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Random Matrices

1n the Mist
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Random Matrices in Statistics

s Covariance estimation for the multivariate normal distribution

John Wishart

3. Multi-vardats Distribution. Use of Quadratic co-ordinates.

A comparison of equation (8) with the corresponding results (1) and (2) for
uni-variate and bi-variate sampling, respectively, indicates the form the general
result may be expected to take. In fact, we have for the simultaneous distribution
in random samples of the n variances (squared standard deviations) and the

n___(nz— b product moment coefficients the following expression :
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where apg = 8,8,7pg, and Ap, =2GN0 eAH , A being the determinant
299

|Peals 229=1,2,8, ... 7,
and A, the minor of p, in A.

[Refs] Wishart, Biometrika 1928. Photo from apprendre-math.info.
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Random Matrices in Numerical Linear Algebra

- Model for floating-point errors in LU decomposition

now combining (8.6) and (8.7) we obtain our desired result:
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We sum up in the following theorem:

(8.8)

(8.9) The probability that the upper bound IA] of the matrix A
of (8.1) exceeds 2.720n'/2 is less than .027X2-"n~12, that is, with
probability greater than 999, the upper bound of 4 is less than
2.720n'? for n=2, 3, - - -.

This follows at once by taking » =3.70.

John von Neumann

[Refs] von Neumann and Goldstine, Bull. AMS 1947 and Proc. AMS 1951. Photo (©IAS Archive.
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Random Matrices in Nuclear Physics

- Model for the Hamiltonian of a heavy atom in a slow nuclear reaction

Random sign symmetric matrix

The matrices to be considered are 2NV + 1 dimensional real symmetric matrices;
N is a very large number. The diagonal elements of these matrices are zero,
the non diagonal elements v;, = v.; = =0 have all the same absolute value but
random signs. There are | = 2V*¥*" guch matrices. We shall calculate, after
an introductory remark, the averages of (H")y and hence the strength function
S'(x) = o(z). This has, in the present case, a second interpretation: it also
gives the density of the characteristic values of these matrices. This will be
shown first.

Eugene Wigner

[Refs] Wigner, Ann. Math 1955. Photo from Nobel Foundation.
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Randomized Linear Algebra

R™ A yo?

Wi

Input: An m X n matrix A, a target rank k, an oversampling parameter p
Output: An m X (k + p) matrix Q with orthonormal columns
1. Draw an n X (k 4 p) random matrix €2

2. Form the matrix product Y = AQ
3. Construct an orthonormal basis @) for the range of Y

[Ref] Halko—Martinsson—T, SIAM Rev. 2011.
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Other Algorithmic Applications

:a Sparsification. Accelerate spectral calculation by randomly zeroing
entries In a matrix.

. Subsampling. Accelerate construction of kernels by randomly
subsampling data.

: Dimension Reduction. Accelerate nearest neighbor calculations by
random projection to a lower dimension.

- Relaxation & Rounding. Approximate solution of maximization
problems with matrix variables.

[Refs] Achlioptas—McSherry 2001 and 2007, Spielman—Teng 2004; Williams—Seeger 2001, Drineas—Mahoney
2006, Gittens 2011; Indyk—Motwani 1998, Ailon—Chazelle 2006; Nemirovski 2007, So 2009...

Joel A. Tropp, User-Friendly Tools for Random Matrices, Big Data Bootcamp, Simons Center, 3 September 2013 9



Random Matrices as Models

« High-Dimensional Data Analysis. Random matrices are used to
model multivariate data.

& Wireless Communications. Random matrices serve as models for

wireless channels.

- Demixing Signals. Random model for incoherence when separating
two structured signals.

[Refs] Biithimann and van de Geer 2011, Koltchinskii 2011; Tulino—Verdd 2004; McCoy-T 2011.
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Theoretical Applications

@ Algorithms. Smoothed analysis of Gaussian elimination.
: Combinatorics. Random constructions of expander graphs.

:» High-Dimensional Geometry. Structure of random slices of convex
bodies.

¢ Quantum Information Theory. (Counter)examples to conjectures
about quantum channel capacity.

[Refs] Sankar—Spielman—Teng 2006; Pinsker 1973; Gordon 1985; Hayden—Winter 2008, Hastings 2009.

Joel A. Tropp, User-Friendly Tools for Random Matrices, Big Data Bootcamp, Simons Center, 3 September 2013

11



Random Matrices:

My Way
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The Conventional Wisdom

“Random Matrices are Tough!”

[Refs] youtube.com/watch?v=N0OcvqT1tAE, most monographs on RMT.
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Principle A

“But...

In many applications, a random matrix can
be decomposed as a sum of independent
random matrices:

k=1
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Principle B

and

There are exponential concentration
inequalities for the spectral norm of a sum
of independent random matrices:

Pi|Z]] =t} <exp( --- )

Joel A. Tropp, User-Friendly Tools for Random Matrices, Big Data Bootcamp, Simons Center, 3 September 2013 15



The Vision

« Challenge: Random matrices are tough!

@ Approach:

8 Write the random matrix as a sum of independent random matrices
@ Apply “packaged” concentration inequalities

:a- Tradeoff:

+] Wide range of applicability
+] Simplicity

[—] Potential loss in accuracy
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To learn more...

E-mail: jtropp@cms.caltech.edu
Web: http://users.cms.caltech.edu/~jtropp

Some papers:

@ “User-friendly tail bounds for sums of random matrices,” FOCM, 2011.

@ “User-friendly tail bounds for matrix martingales.” Caltech ACM Report 2011-01.

“Freedman’s inequality for matrix martingales,” ECP, 2011.

“A comparison principle for functions of a uniformly random subspace,” PTRF, 2011.

@  “From the joint convexity of relative entropy to a concavity theorem of Lieb,” PAMS, 2012.
“Improved analysis of the subsampled randomized Hadamard transform,” AADA, 2011.

“Tail bounds for all eigenvalues of a sum of random matrices” with A. Gittens. Submitted 2011.
@ "“The masked sample covariance estimator” with R. Chen and A. Gittens. &/, 2012.
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@ "“Matrix concentration inequalities...” with L. Mackey et al.. Submitted 2012.
@ "“User-Friendly Tools for Random Matrices: An Introduction.” 2012.
@ “Deriving matrix concentration inequalities...” with D. Paulin and L. Mackey. Submitted 2013.

@ “Subadditivity of matrix ¢-entropy...” with R. Chen. Submitted 2013.
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