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The Compressed Sensing Problem

& Suppose x; € R% has s nonzero entries
:a Let I' € R™*4 be a standard normal matrix
¢ Observe z =T'x;, € R"

& Find estimate X by solving convex program

minimize |lx|l,, subjectto I'x=2z

¢ Hope: X = x;

Sources: Donoho 2006; Candes & Tao 2006.
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Empirical Performance of Compressed Sensing

Ambient dimension d = 100
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s: Number of nonzeros in x
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What's Going on Here?!?

:¢ What is the probability of success as a function of (s, m, d)?
8 Does a phase transition exist?

8- Can we locate the phase transition?

8 How wide is the transition region?

& |s there a geometric explanation for this phenomenon?

8 Can we export this reasoning to understand other problems?

& Who cares?

Sources: Donoho 2006; Donoho & Tanner 2009; Stojnic 2009, 2013; McCoy & Tropp 2013, 2014; Thrampoulidis et
al. 2013-2016; Amelunxen et al. 2014; Foygel & Mackey 2014; Goldstein et al. 2016.
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Case Study: Walnut Phantoms

Source: Jorgensen & Sidky 2014.
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Case Study: Walnut Phantoms

fanbeam_equi altprojisotv

Phase transition
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s/N

Source: Jorgensen & Sidky 2014.
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Case Study: Walnut Phantoms

Image RMSE
Image RMSE
-
o

| | -6 I | | |
20 40 60 80 100 10 50 100 150 200
number of views number of views

Walnut image | Gradient sparsity | Recovered at | DT prediction \ ALMT prediction
Structure 45,074 68 69.3 71.7
Texture 186, 306 ? 188.7 185.8

Table 1: Walnut test images with gradient-domain sparsity levels, number of projections at which recovery is
observed, and DT and ALMT phase-diagram predictions of critical sampling levels. A reference point of full
sampling is Ny > 403 projections, where the system matrix has more rows than columns.

Source: Jorgensen & Sidky 2014.
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Case Study: Walnut Phantoms

Source: Jorgensen & Sidky 2014.
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Atomic

Decomposition
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Atoms and Dictionaries

Definition 1. Consider a compact collection A4 of vectors:
A ={a;:{cZ}cR?

The collection A is called a dictionary, and the elements a; are called atoms.

Atoms are “elementary structures” that compose signals of interest

7Y
8 Closely related to definition from nonlinear approximation (1990s)

& Terminology motivated by atomic decomposition in harmonic analysis (1970s)
8

Generalizes the concept of a frame in signal processing (1980s)

Sources: Duffin & Schaeffer 1952; Coifman 1974; Daubechies et al. 1986; Mallat & Zhang 1993; Davis et al. 1994; DeVore
& Temlyakov 1996; Chen et al. 1997, 2001; Temlyakov 2002; Donoho 2005; Fuchs 2005; Chandrasekaran et al. 2012.
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Example: Astronomical Image

Inage crdit: NAS B
Observation zg Sparse component xq DCT-sparse component ¥

Source: Starck et al. 2003; McCoy & Tropp 2013; McCoy et al. 2013; Amelunxen et al. 2014.
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Sparsity with Respect to a Dictionary

Definition 2. For a natural number s, define the set of vectors of the form

A;=3%x=) culy:cy,=0and |Q<s

weQ)

The members of 4 are said to be s-sparse with respect to the dictionary

® 4 are increasing approximation classes
8 Sparsity s parameterizes complexity of signals

A “semiparametric’ model with wide application

Sources: Stechkin 1955; Miller 1989; Jones 1992; Barron 1993; Mallat & Zhang 1993; Davis et al. 1994; DeVore &
Temlyakov 1996; Chen et al. 1997, 2001; Donoho & Huo 2001; Temlyakov 2002.
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Sparse Approximation Problems

¢¢ Given a vector x, and a dictionary 4...

& Minimize the error subject to a bound on the sparsity:

minimize [[x — x; 12 subjectto x € 4,

& Minimize the sparsity subject to a bound on the error:

minimize s subjectto x€A; and [x—x°<¢

8 Fact (Natarajan 1995): In general, sparse approximation is NP-hard

|- Il always denotes the Euclidean norm

Sources: Schmidt 1908; Stechkin 1955; Friedman & Stuetzle 1981; Miller 1989; Jones 1992; Barron 1993; Mallat & Zhang
1993; Davis et al. 1994; Natarajan 1995; DeVore & Temlyakov 1996; Chen et al. 1997, 2001; Donoho & Huo 2001;
Temlyakov 2002; ...
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Advice for Research & Life

If at first you don't succeed...

Lower your standards!

(é’
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Relax: Approximation in Convex Hulls

Rd

¢a Carathéodory: Can write x;, as a convex combination of d + 1 atoms
¢ How well can we approximate x; with s atoms?
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Approximate Carathéodory

Theorem 3 (Maurey 1970s). Assume

8 A4 s a dictionary

@ x; € conv(A)

Then there exists an s-sparse vector x; € A with

. 1
x5 — x|l = diam(4) - —

&

where diam(4) = max,, ¢cz= |l @, — a:|

Sources: Maurey 1970s; Pisier 1980; Carl 1985; DeVore & Temlyakov 1996.
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Proof of Maurey's Theorem: The Empirical Method

& Carathéodory implies

X,= ) poa, where p,=0, ) p,=1, [Q<d+1

we) we)

8 Define random vector z that takes values z = a,, with probability p,,

¢ Observe: Ez = x;

¢

Setz=1Y],z;€ 4, wherez,,...,z;areiid copies of z

8 Using orthogonality,

2
1
2

B diam?(4)

1
_ 2
Elz- x| = 5 E

S S

1
Z(Zi—[EZi) Z[E”Zi—[EZi”Z=;[E||Z—xn||25
izl i=1

8- The probabilistic method yields the desired x; € 4
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Atomic Gauges

Definition 4. Let A4 be a dictionary. The atomic gauge is defined as

Ix 2 =min{t=0:x¢€ t-conv(A)}

=min< Y ¢:x=) crazand ¢ =0

(e= ez

The gauge is nonnegative, positively homogeneous, and convex.

8 Gauges are norm-like functions
8 They are linear on rays from the origin

& They can take the values zero or +00 on an entire ray

Sources: Stechkin 1955; DeVore & Temlyakov 1996; Chen et al. 1997, 2001; Temlyakov 2002; Donoho 2005; Fuchs
2005; Chandrasekaran et al. 2012.
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Atomic Gauges and Sparse Approximation

Corollary 5. For any vector x;, there is an s-sparse vector x; € A that achieves

1261l 2

&

x5 — xyll < diam(A4) -

Atomic gauge always controls the quality of sparse approximations

2
& Evidence that atomic gauge is a reasonable proxy for complexity with respect to dictionary
@ Bound is optimal for worst-case x;

s 8

Very poor bound for exactly sparse x;

Sources: Stechkin 1955; Jones 1992; DeVore & Temlyakov 1996; Chen et al. 1997, 2001; Temlyakov 2002; Jaggi 2013.
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Examples of Dictionaries and Atomic Gauges

Signal Type Dictionary (A1) Atomic Gauge (||-]| )
Sparse vector {+e;} -1l
Frequency-sparse {+f;} IF (e,

Spikes + sines {xe;}u{f;} -1l TN (I,
Sparse gradient {+(ej11—e;)} IRIENY

Sparse + nonnegative
Saturated
Row-sparse matrix
Low-rank matrix

Low rank + psd

Orthogonal

{e;}

{+1}

le;u”:|lull =1}

{uv* : ul = vl =1}
{uu” : ||ul =1}
{U:UU"=0"U=1}

-1l ¢, if NN, else +oo

-1l
Zi ” ()z”
I-Il's,

I-1ls, if psd, else +oo

Il

Sources: Rudin et al. 1992; Mallat & Zhang 1993; DeVore & Temlyakov 1996; Chen et al. 1997, 2001; Donoho & Huo
2001; Temlyakov 2002; Fazel 2002; Tropp 2006; Chandrasekaran et al. 2012; Jaggi 2011, 2013; ....
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Atomic Regularization for Sparse Approximation

¢a Given a vector x, and a dictionary 4...

& Minimize the error subject to a bound on the atomic gauge:

minimize ||x—xh||2 subjectto [x|lg<a

& Minimize the atomic gauge subject to a bound on the error:

minimize |lxll; subjectto [x—x°<¢

& Tradeoff the value of the error and the atomic gauge:

minimize  [x— x>+ A x4

Sources: Chen et al. 1997, 2001; Donoho & Huo 2001; Gribonval & Nielson 2002; Donoho & Elad 2004; Tropp 2006;
Fuchs 2006; Donoho et al. 2006; Chandrasekaran et al. 2012; ....
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Conditional Gradient Method (CGM)

Initialize x; =0; s=0

a; = argmax (y, X, — Xy)
lylla<1

Xs1=(1- Hs)xs + Hsas

O,=(s+1)"!

min | x — x|
[xll2=1
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Sparse Approximation via CGM

Theorem 6 (CGM Convergence). Assume

:8 A4 s a dictionary

& xy is a vector with || x|l 7 < &, where a is known

Then, after s iterations, CGM produces an s-sparse vector x; with

x5 — x|l = diam(A4) -

Qa
vs+1

@ If a is misspecified, CGM converges to best approximation of x, with such «
8 CGM also known as Frank-Wolfe, Relaxed Greedy Algorithm, or Relaxed Matching Pursuit

Sources: Frank & Wolfe 1956; Levitin & Poljak 1967; Jones 1992; DeVore & Temlyakov 1996; Temlyakov 2002; Hazan
2008; Clarkson 2010; Jaggi 2011, 2013.
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Proof of CGM Convergence

8 Without loss, assume a =1

2 Sincex,,1=01-0y)x,+0;a,,

2 2 2 2
X511 — 25117 = |5 — X117 — 205 (x — X5, @5 —x5) + O [l a5 — x|
: : :

& By construction of aj,

(Xy— X5, A5— X5) = ”;Iﬂax1 (X — X5, Y — X5) = (X, — X5, Xy — Xg) = IIxS—thI2
=

:a Therefore,
2541 = x411° < (1= 26) ll s — x;|1* + 65 diam* ()

- Since 04(1 —0,) < 0.1, induction yields

x5 — x,]1* < 6diam® ()
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Exact Recovery Theorems

Theorem 7 (Donoho & Elad 2004; Fuchs 2004; Tropp 2004). Assume

0 4 js a standardized dictionary (|| a;| = 1)

:a- the coherence |1 = maXg, |{(a:, a,)|

vVul+1

Then we can obtain an s-sparse representation of x; by solving the linear program

@ x,€ A4, where s <

DN =

minimize ) c¢; subjectto x;=) c;a; and c¢;=0

(e= (e=

8 Can sometimes obtain optimal error bounds for sparse approximation!

Sources: Donoho & Huo 2001; Gribonval & Nielsen 2002; Gilbert et al. 2003; Fuchs 2004-2006; Gribonval &
Vandergheynst 2004; Donoho & Elad 2004; Tropp 2004, 2006.
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Applications of Sparse Models...

8 Denoising and estimation

:& Signal recovery, regression, and compressed sensing
& Simultaneous sparse approximation and group sparsity
& Demixing and morphological component analysis

& Matrix completion and phase retrieval

8- Superresolution and line spectral estimation

s8¢ Blind deconvolution and self-calibration

.

Sources: Donoho & Johnstone 1992; Mallat & Zhang 1993; Chen et al. 1997, 2001; Fazel 2002; Starck et al. 2003; Tropp
et al. 2006; Recht et al. 2009, 2010; Bodmann et al. 2009; Jaggi 2011, 2013; Bhaskar et al. 2012; Fernandez-Granda
2013; Romberg et al. 2013; McCoy & Tropp 2013; Amelunxen et al. 2014; Ling & Strohmer 2015; ....
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Statistica

Dimension
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Regularized Denoising

:a Let f:R? — R be a convex “structural” penalty (e.g., an atomic gauge)
@ Let x; be “structured” but unknown
¢ Observe z = x, + g where g ~ NORMAL(0,I)

8- Remove noise by solving the convex program
minimize |z — x|/ subject to fx) = fxp)

¢ Hope: The minimizer X approximates x;

:8 Remark: Other formulations more practical, but this is easier to analyze

Sources: Donoho et al. 2009, 2013; Bhaskar et al. 2012; Chandrasekaran & Jordan 2013; Oymak & Hassibi 2013;
Amelunxen et al. 2014.
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Geometry of Atomic Denoising |
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Cones and Projections

Definition 8. A convex cone is a convex set K that satisfies K € 7K for 7 = 0.

Definition 9. Let K be a convex cone. The polar is the closed convex cone
K°={y:(y, x) <0forallx e K}.

Definition 10. Let K be a closed convex cone. The Euclidean projection onto K is

Ig(x) =argmin||y — x||2
yeK

For a general convex cone C, define Il¢ = I ¢josure(c)

Sources: Rockafellar 1970; Rockafellar & Wets 1997; Hiriart-Urruty & Lemaréchal 2002.
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Moreau’s Theorem

X =g (x) + g (x)
Kk IMg(x) L k- (x)

Sources: Moreau 1965; Rockafellar 1970; Rockafellar & Wets 1997; Hiriart-Urruty & Lemaréchal 2002.
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Descent Cones

Definition 11. For convex f and a point x, the descent cone is the convex cone

D(f,x)={u: f(x+eu) < f(x) for some € > 0}

Sources: Rockafellar 1970; Rockafellar & Wets 1997; Hiriart-Urruty & Lemaréchal 2002.
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Geometry of Regularized Denoising I

{x: fx) < fxy)}

xh+K

K =D(f,xy)
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Analysis of Regularized Denoising

Theorem 12 (Oymak & Hassibi 2013). Assume

@ f is a convex function and x; € dom(f)
& Observe z = x, +ng where g ~ NORMAL(0,I)
& The vector X solves

minimize ||x - z|° subjectto  f(x) = f(xy)

Then

EJI% — x,2 OER—x)
T - lim—— = k(@)
n>0 n nlo n

where K =D (f, x;)

Sources: Donoho et al. 2009, 2013; Oymak & Hassibi 2013; Chandrasekaran & Jordan 2013; Amelunxen et al. 2014.
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Regularized Denoising: Upper Bound

¢ Change variables: u = x — x;
minimize |lu—-ngl* subjectto fxp+u) < f(xy)
¢ First-order optimality for u = X — x;;:
(v—u, u—ng)=0 forallfeasible v
¢ Choose v =0and use thefact u € D(f,x;) = K:
I%l* < (ng, w) = n(Mx(g)+Tk-(g), U) < nTk(g), w) < nlulllTk(g)l
& Rearrange and take expectation:

nENGl® < EIHg(@)°

s8¢ The lower bound is technical
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Statistical Dimension

Definition 13. Let K be a convex cone in R%. The statistical dimension is

S(K) =E|Mg(g)* where g~ NORMAL(O,I)

An extension of linear dimension to cones:
@ 0<o6(K)=<d
@ Cc Kimplies 6(C) <6(K)

a |If Lis asubspace, 6 (L) = dim(L)

Sources: Amelunxen et al. 2014; McCoy & Tropp 2014.
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Properties of Statistical Dimension

:a Let C, K be convex cones in R?

:&- Gaussian formulation: 6 (K) = E | IIx(g) ||

: Nonnegativity: 6(K) =0
: Subspaces: § (L) = dim(L) for a subspace L
8 Rotational invariance: 6 (K) = 6 (QK) for any orthogonal Q

:a Complementarity: 6 (K) +6(K°) =d
@ Upper bound: 6(K) <d

:8 Polar formulation: 6 (K) = [Edistz(g, K°)

8 Mean-squared-width formulation: 6 (K) = [E(sup”u”ﬂ,ueK (g, u))2

@ Monotonicity: C c K implies 6 (C) < 6(K)

Sources: Chandrasekaran et al. 2012; Amelunxen et al. 2014; McCoy & Tropp 2014.
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Proof of Statistical Dimension Properties

s Moreaus Theorem + basic facts about standard normal vectors

: Complementarity:

d=Elgll* =ETk(g*+E Ik ()I* = 6(K) + 6(K")
:& Polar formulation:

§(K) =E|Mk(g)l° =El g — k- (g)|* = Edist*(g,K°)
8 Mean-squared-width formulation:

sup (g, u) = sup (Tx(g) + Mx-(g), u) < sup (Mg(g), u) = IMx(g)l
lull<1 lull<1 lull<1
uck uck uck

sup (g, u) =g, Ilx(g)/ Mg (g) ) = [T (g)l
lul<1
uek
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Gaussian Width and Statistical Dimension

Proposition 14 (Amelunxen et al. 2014). Assume K is a convex cone in R% and
g € R% is standard normal. Then

2
O0(K)—1 < ([E sup (g, u)) < O0(K)

|ull=1,ucK

:a Upper bound (Jensen):

2S[E( sup (g, u))2:6(K)

lull<1l,uck

([E sup (g, u))zs[E( sup (g, u))

lull=1,ueK lull=1,ucK

:a- Lower bound (Poincaré):

1+([E sup (g, u))zz[E sup (g, u))2

lull=1,ueK lull=1,ucK

Z[E’( sup (g, u))z-ﬂgeRd\Ko]:[E[( sup (g, u))z]:6(1()

" lull=1,ueK lull<1,uck

Source: Amelunxen et al. 2014.
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Basic Examples of Statistical Dimension

Cone Notation Statistical Dimension
Subspace L; j
Nonnegative orthant R4 1d
Second-order cone  4+1 2(d+1)
Real psd cone sS4 rd(d—-1)
Complex psd cone H4 1d?

Sources: Chandrasekaran et al. 2012; Amelunxen et al. 2014; McCoy & Tropp 2014.
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Circular Cones

3/4+

1724

1/4f

Normalized statistical dimension

0 /8 w4 3n/4 /2
a: Angle of cone

:a For a € (0,7/2), define Circ,(a) = {x € R%: x; = || x| cos(a)}

2 §(Circy(a)) = dsin®(a) + cos(2a) + o(1)

Sources: Amelunxen et al. 2014; McCoy & Tropp 2014.
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Polar Form of a Descent Cone

Definition 15. The subdifferential 0 f of a convex function f at a point x is

of(x)={u: f(y)= f(x)+(u, y—x) forall y}

Fact 16. Assume that 0 f (x) is nonempty, compact, and does not contain the origin.
Then
D(f,x)°=J7-0f(x)

7=0

Remark: Compactness is not essential.

Sources: Rockafellar 1970; Rockafellar & Wets 1998; Hiriart-Urruty & Lemaréchal 2002.
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The Descent Cone Recipe

Proposition 17 (Amelunxen et al. 2014). Assume that f is a convex function whose
subdifferential 0 f (x) is nonempty and does not contain the origin. Then

5(D(f,x)) < infEdist’(g,7-0f(x)) = inf J(7)

7=0

where g is standard normal

28 Assume 0 f (x) is compact for simplicity

s8¢ Calculate:

5(D(f,x) =E dist’(g,D(f,x)°) =E dist” (g, U T-Of(x))

7=0

= inf dist®(g,7-0f (x)) < inf E dist* (g, 7-0f (x))

7=0

Sources: Stojnic 2009, 2013; Chandrasekaran et al. 2012; Amelunxen et al. 2014; Foygel & Mackey 2014.
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The Descent Cone Recipe: Error Estimate

Theorem 18 (Amelunxen et al. 2014). Assume that f is a norm. For nonzero x,

2max{ llull: uedf(x)}
[/ xl)

0 < igg](r)—(S(a)(f,x)) <

:a. |dea: Linearize T — dist” (g,7-0f(x)) at minimizer 7, of J
8- Related result of Foygel & Mackey based on other ideas

28 Still room for improvement

Sources: Amelunxen et al. 2014; Foygel & Mackey 2014.
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Example: /; Statistical Dimension |

:a. Goal: Compute §(D (I, , x5)) for vector x; € R? with s nonzero entries
:& By symmetry, can assume x; = (1;,0,4_5)
:a Subdifferential: 0 f (x;) = {(15,v) eRY: ||V < 1}

s8¢ Distance to scaled subdifferential:

Js(7) = Edist* (g, 7 -0l xll,,) Z[E(g,—r) + Z [Emm(g,—w)

i=s+1 lvil=
= s E(g-1°+d—-9)-E(gl-1)2<s-1+1) +2(d—5)-e "

:a- Choose 7% = 2log(d/ s) to reach

5(DU e, ,x9)) < inf Ji(1) = 2s(1+log(d/s))

Sources: Donoho 2006; Donoho & Tanner 2009; Stojnic 2009, 2013; Chandrasekaran et al. 2012; Amelunxen et
al. 2014; Foygel & Mackey 2014; Goldstein et al. 2014,
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Example: 7, Statistical Dimension Il

2 x, € R? has s nonzero entries
‘6 Observe z=x;+1ng

:a X solves
minimize [x—z|° subjectto |xll,, < Ilxll,,

& Then
[Ell?c—xhll2 < 2s(1+log(d/s)-n°

8 Almost achieve same MSE as if we knew supp(x;)!
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Example: 7, Statistical Dimension lll

3/4-

1/2}

1/4,

Normalized statistical dimension

0 114 112 3/4 1
p: Nonzeros/dimension

@ With p=s/d €10,1],

§(D(f,xy))
d

5(D(f,xy5) L
d d\/o

< ir>1g[g(l +1)+(1-p)E(gl-7)3] <

Sources: Affentranger & Schneider 1992; Betke & Henk 1993; Boroczky & Henk 1999; Donoho 2006; Donoho & Tanner
20009; Stojnic 2009, 2013; McCoy & Tropp 2013; Amelunxen et al. 2014; Foygel & Mackey 2014; Goldstein et al. 2014.
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Compressed Sensing: Hmmm...

Ambient dimension d = 100

100 F

7571

50

251

m: Number of random measurements

1 25 50 75 99
s: Number of nonzeros in x

Sources: Donoho et al. 2009-2013.
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Example: S; Statistical Dimension |

X, € R4*% has rank r
: QObserve Z =X, +1nG
2 X solves

minimize | X-Z|Z subjectto [ Xllg, <IIX,lIls,

‘8 Then
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Example: S; Statistical Dimension Il

3/4¢

12+
v : Aspect ratio

Normalized statistical dimension

v=1
14 v=1/2
v—0
OL 1 1 1 ]
0 1/4 1/2 3/4 1

p: Rank/dimension

Sources: Oymak et al. 2010; Chandrasekaran et al. 2012; Amelunxen et al. 2014; McCoy & Tropp 2013, 2014; Goldstein
etal. 2014.
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Matrix Compressed Sensing: Hmmm...

900

600}

300}

Number of random measurements

0 10 20 30

Rank of X

Sources: Recht et al. 2010; Oymak et al. 2010; Donoho et al. 2013,
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A Conjecture...

Z
/|
=9

The phase transition of matrix recovery from
Gaussian measurements matches the minimax

MSE of matrix denoising

David L. Donoho®", Matan Gavish?, and Andrea Montanari®

Departments of 2Statistics and PE|ectrical Engineering, Stanford University, Stanford, CA 94305

Contributed by David L. Donoho, April 3, 2013 (sent for review February 5, 2013)

Let Xo be an unknown M by N matrix. In matrix recovery, one
takes n<MN linear measurements yi,....y, of Xo, where y;=
Tr(A7Xo) and each A; is an M by N matrix. A popular approach
for matrix recovery is nuclear norm minimization (NNM): solving
the convex optimization problem min || X||, subject to y; =Tr(A] X)
for all 1 <i<n, where ||-||. denotes the nuclear norm, namely, the
sum of singular values. Empirical work reveals a phase transition
curve, stated in terms of the undersampling fraction §(n,M,N) =
n/(MN), rank fraction p=rank(Xo)/min{M,N}, and aspect ratio
p=MI/N. Specifically when the measurement matrices A; have in-
dependent standard Gaussian random entries, a curve §°(p) =
6" (p:p) exists such that, if §>6"(p), NNM typically succeeds for
large M,N, whereas if 6§ <6*(p), it typically fails. An apparently
quite different problem is matrix denoising in Gaussian noise, in
which an unknown M by N matrix X is to be estimated based on
direct noisy measurements Y =Xy + Z, where the matrix Z has in-
dependent and identically distributed Gaussian entries. A popular

measurement operator .4, then the solution X; =X;(y) to (Ppuc)
is precisely Xj. Such incoherence can be obtained by letting A
be random, for instance if A(Xy), = Tr(47 X) with A; € R"*" hav-
ing independent and identically distributed (i.i.d) Gaussian entries.
In this case we speak of “matrix recovery from Gaussian measure-
ments” (1).

A key phrase from the previous paragraph is “if X is sufficiently
low rank.” Clearly, there must be a quantitative tradeoff between
the rank of X and the number of measurements required, such that
higher-rank matrices require more measurements. In the Gaussian
measurements model, with N, M sufficiently large, empirical work
by Recht et al. (1, 7, 8), Tanner and Wei (9), and Oymak and
Hassibi (10) documents a phase transition phenomenon. For ma-
trices of a given rank, there is a fairly precise number of required
samples, in the sense that a transition from nonrecovery to com-
plete recovery takes place sharply as the number of samples varies
across this value. For example, in Table S1 we present data from
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Caussian

Comparisons
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Slepian’s Lemma

Theorem 19 (Slepian 1962). Assume x € RY and y € RY be centered, jointly
Gaussian vectors whose covariance structures satisfy

EX;X;<EY;Y; foralli#j
EX’=EY; forall i

Then, for all choices of A; € R,
N N
p (Uizl 1Y > Ai}) <p (Ui:1 (X; > A,-})
In particular,

Emax; Y; < Emax; X;

Sources: Slepian 1962; Sudakov 1969, 1971; Marcus & Shepp 1970, 1972; Fernique 1974; Joag-Dev et al. 1983; Kahane
1986; Ledoux & Talagrand (Cor. 3.12).
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Chevet’'s Theorem

Corollary 20 (Chevet 1977, Gordon 1985). Assume

@ JcR™and V cR" are compact subsets of the unit sphere
@ I'e R"™ and g € R™ and h € R" are independent standard normal

Then

E max (Tu,v) < E max [(g, u)+(h, v)|
uclU,veV uclU,veV

Sources: Chevet 1977; Gordon 1985, 1988; Ledoux & Talagrand (Thm. 3.20); Davidson & Szarek 2001; Stojnic 2013;
Amelunxen et al. 2014; Thrampoulidis et al. 2015; Amelunxen & Lotz 2015.
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Example: Spectral Norm of a Gaussian Matrix

8 Goal: For standard normal I" € R"*"", bound expectation of

IT|l= max {(Twu, v)
lull=[v]=1

2 Apply Chevet's Theorem:

EIIC|=E max (T'u, v)

lull=llvi=1

<E max [(g, u)+<(h, v)]

lull=llvi=1

=Elgl+Elh|
<vm++vn

8 Result is sharp, including constants!

Sources: Marchenko & Pastur 1967; Chevet 1977; Gordon 1985, 1988; Yin et al. 1988; Bai et al. 1988; Edelman 1988;
Ledoux & Talagrand (Thm. 3.20); Davidson & Szarek 2001.
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Proof of Chevet's Theorem

8 Let y € R be an independent standard normal

& Define independent Gaussian processes on {(u, v) : |u| = [|v] = 1}:

Yow=Tu, v)+y and X,,=(g, w)+{(h, v)

1 5 Compute the covariances:
EYup Y =<u, u){v, vy+1 and EXy, Xy =(u, u')+(v, v

¢« Comparison:
EYuo Yy —EXyp Xy = (1 —(u, u,>)(1 — (v, U’)) =0
EY;,-EX2, =0
& Apply Slepians Lemma (on finite subsets of U, V):

E max (Tw, v)=E max Y, <E max X,,=E max [(g, u)+<(h, v)]
lul=lvi]=1 lul=lvi=1 lul=lvi=1 lul=lvi=1
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Gordon’s Theorem

Theorem 21 (Gordon 1985). Assume X € RM*N and Y € RM*Y are centered, jointly

Gaussian matrices whose covariance structures satisfy

EX;; X <EY;;Yi foralli#kandall j,¢
[EXZ'J'XMZ[EYZ']'YM foralliandj#€
[EXZ.ZJ. = [EYZZJ forall i, j

=7\

Then, for all choices of A;; € R,

PN UL (Y > At) =P (M U, X > A

In particular,
Emin; max; Y;; = Emin; max; X;;

Sources: Joag-Dev et al. 1983; Gordon 1985, 1988; Kahane 1986; Ledoux & Talagrand (Cor. 3.13).
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The Gaussian Minimax Theorem

Corollary 22 (Gordon 1985). Assume

@ JcR™and V cR" are compact subsets of the unit sphere
@ I'e R"*™ and g € R™ and h € R" are independent standard normal

Then

Eminmax (T'u, v) = Eminmax|(g, u)+ (h, v)]
uclU veV uclU veV

Sources: Chevet 1977; Gordon 1985, 1988; Ledoux & Talagrand (Thm. 3.20); Davidson & Szarek 2001; Stojnic 2013;
Amelunxen et al. 2014; Thrampoulidis et al. 2015; Amelunxen & Lotz 2015.
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Example: Minimum Singular Value of a Gaussian Matrix

s8¢ Goal: For standard normal I’ € R™" bound
Eomin(I') = min max (I'u, v)
lul=1v|=1

s Gaussian Minimax Theorem:

E O min(I') = min max (T'u, v)
lul=1]vl=1

= E min max [(g, w)+<(h, v)]

=E|hI|-Elgl
>vn—-1-vm

8 Result is sharp, including constants!
8- Remark: Can replace v'n — 1 with /7 if you work hard enough

Sources: Marchenko & Pastur 1967; Chevet 1977; Silverstein 1985; Gordon 1985, 1988; Ledoux & Talagrand (Thm. 3.20);
Szarek 1991; Bai & Yin 1993; Davidson & Szarek 2001.
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Proof of Gaussian Minimax Theorem

8 Define independent Gaussian processeson {(u#,v):uc U,ve V}:

Yow=Tu, v)y+y and X,,=(g, w)+{(h, v)

8 Compute the covariances:
EYyoYur =<u, u,> (v, l),> +1 and EX,,Xuw ={(u, u,> + (v, Vl>

:a- Comparison:
EYur Yur —EXupXuww = (1—(u, u))(1-(v, v')) =0
E Yuy Yur — E Xup X =0
EY:, —EX: =0

8 Apply Gordons Theorem (on finite subsets of U, V):

Eminmax{I'u, v) = [EminmaxY,,
uclU veV uclU veV
> EminmaxX,, = Eminmax[(g, u)+(h, v)]
uclU veV uclU veV
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Kahane’s Approach to Gaussian Comparison

Theorem 23 (Kahane 1986). Assume x € RY and y € R" are centered, jointly
Gaussian vectors. For sets A, B c {1,..., N}, assume that the covariance structures
satisfy

EX;X;<EY;Y; for(i,j)e A

SEX;X;=EY;Y; for(i,j)eB

L[EXZ-X]- =LEY;Y; for(i,j)¢ AUB

Let f : RY — R be a function whose second (distributional) derivative satisfies

Ol-jfZO fOf(i,j)EA
0;jf<0 for(i,j)eB

Then
Ef(x)<Ef(y)

Sources: Joag-Dev et al. 1983; Kahane 1986; Ledoux & Talagrand (Thm. 3.11).
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Gaussian Integration by Parts |

Lemma 24 (Univariate Gaussian IBP). Let y € R be a standard normal random

variable. For “any” function [ :R — R,

Elyfm]=E[f (]

s8¢ Calculate:

1 ) 1 ,
Elyfon] ZEfRuf(u)e‘” ’Zdu:EfRf'(u)e‘” 2du=E[f'(p)]

& Sufficient that f absolutely continuous and f’ € L;(dy)
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Gaussian Integration by Parts ||

Lemma 25 (Gaussian IBP). Let x € R" be a centered, jointly Gaussian vector with

covariance X. For “any” function f :R" — R,

E[X;f(x)] = Z(z)ij[E[(ajf)(x)]
=1

8 Since x ~ 212z for standard normal z € R”,

E[X 0] = Y (212 E[Zef (222)) = ¥ (212) . E[ Zeg ()

k=1 k=1
& By univariate Gaussian IBP,

E[Zg(@)] =E[0) ()] = }_ (2'%),,E[0;N(Z"?2)] = }_ (2'?),E[(0; ()]
j=1 j=1
:a- Therefore,
E[Xif@)]= Y (ZV9),(2"),E[0,/®] =3 ZE[0; ) (x)]
k:

Jrk=1 j=1
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Gaussian Interpolation

Lemma 26 (Gaussian Interpolation). Let x € R" and y € R" be independent, centered,
jointly Gaussian vectors with covariances Z, and X . Define

z()=Vitx+vV1-ty fortel0,1]
For “any” function [ :R" — R,

1 n
T [f(Z(l‘)) =5 Z_, ((Zx)z] (zy)z]) [(al]f)(z(l‘))]
8 Calculate:
—[E[f(z(t))]—Z[E[(a AE)0:2)(D)] = Z[E[(O f)(z(t))(\/_ \/L )]

& Apply Gaussian IBP to each term; e.g,,

1 n
—E[0: /) @) X;] =) (Z)i;E[(0:; /) (z(1)]
Vi j=1
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Proof of Kahane's Theorem

8 Observe that f(z(0)) = f(y) and f(z(1)) = f(x)

& By Gaussian interpolation,

d n
—[E[f(z(t)) Z (Z0)ij— (Zy)ij) E[(0:7 ) (2(2))]

va—*

& By hypothesis,
for (l,]) € A, (Zx)ij < (Zy)ij and Oijf >0

fOf(i,j)EB, (Zx)ijz(zy)ij and GiijO

otherwise, (Z));;=(Z,);;

& Thus, ;
a[E[f(z(t))] <0

8 Conclude: E f(x) <E f(y)
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Proof of Slepian’s Lemma

. Let x € RY and y € RY be centered, jointly Gaussian vectors with

EX;X;<EY;Y; foralli#j
EX?=EY? forall i

@ Set A=1{(i,]):i # j}and B = @. Define the function
fw) = Hﬂ{wl <A}

« For (i, j) € A, compute second derivative:

0:H(w) =—Nw; =1} | [ Hw; <A
j#i

O Hw) =Nw;=A,w;j=21;} [] HwesA =0
keli,j}

2 Apply Kahanes Theorem:
P(ﬂil{Xi < /1,'}) =Ef(x)<Ef(y)=P (ﬂﬁ\il{yl. < Ai})
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Proof of Gordon’s Theorem |

o Let X € RM*N and Y € RM*Y be centered, jointly Gaussian matrices with

[EX;j X/ <EY;; Yy foralli#kandall j,¢
[EXinigZ[EYini[ foralliandj;éf
|EX;, =EY/ forall 7, j

A

@ Set A={((i, ), (k,0)):i#k}and B={((i, ), (k,0)):i=k,]j# ¢} Define

N M
faw) =1] 1—Hﬂ{wijﬁ/1ij}]
i=1 j=1

8 Compute first derivative:

@i, ph W) =Nw;j = A4} H Hw; <Al H 1- Hﬂ{wi/]" < /li’j’}]
i'#i 278 B

Joel A. Tropp (Caltech), Structured Signal Processing, Structural Inference in Statistics Spring School, Malente, March 2017 69



Proof of Gordon’s Theorem Ii

« For ((i, j),(k,¥)) € B, compute second derivative:
Ou, j), ko W) = =Nw;; =Aij, wie = Ai}

x [] Wwip<Ai[]|1- ]‘[ﬂ{w”/q,f} <0

j'elj, ¢} i'#£1

« For ((i,]),(k,¥£)) € A, compute second derivative:
O, j), 0,00 [IW) = Nw;j = Ajj, Wie = Age}

>0

< [] Wwip <A} [] Mwey < Akt [] [1—Hﬂ{wi’j’5/li’j’}

J'#i ji#e i'¢ i, k) J
8 Apply Kahanes Theorem:
C C
P (ﬂfil (ML, X35 = 1)) ) =Ef(x)<Ef(y)=P (ﬂfil (maErm) )
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Gaussian Concentration

Theorem 27. Assume

¢ f:R?— Ris a Lipschitz function: | f (x) — f(y)| < L-|lx—y| forall x,y

. / = f(g) where g is standard normal

Then

IA

Var[Z] = E(Z - E Z)* I? (Poincaré)

P{Z-EZ|=z88 < e '@ forallt=0 (concentration)

Sources: Ledoux & Talagrand (Sec. 1.1); Bogachev (Sec. 1.7); Boucheron et al. (Sec. 3.7, 5.4).
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Pisier's Approach to Gaussian Concentration

Theorem 28 (Pisier 1986). Assume

¢ f:RY— Ris an L-Lipschitz function
2. x € R% and y € R are standard normal
@ ®:R— Ris convex

@ [— O(r) + O(—t) isincreasing on R

Then
EQ(f(x)-Ef(x) = E®(37Ly)
In particular,
(1) =1*: Var[f(x)] < tn°L?
O(t) =€’ logE eV B/ < %nZLZHZ for 0 € R

Sources: Pisier 1986; Ledoux & Talagrand (Egn. (1.5)).
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Proof of Pisier's Theorem

& Let x, y be independent standard normal variables

& Define z(a) = cos(a)x + sin(a)y and z'(a) = —sin(a)x + cos(a) y

& For fixed a, the vectors z(a) and z'(a) are independent standard normal
& Calculate:

ED(f(x)—Ef(y) <EQ(f(x) - f()

/2
[Ecb(f (Vf(z(@), z'(a)) da:)
0

2 /2 T ,
< ;fo [ECI)(E(Vf(z(a)), Z(@)) da
T
o (57w )

v/
=EQ(ZIV/ (0l -]

<ro(lL )
= 5 ')/
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Signa

Recovery
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Convex Signal Recovery

:a Let f:R% — R be a convex structural penalty (e.g., an atomic gauge)
. Let x, € R? be “structured” but unknown

2 Let ® € R™*“ be a known measurement matrix

¢ Observe z = ®x; € R™

& Find estimate X by solving convex program

minimize [ (x) subject to Ox =2z

¢ Hope: X = x;

Sources: Chen et al. 1997, 2001; Chandrasekaran et al. 2012, McCoy & Tropp 2013; Oymak et al. 2013; Amelunxen et
al. 2014; Thrampoulidis et al. 2014-2016; Tropp 2015.
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Geometry of Convex Signal Recovery

x; + null(®)

{x: fx) < f(x)}

xy+D(f,x)
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Analysis of Convex Signal Recovery: Success

Proposition 29 (Geometric Formulation). Convex signal recovery succeeds (X = xy) if

and only if
D(f,x;) Nnull(®) = {0}

Proposition 30 (Analytic Condition for Success). Convex signal recovery succeeds if

O min(®; K) = in_f |®x| >0 (“Minimum conic singular value’)

xeK

where K = D(f, x;)

Sources: Rudelson & Vershynin 2006; Stojnic 2009, 2013; Oymak et al. 2010; Chandrasekaran et al. 2012; McCoy &
Tropp 2013; Oymak et al. 2013; Amelunxen et al. 2014; Thrampoulidis et al. 2014-2016; Tropp 2015.
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Gaussian Measurements

Proposition 31 (Gaussian Measurements). Assume I € R™*4 js a standard normal
matrix. Then null(I") is a uniformly distributed subspace of R% with codimension

m A d, almost surely.

Sources: Donoho 2006; Candes & Tao 2006; Rudelson & Vershynin 2006; Stojnic 2009, 2013; Donoho & Tanner
20009; Recht et al. 2010; Oymak et al. 2010; Chandrasekaran et al. 2012; McCoy & Tropp 2013; Oymak et al. 2013;
Amelunxen et al. 2014; Goldstein et al. 2014; Thrampoulidis et al. 2014-2016; Tropp 2015.
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Minimum Conic Singular Value of a Gaussian Matrix

Proposition 32. Assume

:a K is a convex cone in R?
:a T e R™*4 js standard normal

Then
Eomin@;K) = vm-1- v6(K)

& Write amin(l“; K) = inf”u”:l,ueKmaX”,,“:l (Fu, l))
s8¢ Gaussian Minimax Theorem:

Eomin@T;K) = Einfjy -1 yex maxyy =1 [(g, w) + (h, v)]

vm—1 — Esup,=1uex (& W = vVm—-1-v5(K)

\Y

Sources: Gordon 1985, 1988; Rudelson & Vershynin 2006; Stojnic 2009, 2013; Oymak et al. 2010; Chandrasekaran et
al. 2012; Oymak et al. 2013; Amelunxen et al. 2014, Thrampoulidis et al. 2014-2016; Tropp 2015.
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Concentration of Minimum Conic Singular Value

Proposition 33. Assume K is a convex cone, and let T be standard normal. Then

& Bound the Lipschitz constant of o, (; K):

A

inf |Tull— inf KIIF'ull < rdl-Irul <= |@-THd|

< < |IT-T'|Ig
lul|=1,ucK lzel|=1,uc
where u' is a near-minimizer of the second term

:a Apply Gaussian concentration with L =1

Sources: Rudelson & Vershynin 2006; Stojnic 2009, 2013; Oymak et al. 2010; Chandrasekaran et al. 2012; Oymak et
al. 2013; Amelunxen et al. 2014, Thrampoulidis et al. 2013-2016; Tropp 2015.
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Gaussian Measurements: Success

Theorem 34 (Chandrasekaran et al. 2012). Assume

@ f:R?— Ris a convex function and x; € dom(f)
& Observe z =T'x, whereT € R™*4 js standard normal

:a- The vector X solves
minimize f(x) subjectto T'x=1z

Then
m=68(K)+CVd implies X = x, with high probability

where K =D (f, x;)

Sources: Rudelson & Vershynin 2006; Stojnic 2009, 2013; Chandrasekaran et al. 2012; Amelunxen et al. 2014;

Thrampoulidis et al. 2014-2016; Tropp 2015.
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Gaussian Measurements: Success Proof

i Let K =D(f,x,)
:. Combine last two results:
e "2 2 P {0 min(T; K) < EOmin([T; K) — £}
> [P’{Umin(I‘;K) <vVm—1-v5K) - t}

8 Set t = 3 to achieve probability less than 2%

‘8 Success (0 iy (I'; K) > 0): vm—-1—-v6(K)—3>0

& Equivalently, m>0(K)+6vo(K)+10
& Use upper bound O0(K)<d
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Separation of Convex Cones

Theorem 35 (Klee 1955). Assume C and K are convex cones in R%, one of which is
not a subspace. Then

CnK={0} implies C°n(—K)°#{0}

CO

(—K)°

Source: Klee 1955.
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Analysis of Convex Signal Recovery: Failure

Proposition 36 (Geometric Formulation). Convex signal recovery fails (i.e., x, is not
the unique solution) if and only if

D(f, xy) Nnull(P) # {0}
If D(f,xy) is not a subspace, a sufficient condition for failure is
(D(f, %)) Nnull(®)° = {0}

Proposition 37 (Analytic Condition for Failure). Let ¥ be a matrix with
null(W) = null(®)°. Convex signal recovery fails if

Omin(V; K°) = ||mlin1 IPx| >0
Xll=

xeK®
where K =D (f, x;)
Sources: Stojnic 2013; McCoy & Tropp 2013; Amelunxen et al. 2014; Thrampoulidis et al. 2014-2016; Tropp 2015.
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Gaussian Measurements: Failure

Theorem 38 (Amelunxen et al. 2014). Assume

. f:R?— Ris a convex function and x; € dom(f)
8 Observe z =T'x, whereT € R™*4 js standard normal
:a The vector X solves

minimize  f(x) subjectto T'x=1z

Then

m=d6(K)-CVd implies  xy is not the unique solution  with high prob.

where K = D(f, x;)

Sources: Stojnic 2013; Oymak et al. 2013; Amelunxen et al. 2014; Foygel & Mackey 2014; Thrampoulidis et
al. 2014-2016; Tropp 2015.
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Gaussian Measurements: Failure Proof

Can assume m < d or else failure with probability zero
If D(f,x;) is a subspace, just count dimensions
Let I'° € R“~"™*d he standard normal

null(I'°) has same distribution as null(I")° (a unif. rdm subspace, codim m)
Let K =D(f,x;). As before,

€ & & & @

e™""2 2 P{0min(T% K°) < EOin(T% K°) - £}
>P {amm(r°;1<°) <Vd-—m—-1- 6K - t}

¢a Failure (0, (% K°) > 0): vd-m—-1—-+v58(K°)=3>0

8 Equivalently, d—m>06(K°)+6v6(K°)+10
8 Use facts O0(K)=d-06(K)<d
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Gaussian Measurements: Summary

Theorem 39 (Chandrasekaran et al. 2012; Amelunxen et al. 2014). Assume

. f:R?— Ris a convex function and x; € dom(f)
& Observe z =T'x, whereT € R™*4 js standard normal

& The vector X solves
minimize  f(x) subjectto T'x=1z

Then
m=<6(K)-CVd implies success with high probability

m=8(K)+CVd implies failure with high probability

where K =D (f, x;)

Sources: Rudelson & Vershynin 2006; Stojnic 2009, 2013; Oymak et al. 2010, 2013; Chandrasekaran et al. 2012;
Amelunxen et al. 2014; Foygel & Mackey 2014; Thrampoulidis et al. 2014-2016; Tropp 2015.
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Gaussian Measurements: Improved

Theorem 40 (Amelunxen et al. 2014). Assume

@ f:R?— Ris a convex function and x; € dom(f)
& Observe z =T'x, whereT € R™*4 js standard normal
:a The vector X solves

minimize  f(x) subjectto T'x=1z

Then

m < 38(K)—Cv/8(K)AS(K°) implies success with high prob.

m=6(K)+Cv8(K)ASK®) implies failure with high prob.
where K =D (f, x;)

Sources: Amelunxen et al. 2014; Thrampoulidis et al. 2014-2016; Goldstein et al. 2017.
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Example: £, Minimization

& Suppose x; € R% has s nonzero entries
:a Let I' € R™*4 be a standard normal matrix
¢ Observe z =T'x;

& Find estimate X by solving convex program

minimize |lx|l,, subjectto I'x=2z

¢ Hope: X = x;

Sources: Donoho 2004, 2006; Candeés & Tao 2006; Rudelson & Vershynin 2006; Donoho & Tanner 2009; Stojnic
20009, 2013; Chandrasekaran et al. 2012; Amelunxen et al. 2014; Foygel & Mackey 2014; Goldstein et al. 2017.
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¢, Statistical Dimension Curve
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p: Nonzeros/dimension

Sources: Affentranger & Schneider 1992; Betke & Henk 1993; Boroczky & Henk 1999; Donoho 2006; Donoho & Tanner
2009; Stojnic 2009, 2013; Chandrasekaran et al. 2012; McCoy & Tropp 2013; Amelunxen et al. 2014; Foygel & Mackey
2014.
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Example: Performance of /; Minimization

60 10.9
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40 106
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Example: Emergence of

¢, Phase Transition

Ambient dimension d = 100
100 - : -

7571

507

2571

m: Number of random measurements

1 25 50 75 99
s: Number of nonzeros in x

600 F

4501

300

150}

Ambient dimension d = 600

1 150 300 450 595
s: Number of nonzeros in x
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Example: S; Minimization

2 Suppose X; € R“*% has rank r
;0 Let I € R"*(41x%) he 3 standard normal matrix
¢ Observe z =T'(vec X))

:a Find estimate X by solving convex program

minimize [ X|s, subjectto I'(vecX)==z

' Hope: X = X,

Sources: Fazel 2002; Recht et al. 2010; Oymak et al. 2010, 2013; Chandrasekaran et al. 2012; Amelunxen et al. 2014;
Thrampoulidis et al. 2014-2016; Tropp 2015; Goldstein et al. 2017.
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S; Statistical Dimension Curve

Normalized statistical dimension
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Example: Performance of §; Minimization

Joel A. Tropp
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95% success
50% success

5% success
0: Stat. dim

Number of random measurements
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Rank of X
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Desserts +
Digestifs
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Complements

8 Universality

& Signal recovery with noise

& Sharp analysis for Gaussian signal recovery with Gaussian noise
- Non-Gaussian measurements

¢ Demixing
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Universality |

Theorem 41 (Oymak & Tropp 2015). Assume

. f:R?— Ris a convex function and x; € dom(f)
& ® € R™*4 has iid standardized, symmetric entries with 4+ moments

o Observe z = @x;
:a- The vector X solves

minimize  f(x) subjectto ®x=z

Then
m=<06(K)—o(d) implies success with high probability

m=06(K)+o(d) implies failure with high probability

where K =D (f, x;)

Sources: Donoho & Tanner 2009; Bayati et al. 2015; Oymak & Tropp 2015.
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Universality I

B )] 2]
o o o
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subjectto ®x = dx;
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Signal Recovery with Noise |

Theorem 42. Assume

a f R — R is a convex function and xy € dom(f)
:a The matrix ® € R™*4

o Observe z = ®x; + e where |le|| <7

:a The vector X solves

minimize  f(x) subjectto ||®x—z| <7

Then
2n

Umin(q); K)

1% — xyll <

where K = D(f, x;)

Sources: Candeés et al. 2006; Chandrasekaran et al. 2012; Tropp 2015.
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Signal Recovery with Noise Il

[P (x—xp) |l =21

x:f(x) = f(x)}
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Signal Recovery with Noise Il

Theorem 43 (Oymak et al. 2013). Assume

@ f:R?— Ris a convex function and x; € dom(f)
:a Let T € R™4 s standard normal

o Observe z = ®x; +1ng where g is standard normal
28 The vector X solves

minimize ||®x — z||* subjectto [f(x)< f(xy)

Then (roughly)

ENx—xll* . EIX—x,l° m
sup > = lim > =
>0 n 110 n m—0(K)

where K =D (f, x;)
Sources: Oymak et al. 2013; Thrampoulidis et al. 2014-2016.
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Non-Gaussian Measurements

Proposition 44 (Mendelson 2013). Assume
:a. The rows of ® € R"*“ are iid copies of ¢p € R?

8 K js a convex cone

& Define the small ball probability
Q= inf P{Ku, @) =1/6}

lull<l,ucK

& For independent Rademacher variables {¢;}, define the mean empirical width

1 m
W,=E sup U ——) £;Q;
" lul=1,ueK vim ; i

Then, for all t > 0,

—18¢2

Omin(@;K) = 2vVmQ—-2W,,—t withprob. =1-e

Sources: Mendelson et al. 2013-2016; Tropp 2015.
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Demixing |

Theorem 45 (Amelunxen et al. 2014). Assume

2 f,g:RY— R are convex functions

¢ x; € dom(f) and y, € dom(g)

:a Observe z = x; + Qy, where Q € R**% is random orthogonal
:& The pair (%, ¥) solves

minimize  f(x) subjectto z=x+Qy, g(y)< g(yh)

Then

5(C)+6(K)<d-0(d) implies (%,3)=(x,y, withhigh prob.
5(C)+6(K)=d+0(Vd) implies (%,3)# (x,y,) with high prob.

where C =D (f,x,) and K =D (g, yh)

Sources: Amelunxen et al. 2014.
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Demixing i

Phase transition for success of constrained MCA (d=100)

Weak bound
. - 10.9
Empirical 50% success
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T Sparsity ratio for xg

minimize |lx|l,, subjectto z=x+Qy, |y, <ly,lle,

Source: Starck et al. 2003; McCoy & Tropp 2013; McCoy et al. 2013; Amelunxen 2014.
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Demixing Il

Inage crdit: NAS B
Observation zg Sparse component xq DCT-sparse component ¥

Source: Starck et al. 2003; McCoy & Tropp 2013; McCoy et al. 2013; Amelunxen 2014.
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To learn more...

E-mail: jtropp@cms.caltech.edu
Web: http://users.cms.caltech.edu/~jtropp
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