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Random Matrices.
in the Mist
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Random Matrices in Statistics

§ Covariance estimation for the multivariate normal distribution

38 The Generalised Product Moment Distribution in Samples

We may simplify this expression by writing
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It is to be noted that | abc | is equal to «,'«,•»»' | rpqI. p. ? = li 2, 3.

This is the fundamental frequency distribution for the three variate case, and
in a later section the calculation of its moment coeflScients will be dealt with.

3. Multi-varvite Distribution. Use of Quadratic co-ordinates.

A comparison of equation (8) with the corresponding results (1) and (2) for
uni-variate and bi-variate sampling, respectively, indicates the form the general
result may be expected to take. In fact, we have for the simultaneous distribution
in random samples of the n variances (squared standard deviations) and the

— product moment coefficients the following expression:
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where Opq = SpSgVpg, and

I ••• dm

N A
', A being the determinant

\Pp<i\,p,q°l, 2,3, ...n,
and Ap, the minor of pm in A.

John Wishart

[Refs] Wishart, Biometrika 1928. Photo from apprendre-math.info.
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Random Matrices in Numerical Linear Algebra

§ Model for floating-point errors in LU decomposition

195I] NUMERICAL INVERTING OF MATRICES OF HIGH ORDER. II 191 

1~l/2 
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With the help of (8.5) and the substitution 2-2, = X - 2o2rn we find 
that 
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Finally we recall with the help of Stirling's formula that 

/ /\2 7rnn-l 
(8.7) n2)) > en-22 (n = 1, 2,* 

now combining (8.6) and (8.7) we obtain our desired result: 

(rn) n- 1/2e-rn7rl /2en . 2n-2 

Prob (X > 2Cr2rn) < 
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- 
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We sum up in the following theorem: 

(8.9) The probability that the upper bound jA j of the matrix A 
of (8.1) exceeds 2.72o-n 12 is less than .027X2-n"n-12, that is, with 
probability greater than 99% the upper bound of A is less than 
2.72an 12 for n = 2, 3, * . 

This follows at once by taking r = 3.70. 

8.2 An estimate for the length of a vector. It is well known that 

(8.10) If a1, a2, * * *, an are independent random variables each of 
which is normally distributed with mean 0 and dispersion a2 and if 
I a| is the length of the vector a= (a,, a2, . , an), then 

John von Neumann

[Refs] von Neumann and Goldstine, Bull. AMS 1947 and Proc. AMS 1951. Photo c©IAS Archive.

Joel A. Tropp, User-Friendly Tools for Random Matrices, Big Data Bootcamp, Simons Center, 3 September 2013 5



Random Matrices in Nuclear Physics

§ Model for the Hamiltonian of a heavy atom in a slow nuclear reaction

552 EUGENE P. WIGNER 

Multiplication with VW" and summation over X yields by means of (7) the well 
known equation 

(9a) (HV)>,/; = , XXv"\()X) 

Setting m = k = 0 herein and summing over all matrices of the set gives 

(9b) M1V =9 F' Zset (HV)oo -Av(Hv)oo . 
Av will denote the average of the succeeding expression over all matrices of 
the set. 

The M, will be calculated in the following section for a certain set of matrices 
in the limiting case that the dimension 2N + 1 of these matrices becomes in- 
finite. It will be shown, then, that S(x), which is a step function for every finite 
N, becomes a differentiable function and its derivative S'(x) = O-(x) will 
be called the strength function. In the last section, infinite sets of infinite 
matrices will be considered. However, all powers of these matrices will be defined 
and (HV)oo involves, for every P, only a finite part of the matrix. It will be seen 
that the definition of the average of this quantity for the infinite set of H does 
not involve any difficulty. However, a similar transition to a limiting case N -* 
co Will be carried out with this set as with the aforementioned set and this tran- 
sition will not be carried through in a rigorous manner in either case. 

The expression "strength function" originates from the fact that the absorp- 
tion of an energy level depends, under certain conditions, only on the square of a 
definite component of the corresponding characteristic vector. This component 
was taken, in (8), to be the 0 component. Hence S(x1) - S(x2) is the average 
strength of absorption by all energy levels in the (xI , x2) interval. 

Random sign symmetric matrix 
The matrices to be considered are 2N + 1 dimensional real symmetric matrices; 

N is a very large number. The diagonal elements of these matrices are zero, 
the non diagonal elements Vik = Vkit = ?v have all the same absolute value but 
random signs. There are = 2N(2N+l) such matrices. We shall calculate, after 
an introductory remark, the averages of (H')oo and hence the strength function 
S'(x) = a(x). This has, in the present case, a second interpretation: it also 
gives the density of the characteristic values of these matrices. This will be 
shown first. 

Let us consider one of the above matrices and choose a characteristic value 
X with characteristic vector 4/s6). Clearly, X will be a characteristic value also of 
all those matrices which are obtained from the chosen one by renumbering 
rows and columns. However, the components 41(i of the corresponding charac- 
teristic vectors will be all possible permutations of the components of the original 
matrix' characteristic vector. It follows that if we average (+p0)2 over the afore- 
mentioned matrices, the result will be independent of k. Because of the nor- 
malization condition (7), it will be equal to 1/(2N + 1). 

Let us denote now the average number of characteristic values of the matrices 

This content downloaded by the authorized user from 192.168.52.73 on Thu, 29 Nov 2012 18:29:16 PM
All use subject to JSTOR Terms and Conditions

Eugene Wigner

[Refs] Wigner, Ann. Math 1955. Photo from Nobel Foundation.
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Modern.
Applications
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Randomized Linear Algebra

Input: An m × n matrix A, a target rank k, an oversampling parameter p

Output: An m × (k + p) matrix Q with orthonormal columns

1. Draw an n × (k + p) random matrix Ω

2. Form the matrix product Y = AΩ

3. Construct an orthonormal basis Q for the range of Y

[Ref] Halko–Martinsson–T, SIAM Rev. 2011.
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Other Algorithmic Applications

§ Sparsification. Accelerate spectral calculation by randomly zeroing

entries in a matrix.

§ Subsampling. Accelerate construction of kernels by randomly

subsampling data.

§ Dimension Reduction. Accelerate nearest neighbor calculations by

random projection to a lower dimension.

§ Relaxation & Rounding. Approximate solution of maximization

problems with matrix variables.

[Refs] Achlioptas–McSherry 2001 and 2007, Spielman–Teng 2004; Williams–Seeger 2001, Drineas–Mahoney

2006, Gittens 2011; Indyk–Motwani 1998, Ailon–Chazelle 2006; Nemirovski 2007, So 2009...
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Random Matrices as Models

§ High-Dimensional Data Analysis. Random matrices are used to

model multivariate data.

§ Wireless Communications. Random matrices serve as models for

wireless channels.

§ Demixing Signals. Random model for incoherence when separating

two structured signals.

[Refs] Bühlmann and van de Geer 2011, Koltchinskii 2011; Tulino–Verdú 2004; McCoy–T 2011.
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Theoretical Applications

§ Algorithms. Smoothed analysis of Gaussian elimination.

§ Combinatorics. Random constructions of expander graphs.

§ High-Dimensional Geometry. Structure of random slices of convex

bodies.

§ Quantum Information Theory. (Counter)examples to conjectures

about quantum channel capacity.

[Refs] Sankar–Spielman–Teng 2006; Pinsker 1973; Gordon 1985; Hayden–Winter 2008, Hastings 2009.
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Random Matrices:.
My Way
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The Conventional Wisdom

“Random Matrices are Tough!”

[Refs] youtube.com/watch?v=NO0cvqT1tAE, most monographs on RMT.
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Principle A

“But...

In many applications, a random matrix can
be decomposed as a sum of independent
random matrices:

Z =
n∑

k=1

Sk
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Principle B

and

There are exponential concentration
inequalities for the spectral norm of a sum
of independent random matrices:

P {‖Z‖ ≥ t} ≤ exp( · · · )

!!!”
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The Vision

§ Challenge: Random matrices are tough!

§ Approach:

§ Write the random matrix as a sum of independent random matrices

§ Apply “packaged” concentration inequalities

§ Tradeoff:

[+] Wide range of applicability

[+] Simplicity

[−] Potential loss in accuracy
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To learn more...

E-mail: jtropp@cms.caltech.edu

Web: http://users.cms.caltech.edu/~jtropp

Some papers:

§ “User-friendly tail bounds for sums of random matrices,” FOCM, 2011.
§ “User-friendly tail bounds for matrix martingales.” Caltech ACM Report 2011-01.
§ “Freedman’s inequality for matrix martingales,” ECP, 2011.
§ “A comparison principle for functions of a uniformly random subspace,” PTRF, 2011.
§ “From the joint convexity of relative entropy to a concavity theorem of Lieb,” PAMS, 2012.
§ “Improved analysis of the subsampled randomized Hadamard transform,” AADA, 2011.
§ “Tail bounds for all eigenvalues of a sum of random matrices” with A. Gittens. Submitted 2011.
§ “The masked sample covariance estimator” with R. Chen and A. Gittens. I&I, 2012.
§ “Matrix concentration inequalities...” with L. Mackey et al.. Submitted 2012.
§ “User-Friendly Tools for Random Matrices: An Introduction.” 2012.
§ “Deriving matrix concentration inequalities...” with D. Paulin and L. Mackey. Submitted 2013.
§ “Subadditivity of matrix ϕ-entropy...” with R. Chen. Submitted 2013.
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