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Random Matrices

1n the Mist



Random Matrices in Statistics

s Covariance estimation for the multivariate normal distribution

John Wishart

3. Multi-vardats Distribution. Use of Quadratic co-ordinates.

A comparison of equation (8) with the corresponding results (1) and (2) for
uni-variate and bi-variate sampling, respectively, indicates the form the general
result may be expected to take. In fact, we have for the simultaneous distribution
in random samples of the n variances (squared standard deviations) and the

n___(nz— b product moment coefficients the following expression :
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where apg = 8,8,7pg, and Ap, =2GN0 eAH , A being the determinant
299

|Peals 229=1,2,8, ... 7,
and A, the minor of p, in A.

[Refs] Wishart, Biometrika 1928. Photo from apprendre-math.info.
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Random Matrices in Numerical Linear Algebra

- Model for floating-point errors in LU decomposition

now combining (8.6) and (8.7) we obtain our desired result:

(fﬂ) n——1/2e-—rn,n.1/2en . 2n—2
Prob (N > 2¢%rn) <

" (r — )n
( 2r )” . 1
! 4(r — 1)(rrn)t/?

We sum up in the following theorem:

(8.8)

(8.9) The probability that the upper bound IA] of the matrix A
of (8.1) exceeds 2.720n'/2 is less than .027X2-"n~12, that is, with
probability greater than 999, the upper bound of 4 is less than
2.720n'? for n=2, 3, - - -.

This follows at once by taking » =3.70.

John von Neumann

[Refs] von Neumann and Goldstine, Bull. AMS 1947 and Proc. AMS 1951. Photo (©IAS Archive.
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Random Matrices in Nuclear Physics

- Model for the Hamiltonian of a heavy atom in a slow nuclear reaction

Random sign symmetric matrix

The matrices to be considered are 2NV + 1 dimensional real symmetric matrices;
N is a very large number. The diagonal elements of these matrices are zero,
the non diagonal elements v;, = v.; = =0 have all the same absolute value but
random signs. There are | = 2V*¥*" guch matrices. We shall calculate, after
an introductory remark, the averages of (H")y and hence the strength function
S'(x) = o(z). This has, in the present case, a second interpretation: it also
gives the density of the characteristic values of these matrices. This will be
shown first.

Eugene Wigner

[Refs] Wigner, Ann. Math 1955. Photo from Nobel Foundation.
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Randomized Linear Algebra

w9 o A)
R"™ A ro?

Wi

Input: An m X n matrix A, a target rank k, an oversampling parameter p
Output: An m X (k + p) matrix Q with orthonormal columns
1. Draw an n X (k 4 p) random matrix €2

2. Form the matrix product Y = AQ
3. Construct an orthonormal basis @) for the range of Y

[Ref] Halko—Martinsson—T, SIAM Rev. 2011.
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Other Algorithmic Applications

:a Sparsification. Accelerate spectral calculation by randomly zeroing
entries In a matrix.

. Subsampling. Accelerate construction of kernels by randomly
subsampling data.

: Dimension Reduction. Accelerate nearest neighbor calculations by
random projection to a lower dimension.

- Relaxation & Rounding. Approximate solution of maximization
problems with matrix variables.

[Refs] Achlioptas—McSherry 2001 and 2007, Spielman—Teng 2004; Williams—Seeger 2001, Drineas—Mahoney
2006, Gittens 2011; Indyk—Motwani 1998, Ailon—Chazelle 2006; Nemirovski 2007, So 2009...
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Random Matrices as Models

« High-Dimensional Data Analysis. Random matrices are used to
model multivariate data.

& Wireless Communications. Random matrices serve as models for

wireless channels.

- Demixing Signals. Random model for incoherence when separating
two structured signals.

[Refs] Biithimann and van de Geer 2011, Koltchinskii 2011; Tulino—Verdd 2004; McCoy-T 2011.
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Theoretical Applications

@ Algorithms. Smoothed analysis of Gaussian elimination.
: Combinatorics. Random constructions of expander graphs.

:» High-Dimensional Geometry. Structure of random slices of convex
bodies.

¢ Quantum Information Theory. (Counter)examples to conjectures
about quantum channel capacity.

[Refs] Sankar—Spielman—Teng 2006; Pinsker 1973; Gordon 1985; Hayden—Winter 2008, Hastings 2009.
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Random Matrices:

My Way
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The Conventional Wisdom

“Random Matrices are Tough!”

[Refs] youtube.com/watch?v=N0OcvqT1tAE, most monographs on RMT.
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Principle A

“But...

In many applications, a random matrix can
be decomposed as a sum of independent
random matrices:

k=1
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Principle B

and

There are exponential concentration
inequalities for the spectral norm of a sum
of independent random matrices:

Pi|Z]] =t} <exp( --- )
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Matrix

Gaussian Series
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The Norm of a Matrix Gaussian Series

Theorem 1. [Oliveira 2010, T 2010] Suppose

@ Bq, By, Bs,... are fixed matrices with dimension d; X ds, and
@ Y1,79,73,... are independent standard normal RVs.

Define d := di + do and the variance parameter

o2 = maX{HZkBkBZ ‘Zk BZBkH} .

Y

Then

2 2
JOREAEHPIRES

[Refs] Tomczak—Jaegerman 1974, Lust-Picquard 1986, Lust-Picquard—Pisier 1991, Rudelson 1999,
Buchholz 2001 and 2005, Oliveira 2010, T 2011. Notes: Cor. 4.2.1, page 33.
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The Norm of a Matrix Gaussian Series

Theorem 2. [Oliveira 2010, T 2010] Suppose

@ Bq, By, Bs,... are fixed matrices with dimension d; X ds, and
@ Y1,79,73,... are independent standard normal RVs.

Define d := di + do and the variance parameter

o2 = maX{HZkBkBZ ‘Zk BZBkH} .

Y

Then

K ||Zk ’}/kBkH < \/20'2 logd.

[Refs] Tomczak—Jaegerman 1974, Lust-Picquard 1986, Lust-Picquard—Pisier 1991, Rudelson 1999,
Buchholz 2001 and 2005, Oliveira 2010, T 2011. Notes: Cor. 4.2.1, page 33.
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The Variance Parameter

:a Define the matrix Gaussian series Z = >, _, 7x Bk
t& The variance parameter 0?(Z) derives from the “mean square of Z"

: But a general matrix has two different squares!

E(ZZ*) ZZE v;vk) BB = ZBkBk

71=1 k=1

ZZE vjvk) B By = ZBkBk

1=1 k=1

:a Variance parameter 0%(Z) = max{||E(ZZ*)||, ||E(Z*Z)|}.
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Schematic of Gaussian Series Tail Bound
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Warmup: A Wigner Matrix

w Let {75 :1<j <k <n} beindependent standard normal variables

« A Gaussian Wigner matrix:

0 Y12 Y13
vi2 0 723
W =173 723 0

_717@ Y2n .- Tn—1,n

&= Problem: What is E |[W||?

Notes: §4.4.1, page 35.
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The Wigner Matrix, qua Gaussian Series

« Express the Wigner matrix as a Gaussian series:

W= > iEj+Ey)
1<5<k<n

¢ The symbol E;; denotes the n X n matrix unit

Ejj, =
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Norm Bound for the Wigner Matrix

& Need to compute the variance parameter o?(W)
¢ Summands are symmetric, so both matrix squares are the same:

> (Ej+Ey)’= Y  (ExEj+EjEy +EyEj + EyEy)
1<y3<k<n 1<5<k<n
= > (0+Ej;+E,+0)=(mn-1)I,
1<5<k<n

¢ Thus, the variance 0?(W) = ||[(n — 1)L, =n — 1.

2. Conclusion: E|W|| < 1/2(n — 1)log(2n)
@ Optimal: E ||[W]| ~2y/n

[Refs] Wigner 1955, Davidson—Szarek 2002, Tao 2012.
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Example: A Gaussian Toeplitz Matrix

¢ Let {vx} be independent standard normal variables

- An unsymmetric Gaussian Toeplitz matrix:

Y0 Y1 e Yn—1
V-1 0 71
T — | V-1 70 71 .
Y—1 Yo 71
| Y—(n—-1) . Y—1 Y0

& Problem: What is E ||T||?

Notes: §4.6, page 38.
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The Toeplitz Matrix, qua Gaussian Series

« Express the unsymmetric Toeplitz matrix as a Gaussian series:

n—1 n—1
T=7I+> wS"+> vy (8"
k=1 k=1

@ The matrix S is the shift-up operator on n-dimensional column vectors:

0 1
0 1
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Variance Calculation for the Toeplitz Matrix

s Note that
n—k n
(S¥)(S*)* =) Ej; and (S)*(S")= ) Ey
j=1 j=k+1

: Both sums of squares take the form

n—1 n—1
I* + ) (S%) (%) + Z(S%*(S‘f)
k=1 k=1
n—1 n n—j 7—1
=1+ ) S‘ENJF Z Ejj| =) [1+) 14+) 1|Ej
k=1 j=k+1 j=1 k=1 k=1
=Z<1+(n—j>+(j—1>>Ejj=n1n-
j=1
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Norm Bound for the Toeplitz Matrix

t&. The variance parameter o%(T) = ||[nIL,|| = n

2. Conclusion: E||T|| < v/2nlog(2n)

:a Optimal:  E||T|| ~ const - v/2nlogn

@ The optimal constant is at least 0.8288...

[Refs] Bryc—Dembo—Jiang 2006, Meckes 2007, Sen—Virag 2011, T 2011.
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Matrix

Rademacher Series



The Norm of a Matrix Rademacher Series

Theorem 3. [Oliveira 2010, T 2010] Suppose

@ By, By, Bs,... are fixed matrices with dimension di X ds, and
@ £1,€9,€3,... are independent Rademacher RVs.
Then

2 2
]P){H E kSkBkH = t} ~ d-e
where d := di + do and the variance parameter

o2 = max{HZkBkBZ ‘Zk B;;BkH} .

Y

[Refs] Tomczak—Jaegerman 1974, Lust-Picquard 1986, Lust-Picquard—Pisier 1991, Rudelson 1999,
Buchholz 2001 and 2005, Oliveira 2010, T 2011. Notes: Cor. 4.2.1, page 33.
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The Norm of a Matrix Rademacher Series

Theorem 4. [Oliveira 2010, T 2010] Suppose

@ By, By, Bs,... are fixed matrices with dimension di X ds, and
@ £1,€9,€3,... are independent Rademacher RVs.
Then

< 2
E sz ngkH < \/20 log d
where d := di + do and the variance parameter

o2 = max{HZkBkBZ ‘Zk B;;BkH} .

Y

[Refs] Tomczak—Jaegerman 1974, Lust-Picquard 1986, Lust-Picquard—Pisier 1991, Rudelson 1999,
Buchholz 2001 and 2005, Oliveira 2010, T 2011. Notes: Cor. 4.2.1, page 33.
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Example: Modulation by Random Signs

Fixed matrix, in captivity:

C11
Ca21
C31

C12
C22
C32

C13
C23
C33

dq1 Xdo

Random matrix, formed by randomly flipping the signs of the entries:

Problem: What is E |

Notes: §4.5, page 37.

€11 C11
€21 C21
€31 C31

Z|?

€12 C12
€22 C22
€32 C32

€13 C13
€23 C23
€33 C33

Joel A. Tropp, User-Friendly Tools for Random Matrices, NIPS, 3 December 2012
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The Random Matrix, qua Rademacher Series

« Express the random matrix as a Gaussian series:

€11C11 €12C12 €£€13C13

€21C21 €£22C22 €£23C23 ...
Z = = E ik Gk Ejk
€31C31 €32C32 €&33C33 Jk

. " dy1Xdsy
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Variance of the Randomly Signed Matrix

The first term in the matrix variance o2 satisfies

* 2
szk(cjkEjk)(CjkEjk) H = ij\cjkl EjkEij
2
= (32, (X, lenl®) B

_Zk ‘Clk|2 ,
— Zk ||

= max, el
AR

The same argument applies to the second term. Thus,

2 _ 2 2
o° = max {maxj Zk|cjk| , Maxy Zj|cjk| }
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Comparison with the Literature

Consider the randomly signed matrix Z = |g1 cji]. Define

2 2
0%(Z) = max {maxj Zk lcik]”, maxy Zj k] }
[T 2010], obtained via matrix Rademacher bound:

EZ|| <+/2logd-o

[Seginer 2000], obtained with path-counting arguments:

E||Z]|| < const - y/logd - o

[Latata 2005], obtained with chaining arguments:

E|Z| < const - [0 + il/zjk |Cjk|4‘
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Matrix
Chernog Inequality



The Matrix Chernoff Bound

Theorem 5. [T 2010] Suppose

@ X1, Xo,X3,... are random psd matrices with dimension d, and
& Amax(Xk) < R for each k.

Then
et Pmin/ R
P{)\min(zk Xk) <(1-1%) ‘Nmin} <d- (1 — )t
- ot 7 Mmax/ R
]P’{Amax(zk Xk) > (1+1) 'Mmax} <d- 1+ )i+

where Hmin +— >\min (ZkEXk) and Hmax -— >\max (ZkEXk)

[Refs] Ahlswede—Winter 2002, T 2011. Notes: Thm. 5.1.1, page 48.
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The Matrix Chernoff Bound

Theorem 6. [T 2010] Suppose

@ X1, Xo,X3,... are random psd matrices with dimension d, and
& Amax(Xk) < R for each k.

Then

E Amin( k) > 0.6 fimin — Rlogd

k

][]

X
Exmax( Xk) < 1.8 fimax + Rlog d

k

where fimin 1= Amin (O_ E Xk) and fimax := Amax (O_p E Xk).
[Refs] Ahlswede—Winter 2002, T 2011. Notes: Thm. 5.1.1, page 48.
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Example: Random Submatrices

Fixed matrix, in captivity:

C = Ci C2 C3 ¢C4 ... Cn

N | 1 axn

Z = Co C3 ... Cp

Problem: What is the expectation of 01(Z)? What about ¢4(Z)?

Notes: §5.2.1, page 49.

Joel A. Tropp, User-Friendly Tools for Random Matrices, NIPS, 3 December 2012
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Model for Random Submatrix

@ Let C be a fixed d x n matrix with columns ¢4,...,c,
¢ Let d1,...,0, be independent 0—1 random variables with mean s/n
¢ Define A = diag(dy,...,0n)

@ Form a random submatrix Z by turning off columns from C

i - 51

1 i s

¢ Note that Z typically contains about s nonzero columns
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The Random Submatrix, qua PSD Sum

0 The largest and smallest singular values of Z satisfy

@ Define the psd matrix Y = ZZ™, and observe that

L * 2,1k * n *
Y =22'=CA’C*=CAC =) e

& We have expressed Y as a sum of independent psd random matrices
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Preparing to Apply the Chernoff Bound

s Consider the random matrix

Y = Zk 5k: ckc,’;

& The maximal eigenvalue of each summand is bounded as
2
*
R = maxy Anax(0x crcr) < maxy ||ck|

@ The expectation of the random matrix Y is

S n S
E(Y) == Zkzl exey = —CC”

n

& The mean parameters satisfy

Hmax =— )\maX(E Y) — i 0_1(0)2 and Hmin — )\min(E Y) — i O-d(C’)2
n n

Joel A. Tropp, User-Friendly Tools for Random Matrices, NIPS, 3 December 2012 41



What the Chernoff Bound Says

Applying the Chernoff bound, we reach

E [01(2)?] = EAmax(Y) < 1.8 201(0)2 + maxy, [|ex|? - logd

E [04(Z)?] = EAmin(Y) > 0.6 - = 04(C)? — maxy, ||cg||> - logd
n
¢ Matrix C has n columns; the random submatrix Z includes about s
:& The singular value o;(Z)? inherits an s/n share of 0;,(C)? for i = 1,d

:a. Additive correction reflects number d of rows of C, max column norm

¢ [Gittens—T 2011] Remaining singular values have similar behavior
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Key Example: Unit-Norm Tight Frame

@ A d X n unit-norm tight frame C satisfies

« _ D

CC*=—1, and lexllz =1 fork=1,2,...,n

& Specializing the inequalities from the previous slide...

E[01(2)?] £1.8- +logd

S

E [04(Z)?] > 0.6 - ~—logd

- Choose s > 1.67dlog d columns for a nontrivial lower bound
& Sharp condition s > dlog d also follows from matrix Chernoff bound

[Refs] Rudelson 1999, Rudelson—Vershynin 2007, T 2008, Gittens—T 2011, T 2011, Chrétien—Darses 2012.
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Matrix

Bernstein Inequality



The Matrix Bernstein Inequality

Theorem 7. [Oliveira 2010, T 2010] Suppose

@ §,,85,83,... are indep. random matrices with dimension d; X ds,

@ S, =0 for each k, and
@ ||Sk|| < R for each k.

Then

P, s] 20} <o i)

where d := di + do and the variance parameter
o2 = max { HZkE(SkSig) ‘ZkIE(SZSk)H}

[Refs] Gross 2010, Recht 2011, Oliveira 2010, T 2011. Notes: Cor. 6.2.1, page 64.

Y
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The Matrix Bernstein Inequality

Theorem 8. [Oliveira 2010, T 2010] Suppose

@ §1,85,85,... are indep. random matrices with dimension dy X ds,

@ K S, =0 for each k, and
aa ||Sk|| < R for each k.

Then

E sz SkH < \/202logd + 1 Rlogd

where d := di + do and the variance parameter
> B}

[Refs] Gross 2010, Recht 2011, Oliveira 2010, T 2011. Notes: Cor. 6.2.1, page 64.

Y

0° := max { sz E(S;S)
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Example: Randomized Matrix Multiplication

Product of two matrices, in captivity:

BC~

|
S
—_
S
[\
S
w
S
>~
S
S
*

L ~ d1><n

- n -~ nXdz

[Idea] Approximate multiplication by random sampling

[Refs] Drineas—Mahoney—Kannan 2004, Magen—Zouzias 2010, Magdon-Ismail 2010, Hsu—Kakade-Zhang
2011 and 2012.
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A Sampling Model for Tutorial Purposes

@ Assume
|bjll, =1 and |l¢jll,=1 forj=1,2,...,n

:@ Construct a random variable S whose value is a d; X do matrix:
¢ Draw J ~ UNIFORM{1,2,...,n}
- Set S =n-b;ch

¢ The random matrix S is an unbiased estimator of the product BC*
ES = ijl(n ‘biel) P{J=j}= ijl b;c; = BC*

@ Approximate BC™ by averaging m independent copies of S

Z = —Z:;lsk ~ BC*

m

Notes: §6.4, page 67.
Joel A. Tropp, User-Friendly Tools for Random Matrices, NIPS, 3 December 2012
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Preparing to Apply the Bernstein Bound |

« Let S} be independent copies of S, and consider the average

1 m
Z = Ezkzl Sk

- We study the typical approximation error

b S 1 m b S
E|Z - BC |\:E.EHZk:1(Sk—BC)

@ The summands are independent and E .S, = BC™, so we symmetrize:
E|Z - BC| <~ E|S S
|z-BC* | <—-E[Y" =S
where {¢;} are independent Rademacher RVs, independent from {Sy}
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Preparing to Apply the Bernstein Bound ||

:¢ The norm of each summand satisfies the uniform bound

R= eS| =[Sl = lln- (b))l =nlbsl;llesl, =n

« Compute the variance in two stages:

E(SS) =)

—n BB”
E(S*S) =nCC*

n*(bje})(bic) P LT =3y =ny_ _ liejll3 b;b;

o =max { S B(SeSp)||, |2 E(SkST)
= max {||mn - BB*||, ||mn-CC*|}

2 2
= mn - max{||B|", [|C]|]"}

j
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What the Bernstein Bound Says

Applying the Bernstein bound, we reach

* 2 m
E|Z - BC*| < EE sz:l 5kSkH

2
< - [a\/Q log(dy 4+ ds) + %Rlog(dl + d2)]
nlog(d1+d2) 2 nlog dl—l—dg
o) MBI ) oy 4 2 B )

[Q] What can this possibly mean? Is this bound any good at all?
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Detour: The Stable Rank

:a The stable rank of a matrix is defined as

_ Al
1Al

srank(A) :

¢ In general, 1 < srank(A) < rank(A)
¢ When A has either n rows or n columns, 1 < srank(A) <n

¢ Assume that A has n unit-norm columns, so that HAH% =n

|A||* = n and srank(A) =1

:& \WWhen all columns of A are the same,

:a- When all columns of A are orthogonal, ||A||° = 1 and srank(A) = n
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Randomized Matrix Multiply, Relative Error

:a Define the (geometric) mean stable rank of the factors to be

s := y/srank(B) - srank(C).

« Converting the error bound to a relative scale, we obtain

E|Z-BC| _ 2\/3 log(dy + ds) N 2 slog(di + dy)
IBlllCl —

m 3 m

& For relative error £ € (0,1), the number m of samples should be
m > Const - 2 - slog(dy + do)

¢ The number of samples is proportional to the mean stable rank!
- We also pay weakly for the dimension d; X ds of the product BC*
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More Things in Heaven & Earth

:a- [More Bounds for Eigenvalues] There are exponential tail bounds for maximum
eigenvalues, minimum eigenvalues, and eigenvalues in between...

:a [More Exponential Bounds] There is a matrix Hoeffding inequality and a matrix
Bennett inequality, plus matrix Chernoff and Bernstein for unbounded matrices...

&= [Matrix Martingales] There is a matrix Azuma inequality, a matrix bounded
difference inequality, and a matrix Freedman inequality...

:a- [Dependent Sums] Exponential tail bounds hold for some random matrices based on
dependent random variables...

:a- [Polynomial Bounds] There are matrix versions of the Rosenthal inequality, the
Pinelis inequality, and the Burkholder—Davis—Gundy inequality...

¢ [Intrinsic Dimension] The dimensional dependence can sometimes be weakened...

‘¢ [The Proofs!] And the technical arguments are amazingly pretty...
[Refs] T 2011, Gittens—T 2011, Oliveira 2010, Mackey et al. 2012, ...
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To learn more...

E-mail: jtropp@cms.caltech.edu
Web: http://users.cms.caltech.edu/~jtropp

Some papers:

@ “User-friendly tail bounds for sums of random matrices,” FOCM, 2011.

@ “User-friendly tail bounds for matrix martingales.” Caltech ACM Report 2011-01.

@  “Freedman’s inequality for matrix martingales,” ECP, 2011.

@ “A comparison principle for functions of a uniformly random subspace,” PTRF, 2011.

@  “From the joint convexity of relative entropy to a concavity theorem of Lieb,” PAMS, 2012.

@  “Improved analysis of the subsampled randomized Hadamard transform,” AADA, 2011.

@ "“Tail bounds for all eigenvalues of a sum of random matrices” with A. Gittens. Submitted 2011.
@ “The masked sample covariance estimator” with R. Chen and A. Gittens. &/, 2012.

@ "“Matrix concentration inequalities...” with L. Mackey et al.. Submitted 2012.

@ “User-Friendly Tools for Random Matrices: An Introduction.” 2012.

See also...

@ Ahlswede and Winter, “Strong converse for identification via quantum channels,” Trans. IT, 2002.
@ Oliveira, “Concentration of the adjacency matrix and of the Laplacian.”" Submitted 2010.

@ Vershynin, “Introduction to the non-asymptotic analysis of random matrices,” 2011.

@ Minsker, “Some extensions of Bernstein's inequality for self-adjoint operators,” 2011.
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