.12)

The relative error in the Krylov estimate ξ= ξmax(A;B ; q) falls in the interval [0,1] because of (1.5).

The spectral gap, the stable rank, and the error measure are all invariant under increasing affine transfor-
mations of the spectrum of A. We suppress the dependence of these quantities on the input matrix A,
unless emphasis is required.

1.4. Matrices with Few Distinct Eigenvalues. Before continuing, we must address an important spe-
cial case. When the input matrix has few distinct eigenvalues, the block Krylov method computes the
maximum eigenvalue of the matrix perfectly.

Proposition 1.4 (Randomized Block Krylov: Matrices with Few Eigenvalues). Let A ∈Rn×n be a symmetric
matrix. Fix the block size `≥ 1 and the depth q ≥ 0 of the block Krylov subspace. Draw a standard normal
matrixΩ ∈Rn×`. If A has q +1 or fewer distinct eigenvalues, then err(ξmax(A;Ω; q)) = 0 with probability
one.

This type of result is well known (e.g., see [KW92]), but we include a short proof in Section 3.

1.5. Matrices without a Spectral Gap. Our first result gives probabilistic bounds for the maximum eigen-
value estimate ξmax(A;Ω; q) without any additional assumptions. In particular, it does not require a lower
bound on the spectral gap γ.

Theorem 1.5 (Randomized Block Krylov: Maximum Eigenvalue Estimate). Instate the following hypothe-
ses.

• Let A ∈Rn×n be a symmetric input matrix.
• Draw a standard normal test matrixΩ ∈Rn×` with block size `.
• Fix the depth parameter q ≥ 0, and let q = q1 +q2 be an arbitrary nonnegative integer partition.

We have the following probability bounds for the estimate ξmax(A;Ω; q), defined in (1.4), of the maximum
eigenvalue of the input matrix.

(1) The relative error (1.12) in the eigenvalue estimate satisfies the probability bound

P
{
err(ξmax(A;Ω; q)) ≥ ε}≤ 1∧

p
2
[

8srk(q1) ·e−2(2q2+1)
p
ε
]`/2

for ε ∈ [0,1].

(2) The expectation of the relative error satisfies

Eerr(ξmax(A;Ω; q)) ≤ 1∧
[

2.70`−1 + log(8srk(q1))

2(2q2 +1)

]2

.

The symbol ∧ denotes the minimum, and the stable rank srk(·) is defined in (1.11).
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The proof of Theorem 1.5 appears in Sections 4 and 5.
Let us take a moment to explain the content of this result. We begin with a discussion about the role

of the second depth parameter q2, and then we explain the role of the first depth parameter q1. Let us
emphasize that the user does not choose the partition q = q1 +q2; the block Krylov method automatically
makes the optimal selection.

For the moment, we fix q1. The key message of Theorem 1.5 is that the relative error satisfies the bound

Eerr(ξmax(A;Ω; q1 +q2)) ≤ ε
once the depth parameter q2 exceeds

q2(ε) :=−1

2
+ 2.70`−1 + log(8srk(q1))

4
p
ε

.

Once the depth q2 attains this level, the probability of error drops off exponentially fast:

q2 = q2(ε)+kε−1/2 implies P
{
err(ξmax(A;Ω; q1 +q2)) ≥ ε}≤ e−2k`.

In fact, we need q2 ≥ q2(ε) just to ensure that the probability bound is nontrivial.
The most important aspect of this result is that the depth q2(ε) scales with ε−1/2, so it is possible to

achieve moderate relative error using a block Krylov space with limited depth. In contrast, the power
method [KW92] requires depth q to be proportional to ε−1 to achieve a relative error of ε.

The second thing to notice is that the depth q2(ε) scales with log(srk(q1)). The stable rank is never larger
than the ambient dimension n, but it can be significantly smaller—even constant—when the spectrum of
the matrix decays. We believe this is the first result that identifies conditions under which the block Krylov
method has dimensionless behavior.

Here is another way to look at these facts. As we increase the depth parameter q , the block Krylov
method exhibits a burn-in period whose length q1 +q2(1) depends on srk(q1). While the depth q2 ≤ q2(1),
the algorithm does not make any progress in estimating the maximum eigenvalue. Once the depth satisfies
q2 ≥ q2(1), the algorithm the expected relative error decreases in proportion to q−2

2 . In contrast, the power
method [KW92] reduces the expected relative error in proportion to q−1

2 .
We can now appreciate the role of the first depth parameter q1. When the spectrum of the input matrix

exhibits polynomial decay, srk(q1) is constant for an appropriate value of q1. For many matrices, this
situation already occurs for q1 = 1 or q1 = 2. The analysis shows that the total burn-in period q1 +q2(1)
can be as short as O (1) steps when the eigenvalues of the input matrix decay.

The block size ` does not play a significant role in determining the average error. But changing the
block size has a large effect on the probability of failure, i.e., the event that the relative error exceeds ε.
For example, suppose that we increase the block size ` from one to three. For each increment of ε−1/2

in the depth q2, the failure probability with block size `= 3 is a factor of 403× smaller than the failure
probability with block size `= 1!

Remark 1.6 (Prior Work). The simple case `= 1 in Theorem 1.5 has been studied in the paper [KW92].
Our work introduces two major innovations. First, we obtain bounds in terms of the stable rank, which
allows us to mitigate the dimensional dependence that appears in [KW92]. Second, we have obtained
precise results for larger block sizes `, which indicate potential benefits of using block Krylov methods.
Our proof strategy is motivated by the work in [KW92], but we have been able to streamline and extend
their arguments by using a more transparent random model for the test matrix.

1.6. Matrices with a Spectral Gap. Our second result gives probabilistic bounds for the maximum eigen-
value estimate ξmax(A;Ω; q) when we have a lower bound for the spectral gap γ of the input matrix.

Theorem 1.7 (Randomized Block Krylov: Maximum Eigenvalue Estimate with Spectral Gap). Instate the
following hypotheses.

• Let A ∈Rn×n be a symmetric input matrix.
• Draw a standard normal test matrixΩ ∈Rn×` with block size `.
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• Fix the depth parameter q ≥ 0, and let q = q1 +q2 be an arbitrary nonnegative integer partition.

We have the following probability bounds for the estimate ξmax(A;Ω; q), defined in (1.4), of the maximum
eigenvalue of the input matrix.

(1) The relative error (1.12) in the eigenvalue estimate satisfies the probability bound

P
{
err(ξmax(A;Ω; q)) ≥ ε}≤p

2

[
8srk(q1)

ε
·e−4q2

p
γ

]`/2

for ε ∈ (0,1].

(2) The expectation of the relative error satisfies

Eerr(ξmax(A;Ω)) ≤ 1

`−2

(
4srk(q1)

) ·e−4q2
p
γ (`≥ 3);

Eerr(ξmax(A;Ω)) ≤
√

4srk(q1) ·e−2q2
p
γ (`= 2);

Eerr(ξmax(A;Ω)) ≤ 1.13
√

4srk(q1) ·e−2q2
p
γ (`= 1).

The spectral gap is defined in (1.10), and the stable rank is defined in (1.11).

The proof of Theorem 1.7 appears in Sections 4 and 6.
As before, we fix the first depth parameter q1. One implication of this result is that the relative error

satisfies

P
{
err(ξmax(A;Ω; q)) ≤ ε}> 0

when the second depth parameter q2 exceeds

q2(ε;γ) := 0.70`−1 + log(8ε−1 srk(q1))

4
p
γ

.

In this case, the depth q2 must scale with log(1/ε), so the block Krylov method can achieve a very small
relative error—provided that the spectral gap γ exceeds the desired error tolerance ε. As before, the depth
q2 scales with log(srk(q1)), so the dimensional dependence is weak—or even nonexistent if the spectrum
has polynomial decay and q1 is sufficiently large.

When the depth q2 ≥ q2(ε;γ), the error probability drops off quickly:

q2 = q2(ε;γ)+kγ−1/2 implies P {err(ξmax(A;Ω)) ≥ ε} ≤ e−2k`.

This bound indicates that γ−1/2 is the scale on which the depth q2 needs to increase to reduce the failure
probability by a constant multiple (which depends on the block size).

We discover another phenomenon when we examine the expectation of the error. On average, to
achieve a relative error of ε, it is sufficient that the depth q2 ≥ q ′

2(ε;γ), where

`= 3 : q ′
2(ε;γ) := − log(`−2)+ log(4srk(q1))+ log(1/ε)

4
p
γ

`= 1,2 : q ′
2(ε;γ) := 0.25+ log(4srk(q1))+ log(1/ε2)

4
p
γ

.

In other words, the depth q2 of the block Krylov space needs to be about log(4srk(q1))/(4
p
γ) before we

obtain an average relative error less than one; we can reduce this requirement slightly by increasing the
block size `. But once the depth q2 reaches this level, Theorem 1.7 suggests that the block Krylov method
with `≥ 3 reduces the average error twice as fast as the block Krylov method with `= 1,2.

Remark 1.8 (Prior Work). The simple case `= 1 in Theorem 1.7 has been studied in the paper [KW92].
See Remark 1.6 for a discussion of the improvements we have achieved.
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1.7. Estimating Minimum Eigenvalues. We can also use Krylov subspace methods to obtain an estimate
ξmin(A;B ; q) for the minimum eigenvalue of a symmetric matrix A. Conceptually, the simplest way to
accomplish this task is to apply the Krylov subspace method to the negation −A. The minimum eigenvalue
estimate takes the form

ξmin(A;B ; q) :=−ξmax(−A;B ; q).

Owing to (1.5), this estimate is never smaller than λmin(A).
It is straightforward to adapt Theorems 1.5 to obtain bounds for the minimum eigenvalue estimate

with a random test matrixΩ. In particular, we always have the bound

E

[
ξmin(A;Ω; q)−amin

amax −amin

]
≤

[
2.70`−1 + log(8srk(−A; q1))

2(2q2 +1)

]2

.

In this context, the stable rank takes the form

srk(−A;ν) =
n∑

i=1

(
amax −ai

amax −amin

)2ν

.

See Section 1.5 for discussion of this type of bound.
We can also use Theorem 1.7 obtain results in terms of the spectral gap. The spectral gap γ(−A) is the

magnitude of the difference between the smallest two eigenvalues of A, relative to the spectral range. For
example, when the block size `= 3, we have the bound

`= 3 : E

[
ξmin(A;Ω; q)−amin

amax −amin

]
≤ 4srk(−A; q1) ·e−4q2

p
γ(−A).

See Section 1.6 for discussion of this type of bound.

1.8. Estimating Singular Values. We now arrive at the problem of estimating the spectral norm of a
general matrix C ∈Rm×n using Krylov subspace methods. To do so, we just apply the block Krylov method
to the square CC∗. This yields an estimate ξmax(CC∗;B ; q) for the square of the spectral norm of C .

Theorems 1.5 and 1.7 immediately yield error bounds for the random test matrixΩ. In particular, we
always have the bound

E

[‖C‖2 −ξmax(CC∗;Ω; q)

‖C‖2

]
≤

[
2.70`−1 + log(8srk(CC∗; q1))

2(2q2 +1)

]2

.

We also have a bound in terms of the spectral gap γ(CC∗), which is the difference between the squares of
the largest two distinct singular values. For block size `= 3, we have

E

[‖C‖2 −ξmax(CC∗;Ω)

‖C‖2

]
≤ 4srk(CC∗; q1) ·e−4q2

p
γ(CC∗).

In this case, it is natural to bound the stable rank as

srk(CC∗;ν) ≤
(‖C‖4ν

‖C‖
)4ν

.

We have written ‖·‖ for the spectral norm and ‖·‖p for the Schatten p-norm.

Remark 1.9 (Other Approaches). Identical results hold if we apply the block Krylov method to the other
square C∗C . It is also possible to work with “odd” Krylov subspaces Kq (CC∗;C B ) or Kq (C∗C ;C∗B ), but
the analysis requires some modifications.

Remark 1.10 (Minimum Singular Values). The quantity ζq (CC∗;B ) gives an estimate for the minimum
squared singular value of C . It is straightforward to derive results for the estimate using the principles
outlined above. We omit the details.

1.9. Extensions. The approach in this paper extends easily to the complex setting. The bounds for a
complex Gaussian test matrix are similar in spirit, but they are even better than the bounds in the real
case. For brevity, we omit the details.
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1.10. Summary of Results. Theorems 1.5 and 1.7 provide information about the behavior of block Krylov
methods with a random test matrix for computing the extreme eigenvalues of a symmetric matrix.

First, the results demonstrate that the depth of the Krylov subspace only needs to increase with the
logarithm of the stable rank. For many input matrices, we can achieve satisfactory eigenvalue estimates
even when the depth of the block Krylov space is a constant independent of the dimension.

Second, our results indicate that the block Krylov method may accrue significant performance benefits
when the block size `≥ 3. Indeed, the probability that the method fails to achieve a relative error ε at a
depth q may be orders of magnitude smaller when `≥ 3 as compared with `= 1,2. Moreover, when the
matrix has a spectral gap, the block Krylov method with `≥ 3 appears to reduce the average relative error
twice as fast as when `= 1,2.

On contemporary computer architectures, the cost of implementing the block Krylov method for a
moderate block size `= 3,4 may be similar to the cost when `= 1,2. This observation suggests that block
Krylov methods may be more suitable for estimating extreme eigenvalues and spectral norms than the
simple Krylov method with block size `= 1.

This paper does not implement block Krylov methods or attempt to verify the error bounds. One main
reason is that it takes care to develop algorithms that are both efficient and numerically stable. We leave
this investigation for future research.

2. HISTORY, RELATED WORK, AND CONTRIBUTIONS

Krylov subspace methods are a wide class of algorithms that use matrix–vector products (“Krylov
information”) to compute eigenvalues and eigenvectors and to solve linear systems. These methods are
especially appropriate in situations where we can only interact with a matrix through its action on vectors.
In this treatment, we only discuss Krylov methods for spectral computations. Some of the basic algorithms
in this area are the power method, the inverse power method, subspace iteration, the Lanczos method,
the block Lanczos method, and the band Lanczos method. See the books [Par98, BDD+00, Saa11, GVL13]
for more background and details.

2.1. Simple Krylov Methods. Simple Krylov methods are algorithms based on a Krylov subspace Kq (A;b)
constructed from a single starting vector b. That is, the block size `= 1.

The power method, which dates to the 19th century, is probably the earliest algorithm that relies on
Krylov information to compute eigenvalues and eigenvectors of a symmetric matrix. The power method
is degenerate in the sense that it only keeps the highest-order term in the Krylov subspace.

In the late 1940s, Lanczos [Lan50] developed a sophisticated Krylov subspace method for solving the
symmetric eigenvalue problem. (More precisely, the Lanczos method uses a three-term recurrence to
compute a basis for the Krylov subspace so that the compression of the input matrix to the Krylov subspace
is tridiagonal.) In exact arithmetic, the Lanczos estimate of the maximum eigenvalue of a symmetric
matrix coincides with ξmax(A;b; q) for a fixed vector b. On the other hand, the Lanczos method has
complicated behavior in finite-precision arithmetic.

The first analysis of the Lanczos method with a deterministic starting vector b dates to the work of
Lanczos [Lan50]. Kaniel, Paige, and Saad also made major theoretical contributions in the 1970s and 1980s;
see [Par98, Saa11] for details and references. In the 1980s, Nemirovsky, Yudin, and Chou showed that Krylov
subspace methods are the optimal deterministic algorithms for solving the symmetric eigenvalue problem,
assuming we only have access to the matrix via matrix–vector multiplication; see [NY83, Cho87, Nem91].

2.2. Random Starting Vectors. Practitioners have often suggested using randomized variants of Krylov
subspace methods. That is, the starting vector b is chosen at random. Historically, randomness was just
used to avoid the situation where the starting vector b is orthogonal to the leading invariant subspace of
the matrix.

Later, deeper justifications for random starting vectors appeared. The first substantive theoretical
analysis of a randomized Krylov method appears in Dixon’s paper [Dix83] on the power method with a
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random starting vector. We believe that this is the first paper to recognize that Krylov methods can be
successful without the presence of a spectral gap.

In 1992, Kuczyński & Woźniakowski published an analysis [KW92] of the Lanczos method with a
random starting vector. Their work highlighted the benefits of randomization, and it provided a clear
explanation of the advantages of using full Krylov information instead of the power method. See the
papers [KW94, DCM97, LW98] for further work in this direction.

The recent paper [SAR17] contains lower bounds on the performance of randomized algorithms for the
symmetric eigenvalue problem that use Krylov information.

2.3. Block Krylov Methods. Block Krylov subspace methods use multiple starting vectors to generate
the Krylov subspace, instead of just one. In other words, the algorithms form a Krylov subspace Kq (A;B ),
where B is a matrix. These methods were developed in the late 1960s and 1970s in an effort to resolve
multiple eigenvalues more reliably.

The block analog of the power method is called subspace iteration; see the books [Par98, Saa11] for
discussion.

There are also block versions of the Lanczos method, which were developed by Cullum & Donath [CD74]
and Golub & Underwood [GU77]. (More precisely, the block Lanczos method uses a recurrence to compute
a basis for the block Krylov subspace so that the compression of the input matrix to the block Krylov
subspace is block tridiagonal.) In exact arithmetic, the block Lanczos estimate of the maximum eigenvalue
of a symmetric matrix coincides with ξmax(A;B ; q) for a fixed matrix B .

Most of the early work on block Krylov subspace methods focuses on the case where the block size
` is small, while the depth q of the Krylov space is moderately large. This leads to significant problems
with numerical stability, especially in the case where we use a recurrence to perform orthogonaliza-
tion. Furthermore, most of the existing analysis of block Krylov methods is deterministic; for example,
see [Saa80, LZ15].

2.4. Randomized Block Krylov Methods. Over the last decade, randomized block Krylov subspace meth-
ods have emerged as a powerful tool for spectral computations on large matrices. These algorithms use a
Krylov subspace Kq (A;B ) generated by a random test matrix B .

In contrast with earlier block Krylov algorithms, contemporary methods use a much larger block size `
and a much smaller depth q . Furthermore, the randomness plays a central role in supporting performance
guarantees for the algorithms.

Most of the recent literature concerns the problem of computing a low-rank approximation to a large
matrix, rather than estimating eigenvalues or invariant subspaces. Some of the initial work on randomized
algorithms for matrix approximation appears in [PRTV98, FKV98, DKM06, MRT11]. Randomized subspace
iteration was proposed in [RST09] and further developed in [HMT11]. Randomized block Krylov methods
that use the full block Krylov subspace were proposed in the papers [RST09, HMST11]; see also [DIKMI16].
See [HMT11] for more background and history.

There is some theoretical and empirical evidence [HMST11, MM15] that randomized block Krylov
methods can produce low-rank matrix approximations with higher accuracy and with less computation
than randomized subspace iteration.

2.5. Analysis of Randomized Block Krylov Methods. There is a growing body of literature that develops
theoretical performance guarantees for randomized block Krylov methods. The papers [RST09, HMT11,
WC15, Gu15, MM15] contain theoretical analyses of randomized subspace iteration. The papers [MM15,
WZZ15, DIKMI16] contain theoretical analysis of randomized methods that use the full block Krylov space.
These works all focus on low-rank matrix approximation.

Remark 2.1 (Contemporary Work). After this paper was completed, we learned about a related contem-
porary manuscript [DI18]. We hope to include a discussion in a future version of this work.
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2.6. Contributions. We set out to develop highly refined bounds for the behavior of randomized block
Krylov methods that use the full Krylov subspace. Our aim is to present useful and informative results in
the spirit of Saad [Saa80], Kucziński & Woźniakowski [KW92], and Halko et al. [HMT11]. Our research has
a number of specific benefits over prior work.

• We have shown that randomized block Krylov methods have exceptional performance for matrices
with spectral decay. In fact, we can often obtain accurate results even when the block Krylov
subspace has constant depth. We believe our work provides the first convincing explanation for
the remarkable empirical performance [HMST11, MM15] of these algorithms.

• We have obtained detailed information about the role of the block size `. It is possible to estimate
the largest k eigenvalues (singular values) reliably by choosing the block size ` = k + 2. For
estimating the maximum eigenvalue (singular value), block size `= 3 is sufficient.

• Our work gives the first results on the performance of randomized block Krylov methods for the
symmetric eigenvalue problem. Earlier work only addresses singular value estimates and matrix
approximation.

• Our bounds have explicit and modest constants, which gives the bounds some predictive power.

We hope that these results help clarify the benefits of randomized block Krylov methods. We also hope
that our work encourages researchers to develop new implementations of these algorithms that fully
exploit contemporary computer architectures.

3. THE ERROR IN THE BLOCK KRYLOV SUBSPACE METHOD

In this section, we initiate the proof of Theorems 1.5 and 1.7. Along the way, we establish Proposition 1.4.
First, we show how to replace the block Krylov subspace by a simple Krylov subspace (with block size one).
Afterward, we develop an explicit representation for the error in the eigenvalue estimate derived from
the simple Krylov subspace. Finally, we explain how to construct the simple Krylov subspace so that we
preserve the benefits of computing a block Krylov subspace.

The ideas in this section are drawn from several sources. The strategy of reducing a block Krylov
subspace to a simple Krylov subspace already appears in [Saa80], but we use a different technique that is
adapted from [HMT11]. The kind of analysis we perform for the simple Krylov method is standard; we
have closely followed the presentation in [KW92].

3.1. Simplifications. Suppose that the input matrix A is a multiple of the identity matrix. From the
definitions (1.1), (1.2), and (1.4), it is straightforward to check that the eigenvalue estimate ξmax(A;Ω; q) =
λmax(A) with probability one for each q ≥ 0. Therefore, we may as well assume that A is not a multiple of
the identity.

In view of (1.9), we may also assume that the input matrix is diagonal with weakly decreasing entries:

A = diag(a1, a2, . . . , an) where a1 ≥ a2 ≥ ·· · ≥ an . (3.1)

Since A has at least two distinct eigenvalues, we may normalize the extreme eigenvalues of A:

a1 = 1 and an = 0. (3.2)

The main results are all stated in terms of affine invariant quantities, so we have not lost any generality.
These choices help to streamline the proof.

3.2. Block Krylov Subspaces and Simple Krylov Subspaces. The first key step in the argument is to
reduce the block Krylov subspace to a Krylov subspace with block size one. This idea allows us to avoid
any computations involving matrices. To that end, recall that the block Krylov subspace takes the form

Kq (A;Ω) = range
[
Ω AΩ A2Ω . . . AqΩ

]
.

In particular, for any vector x ∈ range(Ω),

Kq (A; x) = range
[

x Ax A2x . . . Aq x
]⊂ Kq (A;Ω).
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Later, we will make a careful choice of the vector x so that we do not abandon the benefits of computing
the block Krylov subspace.

3.3. Representation of the Error Using Polynomials. The next step in the argument is to exploit the
close relationship between Krylov subspaces and polynomial filtering to obtain an explicit representation
of the error in the eigenvalue estimate. Using (1.3), we may rewrite the last display in the form

Kq (A; x) = span
{
ϕ(A)x :ϕ ∈Pq

}⊂ Kq (A;Ω).

As a consequence of this containment,

ξmax(A;Ω; q) = max
v∈Kq (A;Ω)

v∗Av

v∗v
≥ max

v∈Kq (A;x)

v∗Av

v∗v
= max
ϕ∈Pq

(ϕ(A)x)∗A(ϕ(A)x)

(ϕ(A)x)∗(ϕ(A)x)
.

Owing to the normalization (3.2), the relative error (1.12) in the eigenvalue estimate satisfies

err(ξmax(A;Ω; q)) = 1−ξmax(A;Ω; q) ≤ min
ϕ∈Pq

(ϕ(A)x)∗(I− A)(ϕ(A)x)

(ϕ(A)x)∗(ϕ(A)x)
.

The fraction is invariant under scaling of the polynomial ϕ, so we may normalize ϕ(1) = 1. With the
definition Pq (1) := {ϕ ∈Pq :ϕ(1) = 1}, we arrive at

err(ξmax(A;Ω; q)) ≤ inf
ϕ∈Pq (1)

(ϕ(A)x)∗(I− A)(ϕ(A)x)

(ϕ(A)x)∗(ϕ(A)x)
.

We remark that this inequality becomes an equality in the case where the block size `= 1.
Invoke (3.1) to rewrite this bound in terms of the eigenvalues of A:

err(ξmax(A;Ω; q)) ≤ inf
ϕ∈Pq (1)

∑n
i=1 X 2

i ϕ
2(ai )(1−ai )∑n

i=1 X 2
i ϕ

2(ai )
= inf
ϕ∈Pq (1)

∑
i>1 X 2

i ϕ
2(ai )(1−ai )

X 2
1 +∑

i>1 X 2
i ϕ

2(ai )
. (3.3)

We have introduced the coordinates of the vector x = (X1, . . . , Xn), and we have used normalization (3.2)
to simplify the expression.

Remark 3.1 (Multiplicity). When the maximum eigenvalue has multiplicity greater than one, we can
refine this argument to obtain stronger results.

3.4. When the Matrix has Few Distinct Eigenvalues. Suppose that the distinct eigenvalues of the input
matrix A are µ1 = 1 and µ2, . . . ,µr where r ≤ q +1. Consider the polynomial

ϕ0(s) =
r∏

i=2

s −µi

1−µi
∈Pr−1(1) ⊂Pq (1).

This polynomial annihilates each point in the spectrum, except for µ1. Setting ϕ=ϕ0 in (3.3), we discover
that err(ξmax(A;Ω; q)) = 0 with probability one. This fact appears as Proposition 1.4.

3.5. Choosing the Simple Krylov Space. The next step in the argument is to select a particular vector
x ∈ range(Ω). Letω∗

1 ∈R` denote the first row of the matrixΩ. Set

x = Ωω1

‖ω1‖
∈ range(Ω).

The rows ofΩ are statistically independent standard normal vectors, which are rotationally invariant. It
follows that the entries of x are also independent. Moreover,

X1 ∼ CHI(`) and Xi ∼ NORMAL(0,1) for i > 1. (3.4)

We write CHI(`) for the chi distribution with ` degrees of freedom. This choice of x ensures that X 2
1 is large

relative to the other X 2
i . The argument here is inspired by the analysis in Halko et al. [HMT11, Secs. 9, 10].
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4. PROBABILISTIC BOUNDS FOR THE ERROR

This section contains the proof of the probability bounds that appear in Theorem 1.5 and 1.7. The
argument is based on the bound (3.3) for the error and the distributional properties (3.4) of the random
vector x .

The proof is inspired by the argument in Kuczyński & Woźniakowski [KW92], but our approach is
technically easier. Indeed, they work with a random vector that is uniformly distributed on the Euclidean
unit sphere, which leads to a difficult multivariate integration. In contrast, our random vector x has
independent entries, which means that we only have to compute one-dimensional integrals.

4.1. A Bound for the Probability. Let ε ∈ (0,1) be an error tolerance. Our goal is to control the probability
Pε that the relative error in the eigenvalue estimate (1.4) is at least ε. In other words, we wish to bound

Pε :=P{
err(ξmax(A;Ω; q)) ≥ ε}

In view of the upper bound (3.3) for the relative error, we obtain the estimate

Pε ≤P
{

inf
ϕ∈Pq (1)

∑
i>1 X 2

i ϕ
2(ai )(1−ai )

X 2
1 +∑

i>1 X 2
i ϕ

2(ai )
≥ ε

}
.

Fix a polynomial ϕ ∈Pq (1) to be determined later. Then rearrange the inequality in the event:

Pε ≤P
{∑

i>1 X 2
i ϕ

2(ai )(1−ai ) ≥ εX 2
1 +ε∑

i>1 X 2
i ϕ

2(ai )
}

=P{−εX 2
1 +∑

i>1 X 2
i ϕ

2(ai )(1−ε−ai ) ≥ 0
}

≤P
{
−εX 2

1 +∑
ai<1−ε X 2

i ϕ
2(ai )(1−ε−ai ) ≥ 0

}
=:P

{−εX 2
1 +∑

i∈I ci X 2
i ≥ 0

}
.

(4.1)

To reach the second line, we have dropped the nonpositive terms in the sum. Then we introduced the
compact notation

I := {i : ai < 1−ε} and ci :=ϕ2(ai )(1−ε−ai ) > 0.

To continue the argument, we apply some elementary notions from the theory of concentration of
measure.

4.2. The Laplace Transform Argument. We invoke the Laplace transform method to convert the prob-
ability bound into an expectation bound. Introduce a parameter θ > 0, to be chosen later. Continuing
from (4.1), we write the probability as the expectation of an indicator function:

Pε ≤ E1
{−εX 2

1 +∑
i∈I ci X 2

i ≥ 0
}

≤ Eexp
(−θεX 2

1 +∑
i∈I θci X 2

i

)
.

To reach the second line, we bound the indicator 1{s ≥ 0} above by the function s 7→ eθs . Write the
exponential as a product, and invoke the independence of the family {Xi } to obtain

Pε ≤ E
[

e−θεX 2
1
∏

i∈I eθci X 2
i

]
=

(
Ee−θεX 2

1

)(∏
i∈I Eeθci X 2

i

)
.

The distributional property (3.4) implies that X 2
1 is a chi-squared variable with ` degrees of freedom, while

X 2
i is a chi-squared variable with one degree of freedom. Computing the remaining expectations is a

standard exercise, which results in the bound

Pε ≤ (1+2θε)−`/2 (∏
i∈I (1−2θci )

)−1/2
when θ < (2ci )−1 for each i ∈ I .

We make a coarse estimate to arrive at

Pε ≤ (1+2θε)−`/2 (
1−2θ

∑
i∈I ci

)−1/2
when θ < (

2
∑

i∈I ci
)−1.

The last bound follows from repeated application of the numerical inequality (1− s)(1− t) ≥ 1− (s + t),
which is valid when st ≥ 0.
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Next, we must identify a suitable value for θ. It is possible to minimize the probability bound with
respect to θ, but it is more expedient to select θ−1 = 4

∑
i∈I ci . This choice yields

Pε ≤
p

2

(
1+ ε/2∑

i∈I ci

)−`/2

=
p

2

[
1+ ε/2∑

ai<1−εϕ2(ai )(1−ε−ai )

]−`/2

. (4.2)

It remains to choose a good polynomial ϕ. Constructions and analysis of polynomials appear in Appen-
dix A.2, and we simply present the information that is relevant for each argument.

4.3. Probability Bound without a Spectral Gap. In this section, we establish the probability bound that
appears in Theorem 1.5. Introduce the quantity β := 1− ε. For a partition q = q1 + q2, consider the
polynomial

ϕ1(s) := sq1U2q2

(√
s/β

)
U2q2

(√
1/β

) ∈Pq (1).

According to (A.5) and (A.6), this polynomial satisfies

ϕ2
1(s)(β− s) ≤ 4εs2q1δ2q2+1

(1−δ2q2+1)2 for 0 ≤ s ≤β where δ≤ e−2
p
ε. (4.3)

See Appendix A.2.5 for a more detailed discussion.
Using these facts, we may estimate∑

ai<1−εϕ
2
1(ai )(1−ε−ai ) =∑

ai<βϕ
2
1(ai )(β−ai )

≤ 4ε
(∑

ai<β a2q1

i

)
δ2q2+1(1−δ2q2+1)−2

≤ 4εsrk(q1)δ2q2+1(1−δ2q2+1)−2.

In the last step, we bound the sum in terms of the stable rank (1.11). We rely on the normalization (3.2) to
recognize the stable rank.

Select ϕ=ϕ1 in our probability bound (4.2). Substitute in the last display to arrive at

Pε ≤
p

2

[
1+

(
1−δ2q2+1

)2

8srkδ2q2+1

]−`/2

.

We can develop a lower bound on the bracket as follows.

1+
(
1−δ2q2+1

)2

8srk(q1)δ2q2+1 ≥ 1+ 1−2δ2q2+1

8srk(q1)δ2q2+1 ≥ 1

8srk(q1)δ2q2+1 .

The last inequality follows from the fact that srk(q1) ≥ 1 because A is not a multiple of the identity.
Combining the last two displays, we obtain

Pε ≤
p

2
[
8srk(q1)δ2q2+1]`/2 ≤p

2
[

8srk(q1) ·e−2(2q2+1)
p
ε
]`/2

. (4.4)

The final relation is a consequence of the bound for δ in (4.3). This is the required statement.

4.4. Probability Bound with a Spectral Gap. Now, we establish the probability bound that appears in
Theorem 1.7. Recall that the spectral gap γ is defined in (1.10). This time, set β := 1−γ. For a partition
q = q1 +q2, construct the polynomial

ϕ2(s) := sq1 Tq2 ((2/β)s −1)

Tq2 ((2/β)−1)
∈Pq (1). (4.5)

According to (A.5) and (A.6), this polynomial satisfies

ϕ2
2(s) ≤ 4s2q1 e−4q2

p
γ for 0 ≤ s ≤β. (4.6)

See Appendix A.2.3 for more details.
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Using these facts, we calculate that∑
ai≤1−εϕ

2
2(ai )(1−ε−ai ) ≤∑

ai≤1−γϕ
2
2(ai )

≤ 4
(∑

ai≤1−γ a2q1

i

)
e−4q2

p
γ ≤ 4srk(q1) ·e−4q2

p
γ.

In the first step, we apply 1−ε−ai ≤ 1, and then we observe that 1−γ is the first eigenvalue smaller than
one. Last, we use (3.2) to identify the stable rank (1.11).

Instantiate the probability estimate (4.2) with ϕ=ϕ2, and substitute in the last display to obtain

Pε ≤
p

2

[
1+ ε

8srk(q1) ·e−4q2
p
γ

]−`/2

≤p
2

[
8srk(q1)

ε
·e−4q2

p
γ

]`/2

. (4.7)

We have used the numerical inequality (1+1/s)−1 ≤ s, valid for s > 0. This is the advertised result.

5. A BOUND FOR THE EXPECTED ERROR WITHOUT A SPECTRAL GAP

In this section, we establish the expectation bound that appears in Theorem 1.5. To obtain this result,
we simply integrate the probability bound (4.4). Surprisingly, this approach appears to be more accurate
than a direct computation of the expected error. This insight yields a better expected error bound than
the one obtained in [KW92] by a direct argument.

5.1. Computing the Expectation. We may express the expectation of the relative error as an integral:

E := Eerr(ξmax(A;Ω; q)) =
∫ 1

0
P

{
err(ξmax(A;Ω; q)) ≥ ε} dε=

∫ 1

0
Pεdε.

The limits of the integral follow from the fact that the relative error falls in the interval [0,1]. We split the
integral at a value c > 0, to be determined later. Then make the estimates

E ≤ c +
∫ 1

c
Pεdε≤ c +p

2(8srk(q1))`/2
∫ ∞

c
e−(2q2+1)`

p
εdε.

To obtain the first inequality, we use the trivial bound Pε ≤ 1. The second inequality is a consequence
of (4.4). The remaining integral can be calculated by changing the variable and integrating by parts.
Indeed, ∫ ∞

c
e−p

p
εdε= 2

(p
c

p
+ 1

p2

)
e−p

p
c for p > 0.

Together, the last two displays yield

E ≤ c +2
p

2(8srk(q1))`/2
( p

c

(2q2 +1)`
+ 1

(2q2 +1)2`2

)
e−(2q2+1)`

p
c .

Now, select the (optimal) value

c =
(
`−1 log2+ log(8srk(q1))

2(2q2 +1)

)2

.

Combine the last two displays to reach

E ≤
(
`−1(2+ log2)+ log(8srk(q1))

2(2q2 +1)

)2

Bound the numerical constant by 2.70 to complete the proof.

6. A BOUND FOR THE EXPECTED ERROR WITH A SPECTRAL GAP

In this section, we prove the expectation bounds for the relative error that appear in Theorem 1.7.
In this case, we achieve better results by a direct computation, rather than by integrating the probabil-
ity bound (4.7). These arguments are inspired by the approach in [KW92], but our computations are
technically easier because the random vector x has independent entries.
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6.1. Form of the Expected Error. Fix a polynomialϕ ∈Pq (1). Take the expectation of the error bound (3.3):

Eerr(ξmax(A;Ω; q)) ≤ E
[∑

i>1 X 2
i ϕ

2(ai )(1−ai )

X 2
1 +∑

i>1 X 2
i ϕ

2(ai )

]
. (6.1)

By independence, we may compute the expectation with respect to X1, holding Xi fixed for i > 1. The
computation of this integral depends on the block size `.

6.2. Error Bound for Block Size `≥ 3. We begin with the case `≥ 3, which is technically simplest. Use
the fact that X1 ∼ CHI(`) to compute that

E

[
1

X 2
1 + c

]
= 1

2
ec/2

∫ ∞

1
s−`/2e−cs/2 ds ≤ 1

(`−2)+ c
for `≥ 2 and c ≥ 0.

The first relation depends on a standard identity for the partial gamma function [OLBC10, Sec. 8.6.4]. The
second relation is a classic bound for the exponential integral due to Hopf [Hop34, p. 26]; see [Gau59]
or [AS64, Sec. 5.1.19].

Together, the last two displays imply that

Eerr(ξmax(A;Ω; q)) ≤ E
[ ∑

i>1 X 2
i ϕ

2(ai )(1−ai )

(`−2)+∑
i>1 X 2

i ϕ
2(ai )

]
.

Set the parameter β= 1−γ. By the definition (1.10) of the spectral gap γ, each eigenvalue of A that
exceeds β equals the maximum eigenvalue a1 = 1. Therefore,

Eerr(ξmax(A;Ω)) ≤ E
[∑

ai≤β X 2
i ϕ

2(ai )(1−ai )

(`−2)+∑
i>1 X 2

i ϕ
2(ai )

]

≤ E
[

1

`−2

∑
ai≤β X 2

i ϕ
2(ai )

]
= 1

`−2

∑
ai≤βϕ

2(ai ).

To reach the second inequality, use (3.2) to bound 1−ai ≤ 1, and drop the second term from the denomi-
nator. Last, we compute the expectation using the fact that Xi ∼ NORMAL(0,1) for each i > 1.

Introduce the polynomial ϕ=ϕ2 from (4.5) into the last display. Using the estimate (4.6), we arrive at

Eerr(ξmax(A;Ω)) ≤ 4srk(q1)

`−2
·e−4q2

p
γ.

This is the advertised result for `= 3 in Theorem 1.7.

6.3. Error Bound for Block Size ` = 2. Now, assume that the block size ` = 2. We begin with the
bound (6.1):

Eerr(ξmax(A;Ω)) ≤ E
[∑

i>1 X 2
i ϕ

2(ai )(1−ai )

X 2
1 +∑

i>1 X 2
i ϕ

2(ai )

]

≤ E
[(∑

i>1 X 2
i ϕ

2(ai )
)1/2 (∑

i>1 X 2
i ϕ

2(ai )(1−ai )2
)1/2

X 2
1 +∑

i>1 X 2
i ϕ

2(ai )

]
.

(6.2)

To reach the second line, apply the Cauchy–Schwarz inequality to the sum in the numerator. The reason
for this extra maneuver will become clear in a moment.

Next, we use statistical independence to take the expectation with respect to X1. Since X1 ∼ CHI(2), it
holds that

E

[
1

X 2
1 + c

]
= 1

2
ec/2

∫ ∞

1
s−1e−cs/2 ds ≤ 1

2
log

(
1+ 2

c

)
≤ 1p

c
∧ 1

c
for c > 0.

The first relation is [OLBC10, Sec. 8.6.4]. The second relation is a classical bound for the exponential
integral; see [AS64, Sec. 5.1.20]. The third relation is a numerical inequality.
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With c =∑
i>1 X 2

i ϕ
2(ai ), the last two displays imply that

Eerr(ξmax(A;Ω)) ≤ E
[∑

i>1 X 2
i ϕ

2(ai )(1−ai )2

1∨ (∑
i>1 X 2

i ϕ
2(ai )

) ]1/2

.

The rest of the argument follows the same path as in the case `≥ 3.
As before, set the parameter β= 1−γ. Since each eigenvalue of the input matrix that exceeds β equals

the maximum eigenvalue a1 = 1, we have

Eerr(ξmax(A;Ω)) ≤ E
[∑

ai≤β X 2
i ϕ

2(ai )(1−ai )2
]1/2 ≤

[∑
ai≤βϕ

2(ai )
]1/2

.

This calculation just combines the spectral gap argument for ` = 3 with the bounds we used in the
spectral-gap-free argument for `= 2. Select the polynomial ϕ=ϕ2 from (4.5), and invoke the bound (4.6)
to arrive at

Eerr(ξmax(A;Ω)) ≤
√

4srk(q1) ·e−2q2
p
γ.

This is the desired outcome for block size `= 2 in Theorem 1.7.

6.4. Error Bound for Block Size `= 1. Finally, we outline the changes required to handle the case where
the block size ` = 1. As in the case ` = 2, we start with the bound (6.2). To continue, use the fact that
X1 ∼ CHI(1) to see that

E

[
1

X 2
1 + c

]
= 1

2
p

c
e−c/2

∫ ∞
p

c
e−s2/2 ds ≤

p
π/2p

c
∧ 1

c
.

The first relation is [OLBC10, Sec. 8.6.4], followed by a change of variable. The second relation depends
on two well-known tail bounds for a standard normal random variable. The remaining steps in the
proof are identical with the case `= 2. We omit the details, except to note that the numerical constant
(π/2)1/4 ≤ 1.13. The final statement appears in Theorem 1.7.

APPENDIX A. COMPLEMENTS

This appendix contains some supplementary material. In Appendix A.1, we provide further justification
for requiring that the test matrix has a uniformly random range. In Appendix A.2, we sketch the properties
of Chebyshev polynomials that we use in the body of the paper.

A.1. Rotationally Invariant Distributions. This series of papers studies problems about estimating spec-
tral properties of a matrix from randomized block Krylov information. In particular, we wish to obtain
probabilistic upper bounds on the error in these spectral estimates for any input matrix. This section
contains a general argument that explains why we ought to use a random test matrix with a rotationally
invariant range in these applications.

Proposition A.1 (Uniformly Random Range). Consider any bivariate function f :Rn×n ×Rn×`→R that is
orthogonally invariant:

f (A;U B ) = f (U AU∗;B ) for each orthogonal U ∈Rn×n .

Fix a symmetric n ×n matrixΛ, and consider the orthogonal orbit

A :=A (Λ) := {
UΛU∗ : U ∈Rn×n orthogonal

}
.

Let B ∈ Rn×` be a random matrix. Let V ∈ Rn×n be a uniformly random orthogonal matrix, drawn
independently from B . Then

max
A∈A

EV ,B f (A;V B ) ≤ max
A∈A

EB f (A;B ).



18 J. A. TROPP

Proof. By rotation invariance of f ,

max
A∈A

EV ,B f (A;V B ) = max
A∈A

EV ,B f (V ∗AV ;B )

≤ EV max
A∈A

EB f (V ∗AV ;B )

= max
A∈A

EB f (A;B ).

The inequality is Jensen’s, and the last identity follows from the definition of the class A . �

As a specific application, we study the problem of estimating the maximum eigenvalue of the worst
matrix with eigenvalue spectrum Λ using the block Krylov method. Define the rotationally invariant1

function f (A;B ) = err(ξmax(A;B ; q)). Proposition A.1 states that

max
A∈A

Eerr(ξmax(A;U B ; q)) ≤ max
A∈A

Eerr(ξmax(A;B ; q)).

That is, the symmetrized test matrix U B is better than the test matrix B if we want to minimize the
worst-case expectation of the error; the same kind of bound holds for tail probabilities. We surmise that
the test matrix B should have a uniformly random range. Moreover, because of (1.6), we can select any
distribution with uniformly random range, such as the standard normal matrixΩ.

A.2. Chebyshev Polynomials. The computations in this paper depend on the properties of some poly-
nomials derived from the Chebyshev polynomials. This appendix collects the required results. We
have drawn some of this material from the paper [KW92] by Kuczyński & Woźniakowski. For general
information about Chebyshev polynomials, we refer the reader to [AS64, OLBC10].

A.2.1. Chebyshev Polynomials of the First Kind. We can define the Chebyshev polynomials of the first kind
via the formula

Tp (s) := 1

2

[(
s +

√
s2 −1

)p +
(
s −

√
s2 −1

)p]
for s ∈R and p ∈Z+. (A.1)

Using the binomial theorem, it is easy to check that this expression coincides with a polynomial of degree
p with real coefficients.

We require two properties of the Chebyshev polynomial Tp . First, it satisfies a uniform bound on the
unit interval: ∣∣Tp (s)

∣∣≤ 1 for |s| ≤ 1. (A.2)

This result is an immediate consequence of the representation

Tp (s) = cos
(
p cos−1(s)

)
for |s| ≤ 1.

The latter formula follows from (A.1) after we apply de Moivre’s theorem for complex exponentiation.
Second, the polynomial grows quickly outside of the unit interval:

Tp

(
1+ s

1− s

)
≥ 1

2

(
1+p

s

1−p
s

)p

for 0 ≤ s < 1. (A.3)

This estimate is a direct consequence of the definition (A.1).

1The relative error (1.12) is orthogonally invariant because the eigenvalues of A are rotationally invariant and (1.7) states that the
eigenvalue estimate (1.4) is also rotationally invariant.
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A.2.2. The Attenuation Factor. Let β ∈ [0,1] be a parameter, and define the quantity

δ := δ(β) = 1−√
1−β

1+√
1−β

. (A.4)

This definition is closely connected with the growth properties of the Tp . We can bound the attenuation
factor in two ways:

δ≤ e−2
p

1−β and δ≤β ·2−2
p

1−β. (A.5)

These numerical inequalities can be justified using basic calculus. The first is very accurate for β ≈ 1,
while the second is better across the full range β ∈ [0,1].

A.2.3. First Polynomial Construction. Choose a nonnegative integer partition q = q1 +q2. Consider the
polynomial

ϕβ,q1,q2 (s) := sq1 Tq2 ((2/β)s −1)

Tq2 ((2/β)−1)
for s ∈R.

The polynomial ϕβ,q1,q2 ∈Pq (1) because it has degree q and it takes the value one at s = 1. It holds that

ϕ2
β,q1,q2

(s) ≤ s2q1

T 2
q2

((2/β)−1)
≤ 4s2q1

(
1−√

1−β
1+√

1−β

)2q2

= 4s2q1δ2q2 for 0 ≤ s ≤β. (A.6)

The first inequality follows from (A.2), and the second follows from (A.3). Last, we instate the defini-
tion (A.4).

Remark A.2 (The Monomial). In contrast to [KW92] and other prior work, we use products of Chebyshev
polynomials with low-degree monomials. This seemingly minor change leads to better results, phrased in
terms of the stable rank, rather than the ambient dimension.

A.2.4. Chebyshev Polynomials of the Second Kind. We can define the Chebyshev polynomials of the second
kind via the formula

Up (s) := 1

2
p

s2 −1

[(
s +

√
s2 −1

)p+1 −
(
s −

√
s2 −1

)p+1
]

for s ∈R and p ∈Z+. (A.7)

Using the binomial theorem, it is easy to check that this expression coincides with a polynomial of degree
p with real coefficients. Moreover, when p is an even number, the polynomial Up is an even function.

We require two properties of the Chebyshev polynomial Up . First, it satisfies a weighted uniform bound
on the unit interval: ∣∣∣√1− s2 Up (s)

∣∣∣≤ 1 for |s| ≤ 1. (A.8)

This result is an immediate consequence of the representation

Up (s) = sin
(
(p +1)cos−1(s)

)
p

1− s2
for |s| ≤ 1.

The latter formula follows from (A.7) after we apply de Moivre’s theorem for complex exponentiation.
Second, we can evaluate the polynomial at a specific point:

U 2
2p

(√
1/β

)
= β

(
1−δ2p+1

)2

4(1−β)δ2p+1 where 0 <β≤ 1. (A.9)

We defined δ = δ(β) above in (A.4). This formula is a direct—but unpleasant—consequence of the
definition (A.7).
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A.2.5. Second Polynomial Construction. As before, introduce a parameter β ∈ [0,1]. Choose a nonnegative
integer partition q = q1 +q2. Consider the polynomial

ψβ,q1,q2 (s) := sq1U2q2

(√
s/β

)
U2q2

(√
1/β

) for s ∈R.

Since U2q2 is an even polynomial, this expression defines a polynomial ψβ,q1,q2 ∈ Pq (1). We have the
bound

(β− s)ψ2
β,q1,q2

(s) ≤ s2q1β

U 2
2q2

(
√

1/β)
= 4(1−β)s2q1δ2q2+1(

1−δ2q2+1
)2 for 0 ≤ s ≤β.

The inequality follows from (A.8), and the equality follows from (A.9). Last, we instate the definition (A.4).
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ANALYSIS OF RANDOMIZED BLOCK KRYLOV METHODS
PART II: EIGENVALUE APPROXIMATION

JOEL A. TROPP

ABSTRACT. Randomized block Krylov subspace methods are a powerful class of algorithms for computing
information about the spectrum of a matrix. The purpose of this note is to develop new theoretical bounds
on the performance of randomized block Krylov subspace methods for estimating a number of extreme
eigenvalues. The results demonstrate that, for many matrices, it is possible to obtain accurate approximations
using only a constant number of steps of the randomized block Krylov method.

1. MOTIVATION AND MAIN RESULTS

Randomized block Krylov methods are a powerful tool for spectral computation and matrix approxima-
tion [MRT11, RST09, HMT11, HMST11, MM15, WZZ15, DIKMI16]. Our understanding of the performance
of these methods is less complete than our understanding of simple Krylov subspace methods. The goal
of this paper, and its companions, is to develop detailed bounds that help explain the striking empirical
behavior [HMST11, MM15] of randomized block Krylov methods.

1.1. Project Overview. This paper, Part II of the project, studies how well we can estimate the largest (or
smallest) k eigenvalues of a symmetric matrix using a randomized block Krylov method. It also discusses
the analogous questions for singular values. We develop the first detailed theory for these problems. The
analysis uses ideas from the papers [KW92, HMT11, MM15].

Part I of this project [Tro18a] focuses on the simpler problem of estimating the largest (or smallest)
eigenvalue (or singular value) of a symmetric matrix. We have treated these problems separately because
the proofs are elementary, and we can elucidate the precise role of the block size.

Part III of this project [Tro18b] turns to the problem of computing a rank-k approximation of a general
matrix. This problem has already been investigated [MM15, DIKMI16]. We have been able to obtain more
precise results by taking advantage of ideas from the other parts of this project.

Our expository goal is to make each work self-contained, while limiting repetition of material. In future
work, we may also treat the problem of estimating invariant subspaces of a symmetric matrix associated
with the largest k eigenvalues. This problem is more like low-rank matrix approximation than eigenvalue
estimation, but it requires an independent argument.

1.2. Eigenvalue Approximation via the Block Krylov Method. We begin with a mathematical descrip-
tion of a block Krylov method for approximating the largest eigenvalues of a symmetric matrix. See
Section 1.2.5 for some discussion about the implementation. See Section 1.7 for some discussion of
related computational problems.

1.2.1. Block Krylov Subspaces. Suppose that we are given a symmetric input matrix A ∈ Rn×n . Fix a
test matrix B ∈ Rn×`, where ` is the block size. Select a depth parameter q that controls the amount of
information we collect about the input matrix. Implicitly, the block Krylov method constructs the matrix

Sq := Sq (A;B ) := [
B AB A2B . . . Aq B

] ∈Rn×(q+1)`.

Date: 21 December 2017. Revised 26 February 2018.
2010 Mathematics Subject Classification. Primary: 65F30. Secondary: 68W20, 60B20.
Key words and phrases. Eigenvalue computation; Krylov subspace method; Lanczos method; numerical analysis; randomized

algorithm; singular value computation.
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The range of this matrix is called a block Krylov subspace:

Kq (A;B ) := range(Sq ) ⊂Rn .

The block Krylov space can also be expressed using polynomials:

Kq (A;B ) =⊕
ϕ∈Pq

range
(
ϕ(A)B

)
, (1.1)

where Pq is the space of polynomials with real coefficients and degree at most q . Here, ⊕ denotes the
ordinary subspace sum. The block Krylov subspace has remarkable invariance properties; see [Tro18a,
Sec. 1.2.2].

1.2.2. Eigenvalue Approximation. We can compute spectral information about the input matrix by com-
pressing it to the block Krylov subspace and performing spectral computations on the compressed matrix.
For example, see [Par98, Saa11].

Let k be the number of eigenvalues that we wish to compute, and select a block size ` that is (slightly)
larger than k. Next, construct a matrix Q whose columns form an orthonormal basis for the block Krylov
subspace Kq (A;B ). Introduce the Rayleigh matrix

H := Hq (A;B ;Q) :=Q∗AQ . (1.2)

The ∗ denotes the transpose operation on matrices and vectors. The eigenvalues of H are called Ritz
values:

ξr := ξr (A;B ; q) :=λr (H) for r = 1,2,3, . . . ,dim(Kq ). (1.3)

The map λr (·) returns the r th largest eigenvalue of a symmetric matrix. Even though the matrix Q is not
unique, the Ritz values are a function of the Krylov subspace Kq (A;B ).

The Ritz values tend to approximate the extreme eigenvalues of the input matrix A. Let us define a
measure of the relative error in estimating the r th eigenvalue by means of the corresponding Ritz value:

errr := errr (A;B ; q) := λr (A)−ξr (A;B ; q)

λr (A)−λn(A)
for r = 1,2,3, . . . ,dim(Kq ). (1.4)

It is always the case that errr ∈ [0,1] because of the Cauchy interlacing theorem [Bha97, Cor. III.1.5]. To
handle degenerate cases, we use the conventions 0/0 = 0 and c/0 =+∞ for c > 0. As we will explain, this
error measure is natural because of invariance properties of the block Krylov method.

Remark 1.1 (Invariant Subspaces). Let us emphasize that the eigenvectors of the Rayleigh matrix H are
not always related to the eigenvectors of A. We present some results on the quality of invariant subspace
approximations in the companion paper [Tro18b], but a detailed treatment requires its own argument.

1.2.3. Invariance Properties of the Ritz Values. We can derive some important invariance properties of the
block Krylov method for estimating the r th eigenvalue of the input matrix using a fixed depth q .

• For a fixed input matrix A, the Ritz values only depend on the range of the test matrix B :

ξr (A;B ) = ξr (A;BT ) for all nonsingular T ∈R`×`. (1.5)

• The Ritz values are invariant to the orientation of A and B in the sense that

ξr (A;B ) = ξr (U AU∗;U B ) for all orthogonal U ∈Rn×n . (1.6)

• The Ritz values co-vary with increasing affine maps of the spectrum of the input matrix:

ξr (αA +βI;B ) =αξr (A;B )+βI for all α≥ 0 and β ∈R. (1.7)

In particular, the error (1.4) is invariant to increasing affine transformations of the spectrum of A.

These facts follow in a straightforward way from the invariance properties of the Krylov subspace [Tro18a,
Sec. 1.2.2] and the definitions of the Rayleigh matrix (1.2) and the Ritz values (1.3).
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Algorithm 1 A block Krylov method for computing the largest eigenvalues of a symmetric matrix

Input: Symmetric n ×n matrix A; number k of eigenvalues; block size `; depth q
Output: Vector ξ ∈Rk with estimates of k largest eigenvalues

1 function BLOCKKRYLOVEIGS(A, k, `, q)
2 Y0 ← randn(size(A,2),`) .Draw n ×` standard normal test matrix
3 for t ← 1,2,3, . . . , q do
4 Yt ← AYt−1 . Form blocks of Krylov matrix by repeated multiplication

5 Q ← orth([Y0,Y1, . . . ,Yq ]) . Find orthonormal basis for block Krylov space
6 H ←Q∗(AQ) . Form Rayleigh matrix
7 (∼,ξ) ← eigs(H ,k) . Compute Ritz values via dense linear algebra

1.2.4. A Random Test Matrix. To ensure that the block Krylov method is effective for estimating the largest
eigenvalues of an arbitrary input matrix A, we may draw the test matrix at random. In this work, we always
consider a test matrixΩ ∈ Rn×` drawn from the standard normal distribution. We will assess how well
the Ritz values ξr (A;Ω; q) approximate the eigenvalues of A by studying the distribution of the relative
error (1.4).

The choice of a standard normal test matrix is justified by the invariance properties (1.5) and (1.6) of
the Ritz values. The companion paper [Tro18a, Sec. 1.2.5 and App. A.1] contains some additional support
for this choice.

Remark 1.2 (Other Test Matrices). The detailed results in this paper depend heavily on the standard
normal distribution of the test matrix. Nevertheless, the overall strategy of the proof extends to other
types of random test matrices. See [HMT11, Secs. 4.6 and 7.4] for discussion of other test matrices. For
block Krylov methods, fancy test matrices offer very limited benefits.

1.2.5. Implementation of the Block Krylov Method. This paper focuses on mathematical analysis of block
Krylov methods, but it is worth a moment to comment on possible implementations.

Algorithm 1 provides pseudocode for a simple variant of the block Krylov method for computing the
largest eigenvalues of a matrix. This approach is adapted from [HMST11]. We do not expect this algorithm
to be numerically stable for moderate or large q or when A is poorly conditioned.

Here is a short breakdown of the computational resources required.

• We multiply A ∈Rn×n by an n ×` matrix a total of q times and by an n × (q +1)` matrix once. In
case A is dense, this requires O (q`n2) arithmetic operations, but it may be far more efficient when
A is sparse or structured.

• Orthogonalization of the block Krylov matrix requires O (q2`2n) arithmetic operations.
• Computation of Ritz values uses O (q3`3) arithmetic operations.
• Storage of the block Krylov matrix requires O (q`n) units of storage.

It is possible to achieve some further efficiencies using block Lanczos algorithms [CD74, GU77].

1.3. The Role of the Spectrum. Since the range of the random test matrix Ω is rotationally invariant,
property (1.6) implies that the Ritz values depend only on the eigenvalue spectrum of A. Indeed, for each
index r , we have

ξr (A;Ω; q) ∼ ξr (Λ;Ω; q) where A =UΛU∗ is an eigenvalue factorization.

The symbol ∼ denotes identical distribution. As a consequence, we may as well assume that the input
matrix A is diagonal and weakly decreasing:

A = diag(a1, a2, . . . , an) where amax := a1 ≥ a2 ≥ ·· · ≥ an =: amin. (1.8)

This hypothesis remains in force for the rest of the paper.
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On account of (1.7), the Ritz values co-vary with increasing affine transformations of the spectrum of
the input matrix A. Therefore, we have adopted an error measure (1.4) that shares the same invariances,
and we must control this error using spectral statistics with the same invariances. Recall that we have
fixed the number k of eigenvalues that we seek to approximate, and the remaining eigenvalues compose
the tail of the spectrum.

• For each index 1 ≤ r ≤ k +1, the tail spectral gap is a measure of the relative difference between
the r th eigenvalue and the eigenvalues in the tail:

γr := ar −ak+1

ar −amin
. (1.9)

If ar = amin, we define γr = 0.
• For each index 1 ≤ r ≤ k +1 and a number ν≥ 0, the tail content measures how quickly the tail

eigenvalues decay, relative to the r th eigenvalue:

τ(r ;ν) := ∑
j>k

(
a j −amin

ar −amin

)2ν

. (1.10)

If ar = amin, we define τ(r ;ν) = 0.

The tail content is a critical new feature of our analysis, so it merits a short discussion. A general bound
for the tail content is

τ(r ;ν) ≤
(

ak+1

ar

)2ν

(n −k) ≤ n −k where 1 ≤ r ≤ k +1.

We see that the tail content is never larger than the ambient dimension. Furthermore, it can be quite small
when ak+1 ¿ ar . When the input matrix exhibits spectral decay, the tail content is often far smaller than
this bound suggests. For example, the polynomial decay profile

a j

ar
≤C j−s for j > k implies τ(r ;ν) < 2C for ν≥ 1/s.

In many situations, ν= 1 or ν= 2 is already adequate to ensure that the tail content is constant.

1.4. Matrices with Few Eigenvalues. The block Krylov method is very effective for matrices that have few
distinct eigenvalues.

Proposition 1.3 (Randomized Block Krylov: Matrices with Few Eigenvalues). Let A ∈Rn×n be a symmetric
matrix, and fix the number k of eigenvalues to estimate. Suppose that A has m distinct eigenvalues that are
strictly smaller than λk (A). Choose the depth q ≥ m and the block size `≥ k, and draw a standard normal
matrixΩ ∈Rn×`. Then, with probability one, the relative error (1.4) satisfies

errr (A;Ω; q) = 0 for each r = 1, . . . ,k.

In particular, when m ∈ {0,1}, depth q = 1 is sufficient to estimate the largest k eigenvalues of A exactly.
Moreover, the relative error (1.4) is always finite when m ≥ 2.

This type of result is well-known, but we include a short proof for completeness. See Section 3.4.

1.5. Estimating Eigenvalues without a Spectral Gap. Our first result describes the performance of the
block Krylov method for eigenvalue estimation. This result does not require that any of the leading
eigenvalues of the input matrix are separated from the tail eigenvalues.

Theorem 1.4 (Randomized Block Krylov: Eigenvalue Estimation). Instate the following hypotheses.

• Let A ∈Rn×n be a symmetric matrix.
• Fix the desired number k of eigenvalues, the block size `, and the oversampling p := `−k.
• Draw a standard normal test matrixΩ ∈Rn×`.
• Set the depth parameter q ≥ 2, and choose an integer partition q = q1 +q2 with 0 < q1 < q.

For each index 1 ≤ r ≤ k, we have the following bounds for the Ritz value approximations (1.3) to the
eigenvalues of A.
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(1) For oversampling p ≥ 2, the relative error (1.4) satisfies the probability bound

P

{
max
i≤k

erri (A;Ω; q) ≥ ε
}
≤ 1∧2

[
11max

{
1,kτ(k; q1)

}
ε

·e−4q2
p
ε/2

]p/2

for each ε ∈ (0,1].

(2) For oversampling p ≥ 3, the expected relative error satisfies

Emax
i≤k

erri (A;Ω; q) ≤ 1∧
[

p/(p −2)+0.36 · log
(
11q2

2 max
{
1,kτ(k; q1)

})
q2

]2

.

The operator ∧ returns the minimum, and the tail content τ is defined in (1.10).

The proof of Theorem 1.4 appears in Section 2.
Let us take a few paragraphs to explain the content of this result. For the moment, fix the first depth

parameter q1. Note, however, that the user does not select the partition q = q1 + q2; the block Krylov
algorithm automatically makes an optimal choice.

Suppose that we wish to achieve relative error ε. The probability bound in Theorem 1.4 is vacuous
unless the second depth parameter q2 exceeds

q2(ε) := log
(
11ε−1 max

{
1,kτ(k; q1)

})
4
p
ε

for ε ∈ (0,1].

If we select q2 ≥ q2(ε), we also ensure that the expectation of the maximum relative error in the first k
eigenvalue estimates has order ε. Once q2 ≥ q2(ε), small increases in q2 result in rapid decreases in the
failure probability. The rate of decrease is driven by the oversampling parameter p.

This observation has two important consequences. First, the threshold q2(ε) scales with ε−1/2 log(1/ε),
so we can obtain a modest relative error with a shallow Krylov subspace. In contrast, randomized subspace
iteration requires the total depth q to increase with ε−1 to achieve relative error ε in spectral computations;
for related results, see [KW92, HMT11, MM15].

Second, the threshold q2(ε) scales with log(kτ(k; q1)). As a consequence, we only need q2 to grow with
logk to estimate each of the k largest eigenvalues to fixed relative error. Furthermore, the appearance of
the tail content τ(k; q1) suggests that the block Krylov method is more effective when the input matrix
has a decaying spectrum. The paper [HMT11] identified the benefits of spectral decay for randomized
subspace iteration, but we are not aware of an analogous result for a block Krylov method.

This discussion points toward the role of the first depth parameter q1. When the spectrum of the input
matrix decays, the tail content τ(k; q1) may be constant even when q1 is quite small. For many matrices,
q1 = 1 or q1 = 2 is sufficient.

In the best situation, where the tail has polynomial decay, τ(k; q1) is constant for constant q1. In this
case, the theorem shows that the total depth q of the Krylov subspace should satisfy

Polynomial tail decay: q = q1 +q2(ε) ≈ log(k/ε)p
ε

to estimate each of the largest k eigenvalues of the matrix to relative accuracy ε.
In the worst situation, where the tail does not decay at all, we have τ(k; q1) = n −k for each q1. In this

case, the theorem suggests that the total depth q of the Krylov space should satisfy

No tail decay: q = 1+q2(ε) ≈ log(kn/ε)p
ε

to estimate the largest k eigenvalues to relative accuracy ε.
Prior work [KW92, MM15] on randomized (block) Krylov methods suggests that the depth q needs to

scale with logn to achieve nontrivial results. Our research shows that we can avoid the dimensional de-
pendency when the spectrum of the input matrix exhibits polynomial decay. In case k = 1, the companion
paper [Tro18a, Thm. 1.5] obtains similar bounds without the factor of log(1/ε); it is not clear whether this
logarithmic term can be removed from the results here.
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Here is another interpretation of Theorem 1.4. As we increase the depth q , the block Krylov method
exhibits a burn-in period of length q1+q2(1). During the burn-in period, the algorithm may not make any
progress on estimating the largest k eigenvalues. Afterward, as q2 continues to increase, the relative errors
start to decrease in proportion to q−2

2 . Randomized subspace iteration exhibits the same burn-in period,
after which it decreases the errors in proportion to q−1

2 . See [HMT11, MM15] for related results.
We have focused on the case where the oversampling parameter p ≥ 2 because the companion pa-

per [Tro18a, Thm. 1.5] indicates that the behavior of the block Krylov method is qualitatively worse when
p = 0 or p = 1. Once p ≥ 2, increasing the oversampling does not reduce the expected error substantially,
but it reduces the failure probability very quickly. On modern computer architectures, a modest increase
of the oversampling parameter has a negligible impact on the algorithmic resources required.

Remark 1.5 (Prior Work). The paper [KW92] studies the behavior of the randomized Krylov method (with
block size `= 1) for estimating the largest eigenvalue of a symmetric matrix. There is a long literature,
including [GU77, Saa80, LZ15], that contains deterministic bounds for eigenvalue estimation using block
Krylov methods. Several recent papers [MM15, WZZ15, DIKMI16] analyze low-rank matrix approximation
with randomized block Krylov methods. We are not aware of analogous work on eigenvalue estimation, so
there is no clear point of comparison for Theorem 1.4.

1.6. Estimating Eigenvalues with a Spectral Gap. Our second result describes how well the block Krylov
method can estimate eigenvalues that stand well above the tail eigenvalues. For most matrices, this result
gives significantly stronger bounds than Theorem 1.4.

Theorem 1.6 (Randomized Block Krylov: Eigenvalue Estimation with Tail Spectral Gap). Instate the
following hypotheses.

• Let A ∈Rn×n be a symmetric matrix.
• Fix the desired number k of eigenvalues, the block size `, and the oversampling p := `−k.
• Draw a standard normal test matrixΩ ∈Rn×`.
• Set the depth parameter q ≥ 1, and choose an integer partition q = q1 +q2 with 0 < q1 ≤ q.

For each index 1 ≤ r ≤ k, we have the following bounds for the Ritz value approximations (1.3) to the
eigenvalues of A.

(1) For oversampling p ≥ 2, the relative error (1.4) in the approximation satisfies the probability bound

P

{
max
i≤r

erri (A;Ω; q) ≥ ε
}
≤

[
9rτ(r ; q1)

ε
·e−4q2

p
γr

]p/2

for each ε ∈ (0,1).

(2) For oversampling p ≥ 3, the expected relative error satisfies

Emax
i≤r

erri (A;Ω; q) ≤ p

p −2
·9rτ(r ; q1) ·e−4q2

p
γr .

The tail spectral gap γr is defined in (1.9), and the tail content τ is defined in (1.10).

The proof of Theorem 1.6 appears in Section 2.
Let us comment briefly on this result. For a fixed relative error ε, the probability bound only has content

when the second depth parameter q2 exceeds

q2(ε;γr ) := log
(
9ε−1rτ(r ; q1)

)
4
p
γr

.

This choice also yields expected error with order ε.
The key improvement over Theorem 1.4 is that the expected relative error in the first r eigenvalue

estimates decreases exponentially with q2 if the tail spectral gap γr is bounded away from zero. As such,
we can estimate any large eigenvalue to exorbitant accuracy. The other features of this result are similar to
Theorem 1.4. In particular, we can often make the tail content τ(r ; q1) constant when q1 is constant. It
is interesting that the threshold function max{1, ·} does not appear in this result, so we can sometimes
achieve further benefits by increasing q1 more.
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1.7. Related Problems. We can also apply the block Krylov method to perform some other spectral
computations.

• We can use the block Krylov method to approximate the smallest eigenvalues of the input matrix.
Indeed, ζr (A;B ; q) := −ξr (−A;B ; q) is an estimate for the r th smallest eigenvalue of A. We can
easily adapt Theorems 1.4 and 1.6 to obtain theoretical results about this problem.

• Let C ∈ Rn×m be a rectangular matrix. If we apply the block Krylov method to the input matrix
A = CC∗, then the Ritz value ξr (A;B ; q) is an estimate for σ2

r (C ), the square of the r th largest
singular value of C .

• Combining the last two observations, we can also obtain estimates for minimum singular values
of a rectangular matrix.

See the companion paper [Tro18a, Secs. 1.7, 1.8] for some additional discussion.

1.8. Extensions. There are a number of ways to refine the results in this paper:

• Oversampling. When the oversampling parameter p is proportional to the number k of eigenval-
ues we wish to estimate, it is possible to obtain stronger bounds. This improvement requires a
significant amount of additional argument, plus a strong dose of random matrix theory. We have
also left out the cases p = 0 and p = 1.

• Subspace Iteration. The arguments can be adapted to study randomized subspace iteration. The
literature [HMT11] already detailed results for this type of algorithm, although prior work focuses
on matrix approximation rather than eigenvalue estimation.

• Complex Matrices. The arguments do not depend in any significant way on the fact that the
matrices are real-valued. We can estimate spectral properties of complex-valued input matrices by
using a complex standard normal test matrix. These results are actually stronger than the results
in the real case.

We have chosen not to pursue these extensions because they bring additional complexity without adding
much insight.

1.9. Summary of Contributions. We conclude with an overview of the contributions of this paper and
some comments on related work.

• The main innovation in our work is to identify the role of the tail content in controlling the
performance of randomized block Krylov methods. For matrices with spectral decay, the depth of
the Krylov subspace need not depend on the ambient dimension. We believe this paper is the first
to obtain dimension-independent bounds for these algorithms.

• We have shown that it is possible to estimate the largest (and smallest) k eigenvalues of a symmetric
matrix using a randomized block Krylov method. In contrast, previous work on randomized meth-
ods only addresses the problem of estimating the maximum (or minimum) eigenvalue [KW92] or
the largest k singular values [HMT11, MM15].

• Our results point to the benefits of implementing block Krylov methods with oversampling p ≥ 2.
• We have obtained explicit and reasonable constants, which gives the results predictive power.

Our analysis of randomized block Krylov methods for eigenvalue approximation is inspired by sev-
eral sources. The overall argument is similar in spirit to the proof of [MM15, Thm. 12], although the
details are comprehensively different. In particular, the approach here relies on the research of Halko et
al. [HMT11] about randomized matrix approximation using a Gaussian test matrix. We have also adapted
our treatment [Tro18a] of the argument from Kuczyński & Woźniakowski [KW92]. See the companion
paper [Tro18a, Sec. 2] for a more complete discussion about the history of (randomized) block Krylov
methods. We provide more detailed pointers to the literature throughout the paper.

2. MAIN TECHNICAL RESULTS

This section contains the main technical results, and we explain how they imply Theorems 1.4 and 1.6.
The proofs of the technical results unfold in the remaining sections of the paper.
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2.1. Simplifications. We instate the notation from the introduction. In particular, we maintain the
assumption (1.8) that the input matrix A ∈Rn×n is diagonal, with weakly decreasing entries. Throughout
the discussion,Ω ∈Rn×` remains a standard normal test matrix.

Fix the number k of eigenvalues that we wish to estimate, and set the oversampling p := `−k. Propo-
sition 1.3, which we establish below in Section 3.4, gives conditions under which errr = 0 for all r ≤ k.
Therefore, we assume that we are in the complementary case, where at least two distinct eigenvalues are
smaller than ak .

We will translate the spectrum of the input matrix so that an = 0. In particular, we may assume that A is
positive semidefinite (psd). Theorems 1.4 and 1.6 are both stated in terms of affine invariant quantities, so
there is no loss of generality.

Finally, it is productive to introduce an explicit family of truncations of the input matrix:

Ar = diag(a1, a2, . . . , ar ,0, . . . ,0) for each index 1 ≤ r ≤ n.

Evidently, Ar lists the largest r eigenvalues of A, and it has rank no greater than r .

2.2. Probability Bounds. The main part of the analysis consists of two lemmas that address two com-
plementary challenges. Fix an error parameter ε ∈ (0,1]. The first result will provide information about
how well we estimate the large eigenvalues of A that exceed (1−ε/2)−1ak . The second result provides
information about how well we estimate the small eigenvalues that are less than (1−ε/2)−1ak .

Lemma 2.1 (Large Eigenvalues). Instate the prevailing notation. Let q = q1 +q2 be an integer partition of
the depth parameter q with 1 ≤ q1 ≤ q. For each index 1 ≤ r ≤ k,

P

{
max
i≤r

erri ≥ ε
}
≤ 1∧

[
9rτ(r ; q1)

ε
·e−4q2

p
γr

]p/2

.

The error is defined in (1.4).

The proof of this result appears in Section 4.

Lemma 2.2 (Small Eigenvalues). Instate the prevailing notation. Let r be any index where 1 ≤ r ≤ k and
ar ≤ (1−ε/2)−1ak . Let q = q1 +q2 be an integer partition of the depth parameter q with 0 ≤ q1 ≤ q. Then

P

{
max

r≤i≤k
erri ≥ ε

}
≤ 1∧

[
11max

{
1,kτ(k; q1)

} ·e−2(2q2+1)
p
ε/2

]p/2
.

The error is defined in (1.4).

The proof of this result appears in Section 5.
These two lemmas are analogous with [MM15, Lem. 9, Claims 1 and 2]. Nevertheless, the results and

the proofs here are significantly different. We also introduced many new ideas to sharpen the analysis.
The probability bounds in the main results are immediate consequences of Lemmas 2.1 and 2.2.

Proof of Theorem 1.4(1) and Theorem 1.6(1). The probability bound in Theorem 1.6(1) is simply a restate-
ment of Lemma 2.1.

To establish the probability bound in Theorem 1.4(1), we use Lemma 2.1 to handle estimates of the
eigenvalues ar ≥ (1−ε/2)−1ak . In this case, the tail spectral gap (1.9) satisfies

γr = ar −ak+1

ar
≥ ar −ak

ar
≥ ε/2.

We use Lemma 2.2 to handle estimates of the eigenvalues ar < (1−ε/2)−1ak . Weakening and combining
the two lemmas, we arrive at the uniform bound

P

{
max
i≤k

erri ≥ ε
}
≤ 2

[
11max

{
1,kτ(k; q1)

}
ε

·e−4q2
p
ε/2

]p/2

.

Among other things, we have used the fact that τ(·; q1) is increasing. �
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2.3. Expectation Bounds. Using the probability bounds from the last section, we can obtain bounds for
the expectation of the error.

Lemma 2.3 (Expected Error). Instate the prevailing notation. Assume that the oversampling parameter
p := `−k ≥ 3, and fix an index 1 ≤ r ≤ k. Let q = q1 +q2 be an integer partition with 1 ≤ q1 ≤ q. Then

Emax
i≤r

erri ≤ p

p −2
·9rτ(r ; q1) ·e−4q2

p
γr . (2.1)

Furthermore, if 1 ≤ q2,

Emax
i≤k

erri ≤
[

p/(p −2)+0.36 · log
(
11q2

2 max
{
1,kτ(k; q1)

})
q2

]2

. (2.2)

The relative error is defined in (1.4).

Proof. To establish (2.1), define
c := 9rτ(r ; q1) ·e−4q2

p
γr .

The error (1.4) always falls in the range [0,1], so

Emax
i≤r

erri =
∫ 1

0
P

{
max
i≤r

erri ≥ ε
}

dε≤ c +
∫ ∞

c
(c/ε)p/2 dε= pc

p −2
. (2.3)

The inequality depends on Lemma 2.1. This is the stated result.
To prove (2.2), define the quantities

d := 11max
{
1,kτ(k; q1)

}
and f := 2

[
log

(
q2

2 d
)

4q2

]2

.

First, consider the largest index r ≤ k where f /2 ≤ γr . We can instantiate the expectation bound (2.3) to
obtain

Emax
i≤r

erri ≤ pc

p −2
≤ pd

p −2
·e−4q2

p
f /2 = p

p −2
· 1

q2
2

. (2.4)

The second inequality holds because τ(r ; q1) ≤ τ(k; q1). The last relation follows from the definition of f .
Now, if r < k, then we must have the bound f /2 ≥ γr+1. By the definition (1.9) of γr+1 and the

normalization an = 0, this condition implies that ar+1 ≤ (1− f /2)−1ak . Therefore, Lemma 2.2 implies that

E max
r<i≤k

erri ≤ f +
∫ 1

f

[
de−2(2q2+1)

p
ε/2

]p/2
dε

≤ f +d p/2
∫ ∞

f
e−2pq2

p
ε/2 dε= f +d p/2e−2pq2

p
f /2

[
4
√

f /2

pq2
+ 1

(pq2)2

]
.

We obtain the last identity by changing variables and integrating by parts; the same calculation appears
in [Tro18a, Sec. 5.1]. Introduce the value of f and make some simple bounds to reach

E max
r<i≤k

erri ≤ 1

q2
2

[
1

p2 + log(q2
2 d)

p
+ log2(q2

2 d)

8

]
. (2.5)

In particular, we have used the trivial estimate q p
2 ≥ 1.

Combine (2.4) and (2.5) to arrive at

Emax
i≤k

erri ≤ Emax
i≤r

erri +E max
r<i≤k

erri ≤ 1

q2
2

[
p

p −2
+ 1

p2 + log
(
q2

2 d
)

p
+ log2 (

q2
2 d

)
8

]

≤
[

p/(p −2)+8−1/2 log
(
q2

2 d
)

q2

]2

.

The second inequality follows from a short computation. We make a numerical bound for the remaining
constant, and recall the definition of d to complete the proof of (2.2). �
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Lemma 2.3 implies the expectation bounds in the main results.

Proof of Theorem 1.4(2) and Theorem 1.6(2). The expectation bounds stated in Theorem 1.4(2) and Theo-
rem 1.6(2) are just restatements of Lemma 2.3. �

3. TECHNICAL PREPARATIONS

In this section, we lay the foundations for the proofs of Lemmas 2.1 and 2.2. We maintain the sim-
plifications introduced in Section 2.1. Some of the constructions in this section are adapted from the
paper [MM15], where they appear in a disguised form.

3.1. The Extended Rayleigh matrix. Define the orthogonal projectorΠ ∈Rn×n whose range is the block
Krylov subspace Kq (A;Ω). Consider the extended Rayleigh matrix:

H◦ :=ΠAΠ ∈Rn×n . (3.1)

Whereas the Rayleigh matrix H is a linear operator on the Krylov subspace, the extended Rayleigh matrix
H◦ is the trivial extension of H to all of Rn . Since A is psd, the extended Ritz matrix H◦ is also psd.

In (1.3), we defined the Ritz values ξr to be the eigenvalues of the Rayleigh matrix H , listed in weakly
decreasing order. Since H is psd, the Ritz values coincide with the eigenvalues of the extended Rayleigh
matrix:

ξr =λr (H◦) for r = 1,2,3, . . . ,dim(Kq ). (3.2)

3.2. Graded Spectral Projectors. To perform the analysis, we construct a special family of orthogonal
projectors that align with the largest invariant subspaces of the extended Rayleigh matrix H◦. Fix an
eigenvalue decomposition

H◦ =
∑n

i=1 ξi ui u∗
i where {ui } ⊂Rn is an orthonormal basis of eigenvectors. (3.3)

Now, define the orthogonal projector

Πr :=∑r
i=1 ui u∗

i for each index 0 ≤ r ≤ k. (3.4)

This sequence of projectors has several immediate properties:

(i) The sequence is graded: rank(Πr ) = r for each index 0 ≤ r ≤ k.
(ii) The ranges are nested subspaces of the block Krylov space:

{0} = range(Π0) ⊂ range(Π1) ⊂ ·· · ⊂ range(Πk ) ⊂ range(Π) = Kq (A;Ω).

(iii) The projectors give us alternative expressions for the Ritz values:

ξr =λr (H◦) =λr (Πr H◦Πr ) =λr (Πr AΠr ).

The first two relations depend on (3.2), (3.3), and (3.4). Last, we introduced the definition (3.1) of
H◦ and invoked property (ii) to see thatΠr =ΠrΠ.

3.3. A Variational Principle. Our argument relies on a variational principle that highlights the distin-
guished role of the graded spectral projectors.

Lemma 3.1 (Maximum Principle). For indices with 1 ≤ i ≤ r ≤ k, the orthogonal projectorΠr satisfies

λi (Πr AΠr ) = max
{
λi (P AP ) : rank(P ) ≤ r and range(P ) ⊂ range(Π)

}
.

The maximum extends over all orthogonal projectors P ∈Rn×n that meet the constraints.

Proof. It is immediate that

λi (Πr AΠr ) ≤ max
{
λi (P AP ) : rank(P ) ≤ r and range(P ) ⊂ range(Π)

}
.

Indeed,Πr is a rank-r orthogonal projector whose range is a subset of range(Π) because of property (ii).
On the other hand, suppose that P is a rank-r orthogonal projector with range(P ) ⊂ range(Π). Then

λi (P AP ) =λi (PΠAΠP ) =λi (PH◦P ) ≤λi (H◦) =λi (Πi AΠi ) ≤λi (Πr AΠr ).
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The first identity holds because PΠ = P , and the second is the definition (3.1) of H◦. The third is
property (iii) of the projectorΠr . The inequalities follow from the Cauchy interlacing theorem [Bha97,
Thm. III.1.5], as well as property (ii). �

3.4. Matrices with Few Eigenvalues. We are now prepared to present a short proof of Proposition 1.3.

Proposition 1.3: Proof Sketch. Without loss of generality, assume that ` = k. Let µ1, . . . ,µm be the dis-
tinct eigenvalues of A that are strictly smaller than ak . Construct a polynomial that annihilates the tail
eigenvalues:

ϕ0(s) :=
m∏

i=1

s −µi

ak −µi
∈Pm ⊂Pq .

Note that ϕ0(ai ) ≥ 1 for each i ≤ k.
Let PY be the rank-k orthogonal projector onto the range of the matrix Y :=ϕ0(A)Ω, which is a subset

of the block Krylov subspace Kq (A;Ω) because of (1.1). With probability one over the randomness in the
standard normal matrixΩ, the projector PY = Ik ⊕0n−k . Therefore, PY APY = Ak .

It now follows from the maximum principle, Lemma 3.1, that

ai =λi (Ak ) =λi (PY APY ) ≤λi (Πk AΠk ) =λi (H◦) for 1 ≤ i ≤ k.

The last identity is property (iii). In other words, largest k eigenvalues of the Rayleigh matrix (1.2) coincide
with the largest k eigenvalues of A. �

3.5. Randomized Matrix Approximation. The most important ingredients in the argument are two
results on randomized matrix approximation adapted from the paper [HMT11]. The first result reduces
the problem of randomized matrix approximation to a problem about random matrix theory.

Fact 3.2 (Randomized Matrix Approximation). Let Σ ∈ Rn×n be a diagonal matrix. Draw a standard
normal test matrixΩ ∈Rn×`, and form the matrix Y :=ΣΩ. Construct the orthogonal projector PY ∈Rn×n

onto the range of Y .
To study these objects, we decompose

Σ=
[
Σ1 0
0 Σ2

]
and Ω=

[
Ω1

Ω2

]
where Σ1 ∈Rk×k andΩ1 ∈Rk×`.

Note thatΩ1 andΩ2 are statistically independent, standard normal matrices. Form a matrix

R :=
[

R1 0
0 0

]
∈Rn×n where R1 ∈Rk×k is an arbitrary matrix.

Then, with probability one,
‖(I−PY )ΣR‖F ≤ ‖Σ2Ω2Ω

†
1R1‖F .

This statement follows from an easy modification of the argument in [HMT11, Thm .9.1] and the fact that
a standard normal matrix has full rank with probability one. See also [TYUC17, Prop. 9.2].

The second result encapsulates the random matrix theory required to invoke Fact 3.2.

Fact 3.3 (Random Matrix Bound). Assume that p := `−k ≥ 2. Let M ∈Rm×m be an arbitrary matrix, and
let R1 ∈Rk×k be a rank-r orthogonal projector. LetΩ1 ∈Rk×` andΩ2 ∈Rm×` be statistically independent,
standard normal matrices. For all t > 0,

P
{‖MΩ2Ω

†
1R1‖2

F ≥ t
}≤ [

2.25r ‖M‖2
F

t

]p/2

.

Qualitatively different bounds hold when p ∈ {0,1}.

This statement is closely related to the bound [HMT11, Thm. 10.1], but it contains some refinements that
are valuable for our purposes. See Appendix A for a sketch of the proof of Fact 3.3.
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Remark 3.4 (Spectral Norm). We have chosen to work with the Frobenius norm for ease of argument. Re-
lated results hold for the spectral norm. The spectral norm bounds and their proofs are more complicated,
and they do not offer a significant benefit unless the oversampling p is proportional to the number k of
eigenvalues we wish to estimate.

4. APPROXIMATION OF LARGE EIGENVALUES

In this section, we prove Lemma 2.1, which describes how the randomized block Krylov method
approximates eigenvalues of the input matrix that are far above the tail eigenvalues.

The overall argument is similar in spirit to the proof of [MM15, Lem. 9(1)], but all of the technical details
are different. In particular, our approach depends on ideas from Kuczyński & Woźniakowski [KW92],
Halko et al. [HMT11], and the companion paper [Tro18a].

4.1. Normalization of Spectrum. Lemma 2.1 is invariant under affine transformations of the spectrum
of the input matrix A. For the proof, it is convenient to scale the input matrix so that

ak+1 = 1 and an = 0. (4.1)

This action is possible because of our assumption that the tail of the spectrum contains at least two
distinct values.

4.2. Setup. Fix a parameter ε ∈ (0,1], and choose an index r ≤ k. We will produce a bound for the
probability

P1 :=P
{

max
i≤r

erri ≥ ε
}
=P

{
max
i≤r

ai −ξi

ai
≥ ε

}
≤P

{
max
i≤r

(ai −ξi ) ≥ εar

}
. (4.2)

We have used the definition (1.4) of the error and the fact ai ≥ ar . We will explain how to use methods
from randomized matrix approximation to accomplish this goal.

4.3. Construction of a Projector. Fix a filter polynomial ϕ ∈Pq that we will describe later. Introduce the
matrix Y :=ϕ(A)Ω, whose range is contained in the Krylov subspace Kq (A;Ω) because of (1.1). Let PY be
the orthogonal projector onto the range of Y .

Fix an index i ≤ r . Form the rank-i orthogonal projector Pi onto the range of the matrix PY Ai , which is
also contained in the block Krylov subspace. In particular, note that Pi Ai = PY Ai . We use this construction
to develop a lower bound on the i th Ritz value:

ξi =λi (Πi AΠi ) ≥λi (Pi APi ) ≥λi (Pi Ai Pi ) =λi (PY Ai PY ) =λi
(

A1/2
i PY A1/2

i

)
.

The first relation is property (iii) of the spectral projectorΠr . The inequalities follow from the maximum
principle, Lemma 3.1, and the semidefinite inequality A< Ai . The next relation depends on the construc-
tion of the projector Pi . The last step is the identity λi (CC∗) =λi (C∗C ), valid for every square matrix C .
As usual, (·)1/2 denotes the psd square root of a psd matrix.

To control the i th error, observe that ai =λi (Ai ). Using the last display, we discover that

ai −ξi ≤λi (Ai )−λi
(

A1/2
i PY A1/2

i

)
≤λmax

(
Ai − A1/2

i PY A1/2
i

)=λmax
(

A1/2
i (I−PY )A1/2

i

)
=λmax

(
(I−PY )Ai (I−PY )

)≤λmax
(
(I−PY )Ar (I−PY )

)
.

The second inequality follows from Lidskii’s theorem [Bha97, Eqn. (III.12)]. The last inequality holds
because Ai 4 Ar . Take the maximum over i ≤ r to achieve

maxi≤r (ai −ξi ) ≤λmax
(
(I−PY )Ar (I−PY )

)
. (4.3)

See [MM15, p. 10] for a related argument.
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4.4. Reduction to Randomized Matrix Approximation. Let us manipulate the expression (4.3) so that
we can control it using Fact 3.2, the result on randomized matrix approximation. To do so, we must replace
the matrix Ar with the filtered matrix ϕ2(Ar ).

Before continuing, it is necessary to place some restrictions on the filter polynomial ϕ ∈Pq . We require
that ϕ(0) = 0 and that the function s 7→ s/ϕ2(s) is finite and decreasing for s ≥ 1.

Since r ≤ k, we have the bound ar ≥ 1 because of the normalization (4.1). The monotonicity of
s 7→ s/ϕ2(s) implies that

ai = ai

ϕ2(ai )
·ϕ2(ai ) ≤ ar

ϕ2(ar )
·ϕ2(ai ) for each index 1 ≤ i ≤ r .

Owing to the facts that Ar = diag(a1, . . . , ar ,0, . . . ,0) and ϕ(0) = 0, these inequalities yield

Ar 4
ar

ϕ2(ar )
·ϕ2(Ar ).

Introduce this semidefinite inequality into (4.3) to arrive at

max
i≤r

(ai −ξi ) ≤ ar

ϕ2(ar )
·λmax

(
(I−PY )ϕ2(Ar )(I−PY )

)
= ar

ϕ2(ar )
·∥∥(I−PY )ϕ(Ar )

∥∥2 ≤ ar

ϕ2(ar )
·∥∥(I−PY )ϕ(Ar )

∥∥2
F .

(4.4)

We have replaced the spectral norm with the Frobenius norm to facilitate the rest of the argument. This
expression has the same form as the quantity that is controlled by Fact 3.2. See [HMT11, Thm. 9.2]
and [MM15, p. 11] for related arguments.

4.5. Randomized Matrix Approximation. We proceed to study the probability (4.2) that the error is large:

P1 ≤P
{

max
i≤r

(ai −ξi ) ≥ εar

}
≤P

{∥∥(I−PY )ϕ(Ar )
∥∥2

F ≥ εϕ2(ar )
}

. (4.5)

The second relation is a consequence of (4.4).
We plan to invoke Facts 3.2 and 3.3 to control the right-hand side of (4.5). Introduce the matrix

Σ := ϕ(A), and recall that Y = ΣΩ. The leading k × k principal submatrix Σ1 = diag(ϕ(a1), . . . ,ϕ(ak )),
and the complementary principal submatrix Σ2 = diag(ϕ(ak+1), . . . ,ϕ(an)). Let R1 ∈Rk×k be the rank-r
orthogonal projector onto the first r coordinates, and let R ∈ Rn×n be the trivial extension of R1. In
particular, ΣR =ϕ(Ar ).

With this notation, we can rewrite the bound (4.5) for P1, and Fact 3.2 reveals that

P1 ≤P
{‖(I−PY )ΣR‖2

F ≥ εϕ2(ar )
}≤P{‖Σ2Ω2Ω

†
1R1‖2

F ≥ εϕ2(ar )
}

.

Now, invoke Fact 3.3 to arrive at

P1 ≤
[

2.25r ‖Σ2‖2
F

εϕ2(ar )

]p/2

=
[

2.25r
∑

i>k ϕ
2(ai )

εϕ2(ar )

]p/2

. (4.6)

It remains to identify a filter polynomial ϕ to make this bound effective.

4.6. The Filter Polynomial. We wish to design a filter polynomial that attenuates the eigenvalues of A in
the tail (with index i > k) so that they are summable. At the same time, we want the filter polynomial to
amplify the leading eigenvalues (with index i ≤ r ) so they are much larger than those in the tail.

Let q = q1 +q2 be an integer partition of the depth parameter q with 1 ≤ q1 ≤ q . We consider the filter
polynomial

ϕ1(s) := sq1 Tq2 (2s −1) ∈Pq , (4.7)

where Tq2 is the Chebyshev polynomial of the first kind with degree q2. As required, ϕ1(0) = 0. Since
ϕ1(1) = 1 and ϕ1 is increasing in the interval [1,∞), we discover that s 7→ s/ϕ2

1(s) is decreasing for s ≥ 1.
The minimax property of the Chebyshev polynomial ensures that

ϕ2
1(s) ≤ s2q1 for 0 ≤ s ≤ 1. (4.8)
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Meanwhile, the growth properties of the Chebyshev polynomial yield the bound

1

ϕ2
1(s)

≤ 4s−2q1 e−4q2
p

1−1/s for s ≥ 1. (4.9)

The filter polynomial ϕ1 also arises in the companion paper [Tro18a, App. A.2.3], which contains a short
proof of its properties.

4.7. Installing the Filter Polynomial. We are now prepared to instantiate the error bound (4.6) with the
filter polynomial (4.7). Since ak+1 = 1 ≤ ak , the properties of ϕ1 yield∑

j>k ϕ
2
1(a j )

ϕ2
1(ar )

≤ 4 ·
[∑

j>k (a j /ar )2q1

]
·e−4q2

p
1−1/ar = 4τ(r ; q1) ·e−4q2

p
γr .

We have applied the bound (4.8) to the numerator and the bound (4.9) to the denominator. Then, recalling
the normalization (4.1), we identified the tail spectral gap (1.9) and the tail content function (1.10).
Introducing this bound into (4.6), we arrive at the estimate

P1 =P
{

max
i≤r

erri ≥ ε
}
≤

[
9rτ(r ; q1)

ε
·e−4q2

p
γr

]p/2

.

We have recalled the definition (4.2) of the probability P1. This is the advertised conclusion of Lemma 2.1.

5. APPROXIMATION OF SMALL EIGENVALUES

In this section, we establish Lemma 2.2, which shows that we are unlikely to underestimate eigenvalues
that are just above the tail of the input matrix.

This result is similar in flavor to [MM15, Lem. 9(2)], but the proof of completely new. The argument
uses the ideas from the companion paper [Tro18a, Sec. 4] to reduce the problem to a question about
randomized matrix approximation. Then we invoke the results from [HMT11] to dispatch this problem.
We also rely on a polynomial construction from Kuczyński & Woźniakowski [KW92].

5.1. Normalization of Spectrum. Lemma 2.2 is invariant under affine transformations of the spectrum
of the input matrix A. For this proof, it is convenient to rescale the input matrix so that

ak = 1 and an = 0. (5.1)

As before, we have relied on the assumption that the tail of the spectrum contains at least two distinct
values.

5.2. Setup. Fix a parameter ε ∈ (0,1). Let r ≤ k be the smallest index where ar ≤ (1−ε/2)−1. Suppose that

errk = 1−ξk < ε/2.

The form of the error follows from (1.4) after applying the normalization (5.1). As a consequence, for any
index i in the range r ≤ i ≤ k,

ξi ≥ ξk > 1−ε/2 ≥ (1−ε/2)2ar ≥ (1−ε/2)2ai

The first inequality holds because the Ritz values are decreasing. The next two inequalities hold by the
assumptions of errk and on ar . The last inequality holds because ai ≤ ar . It follows that

erri = ai −ξi

ai
< 1− (1−ε/2)2 < ε.

In summary,
errk < ε/2 implies max

r≤i≤k
erri < ε.

Therefore,

P2 :=P
{

max
r≤i≤k

erri ≥ ε
}
≤P {errk ≥ ε/2} =P {ξk ≥ 1−ε/2} .

We will develop a bound for the latter probability.
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Suppose that V ∈Rn×k is an orthonormal matrix whose range is contained in the block Krylov subspace
Kq (A;Ω). Then P := V V ∗ is a rank-k orthogonal projector with the same range as V . In view of the
maximum principle, Lemma 3.1,

ξk =λk (Πk AΠk ) ≥λk (P AP ) =λmin(V ∗AV ).

The first relation is property (iii). It follows that

P2 ≤P
{
λmin(V ∗AV ) ≥ 1−ε/2

}
. (5.2)

It suffices to produce such a matrix V and to bound the resulting probability.

5.3. Construction of an Orthonormal Matrix. As in the statement of Fact 3.2, we decompose the input
matrix and the test matrix:

A =:

[
Λ1 0
0 Λ2

]
and Ω=:

[
Ω1

Ω2

]
whereΛ1 ∈Rk×k andΩ1 ∈Rk×`.

The matrix A is diagonal with weakly decreasing entries, so the matrixΛ1 lists the k largest eigenvalues
of A. SinceΩ is standard normal,Ω1 andΩ2 are statistically independent standard normal matrices. In
particular,Ω†

1 has full row-rank with probability one.
As before, we fix a filter polynomial ϕ ∈ Pq that we will describe later. For now, we just insist that

ϕ(1) = 1 and that ϕ is increasing in the interval [1,∞). In particular, ϕ has no roots in this interval.
Introduce the matrix Y :=ϕ(A)Ω ∈Rn×`, and note that the range of Y is a subspace of the block Krylov

space Kq (A;Ω) because of (1.1). Now, define the reduced matrix

Z := YΩ†
1 =

[
ϕ(Λ1) 0

0 ϕ(Λ2)

][
I
F

]
∈Rn×k where F :=Ω2Ω

†
1. (5.3)

By construction, the range of Z is a k-dimensional subspace of the block Krylov space. Finally, introduce
a matrix with orthonormal columns:

V := Z (Z ∗Z )−1/2 ∈Rn×k . (5.4)

The range of V coincides with the range of Z . The construction of V is adapted from [HMT11, Sec. 9].
Using this random matrix V , we will produce a bound for the right-hand side of (5.2). The approach

combines ideas from [HMT11, Secs. 9–10] and [Tro18a, Sec. 4].

5.4. Reduction to Randomized Matrix Approximation. We will transform the probability P2 into a quan-
tity that we can control using tools from randomized matrix approximation. Introduce the abbreviation
β := 1−ε/2. To begin, collect everything in (5.2) on the same side of the event:

P2 ≤P
{
λmin

(
V ∗(A −βI)V

)≤ 0
}

.

This relation depends on the fact that V has orthonormal columns. Next, substitute in the expression (5.4)
for V , and invoke Sylvester’s law of inertia [HJ90, Thm. 4.5.8]:

P2 ≤P
{
λmin

(
(Z ∗Z )−1/2Z ∗(A −βI)Z (Z ∗Z )−1/2)≤ 0

}=P{
λmin

(
Z ∗(A −βI)Z

)≤ 0
}

.

Indeed, conjugating by the matrix (Z ∗Z )1/2 cannot change the sign of any eigenvalue.
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We can obtain a lower bound on the minimum eigenvalue by making everything smaller in the semi-
definite order. Since ϕ(1) = 1 and ϕ2 is increasing on the interval [1,∞), we may calculate that

Z ∗(A −βI)Z =
[

I
F

]∗[
ϕ2(Λ1)(Λ1 −βI) 0

0 ϕ2(Λ2)(Λ2 −βI)

][
I
F

]
<

[
I
F

]∗[
(1−β) ·ϕ2(Λ1) 0

0 ϕ2(Λ2)(Λ2 −βI)−

][
I
F

]
<

[
I
F

]∗[
(ε/2) · I 0

0 −ϕ2(Λ2)(βI−Λ2)+

][
I
F

]
= (ε/2) · I−F∗ϕ2(Λ2)(βI−Λ2)+F .

We have used the fact that the entries of Λ1 = diag(a1, . . . , ak ) exceed ak = 1 and that 1−β = ε/2. The
function (·)+ returns the positive-semidefinite part of a symmetric matrix, while (·)− returns the negative-
semidefinite part.

Combine the last two displays to arrive at the bound

P2 ≤P
{
λmin

(
(ε/2) · I−F∗ϕ2(Λ2)(βI−Λ2)+F

)≤ 0
}

=P{
λmax(F∗ϕ2(Λ2)(βI−Λ2)+F ) ≥ ε/2

}
.

This formula has a close analogy with [Tro18a, Eqn. (4.1)]. Let us take some additional steps to bring this
probability into a form that we can control using Fact 3.3.

P2 ≤P
{∥∥ϕ(Λ2)(βI−Λ2)1/2

+ F
∥∥2 ≥ ε/2

}
≤P

{∥∥ϕ(Λ2)(βI−Λ2)1/2
+ F

∥∥2
F ≥ ε/2

}
=P

{∥∥ϕ(Λ2)(βI−Λ2)1/2
+ Ω2Ω

†
1

∥∥2
F ≥ ε/2

} (5.5)

We have replaced the spectral norm by Frobenius norm to avoid extra work. In the last step, we have
recalled the definition (5.3) of the matrix F .

5.5. Randomized Matrix Approximation. We are now prepared to invoke results on randomized matrix
approximation to bound the probability (5.5). Apply Fact 3.3 with M :=ϕ(Λ2)(βI−Λ2)1/2+ and with R1 := Ik .
It emerges that

P2 ≤
[

4.5k

ε
·∥∥ϕ(Λ2)(βI−Λ2)1/2

+
∥∥2

F

]p/2

=
[

4.5k

ε

∑
j>k ϕ

2(a j )(β−a j )+
]p/2

. (5.6)

It remains to select the filter polynomial ϕ.

5.6. The Filter Polynomial. We must choose a polynomial ϕ that attenuates the eigenvalues in the tail
(a j ≤β). Note that the analysis has removed the influence of the eigenvalues in the range [β,1].

Let q = q1 +q2 be an integer partition of the depth parameter q . Consider the filter polynomial

ϕ2(s) := sq1U2q2

(√
s/β

)
U2q2

(√
1/β

) ∈Pq .

In this expression, U2q2 denotes the (even) Chebyshev polynomial of the second kind with degree 2q2.
As required, ϕ(1) = 1 and ϕ2 is increasing on the interval [1,∞). The growth properties of the Chebyshev
polynomial imply that

ϕ2
2(s)(β− s) ≤ 2s2q1 · εδ

(1−δ)2 for 0 ≤ s ≤β where δ := e−2(2q2+1)
p
ε/2. (5.7)

The filter polynomial ϕ2 also appears in the companion paper [Tro18a, App. A.2.5], which contains a short
proof of these properties.
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5.7. Installing the Filter Polynomial. We are ready to instantiate the error bound (5.6) with the filter
polynomial ϕ2. Recall that the diagonal matrixΛ2 lists the eigenvalues of A, beginning with the (k +1)th
largest. The uniform bound (5.7) ensures that∑

j>k ϕ
2
2(a j )(β−a j )+ ≤ 2εδ

(1−δ)2 ·∑ j>k a2q1

j = 2εδ

(1−δ)2 ·τ(k; q1).

The second relation depend on the fact that β≤ 1 = ak . We have used the normalization (5.1) to identify
the tail content (1.10). Introduce the last display into (5.6) to obtain

P2 ≤
[

kτ(k; q1) · 9δ

(1−δ)2

]p/2

.

To complete the proof, we just need to make a simplification.
The last part of the argument hinges on the fact that P2 ≤ 1 because it is a probability. Thus, we can

improve the last bound to

P2 ≤
[

1∧
(
kτ(k; q1) · 9δ

(1−δ)2

)]p/2

.

It is convenient to write ∨ for the maximum. Observe that

1∧
(
kτ(k; q1) · 9δ

(1−δ)2

)
≤ (

1∨kτ(k; q1)
) ·(1∧ 9δ

(1−δ)2

)
≤ (

1∨kτ(k; q1)
) · (1∧11δ).

Both relations are numerical inequalities. Combine the last two displays to arrive at the bound

P2 ≤
[
11 · (1∨kτ(k; q1)) ·δ]p/2 .

Finally, recall the definition (5.7) of δ to arrive at the statement of Lemma 2.2.

APPENDIX A. EINE KLEINE RANDOM MATRIX THEORY

This appendix contains a sketch of the proof of Fact 3.3. The argument requires several additional
ingredients.

Fact A.1 (Moments of a Psd Gaussian Quadratic Form). Let D ∈Rm×m be a psd matrix, and let g ∈Rm be a
standard normal vector. For s ≥ 1, [

E
(
g∗D g

)p]1/s ≤ s
p

2 · [Eg∗D g
]

.

Proof. The case s = 1 is immediate. We will establish the result for each s ≥ 2. To treat the interval s ∈ (1,2),
we apply Hölder’s inequality to interpolate between the bounds for s = 1 and s = 2.

Suppose that s ≥ 2. By rotational invariance, we may as well assume that D = diag(d1, . . . ,dm) with each
di ≥ 0. Calculate that

E := [
E
(
g∗D g

)s]1/s =
[
E
∣∣∑m

i=1 di g 2
i

∣∣s
]1/s ≤∑m

i=1 di +
[
E
∣∣∑m

i=1 di (g 2
i −1)

∣∣s
]1/s

.

The last relation is the triangle inequality. The second term is a (homogeneous) second-order Gaussian
chaos. By hypercontractivity [LT11, Sec. 3.2],

E ≤ trD + (s −1)
[
E
∣∣∑m

i=1 di (g 2
i −1)

∣∣2
]1/2

= trD + (s −1)
[
2
∑m

i=1 d 2
i

]1/2 ≤
(
1+ (s −1)

p
2
)

trD ≤ s
p

2 · (Eg∗D g
)

.

The second inequality follows from the fact that `s norms are monotonically decreasing as s increases.
Finally, we note that Eg∗D g = trD . �

We also need information about the Frobenius norm of the pseudoinverse of a standard normal matrix.
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Fact A.2 (Gaussian Pseudoinverse). Let G ∈Rk×` be a standard normal matrix where p := `−k ≥ 2. Let
R1 ∈Rk×k be a rank-r orthogonal projector. For s := p/2,(

E‖G†R1‖2s
F

)1/s ≤ 3.17r

p +1
.

The latter result follows from a slight modification to the proof of [HMT11, Thm. A.7].

Proof Sketch. By rotational invariance of G†, we may as well assume that R1 is the orthogonal projector
onto the first r coordinates. Each diagonal entry X1, . . . , Xk of the matrix (G†)∗(G†) follows the inverse
chi-square distribution with p +1 degrees of freedom. We can write the quantity of interest as

‖G†R‖2
F = tr

[
R(G†)∗(G†)R

]=∑r
i=1 Xi .

By the triangle inequality for the Ls norm,(
E‖G†R‖2s

F

)1/s ≤∑r
i=1

[
EX s

i

]1/s

Modifying the constants in [HMT11, Lem. A.9] to extend its validity to the range p ≥ 2. we obtain the
bound [

EX s
i

]1/s ≤ 3.17

p +1
.

Combine the last two displays to complete the argument. �

Using the last two results, we quickly establish Fact 3.3.

Proof of Fact 3.3. Abbreviate s := p/2, and calculate that(
E1E2 ‖MΩ2Ω

†
1R1‖2s

F

)1/s ≤ s
p

2 ·
(
E1

[
E2 ‖MΩ2Ω

†
1R1‖2

F

]s
)1/s

= s
p

2 ·
(
E1

[‖M‖2
F · ‖Ω†

1R1‖2
F

]s
)1/s

≤ s
p

2 · ‖M‖2
F ·

3.17r

2s +1
≤ 2.25r ‖M‖2

F .

In this argument, Ei denotes the expectation with respect toΩi for i = 1,2; we have invoked independence
to iterate the expectation. The first inequality is a consequence of Fact A.1, which is apropos because the
squared Frobenius norm is a psd quadratic form in the standard normal matrixΩ2. The second inequality
is Fact A.2. Apply Markov’s inequality to complete the proof of the probability bound. �
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ANALYSIS OF RANDOMIZED BLOCK KRYLOV METHODS
PART III: LOW-RANK APPROXIMATION OF MATRICES

JOEL A. TROPP

ABSTRACT. Randomized block Krylov subspace methods are a powerful class of techniques for computing
information about the spectrum of a matrix. The purpose of this paper is to develop new theoretical bounds
on the performance of randomized block Krylov subspace methods for computing a low-rank approximation
of a matrix. The results demonstrate that, for many matrices, it is possible to obtain accurate approximations
using only a constant number of steps of the randomized block Krylov method.

1. MOTIVATION AND BACKGROUND

Randomized block Krylov methods have emerged as a powerful tool for spectral computation and
matrix approximation [MRT11, RST09, HMT11, HMST11, MM15, WZZ15, DIKMI16]. At present, our
understanding of these methods is less complete than our understanding of simple Krylov subspace
methods. The goal of this paper and its companions is to develop detailed bounds that help explain the
impressive empirical performance [HMST11, MM15] of randomized block Krylov methods.

1.1. Project Overview. This paper, Part III of the project, addresses the problem of computing a rank-k
approximation of a general matrix via a randomized block Krylov subspace method. This problem has
already been investigated in several papers [MM15, WZZ15, DIKMI16], but we have been able to obtain
more precise results in some settings. This paper also treats the problem of positive-semidefinite (psd)
matrix approximation.

Parts I and II of the project [Tro18a, Tro18b] study how well we can estimate the largest (or smallest)
eigenvalues of a symmetric matrix using a randomized block Krylov method. These papers also discuss the
analogous questions for singular values. In future work, we may also address the problem of approximating
invariant subspaces of a symmetric matrix by adapting the analysis of low-rank matrix approximation.

1.2. Block Krylov Subspaces. Let us begin with a brief mathematical review of the properties of block
Krylov subspaces. We describe applications to matrix approximation in Sections 2 and 3, while Section 4
contains a brief discussion about possible implementations.

Fix a symmetric matrix A ∈Rn×n . Choose a test matrix B ∈Rn×`, where ` is called the block size. For a
depth parameter q ≥ 0, construct the matrix

Sq (A;B ) := [
B AB A2B . . . Aq B

] ∈Rn×(q+1)`. (1.1)

The block Krylov subspace is the range of the matrix (1.1):

Kq := Kq (A;B ) := range
(
Sq (A;B )

)⊂Rn . (1.2)

We can also express the block Krylov subspace using polynomials:

Kq (A;B ) =⊕
ϕ∈Pq

range
(
ϕ(A)B

)
. (1.3)
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2010 Mathematics Subject Classification. Primary: 65F30. Secondary: 68W20, 60B20.
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algorithm; singular value computation.
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2 J. A. TROPP

where Pq is the linear space of polynomials with real coefficients and degree at most q . The ⊕ operator is
the ordinary subspace sum. It is often more convenient to work with the orthogonal projector onto the
Krylov subspace:

Π :=Π(A;B ; q) ∈Rn×n with range(Π) = Kq (A;B ). (1.4)

In the notation, we may suppress the matrices A and B or the depth q if they are clear from context.

1.3. Invariance Properties. For any fixed depth q , the block Krylov subspace (1.2) and the orthogonal
projector (1.4) have some important invariance properties:

• The block Krylov subspace only depends on the range of the test matrix:

Π(A;B ) =Π(A;BT ) for any nonsingular T ∈R`×`. (1.5)

• The block Krylov subspace is rotationally covariant, in the sense that

UΠ(A;B )U∗ =Π(U AU∗;U B ) for any orthogonal U ∈Rn×n . (1.6)

The ∗ represents the (conjugate) transpose of a matrix or vector.
• The block Krylov subspace is invariant to affine transformations of the spectrum of A:

Π(αA +βI;B ) =Π(A;B ) for α,β ∈R. (1.7)

These properties are an immediate consequence of the definitions (1.1)–(1.2) and the polynomial repre-
sentation (1.3). See [Tro18a, Sec. 1.2.2] for more discussion and references.

1.4. A Random Test Matrix. Suppose that we wish to make spectral computations on a fixed input matrix
A. Then it is natural to draw the test matrix B at random so that the Krylov subspace always captures
information about the input matrix.

In this work, we will only study block Krylov subspaces built from a test matrixΩ ∈Rn×` that has the
standard normal distribution. That is, each entry of Ω is an independent Gaussian random variable
with mean zero and variance one. A standard normal matrix has a uniformly random range. This choice
is justified by the range invariance (1.5) and rotation covariance (1.6) properties. See the companion
paper [Tro18a, App. A.1] for additional support.

A key advantage of choosing a standard normal matrix is that we can reduce our analysis to the situation
where the input matrix A is diagonal. Indeed,

Π(A;Ω; q) ∼UΠ(Λ;Ω; q)U∗ where A =UΛU∗ is an eigenvalue decomposition.

The symbol ∼ denotes equality of distribution. This relation follows from the rotational invariance of
range(Ω) and the rotational covariance property (1.6).

2. MATRIX APPROXIMATION VIA RANDOMIZED BLOCK KRYLOV METHODS

In this section, we explain how to use randomized block Krylov methods to compute a low-rank
approximation of a matrix. We also present the main theoretical results on the algorithm, as well as a
comparison with related work.

2.1. Low-Rank Matrix Approximation. Before we continue, we need to instate some notation for low-
rank matrix approximation. Let M ∈Rn×m be a general matrix. Fix a singular-value decomposition (SVD)
of the matrix:

M =∑m∧n
i=1 σi (M)ui vi

∗.

Each family {ui } ⊂ Rn and {vi } ⊂ Rm of vectors is orthonormal. The map σi (·) returns the i th largest
singular value of its argument. We also use the standard notation ∧ for the minimum.

For each natural number k ≤ m ∧n, we can form a rank-k approximation1 of M by truncating the SVD:

�M�k :=∑k
i=1σi (M)ui vi

∗. (2.1)

1We always use the adjective “rank-k” to mean “with exact rank at most k.”
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The Eckart–Young–Mirsky theorem [Hig89, Sec. 6] states that this construction yields a best rank-k
approximation of M with respect to each unitarily invariant norm |||·|||:

|||M −�M�k ||| = min
rankB≤k

|||M −B ||| .

Warning 2.1 (Non-uniqueness). SVDs are not uniquely determined, so the low-rank approximation �·�k

is not well-defined. We use this notation to refer to any low-rank approximation that has been prepared
according to the foregoing recipe.

2.2. Matrix Approximation via the Randomized Block Krylov Method. We are now prepared to present
a mathematical description of a (randomized) block Krylov method for approximating a matrix. This
approach to matrix approximation was proposed in the papers [RST09, HMST11]. See Section 4.1 for
some discussion about the implementation.

Consider an input matrix C ∈Rn×m . Suppose that we wish to produce a rank-k approximation of the
input matrix. To do so, we set the block size ` to be (slightly) larger than the approximation rank k. Draw a
standard normal test matrixΩ ∈Rm×`. For a depth parameter q ≥ 0, we form the block Krylov subspace
and the associated orthogonal projector

Kq (CC∗;CΩ) ⊂Rn and Π :=Π(CC∗;CΩ; q) ∈Rn×n . (2.2)

Then we compress the input matrix to the block Krylov subspace, and we compute a low-rank approxima-
tion Ĉk of the compressed matrix:

Ĉk := �ΠC �k . (2.3)

Owing to the definition (2.1) of the low-rank approximation, we can also express

Ĉk =ΠkC (2.4)

for a rank-k orthogonal projectorΠk whose range is contained in the block Krylov subspace Kq .
The first main goal of this paper is to study how well the random matrix Ĉk approximates the input

matrix C . In the next subsection, we discuss how to measure the approximation error and additional
conclusions that we can adduce from a bound on the error.

2.3. The Approximation Error and Its Consequences. We will develop bounds on approximation errors
with respect to the spectral norm, the Frobenius norm, and all Schatten s-norms for s ≥ 2. All of these
norms fit within a larger framework, but it is helpful to keep them in mind as concrete examples.

2.3.1. Q-Norms. A Q-norm is a super-quadratic unitarily invariant norm [Bha97, Sec. IV.2]. More precisely,
a Q-norm |||·||| is a unitarily invariant norm with the property that it can be written in terms of another
unitarily invariant norm |||·|||∧ as follows.

|||A||| = [ |||A∗A|||∧
]1/2. (2.5)

It is also convenient to introduce the symmetric gauge functionsΦ andΦ∧ that generate these two norms:

|||A||| =Φ(σ(A)) and |||A|||∧ = [
Φ∧

(
σ2(A)

)]1/2
. (2.6)

In the expression (2.6), the map σ returns the vector of decreasingly ordered singular values of a matrix,
and σ2 is the componentwise square of this vector.

It may be helpful to consider how these definitions play out for the most common Q-norms. We have
the following dictionary:

|||·||| Φ Φ∧ |||·|||∧
Frobenius norm ‖·‖F `2 norm `1 norm Schatten 1-norm

spectral norm ‖·‖ `∞ norm `∞ norm spectral norm
Schatten s-norm ‖·‖s for s ≥ 2 `s norm `s/2 norm Schatten s/2-norm
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In this work, we require that every unitarily invariant norm is scaled so that |||diag(1,0, . . . ,0)||| = 1. As a
consequence, the spectral norm is the smallest Q-norm, and the Frobenius norm is the largest Q-norm.

2.3.2. The Approximation Error. We will develop probabilistic bounds on the approximation error |||C −Ĉk |||
with respect to a Q-norm. According to Mirsky’s theorem [Mir60, Thm. 2], the approximation error always
satisfies the bound

|||C −�C �k ||| ≤ |||C −Ĉk ||| .
Suppose that we have obtained a reversed inequality

|||C −Ĉk ||| ≤ |||C −�C �k |||+ε=: η. (2.7)

Note that both sides of the bound (2.7) depend on the choice of Q-norm, and approximation error bounds
with respect to different norms are not necessarily comparable. Let us explain what other conclusions we
can extract from the error bound (2.7).

2.3.3. Linear Functionals. Given (2.7), we immediately obtain approximation bounds for all linear func-
tionals:

|〈F , C 〉−〈F , Ĉk〉| ≤ η |||F |||∗ for F ∈Rn×m .

We have written 〈·, ·〉 for the trace inner product, and |||·|||∗ denotes the trace dual of the Q-norm. This is a
simple consequence of duality.

2.3.4. Singular Values. It is always the case that the singular values of the approximation satisfy

0 ≤σi (C )−σi (Ĉk ).

This point follows from the expression (2.4) for the approximation Ĉk and the interlacing theorem for
singular values [Bha97, Prob. III.6.5].

Given (2.7), we can reverse the latter inequality:

Φ
(
σ(C )−σ(Ĉk )

)≤ η,

where Φ is the symmetric gauge function that appears in (2.6). This result is a consequence of the
perturbation theorem for singular values [Bha97, Prob. III.6.13]. Note, however, that we can achieve
better bounds on the individual singular values using the specialized arguments in the companion
paper [Tro18b].

2.3.5. Right Invariant Subspaces. We can also control the quality of right invariant subspace approxima-
tions. Suppose that S and Ŝ are subsets of the positive real line with

min
s∈S,ŝ∈Ŝ

∣∣s2 − ŝ2
∣∣≥ δ.

Let Prt be the orthogonal projector onto the right invariant subspace of C associated with the singular
values listed in S, and let P̂rt be the orthogonal projector onto the right invariant subspace of Ĉk associated
with the singular values listed in Ŝ. Letθ(L,L′) denote the vector of principal angles between two subspaces
L,L′.

We have the following bounds on the principal angles:

Φ∧
(

cosθ
(

range(Prt); range(P̂rt)
))= |||PrtP̂ rt|||∧ ≤ π

2
· η

2

δ
. (2.8)

Indeed, the bound (2.7) implies

η2 ≥ |||(I−Πk )C |||2 = ∣∣∣∣∣∣C∗(I−Πk )C
∣∣∣∣∣∣∧ = ∣∣∣∣∣∣C∗C −Ĉk

∗Ĉk
∣∣∣∣∣∣∧ .

We have used the relations (2.4) and (2.5). The right invariant subspaces of a matrix A∗A match those of
A, so the claim (2.8) follows from the perturbation theorem [Bha97, Thm. VII.3.2].

Remark 2.2 (Frobenius Norm). When |||·||| is the Frobenius norm, we can replace the constant π/2 in (2.8)
with the constant 1, courtesy of [Bha97, Thm. VII.3.4].
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2.3.6. Left Invariant Subspaces. It is also possible to control the quality of left invariant subspace approxi-
mations, but these results are less satisfactory. Suppose that S and Ŝ are subsets of the positive real line
with dist(S, Ŝ) ≥ δ. Let Plt be the orthogonal projector onto the left invariant subspace of C associated
with the singular values listed in S, and let P̂lt be the orthogonal projector onto the left invariant subspace
of Ĉ associated with the singular values listed in Ŝ.

Suppose that the error bound (2.7) holds with respect to the Frobenius norm. Then∥∥cosθ
(

range(Plt); range(P̂lt)
)∥∥
`2

= ‖PltP̂ lt‖F ≤ η

δ
.

This result follows from the perturbation theorem [Bha97, Thm. VII.5.9].
Suppose instead that the error bound (2.7) holds with respect to the spectral norm. Then∥∥cosθ

(
range(Plt); range(P̂lt)

)∥∥
`∞ = ‖PltP̂ lt‖ ≤ const · log(m +n) · η

δ
.

We obtain this result by combining the proof of [Bha97, Thm. VII.5.9] with the discussion [Bha97, p. 299]
and using the bound (2.7). The logarithmic factor seems to be necessary here.

Remark 2.3 (Other Q-Norms). It is also possible to develop results on left invariant subspaces for the
Schatten s-norm with s ≥ 2 in the same fashion. It is not clear, however, whether there is a general theorem
that holds for all Q-norms.

2.4. Spectral Properties of the Approximation. The spectral properties of the input matrix C play a
central role in determining the quality of the approximation.

2.4.1. Spectral Features of the Input Matrix. In exact arithmetic, the performance of the matrix approxi-
mation scheme depends only on singular values of the input matrix. Let us introduce compact notation
for the singular values of C :

ci :=σi (C ) for 1 ≤ i ≤ n and cmax := c1 ≥ c2 ≥ ·· · ≥ cn =: cmin ≥ 0.

Recall that we seek a rank-k approximation, and the singular values c j with j > k compose the tail of the
spectrum.

We will express our results in terms of several functions of the singular-value spectrum.

• For each index 1 ≤ r ≤ k +1, the tail spectral gap measures the relative difference between the r th
squared singular value and the singular values in the tail:

γr := c2
r − c2

k+1

c2
r − c2

min

. (2.9)

If the singular values of C are all identical, then we set γr = 0.
• Given a nonnegative number ν, the modified tail content measures how quickly the tail singular

values decay relative to the kth singular value:

τ′(k;ν) := ∑
j>k

(
c j

ck+1

)2
(

c2
j − c2

min

c2
k − c2

min

)2ν

. (2.10)

If ck = cmin, then we define τ′(k;ν) = 0.

We suppress the dependence of these functions on the matrix C .
The appearance of the (modified) tail content function is an important new feature of our analysis, so it

is worth a moment of attention. First, note the general bounds

τ′(k;ν) ≤
(

ck+1

ck

)4ν

(n −k) ≤ n −k.

In the worst case, the tail content is comparable with the dimension of the matrix C , but this situation is
not typical when the matrix admits a good low-rank approximation. In particular, the tail content tends
to be small when there is a spectral gap: ck+1 ¿ ck . Furthermore, the tail content also tends to be small
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when the spectrum decays at least polynomially. For example, if c j /ck ≤C j−s for j > k, then τ′(k;ν) < 2C
for any exponent ν≥ 1/(2s).

2.5. Approximation of Matrices with Few Singular Values. The block Lanczos method is very effective
for approximating a matrix that has few distinct singular values.

Proposition 2.4 (Matrices with Few Singular Values). Let C ∈ Rn×m be a matrix, and fix the target rank
k. Assume that σk+1(C ) < σk (C ) and that C has at most h distinct singular values smaller than σk (C ).
Choose the depth q ≥ h and the block size `≥ k, and draw a standard normal matrixΩ ∈Rn×`. Then, with
probability one, the error in the approximation Ĉk defined in (2.3) satisfies

|||C −Ĉk ||| = |||C −�C �k ||| .
Here, |||·||| is an arbitrary Q-norm.

See Section 5.8 for a short proof.

2.6. Matrix Approximation without a Spectral Gap. The first main result provides bounds for the quality
of the low-rank approximation when there is a gap in the spectrum of the input matrix after the kth
singular value. We focus on controlling the error with respect to the spectral norm because this is the
most important case, and the proof is more transparent.

Theorem 2.5 (Randomized Block Krylov: Low-Rank Matrix Approximation). Instate the following hypothe-
ses.

• Let C ∈Rn×m be an input matrix.
• Fix the approximation rank k, the block size `, and the oversampling p := `−k.
• Draw a standard normal test matrixΩ ∈Rn×`.
• Set the depth parameter q ≥ 0, and choose a nonnegative integer partition q = q1 +q2.

Then the rank-k approximation Ĉk computed from (2.2) and (2.3) satisfies the following bounds with
respect to the spectral norm ‖·‖.

(1) For oversampling p ≥ 2, the approximation error satisfies the probability bound

P
{‖C −Ĉk‖2 > (1+ t ) ·σ2

k+1(C )
}≤ 1∧

[
18kτ′(k; q1)

t
·e−4q2

p
t/(2+t )

]p/2

for t > 0.

(2) For oversampling p ≥ 3, the expected approximation error satisfies

E‖C −Ĉk‖2 ≤ inf
0<ε<1

[
1

1−ε +
p

p −2
·9kτ′(k; q1) ·e−4q2

p
ε

]
·σ2

k+1(C ).

The modified tail content τ′ is defined in (2.10).

The proof of Theorem 2.5 begins in Section 5 and continues in Section 6.
Let us take a moment to explain the content of Theorem 2.5. First, Mirsky’s theorem [Mir60, Thm. 2]

implies that
‖C −Ĉk‖ ≥σk+1(C ).

In other words, our bounds for the error are on the same scale as the optimal error.
The block Krylov method automatically determines the optimal partition q = q1 + q2 of the depth

parameter, but the analysis distinguishes roles for q1 and q2. The probability bound in Theorem 2.5 is
vacuous unless the second depth parameter q2 exceeds the level

q2(t ) = log
(
18t−1kτ′(k; q1)

)
4
p

t/(2+ t )
.

Once q2 ≥ q2(t), the probability of error decreases exponentially fast, where the rate is driven by the
desired relative error t and the oversampling parameter p.
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The threshold q2(t ) scales with t−1/2 log(1/t ), so we can achieve a moderate relative error 1+ t even if
the Krylov subspace is fairly shallow. In contrast, randomized subspace iteration [HMT11, MM15] requires
the total depth q to increase with t−1 to achieve relative error 1+ t .

The threshold q2(t ) also scales with log(kτ′(k; q1)). As such, the depth parameter q2 only needs to grow
with logk to compute a rank-k approximation with fixed relative error. The presence of the modified
tail content τ′(k; q1) shows that the block Krylov method is more effective when the input matrix has
a decaying spectrum. The paper [HMT11] established the benefits of spectral decay for randomized
subspace iteration, but we are not aware of analogous results for randomized block Krylov methods.

Now, let us discuss the role of the first depth parameter q1. When the spectrum of the input matrix
decays, the tail content τ′(k; q1) may be constant even when q1 = 1 or q1 = 2. In this ideal situation, the
total depth q of the Krylov subspace ought to satisfy

Polynomial tail decay: q = q1 +q2(t ) ≈ log(k/t )p
t

to obtain a rank-k approximation with relative error 1+ t for small t . Previous analyses [MM15] required
the depth q to increase with logn in all cases.

In the worst case, the tail spectrum of the input matrix does not decay at all. In this case, τ′(k; q1) = n−k
for each choice of q1. Theorem 2.5 suggests that the depth q should grow like

No tail decay: q = q2(t ) ≈ log(kn/t )p
t

.

This result is qualitatively similar to previous worst-case analyses [MM15].
We have restricted our attention to the case where the oversampling parameter p ≥ 2. The companion

paper [Tro18a, Thm. 1.5] indicates that the performance of randomized block Krylov methods is qual-
itatively worse when p = 0 or p = 1. If p ≥ 2, the oversampling does not play a role in determining the
depth threshold q2(t ) required to achieve relative error 1+ t . On the other hand, it plays a major role in
controlling the probability that the randomized block Krylov method is successful once the depth is large
enough. In contrast, the main results in [MM15] only cover the case p = 0.

Theorem 2.5 also contains a bound on the expectation of the error. See Section 6.3.2 for some discussion
of what this formula means.

Remark 2.6 (Other Norms). We were also able to establish a relative-error bound, like Theorem 2.5, with
respect to other unitarily invariant norms. We have chosen to omit these results because the argument is
complicated, and the spectral-norm bound is more important. A result for the Frobenius norm appears
in [MM15].

Remark 2.7 (Prior Work). Randomized block Krylov methods for matrix approximation were proposed in
the papers [RST09, HMST11]. The papers [RST09, HMT11, Gu15] contain detailed analyses of randomized
subspace iteration; see also [MM15] for qualitative results. The classic paper [KW92] contains the first
results for the behavior of randomized Krylov subspace methods that do not require a spectral gap.
The paper [MM15] contains the first theoretical results on randomized block Krylov subspace methods.
Further analysis appears in [WZZ15, DIKMI16].

Remark 2.8 (Contemporary Work). After this paper was written, we learned about a related contemporary
manuscript [DI18]. We hope to discuss this paper in a future version of this work.

2.7. Matrix Approximation with a Spectral Gap. The second main result provides bounds for the quality
of the low-rank approximation when there is a gap in the spectrum of the input matrix between the kth
singular value and the (k +1)th singular value.

Theorem 2.9 (Randomized Block Krylov: Low-Rank Matrix Approximation with Spectral Gap). Instate the
following hypotheses.

• Let C ∈Rn×m be an input matrix.
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• Fix the approximation rank k, the block size `, and the oversampling p := `−k.
• Draw a standard normal test matrixΩ ∈Rm×`.
• Set the depth parameter q ≥ 1, and choose a nonnegative integer partition q = q1 +q2.

Then the rank-k approximation Ĉk computed from (2.2) and (2.3) satisfies the following bounds with
respect to any Q-norm |||·|||.

(1) For oversampling p ≥ 2, the approximation error satisfies the probability bound

P
{|||C −Ĉk |||2 > |||C −�C �k |||2 + t ·σ2

k+1(C )
}≤ [

9kτ′(k; q1)

t
·e−4q2

p
γk

]p/2

for t > 0.

(2) For oversampling p ≥ 3, the expected approximation error satisfies

E |||C −Ĉk |||2 ≤ |||C −�C �k |||2 +
[

p

p −2
·9kτ′(k; q1) ·e−4q2

p
γk

]
·σ2

k+1(C ).

The modified tail content τ′ is defined in (2.10), and the tail spectral gap γk is defined in (2.9).

The proof of Theorem 2.9 begins in Section 5 and continues in Section 6.
For a fixed level t of relative error, the probability bound in Theorem 2.9 only has content when the

depth q2 exceeds

q2(t ;γk ) = log
(
9t−1kτ′(k; q1)

)
4
p
γk

.

Once q2 ≥ q2(t ), the probability decays exponentially fast at a rate that depends on the tail spectral gap γk

and the oversampling p.
The critical benefit of Theorem 2.9 over Theorem 2.5 is that the expected relative error in the rank-k

matrix approximation decreases exponentially fast with q2 if the tail spectral gap γk is bounded away from
zero. In this situation, we can compute matrix approximations with incredible accuracy.

Remark 2.10 (Lower-Rank Approximations). Suppose that there is a significant spectral gap between
σr (C ) and σk+1(C ) for some index 1 ≤ r ≤ k. The same analysis shows that a rank-r approximation Ĉr

admits analogous bounds with the spectral gap γr in the exponent instead of γk . See Lemma 6.1.

Remark 2.11 (Prior Work). The classic paper [KW92] contains results on the performance of randomized
Krylov subspace methods for eigenvalue approximation with a spectral gap. Previous results for random-
ized block Krylov methods for matrix approximation with a spectral gap appear in [MM15, DIKMI16].

2.8. Extensions. There are a number of ways to extend the analysis in this paper:

• Oversampling. We can obtain related results for oversampling p = 0 or p = 1, although they are
qualitatively worse.

• Subspace iteration. Related methods can be used to develop bounds for the performance of
matrix approximation via randomized subspace iteration.

• Complex matrices. We can approximate a complex-valued matrix by using a complex Gaussian
test matrix. The proofs are similar, and the resulting bounds turn out to be stronger.

We have omitted these developments to keep the presentation concise.

2.9. Summary of Contributions. We conclude with an description of the contributions of this paper
relative to previous work.

• The primary advance in this work is to recognize that the modified tail content (2.10) plays a role
in the performance of randomized block Krylov methods. We have shown that it is possible to
approximate a matrix with spectral decay using a Krylov subspace with depth that does not depend
on the ambient dimension. We believe that our work is the first to recognize this phenomenon.

• We have identified how the oversampling parameter p affects the performance of the block Krylov
subspace method.
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• This work contains the first detailed probability and expectation bounds for randomized block
Krylov subspace methods for matrix approximation.

• For an input matrix with a spectral gap, we have obtained approximation bounds that hold with
respect to any Q-norm. We have also provided a detailed explanation of the consequences of an
approximation error bound with respect to a Q-norm.

• Finally, we have achieved explicit and reasonable constants, which means that the bounds have
some amount of predictive power.

The previous works on this subject [MM15, WZZ15, DIKMI16] all lack one or more of these elements.
Our analysis of randomized block Krylov methods for matrix approximation is similar in design to

the proof in [MM15], although many details are different. In particular, we have introduced additional
ideas from the paper [HMT11] on randomized matrix approximation. The companion paper [Tro18a,
Sec. 2] contains additional discussion of the history and related work. We include additional references
throughout this paper.

3. APPROXIMATION OF POSITIVE-SEMIDEFINITE MATRICES

The second problem that we consider is how to construct a low-rank positive-semidefinite (psd)
approximation of a psd matrix by combining the randomized block Krylov method with the Nyström
method. We will argue that the analysis of the approach reduces to the analysis from the last section for
approximation of general matrices.

3.1. Psd Matrix Approximation via the Randomized Block Krylov Method. We begin with a mathemat-
ical description of the randomized block Krylov method for approximating a psd matrix. See Section 4 for
a discussion about implementation.

Let A ∈Rn×n be a psd input matrix. Suppose that we wish to compute a rank-k approximation of the
input matrix. To that end, select a block size ` that is (slightly) larger than the approximation rank k.
Form the block Krylov subspace Kq (A;Ω), and construct a matrix Q with orthonormal columns that span
Kq (A;Ω).

We use the Nyström method [WS00, DM05, HMT11, Git13, GM16] to produce an approximation that
preserves the psd property. The Nyström approximation takes the form

Ânys := (AQ)(Q∗AQ)†(AQ)∗. (3.1)

The dagger † denotes the Moore–Penrose pseudoinverse. The rank of this psd approximation is typically
larger than the target rank k, so we pass to a rank-k approximation:

Ânys
k := �Ânys�k . (3.2)

This specific approach to fixed-rank Nyström approximation was proposed independently in the recent
papers [PAB16, WGM17, TYUC17].

3.2. The Approximation Error. We will demonstrate that the analysis of the psd approximation Ânys
k

reduces to the analysis of the general matrix approximation we studied in the last section.

Proposition 3.1 (Error in Psd Matrix Approximation). Let A ∈ Rn×n be a psd matrix, and define the psd
matrix C := A1/2 ∈Rn×n . Then

|||A − Ânys
k ||| = |||C −Ĉk |||2∧ .

The approximation Ânys
k is defined in (3.2), and the approximation Ĉk is defined in (2.3). Here, |||·||| is an

arbitrary Q-norm, and |||·|||∧ is the unitarily invariant norm that appears in (2.5).

The singular values of C = A1/2 are the square roots of the eigenvalues of the psd matrix A. Therefore,
we immediately obtain probabilistic bounds for the error in the approximation Ânys

k from Theorems 2.5
and 2.9. For brevity, we omit detailed statements of these results.

The proof of this result is based on ideas from [Git13, Lem. 6.1] and [TYUC17, Thm. 4.1].
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Algorithm 1 A block Krylov method for matrix approximation

Input: Input matrix C ∈Rn×m ; approximation rank k; block size ` and depth q of Krylov space
Output: Rank-k approximation Ĉk ∈Rm×n of the input matrix

1 function BLOCKKRYLOVAPPROX(C , k, `, q)
2 Ω← randn(size(C ,2),`) . Draw m ×` standard normal test matrix
3 Y0 ←CΩ
4 for t ← 1,2,3, . . . , q do
5 Yt ←C (C∗Yt−1) . Form blocks of Krylov matrix by repeated multiplication

6 Q ← orth([Y0,Y1, . . . ,Yq ]) . Find orthonormal basis for block Krylov space
7 (U ,Σ,V ) ← svds(Q∗C ,k) . Truncated SVD via dense linear algebra
8 Ĉk = (QU )ΣV ∗ . Rank-k approximation in factored form

Proof. Abbreviate Y := A1/2Q , where range(Q) = Kq (A;Ω). Introduce the orthogonal projector P onto
range(Y ). The Nyström approximation (3.1) satisfies

Ânys = A1/2 ·Y (Y ∗Y )†Y ∗ · A1/2 = A1/2P A1/2.

We can choose a rank-k orthogonal projectorΠk to realize the identity �P A1/2�k =Πk A1/2. The construc-
tion (2.1) of a rank-k approximation implies that the rank-k approximation (3.2) satisfies

Ânys
k = �(A1/2P )(P A1/2)�k = (�P A1/2�k

)∗(�P A1/2�k
)= A1/2Πk A1/2.

Therefore, we can represent the approximation error as

|||A − Âk ||| = |||A1/2(I−Πk )A1/2||| = |||(I−Πk )A1/2|||2∧ = |||A1/2 −�P A1/2�k |||2∧ .

We have recalled the statement (2.5) of the properties of a Q-norm. Using the definition (1.1)–(1.2) of the
Krylov subspace,

range(P ) = range(Y ) = A1/2Kq (A;Ω) = Kq (A; A1/2Ω).

Finally, we observe that the rank-k approximation (2.3) of the input matrix C := A1/2 takes the form
Ĉk = �P A1/2�k . �

4. IMPLEMENTATIONS

This paper focuses on mathematical analysis of block Krylov methods, but it is worth a moment to
comment on possible implementations.

4.1. Matrix Approximation. Algorithm 1 provides pseudocode for a simple variant of the block Krylov
method for computing a rank-k approximation of a rectangular matrix C . This approach is extracted
from [HMST11]. Let us emphasize that this algorithm is not suitable when q is moderate or large or when
C is poorly conditioned.

Here is a short breakdown of the computational resources required.

• We multiply C ∈ Rm×n by an n ×` matrix (q +1) times and C∗ by an m ×` matrix a total of q
times. In case C is dense, this requires O (q`(m +n)2) arithmetic operations, but it may be far
more efficient when C is sparse or structured.

• Orthogonalization of the block Krylov matrix requires O (q2`2(m +n)) arithmetic operations.
• The compression to range(Q) requires O (q`mn) arithmetic operations for dense C , but it may be

faster when C is sparse or structured.
• Computation of the truncated SVD uses O (q2`2m) arithmetic operations.
• The block Krylov matrix requires O (q`n) units of storage.

It is possible to achieve some further improvements using block Lanczos algorithms [CD74, GU77].
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Algorithm 2 A block Krylov method for psd matrix approximation

Input: Psd input matrix A ∈Rn×n ; approximation rank k; block size ` and depth q of Krylov space
Output: Rank-k psd approximation Âk ∈Rn×n of the input matrix

1 function BLOCKKRYLOVNYSTROM(A, k, `, q)
2 Y0 ← randn(size(A,1),`) . Draw n ×` standard normal test matrix
3 for t ← 1,2,3, . . . , q do
4 Yt ← AYt−1 . Form blocks of Krylov matrix by repeated multiplication

5 Q ← orth([Y0,Y1, . . . ,Yq ]) . Find orthonormal basis for block Krylov space

6 F ← AQ
7 S ← sqrtm(Q∗F ) . Psd square root
8 (U ,Σ,∼) ← svds(F /S,k) . Truncated SVD via dense linear algebra
9 Âk ← (QU )Σ2(QU )∗ . Rank-k approximation in factored form

4.2. Psd Matrix Approximation. Algorithm 2 provides pseudocode for a simple variant of the block Krylov
method for computing a low-rank approximation of a psd matrix. The Nyström part of the code is based
on the best practices outlined in [LLS+17]; see [TYUC17] for related work. Let us emphasize that this
algorithm is not suitable when q is moderate or large or when A is poorly conditioned.

Here is a short breakdown of the computational resources required.

• We multiply A ∈ Rn×n by an n × ` matrix q times. In case A is dense, this requires O (q`n2)
arithmetic operations, but it is faster for sparse or structured A.

• Orthogonalization of the block Krylov matrix requires O (q2`2n) arithmetic operations.
• The symmetric compression of A requires O (q`n) arithmetic operations when A is dense.
• The matrix square root requires O (q3`3) arithmetic operations.
• The least-squares problem and truncated SVD use O (q2`2n) arithmetic operations.
• Storage of the block Krylov matrix, at a cost of O (q`m) units of storage.

It is possible to make some improvements with block Lanczos algorithms [CD74, GU77].

5. TECHNICAL PREPARATIONS

In this section, we initiate the proof of Theorems 2.5 and 2.9. Along the route, we establish Proposi-
tion 2.4. At a high level, the argument is similar in spirit to the proofs in [MM15], but we have isolated the
key ingredients and sharpened them to obtain more detailed bounds.

5.1. Reduction to Diagonal Form. First, we observe that the distribution of the approximation error
|||C −Ĉk ||| only depends on the singular values of the input matrix C . To that end, introduce the SVD

C =UΣV ∗ where
Σ ∈Rn×m is nonnegative diagonal, and

U ∈Rn×n and V ∈Rm×m are orthogonal.

LetΩ ∈Rm×` be a standard normal test matrix. Using the the rotational covariance (1.6) of the projector
and the rotational invariance of Ω, we find that the orthogonal projector Π ∈ Rn×n onto the Krylov
subspace Kq (CC∗;CΩ) satisfies

Π(CC∗;CΩ)C =Π(U∗ΣΣ∗U ;UΣV ∗Ω)UΣV ∗ ∼UΠ(Σ∗Σ;ΣΩ)ΣV ∗.

Therefore, using the definition (2.3) of the approximation Ĉk and the construction (2.1) of the low-rank
approximation,

Ĉk := �Π(CC∗;CΩ)C �k ∼ �UΠ(ΣΣ∗;ΣΩ)ΣV ∗�k =U �Π(ΣΣ∗;ΣΩ)Σ�kV ∗.
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By unitary invariance of the Q-norm |||·|||, the approximation error satisfies

|||C −Ĉk ||| ∼
∣∣∣∣∣∣Σ−�Π(ΣΣ∗;ΣΩ)Σ�k

∣∣∣∣∣∣ .

It remains to check that we can pass from the rectangular matrix of singular values to a square matrix.
Since n ≤ m, the diagonal matrix Σ ∈Rn×m takes the form

Σ= [
Σ0 0

]
where Σ0 ∈Rn×n .

LetΩ′ ∈Rn×` be a standard normal matrix. It is immediate that ΣΩ∼Σ0Ω
′. It follows that

|||C −Ĉk ||| ∼
∣∣∣∣∣∣Σ−�Π(ΣΣ∗;ΣΩ)Σ�k

∣∣∣∣∣∣= ∣∣∣∣∣∣Σ0 −�Π(Σ2
0;Σ0Ω

′)Σ0�k
∣∣∣∣∣∣ .

We see that it is sufficient to reduce our attention from a general matrix C to the square matrixΣ0 ∈Rn×n of
singular values. Furthermore, we can ensure that the entries of C are nonnegative and weakly decreasing.
Similar arguments apply when n ≥ m.

5.2. The Input Matrix. The discussion in Section 5.1 allows us to assume that the input matrix C takes
the form

C = diag(c1, . . . ,cn) ∈Rn×n where c1 ≥ c2 ≥ ·· · ≥ cn ≥ 0.

It is also productive to introduce an explicit family of low-rank approximations of the input matrix:

Cr := diag(c1,c2, . . . ,cr ,0, . . . ,0) for each index 1 ≤ r ≤ n.

Note that Cr is a valid choice for the rank-r approximation �C �r .

5.3. The Approximation. The test matrixΩ ∈Rn×` is drawn from the standard normal distribution. We
will work with the orthogonal projector

Π :=Π(C 2;CΩ; q) ∈Rn×n with range(Π) = Kq (C 2;CΩ).

Define the one-sided compression of C to the block Krylov subspace:

F :=ΠC . (5.1)

Recall that the desired rank-k approximation (2.3) of the input matrix takes the form Ĉk := �F �k .

5.4. Normalization. The Krylov subspace Kq (C 2;CΩ) is invariant to the scaling of C because of (1.5)
and (1.7). Therefore, the approximation Ĉk defined in (2.3) is a homogeneous function of C . The approxi-
mation error |||C −Ĉk ||| is also homogeneous in the input matrix. Furthermore, the spectral features γr

and τ′(k;ν) that appear in the main results are scale invariant. As a consequence, we may rescale the
input matrix so that

ck+1 = 1.

We maintain this assumption to simplify the remainder of the argument.

5.5. Graded Spectral Projectors. To perform the analysis, we introduce a special family of orthogonal
projectors that realize rank-r approximations of the one-sided compression (5.1). Fix an SVD

F =∑n
i=1 ξi ui vi

∗

Now, define the orthogonal projectors

Πr :=∑r
i=1 ui ui

∗ for each index 0 ≤ r ≤ k.

This sequence of projectors has several immediate properties:

(i) The sequence is graded: rank(Πr ) = r for each index 0 ≤ r ≤ k.
(ii) The ranges are nested subspaces of the block Krylov space:

{0} = range(Π0) ⊂ range(Π1) ⊂ ·· · ⊂ range(Πk ) ⊂ range(Π) = Kq (C 2;CΩ).

(iii) The projectors realize truncated SVDs of the compression:

�F �r =Πr C for each index 0 ≤ r ≤ k.
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We can—and we will—require that Ĉk =ΠkC . This represents no loss of generality because every rank-k
approximation �F �k derives from some truncated SVD.

5.6. A Variational Principle. The graded spectral projectors admit a variational principle that is a direct
consequence of the Eckart–Young Theorem. This result highlights the distinguished role that the spectral
projectors play in the argument.

Lemma 5.1 (Maximum Principle). For each index 0 ≤ r ≤ k, the orthogonal projectorΠr satisfies

‖Πr C‖2
F = max

{‖PC‖2
F : rank(P ) ≤ r and range(P ) ⊂ range(Π)

}
.

The maximum extends over all orthogonal projectors P ∈Rn×n that meet the constraints.

Proof. On the one hand, it is evident that

‖Πr C‖2
F ≤ max

{‖PC‖2
F : rank(P ) ≤ r and range(P ) ⊂ range(Π)

}
.

Indeed, Πr is a rank-r orthogonal projector whose range is contained in range(Π); see properties (i)
and (ii).

On the other hand, for any orthogonal projector P that satisfies the constraints, we have PC = PΠC =
P F . The Eckart–Young Theorem [Hig89, Sec. 6] implies that

‖PC‖2
F = ‖P F‖2

F ≤ ‖�F �r ‖2
F = ‖Πr C‖2

F .

The last relation follows from property (iii) of the orthogonal projectorΠr . �

5.7. Reversed Mirsky Inequalities. In this section, we develop a converse inequality to the Mirsky in-
equality on low-rank matrix approximation that allows us to extend our results to a wide family of unitarily
invariant norms.

Proposition 5.2 (Reversed Mirsky). Let M and E be conformal matrices, and assume rank(E ) ≤ r . Suppose
that

‖M −E‖2
F ≤ ‖M −�M�r ‖2

F +η.

Then, for every Q-norm |||·|||,
|||M −E |||2 ≤ |||M −�M�r |||2 +η.

Results of this type were introduced by Gu [Gu15, Thm. 3.4]; see also [TYUC17, Prop. A.8]. The earlier
work only yields a conclusion for the spectral norm.

Proof. We will establish the weak majorization

σ2(M −E ) ≺w σ2(M −�M�r )+ηe1. (5.2)

The vector e1 has a one in the first coordinate and zeros elsewhere;σ is defined in Section 2.3.1. This weak
majorization implies a result that is slightly stronger than the statement of the proposition. For example,
see [Bha97, Exer. IV.2.10].

Weyl’s inequalities [Bha97, Thm. III.2.1] imply that

σ2
i+r (M) ≤ [

σi (M −E )+σr+1(E )
]2 =σ2

i (M −E ) for each index i ≥ 1.

We have used the fact that E has rank r . For each index j ≥ 1, we may calculate that

‖M −B‖2
F =∑ j

i=1σ
2
i (M −E )+∑

i> j σ
2
i (M −E )

≥∑ j
i=1σ

2
i (M −E )+∑

i> j σ
2
i+r (M)

=∑ j
i=1σ

2
i (M −E )+∑

i> j σ
2
i (M −�M�r )

=∑ j
i=1σ

2
i (M −E )−∑ j

i=1σ
2
i (M −�M�r )+‖M −�M�r ‖2

F .
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Rearrange this inequality and invoke the hypothesis to obtain∑ j
i=1σ

2
i (M −E ) ≤∑ j

i=1σ
2
i (M −�M�r )+ [‖M −E‖2

F −‖M −�M�r ‖2
F

]
≤∑ j

i=1σ
2
i (M −�M�r )+η.

This family of inequalities is equivalent with the weak majorization (5.2). �

Remark 5.3 (Reversed Mirsky II). The same proof strategy yields a related result that is worth documenting.
Suppose that

‖M −E‖S1 ≤ ‖M −�M�r ‖S1
+η where rank(E ) ≤ r .

Then, for every unitarily invariant norm |||·|||,
|||M −E ||| ≤ |||M −�M�r |||+η.

We have written ‖·‖S1 for the Schatten 1-norm.

5.8. Matrices with Few Eigenvalues. We are now prepared to present a short proof of Proposition 2.4.

Proposition 2.4: Proof Sketch. Without loss of generality, assume that `= k. The hypotheses require that
ck+1 < ck , and we write µ1, . . . ,µh for the distinct singular values of C that are strictly smaller than ck .
Construct a polynomial that annihilates the tail singular values:

ϕ0(s) :=
h∏

i=1

s −µ2
i

c2
k −µ2

i

∈Ph ⊂Pq .

Note that ϕ0(s) ≥ 1 for each s ≥ ck .
Let PY be the rank-k orthogonal projector onto the range of Y :=ϕ0(C 2)CΩ, which is contained within

the block Krylov subspace Kq (C 2;CΩ) because of (1.3). With probability one over the randomness in the
standard normal matrixΩ, the projector satisfies PY = Ik ⊕0n−k . Therefore, PY C =Ck .

As a consequence, we may calculate that

‖C −Ĉk‖2
F = ‖C −ΠkC‖2

F = ‖C‖2
F −‖ΠkC‖2

F ≤ ‖C‖2
F −‖PY C‖2

F = ‖C −PY C‖2
F = ‖C −Ck‖2

F .

We have used property (iii), the Pythagorean theorem, and the maximum principle, Lemma 5.1. The result
follows from the reversed Mirsky inequality, Proposition 5.2. �

5.9. Randomized Matrix Approximation. The most important ingredient in the argument is a result on
randomized matrix approximation adapted from the paper [HMT11].

Fact 5.4 (Randomized Matrix Approximation). Let M ∈ Rn×n be a diagonal matrix. Draw a standard
normal test matrixΩ ∈Rn×`, and construct the orthogonal projector PY ∈Rn×n onto the range of the matrix
Y ∈ MΩ. Decompose

M =
[

M1 0
0 M2

]
and Ω=

[
Ω1

Ω2

]
where M1 ∈Rk×k andΩ1 ∈Rk×`.

Let R ∈ Rn×n be the orthogonal projector onto the first r coordinates, where r ≤ k. Writing p := `−k, we
have

P
{‖(I−PY )MR‖F > t

}≤ [
2.25k ‖M2‖2

F

t

]p/2

.

Qualitatively different bounds hold when p = 0 or p = 1.

This statement is extracted from the companion paper [Tro18b, Sec. 3.5], which explains how to derive
the result from prior work.

6. PROOF OF MAIN RESULTS

This section contains the main technical results, and we explain how they imply Theorems 2.5 and 2.9.
The proofs of the technical results unfold in the remaining sections of the paper.
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6.1. Matrix Approximation Lemma. The main part of the analysis is encapsulated in a lemma on the
quality of a specific low-rank matrix approximation. This is not necessarily the same approximation that
appears in the main results!

Lemma 6.1 (Approximation). Instate the prevailing notation. Fix an index r ≤ k. Let q = q1 +q2 be an
integer partition with 0 ≤ q1 ≤ q. For each t > 0,

P
{|||C −Πr C |||2 > |||C −Cr |||2 + t

}≤ [
9kτ′(k; q1)

t
·e−4q2

p
γr

]p/2

.

The norm |||·||| is an arbitrary Q-norm.

The proof of Lemma 6.1 appears in Section 7.
We can establish Theorems 2.5 and 2.9 as an immediate consequence of Lemma 6.1. As noted, the

overall strategy is similar to the arguments in [MM15, Thm. 10].

6.2. Proof of Theorem 2.9. Suppose that the there is a gap between the kth and (k +1)th singular values
of the input matrix C . This assumption manifests in the property that γk > 0. We can invoke Lemma 6.1
with r = k to see that

P
{|||C −Ĉk |||2 > |||C −Ck |||2 + t

}≤ [
9kτ′(k; q1)

t
·e−4q2

p
γk

]p/2

.

Indeed, the approximation Ĉk =ΠkC . We immediately obtain an expectation bound by integration:

E |||C −Ĉk |||2 ≤ |||C −Ck |||2 +
p

p −2
·9kτ′(k; q1) ·e−4q2

p
γk .

See the companion paper [Tro18b, Sec. 2.3] for a more detailed version of the latter calculation. Finally,
we remove the normalization ck+1 = 1.

Remark 6.2 (Lower-Rank Approximations). The same argument allows us to obtain bounds for the quality
of the rank-r approximation Ĉr :=Πr C where r < k. This modification can be useful when there is a gap
in spectrum between cr and ck+1; that is, when γr is bounded away from zero.

6.3. Proof of Theorem 2.5. Next, we develop a bound that is useful even when there is no spectral gap.
We have chosen to focus on the spectral norm because it is the most important case, and we can avoid
complicated arguments that arise for other norms.

6.3.1. The Probability Bound. Fix a parameter ε ∈ (0,1). By the definition (2.9) of the tail spectral gap γi ,
the condition γi ≤ ε implies that c2

i ≤ 1/(1−ε). We have used the normalization ck+1 = 1.
First, assume that the tail spectral gap γi ≤ ε for each index i . In particular γ1 ≤ ε. Therefore,

‖C −Ĉk‖2 = ‖(I−Πk )C‖2 ≤ ‖C‖2 = c2
1 ≤ 1

1−ε = 1+ ε

1−ε . (6.1)

The first relation holds because Ĉk =ΠkC . The inequality depends on the fact that γ1 ≤ ε. This bound is
deterministic.

Otherwise, we may select the first index r ≤ k where the tail spectral gaps satisfy

γr+1 ≤ ε≤ γr .

This index must exist because γ1 > ε and γk+1 = 0. We can instate Lemma 6.1 with this choice of r to
obtain a bound for the spectral norm error:

P
{‖C −Πr C‖2 > ‖C −Cr ‖2 + t

}≤ [
9kτ′(k; q1)

t
·e−4q2

p
γr

]p/2

.

Since γr ≥ ε and ‖C −Cr ‖2 = c2
r+1 ≤ 1/(1−ε), we have

P

{
‖C −Πr C‖2 > 1

1−ε + t

}
≤

[
9kτ′(k; q1)

t
·e−4q2

p
ε

]p/2

.
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Properties (ii) and (iii) of the graded spectral projectors imply that

‖C −Ĉk‖2 = ‖(I−Πk )C‖2 ≤ ‖(I−Πr )C )‖2 = ‖C −Πr C‖2 ,

which yields

P

{
‖C −Ĉk‖2 > 1

1−ε + t

}
≤

[
9kτ′(k; q1)

t
·e−4q2

p
ε

]p/2

. (6.2)

Set t = ε/(1−ε) to obtain the bound

P

{
‖C −Ĉk‖2 > 1+ 2ε

1−ε
}
≤

[
9kτ′(k; q1) · 1−ε

ε
·e−4q2

p
ε

]p/2

.

In view of (6.1), we see that the same probability bound holds trivially for the other case as well. Finally,
we revert to the variable u = 2ε/(1−ε), which gives

P
{‖C −Ĉk‖2 > 1+u

}≤ [
18kτ′(k; q1)

u
·e−4q2

p
u/(2+u)

]p/2

.

Finally, we remove the normalization ck+1 = 1. This completes the probability bound.

6.3.2. The Expectation Bound. To bound the expectation, we integrate the probability bound (6.2) to
obtain

E‖C −Ĉk‖2 ≤ 1

1−ε +
p

p −2
·9kτ′(k; q1) ·e−4q2

p
ε.

Finally, remove the normalization ck+1 = 1, and optimize this inequality over the free parameter ε ∈ (0,1).
This is the stated result.

Let us take a moment to outline the regimes of behavior that the expectation bound describes, main-
taining the normalization ck+1 = 1 for this discussion. Define the quantity

ε? :=
[

log
(
9kτ′(k; q1)q2

2

)
4q2

]2

+
.

First, assume that ε? = 0. Then 9kτ′(k; q1) ≤ 1/q2
2 . The choice ε= ε? yields

E‖C −Ĉk‖2 ≤ 1+ p

p −2
· 1

q2
2

.

If 0 < ε? ≤ 1/2, then the choice ε= ε? yields

E‖C −Ĉk‖2 ≤ 1+2ε?+ p

p −2
· 1

q2
2

≤ 1+ p/(p −2)+0.125log2 (
9kτ′(k; q1) ·q2

2

)
q2

2

.

The latter display should be compared with [Tro18b, Thm. 1.5]. Finally, if ε? > 1/2, we simply select ε= 1/2
to obtain

E‖C −Ĉk‖2 ≤ 3+ p

p −2
·9kτ′(k; q1) ·e−q2

p
8.

We see that the behavior of the expected approximation error depends in a significant way on the precise
value of ε?.

7. TECHNICAL LEMMA ON MATRIX APPROXIMATION

This section contains the proof of Lemma 6.1. The argument is inspired by the proof of [MM15, Lem. 9,
Claim 1].
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7.1. Setup. We maintain the notation from Section 5. Fix an index 1 ≤ r ≤ k. First, we observe that

‖Cr ‖2
F −‖Πr C‖2

F ≤ η implies |||C −Πr C |||2 ≤ |||C −Cr |||2 +η. (7.1)

Indeed, the premise ensures that

‖C −Πr C‖2
F = ‖(I−Πr )C‖2

F = ‖C‖2
F −‖Πr C‖2

F = ‖C −Cr ‖2
F +

[‖Cr ‖2
F −‖Πr C‖2

F

]
≤ ‖C −Cr ‖2

F +η.

The second and third identities follow from orthogonality, and the inequality depends on the premise.
The conclusion of (7.1) emerges from reversed Mirsky inequality, Proposition 5.2.

Introduce the quantity

∆r := ‖Cr ‖2
F −‖Πr C‖2

F . (7.2)

For a parameter t > 0, we will produce a bound for the probability

P :=P{|||C −Πr C |||2 ≥ |||C −Cr |||2 + t
}≤P {∆r > t } . (7.3)

The second inequality follows from (7.1). To complete the estimate, we reduce the problem to a question
about randomized matrix approximation.

7.2. Construction of a Projector. Fix a filter polynomialϕ ∈Pq that we will describe later. Define the ma-
trix Y :=ϕ(C 2)CΩ. Construct the orthogonal projector PY onto the range of Y , which is clearly contained
within the block Krylov space Kq (C 2;CΩ) because of (1.3). Form the rank-r orthogonal projector Pr onto
the range of the matrix PY Cr , which is also contained in the block Krylov subspace. Its key property is
Pr Cr = PY Cr .

The maximum principle, Lemma 5.1, implies that

‖Πr C‖2
F ≥ ‖Pr C‖2

F = tr
[
Pr C 2Pr

]≥ tr
[
Pr C 2

r Pr
]= tr

[
PY C 2

r PY
]
.

The second inequality holds because of the semidefinite relation C 2
r 4C 2.

As a consequence, the quantity (7.2) satisfies the bound,

∆r ≤ trC 2
r − tr

[
PY C 2

r

]= tr
[
(I−PY )C 2

r

]= tr
[
(I−PY )C 2

r (I−PY )
]
. (7.4)

We have used the cyclicity of the trace and the fact that orthogonal projectors are idempotent.

7.3. Reduction to Randomized Matrix Approximation. The next step is to massage the bound (7.4) so
that we can control it using methods from randomized matrix approximation. This requires us to replace
Cr with the filtered matrix ϕ(C 2

r )Cr .
Before we continue, let us instate some assumptions on the filter polynomial. Assume that s 7→ 1/ϕ2(s)

is decreasing on the interval s ≥ 1. Then

c2
i = 1

ϕ2(c2
i )

·ϕ2(c2
i )c2

i ≤ 1

ϕ2(c2
r )

·ϕ2(c2
i )c2

i for each index 1 ≤ i ≤ r .

Since Cr = diag(c1, . . . ,cr ,0, . . .0), we can rewrite these inequalities as a semidefinite relation:

C 2
r 4

1

ϕ2(c2
r )

·ϕ2(C 2
r )C 2

r

Introduce this expression into (7.4) to arrive at

∆r ≤ 1

ϕ2(c2
r )

· tr
[
(I−PY )ϕ2(C 2

r )C 2
r (I−PY )

]= 1

ϕ2(cr )
·∥∥(I−PY )ϕ(C 2

r )Cr
∥∥2

F . (7.5)

Note the parallel with Fact 5.4 on randomized matrix approximation.
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7.4. Randomized Matrix Approximation. We plan to invoke Fact 5.4, on randomized matrix approxima-
tion, to control the probability (7.3) that ∆r is large:

P =P {∆r > t } ≤P
{∥∥(I−PY )ϕ(C 2

r )Cr
∥∥2

F > tϕ2(c2
r )

}
.

The second inequality is (7.5).
To align our notation with Fact 5.4, set M := ϕ(C 2)C , and observe that Y = MΩ. Furthermore, with

R the orthogonal projector onto the first r coordinates, we see that MR = ϕ(C 2
r )Cr . Meanwhile, M2 =

diag(ϕ(c2
k+1)ck+1, . . . ,ϕ(c2

n)cn). We determine that

P ≤
[

2.25k ‖M2‖2
F

tϕ2(c2
r )

]p/2

=
[

2.25k
∑

j>k ϕ
2(c2

j )c2
j

tϕ2(c2
r )

]p/2

. (7.6)

It remains to select a filter polynomial ϕ ∈Pq .

7.5. The Filter Polynomial. We must design a filter polynomial to amplify the large singular values (c j > 1)
and to attenuate the singular values in the tail (c j ≤ 1) of the matrix. Let q := q1+q2 be an integer partition
where 0 ≤ q1 ≤ q . Consider the polynomial

ϕ1(s) :=
(

s − c2
n

1− c2
n

)q1

Tq2

(
2(s − c2

n)

1− c2
n

−1

)
. (7.7)

We have written Tq2 for the Chebyshev polynomial of the first kind with degree q2. As required, s 7→ 1/ϕ2
1(s)

is decreasing on the interval s ≥ 1. The minimax property of the Chebyshev polynomial implies that

ϕ2
1(s) ≤

(
s − c2

n

1− c2
n

)2q1

for 0 ≤ s ≤ 1. (7.8)

The growth properties of the Chebyshev polynomial yield the bound

1

ϕ2
1(s)

≤ 4

(
s − c2

n

1− c2
n

)−2q1

e−4q2

p
1−(1−c2

n )/(s−c2
n ) for s ≥ 1. (7.9)

The filter polynomial ϕ1 is (more or less) a reparameterization of polynomials that we have considered in
the companion paper [Tro18a, Sec. 4.4, Sec. 6, App. A.2.3], which contains a proof of these properties. See
also [Tro18b, Sec. 5.6].

7.6. Installing the Filter Polynomial. We are prepared to complete the proof of Lemma 6.1. To do so, we
introduce the filter polynomial (7.7) into the bound (7.6). Since cr ≥ 1 and c j ≤ 1 for j > k, we determine
that

ϕ2
1(c2

j )

ϕ2
1(c2

r )
≤ 4

(
c2

j − c2
n

1− c2
n

)2q1 (
c2

r − c2
n

1− c2
n

)−2q1

e−4q2

p
1−(1−c2

n )/(c2
r −c2

n )

≤ 4

(
c2

j − c2
n

c2
k − c2

n

)2q1

e−4q2

p
(c2

r −1)/(c2
r −c2

n )

The bound on the numerator is (7.8), and the bound on the denominator is (7.9). We have used the fact
that cr ≤ ck to reach the second line. As a consequence,

1

ϕ2
1(c2

r )

∑
j>k

ϕ2
1(c2

j )c2
j ≤ 4

∑
j>k c2

j

(
c2

j − c2
n

c2
k − c2

n

)2q1
e−4q2

p
(c2

r −1)/(c2
r −c2

n ) ≤ 4τ′(k; q1) ·e−4q2
p
γr .

We have used the assumption ck+1 = 1 to identify the modified tail content (2.10) and the tail spectral
gap (2.9). Substitute the last display into (7.6) to arrive at

P ≤
[

9kτ′(k; q1)

t
·e−4q2

p
γr

]p/2

.
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This completes the proof of Lemma 6.1.
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